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TWO FILTER FORMULAE

Some simple derivations of two~filter-like formulae (in the

smoothing problem of linear estimation) are given for general

nonstationary process.

It then becomes clear how a wide sense

Markovian assumption is required to give the formulae a back-

wards filter interpretation.
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SIGNIFICANCE AND EXPLANATION

The estimation of one process from measurements on another

related process is a problem that arises in many areas such as Time

Ao

Series Analysis, Econometrics, Communications Engineering and
Control Engineering. Particularly in the Engineering applications
there is a great interest in various computational forms of the
algorithms proposed to solve the above problem. The aim in this
article is to give simple derivations of some of these algorithms

thus revealing how they apply to general nonstationary processes.

This facilitates an understanding of what minimal assumptions are

needed for their full utility.

The responsibility for the wording and views expressed in this descriptive
: s SHEaEY 1ies with MRC, and not with the author of this report.
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SMOOTHING ESTIMATION OF STOCHASTIC PROCESSLS k.
PART 1I: TWO FILTER FCRMULA ’

V. Solo

. 1. INTRODUCTION, Recently a number of authors have discussed various types of
smoothing formulae in varying levels of generality (so far as the signal and observed
process models are concerned): see Kailath and Frost [6], Ljung and Kailath (9],
Lainiotis [B]. An ongoing problem has been the understanding of the two-filter formulae:
Mayne [10), Fraser [3]}, Mehra, Badawi et. al. [l].-ﬁln this article these two-filter
results and some new ones are derived in a simple way in a very general setting (for
arbitrary nonstationary processes). It turns out however that only if a wide-sense !
(i.e. second order) Markovian assumption is added can one of the filters be viewed

as a backwards filter., The remainder of the paper is organized as follows, Section

2 recalls some smoothing formulae that apply to both continucus and discrete observations.
Section 3 discusses two types of two-filter-like formulae for general nonstationary
processes. In Section 4 one of the filters is shown to be a backwards least sgquares
estimate provided a wide sense Markovian assumption is satisfied. Section 5 contains
a derivation of some backwards filters. In Section 6 some additional two-filter-like
formulae are given. The final section is a conclusiorx.41;\__._—-~

2. PRELIMINARIES. Consider the linear estimation of an n, dimensional process

x(t) from measurements on a related ny dimensional process y(t). 1In the first

[3)

instance suppose y(t) is measured in discrete time at points 0 < tl R S
2 N

over an interval (0,T}]; collect these observations into a vector i and assume the
1
covariance matrix E(QT g%) is positive definite. Now for aay t in [0O,T] in is

comprised of two vectors consisting of the data over the intervals [0,t]

Lo+ Loy
and (t,T] respectively, Let us denote the linear least squares predictor
by

x(t|T) or E(i(t)IﬂT)

where E denotes wide sense conditional expectations or projection. (see Parzen

[12, p309]; Doob [2, pl50]). Now i(t}T) is defined by the orthogonality condition

Sponsored by the United States Army under Contract No. DAAG29-80-C-(Q041.




E(x(t) - i(cgr))g;r =0. _

Thus
i, = b | = [ 1" ‘ll 4
x(0,7) = E(x(e) |y ) = E(X(OU)EW, 4p) Y . .

Also denote ﬁtT = E(gtTigt) and ep = ﬂtT - ﬂtT . Then observe
X(E[T) = E(x(t)14,) P ]

= E(x(t) oo dop)

= B0 Iy, Do)

- é(x(t)iz ) + é(x(t)l; ) by orthogonality
x i, 28 ey

= ;(t(t) + ([T say.
Now define
B(EIT) = E(x(t) - x(t|T)) (x(t) ~ x(t|T))"

and denote P(t) = E(t]t). Then call

Atm = P ey e|m.

