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ABSTRACT

In a definitive series of papers I. J. Schoenberg with H. B. Curry

clarified the relationship between several diverse properties of distribution

functions on R1 . They showed that a distribution function is a limit of B-

spline distributions if and only if the reciprocal of its Laplace transform is

in the Polya-Laguerre class. When the distribution function corresponds to a

density A(x) Schoenberg showed that these properties are equivalent to A

being a Polya frequency function or that the convolution transform A*h is

variation diminishing.

The purpose of this paper is to extend some of these properties to a

multivariate setting. The major tool in this investigation is a notion of

multivariate B-spline which we have both studied earlier.
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SIGNIFICANCE AND EXPLANATION

B-splines occupy a pivotal position in the theory of univariate spline

functions. They offer a firm bases for many of the attractive theoretical and

practical properties of splines. Therefore any advance in our knowledge

concerning the multivariate B-spline should be of some value.

The purpose of this paper is to investigate another aspect of

multivariate B-splines. We succeed in identifying those distribution

functions which are limits of multivariate B-splines (P61ya distributions).

This question was solved in one dimension by Curry and Schoenberg. Some

properties of Polya distributions on Rs are also discussed. - -

A surprising consequence of this work is the relationship of the

reciprocal of the Laplace transform of our distribution functions and the

class of really lineal entire functions studied more than 25 years ago by

Motzkin and Schoenberg.
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ON LIMITS OF MULTIVARIATE B-SPLINES

Wolfgang Dahmen* and Charles A. Micchelli**

Dedicated to I. J. Schoenberg with admiration and esteem.

Section 1. INTRODUCTION

In a definitive series of papers I. J. Schoenberg [1,8,9] with H. S. Curry [1]

clarified the relationship between several diverse properties of distribution functions

on R1 . They showed that a distribution function is a limit of B-spline distributions

if and only if the reciprocal of its Laplace transform is in the P61ya-Laguerre class.

When the distribution function corresponds to a density A(x) Schoenberg showed that

these properties are equivalent to A being a P6lya frequency function or that the

convolution transform A*h is variation diminishing.

The purpose of this paper is to extend some of these properties to a multivariate

setting. The major tool in this investigation is a notion of multivariate B-spline

which we have both studied earlier [2,6].

Section 2 of this paper contains some preliminary material on entire functions of

affine lineage. For the most part, we discovered these results before we became aware

of a paper by Motzkin and Schoenberg [7] which treats the same subject. Our theorems

are slightly stronger than those stated in Motzkin and Schoenberg. Moreover, we have

patterned our proofs closely after the univariate case which differs from the

presentation given in [7]. In Section 3, we identify all distribution functions which

are limits of (multivariate) B-spline distributions. Section 4 is devoted to some of

the structural properties of these density functions. Also, in this section, we extend
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some important identities previously known only for the multivariate P-spline and

truncated powers, [2,61. The final section contains some results pertaining to tho

analog of Polya frequency functions and variations diminishing convolution transforms

on Rs .

Section 2. PRELIMINARIES

In this section, we develop the required background material concerning Polya-

Laguerre functions on Os.
s

Let Z.C ==1 zCjj, Z = (zl, .... Z C i s) s denote the inner

product on jS.

Definition 1. A function f(z), Z e s is in the Polya-Laguerre class E. provided

that

f(z) = -AZZ+O 1Z -1 (zJ'z) T-- (1 + ;J*Z)e
-

j=1 V=l

where 2 R and A is a positive semi-definite s x s matrix
j=1

with real entries.

We will usually be dealing with f e E which are normalized so that f(O) 1.

For this class, the principal result which we will need is

Theorem 1. If 4n,j E R a 8 nd

n
f (z) = I-- (1 + n' Z)

n J.1

satisfies

lim f (ix) = f(ix), x e R
n,

uniformly in 4xl1 4 a for some a. Then f has an analvtic extension to 9s which

is in E. an-i
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lir f (Z) = f(Z)
n

n4 o

uniformly on compact subsets of 0s.

PROOF. Choose any y e Ps  with Ilyll > 0. Then letting a' = aI!yll we have

lim f (ity) - f(ity)
n

uniformly in Itl 4 a', t E R . Using Theorem 3.4, girshman and Widder [4], p. 46 we

conclude that the convergence above holds for all z e 0 and f(zy) e Ei . Hence

e~~ 2+yz -c.(y)Z

f(zy) -a= y) +b(y)z II (1 + c.(y)z)ei

where a(y) > RI and Zc2(y) < =. An easy calculation shows that
n

Vf (0 )y = C nJ.y
j=1

and

• " n

(Vf (0),y)
2 

- y.fn(0)* -= n,j y)2

Similarly, we have

Vf(o)*y b(y)

and

(Vf(0).y)2 - y.Vf(0)y = Ec (y) + 2a(y)

Since all the derivatives of fn(zy) at the origin converge to the respective

n n,j 0.Flerivatives of f(Ty) we conclude that lim n exists and b(y) = ,y.

