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Worst Case Analysis of
Greedy Heuristics for Integer Programming with Non-negative Data

Greg Dobson
Systems Optimization Laboratory

Department of Operations Research
Stanford University

Stanford, California 94305

Abstract

We give a worst case analysis for two greedy heuristics for the integer
programming problem minimize cz, Az > b, 0 < z < u, z integer, where
the entries in A, b, and c are all non-negative. The first heuristic is for the case
where the entries in A and 6 are integral, the second only assumes the rows are
scaled so that the smallest nonzero entry is at least 1. In both cases we compare
the ratio of the value of the greedy solution to that of the integer optimal. The
error bound grows logarithmically in the maximum column sum of A for both
heuristics.
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12 The Basic Algorithm and Error Analysk 1

1. Introduction

Consider the integer programming problem

minimize cz
Az > b (P)
0<z<u zinteger

with the additional restriction on the data that it be nonnegative (i.e. a,3 2 0,
b j> 0, cj 2 0 for all i, j). We establish tight bounds on the worst case behavior
of two greedy heuristics. If the constraint data is either integral or if each row
is scaled so that the smallest entry is at least 1, then the error bound tends to
grow logarithmically in the maximum column sum in "A". The results here are
a direct generalization of the work of Chvftal[1I on the set covering problem and
of Lovisz[4] and Johnson[31 on the unit cost set covering problem.

In § 2 we describe the basic algorithm and give a proof for the case of
integral constraint data and no upper bounds. In § 3 the analysis is extended
to the case where upper bounds are allowed. § 4 deals with the case of non-
iItegral constraint data. Here it is necessary to introduce a modification of our
basic algorithm to maintain a logarithmic error bound. Finally § 5 gives some
evidence why the non-negativity of the data cannot be dropped and still have
an approximation algorithm that runs in polynomial time. This section also
shows why certain improvements in "greedy" heuristics cannot provide better
than logarithmic error bounds.

2. The Basic Algorithm and Error Analysis

Throughout this section we assume that the constraint data is integral and that
there are no upper bounds on the variables.

The greedy heuristic picks the column 3* that minimizes c3./i ,. a,3 , incre-

ments z.* by 1 and repeats the process. Column 3* minimizes the myopic unit

cost of satitfying the constraints. Observe that when we have a.j > bi then
setting zj 1 1 would satisfy the i'th constraint yet this "large au ." value could
make the ratio cj/Ej t aij appear artificially small. In order to obtain any
bound at all it will be necessary to adjust the matrix data during the algorithm
to elliminate "large aij's". In particular at the end of every iteration we adjust
any a,. > bi down to bi, i.e. a,3 +- min(aj, hi). For simplicity we assume this
adjustment has been made to the original data so a,. < bi.

The greedy heuristic is
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Greedy 1 (no upper bounds)
Z -0

while b : 0 do
begin

kA 4- arg i , lj M a
XA; X-k +I

b - bi - a for all i
a,1 - min(aj, b,) for all i, j
Z *-Z +-Ck

end

Denote by H(d) the first d terms of the harmonic series: H(d) - - 1/j.

We can make the following performance guarantee on the value of the heruristic
solution:

Theorem 2.1. Given problem (P) with integral constraint data and no upper
bounds on the variables, if s? is the optimal integral solution and 2 is the solution
given by the greedy heuristic then

and this bound is tight.
To see that the bound is tight consider the program:

minimize XiZ + - z2 + + PZd-I + -+ (1 + E)Zd+l

X- + Z+I >
2 + Zd+ I

±d I Zd+ I >1
Zd + Zd+ >l

where zj = 0, 1. The heuristic picks the solution ! = (1,..., 1, 0) whereas the

optimal solution is z = (0, ... , 0, 1) for every e > 0. In this case as e -- 0

2= )-+11(d).+ -C

Because the data (A, b) is changing throughout the algorithm, we introduce
the notation A" - (a) and b - (b!) to refer to the data at the start of the
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r'th iteration. Let w =• -- .1 ai,, that is the fth column sum at iteration r.