Thus we can write

x(t]T) = x(t]t) + P(OAE|D 59
Also observe that
Elx(t]0)r'(t|T)) =0 (2)

So we can then find

B(E) = E(x(t) = x(t]£)) (x(t) -x(t])"

BP(E|T) + RP(B)O(t]TIB(E)
or P(L{T) = P(t) =~ P(£)O(t|TIP(t) (3)
where we have introduced i
OeiT) = ELA(E{TIL" (2]T)] (4)
Equations (1)~(4) describe general continuous-discrete estimation formulae,
liow suppose y(t) is measured continuously over the interval [0,T]. Assume y(t)
nas finite variance and a positive definite covariance Kernel. (Thus in a signal plus

noise model we are writing dy(t) = g(t)dt + dw(t).)

-




3 Now use the symbol UT to denote the Hilbert space spanned by 1(0), ¢ in [0,T] with
inner product (u,v? = E(uv) (for random variables u,v - UT). That is UT consists
of all random variables that are finite linear combinations (of the form Zi' gi x(ti),
ti in {0,T)) of y(s) for ¢ in [0,T] or limits in mean square of such linear

combinations. Also call Yer the Hilbert subspaces spanned by yl(o), o in [0,t),

UtT

(t,T] respectively. The linear least squares estimate 5(t|T) is the vector whose ith
component is the unique projection E(xi(t)lyT) that satisfies
E(x, (t) - E(xi(t)|UT))y_' (c) =0, for all o in (0,T)

with a slight abuse of notation denote x(t|T) by E(i(t)|yT). Denote by

~

ytT(= E(UtTiUt)") to be the Hilbert subspace of yt spanaed by h(x}s)lyt) s in

~

= - " : i
(t,T]. Then Ut1( UtT ytT ) 1is the orthogonal complement of yt in gT namely

the Hilbert subspace of yT spanned by y(s) - E(x(s)|yt), s in [t,T].
Then observe exactly as before
(] = E(x(0) [y,
= E(x(t) [y, b, )
= E(i(t) |yt,§tT)
= Ex(0) [y + Ex(®) |y
= x(t]t) + y(t|m).
With the same definitions as before it easily follows that (1)-{4) hold also in continuocus
time. These relations have been previously given by Kailath and Frost [6] for continuous
time processes possessing an innovations process., See also Kailath and Geesey (7).

since much of the ensuing argument depends only on (1)-(4) the discrete, continuous-

discrete, and continuous cases can be given a joint treatment.




3, TWO-FILTER FORMULAE. (A) The basic idea. The idea of a two-filter formula is to

compute the smoothed estimate at time t as a sum of two estimates; one using data in
[0,£) the other using data in [t,T), If these estimates are least squares they ought
to be orthogonal in some sense. Thus the formula could be of the form

xt|D = pe|m @7 el + By em)

E'B
where the subscript B denotes backward and
= - ¢ -

_ga(:)w Elx(t) gstt}r)ni (t) _x_B(t]'r)].
of course as pointed out in (2) two terms in the basic decomposition (1) have an ortho-
gonality property but just what the "backwards" orthogonality should be in general is
not clear; there are indeed two possibilities

E(x(t) = x,(t|T)x'(£) = 0
or

- 1 = .

E(x(t) 5B(t|T))§B(t]'r) [
It turns out that both these lead to satisfactory expressions. The required two-filter-
like formulae will be obtained by reorganizing the basic formula (1).

(B) The first two-filter form. First apply the Matrix Inversion Lemma to (4) to see

_P:l(tf’r) = g'l(t) + (Q'l(t}'r) - g(t))'l. (4a)
So define gp(t|T) (p stands for reverse) by
~1
= 5
gl = B (e]T) + B(E) (s

(notice that as t > T, O(t|T) » 0 so B (t|T) » =) so that (4a) is rewritten
~1 -1 -1
t|T) = £) + P {t|T). 6
g(l)g()+_@(]> (6)
Now multiply this through (1) to find
g~l(t|T)§(tlT) = _P;-l(t)i_t_(t}t) + g_'é(t]*r) (x(t]e) +

p (tlm) " ey + P elmypie) At ]T)
o = = =

pleyele) + T (x(E]E) + (P(E]T) + B(E)):(E)T))
Eex 1 x B B(EN) L

x|ty + g'cl(t]'r) {(x(t]e) + Q'l(tiT)j_(tiT))

by (5)

