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SIGNIFICANCE AND EXPLANATION

The estimation of one process from measurements on another

related process is a problem that arises in many areas such as Time

Series Analysis, Econometrics, Communications Engineering and

Control Engineering. Particularly in the Engineering applications

there is a great interest in various computational forms of the

algorithms proposed to solve the above problem. The aim in this

article is to give simple derivations of some of these algorithms

thus revealing how they apply to general nonstationary processes.

This facilitates an understanding of what minimal assumptions are

needed for their full utility.

The responsibility for the wording and views expressed in this descriptive
. 5~l ies with MRC, and not with the author of this report.



SMOOTHING ESTIMATION OF STOCHASTIC PROCESSES
PART II: TWO FILTER FGRMULA

V. Solo

1. INTRODUCTION. Recently a number of authors have discussed various types of

smoothing formulae in varying levels of generality (so far as the signal and observed

process models are concerned): see Kailath and Frost [6], Ljung and Kailath [9],

Lainiotis [8]. An ongoing problem has been the understanding of the two-filter formulae:

Mayne [10], Fraser [3], Mehra, Badawi et. al. [l].ln this article these two-filter

results and some new ones are derived in a simple way in a very general setting (for

arbitrary nonstationary processes). It turns out however that only if a wide-sense

(i.e. second order) Markovian assumption is added can one of the filters be viewed

as a backwards filter. The remainder of the paper is organized as follows. Section

2 recalls some smoothing formulae that apply to both continuous and discrete observations.

Section 3 discusses two types of two-filter-like formulae for general nonstationary

processes. In Section 4 one of the filters is shown to be a backwards least squares

estimate provided a wide sense markovian assumption is satisfied. Section 5 contains

a derivation of some backwards filters. In Section 6 some additional two-filter-like

formulae are given. The final section is a conclusion./_

2. PRELIMINARIES. Consider the linear estimation of an nx dimensional process

x(t) from measurements on a related ny dimensional process y(t). in the first

instance suppose Z(t) is measured in discrete time at points 0 < t I < t, < ... < t'.

over an interval (0,T]; collect these observations into a vector _ and assume the

covariance matrix E(L r ) is positive definite. Now for any t in [0,T] .. is
-_T

comprised of two vectors Yt' QftT consisting of the data over the intervals [0,t]

and (t,T] respectively. Let us denote the linear least squares predictor

by

x(t IT) or E (x (t) )

where E denotes wide sense conditional expectations or projection. (see Parzen

[12, p309]; Doob [2, p150]). Now x(tIT) is defined by the orthogonality condition

Sponsored by the United States Army under Contract No. DAuG29-80-C-0041.
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E(x(t) - x(t; T) c .

Thus

^1

x (tT) E( ( ) E (X(t)' )E~ 01)

Also denote !tT (4T liL) and 1tT = tT 4T Then observe

x(tIT) = E(x(t) iLT)

= E:cxt) 1 I T)
= E(._(t) n , !LT)

= E(x(t) i) + E(x(t),t by orthogonality

= x(tit) + f(tiT) say.

Now define

PWtT) = E(x(t) - ?i(tjT))CX(t) x- lT)

and denote P(t) P(tit). Then call

it IT) = p- t)Y(tIT).

Thus we can write

x(tlT) = 2(tIt) + P(t)tlT) (1)

Also observe that

Elx-tjt)\'tIT)] = (2)

So we can then find

=P(t T) + p(t)C(tJT)P(t)

or P(tjT) = P(t) - P(t)O(tIT)P(t) (3)

where we have introduced

Ll(t iT) = E [£(t T) I t IT) ) (4)

Equations (i)-(4) describe general continuous-discrete estimation formulae.
Now suppose _(t) is measured continuously over the interval [O,TJ. Assume y(t)

has finite variance and a positive definite covariance Kernel. (Thus in a signal plus

noise model we are writing dy(t) = S(t)dt + dW(t).)
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Now use the symbol [i to denote the Hilbert space spanned by y(a), a in [0,T] with'T-

inner product (u,v ) = E(uv) (for random variables u,v ifT)  That is YT consists

of all random variables that are finite linear combinations (of the form Ii. a! y(ta i

t. in [0,T]) of y(o) for c in [0,T] or limits in mean square of such linear1

combinations. Also call yt' YtT the Hilbert subspaces spanned by y(a), a in [O,t),

