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Worst Case Analysis of
Greedy Heuristics for Integer Programming with Non-negative Data

Greg Dobson
Systems Optimization Laboratory
Department of Operations Research
Stanford University
Stanford, California 94305

Abstract

We give a worst case analysis for two greedy heuristics for the integer 4
programming problem minimize ¢z, Az > b, 0 < z < u, z integer, where
the entries in A, d, and ¢ are all non-negative. The first heuristic is for the case
where the entries in A and b are integral, the second only assumes the rows are
scaled so that the smallest nongero entry is at least 1. In both cases we compare
the ratio of the value of the greedy solution to that of the integer optimal. The
error bound grows logarithmically in the maximum column sum of A for both
heuristics.
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§2 The Basic Algorithm and Error Analysis 1

1. Introduction

Consider the integer programming problem

minimize cz
Az > b (P)
0 <z < u zinteger

with the additional restriction on the data that it be nonnegative (i.e. a;; > 0,
bs > 0, ¢; > 0 for all ¢, 7). We establish tight bounds on the worst case behavior
of two greedy heuristics. If the constraint data is either integral or if each row
is scaled so that the smallest entry is at least 1, then the error bound tends to
grow logarithmically in the maximum column sum in “A’”. The results here are
a direct generalization of the work of Chvéatal[l] on the set covering problem and
of Lovdsz(4] and Johnson[3] on the unit cost set covering problem.

In § 2 we describe the basic algorithm and give a proof for the case of
integral constraint data and no upper bounds. In § 3 the analysis is extended
to the case where upper bounds are allowed. § 4 deals with the case of non-
integral constraint data. Here it is necessary to introduce a modification of our
basic algorithm to maintain a logarithmic error bound. Finally § 5 gives some
evidence why the non-negativity of the data cannot be dropped and still have
an approximation algorithm that runs in polynomial time. This section also
shows why certain improvements in “greedy” heuristics cannot provide better
than logarithmic error bounds.

2. The Basic Aigorithm and Error Anelysis

Throughout this section we assume that the constraint data is integral and that
there are no upper bounds on the variables.
The greedy heuristic picks the column ]* that minimizes ¢;/ 2:'; 1 G55, incre-

ments zj* by 1 and repeats the process. Column J* minimizes the myopic unit

cost of satitfying the constraints. Observe that when we have a;; > b; then
setting z; = 1 would satisfy the ¢’th constraint yet this “large a;;” value could
make the ratio c.,-/‘;:'_'_=1 a;; appear artificially small. In order to obtain any
bound at all it will be necessary to adjust the matrix data during the algorithm
to elliminate “large a;;’s”. In particular at the end of every iteration we adjust
any a;; > b; down to b;, i.e. a;; «— min(a,;,b;). For simplicity we assume this
adjustment has been made to the original data so a,; < b,.

The greedy heuristic is

dhean - A
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| 3 GREEDY HEURISTICS §2

Greedy 1 (no upper bounds)
z «0 Jj
z «+0
while b 7% 0 do

begin
k  «— argmin ;g ;ca(ei/ 2L, 045)
Zxy +— Ix + 1
by <+ by — agx for all ¢
ai; + min(ag;,d;) for all ¢, 5 ]
z +—z4ce
end

Denote by H(d) the first d terms of the harmonic series: H(d) = E?=1 1/s. 4
We can make the following performance guarantee on the value of the heruristic
solution:

Theorem 2.1. Given problem (P) with integral constraint data and no upper
bounds on the variables, if ' is the optimal integral solution and Z is the solution
given by the greedy heuristic then

cz =
- < H( max Za.-,-)
e 1<jsn

and this bound is tight.
To see that the bound is tight consider the program :

minimize 4z4 + glyza + - + $za—1 + tza + (1 + €244

z1 -+ Zg41 21
z2 4 Zg41 2> 1

Td—1 + Zd+1 21

zd + ZTa+1 21

where z; = 0,1. The heuristic picks the solution 2 = (1,...,1,0) whereas the
optimal solution is = (0,...,0,1) for every € > 0. In this case as ¢ = 0

2 _H@ |
cz' 1+t H&

Because the data (A, ) is changing throughout the algorithm, we introduce
the notation A’ = (a};) and b" = (b]) to refer to the data at the start of the
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r’th iteration. Let w} = P a;;, that is the 5°th column sum at iteration r.