Assume that the algorithm terminates after t iterations, that is bt+ 1 = 0. At
each iteration r, it picks column k,, z1, is increased by 1, so "bi" is decreased
by a'k,. Thus b!+l = b! - a , or a!- b! - b' + .

Note that if column k, is picked, it is picked at least p = min b!/a k,
1< i<t '

times consecutively. To see this observe that the p'th time will be the first time
that one of the aik,'s will be reduced, thus the first time a---1 Gik, will be
reduced. Even though the other column sums are (possibly) being reduced by
the bi's, that only makes those columns less attractive. Therefore any good im-
plementation would always increment zt, by p. Suppose we implement the algo-

rithm this way. Once Zk, is choosen bft+- = at+' where argmin [6!/aikj,

thus if z1,, is choosen again then row i is covered. Only m variables could be
choosen twice and we have that the number of iterations is bounded by n -- m;
thus the heuristic is polynomial. For ease of notation we will use the former
description of the heuristic.

To prove Theorem 2.1 we will need some machinery provided by the lemmas
below. In particular we introduce two sets of "price" functions which will be
useful in comparing the value of the heuristic solution and all other feasible
solutions.

Thus introduce a set of step functions pi(s) that will represent prices paid
per unit by the greedy heuristic to satisfy the constraints. We wish to view
satisfying the i'th constraint (>32__ aijz, _ bi) as covering up the interval [0, b-).
In particular we will cover it up from right to left so that the interval remaining
to be covered at iteration r is [0, b). Intuitively, for each point a in the interval
[0, bi) the unit price paid by the greedy to cover this point is

pi(a) = Ck, if a [b!+',b!) forr- 1,.. .,t

'vr

That it is indeed the exact price will now be shown.

Lemma 2.2.

c= pi() d,.

Proof.
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'I t t

E cj'Tj E Ck, -- E , hr
r=1 r- k'

t m m t
E a, = c*, f,, &1

i=-1 r j=1- f= i----- k' ein t rn

E 1' : Jibr+1 b r1a d =~ F, pi(a)da.

We now define a unit price function p,,(a) for each element of the matrix
analogous to the way we defined pi(8) for each bi. Define

J ' if 8 E [a+1, a!.) for r 1,...,t

Lp,(), if 8 E [ai1, b,)

We have that pij(8) is non-increasing for s in [0, bi) since w is non-increasing in
r. Intuitively pj(a) is the price that would be paid to cover the point 8 in [0, 6i)
using column j. Because the heuristic is myopic we have

Lemma 2.3. If 8 E 10, b,) then p,(s) pij(8) for all j.

Proof. Fix j. Let r be the iteration number such that a E [a!tl, a' ). Because

anje" was reduced at iteration r, we must have a!? 1 - b ' , and clearly a! <

6, hence e E [b!+', b').

Ck cjpi(s) -- i, < --= p,.(8)
" - C-Xi'v

It.7

where the inequality follows from the choice rule. 3

Theorem 2.4. Let f:[O,b) -+ [O, oo) be non-increasing, a E (O,b], S C [O,b),
p(S) > a, then

P(s) !s 40 f~ 1 a ,0.)

Proof. Let A = [0, a), then

1jf -fP (sA) (,(S A) f + --A)(
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This is a convex combination of two averages. Since f is non-increasing the first
average is at least as large as the second. Thus a convex combination of these
averages weighted more heavily on the first term can only be larger.

< ,(A) (S IA).fnA ! ) (A) (;&(S -A)

Since f is non-increasing, f on A - S is at least as large as f on S - A, thus
j~~x fS-A f fA-S f. After making this replacement in the second
term we have

f I(A- S)(- '(A) (J(An s) f+ (A)-M(A- S) A i)

(A)

We can now easily prove

Lemma 2.5. aij /~,pi(s) ds < p[o,., ) Ysds.