~g=

o




We are thus led to introduce

;C(tm - xielo) +« 0D (7a)
SO we can write

x(t|T) = pee|m T mxlele) + pTHEiDE (2T (75)
and calculate

B(®) - x (6|1 xte) - = (e])

E(x(t) - x(t]) = 07 e[ mAre|m) (2t (8) = x*(te) - 0T mice
= p(t) - Ex@AE]m O el - 0 e mEGEmx ) « e D
in view of (2) and the definition of P(t).
Next observe

Ex(t) A" (6| T)) = Elx(e) (x(t{T) - x()) 127 (e)

—(eeeim - peene tee)

+ P(R)O(E]T) by (3) (8)
Thus the above expression becomes
E(x(t) - x (E]T) (x(8) - x _(£|T))°
b - = -
= p(t) - B(t) - p(8) + O hee|m
= T b 5) .
B |T) y (5) (9)

Also observe that gﬁ(t\T) satisfies the following orthogonality properties

E(x(t) - (10a)

|o

(tlT)xr(t) =
A X

X
X (1Cb)

Elx(t) - p(tlrng-(t]t) -

|o

The first follows since

>

E(x(t) - xp(tET))g (t) = Elx{t) - x(tjt) - (_’-l(t!T)g_(t}T))i' ()

=p(e) - Cheimome®) by (8)
=0

while

E(x(t) - xi§t|T))5' (t]|t) = E(x(t) - gtl(t[t) - Q’l(tir)‘(t;'r))g' (t,t)

=0-9
=0 q
-~ 4
by (2) and the orthogonality property of x(tjt). :

-5~




Zyuations {7a), (7v), (9, (5), (6), (10) describe pseudo two-filter formulae for the
smoothing problem.  (Note that these results have also been obtained recently by
Badawi ct. al. 1] for a State Space Model by very elaborate argument,) The descriptor
"psoudo™ refers to the fact that it has not been demonstrated whether g_JtIT) can be
computed by a backwards filter. This point is discussed in Section 4 below. First
however we investigate the estimate, call it £ 4t]T), that satisfies the other type of
backwards orthogonality

Z(x(t) - ;_;(C;T))i:'s (tj?) =0 . (11)

(C) The second two-filter form. Let us denote 1(t) = E(x(t)x'(t)) and look for

é\ﬂt,?) in the form
(6T = (0 x (D)
where (%) 1is to be chosen to ensure (l1) holds.
'Consider then

°

E(x(t) - }_S(t}T))}gé(t]T)

E(x|t) - M(t)x (t{T));'(tlT)M'(t)
e Ht)x X M

implving

H(E) = Blx(0)x' (I DIEE (¢[Dx ([0

so that we have the interesting interpretation
£ (6D = B {x (el

To find a more informative expression for M({t) continue with (10a), (10b) which imply
Ex()x' (£]T) = B(x(t)x' (£) = 1(t) (12a)
-2 (/D) = Blx(e) - x (¢]D)x' (]

so that

Eix (6/Dx'(£]T)) = 1(t) + B ([T, (12b)

1

Thus 26D = 0 (z(e) + B &]D) 'k (e[m. (12¢)

Now we can introduce

(T = BlE) - x ([T (x'(8) - x'(eiT)
%

= E(x(t) - x (t]T))x"(t)

St = e (=) + 2 e e

-6~




Thus invoking the Matrix Inversion Lemma

P-l

-

wim = 17 + el (13)

Observe that, from (5), as t - T g‘§tiT)* «  while g'étlT) + n(T). Also from (12b)
E[gs(t;’l")l(_':(t[’l‘)] -0 as t-T

implying that the initial condition for the computation of g,étlT) is é.éT[T) = 0.