Bot'e that the zeros of f (zy) aro (4 y) Now, by Hurwitz's theorem the zeros

of f(zy) are limits of zeros of fn" Clearly, thb cluster values of {4ni.y} for a

+-.



fixed y are on one hand equal to [cj(y)) and on the other hand are {&J.y) where

{WJ} are the cluster values of ,n,j, in RS. Therefore we may take cj(y) .V

and so we see that 0 ( a(y) = Ay-y for some s x s real matrix A. Also, since

> Z2 (y) = Z(4Jy)
2

for all y Rs  we have ZICJJ 2 < w which establishes that f e Es.

So far we have shown that f (Z) 4 f(z) pointwise on Rs. Using the standardn

normal family argument, the uniform convergence on compact subsets 0s will follow

directly from the uniform boundedness of fn" To bound fn we use an inequality in

(4], page 44 which yields

n. Ip n+4q%

ifn(z)l <1--7 (1 + I;n zI) 4 e
J-1

where p n *E n',Jz qn = (Cn'J *z)2 . Clearly both pn' qn are uniformly bounded on any

compact set of 08. Thus fn is also bounded there as well and so the proof is complete.

There is an obvious converse to Theorem I which says that any f f Es  with

f(0) = 1 is a limit of polynomials of the form

n

P(z) I (1 + e Rn,j ,
J-1

A proof of this fact follows easily from the observation that

e'Z= lim (i + L_ .2
n

The identification of E as the set of all limits of "lineal" polynomials is due to

Motzkin and Schoenberg [7].

Below we describe a multivariate version of the one-sided univariate Polya-

Laguerre functions. These functions will also be used in the next section.

Definition 2. We will say that WC P8 is an admissible wedge if the following

conditions hold:

-4-



a) ty c W for all t 0, if y e w

b) The smalle',L linear space of Rs  containing W is of dimension s

c) The set {zy : Iz 1, z E i, y E W} is a uniqueness set for entire functions

on its.

The polar set of W is defined as

W . ix : x e Rs , y.x ) 0, for all y e W)

Example 1. Ra = fy : y = (yl,...,ys), y ; 01 is an admissible wedge which is self-

polar.

Definition 3. We will call P a w - lineal polynomial if it has the form

NP(z) = T7 z
j-i

where e e W0 . Any function which is a limit (uniform on every compact subset of ia)

of W - lineal polynomials is called a W - the lineal entire function.

Our intention is to show that f is W - lineal if and only if it has the form

Om

f(z) e Ie-; (zJ.z) (1 + CJ*z)
J-1 J-1

where 4J, Zj are in W0  and I 1rJ1 < -. Let us denote this class by E SW).
n j n,j 0

Therem 2. Let f )), eW and suppose W is an admissiblen

edge. If

lim f (ix) f(ix), x f R
n-

uniformly in lxi 4 a for some a. Then f has an analytic extension to s which

is in Ea(W) and fn(Z) converges uniformly to f(:) on compact subsets of 0-.

PROOF. Choose any y e W with lyl > 0 then lim f (ity) - f(ity) uniformly in
n

Iti ( a' - a/Ey|. Since fn(ty) is a polynomial with only negative zeros we know

that (c.f. Xarlin (51) that

itOP---



lim f (zy) = f(zy)n

uniformly on compact subsets of 0 and f(zy) has the form

f(zy) ea(y)z T1 (I + b.(y)z)
j=1

for some constants satisfying a(y) ) 0, bj(y) > 0 and Ebj(Y) < .

Just as in the proof of Theorem 1, we may choose b.(y) = 3oy where 3are the

cluster values of { 3}. Moreover, since *y ) 0 for all y e W we have

e W0 . Also,

(1) [ ~iJ.yj <

J

for y e W implies that J CJ.y < for any y in the linear span of W. Thus (1)
J

holds for all y e R8 and it follows that

[ II~jII < -
J

Also, since

lim Vf (0),y = Vf(O),yn

we obtain for every y e W

n
lim I ; = QJ.y + a(y)
n- j=1 j-1

Since W is an admissible this equation extends to all y e Ps and so we concludn

that a(y) ;Oy for some e C W0 , L IICJH < , and

f(z) = eZC T7 (1 + r.z)
pj=1



It remains to show that f + f uniformly on compact subsets of 0. In view of

n

property c) in Definition 2 it is sufficient to prove f. is bounded on compact

subsets of Is. To this end, observe that for any y e W there is a constant M(y)

such that

n n
-n,i.Y 4- ~ y 4 (

1 1

for all n. Since W is an admissible wedge it follows that

n

j=1

for some constant M and consequently

n n 4MII

If (Z)I = I1I (1 + Cn'3.z)l 4 I- (1 + 1;nJIIIZR) 4 e
j
" e

Since we know that fn is uniformly bounded on compact subsets of is and

f (z) * f(z) pointwise on (zy : IzI 4 1, z e i, y e W} the convergence is uniformn

on all compact subsets of t. This completes the proof.