Proof. First, since p,(s) pij(a) for 8 E [0, bi), by lemma 2.3, we have

f ,ad p1 ,(s) da.
1_,b) - b IfO, b,)

Second, pi, is non-increasing in s since to is non-increasing in r. Apply Theorem
2.4 with S = [0, b,) and f =-pij to obtain

Combining the last two inequalities the result is immediate. I
For the set covering problem where ai, = 0 or 1 and bi = 1 for all i, j a row

i is either not covered, (b! = 1), or completely covered, (b = 0), thus the price
function pj(o) only takes on one value, X, = ct,/u', where row i is covered at
iteration r. In Chvital's analysis of the greedy algorithm for the set covering
problem he proved the inequality

Xjajj :_ cjH(, aij for j" -- I,-., n.

These are relaxed dual constraints of the associated linear programming problem.
We are now in a position to prove the analogous inequality for this problem. For
each j define vt, min{r I t + -- 0}.
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Lemma 2.6.

where

11,= E LI WK;+

Proof.

M VI

== 1 3il
-CjC 3

With Lemmas 2.2 and 2.6 we now complete the proof of Theorem 2.1. By

Lemma 2.2

p. (a) da

Now let z be any feasible solution, so Eaijzj bi or F,"j> 1, thus
j=1j=1b

E b (o,6i) pi(a) da

By lemma 2.6 we have

E (cjhj)zj
j=1
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Thus,

-< max h,
CZ 1<j<5

for all feasible z. We now use the assumption that the 'aj's" and "b1 's are
integral.

hj =r 3 1 = E, -  1
L 7W WV

r=1 wr+'<i< .

=H(w.J) = ( = -ii

Thus

max hj < max H( _a )-- H( max E )

Therefore, since the optimal solution, z, is feasible the final bound is

5 H maxCZ CZ* (1 <:5< n==' a

8. The Analysis with Upper Bounds

We now extend the previous result to the integer programming problem with
upper bounds.

minimize cz
Ax > b (P)
O0<z < u zinteger

Again we assume a,,,b1 ,cj _> 0 for all i, 3 . If u = (1,..., 1) we have the important
special case of 0-1 variables. The primary difference in the algorithm is in finding
that z, has reached its upper bound uj, the column A is set to 0 to prevent the
column from being picked again. Because "aj" does not decrease with 'bi", i.e.
a! -min(a,, b) does not always hold, lemmas 2.3 and 2.5 break down.
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Greedy 1 (with upper bounds)
z 4-0
z --0
while b : 0 do

begin
k - argmin -<_<,(cj/ , '1 aj)
Zk 1, Zk +l

bi b b- aik for all i
aj+- min(aj, bi) for all i,j
Z 4--Z---Ck

if ZX - uk then Ak +- 0

end

The extension of Theorem 2.1 is

Theorem 3.1. Given problem (P) with integral constraint data and with optimal
solution i, if I is the solution given by the greedy algorithm, then

c H max ai.

Proof. For the moment we restrict our attention to constraint i, and let z be
vector that satisfies that constraint, (En 1 aijxj > be). The difficulty arises

for those variables ij which reach their upper bounds uj before the algorithm

stops. Define t, = min{r I b -
+ 1 - 0}. Define U, = {j I j, = uj but kt, X jj,

i.e. those variables that reached their upper bounds before the iteration that
covered row i. For j E U,, define Wj = {iterations r I k, = j}. Wi" is the set
of iterations where column j is picked, and tj is incremented.

Say Wi. = {S ,. . . , sj}. Using the feasible z we define Vj {s, sf.. ,

i.e. the first "x-" values from Wij. We now divide the interval [0, b,) into two
parts. On each part we compute a bound for the price paid by the greedy
heuristic to cover that part. Define

R, = U. (br' g,) S, = [O, b,)-- R,. J
vEVj
TEUj

Claim:

fRi p,(,) da < ,( fo,aij, pij(s) dslz ,  (3.1)

min(aij, IA(Si)) f_ Et

.sp(s) ds < {o pij(a) ds Ui (3.2)

A(S) J, - .,j)

-- low
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Proof of(3.1). First observe that for j E Ui, "a,6 " only takes on the values 0 and
a.1 . To see this assume a - $ a!. = b - 0, that is a,6 took on another nonzero

value. At this iteration 2j < uj (otherwise a! 0). Hence " E U implies
column j is picked again and covers row i, ktj j, thus j e U, contradiction.

fpis) d8/ pi(8) d8a

jEUt vEVqg 'bb,)

Now apply that fact that a,. only takes on the values 0 and a!.S
C a

-• • -a..

w'
(max - a

Notice that maxEw, eC/w} is the largest value of cj/lw before column ] is set

to zero and +  0, and thus is the one that defines p.y on [0, a!.).