To calculate g(tlT) using ;_étlT) return to (13) and find via (12¢) that

S I _ -1 S
P p(tlw)ip(tl'r) =p p(tlT) (n(t) + _I-j_p(tlT))jr_ (£)x JeiD)

"

(g’é(t)’r) + lv_'l(t))i 6(tiT)

g-;(tIT)is(t]T) by (13). (14)
The interesting "invariance" expressed in this relation explains some of the confusion

with the two-filter formulae. TO summarize we collect some of the expressions together

x(t|T) = x(Et) + B(E))(E]T) (1)
= pit|m (g_'l(c)i(tlt) + g_-é(t{T)ip(t(T)) (7b)
= pefm @ mxie|o) + g—é(t]T)gs(tlT)) (15a)
= p(t|D) el (g'i(t[-r) + 1'1(1:))31_3(t|1~))

by (13), (15b)
Also
Plhelm = 2o+ 2, (6)

Expression (15b) was given by Ljing and Kailath {9, pl55] for a state space model.
With (11) in mind we turn now to consider when E.étlT) can be computed by a backwards
filter i.e. when is £V4t[T) a backwards estimate of x(t) based on the data in

{e,T).

-7
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4, BACKWARDS FILTERS AND A MARKOVIAN ASSUMPTION. Here we investigate under what
conditions ;a(tlT) is the linear least squares estimate, éb(t]T), of x(t) qiver
the data 4 in (t,T). Since the least squares estimate is unique we can establish when
it is also £ étlT) by ensuring

E(x(t) - g_étlT))x'(s) = C for all observation points s in (t,T].
(16)

First we find a convenient expression for 2_ét|T). Since g_ét]T) is to be a

backwards estimate we can expect a backwards decomposition analogous to (1) say

-~

x(t|T) =

{x

t t 7
g [T+ ge(t[T)z\.e( [T) (17a)

i

with E(gt_s(t]’r)l'e(tl'r)) 0.
This is indeed possible with (See Appendix A)

e el + (B - s m)

is(tl'l‘)

e (D - nwaenl. (175)

Observe that, via (14) and (7a)

Efx B(t[T)_A_'B(t|TH

- gétlw)g‘i(tms(g(t}c) + 07Hemace]T) (k(t]e) + (B(0) - e iteiTH Ry
= EB(tJT)E-i(tlT) [n(e)-B(t) + "2t ]mO! D (B(t) - =(£)))-"L(e)
=0.

Since E(i(t]t)i'(tJT)) =0 ; E[g(tjt)g'(tjt)] = n(t) - P(t),

Consider then

BOx(t) - x (&[T))y'(s) = -2 (|DEL (&]Dy ()] since
E(x(t) - gft|T))X'(s) = 0 for all observations s in [0,T] (18)
= gB(tims(r_.'l(t)i(tlr)-ytm)x'(s)

L

= -gﬁ(t}T)E[l-l(t)i(t) - MEID Iyt (s by (18).

Now substituting (1) in (18) gives

Elx(t) - g(tit) - P(B)A(t{T)]y'(s) = ¢ for all s in [0,T].




[

Thus
E(x(t) - x (€iT))y'(s) ==, (LiDIEL= T ()x(t) - BTL() (x(£) - x(x £))]1y'(s).
9 Now if, for s in (t,T]

E[ﬁ(tit)x}(s)] = E[g(t|t)§'(t)l:fl(t) E(x(t)y'(s)) (2Ca)
then we ftind for s in (t,T]

Elx(t)-x (£|T)]y" (s)

-2 (eI (27T 02 Ce) - BTN () - Elmleltx (00D @)1y (s

P 2T [I-P T (E)E(x () - x(tiE))x' (£))= " o)z (x(£)yt (s))