Assume that the algorithm terminates after ¢ iterations, that is d*t! = 0. At
each iteration r, it picks column k,, z,, is increased by 1, so “b;” is decreased
by af,,. Thus b7 ! =b] —al, oraf, = b7 —b*:

Note that if column k, is picked, it is picked at least p= min |57 /al, |

1

times consecutively. To see this observe that the p’th time will be the first time
that one of the a:,’s will be reduced, thus the first time ) .., a¢, will be
reduced. Even though the other column sums are (possibly) being reduced by
the b;’s, that only makes those columns less attractive. Therefore any good im-
plementation would always increment z;, by p. Suppose we implement the algo-
= ot

rithm this way. Once z;, is choosen & where ¢ = argmin |$/a}, |,
1<i<m

thus if z;, is choosen again then row t is covered. Only m variables could be

choosen twice and we have that the number of iterations is bounded by n + m;

thus the heuristic is polynomial. For ease of notation we will use the former

description of the heuristic,

To prove Theorem 2.1 we will need some machinery provided by the lemmas
below. In particular we introduce two sets of “price” functions which will be
usefel in comparing the value of the heuristic solution and all other feasible
solutions.

Thus introduce a set of step functions p;(s) that will represent prices paid
per unit by the greedy heuristic to satisfy the constraints. We wish to view
satisfying the ¢’th constraint (3} , @;;z; > b;) as covering up the interval [0, b;).
In particular we will cover it up from right to left so that the interval remaining
to be covered at iteration r is [0, b}). Intuitively, for each point s in the interval
[0, b;) the unit price paid by the greedy to cover this point is

pi(8) = :}"" if s € [b;"“,b;) forr=1,...,t

ke

That it is indeed the exact price will now be shown.

Lemms 2.2.

= ¢(8) ds.
c2 Z -/[‘0.64) pi(s) ds

s=1
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n t
dociti=) o= Z L

J=1 r=1 r=1
—Z“Z ZE“W»M)
r=1 Ky i=1 t=1yr==1
—‘a}:“;/b‘wxbr)p'( )ds—"_zl/.,.)m(’)d" |

We now define a unit price function p;(s) for each element of the matrix
analogous to the way we defined p;(s) for each b;. Define

2
, 1fs€[a'+1,a§j) forr=1,...,t
pii(8) = {:}'

,(8), if s € [G,J, )

We have that p,;(s) is non-increasing for s in [0, b;) since w} is non-increasing in
r. Intuitively p,;(s) is the price that would be paid to cover the point s in [0, b;)
using column j. Because the heuristic is myopic we have

Lemma 2.3. If s € [0,b;) then py(s) < pi;(s) for all 5.
Proof. Fix j. Let r be the iteration number such that s € [a:?' Y a};). Because

“a;;” was reduced at iteration r, we must have a:;" 1= b;+1, and clearly a;; <
b7, hence s € [311,B]).

Ck
pils) = —

¢j
3 < ;;;‘ = Pij(s)

where the inequality follows from the choice rule. §

Theorem 2.4. Let f:[0,8) — [0,00) be non-increasing, @ € (0,3], S C [0,}),

u(S) > a, then
w(S) / = /IO a)

Proof. Let A= [0,a), then

1 [, _ssNA) 1 u(S — A) 1
! =55 (ﬂ(SﬂA) snA’)+ Fe ey )|
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This is a convex combination of two averages. Since f is non-increasing the first
average is at least as large as the second. Thus a convex combination of these
averages weighted more heavily on the first term can only be larger.

w(S NA) 1 wA—8) 1
< u(A) (p(S NA)Js nAf) + B(A) (I‘(S — A) /S—A f)'

Since f is non-increasing, f on A — S is at least as large as f on § — A, thus
WSA—W Js_af < 711-'-_57 fa_g f. After making this replacement in the second
term we have

s(SNA) 1 B(A—S) 1
< 1(A) (n(AﬂS) /Ansf)+ K(A) (ﬂ(A—S)/—s f)

1
T u(4) /A I y
We can now easily prove
Lemma 2.5.
) ; < ;i(8) ds.
bi J[o,b) pile)ds < 0.0y

Proof. First, since pi(s) < p;;(8) for s € [0, b;), by lemma 2.3, we have

1 1
— i(8)ds < —
bs (o,u)p (s) ¢ J10,8)

Second, p;; is non-increasing in s since w} is non-increasing in r. Apply Theorem
2.4 with S = [0, };) and f = p; to obtain

1 1
o pij(s)ds < — pij(8) ds.

—

b¢ J10,80) Gij J10,a¢7)

p.-,-(s) ds.