An obvious corollary of this result is the following characterization of the class

Es(W).

Corollary 1. An entire function 7 is W - lineal if and only if it is in Es(W).

An essential point of view in our previous presentation was the analysis of an

entire function on 9! along an arbitrary ray. The form of the resulting univariate

function allowed us to make conclusions about the multivariate entire function. On

this basis, one miqht be tempted to conclude that a function f is in E if and only

if f(zy) is in E, for all y e Rs . This is unfortunately false as can easily be

seen by the following simple example.
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Example 2. Let Vz 1 ,7 1 21 7 2 1. Then along every ray ttylty2 ), f is the

q'adratic polynomial

22 2
f(ty11 ty 2) = t2(y2 + y2 - 1

ic ,i two rol' zeros a'- so iq in Fl. However, f is not in F2 because its

e', s i
t 

is t)h init circle (el-ments in E2 vanish only on lines).

This example can he substantially generalized. Let a(-z) be any (univariate)

',s-ai.Jed Polya freouency functin gjiven by

mr

giz) = e
-  2( - asz), t,a ) 0, a. <

1 ] =

and define

2 22 -2), C = (z .. z}.
(2) f(-) = q(z1 4.. Z s

Then it is clea5 that 2 f(zy) is in El for all y. However, the only radial function

- l s
in Es is e while f defined by (2) is always radial. We will come hack

to this class of functions in the last section of the paper.

Let us also point out that there are functions other than those given by (2) which

are in E along every ray. For instance,

2 2
f(z) = z1 + ... + Z - zs

has this property. The analytic form of all such functions is unknown. However, when

rays are replaced by lines the problem has a satisfactory answer.

Corollary 2. A function f defined on 0s is in Es  if and only if f(x+zy) is in

F1  for all Xy e Ps.

ProoF. If f C .s then it easily follows from nefinition 1 that ffxz,,t Fl. T,

prove the converse, let us first note that since for alI X,V F
5
, itx~zv'

rollows thait f is a real analytic function on r.

In the case that f(\) t n, x C ps, then

fx+?y)



for some real constants a a(x,y) > 0, 0 B(x,y). Since f is entire we m.ay

differentiate -.is equation to see that

f(Z) =e

where A an s x s positive semi-definite matrix and be R'9. In the general case, we

know according to [3] that the zero set of f consists of real hyperplanes J = t'

where ;j 6 R, 1I1C 11 1 and t E R . Thus we may express f as

f(Z) e -Zzb I mI (z).Z) lim I nI E -C.

j=1 n- j-1 tj

where E(z;p) are the Weierstrass polynomials given by

E(z;0) = 1 -z

2 z
ZL_+ ... + -

E(z~p) = (1 -z)e Z P p

and a are any integers such that Er <n for all finite r, (3,71. There-n 'Itnl

fore f(zy) vanishes only at z = &y/t i and since f(zy) e Elit follows that

Thus, Et.2 < -and so we may choose an= 2. Consequently, f e Es which completes

the proof of the theorem.

There is a similar theorem for the class E,(W) where 14 is an admnissible welac,

which we state below.

Corollary 3. .a function f f E (W) if and only if

1) f(x+zy) f E for all x,y f R

2) f(zy) is a one-sided P6ilya frequency function for all y c W.

PROOF. Clearly, accordinq to Definition 2, prpertien ) in!~ ?I hold whenever

f f Es (W). Conversely, according to the Corollary 2, propprty U above imrlies t~lt



where an< s, v) po '. t j p ve -'.]rl it- matr x.

HcWever, wealsro ' nnw th at for v' C

f !" = PvzeI' 1 Y) 1+C V) Z)

where c (y), b)(v' < :t Thw nliows that A 0, El,1v, < an

e w which im~plies that I c p.( 7

Section 3. LI!'ITS CF "'-C.T1%-Ar1AT- P-PL:11T:SS

I n this section we turn ',r the nrn nipa. I~~j-o f the nreviolls results on

entire functions. We heq'r~ hy r-7a' ' 4r ! definition 0' tho rsnitivariate P'-srlf.-

Definition 4. Let x.........nc P q and suppose (xO..XT) = Convex hull of

.x O'.. . Tf..........xnl has dimension s then the linear fun-tjonal

0 n
,nV n v 1

rl n

nn

f C L
1 

(pS which e s] , oi . la'( a-r nzLe 1,re hir' n-

q r-at Icli r,.AIt f-i i~n cot. non oh-tjo

flin :" nn9 crr 3fr r.. -) , -1 - jI C.
1

p''i y,



4.

polynomial of degree n - I with n - 2 continuous derivatives when x0,...,Xn are

distinct (these are real numbers in this case). In general, it has been shown that

1(x~xO,...,x
n
) is a piecewise polynomial of total degree 4 k with k - I continuoun

derivatives when the convex hull of every subset of s + I points of {x
0 

.....x 
n

forms an s-dimensional simplex.

