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ABSTRACT

In a definitive series of papers I. J. Schoenberg with H. B. Curry
clarified the relationship between several diverse properties of distribution
functions on R'. They showed that a distribution function is a limit of B-
spline distributions if and only if the reciprocal of its Laplace transform is

in the Palya-Laguerre clagss. When the distribution function corresponds to a

R

density A(x) Schoenberg showed that these properties are equivalent to A
being a Palya frequency function or that the convolution transform A*h is

g. variation diminishing.

! The purpose of this paper is to extend some of these properties to a
multivariate setting. The major tool in this investigation is a notion of

multivariate B-spline which we have both studied earlier.
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. SIGNIFICANCE AND EXPLANATION

\LSB-splines occupy a pivotal position in the theory of univariate spline
functions. They offer a firm bases for many of the attractive theoretical and
practical properties of splines. Therefore any advance in our knowledge
concerning the multivariate B-spline should be of some value.

The purpose of this paper is to investigate another aspect of
multivariate B-splines. We succeed in identifying those distribution
functions which are limits of multivariate B-splines (Polya distributions).
This question was solved in one dimension by Curry and Schoenberg. Some
properties of Polya distributions on RS, are also discussed. &

A surprising consequence of this work is the relationship of the
reciprocal of the Laplace transform of our distribution functions and the

class of really lineal entire functions studied more than 25 years ago by

Motzkin and Schoenberg.

The responsibility for the wnrding and views expressed in this descriptive
summary lies with MRC, and not with the authnrs of this report.




ON LIMITS OF MULTIVARIATE B~SPLINES

wWolfgang Dahmen* and Charles A. Micchelli.'

Dedicated to I. J. Schoenberg with admiration and esteem.

Section 1. INTRODUCTION

In a definitive series of papers I. J. Schoenberg [1,8,9] with H. B, Curry [1]
clarified the relationship between several diverse properties of distribution functions
on R1. They showed that a distribution function is a limit of B-spline distributions
if and only if the reciprocal of its Laplace transform is in the Pdlya-Laguerre class,
When the distribution function corresponds to a density A(x) Schoenberg showed that
thege properties are equivalent to A being a Polya frequency function or that the
convolution transform A*h is variation diminishing.

The purpose of this paper is to extend some of these properties to a multivariate
setting. The major tool in this investigation is a notion of multivariate B-spline
which we have both studied earlier [2,6].

Section 2 of this paper contains some preliminary material on entire functions of
affine lineage. For the most part, we discovered these results before we became aware
of a paper by Motzkin and Schoenberg {7] which treats the same subject. Our theorems
are slightly stronger than thoge stated in Motzkin and Schoenberg. Moreover, we have
patterned our proofs closely after the univariate case which differs from the
presentation given in [7]. 1In Section 3, we identify all distribution functions which
are limits of (multivariate) B-spline distributions. Section 4 is devoted to some of

the structural properties of these density functions. Also, in this section, we extend

'Institﬁt fur Angewandte Mathematik, Universitat Bonn, West Germany.

"IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,
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some important identities previously known only for the multivariate B-spline and .

truncated powers, [2,6). The final section contains some results pertaining to the

S M

analog of Polya frequency functions and variations diminishing convolution transforms

on RS,

Section 2. PRELIMINARIES

In this section, we develop the required background material concerning Polya~

Laguerre functions on ¢£5.

ce = T = = s
Let 2% zjcj' z (21,...,25), 4 (c1,...,cs) € 2° denote the jinner

0t~

j=1

product on £5.

A function f£(2z), z € #% is in the Polya~Laguerre class Eg provided B

Definition 1.

that

cagezeler B g = ;
; £lz) = B2 ZT1 (23 T
; e i
3 =1

@
where z uc3u2 < =, zj,cj e R° and a is a positive semi-definite s x s matrix
i=1

with real entries.

We will usually be dealing with f € E_. which are normalized so that £(0) = 1.

For this class, the principal result which we will need is

B S Ty e ———

Theorem 1. 1If ;n,j ¢ rR® and

n
7T 1+ ¢z

£ (2) =
n j=1

satisfies

lim € (ix) = f£(ix), x € R
n*® n

uniformly in 4xl < a for some a. Then f has an analytic extension to g% which

in E; and

PRI v



.

£ T NI S50 s ¢ 2 e

lim £ (2) = £(2)
n

n+o

uniformly on compact subsets of g£%,

PROOF. Choose any y ¢ RS with iyt > 0. Then letting a' = alyl we have

lim £ (ity) = £(ity)
n+® n

uniformly in |t] < a*', t € R1. Using Theorem 3.4, Hirshman and Widder (4], p. 46 we

conclude that the convergence above holds for all z ¢ ¢ and €£(zy) € E;. Hence

-c_(y)z

2 -]
~a(y)z +bly)z TT (1 + cj(y)z)e

f(zy) = e
j=1

where af{y) » 0, cj(y), b(y) € R! and Eci(y) < », An easy calculation shows that

n .
VE (0)ey = z Cn'j‘Y
n 3=1

and

(Ve (0)ey1? = ye¥e_(0)ey = [ (M e

-3

Similarly, we have
VE(0)ey = bly)
and
2 2
(T£(0)ey)” - ysVE(O)y = Ecj(y) + 2a(y) .