Combining the last two inequalities the result is immediate. J

For the set covering problem where a;,; = O or 1 and b; = 1 for all ¢, j a row
¢ is either not covered, (] = 1), or completely covered, (b} = 0), thus the price
function pi;(s) only takes on one value, \; = ¢x,/w}_ where row 1 is covered at
iteration r. In Chv4tal’s analysis of the greedy algorithm for the set covering
problem he proved the inequality

m m
ZX;G,'J' < CjH(Z a.-,-) forj=1,...,n.

s=1 t=1

These are relaxed dual constraints of the associated linear programming problem.
We are now in a position to prove the analogous inequality for this problem. For
each j define v; = min{r | w;+1 = 0}.
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Lemma 2.6.
o~ %id / < eih
_— (8)ds < ¢;h;.
'-_—;1 b' [o'b‘)p'() — 3"
where
o, w}— !
h; = o
r=1 M
Proof.

Y5 [ <3 [ pea
. L4 . . 8
b‘ {0,84) pasIes = =1 (0,a¢5) Pis\s

=1
m Yy e
— 2y r41
= -._(a‘..—a..
w" 3 83
t=1¢r=1 )
1)’ 1 +1
= ¢ ~Aw" — w"
"cﬂzwr_("’a w;)
r=1 12
==th_7'.

With Lemmas 2.2 and 2.6 we now complete the proof of Theorem 2.1. By
Lemma 2.2

c2 = 3 f pi(s)ds

=1 [otb‘)
. . ol d Gisz'
Now let z be any feasible solution, so Z aijT; > b; or Z 5 > 1, thus
j=1 j=1
<[ [
< pi(8)ds
im1 \j=1 o {0,65) s
n m
a,-,-/
= — () ds |z;
E(E 5L, p0n)
By lemma 2.6 we have
n
< Y (eshi)z;
i=1
n
<,z m)(X o)
| Voo - ~ ~ ——
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Thus,

— < max Ay
€z ~ 1<j<n

for all feasible z. We now use the assumption that the “a¢;’s” and “b;’s” are
integral.

vy wh—w ! vy
J J 1
hi=3 ———=23 Y =
r=1 J r=1 w;+‘<lgw; J

r=1 w;+*<15w 1<i<w}
m
— 1y
= H(WJ = H(Z a.-,-)
=1

Thus

m m
< H | = .
25 b < max 1( Y a) = (,2ax 3 eq)

Therefore, since the optimal solution, z’f is feasible the final bound is

z m
< —XL ( max Za.,)
ez 1<jsn = B

als

8. The Analysis with Upper Bounds

We now extend the previous result to the integer programming problem with
upper bounds.
minimize cz
Az > b (P)
0< z<u zinteger

Again we assume a;5,b;,c; > Oforalls,s. If u = (1,...,1) we have the important
special case of 0-1 variables. The primary difference in the algorithm is in finding
that z; has reached its upper bound u;, the column A; is set to O to prevent the
coluran from being picked again. Because “a,;” does not decrease with “3;”, i.e.
a}; = min(a,;,d]) does not always hold, lemmas 2.3 and 2.5 break down.
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Greedy 1 (with upper bounds)

z «0
2z «0
while b 7 0 do
begin
E — argmin, ¢ ;cn(ci/ Dim, 6i7)
I + ZIi + 1
by + b;—ay forall¢
a;; + min(a;, by) for all ¢, 5
z <+« z-+ck
if Ty — Uy then Ak +«—0
end

The extension of Theorem 2.1 is

Theorem 3.1. Given problem (P) with integral constraint data and with optimal
solution Z\ if 2 is the solution given by the greedy algorithm, then

m
¢
< H i |
- (1211?‘2% Za,,)

cz =1

*ll‘ll

Proof. For the moment we restrict our attention to constraint ¢, and let z be
a vector that satisfies that constraint, (E;;l ai;z; > b;). The difficulty arises
for those variables Z; which reach their upper bounds u; before the algorithm
stops. Define ¢; = min{r | b:+1 = 0}. Define U; = {j | 2; = u; but k;, # j},
i.e. those variables that reached their upper bounds before the iteration that
covered row i. For j € U;, define W;; = {iterationsr | k, = j}. W,; is the set
of iterations where column j is picked, and Z; is incremented.