-2 (elm I - P lerm i mExmy s)
=0.
Thus é.étiT) is a the backwards least squares estimate of x(t) given the data in
(t,T] if (20a) holds.
It is now shown that (20a) holds if x(t),y(t) are jointly "wide sense" llarkov
i.e, jointly Markov so far as second order statistics are concerned. To put this another
way we show (20a) holds if
E(y(s) g, x(8)) = Eg(s) |x(6) s in (&,T] (2c8)

where, in discrete time gt denotes the vector of data collected to time t ; while in

ct
o]
—
[/
el
tr >

continuous time ﬂt denotes the Hilbert space spanned by y(r) 0 <
denotes "wide sense" conditional expectation or projection (cf,Doob, (2, pl5C]; Parzern
[12, p309])). The discrete and continucus time cases can now be treated jointly ., Wit

a slight abuse of notation denote (the Hilbert subspaces)

-k N = = i

Yo =EW [x g o=y -y !

~ " 3}

. e.9. Y is the Hilbert space spanned by E(Z(S);ﬁ(t)) s in [0,t) i
(Recall that in discrete time y, = E(y x' N -"Hrx(e)).

Then consider that

[

Ely(s) g, ox(£)) = E(z(s) g, ,x(t))

1

Ely(s) i, ) + Lig(e) ix(0) .

-

-
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Thus (20b) holds if and only if
E(y(s) ) = 0 T

This clearly holds if and only if

E(y(s)y'(c)) =0 T > s >t and all observed points o in [0,t)
i.e. if and only if

E(y(s)y’ (c))

E(y(s)y' (o))

i.e. if and only if

Ely(s)y’ (0)) = Ely(s)x’ (£))1 (B)E(x(t)y' (o))
for T > s >t and all observed ¢ in [0,t),

Now X, depends linearly on ﬁt thus rewriting the last expression as

-1
E(Qtz' (s)) = E(lf_i' (t))m “(L)E(x(t)Y' (s))
we see that (20b) implies (20a). Perhaps the simplest way to visualize the joint wide
sense Markovian requirement is in terms of a State Space Model for x(t), y(t). 1In the
next section it is shown how, with a State Space Model, iétl'r), }_p(tlT) can be computed

by backwards filters,

C e

~10~-
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5. BACKWARD FILTERS. First continuous observations are discussed. Consider the

state space model

dy(t) = H(t)x(t)at + v{t)dt (2la)

X(t) = F(t)x(t) + G(t)w(t) (21b)
where v(t), w(t) are white noises satisfying

Ev(t)v'(s) = §(t=s), E(w(t)w'(s)) = &(t-s)

Ev(t)w'(s) = 0 ¥ s,t .,

According to the orthogonality condition the backwards filtered estimate is given by

(the subscript B8 is now replaced by b )

x (E]T) = {T E(x(t)y! (s 1))y, (s| s (22a)
where 2b(s|T) is the backwards innovations (i.e. over [0,T] gb(s|T)ds is linearly
invertibly equivalent to the data dy(c). i.e. the Hilbert space spanned by "gb(slT)ds"
is the same as the one spanned by “"dy(o)"}.

We now find the backwards Kalman F.lter. First
dx, (t|T)

= = -E(_:g(t)y_l;(tlfr))zb(ti'r)

T Ll
+ { d/th(gt_(t)Xb(slT))Xb(sl'r)ds. (22b)
To compute terms such as
L]
gb(t]T), E[g(t)2$(t|T)], d/th[((i(t)gb(slT))]
we need to reorganize equations (2la) and (21b) into a backwards model where the noises
are orthogonal to future values of x(t). Recently Verghese and Kailath [13] have shown
how this can be done.