"-- ( ~o~ jji(s) ds)X j "

Proof of (3.2). Note Si 0 0 since [0, b') C Si. Define aij min(aij, p(Sj)).
Since j e Ui lemma 2.3 holds, so

1 p (a)ds < - p, , () d s

by Theorem 2.4

< 1 f q()d
aij

f pI p,(a) d8.

We complete the proof of Theorem 3.1. 'u, a,,z, >_ b - -jEU, azj =

b, - p(R,) -p(S,). Recall that a" -- min(ai,, p(S,)), so Ezju, a jxi >- 1(S,).

,r , , .... r., .. . ... . ... . 1 i t • - m . . . ... . . i i . .. . . . . . . . ...11 .. . "
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By Lemma 2.2 we have

p f ,,() d + f p,,)d

If z is feasible aijxU -z3 > ,(Sj). thus

:5 < ( ai7j p(o) do + fpi(a) dip

Applying (3.1) and (3.2)

(:fpja 8z + (f..8 d)'.

i -- j1 ,4 J i

-(!- - dt' c zj
F, (I W

j=l T- 1  j

The rest follows as in the proof of theorem 2.1.

< H max Maii) nyy

-- <j<n

Finally if zx is the optimal solution,

Ls).

4. Case of Non-integral Constraint Data

We now wish to drop the restriction on the integrality of the constraint data, A
and b. Because we are now free to scale the rows so as to make a column sum
as small as we like we need a standard form. We thus assume that each row
(ail,... , ain, bi) has been scaled so that the smallest non-zero entry is at least

-......
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1. Unfortunately the error of the greedy heuristic can be as bad as linear in the
number of rows as the following example will demonstrate.

minTZI + IZ2 + 7'3,+ Z 4 + Z 5 + Z6+ X7+ Z8+ j6Zo
z+ (+E)z5+ (1+)X2 + XG + (I+ C2)X. ( + C2)

X3 + X7 + + C)X> + 6")
X4 + Za + (z+ C")Z. ( + 64)

where z-=O,l for i= 1,...,9and = I+e+c 2+e 3 +C 4 + .
The heuristic picks z -1 , z 2 - 1, Xs = 1, zX = I in that order at which

point the problem is reduced to

minimize z5 + Z- + Z + zs + jzg
CXs + E2 Z > C

C X6 + ( Z9  C EC3 XT + CS X9 es

C4 X8 + C4Z9 C4~

Now the heuristic picks zs = 1, Xe 8 1, z7 1 1, ze = 1, thus

= (1,1,1,1,1 1,10)e

whereas you may verify that

*=(of oS $ 1O o O f 1o~)

so the error is
- f H(4) + 4.

The extension to an arbitrary number of rows is obvious. In general the error
can be shown to be

c- < max o ,n

where dj is the number of non-zero entries in column j. But by a slight modi-
fication of the algorithm we can replace this dj by H(dj) and regain a logarithmic
error bound. The basic idea of how this is done can be seen in the last example.
The main component of the error in the heuristic solution did not enter until an
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element in a row ( and thus all the elements in that row) was below 1. Once this
occurs in all the remaining rows we can scale the reduced problem so it looks like
a set covering problem. At this point Chvital's original analysis (or Theorem
2.1) tells us the error is at most H(max1 <j_, di). Let 6 be a fixed, arbitrarily
small number.
The new algorithm is,

Greedy 2:
Z 40
Z -0
while b & 0 do

begin
for each j, if mlJ aq < 1 then

for any row i such that ai. 4 0 has not been scaled so far,
scale row i to 6.