In this section, we will identify all distribution functions which are limits of

distributions of the form

xI  x

F (x) = n! * M.(yx.,n.....x n,n)dy

x = (X1 ,...,x s ) (we will sometimes refer to Fn as a B-spline distribution). Our

basic tool in what follows is the Radon transform of a distribution. We review below

the elementary facts which we require.

Let w stand for a probability measure on R
s
. Sometimes we will deal

simultaneously with probability measures on R
i 

and R$. However, the context should

make the domain of definition of the measures apparent.

Definition 5. The Radon transform of a probability distribution M on P6 is a map

from 2' = [A : A .
s ,  

l =1) into probability distributions on R
1  

defined t

(Rw)(I,X) = v((y:y f Ps, X-y e I})

for any interval I C R1
.

Sometimes we will denote the Radon transform of p by L(',X).

Lemma 1. For all t f P , A c .
s

fe-itdwo,X) f -itXAYdjjy)
1 s

R R

PP')OF. Let g(t) = ciX i (t) be any simple function on R, with
i=1 I

I ' T= j * Z. Then

-11-
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-31 s ioundie-I ,~ inl, 1 fn,t -n, T~, . a ni2 r, fg~ t

Cfnt.n'. Lt .'nochli> i s-ihiIoon . W1

cowier jes tO ~ provide-d thar . (1 1) for ill, rort anaiF-c

We will ;s(? the notation

Proposition 1.

a) Let !j 1b( orhhty e'o -n .-. tnn --- -' ' ' '

)Pi )A)-~(rO) * A, un ifotirly in 1

h)Supoose, i. s a seo,cnrco~ohh- "voc on s' t1:7

conivergjes t, a prob-thil ity mea:-ure 1:( w! ic~ -hlrret-I i4-t r fnn- ion

~im Corrly cnnt Inwou- 1,t th -- T I rit I . 'h' is t'" :;,I- -tan-;

Ion r'o s iit, Ten P- a'

~tn- rvri1 -~ on-I ~ Tin; it nwoo tio t 4,~f-



b) If U (-,X) + u(,X) then clearly Cn(y) T(y) where l(y) = (tX), the

characteristc: of u(*,X) and y = tX, X e Q . Our hypothesis implies that T(y) is

continuous which insures that it too is the characteristic function of some probability

measure p on Ps .  (c.f. H. R. Pitt, Integration, Measure and Probability, Oliver and

Boyd, London 1963). Thus by Lemma I (Rp)(.,X) =(,A) and p n .

We will say that a probability measure P on Rs is a P6lya distribution if the

reciprocal of its Laplace transform is in the (normalized) Polya-Laguerre class on

Rs, that is,

f e- f(z)

Re

where

f(Z) = e- AZZl 0.Z +C-Ze j Z
-~z~+~ z ~(1 + *Z)e

" '

j=1

(It should be understood, if not otherwise explicitly stated, that the ranqe of

validity of the above expression is the hyperstrip Re(4J.Z) ) -1 in Os.)

A B-spline distribution p has the form

UnI) = ni f M(xIx0'n,...,xn'n)dx

I

for some x0,n,°..,Xn,n C Rs .

Proposition 2. If p is a Pilya distribution then it is a limit of P-spline

distributions.

PFOOF. Since P is a Polya distribution we have

(3) e-z ydp(y) = f(z
Rs

where f is a normalized Polya freauencv function. Thus accordina to Motzkin and

Schoenberg (see the remark followilna Theorem 1) there is a set of vectors

0 ,n,.. n~l)in ' sc
ix x in Ps such that

-13-



unifcrtlv on cnmncict siise (jl ;i+s fori~ o = X r

fK) I21m (1 + ..