[t,T] respectively. The linear least squares estimate x(tmT) is the vector whose ith

component is the unique projection E(xi(t) Iy) that satisfies

E(xi(t) - E(xi (t)ILYT))y(o) =0 , for all a in [O,T]

with a slight abuse of notation denote x(tIT) by E(x(t)Iy T). Denote by

YtT (= "E(ytTIyt)") to be the Hilbert subspace of Yt spanned by (Y(S) lyt) s in

It,T]. Then ttT(="JtT - YtT ") is the orthogonal complement of Yt in YT namely

the Hilbert subspace of yT spanned by y(s) - E(y(s)mt7 , s in [t,T].

Then observe exactly as before

x(tIT) = E(x(t)IYT

= E(x(t) tYtT )

= i€£€t) lytxtT)

= E(i(t) [ ) + YtT)

= x(tjt) + y(tlT).

With the same definitions as before it easily follows that (l)-(4) hold also in continuous

time. These relations have been previously given by Kailath and Frost [6] for continuous

time processes possessing an innovations process. See also Kailath and Geesey [7].

Since much of the ensuing argument depends only on (l)-(4) the discrete, continuous-

discrete, and continuous cases can be given a joint treatment.

-3-



3. TWO-FILTER FORMULAE. (A) The basic idea. The idea of a two-filter formula is to

compute the smoothed estimate at time t as a sum of two estimates; one using data in

[0,t) the other using data in [t,T). If these estimates are least squares the-, ought

to be orthogonal in some sense. Thus the formula could be of the form

x(tJT) P(tIT)(P tx(t~t) +p t

where the subscript B denotes backward and

S(tJT) =E[X(t) - 4 (t'T))(x(t) - 4(tIT)].

of course as pointed out in (2) two terms in the basic decomposition (1) have an ortho-

gonality property but just what the "backwards" orthogonality should be in general is

not clear; there are indeed two possibilities

E(x(t) - 4B(tJT))x'(t) = 0

or

It turns out that both these lead to satisfactory expressions. The required two-filter-

like formulae will be obtained by reorganizing the basic formula (i).

(B) The first two-filter form. First apply the Matrix Inversion Lemma to (4) to see

P-l (tJT) = P 1 (t) + (.-1(t)T) - P(t))
-1 .  (4a)

So define P (tiT) (p stands for reverse) by

0-l (tIT) = P (tJT) + P(t) (5)

(notice that as t - T , 0(tJT) - 0 so P (tiT) - =) so that (4a) is rewritten

p- (tJT) - -= +P (tJT).()

Now multiply this through (1) to find

P(tJT)E(tJT) = P (t)E(t~t) + P _ (tIT)(%(tlt)+
P (t!T)(P-1 (t) + P 1 (tT))P(t)X(tlT)))

P-1(t)x(tlt) + p (tJT)(x(tlt) + (P (tT) + P(t))(t;T))

by (5)

-4-
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we are thus led to introduce

x CtjT) =x(tlt) + 0O
1
(tjT).CtjT) (

7
a)

so we can write

xt I T) P P(t IT) (P (t)x~tit) + E ICt;TVX I (t T)) PTH

and calculate

E(X(t) -x (tjr))Cx't) - x'itjT))

= E(X(t) - 1 t)tt) - 0 l(tIT)X.CtjT)) Cx'( - X(tjt) -C (T t)

= P~t) - E(x(t)X1(tjT))0
1 Ct!T) - C

1
(tJT)E(x(tjT)x'(t)) + - 1Ct.T)

in view of (2) and the definition of P(t).

Next observe

E(x(t)A'(tjT)) = Ex(t)(x(tjT) - x(M))'p- (t)

= -(P(tjT) - p(t)lP- (t)

= + P~t)0(tlT) by (3) (8)

Thus the above expression becomes

E(X(t) - x Q(tjT)(x(t) - x P(tlT))-

=~)-p P-)- P~t - tT

= p (tjT) by (5) (9)

Also observe that x PCt IT) satisfies the folloswing orthogonality properties

E(x(t) - x P(tjT))x' Ct) = 0 (10a)

E~x(t) - x CtJT))xi(t~t) = 0 (10b)