k argmin 5 n(ej a,,)
Xk -zk + 1
b 4 b-- -ak for all i
aGj -- min(aij, bi) for all i, j
Z -Z+Ck

end if zk = uk then Ak *- 0

The main result is

Theorem 4.1. Consider the program

minimize cz
Az > b (P)
O<z<u zinteger

where aij, bi, cj > 0, each row has been scaled so that the minimum non-zero
entry is at least 1, and dj is the number of non-zero entries in the jth column of

A. If z* is the optimal solution and Greedy 2 is applied to (P) giving a solution
2 then

cr < max log a +1+H(df}
c*- aij +1 Hdj

Proof. Fix j. Recall from the proof of Theorem 3.1 that the only step that used
the hypothesis of integrality of the constraint data was in showing that

--7 < H( a .'2 .1ffi

H(
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Thus to prove Theorem 4.1 it suffices to show that

E < log aj + 1 + H(d,).

Let q be the iteration such that w! > 1 but w!+1 < 1. We claim
I - .7

1 < log( ai) + 1 (4.1)

E 3 I < H(d,). (4.2)
Y=q+l 3i

The scaling, however, does cause one problem with the previous analysis. At
some iteration r, a1i may be scaled down to 6. Since pi and pi reflect the prices
paid by the greedy heuristic and the heuristic does not actually cover up the

interval [6, ar ) we should not include this cost. To avoid this difficulty, we define
dr to be the value of ai. at iteration r before any scaling and a the value after
scaling, and similarly for tb and wt. If we no longer integrate over the intervals
[at,, a,.), the analysis goes through and we have

C< max 1' 3 1

-- r=1 31

Since wto'% 1 < oD+ 1 we may replace C+1 by w + ' and the bound is only
larger.

To see why (4.2) is true observe that after iteration q, each non-zero entry
in column j is equal to 6, and thus wq+ l < di6. Furthermore since 6 < 1, if

+1t' 3 0 then every nonzero entry in row i is the same, 6. Thus if aij is reduced
S.,

again it is reduced to 0. The column sum must be reduced by some multiple of
6. Upon factoring out the 6 from top and bottom of " (w - w +)/wu ", we
see that the sum

r =q+l 3y

may be analyzed as before in the case of integral data; wq+18/ < d., thus

E_< t H(di).

i~ ~~ ~~ j ,5 . . .L - ' " - - - -5 -- 7 . . .-- - -7 . "Z - 1 -- -- i .. .- Z - , i -_ ' ? ? -2 .. - . . . ...
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To obtain the bound (4.1) we solve the optimization problem

q W - WtO7+l

Zq = maximum E j W +

-1 ...
B/t > .... !1-

where w; is viewed as fixed, the rest as variable. This is solved in Lemma 4.2
and zq is shown to be converging up to log(w ) +[ 1 as q -+i oo in Lemma 4.3.

Lemma 4.2.
Zq = q - (q 1)(t) - 1/(q- l).

Proof. For ease of notation define B -- .u and make the substitution y,+1-

w for r- q1, -1.

q

Zq = maximum E YT -I

s/t B > Y > .. 1>, Vo _0.

This is equivalent to

q
Zq = q - minimum Sit-i

s/tB>Vq > >V...i/_, YO >0.

Observe that any optimal solution will have yo = 0, yq = B. We can now solve
the minimization problem via a dynamic programmming recursion. Define

q

V(B, q) = minimum E V,
'=1 Yr

s/tB>>1.>Y>l, 1o>0.

= minimum I +V(yq-1)}

By the comments above V(B, 1) - 0 and we now show by induction on q that

V(B, q) - (q - 1)B -/(-1). (4.3)
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Assuming (4.3) holds for q,..., 1 we compute

V(B,q +1)=min~imum -+(

Taking the first derivative with respect to y and setting the result to 0 we have

1 - 0.

= 07--'

Solving,

If B > 1 then B > 9 1 and upon taking the second derivative we see it is
always positive for y 0, so 9 is a global minimum;

q >(- /q-1-2 0 for V > 0

(q- 1) -

Substituting back we have

V(B, q + 1) = e .-/ +- (q - (e -")-/-*

= qB - i~.