In Appendix B it is shown that the following filter results

gb(t)§b
yylt|mat = dy(t) - H(t)x (t|Tat (23b)

dﬁb(tJT) = (t|mat - _pb(tl'r)g' (t)_\_)b(t]'r)dt (23a)
with initial condition ;b(T|T) =0 where

E (6) = E(t) + G(OIGKE)1™(6) = =1(E)E' ()1 (). (23¢)
Also

-dp, (t|T)/dt = -B, (t|TIF} (£) - (£[T) + G(t)G' (t) = P, (t|MH' (VIH(E)R, (]T) (24a)

Eb(t)gb
with initial condition P, (T|T) = s(T) alternatively

~11-~
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-1 -1 -1
dp o (t]T)/dt = ~P7 (e[ TIE () = EV(E)RT (E|T) = H' (L)H(E)
+ Pl elmsng mp) el (24b)
Now equations (23), (24) are not the backwards filter equations that are usually given.
The equations are usually given for
-1 “
z(t|T) = B (t)’r):_cb(t]'r) {25a)
or for
x (£]T) = p (¢|Dz(E|D). (25b)
In Appendix C it is shown that filters for these quantities are
- az(t[m = -(B' (t) - EXe[ma()g! (e))e(t[Mat - K (t)ay(e) (26a)
dx__r(c|'r) = (F(t) + gt(c|'r)§_' (t)H(t))x (E|T)de - B (E|TIH' (t)dy (¢) {26b)

= _F_(t)i:,r(tlr)dc + gr(tl'r)g' (t)gr(:l-rmt (26¢)

with 3_r(t['1‘)dt dy(t) - g(t)_)_tt(tIT)dt and initial condition arbitrary. Also

-1 ~1 -1

dp " (t|T)/at = -p " (t|TIE(E) - E'(E)R. (tlm - H' (©)H(®)
st eimewiet e tie|m (264)
~x == b 4

with initial condition g; Lioimy = 0.

Equations (26a), (26b), (26d) appear for example in Ljung and Kailath [9, respectively

equations (14), (16), (13)1 ("b" in their notation is egquivalent to "r" of the present

L 3 notation! e

i
i
!
!
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6. SOME ADDITIONAL TWO-FILTER-LIKE REPRESENTATIONS, In Section 4 it was pointed out

how there is a pseudo~backwards expression analogous to (1) namely

2(EIT) = x 4tIT) + B (e TA (i) (39)
where also

E(x Le[TIA(E[T)) = 0 .
If we define

t = E t 't 2

[ | Qg IT)AB( ™) (32)

then it follows from (30) that

B EID = Ex(e) - x fe[D) Gxe(e) = x (efm)

BlE|T) + 58(:&’\:)9 B(t\'r)gstt}'z‘). (33
Thus we have pseudo-backwards analogues of (1)-(4).
Now however we can retrace the argument of Section 3 to produce an estimate
x (£]T) = x e|m) + o7t
=9¢ -8 =8
(where the subscript ¢ denotes forward) satisfying

(tIT)AB(tlT) (34)

E(x(t) - gs(t(m(;_- (£) - gwm =0 (35a)

EGx(t) - x (e]T)xt(e) = 0 (35b)
with also

glelm =2 (el + B (t[D (36)
where

B EID = B(a(e) - x (6T (k) - x (¢ .
Further

Pl = G g-;(tl'r). (37a)
Now substituting (13) in (37a) while equating (37a) to (6) gives

g‘l(t) =1ty + g-;"(t[’r). (37b)
Then we could search for é.gétlT) satisfying

E(x(t) - ;%(tm)g-se(tm =9 (38)
and £ind

gBB(qT) = n(e)(ale) + gc(tlw))'lg Ll (39)

as vell as

-13-




1

Pleimx a]m = plielmx (e (40)
N -3 3 =2

-8
where

B LET) = E(x(t) - gc_BB(tiTJ)gc_'(t).

slowever we find in Appendix D that

(t|T) £<t1c) (41a)

1% >

38
so

P .(t{T) = P(t), (41b)

255 =
If §b(th) denotes the linear least squares estimate of x(t) given the data in (t,T]
then again all the equations just derived (except (37b), (41)) hold with #& replaced by
b and ¢ replaced by £ (in (37b) replace gfl(t) by gb;I(tIT)). Then we can also

discover the wide sense Markov condition of Section 5 by requiring that

X,y (BT = x(t]e) .