The first follows since

E(x(t) - x(t T) x' (t) = E[x(t) - X~tit) - -l (tjT))A(tIT) lx' t)

= P(t) - C- (t!T)O(t1T)P(t) by (8)

while

E(x(t) -x (tIT))x'Ctlt) =E~x~t) -x~tlt) - ' t!TY"t T))X't,t)

by (2) and the orthogonality property of x~t!t)



4~tos(
7
a) , (7H'), (9), (5), (6), (10) describe pseudo two-filter formulae for the

snutin r)iem. (Notc thiat these results have also been obtained recently by

Bada',,% et. al. 'I] for a State Space Model by very elaborate argument.) The descriptor

":~d"refers to the fact that it has not been demonstrated whether x WtT) can be

comq.,t ed !D% a i.ackwards filter. This point is discussed in Section 4 below. First

nowever we inv'estigate the estimate, call it x J(tJT), that satisfies the other type of

back'.s'ards ortiho~onality

(C) Thie second two-filter form. Let us dEnote Tr(t) =E(x(t)x'(t)) and look for

x (t,T) in thle form

x h(tiT) = 11(t) x (tIT)

where %!(t) is to be chosen to ensure (11) holds.

Consider then

0 = E(x(t) - x (tlT))X-(tlT)

= E(xt) - M'(t)x (tjT))x' (tjT)M' Ct)
"P -

implying

MWt = E(x(t)x Q(tlT)IE(xP(tiT)x tITfl
1

so that we have the interesting interpretation

x jtjT) = E(x(t)j~j_(tjT)).

To find a more informative expression for M(t) continue with (l0a), (lob) which imply

E(x(t)x' (tjT)) = E(x(t)x' Ct)) = -,rt) (12a)

_(~tT) = E(t) -x PCtlT))x (tjT)

so that

E~x tjT)x(tjT)) =-It) + P 1 (tfT). (12b)

Thus x (t T) (-t) (-.(t) + P C(tjT))_ x C tIT). (12c)

N~ow, we can introduce

P J(tT) =E(x(t) - x Ct'T))(X'lt) - x '(t jT))

= E(x~t) - x !CtlT) )x'(Ct)

-I -(-t)(-Ct) + P CtT)) (Ct).



Thus invoking the Matrix Inversion Lemma

P. (tjT) = (t) + LP (tIT) (13)

observe that, from (5), as t -~ T P (tiT)- while P (tI-) T(T). Also from (12h)

EIx -(tjT)x'-XtIT)] - 0 as t -~T

implying that the initial condition for the computation of ax(tjT) is x 6 TIT) =0.

To calculate x(t IT) using x tIT) return to (13) and find via (120) that

PP (t 1T) x_(t I T I T ) (T t + P _ tT) tIT

P (,l t I T) + Z () 6tjT

P P(t IT) 6(t IT) by (13). (14)

The interesting "invariance" expressed in this relation explains some of the confusion

with the two-filter formulae. T6 summarize we collect some of the expressions together

x.(t IT) = 2E(t It) + P (t) A(t IT) (1)

= P(t IT) (P1 (t) (tlIt) + P P(tlT)x_(tIJT)) (7b)

= L(tIT) P1 (t)x(tlt) + P- $(t]T)X (tIT)) (15a)

= (tIT) (P1 (t)x(tjt) + (P1P(t(T) + i
1 (t))!l atIT))

by (13). (15b)

Also

P (tjT) = P (1 t) + P- (tIT). (6)

Expression (15b) was given by Ljing and Kailath (9, p1551 for a state space model.

With (1) in mind we turn now to consider when x(tIT) can be computed by a backwards

filter i.e. when is x t IT) a backwards estimate of x(t) based on the data in

[t,TJ.



4. BACKWARDS FILTERS AND A MARKOVIAN ASSUMPTION. Here we investiqate under what

conditions x,(tlT) is the linear least squares estimate, b(tjT), of x(t) giver

the data !L in (t,T]. Since the least squares estimate is unique we can establish wh'n.

it is also x ,(tIT) by ensuring

E(x(t) - x(tIT))y'(s) = 0 for all observation points s in (t,T).

(16)

First we find a convenient expression for x(tIT). Since x (tjT) is to be a

backwards estimate we can expect a backwards decomposition analogous to (1) say

x(tIT) - B (tlT) + P B(tlT) (tIT) (17a)

with E(x (tjT) X)(tIT)) - 0.