Since all the derivatives of f (zy) at the origin converge to the respective

n N
T .Nn,)

Aderivatives of f{zy) we conclude that 1lim ; g o,

= ;0 exists and b(y) = { °y.

> 1
tlote that the zeros of fn(zy) are (cn'?-y)-1. Now, by Hurwitz's theorem the zeros

of flzy) are limits nf zeros of f .

-

Clearly, the cluster values of {c"" ey} for a




. fixed y are on one hand equal to {cj(y)} and on the other hand are {:j°y) where .

{z?} are the cluster values of {¢"’’} in RS. Therefore we may take cj(y) = ;j.y

and so we see that 0 < a(y) = Ay*y for some 8 x s real matrix A. Also, since .

® 3 Zci(y) = E(Kj'y)z

for all y e R® ye have E“Cjﬁz < ® which establishes that f ¢ Eg.

So far we have shown that fn(z) + £(z) pointwise on RS, Using the standard

;

normal family argument, the uniform convergence on compact subsets ¢£5 will follow :

directly from the uniform boundedness of f,. To bound £, Wwe use an inequality in |

i (4], page 44 which yields

n " lpn|“4<!n
£ () <TT (14 1g™ezl) < e
=1

j where P, = Ecn'j-z, 9, = Z(cn'j°z)2- Clearly both p,, q, are uniformly bounded on any
compact set of 25, Thus fn is also bounded there asg well and so the proof is complete.

There is an obvious converse to Theorem 1 which says that any f ¢ Eg with i
£(0) = 1 is a limit of polynomials of the form

n
TT ¢+, ™3er®.

Plz) = [ |
3=1 ’

A proof of this fact follows easily from the observation that
n
C'Z)

= lim (1 + ==X
ne " 3

e‘z'Z .
The identification of Eg as the set of all limits of "lineal" polynomials is due to
Motzkin and Schoenberg (7).

Below we describe a multivariate version of the one-sided univariate Pélya-
Laguerre functions. These functions will also be used in the next section.

Definition 2. We will say that W C r® is an admigsible wedge if the following

i conditions hold: :

-d-
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a) ety ew for all t >0, if yew

b) The smalles: linear space of R® containing W is of dimension s

— —

c) The set f{zy : lz] <1, ze ¢, y e W} is a uniqueness set for entire functions

on g8,

The polar set of W is defined as

0
W = {x: xe R, y*x > 0, for all y e W} .

Example 1. Rf ={y:y= (y1,-..,ys). yj > 0} is an admissible wedge which is self-
polar.

Definition 3. We will call P a W <~ lineal polynomial if it has the form

N R
p(2) =TT ¢z
J=1

3

vwhere - € wo. Any function which is a limit (uniform on every compact subset of ¢%)

of W - lineal polynomials is called a W = the lineal entire function.

Our intention is to show that f is W <~ lineal if and only if it has the form

(e TT (1 + 23z

00 m
£(2) = % T
=1 =1

where ;j, zj are in w° and Z chﬂ ¢ @, Let us denote this class by ES(W).

n .
Theorem 2. Let f (z) = I+, Cn'j

1

e ¥ and suppose W is an admigsible

wedge, If

1im £ (ix) = £(ix), x € R
nre O

uniformly in fix§ < a for some a. Then f has an analytic extension to ¢% which

is in E (W) and f.(2) converges uniformly to f(z) on compact subsets of e=.

PROOF. Choose any y € W with 1yl > 0 then 1lim F“(ity) = f(ity) uniformly in
nee
{t] < a* = a/lyl. Since f (ty) is a polynomial with only negative zeros we know

that (c.f, Xarlin (5]) that

-5-
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lim £ (zy) = f(zy) , .
nee 1

uniformly on compact subsets of £ and flzy) has the form .

]
aly)z 77

flzy) = e [
3=1

(1 + bj(y)z)
for some constants satisfying a(y) » 0, bj(y) >0 and ij(y) < ™,
Just as in the proof of Theorem 1, we may choose bj(y) = ;j-y where cj are the
cluster values of {cn'j}. Moreover, since cj-y >0 for all y € W we have
;j € wo. Also,
(1 Pigdeyl <=
h|

for y e W implies that Z ch'y| ¢ ® for any y 4in the linear span of W. Thus (1)

3
holds for altl y ¢ R® and it follows that
1 i<
3

Also; since

lim V£ (0)ey = VE(0)ey
n+o n ¢

we obtain for every y € W

n 5 ® .
um § M= [ogdeyraty
n+® §=1 j=1

Since W is an admissible this equation extends to all y € r®  and sn we eonclude

0
that a(y) = ;0°y for some ;o ew, n;jn < =, and

J
zeg! 2= 3
flz) =e " T1 01+ .
j=1
-G~
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It remains to show that fn + £ uniformly on compact subsets of @5. In view of
property c) in Definition 2 it is sufficient to prove f_, is hounded on compact
subsets of #°. To this end, observe that for any y € ¥ there is a constant M(y)

such that

.n,;J |5 n,j
120 eyl = § g ey < myd
1

-3

for all n. Since W 1is an admissible wedge it follows that

n nj
Tog" e am
=1

for some constant M and consequently

n n j
u ’
n T o™ Tuuzn
]

n N .
e (2] = 1T T 0+ ™oy <TT (14 1™z ¢ 3 <
" 3=1 3=1

Mzl
e .