7. Conclusion. By simple argument, a number of two~-filter-like formulae, that
apply to fairly general nonstationary processes, have been derived for the smoothing
problem of linear estimation, 1In general the filters cannot be interpreted in a back-

wards sense unless the joint signal/observations model is wide sense Markovian.

~14-
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i 4 Appendix A. Derivation of (17).
3

From (14)
. - -1 ~
) is(tl’r) = gﬁ(t-.l'r)gp (t|T)§p(t|T)
E spgelmElelm @l + 07 emAclm) by (a)
-1 -1, 2 ~1,.,0
= gB(tlT) e (T + 1 T ENxt|) - gs(tl'r)lr_ (tyx(t|t)
-1 -1
+ gB(tlr)gp t|?0™ e maie|m
i = x(t]t) + B ft|D [g-:(t|T)Q-l(t|T)l(t|T) - hox|el by (3)
= 2e|D - B gelm e ]o)
-1 -1 -1
=B, T (e |DIA]T) + P t[DR®A(E]|D]
= x(¢|D -p eID i ®xe]0) + 7o) B - nenAElD] .
Since

P ([DE®) - g'ol(tlr)g'lttm

(_I_’-pl(t)T) + 3 HeR(E) - g__:'(t]T)Q-l(tlT) by (13)

Eoeln e - 07 elm + i hwpm

-+ 1 Ne)R(e) by (5).

2T = 5 51 + 2 gelma i xie]0) + @) - zenAElmr. -

-]15=-
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Appendix B, Derivation of (23a), (23b), (24a), (24b).

In the present situation the backwards model is
dy(t) = H(t)x(t)dt + v(t)dt

x(t) = x(t) + G(t)w(t)

where
E((t)v(s)) = 8(t-s) ; E(w(t)wls)) = 6(t-s)
E(w(tlu(s)) =0 ¥ t,s !
E((t)y'(s)) =05 EW(t)y'(s)) =0  s>¢t. :
Also
EL(8) = E(6) + GG (011 (8) = ~x(0)E* (£)17 (¢) (c1)
so that
F, (0)7(8) = ~x(£)E* (&) (2)
1t follows that
v, (t|Pat = dy(t) - ib (t|mat = ay(t) - ﬂ(t);_;_b (t|T)at (23b) )

Elx(t)y ' (£])] = E(x(t) [H(E) (x(6) = x (E]T)) + ()]}

=B, (t|DH' (V) (c4)
(cs)

d/at Elx(t)y'(s|T)] = F (£)E(x(t)y', (s|T))

Thus in (22b)
ax (tjm = gb(th_t_b(tl'l‘)dt ~ gb(tl'r)ﬂ'(t) (ay(t) - E(t))_gét)'l‘))dt {(c6)
= (£ 4t) + B (E|DH (O)H(EDX (t]T)dt - P (E|TIH' (t)ay (e) . (CT)
Equation (23a) follows from (C6) and (23b)., Next (22a) implies
alt) - gb(tl'r) = E(x (£[T)x'(t|T)

(C8)

[F Elx®)y (sImiE(y (slmxt (e))as
t

Notice that gb(rl'r) = (7).
Thus differentiating and using (C4) gives (using "+" for "d/dt")
1= Be|m = -p ([T (OIH(E)R (]T) + E (&) (n(t) = B (e|T)

+ (2(t) - gb(tl'r))g'b(t).

%
|
]
|
?
!
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of course

L= E(t)a(t) + a(£)E'(t) + G(E)G' (v).
Thus using (C2) gives

=P (t]T) = B (£[DH' (DH)E (t|T) - F ()P (£T)

- B tITIEYE) + GE)G" (8).
Also it follows that
-1 ) § OIS |
asat B T(t]T) = =B " (¢|TR (£[Tp (t]T)

-1
(¢|DE (£) - EYIR

-1 . -1
+ By timsv)g (e i

(£{T) - H(E)'H(t)

-P

b
-1
b

-17-
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Aggandix C. Derivation of (26a), (26b}, (264).