This is indeed possible with (See Appendix A)

,\ (tIT) = 1' (t)[x(tlt) + (P(t) - (tM,(tIT)]

= -(t) [x(tIT) - ,(t)X(tIT)]. (17b)

Observe that, via (14) and (7a)

E(2L 6(t IT) X8(t IT) I

E (tIT)p- (t IT) E(Qt It) + 0-(t IT) A(t IT))((t It) + (P(t) - : (t,) --(t)

= P(tT)P- 1(tIT)[h(t)-P(t) + 0
- l

(tIT)0(t1'T)(P(t) - _(t))_-l(t)

=0.

Since E(_Stjt)X'(tJT)) = O; E[x(tJt)x(tJt)] = _ (t) - P(t).

Consider then

E(x(t) - x (tjT))y'(s) = -P (tIT)E[ -(tjT)y(s)] since

E(x(t) - x(tlT))y' (s) = 0 for all observations s in [0,T] (18)
i 1

(tjT)E(. (t)x(tIT)-_(tIT))y'(s)

= -PtT)E[_-l (t)x(t) - \(tT) ]y(s) by (18).

Now substituting (1) in (18) gives

EIx(t) - x(tIt) - P(t)\(tT)]'(s) = 0 for all s in [0,T].

(19)

-8-



Thus

E(x (t) -x r.(t; T))y. (S) -P, tjT) E (t) x(t) -P Ct) Cx (t) - x(t t)) (S)

Now if, for s in (t,T]

E~x(t~t)y (s)] = E[ (tlt)xlCt)]7 (t) L(x(t)Z' (s)) M2a)

then we find for s in (t,T]

--( t:T)[C- Ct)-(t) - P Ct)(C-Ct) - E[(tt)x1(t)D)- (t)ENx(t)YI( 3)C

=P':fjT)CI-P 
1
(t)E(x~t) -x~tt))x'(t)]- 

1 
Ct)y(x(t)y'(s))

= t -P .T) I I P- 1 t)P(t)lr 1Ct) E(x (t)v 11(c3)

0.

Thus x (tIT) is a the backwards least squares estimate of x~t) given the data irn

Ct,T] if (20a) holds.

It is now shown that (20a) holds if x~t),ZCt) are jointly "wide sense" :1arkov

i.e. jointly Markov so far as second order statistics are concerned. To put this anoth-Er

way we show C20a) holds if

E(y_(s) I Lt,2i(t)) (y E(s) 12(t)) s in (t,T] (2--h)

where, in discrete time 4 denotes the vector of data collected to time t ;whileI

continuous time Ytdenotes the Hilbert space spanned by y(-) 0 < t . Also

denotes "wide sense" conditional expectation or projection (cf.Poob, (2, p1501; Parzcr.

[12l p3091). The discrete and continuous time cases can now be treated jointi?_. ~i.

a slight abuse of notation denote (the Hilbert subspaces)

t= EU_ (I t ft) t = f- _,

e.g. Yt is the Hilbert space spanned by E(y Cs) xLt)) s in (0,t)

(Recall that in discrete time 1( t EC(i xt 2i ( -l Ct)x~t)).

Then consider that

1( EC s 4 L L~(S) X(t))

-9Z



Thus (20b) holds if and only if

0 T s t

Th-is clearly holds if and only if

(c)=0 T _s > t and all observed points 3 in [0,t)

i.e. if and only if

E(~s)X(o) = (Z~)~ ci

i.e. if and only if

E~y~syl~a = E(Z(s)x'(t)), (t)E(x(t) (o)

for T > s > t and all observed a in [0,t).

Now Et depends linearly on 4 thus rewriting the last expression as

EqjLty.(s)) = E(1Ltxi(t)hT- (t)E(x(t)y'(s))

we see that (20b) implies (20a). Perhaps the simplest way to visualize the joint wide

sense Markovian requirement is in terms of a State Space model for x(t), Y(t). In the

next section it is shown how, with a State Space Model, x 4tJT), x (tJT) can be computed

by backwards filters.