Since we know that fn is uniformly bounded on compact subsets of 28 and
fn(z) + £(2) pointwise on {zy : |z] € 1, z¢ £, y € W} the convergence is uniform
on all compact subsets of £5. This completes the proof.

An obvious corollary of this result is the following characterization of the class

ES(W).

Corollary 1. An entire function F is W - lineal if and only EEE& Es(w).

An essential point of view in our previous presentation was the analysis of an
entire function on £° along an arbitrary ray. The form of the resulting univariate
function allowed us to make conclusions about the multivariate entire function. On
this basis, one might be tempted to conclude that a function f is ;n E; if and only

if flzy) is in E4 for all vy e RS, This is unfortunately false as can easily be

seen by the following simple example.

-7-
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2 5
2 7%« 1. Then along every ray (ty1,ty2), f is the

Example 2. Let Flz,,2,) = 27 »

quadratic polyrormial

2 2 2
f(".y,.ty?) =tily, + yz) -1
1ch va3 rwo reil zeros a1 so is in Fy. However, f is not in ¥, because itsg

zero set 1s the unit circle felerments ir E, vanish only on lines).

This example can be substartially generalized. Let g{-z) be any (univariate)

ane~sided Polya freouency functinr given by

o o
glz) = e 2241 -a.z), v, »0, ° a <=
1 j j sop
and define
2
121 £f(z) = qg(z +"'+22), Z= {2, 00002 )
1 s 1 s

Then it is cleag that _f(zy) is in E; for all y. However, the only radial Zfunction

-z Ttz

in ES is e

while f defined by (2) is always radial. We will come hack

tn this class of functions in thke last section of the paper.

Let us also point out that there are functions other than those given by (2) which

are in Ey along every ray. For instance,

f(2) = Zy b et zZooq T 2

hae this property. The analytic form of all such functions is unknown. However, when

rays are replaced by lines the problem has a satisfactory answer.

Corollary 2. A function f defined on g% is in Eg; if and only if fix+zy) is ir

£, for all x,y ¢ RS,

PROOF. If f € E_ then it easily follows from Nefinition 1 rhat  flx+zv)l ¢ ¥y Te

s
prove the converse, let us first note that =since for 2ll «x,v ¢ B, fix+zv) ¢ Yyt
follows that f 13 a real analytic function on eS,

In the case that f(x) * 0, x ¢ Pq, then

Cixtzy) ¢ e o,

i
.
n
N
;
H
[
i



for some real constants a = alx,y) » 0, B = B(x,y). Since f is entire we may
differentiate ..-is equation to see that

£(z) = e-AZ'Z+h°Z
where A an s x s positive semi-definite matrix and be RS, 1In the general case, we

know according to [3] that the zero set of f consists of real hyperplanes [

where ;] € Rs, HC]“ =1 and tj € RS, Thus we may express f as

-Azez#bez — 3 - rcj'Z )
£(2) = e [T (z7ez) lim | | B3 o, = 15,
3=1 Sl
where E{(z;p) are the Weierstrass polynomials given by
E(z;0) = 1 -2
2 P
z+.z_ + o +E—
E(z:p) = (1 - z)e z P , P=1,2,000 ,

[\
and a ~are any integers such that E(TEET) " for all finite r, (3,7]. There~
n

fore f(zy) vanishes only at z = CJ'y/tj and since f{zy) € E, it follows that

Thus, Ztgz < ®» and so we may choose an = 2, Consequently, f ¢ Es which completes
the proof of the theorem.

There is a similar theorem for the class Eg(W) where W is an admissible wedae
which we state below.

Corollary 3. A function f ¢ E_(W) if and only if

1) f(x+zy) € E, for all x,y ¢ rS

is a one-sided PSlya frequency function for all vy e W.

2) flzy)

PROOF. Clearly, according to Definition 2, rroperties 1) and 2) hold whenever

-

f € Es(w). Conversely, according to the Corollarv 2, property 1) ahove imrlies that

-9-
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~Azenes e Do
LY = e T [ .
31
_~y 3,2 1 L. -
where I!'700° ¢ =, o @’ and 4 is an £ x 5 pooitive sgmi-defipite matrix. .

Howevar, we alse ¥nnw thar for v ¢ W

where c¢ily), bly) 2 n, it Yollows that 2 = 0, chjh ¢ = and

i (¢
z? e ¥ which implies that € e £_( 0.

Section 3. LIMITS OF MULTIVARIATR R-SPLINES

In this section we turn to the nrincipal apnlication of the previous results o=

entire functions. We begin hy recallirg the definition of the maltivariate P-gplin-o,

C a . /
Definition 4. Let xY,...,x" ¢ B¥ and suppose (x7,.0.,x" = convex hull of
xo,...,xn. T [xo,..-,an has dimension & then the linear tunctional

. ’ 4]

‘ f =T flux 4 ses 4 v xdv, eee Ay

.. ‘ ¢ n 1 r

n -
X e, x ) 5

where

hag for n > = a (unique) ~ontinuous Adensity MixIxD ket o e

~

. n n . ‘ ~
, ”"jx 4 eew 4 o \4\;1 ses r]\vq = x| sese X Vf{xYAx
r
s" T
£ e L1(S), which we rall the (multivariate) t-crline nf degree ko= n o= s