r- j-df

unafor', or: compact suY sets of R
1
. Hence by the Curry-Schoenbera theorem we know

that th'e seauesce of sthtir

(4) (1 n!tI ''* '

converges to a distribution rOtA) wh-ich satisfies

According to (3), (Prll.,Xi =4 1. moreover, if we define

then we can see that the FaIn transform of . is LI,>, ecause by Definition

4 and Ler.ra 1, if I P1

Thswe ha4e s ,os th.at t U\ Accnrlino to Pronposition 1,
n0

becaose then~atrc:-"-to ' is oha~s 'iifnrmlv continriois in



Proposition 3. Sups o~ is a probability measure on Rs and

U (I) = n! F M(xlx ,.. .,x n )dx

converges to Pi. Then ti is a MolyA distribution with Laplace transform

dIJx f(z)

R

where
n jn

limT i + X f(Z)
n jl 1

PROOF. As before we have

(Rid )(tAX) =nI £ t(tI)xx O ,...A,.nx )dt

and since M n )CIX) *(RO)(I,) for each X~, the Curry-Schoenberg theorem implies

that

urn II + z J=g(zAx)

converges uniformly on compact sets for every fixed X~ to some g(-,A) C E 1 ow just

as in the proof of Theorem 1 we conclude that

g(z) f X

where f is given by

n 1,n___

(7 irT7 ~I + =f(z)

This convergence is uniform on any compact nart of any ray through the oricrin. Th-e

Curry-Schoenberg result tells us that



fe~%icaj(,\) = ___

e d ~g(tX)

and so invoking Lemma I again we obtain the desired result, namely

f eZ'"Ydw(y) = 1)

R
s

To complete the proof we only have to show that the converaence in (7) is unif,-,r- '-

compact sets of Os.

In (7) the derivatives of the product converae to the respective derivati*'es 'f

t. Thus we see, as in Theorem 1, that these products are uniformly bounded on an'

compact set and so the convergence is uniform.

Propositions 2 and 3 combine to give the main theorem of this section.

Theorem 3. A probability distribution w is the limit of B-spline listrihbtiorc 1'

and only if
e-!.ydUy
e di( f(z)

R

where f(O) = I and f e Es .

Corollary 4. A necessary and sufficient condition for

Wn(I) = n! jM(x!xO n. nn )dx

I

i__) converge to the distribution p defined
C

- -*y Z. z
e -ydU(y) = e

sp

is that

) J i m M I m x lx J n l: =

nn- Thn



b) lim L X
n+ j=0

n

c)lim n j Y) 2= AZz
2n- n j=l

PROOF. The proof of this corollary follows immediately from Theorem 4. For instance,
n

a) is equivalent to the fact that the limit of T7 (i + X Z) has no hyperplane in
j-0

its zero set. The remaining conditions then characterize the parameters which appear

in the Gaussian distribution above.

Example 3. If xj,n is any bounded sequence in R9 then

UneI) f M(XIXOn nn)dx
I

converges to the measure supported at y if and only if

,I I xj,n y .
nn+m JO

Example 4. Let Xr,m, 0 4 r 4 m, be any scalar sequence such that the corresponding

univariate B-spline distribution converges to the Gaussiar distribution r -/2e-t dt.

(The conditions on Xrm needed to insure this is given by Corollary 4.) Now, form a

vector sequence xj'n, 0 Q j 4 n = ms, by "placing" Xr,m on each coordinate

direction. Then we may again use Corollary 4 to conclude that the correspondina

multivariate B-spline converges to the multivariate Gaussian distribution

,-s/2 -XIn2

We will say that a P-spline distribution
, n,n)

(1) = n1 M(xx 0'n n )dx

is W-restricted if xj,n E WO.

-17-



Theorer 4. A prolahility distribution vi ii the limit of W-restricted B-splinp

distributions 0i if and only if:

(8) e " dii(y)=
f(z)

wh!ere f(O) =1 and f c E5s(W).

We will prove this theorem in two propositions.

Proposition 4. If 0 is a distribution satisfying (8) then it is a limit of w-

restricted B-spline distributin and supp~w) C cohull(W 0).

PROOF. According to Corollary 1, there is a sequence Nx.........x nn T.70 such that

n
lim I 1+ Z-x 3,) =f(Z)
n+- j=D

Thus, as in Proposition 2, On(I) =n! J" M(xlx..~n..... Xn'0 )dx converges to p, since
I On 

0,0,
f 6E s -moreover, because supp On C IEx ,... ,x Iit follows that the support of

C cohull(W 0.

Pro ocsition 5. Spoeu is a prbility~ measure on Rs and

wn()= n! fM(xjx 0 'n.. ,n,n )dx

n.0
where EW . If W conv-rges to ji then W is a W-restricteM P81va

S- ~n - -

distribution with Laplace transform

r e-Z*Y 1Oy

f(z) = liri 1

n+- j=O

This resuilt 4-io' -i~ilar ton those use-I tn prove Proposition 4. 'Ne



The analog of Corollary 4 is

Corollary 5. Let W be an admissible cone. Then a necessary and sufficient condition

for

n 'M iOn n,n )dj,n 6W
11n (I) = ni r M(xlx 0 ' , 0  xn ' )dx ,  Xj ' e W0

I

0 0to converge to the Dirac measure at e e W is that

a) urn- max Ijx '
7
'iI 0

b) lim 1 jn
n

n+. j=0

Section 4. INVERSION FORMULA AND SMOOTHNESS PROPERTIES OF POLYA DISTRIBUTIONS

In this section we investigate some further properties of Polya distributions.