-10-



5. BACKWARD FILTERS. First continuous observations are discussed. Consider the

state space model

dy(t) = II(t)x(t)dt + v(t)dt (21a)

x(t) = F(t)x(t) + G(t)w(t) (21b)

where v(t), w(t) are white noises satisfying

Ev(t)v'(s) - 5(t-s), E(w(t)w'(s)) = (t-s)

Ev W w'(s) =0 Y s,t

According to the orthogonality conditi:on the backwards filtered estimate is given by

(the subscript B is now replaced by b)

b(tjT) = fT E(2E(t)j 1 (SIT))vyb(sIT)ds (22a)
t

where y,(slT) is the backwards innovations (i.e. over [0,T] Wbs IT)ds is linearly

invertibly equivalent to the data dy(a). i.e. the Hilbert space spanned by "2(sIT)ds'

is the same as the one spanned by 'Idy~a)").

We now find the backwards Kalman F~1ter. First

dx~,(t IT) =-E(.(t)4v' T)(tT

T Tddt E ((t)-(I T) )4(sIT) ds (22b)

To compute terms such as

we need to reorganize equations (21a) and (21b) into a backwards model where the noises

are orthogonal to future values of x(t). Recently Verghese and Kailath [131 have shown

how this can be done.

In Appendix B it is shown that the following filter results

d_%(tlT) = b(t) (tjT)dt - 4 (tT)H(t)4 (tIT)dt (23a)

4b(tjT)dt =dy(t) -H(t)4 (tjT)dt (23b)

with initial condition 4 (TIT) 0 2 where

F Ct) - F(t) + G(t)G'(t)7T- Mt = -71(t)F'(t)ft-1 Wt. (23c)

* Also

-d~b(tIT)/dt = (tIT) (t) - b(t)E(tT) + G(t)G' Ct) - b(tIT)H' (t)H (t)Pb(t IT) (24a)

* with initial condition E,(TIT) -(~T) alternatively



d.Pjb(t T) /dt -P 7i(tIT) F bt) - F '(t) fbl(t IT) - H (t) H(t)

. P '(tIT)G(t)G'(t)2P'(tIT). (24b)

Now equations (23), (24) are not the backwards filter equations that are usually given.

The equations are usually given for

Ef I T) (t IT)?'b(t'T) (2 5a)

or for

In Appendix C it is shown that filters for these quantities are

dz~tIT) -(E'pt) tIT)G(t)G (t))Z(tIT)dt -H~~Xt 2a
zt T) (t I(~t T)- IT H - t y() (26b)

dx MIT) - (F(t) +. P (tIT)H'(t)H(t))^(l~t-~tTH(~~t 2b

=F(t) r(tfT)dt + P (tjT)H' (t)v r(tIT)dt (26c)

Witt, V (tIT)dt = dy(t) - H(t)x r(tjT)dt and initial condition arbitrary. Also

dp_1CtlT)/dt = -P-1(tIT)F(t) - F'(t)P-1 (tIT) - H-(t)H(t)

+ P-1 tT)G(t)G'(t)P
1 l(tIT) (26d)

with initial condition P' 1(TIT) =0
-T

Equations (26a), (26b), (26d) appear for example in Ljung and Kailath [9, respectively

equations (14), (16), (13)) ("b" in their notation is equivalent to "r" of the present

notation).



6. SOME ADDITIONAL TWO-FILTER-LIKE REPRESENTATiUNS. In Section 4 it was pointed out

how there is a pseudo-backwards expression analogous to (1) namely

x(tIT) = x S(tIT) + P (tIT) _E(tIT) (30)

where also

E (tIT)A' (tiT)) -0

If we define

0tj2T) = E(X (tT)X'(tIT)) (32)

then it follows from (30) that

p_(tIT) = E(x(t) - x(tjT))(x(t) - x tIT)),

- L(tjT) + P tT06(j) ( (33)

Thus we have pseudo-backwards analogues of (i)-(4).

Now however we can retrace the argument of Section 3 to produce an estimate

MItT) x i(tiT> + 0 1(tlT X (tjT (4

(where the subscript @ denotes forward) satisfying

E(X(t) - xB(tIT))(x' (t) - X(tlT)) 0 (35a)

E(X(t) - x(tT))x'(t) = 0 (35b)

with also

%(tIT) P p CtT) + Pt (tjT) (36)

where

L_(tIT) = E(x(t) - x (tjT))(x(t) - x (t W)).