A great dAeal is krnows aFoar tRie fasetion oand cortacn linear eorhinatione ooF e gt
funecrinng. TH gufFfiene for gy rmrrose . Lo mentian harpe SV ar owhan oo - Wi

faurcninn coryesroode S0 M wn il snnaan eyt gy jate Neg

3 s tye. True, 1t Je o nieeer o




polynomial of dearee n = 1 with n ~ 2 continuous derivatives when x°,...,x“ are
distinct (these are real numbers in this case). In general, it has been shown that
w(xlx",...,x“) is a piecewise polynomial of total degree € k¥ with k = 1 continuous
derivatives when the convex hull of every subset of s + 1 points of {xo,...,xn}
forms an s-dimensional simplex.
In this section, we will identify all distribution functions which are limits of
distributions of the form
x X
Fn(x) = n! j 1 ... j s M(y!xo'n,-.-,xn'n)dy
-0 -0
X = (x1,...,xs) (we will sometimes refer to F, as a B-spline distribution). Our
basic tool in what follows is the Radon transform of a distribution. We review below
the elementary facts which we require.
Let u stand for a probability measure on RS. Sometimes we will deal
simultaneously with probability measures on r! and RS. However, the context should
make the domain of definition of the measures apparent.

Definition 5. The Radon transform of a probability distribution u on RS is a map

from 2% = {x : )¢ Rs, A} = 1} into probability distributions on R} defined by

{RUI(I,A) = ully:y € RS, Aey € I})

for any interval I C r'.

Sometimes we will denote the Radon transform of u by p(+*,\).

Lemma 1. For all t e P’, Ae a°

~ito -ithe
J e e = [ T Yauy
1 RS

PONOF., Let glt) be any simple function on R1, with

[

We~13
a
>
(24

-11-
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L fiLaon 2. Let n -
coav to  u, provided
we will use the notation
L Sl
SV = o duix)
5
far the characteristis function of .
Proposition 1.
a) CI bo probhability measares on P00 1F o 4 enen
20 = i "
’.F'L:q)(',/\) > (Fu) (), uniforrly in A,
5} Suppose is a senquence of rrobahilisy wojsures on BT ‘ Ve
n &2 2 Jequence o prohaht ity rodsures on
converges to a probshility measure (e, )Y  whose characteristic func-ion ‘¢
.
Then  ufe,d is the Raden -
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r
. ) 3
thoas A SR I A BT R T e LA
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b) If un(-,X) + u{*,A) then clearly ¢n(y) + ¥(y)} where VY(y) = ¢(t,X), the
characterist:- of u(+*,A) and y = ti, X € 2%, our hypothesis implies that ¥(y) is
continuous which insures that it too is the characteristic function of some probability
measure i on RS. (c.f. H. R. Pitt, Integration, Measure and Probability, Oliver and
Boyd, London 1963). Thus by Lemma 1 (Ru)(e*,A) = u(*,x) and un >y,

We will say that a probability measure U on RS is a Pdlya distribution if the
reciprocal of its Laplace transform is in the (normalized) Pélya-Laguerre class on
R®, that is,

f e-z.xdu(x) = ?T%T

where

1_2

—AZ.+0. hs ’ - '.
A N L R T .

f(z) = e
i=1
(It should be understood, if not otherwise explicitly stated, that the range of
validity of the above expression is the hyperstrip Re(g”+z) 3 -1 in ¢S.)
A B-spline distribution u has the form

n,n

un(I) = n! f M(xlxo’n,...,x )y dx

1

for some x0/M,,.,,x"/D ¢ RS,

Proposition 2. If u is a Polya distribution then it is a limit of B-spline

distributions.
PROOF. Since u is a Polya distribution we have

fam2y = 1
(3) Jse awy) = 5733

R

where f 1is a normalized Pélya frequency function. Thus accordina to Motzkin and

Schoenberg (see the remark following Theorem 1) there is a set of vectors

(2", )

in P% such that

-13-
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unifcrrly on compact subsers of RS, Thus for everv A€ .

uniformly on compact subsets of &' Hence by the Curry-schoenbera theorem we know

that thre seuuernce nf Aistrihutinne

n,n 1

(4) b (T, = nt o™, o A" e, 1SR

converges tc¢ a distribution pft,i) which satisfies

T 1 oy 1
(5) > e Aelo,r) = T

kecording to  (3), (Ruld(s,i) = ufs,X). Moreover, if we define

- n,n T <
(5) u (1Y = Dot o xT e, 1 g R0
then we can see that the Paldon transfnrr of Ln‘Ii is v (I,)), bhecause by Definition
4 and Lemma !, if I :_P1

R ’ R p e n,n . . S} i
(PLn)(I,A) = ,I’»-x)V(x % Pes X YAe =, XT’hvion \4v1~--qv“
=t T PG A TN S SR
. "

Thug we have stowsn that (L ale,%) » ()0 Ly, recearding to Prowmosition 1, 4 o
- b
n n

becanse “he charactarier o Yunotion 57 Ryl Y g obviously aniformly continraons in

a npeluetborhonl 50 zors, This rmplatas Yy s ronf,
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Proposition 3. Suppose u is a probability measure on rR® and