Their characteristic property, as defined earlier, is that

Z) Re( Jz > -1fe-Z°du(Y) = f(z)' R( ~~-

where

f(z) e
- A
ZZ+ {I *z - j.Z)e

"  ,

j=1

1J" , A is a positive semi-definite s x S matrix, and f E P
j=1

j = 0,1,2,...

We begin with the finite kernel case, i.e.,

(9) f e- zYdry) = 1 , Pe(&J*z) > -1, 0. n C Rs

PT7 1 Z)



In general, we can always represent this measure as an n-dimensional integral in

the following way. We define the linear functional

® -(t +...+t
T ()=f .. e n)dt.. t

,.,n 0 0 n

and observe that

n_(tl+,.. *tn) - J

-Z-Z.
T (a .. j e 1 e 1 at,...dt

0 0

1

nT-1 (i + z.c j )

j-1

where Re(z*Cl) > -1, j - 1,...,n.

Thus, for u defined by (9), we obtain

T(f) - f f(x)dU(x)

at least for functions which are bounded and continuous on Rs . Perhaps, it should be

pointed out that this "inversion formula" for the measure 1 in the univariate case is

not the representation given by Hirshman-Widder, [4]. A "conventional" representation

would express p as an s-dimensional integral. To this end, let us observe that if

m - dim span{C1,...,&n } ( s then T does not come from an L1-density, i.e. there is

no L -density G(x) such that

T(f) - f f(x)G(x)dx
Rs

Otherwise, there would be a A e Ps - {01 such that . = 0, 1 ..... n. Then
1 T(e- itxx) = r -itx. (x)dx

-
s
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However, because G e L I(R) the limit of the right side of this equation is zero for

t * 0.

When m - s we consider two cases. For n s we write ;j . Ae
, 

j = 1,...,n

where (ei)k - 6 jk, jk - 1,...,n and A is the nonsingular s x s matrix whose j-th

columns is the vector J. Thus, in this case,

1 -I.(A-
1
)T

1,e T x e x ~ ,..
Idet Al c

(10) G(x)

otherwise

1 5, ] 1 s

where [c ,.. is the cone spanned by ,...

The last and principal case occurs when m = s < n. In this case we define the

density corresponding to T recursively. We suppose for ease of notation that

1 5
..,€ are linearly independent and define

(11) G(xl1 .... +) f e-tG(x - t +1. )dt
0

initialized by

(12) G(x)

where G(x) is given by (10). It is an easy matter to prove that

(13) T 1 (f= f f(x)G(xk; ..... n)dx
4

(induction will do). Since T is invariant under a permutation of the
1 nxl

vectors 4 ,...,n so too is ,..,, ). Consequently, the recursion above can

begin at any set of linearly independent vectors and proceed throuch any orderina of

1 n
the remaining elements of { ,... ,4 }. We might also mention that this fact car be

used to bound G(xIC,..., n). In particular,

-21-



maxlG(x ... 4 )I r min vol K
x 

K

i I  is

where the minimum is taken over all s-dimensional simplicies K = [0, ,...,

formed by any s vectors from (1. s and the origin in I
s
.

Because of (11) it is to he expected that G(x)I1,...,n ) has a number of

continuous derivatives. To make this precise, we denote the directional derivative

of f in the direction y e R
s  

by Dyf. Then (11) clearly implies that
(14) (D + 1)G(xI 1 £+1 1 , .

at every point of continuity of G(xkC
1 ,.. . ,

k). In general, we see that

n
(15) DyG(x1 1.., n = ,,+1 n)

j~1

where

n n
Y -

Y= ,L =0

jil j=1

The proof of (15) uses (14) and the fact that G(xl 1,..., n) is invariant under any

permutation of the vectors n1...,. Returning to (11) we note that G(x;1.. 
s+ )

1 i-i i+1 s s+1
is continuous on R

s
, if the vectors , ,, ,Ci+ , i 1. . are

linearly independent. Since in this case for every x f Rq the line x - t 
s+ 1

intersects the cone [1. , s] at most once. Thus we may combine our previousc

remarks to conclude that whenever every subset of s vectors from { 1,..,n} is

linearly independent G(xl . n ) has n - s - 1 continuous derivatives.