Thus
Zq = q- (q 1)()1/(-1)

Lemma 4.3.

fr(q) zq-f-I -q(1 - B - l/ q) "log(B) as q--* oo.

Proof.

f'(q) = - -1/) + q(-/q2)Bl-/, log(B)

= -e-"/(1 + lo(B)> 0

Iff B,1, > (1 + loB)

if lo(B)> log ( + 1, og(B)q q
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iff a, > log(1 + a)

with a - log(B) so f > 0 always.

1-B B- Il q

lim f(q)- r lim
q-.,oo q-.oo 1/q

by l'Hopital's rule

= -( 1q 2)B-1/q Iog(B)"-limq-*co -- l/q2

= log(B).

Since fl(q) > 0 for all q and the limit is log(B) we have then that zq converges
monotonically up to 1 + log(B), as q -- co. I

5. Some Negrtive Results

A much more satisfactory result for an approximation algorithm would be one
that gave a fixed bound, r, on the error independent of the size of the problem
data. If no such algorithm existed one might hope to at least show that the
existence of such an algorithm implied P = X P (see [2]). Alternatively a nice
extension of the above results would be to the case where negative numbers were
allowed in the matrix. The following result suggests that such an extension is
unlikely. This technique is analogous to a result of Garey and Johnson[2] on the
maximum independent set problem.

Consider the integer programming problem

Z= = minimum cz
Az > b (P)
zj =0,1 j1,...,n

where ai- E {0, 1, -1), bi E {O, 1), ey E (0, 1) for all i,j.

Theorem 5.1. Let z* be the optimal solution to (PI) and let 2 be a solution given
by an approximation algorithm. Either there is a polynomial approximation

scheme to solve (PI) such that

< 1+ E for arbitrary e > 0
CZ

or there does not exist any polynomial approximation scheme that gives
-- < r for any r > 1.

First we need

&L _
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Lemma 5.2. Given any problem of the form P1 we can create another problem,
call it Ph, of the same form with optimal value zh such that

Ah =

Furthermore, given any solution to Ph with value uh we can extract from it a
solution to problem P1 with value v, such that

VI < (VA)'.

Proof. For simplicity we start with the case k - 2. Consider

Z2= minimum

s/t Ax' - by, > 0 (P2 )

z-O, 1 v "= O, 1

where cie is the vector c times the scalar ci, zi is an n-vector for i n- 1,..., y
is an n-vector, by, is the vector b times the scalar y,.

It is easy to check that P 2 is a problem of the form P1 . Next, observe that

if Vi - 1 in some solution then Az' > byw = b, thus cz' > zi. Let ({z'i'i, Y)

be a feasible solution to P 2 , then

1<i<n _!i<t ~~
> ii c,y, ZIzi = (ZI)2.

Ii<n

Let v* be the optimal solution to P 1 , then we claim that ({zq}n Y) given by

Y *

if Y,= 1,
0, otherwise,

is an optimal solution to P2 since,

~j (eic)z' =
5 i_< n<, 1:i<5 ,

= Z, Cisf

= (zi)2
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thus x2 = (z,) 2 . This proves the first part. Again let *z.i 0, be any feasible
solution to P 2 and let 2 be the vector that minimizes

min{C,, min cz' }
1<5i< n

so that CZ < eZ' and a < cy.

V2 = C,(cz') c z~y

> ~C,(et)y, (Ct) CwV, (CZ) 2

which implies that
c2 < (V2)i.

This proves the lemma for k = 2.
We now go by induction. Assume we have the problem

zk = minimum dz
Dz > h (Pk)
Zj = 0, 1

The PA+1 problem is

ZA,+1 = minimum E (cd)z'

Dz' - hy, t> 0 (Pk+1)
Ay > b

= 0,1 f/I =0,1

Problem P&+, is of the proper form if P1 and Pt are. Let ({z } , Y) be a

solution to PA+,.