PROOF. As before we have

(Ru (T,A) = ni J mee e ™, L ae™ Mae

I

u (1) = nt | M(xlxc'n,...,xn'n)dx
n ;
1
converges to Wu. Then u is a Polya distribution with Laplace transform
¢ -7ex 1
Js [ du(x) =_f(2)
R
where
n_ j,n-
Un TT {1+ 222} = £(p)
n+® =1 n

and since (Run)(I,X) + (RU)(I,X) for each A, the Curry-Schoenberg theorem implies

that

n j,n.
1m TT (142 X2y 2 o050
n+e =0

converges uniformly on compact sets for every fixed A to some
as in the proof of Theorem 1 we conclude that
glz,\) = fl(z))
where f 1is given by
3m.g,
’

n
(7 1m TT {1+ 2222
n+e =0 n

= f(z) .

gle,\) € E,. Now just

This convergence is uniform on any compact nart of any ray through the oriain. The

Curry=-Schoenberg result tells us that

WP

o




f e—itcdu(o,x)

1 1
TGt fle)

and so invoking Lemma 1 again we obtain the desired result, namely

f e—:.yduly) = —- .

RS

To complete the proof we only have to show that the converaence in (7) is unifar— -

compact sets of

A

In (7) the derivatives of the product converae to the respective derivatives of

f. Thus we see, as in Theorem 1, that these products are uniformly bounded on any

compact set and so the convergence is uniform.

Propositions 2 and 3 combine to give the main theorem of this section.

Theorem 3. A probability distribution u is the limit of B-spline dis%ributione :¥

and only if

where f(0) = 1

and f € Eg.

-7 1
‘f e Ydu(Y) = T3]
Rs -

Corollary 4. A necessary and sufficient condition for

to converge to the distribution u defined hy

O,n n,n
un(I) = n! f Mixlx ', .. ,x ydx
I

. e O

JoeT T Yauyy = e T 0
s
P

. 1 i,n,
lim —= max ix L= N

n+o n Jxj8&n

~16~




n
b) lim 1 ) x1'" = CO
n .
n+o ]:0
k n
. 1 :
2 . ) lim = | (x3Pey)? = azez .

n+® n- j=1

PROOF. The proof of this corollary follows immediately from Theorem 4. For instance,
— n

Jom,
a) is equivalent to the fact that the limit of ] [1 + 5——;—5) has no hyperplane in
=0

its zero set. The remaining conditions then characterize the parameters which appear
in the Gaussian distribution above.

Example 3. If xJ/%  ig any bounded sequence in RS then

O,n n,n
u ') = £ MixIx T, 0.l k) dx P 1

converges to the measure supported at y if and only if i
I

~13
.
<
3
|

lim %
n+% =0

Example 4. Let Xy ,m’ 0 € r <m, be any scalar sequence such that the corresponding
2
univariate B-spline distribution converges to the Gaussiar distribution 1/2e * dat.

(The conditions on x. o needed to insure this is given by Corollary 4.) Now, form a
r

vector sequence xj'“, 0< 3j<n=ms, by "placing” Xy,m ©On each coordinate

direction. Then we may again use Corollary 4 to conclude that the correspondina

multivariate B~spline converges to the multivariate Gaussian distribution

2
"-S/Ze-“xﬂ .

We will say that a B-spline distribution

0 n,n
W (D) = nt [ MOxlx AL

é yax
I

is W-restricted if xJ/Pe w0,

Sy e )

-17-
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Theorem 4. A probability distribution u is the limit of W-restricted B-spline .

distributions “n if and only if

: =-I*y o = 1

(8) ) e du(y) (2 R
s
R

where f(0) = 1 and f ¢ ES(W).

We will prove this theorem in two propositions.

Proposition 4. If u 1s a distribution satisfying (8) then it

—

restricted B-spline distributicns and supp(u) C cohull(wo).

PROOF. According to Corollary 1, there is a sequence

£ j,n
JI)

| = f(z) .
3=0

lim
n+o

n,n

Thus, as in Proposition 2, un(I) = pn! f M(xlxo’n,...,x Jdx converges to u, since

1
f € Eg» Moreover, because supp un c [xo’n,...,xn'n]

it follows that the support of
~ 0
u € cohull(w’ ).

Proposition S. Suppose u is a probability measure on Bi and

O0,n n,n
(1) = nt Imedx M oes e "hax ,
T
where x°'7 ¢ W, If W, gonverges to then u is a W-restricted Polya

distribution with Laplace transform

r y 1
4 =
j e u(y) () ¢
s
b
n jen, .
Flz) = Lim T 1 (1« 2=
n+o j:n n

n
ani supp(a} 7 ashallf™ ),

This result {35 proved Yo avguments gimilar ¢~ those used tn prove Proposition 4. We

nomit the deavajils,
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The analog of Corollary 4 is

Corollary 5. Let W be an admissible cone. Then a necessary and sufficient condition

for
0 . 0
un(I) = n! f M(x|x 'n,...,xn'n)dx, x7" e w
I
: 0 0
%o converge to the Dirac measure at § € W  is that
1 .
a) 1im — max Ix2'%1 = o ,
n+® © 0<§<n
n ;
1
b) lime ] x7" = .

Section 4. INVERSION FORMULA AND SMOOTHNESS PROPERTIES OF POLYA DISTRIBUTIONS
In this section we investigate some further properties of Polya distributions.