In one dimension the precise form of G(xn . ) as a combination of two

exponential polynomials is known, Hirshman and Widder (Theorem 8.2, page 31) [4]. For

the nurpo"s of presenting a similar result in P we prove the following lemma.

1 n
The points ,.......are said to be in aeneral position if every subset of

'7 I nnont-P corM In q-r'i n1,nijo1 . -.22-



Let 0,; 1.. be in aeneral position. Then for every set I C{1..,n

containing III = s elements there is a unique xi e R8 such that 1 + ;) = 0,

6 1. Moreover, x, necessarily has the property that 1 + *x *0, jI

Lemma 2. Let {'4.~.0) be in general position. Then for every polynomial Qof

total degree 4 n - s we have

Q(x) = L. Q(x 1 +

is TI( +

jnI

PROOF. The space of polynomials of total degree 4 n -s has dimension N (n).
8

Thus it suffices to observe that the N polynomials (of degree 4 n -s)

Q jIXl C 0,)

I'

satisfy Q1 (x,) = 0, 1 J for then they must be linearly independent.

We may now specialize Lemma 2 to the polynomial Q(x) =1 to obtain the partial

fraction decomposition

n aI j

jel

where

a,=
T1(1 + ;-i

Hence we obtain the basic relition

(16) G(xI; ... 1n (I
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Using (10), we can readily see that
1l ,is xI~x

(17) G(xk4 ,.. ) = cixi(x)e

where c = vol [0' . I and XI is the characteristic function of

i sa
t1 ' ' C Setting b. = aicI  and combining (16) and (17) gives

(18 ) G (x I . . ) = r b iX i(x )exI .
X

which reveals the precise piecewise exponential form of G(x.). We might add

that since

r i-i i+1 n(19) G(xlC I ... , )=[ G(xj I ..... ,4 i+ C .. n

j=1

whenever X. = I and X j . 0 we could generate this representation
J=l J j=1

recursively.

Equations (15) and (19) are similar to formulas satisfied by the multivariate P-

spline and truncated power, [26). This suggests that these other functions are closely

related to G(x). To present this relationship we define

W n n
"'" f -( I vJ)f( I v ;)dIV,...dv = f G.(x . )f(x)dx

0 0 J:i=' J.1 8 R

for a given univariate function w(t). The choice w(t) = e-t  corresponds to

G(xiC, n) while w(t) X 0,11 (t) and w(t) = 1 correspond to the multivariate

B-spline M(xj0,1, ;,) (see Definition 4) and the multivariate truncated power

H(xj1,...,n respectively. In general, we have
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1 n
f GW( 4 ... )d

Rs

- 1im+ f( I v L v *** ..dv

h+O n _ j1 n n

- lrn h~ f f(h1  I v J)4h1  I v jdv1 ...dav
h+O n J.1 n~

- lirn h-n f f f~h Tvd ***dv ,d
b+O 0 n v.r =1I n-i)

lim h -nf T -W (h- ) f(h 1r T***J~vl dv )dT
h+0 0 S n-1 1. n-i

- lim+ f f h-w(h)h n91f(x)M(h- xIC ,...,C )dx

Thus we obtain

1 n n-s-i 1 1G W(xI4 4.., f w(h)h M(T xk ,.. . , )dx

Besides the case w(h) - e h, which gives the formula

1 n h n-s-i -i 1 l... n)
G(4~ 4.. f e hQ 4(T dIT

the choices w(t) =Xroii,(t) and w(t) =1 yield the known formulas

MXO 1 n n+s-l 1(XI n )I

and



H(xl . ' .,n) f T-n+P-'M(Txi1, .,;n)dy
0

respectively, (6!. (This last identity is true when 0 i t .

Next, we turn to the infinite kernel case. For that purpose we introduce

Definition 7. A function f in Es  given b

f(:) = e
- AZZ ' - (1 + .e

j=1

is called decenerate if and only if
12 j

S spana . .as , , . R,...,} 
s

where aj are the rows of the matrix A.

We will also say A(x), x e P
5
, is a P

6
1ya frequency function provided that

dui(x) = A(x)dx is a P81ys distribution.

Theorem 5. Let f e Es and suppose f(0) = 1. Then 1/f is the Laplace transform of

a Polya frequency function if and only if f is nondegenerate.

PROOF. Suppose f Es , f(O) 1, is degenerate and

f( = e- A(x)dx, Re(&Jz) > -1, 9 = 1,2,...
R 
s

for some density function A(x).

Since f is degenerate there is a X 6 R
s
, X * 0, and X I S. Hence

f(Xz) = e
z  

and so

e = Ae XA(x)dx
s

P

for all t R. This is obviously a contradiction because the right hand side of the

equation goes to zero as t , by the Rienann-Lebesoue theorem.