F (e. C'Y> E czih , > = , 1) h
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Let j* be the optimal solution to P 1, and we claim as before that (f zi{'}.I, v)
given by

v=V
z {optimal solution to P if se = 1,t -- o, otherwise,

is optimal to Ph+1.

zkI= E c,(dz') = E c,(dz')yi = zj~y
: i< <,ft 1si__5, 1<i<,

= Zk E ciy, = zkzI = (z1)dkz = (z1)"+ l.

Now let ({zi}n . g) be any feasible solution with value vh+1. For each i let u'

be the best solution obtained to the P, problem from the zi vector as before.
Let u be the best among the u"s and y so that by induction we have

Cui < (dz%)1/k

and
CU <tA c C < CV.

Finally,

= +1 c,(dzi) c,(dz')vi e E X C~~
_5~ _~< _ <i<n

> (cU)h Cjft , (cu)kCu = (CU)k+i
1<i<ti

thus CU < (Vk+i)1/(k+l).

We can now prove the theorem. Assume we have a problem P1 and an

algorithm for which C2 < r. Let e > 0 fixed. Pick k large enough so thatz*-
Cie

r1/ h < 1 + e. Note that k is fixed since it depends only on the fixed c. Now
construct problem Ph from P1 as above. Apply the algorithm to Ph and obtain
a solution (with value vh). From this we construct a solution to P1 (with value
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uJ). The lemma above says that (zl)' - zA, and (vi) I' < v; thus we have

< A; <ZI~ (ZIAZ)k t

which implies
_ < rl/k < -+.

zi

If the original problem PI had n variables and m constrants then the problem
P&t would have n , n variables and m r- 0 n' constraints. If our algorithm
ran in O(p(m, n)) time and gave at worst an error of r, applying it to Pk above
would give a solution procedure that ran in O(p(mnk, nh+I)) time and gave an
error of ri/A. Thus either there is no polynomial approximation scheme that has
a fixed error bound, or there is a polynomial approximation scheme that can be
adjusted to give an error bound of 1 + c for arbitrary c > 0. 1

We turn now to an even simpler problem, the set covering problem with unit
costs. Presumably this is a more tractable problem. From Theorem 2.1 we know
the error is bounded by H(k) where the maximum number of ones in any column
is k. An example where the error is exactly H(k) from Johnson[3 is given below
for the case k 3. Here c (,..., )and b-(,...,1).

11
11
11
11
11
11
1 1

A1
1 1
1 1
11

1 i
1 1
11
11
1 1
1 1

-oooooo ,,,,,,, 1o1 )

-J
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S(1, 1, 1, 1,1,1,O0,0, 0,0,0,0, 0,0,0)

It might appear that all that is needed to reduce the error substantially is to * ad
a proper tie-breaking rule. That is, some way to decide among the columns that
have the longest lengths. Unfortunately, we have

Theorem 5.3. Applying the greedy heuristic to the set covering problem with
unit costs, no tie-breaking rule, i.e. a rule that chooses between columns of the
same length, can guarantee an error less than H(k) -

Proof. We construct an example where the column choice is forced for the greedy
algorithm and any tie-breaking rule would not change the column choices. The
matrix A is constructed for the case of k = 4 (see next page); the extension
to arbitrary k should be clear. First construct a matrix D with k columns and
k(k - 1) rows where each column has (k - 1) l's.

'1
1

1
1

1

D1

1
11

1
1

Create a block diagonal matrix with the matrix D on the diagonal. The columns
of this will make up the optimal solution. The greedy heuristic covers the first k
rows of each copy of D with columns of length k, the next k rows with columns of
length k - 1, ... the next to last k rows with columns of length 3 and the last k
rows with columns of length 1. The entire case k = 4 is below. At each iteration
the greedy algorithm picks a column of maximum length and no tie-breaking
rule would ever be used to any advantage. 3
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1
1
1
1

1
1

1
1

1
1

1
1

1
1
1
1

1
1

1

1111 1 1111

1

1
1
1

1 1
1

1
1

1 1
1

1
1

1

= (OOOOOOOOOOOO~ 1,1,1,2,1,111,1,111,1,1,1,1, 1,1,1,1,1)

b
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