Their characteristic property, as defined earlier, is that

-2 1
[ e Yauy) = ——,  Re(zlez) > -1,
s £(z)
R
where
0 o j
~A7e 24 — | -
f(z) = e 202t 0z T1 (1 +g7z)e sez '
j=1
-
¢ 3,2 . o . s . b s
L 1z71" <=, A is a positive semi-definite ¢ x s matrix, and - € P,
j=1

3= 0,1,2,000 o

We begin with the finite kernel case, i.e.,

(9) J ey = L retddeny > a1, gt e RS

p° TT 143

=1

ik,




et e Sricaa amrud A e b

in

In general, we can always represent this measure as an n-dimensional integral

the following way. We define the linear functional

® ® =(t +°"+tn) ' |
T 1 n(¢) = I s f e ¢(t1C *"'*tnln)dt1"'dt :
C I"'IC 0 0 n 1
and observe that
T T
th
-z t.Z
® ® (koo ) .3
-z. 1 =
T, n(e %) = [ eee e "e 3=t At esede
L reeesk 0 0

.

n
TT (1 + 20¢h)
j=1

where Re(z-;j) > =1, 3= 1,c0s,n.

Thus, for u defined by (9), we obtain

T(£) = [ £(x)du(x)

pS

at least for functions which are bounded and continuous on R®. Perhaps, it should be
pointed out that this “inversion formula" for the measure Lk in the univariate case is
not the representation given by Hirshman-Widder, (4]. A "conventional" representation

would express |y as an s-dimensional integral. 'To this end, let us observe that if

. m = dim apun{;1,...,c"} ¢ 8 then T does not come from an L’-density, i.e. there is

no L'-density G(x) such that

TE) = [ £(xIG(x)dx .

3 Rs

| Otherwise, there would be a A € RS = {0} such that Xez? =0, 4 = 1,...,n. Then

1 = T(e-it)ux) - J{ e-itk'xc(x)dx .

S
R
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. However, becaugse G € L‘(R') the limit of the right side of this equation is zero for

t > =,

g When m = s we congider two cases. For n = g we write :j = 2ed j=1,40.,n

where (ej) , Jsk=1,..e,n and A is the nonsinqular s x s matrix whose j-th

L

columns is the vector cj. Thus, in this case,

-1, 7
1 -1¢(A )"x 1
Taet AT © { , % € (g ,---,Cslc
(10) G(x) =
[ . otherwise

1 1
where (g ,...,c!]c igs the cone spanned by ,...,;s.
The last and principal case occurs when m = s < n. In this case we define the
density corresponding to T recursively. We suppose for ease of notation that

1
[4 ,...,Cs are linearly independent and define

(11 G(xlc‘,...,cg+1) = f e a(x - t;2+'|61,-..,52)dt
0

initialized by .
(12) cixlz!, o0 2% = G(x)
3 where G(x) is given by (10}. It is an easy matter to prove that
g- (13) 1;1 -.-,c"(f) = [ gx6xlzt, ...z ax

|
' (induction will do). Since T is invariant under a permutation of the 1
[SFTERNIA
1 1 n
vectors ,...,cn so too is G(x{f ,...,; ). Consequently, the recursion above can

begin at any set of linearly independent vectors and proceed through any orderina of
1
the remaining elements of {§ ,...,;n}. We might also mention that this fact can be

1
used to bound G(x|g ,...,;n). In particular,

-21=-




1 N . -1
max!G(x|g ,4e0e,2 )| € min vols X .
X ¥

i i
where the minimum is taken over all s~dimensional simplicies K = [0,g 1,...,c s] .

1 s : .
formed by any s vectors from {{ ,...,f°} and the origin in 1S

Because of (11) it is to he expected that G(x!c‘,...,cn) has a number of
continuous derivatives. To make this precise, we denote the directional derivative

of £ in the direction y ¢ R® by D Then (11) clearly implies that

(18) (© nexlzt e = axizt Y
z

at every point of continuity of G(x|;1,...,C£). In general, we see that

£.
Yy

n
1
(15) paxlz e t™ = T wetxlc, et
y o

-1 i+
j :C'1+ :---,Cn)

R e Xy

where

The proof of (15) uses (14) and the fact that G(xlc1,...,;n) is invariant under any

s+1

permutation of the vectors C1,...,;n. Returning to (11) we note that G(x|;1,...,; )

1=-1 _i+1 s+1
'

. 1 .
ig continuous on RS, if the vectors § ,.+:,C 4 LeeesSt , i=1,.0.,8, are

linearly independent. Since in this case for every x € R® the line x =~ tcS+1

intersects the cone [C1,...,CS)C at most once. Thus we may combhine our previous

remarks to conclude that whenever every subset of s vectors from {c’,...,;n} is

n 1

1 s ;
linearly independent G{x|% ,.,..,5 ) has n - s = continuous derivatives.

In one Aimension the precise form of G(xl;‘,...,;n) as a combination of two
exponential polynomials is known, Hirshman and Widder (Theorem 8.2, page 31) (4], For

]

+he nurpose nf presenting a similar result in R® we prove the following lemma,

1 n ce s .
The points § ,.e.,7 are said to be in general nosition if every subset of

e + 1 poiare form an c=dimenginnal gsimplex,

-2 -




Let 0,51,...,:n be in general position. Then for everv set I c {1,...,n}

containing |I] = s elements there is a unique Xy € R® such that 1 + cj~xI =0,

3 € I. Moreover, Xg necessarily has the property that 1 + ;J-xI #0, 5 f 1.