Conversely, sunpose f is nondegenprate. We will now show how to construct a

density whose Laplace transform is I/f. First let ,is observe that if f1, f2 are
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in r and 1/f1  is the Laplace transform of a density M~x). Then 1/f, for

f f1is the Laplace transform of the density

f A(x - y)du(y)

R

where du is the Polya distribution corresponding to f2 . Thus to prove the theorem

it suffices to find a factor of f which corresponds to a Polya frequency function.

when A is of full rank, r = s then the well-known formula

eAz-z . 1 f e-z-Xe(A- X'x)dx

already provides the density. In the other extreme case, when A - 0, there are a-

linearly independent vectors from {~j: j = 1,...} say ;.., Then the formula

T7 (1 + ;3-z) R'
j-1

which we used earlier in the section gives us a density. Finally if 0 < r < s then

there are I-s - r vectors say such that (aV ....,a ,. .spans

Rs. In this case, the function

F(z) = eAZ- ~ T ~i+ 0jz)
j.1

is a factor of f. To see that it corresponds to a density we may as well make a

linear change of variables and assume it has the form

2 2

1 r -F,(1 + z

Now, it is clear that

1 1 j eZX-xa
( 2F)Z _Z - Axd

R
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where A is the density

2 2 0 0
AW - e r (x r+1 "+A(x) = e

This last case proves the theorem.

Let us end this section by noting that the density A(x) will be C'(R s )

provided that either A is positive definite or that there is a set (C): j e J),

IJl , which are in general position with the origin in Rs. This latter fact

follows from our earlier discussion of the finite kernel case.

Section 5. P6LYA FREQUENCY FUNCTIONS AND VARIATION DIMINISHING TRANSFORMATION ON R5

In this section we will indicate the extent to which we can generalize the

variation diminishing property of univariate P6 lya frequency functions to higher

dimension. Our remarks are based on the following elementary observation.

A ridge function has the special form

f (x) = g(C.x)

where g is a univariate function and w e S28, the unit sphere in Rs . The

convolution operator

(A*f)(x) - f A(x - y)f(y)dy

R"

maps the ridge function f into the ridge function h(w-x) where

h(t) - f A(y)g(t - w.y)dy

R

The induced map T defined by h - T g has the representation

T ( (R A)*g

where

(R A)(t) - . A(x)dx

is the Radon transform of A.
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Theorem 5. If A is a Polva Frequency function on Rs then for any w e 2 the man

T defined a.- 'e is variation diminishing.

PROOF. To prove this re.;ult we must demonstrate that (R A)(t) is a Polya frequency

s°
function in t for every w e Since

Se-Z'YA(y)dy =

R

where f e E. we see that the Laplace transform of R A is f (zw.y). But f(zw.y)

is in the class El. This implies by one of Schoenberg's basic results 17,8] that

(R A)t) is a Polya frequency function.

The above result only gives a sufficient condition for A to be a Polya frequency

function on Rs . There is an extensive collection of radical functions satisfying the

conclusion of Theorem 5 but which are not P6ya frequency functions. Specifically, we

let

2 2 2 2
A(x) - h(Kx 1) I .x

2  xI+...+x

where

h(t) 1 aS/2 '(S-2)/2 do
(2n)s/2t(s-2)/2 a (-2 do

2
(the Bessel transform of l/g(-o2)) and g has the form

g(t) = eYt I (1 + at), ,a 0, a. <J=1  ,jj. 1

It is well-known that the Fourier transform of A is given hy

f e-ix-y A(y)dy 1

and thus
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fe-Z*tAcy~dy = 2 2 z (z1  .

RB

Now, it quickly follows as in the proof of Theorem 5 that (R A)(t) is a Polya

frequency function in t for every w e s

Postscript

In their paper Curry and Schoenberg showed how the Brunn-Minkowski Theorem

concerning the volume of a convex body intersected with a hyperplane leads to a

"convexity" inequality for the univariate B-Spline. The same argument gives similar

information about the multivariate B-spline. We record this result below.

Recall that a nonnegative function q defined on R1 is a P6 lya frequency

function of order two, if

a g ~ 1- c1 )  g(t 1-o21 ) 0

g(t2-o1 ) g(t2 -02)

whenever t1 < t2, 01 < 02.

Theorem 7. For any x,y e Rs  the function g(t) - M(x + tyjx 0 ,...,x n ) is a Po1ya

frequency function of order two.

PROOF. Using the geometric interpretation of the multivariate R-spline, [2,6], as the

volume of a polyhedra and the Brunn-Minkowski theorem it follows just as in [1 for the

univariate case that (M(x + tylxo,...,xn)) I/n-s is a concave function. The theorem

now follows by observing the simple fact that every positive power of a nonnegative

concave function is a Polya frequency function of order two.
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