Further
3. -1 -lltT 3a

P_ (tjT) = P_(tjT) + P-(tT). (37a)

Now substituting (13) in (37a) while equating (37a) to (6) gives

p (t) = r It) + p (tIT). (37b)

Then we could search for x ,(tlT) satisfying

E(X(t) - x 6tjT))x'a(ti) = 0 (38)

and find

x (tIT) = ,r(t) (0(t) + P (t IT)) - I (t T) (39)

as ,ell as

-13-
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P (tJT)2i (tT) LOB (t T)x,(tT) (40)

where

P ,(t IT) E N x(t) - x ,(t T) x' (t).
P - -88-

However we find in Appendix D that

x tIT) = x(tlt) (41a)

so

P 5,(tJT) = P(t). (41b)

If xb(tjT) denotes the linear least squares estimate of x(t) given the data in It,T]

then again all the equations just derived (except (37b), (41)) hold with 8 replaced by

b and replaced by f (in (37b) replace P_1_(t) by b 1 (tlT)). Then we can also

discover the wide sense Markov condition of Section 5 by requiring that

Xbb(tIT) = x(tlt)

7. Conclusion. By simple argument, a number of two-filter-like formulae, that

apply to fairly general nonstationary processes, have been derived for the smoothing

problem of linear estimation. In general the filters cannot be interpreted in a back-

wards sense unless the joint signal/observations model is wide sense Markovian.

-14-



A~endx A. Derivation of (17).

From (14)

(tIT) = L(tIT)P p(tT)x(tMIT)

= P(tIT)P* (tIT)(X(tlt) + 0- tlT)X(tlT)) by (7a)

(t IT) (P-
1 (T)+-1 1-

-B -p (IT+Tr(t) ) (tlIt) -P$tIT T t tIt

+ P B(tIT)P 1l(tIT)0O1(tlT)A(t)T)

E (tlIt) + P gt IT) JP p(t IT) 0 (t I T)X(t IT) - 7r1 (t)x(tlt)] by (13)

-1
E (t I T) - P (t IT) [Tr (t) x(t I t)

-1 (tjT)O -1(tIT)X(tIT) + P-1(tlT)P(t)X(tlT)]

23t I T) - P B(t I T) [1 -1x~lt + (P(t) T(t))X(tlT)]

Since

P-1(tIT)P(t) - P- 1 (tlT)0O1 (tlT)
-p

=(P (tjMT) + 7T - (t))P(t) - P-(t)T)O-ltMT) by (.13)

-1p 
- - 1

= p- (tlT)(P(t) - Q 1(tAT)) + ii- (t)P(t)

= - + 7T (t)p(t) by (5).

Thus

2E(tIT) = $(t IT) + P atjT)7r(t)xtt)+(Pt

-15-



Aggendix B. Derivation of (23a), (23b), (24a), (24b).

In the present situation the backwards model is

dy(t) = H(t)x(t)dt + v(t)dt

x(t) x(t) + G(t)w(t)

where

E(v(t)v(s)) = 6(t-s) ; E(w(t)w'(s)) = 6(t-s)

E(v(t)w(s)) = 0 V t,s

E(v(t)y_(s)) = 0 ; E(w(t)y'(s)) = 0 s > t

Also

F (t) = F(t) + G(t)G' (t)I r (t) = -7(t)F, (t) -l(t) (CI)

so that

F b (t(t) = -r(t)F'(t). (C2)

It follows that

V b (tlT)dt = dy(t) -
z b (tlT)dt 

= 
dy(t) - H(t)xb (tfT)dt (23b)

E[x(t)v b' (tjT)1 = E{x(t)[H(t)(x(t) - xb(tlT)) + v(t)]1,

= b (tlT)H'(t) (CO

d/dt E[x(t)v'(s IT)] = W(t)E(x(t)v_'b (sIT)) (C5)

Thus in (22b)

dxb (tIT) = F b(t) xb(tIT)dt - Pb(tIT)H (t) (dy(t) - H(t)xb(t T))dt (C6)

= (F t) + P(tjT)H'(t)H(t))xb(tIT)dt - Pb(tjT)H'(t)dy(t). (C7)

Equation (23a) follows from (C6) and (23b). Next (22a) implies

LT(t) - PbtlT) = E(xtjtT)x-btiT))

T E[X(t)v' (s!T)]E(v (siT)x'(t))ds (C8)

Notice that Pb(TIT) = T_(T)

Thus differentiating and using (C4) gives (using "" for "d/dt")

L - b(t
T IT) - b(tJT) H' WH(t) P (t ~tIT) + Fb(t)( (t) - Pb(tIT)

+ ((t) - P(t T))F'1(t).