Lemma 2. Let {0,51,...,cn} be in general position. Then for every polynomial Q of

total degree < n - s we have

11 1+ cj-x)

ox) = | oxydfL
|

11l=s ' TT a0+ ;j-xI)

jfL
PROOF. The space of polynomials of total degree < n ~ s has dimension N = (:).

Thus it suffices to observe that the N polynomials (of degree < n - s)

TT (1 + cj-x)
Q_{x) =j£I——-—.—-, 1C {1,..4,n}, 1] = s
I TT (14 gdex) -

J£I

satisfy OQq(xy) =0, I # J for then they must be linearly independent.
We may now specialize Lemma 2 to the polynomial Q(x) = 1 to obtain the partial

fraction decomposition

1 1
R ) = .. 3.
TT (1+gden MTl=s " TT (2o
3=1 3T
where
a_ = !
I 1 (1 + gjoxI)
T

Hence we obtain the bhasic relation
1 n - i1 is
(16) Glxlg ,eeerg) = 0 A GUXIC ,eeasg ), I= (11,...,i§} .

[Il=s

-23-
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Using (10), we can readily see that
iy is XX
(17) GIXIT ,u00,3 ) = chI(x)e

i i
1

where cI = vols[O,C seessly s] and XI is the characteristic function of

1 i

1
12, eee,t slc- Setting by = ajc; and combining (16) and (17) gives

xX_*X
1
(18) G(xIg',eee, g™ = § by (x)el
1X1
1)=s

which reveals the precise piecewise exponential form of G(x|;1,...,cn). We might adid

that since

n
1 1 i-1 +1
(19) cixlg’,eeag™ = T aetxle’, et e LM
=1
n n 3
whenever Z Aj =1 and 2 Xj; = 0 we could generate this representation
3=1 3=1
recursively.

Equations (15) and (19) are similar to formulas satisfied by the multivariate R-
spline and truncated power, {26]. This suggests that these other functions are closely

related to G(x). To present this relationship we define

i © n n .
J oo [ w( ] vj)f( ) vjcj)dv1°°-dvn =/ Gw(x|;1,...,cn)f(x)dx
0 o 3= =1 s

R

for a given univariate function w(t). The choicr w(t) = e-t corresponds to

G(xlg‘,...,c") while w(t) = Xfo 1](t) and w(t) = 1 correspond to the multivariate
’

B-spline M(xlo,c1,...,;n) (see Definition 4) and the mul*ivariate truncated power

H(xlc1,...,c") raspectively. In general, we have

.




o5

- ar o

1
[ e txle g Max

RS

n n
=lm £( ] vl ] v v seedy
n*0" n oy 3= J =1 n
v_.<h
3=1

-n -1 3 -1
= 1lim h f f(h z v.% )w(h Z v.)dv eeedy
h+0 n j=1 J 3=1 1 n
z v, <1
=1 3

3 -1 eee ‘At
vye Jwth v eeedv AT

]
o
-
3
=2

[]

3
o~
—
S—

n
PALN

¥

]
-
o~

1 n .
=um v ™™o et vjcj)dv1'-'dvn_1)dr

+
> - =
h+0 0 g" 1 J=1
h-1 nesg=-1 -1 1 n
=um [ [ whh £(xIM(h™ %2 ,eee,L)dx .
ne0” s 0

Thus we obtain

s=1

(-]
1 - - 1
G, (xIg peeert™ = [ wn™ S e ket g™ ax
0

Besides the case w(h) = e ", which gives the formula

® on 1
I e- n=-s-

G(xg ' eea,t™ = h Mot gt e sMar
)

the choices w(t) = X0 1](t) and w(t) = 1 yield the known formulas
’

-n+sg-1

-]
1 1
MX10,5 ,ee0,g™) = [ 1 MOTx1S ,eee, M dT
1

and

R




st i

LY

-n+p-1 1
H(xlc’,...,;n) = f S MiTx|Z ,...,;n)dv R
0

respectively, {6]. (This last identity is true when 0 ¢ [c1,...,cn].)

Next, we turn to the infinite kernel case. For that purpose we introduce

Definition 7. A function f in E_. given by

©
=RAIez¥] 2 'l-'

T 1+ glezye”
3=1

i, .
f(z) =e £oes

is called degenerate if and only if

r 1 2 j
s = spanta1l"’lasl; ' l"'I;J:OO"} # Rs

where aj are the rows of the matrix A.

We will also say Alx), x € PS, is a Polya frequency function provided that

du(x) = A(x)dx is a P&lya distribution.

S —

Theorem 5. Let f € E and suppose f(0) = 1. Then 1/f is the Laplace transform of

a Palya frequency function if and only if f is nondegenerate.

PROOF. Suppose f Es, £(0) = 1, 1is degenerate and

1 -Ze )
T *Ax)dx, Re(glez) > =1, §=1,2,...
RS

for some density function A(x).
Since f is degenerate there is a X € Rs, A*#0, and X L S. Hence
r

£0z) = 25 "' and so

N
-itr -1 .
P - f e ied xA(x)dx

1 3 3 : : 3 : :
for all t € R'. This is obviously a contradiction because the right hand side of the
equation goes to zero as & + ®, by the Riemann-Lebesque theorem.