Lirfferentiate z(t T) = Eli(tiT)ﬁb(tiT) to find

This is (26a).

Notice that

Thus

o AT -1 -
dzit|myac = pleimax (tim/de + ap7) (t|T)/dex (¢ D)

-1 : "
= B (E{TH(E (6) + B (6 DIH' (©)H(t))x (E|T) - H'(t)dy(t)/dt

-1 ! ' -1 '
=B (6 TIE (t) = )R (E|T) + H (E)H(E)

-1, =1 ~
-P (MGG ()R (tfT)x ([T

by (23a), (23b), (24a)

u

1 -1 & ) _l . - .
S(E'E) - PLR)G()G (£))P 7 (£[T)x (£]T) - H'(t)dy(t)/dt

= - (B “Heoswgr e - g'rl(ti'r)g(t)g' (£))z(t|T) - H'(t)ay(t)/at
by (13)

= —(E'(8) - P (ETIG(0)G (8))2(E]T) - H'(t)dy(t)/ae

by (C2).

For (26d) begin with (13)

-1

-1 -1
P_(E[T) =B (E]T) -1 T(t)

-1

adt = Hey = = torm ¢ Er @ e + T heewst e,

-1 1 L]
P (t|DE (1) - EYEIP (E|T) - H' (£)H(E)

a/at g_-rl(t IT)

-1 ' -1
+ B (e[ MIGIEIG (R)R (tim

- hoEm - o - Shmswer @ e

-1 RS ¢ ,
-2, (£[DE (&) - EOIR (E]T) - HY(E)H(L)

-1 -1 -1 -1
+ PUIEIMGOIS (DR (E[T) + EYE)T (£) + T (E)E [(t)

- Hesmer @)

by (C2).

-18-




Now apply (13) to find

-1 s ' -l
~B (t|TIE (t) - EYEIP | (e]T) - H'(LIH(E)

-1 -1
+ By (E|MG(E)G (0)R, (¢ |T)

2L THE®) + sig (01 )
-E ) + 1 e g (t))g-rl(tIT) - H' (£)H(t)
s phemewgt @ elm « T gmg ep (D

s P elmamig @t ) + 1 Higeg (0 0

—g'rl(:]'r)g(t) -F (t)g-rl(tl'l‘) + g'rl(cl'.r)g(t)_s_' (t)g_'rl(tlr) -H' (£)H(t) ;

which is (264) E

Clearly also

]

-1
d/dtgr(t|‘1‘) -_gr(tl'r)dgr (t|T)/at _l_"r(tl'l‘)

3

E(P (£[1) + B (t[DE ()S()G! ()
+ B (e|ME () HMEE ([T,

From this expression, (26d) and differentiating in (25b), then (26b) is easily

S —

established,

=19~
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Appnedix D,

Consider

=7n(t)(z(t) + P

s 10 @® + 2 EmT@En « 2 gln) el

1 @)+ elmThaeln - e om0 el geim)

(fl(t) + P_-;"(t]'l‘))-

PO LR (®) - 2N ENx(E]T) + A ge]T)
~1 -1 > ~1 ~
P(EYI{R () ~ 7 (eN)x(e]T) + 7 “(t)x(e|T) - (| .

pt) (2l e)x(t|T) - Act|m)

pe) e (x(t[t) + PIACE[T)) - At{T)]

i(t]t).

Derivation of (4la)

. -1-
5BB(tIT) = Tt} (n(t) + go(tl'r)) 5¢(t|T)

t
°(

by (34)

by (30)

by (36)

by (37b)

by (17b)

by (1)

[T e gt + 032 gelm)

l(g';'(tlr)g(tlr) + 2 felm)

twice
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