-16-



Of courseF(t)Ti(t) + T(t)F'(t) + G(t)G' (t).

Thus using (02) gives

4 b tIT) = -P b tlT)H' (t)H(t)P (tlT) - F bt) P bt T)

-P~t IT) F bt) + G(t)G(t). (24a)

Also it follows that

d/dt.Rb'(tIT) = tT;btT~ tjT

b (t IT)F (t) - .F 'bt)P (t T) H H(t) 'H(t)

-1

-17-



Ap~Endi C. Derivation of (26a), (26b), (26d).

Differentiate z(t ,T) p b(tiT)2E(tLT) to find

cz(t'-)/dt =P-ItiT)dx (tjT)/dt , dp-'(tjT)/dtx^tlT)

-b '-b -b'T- - H-(t)dy(t)/dt

by (23a), (23b), (24a)

= -(F b -b(t)cb (t)G((t) -bI )bI T)- H I(t) dZ(t)/dt

= -(Fl(t) -(t)G(t)C'(t) - P- (t1T)G(t)G'(tflz(tjT) - H'(t)dy~t)/dt
-b -r

by (13)

_ r

by (C2).

This is (26a). For (26d) begin with (13)

E,(tjT) = p-b (t IT) - Tr (t)

Notice that

d/dt W (t (- (t)F(t) + F'(t)-r (t) + 7T (t)G(t)G(t)h (t)).

Th us

p/t tT) -p(t T) F (t) - F '(t)P (tIT) H-t)H(t)
/t-r = bb - b -Eb - - -

+P (t IT)G(t)G't)P-1(tT)
-b - -- Eb

-_(t)F(t) -FI(th
1 

i(t) -_(t)G(t)G'(t)'T- Wt

-P(t T)F bt) - FtP(tjT) - I(t)H(t)

b (tiT)G(t)G(t)P b(tjT) + F'it)'r (t) + 7 (tF b(t)

7-1 (tGtG~ -1()

by (C2).



Now apply (13) to find

= -P-1 t 1T)F (t) - F 'bt) P - (tIT) - H'(t)H(t)

= -P- (tjT)(F(t) + G(t)G'(t)i1-1(t))
-r

+ P- (tlTGt rt)- (tjT) + --l (t)G(t)G'(t)Prl (tIT)

+ -r1( T)G(t)G' (t)7r- (t) + 7- (t)G(t)G' (t)r (t)

. -P1 (tIT)F(t) -P'(t)P 
1 (tIT) + P- (tIT)G(t)G'(t)P' (tIT) -H'(t)H(t)

-r - r-r

which is (26d)

Clearly also

d/dtP(t IT) = rP(t IT) dP-l(tlT)/dt P (tIT)

- F(t)IP_(tIT) + P (tlT)F'(t)G(t)G'(t)

+ P (tlT)H'(t)H (t) P r(tIT).

From this expression, (26d) and differentiating in (25b), then (26b) is easily

established.



Appfledix D0. Derivation of (41a)

Consider

x 5 t T) = ~T(t)(OT W) + P (tIT)) 1x (tIT)

- 7 W(IT((t) + p 0(t IT))'(x (t IT) + O?. (t T))

by (34)

= _TW(i t (tIT)) (xtIT)-(Ptl)-0 (!T tT)

by (30)

= T (t) (7T(t) + P(IT) x^tIT)+ P (t'T)? (t IT))

by (36)

=(7T (t) + P (tAT)) (EP(tlT)x(tlT) + (t IT))

=P(t~fP Wt - 3. (t))X(tIT) + X 6(tIT)]

by (37b) twice

= Pt) Ct - 71(t))X(tlT) +7(tx(tIT) -).UtjT)J

by (17b)

= P(t)[P (t)x(tIT) -X(tIT)]

-1
= P(t)[p (t)(x(tit) + P(t)X~tIT)) - (tfT)]

by (1)

= x(tjt).

-20-
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