Conversely, suppnse € is nondegenarate, We will now show how to construct a

density whnse Laplace transform is 1/f. First let us observe that if €., f, are

D=




in Es and 1/f1 is the Laplace transform of a density A(x). Then 1/f, for

£ = £46,, is the Laplace transform of the density

[ AMx - yrauy)

RS

where du is the Pélya distribution corresponding to f2. Thus to prove the theorem
it suffices to find a factor of f which corresponds to a Pélya frequency function.

when A is of full rank, r = s then the well-known formula

-1
oR20Z 1 Rk R C I B

(2vVT)5%/3et 2 5

already provides the density. 1In the other extreme case, when A = 0, there are s~

linearly independent vectors from {zd: 3=1,...} say §qreses8 - Then the formula
1

-2
= f e xG(x|c1,...,cs)dx
s

——

TT 0+l r
j=1

which we used earlier in the section gives us a density. Finally if 0 < r < s then
1 £ L

there are £ = g = r vectors Say § ,e..s,§ such that {a1,...,ar,c1,...,c } spans

RS. 1In this case, the function

L
=AZ 97 ——
I

Flz) = e (1 + gez)

=1
is a factor of f. To see that it corresponds to a density we may as well make a
linear change of variables and assume it has the form
2 2
-21000-2 s

e ’||(1+zj).
j=r+1

Now, it is clear that




LS oL A

where A is the density

0 0
) =eeoaiyx )
A(x) = e s s+ . . 4

-xz-. . c-xz-( x
1 r r
This last case proves the theorem.
Let us end this section by noting that the density A(x) will be c”(r®)
provided that either A is positive definite or that there is a set {;j: j e 3},
[g] = =, which are in general position with the origin in RS. This latter fact

follows from our earlier discussion of the finite kernel case.

Section 5. POLYA FREQUENCY FUNCTIONS AND VARIATION DIMINISHING TRANSFORMATION ON S
In this section we will indicate the extent to which we can generalize the
variation diminishing property of univariate Polya freguency functions to higher

dimension, Our remarks are based on the following elementary observation.

A ridge function has the special form
fm(x) = glwex)

where g is a univariate function and w e 9%, the unit sphere in RS, The

convolution operator

(A*£)(x) = [ A(x = y)f{y)dy _
5 .
maps the ridge function fw into the ridge function h(wex) where

ht) = [ My)g(t - wey)dy .

RS

The induced map Tw defined by h = qu has the representation

- *
Tw (RwA) g

where
(R M) = [ Atx) dx ‘
xXow=t ;
is the Radon transform of A.
28~
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. Theorem 5. If A is a Polya Frequency function on RS then for any w € 2% the map

T, Qefined av ve is variation diminishing.

;f PROOF. To prove this re.ult we must demonstrate that (R”A)(t) is a Polya frequency
function in t for every w € a®. Since

=2y _ 1
f e AMy)dy = rIEs)

r® ‘

where f ¢ E, we see that the Laplace transform of RwA is f_1(zw-y). But f(zwey)

is in the class E4+ This implies by one of Schoenberg's basic results [7,8] that

(RuA)(t) is a Polya frequency function.

The above result only gives a sufficient condition for A to be a Pélya frequency

function on RS. There is an extensive collection of radical functions satisfying the
conclusion of Theorem 5 but which are not Pélya frequency functions. Specifically, we i
let

5 A = neixi?y,  ixa? = e een?,

where

1 ® s/2 J(e-2)/21t
hit) = s/2 (s-2)/2 f ° 2 do .
3 (2m)”" ¢ 0 al-o%)
f (the Bessel transform of l/g(-oz)) and g has the form
‘I «© @
gt) =e " TT(1+ase), ya >0, T a <=,
3=1 3 3 je1 3

It is well-known that the Fourier transform of A is given hy

-ixe 1
f e ix yA(y)dy =

s g(-ﬂxuz)

§
H

R

. and thus
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Loain i

1

f e-z.yA(y)dy = B z = (z,l,...,zs) .
R® g(z1+...+zs)
Now, it quickly follows as in the proof of Theorem S that (RMA)(t) is a Polya
frequency function in t for every w € o8,
Postscript
In their paper Curry and Schoenberg showed how the Brunn=-Minkowski Theorem
concerning the volume of a convex body intersected with a hyperplane leads to a
“"convexity" inequality for the univariate B~spline. The same argument gives similar
information about the multivariate B-spline. We record this result below.
Recall that a nonnegative function g defined on R is a Polya frequency
function of order two, if
g(t1-c1) g(t1-cz)

>0
g(t2-01) g(tz-cz)

whenever t_ < t_, 0 < ¢_.

1 2 1 2
Theorem 7. Ffor any x,y € R® the function g(t) = M{x + tylx0, .00, x™ i a Polya

frequency function of order two.

PROOF. Using the geometric interpretation of the multivariate B-spline, [2,6}, as the
volume of a polyhedra and the Brunn~Minkowski theorem it follows just as in [1] for the
univariate case that (M(x + ty(x?,...,x"))1/7"8 ig a concave function. The theorem
now follows by observing the simple fact that every positive power of a nonnegative

concave function is a Polya frequency function of order two.
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