Say Wi; = {s1,...,54,}. Using the feasible z we define Vj; = {s;,...,s,},
i.e. the first “z;” values from W;;. We now divide the interval [0, b;) into two
parts. On each part we compute a bound for the price paid by the greedy
heuristic to cover that part. Define

Ri= |J Bit48)  Si=1[0,8) — R
'qu
€U,

Claim:

/R‘Ps'(S) ds< Y (/[lo'a“)pej(s) ds)z,- (3.1)

JeU;
min(a;;, 4(Si)) ‘ ) . |
5(S:) /;‘ pi(8)ds < ‘/[O,aq) pi;(8) ds JEU; (3.2)
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Proof of (3.1). First observe that for j € Uy, “a;;” only takes on the values 0 and
a}j. To see this assume a}j # a{; = b} 7 0, that is ai; took on another nonzero
value. At this iteration 2; < u; (otherwise a{j = 0). Hence j € U; implies
column j is picked again and covers row t, k;, = j, thus j € U; contradiction.

/R‘Ps'(s) ds = Z E /[b;'“,b:) pi(8) ds

JEUreVy

Now apply that fact that a;; only takes on the values 0 and a};,
— 5 1
= Z > ol

T
JeU, reVy )

¢i
< max — Jal|Vis
- Z(fEVq w;) ‘JI UI

JEY;
c .
J
< E (max —;)a}jz,-
j€U, \TE€Wi W

Notice that max,ew,, ¢;/w is the largest value of ¢;/w} before column j is set

to zero and w;+1 = 0, and thus is the one that defines py; on [0, al;).

= (‘/[‘0.4‘1)pij(8) ds)z,-. .

JEU;

Proof of (3.2). Note S; # 0 since [0,b%*) C S;. Define d;; = min(a;;, u(Ss))-
Since 7 & U; lemma 2.3 holds, so

1 / 1 /
—_— (8)ds < —— i(8)ds
W50 Js P S sy o, PV
by Theorem 2.4

1
< - sl 8 d8
T Gy l0.au)p"( )
1
< - 9 8 ds.
Y lolau)pa( ) L

We complete the proof of Theorem 3.1. Y .gy, 6525 2 bi — Y jeu, %iiZi =
b — w(R;) = p(S:). Recall that d;; = min(ay;, p(S;)), so Ejeu‘ dijz; 2> p(S:).
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By Lemma 2.2 we have

> [, p0

t=1

= LT-ZI/;‘P"U?)M‘I';/‘;‘P&(GN’

H z is feasible 3,01y, dijz; 2> 4(S;). thus

<3(X %) [ paas+ Y- [ sioa

=1 “jeU; =1
Applying (3.1) and (3.2)

£ 2 ([ £ 5 (o)

=1 yeU;

Il

cz

-
I
-
©,
i

[

J=1M=1r=1 "2
n v L L |
—Z( 1, Wi— W )cz ‘
- y 32
r=1 wJ

4. Case of Non-integral Constraint Data

We now wish to drop the restriction on the integrality of the constraint data, A
and b. Because we are now free to scale the rows so as to make a column sum
as small as we like we need a standard form. We thus assume that each row
(841, - .., Bin, bi) has been scaled so that the smallest non-sero entry is at least
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1. Unfortunately the error of the greedy heuristic can be as bad as linear in the
number of rows as the following example will demonstrate.

min §zy + 22+ $2s+ fzat 25+ 26 + 27 + 25+ Bzo
73 + zs + (1+e€zo> (14
z3 +z¢ +(1+ )z >(1+ €3
z3 + z7 + 1+ S)ze > (14 €%)
Z4 425+ (1 + €)z9 > (1 + €%

where z; =0,1fort=1,...,9and =1+ e+ €2 + € 4 ¢* + 5.
The heuristic picks zy = 1, z = 1, 25 = 1, 24, = 1 in that order at which
point the problem is reduced to

minimize zx + 26+ 27+ 285+ Bzo
€Ty + €z 2> ¢
€2zq + €2z > €2
6327 + 6329 2 63
€tzg + etzg > ¢t

Now the heuristic picks zx = 1, z¢ = 1, z7 = 1, zg = 1, thus
z=(1,1,1,1,1,1,1,1,0)

whereas you may verify that
2 = (0,0,0,0,0,0,0,0,1)

so the error is

T S H(4)+4.
cz*

The extension to an arbitrary number of rows is obvious. In general the error
can be shown to be

cz “
= < ,B83 {loc(z a.-,-) +1+ d:'}

cz $==1

where d; is the number of non-zero entries in column 7. But by a slight modi-
fication of the algorithm we can replace this d; by H(d;) and regain a logarithmic
error bound. The basic idea of how this is done can be seen in the last example.
The main component of the error in the heuristic solution did not enter until an

A
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element in a row ( and thus all the elements in that row) was below 1. Once this
occurs in all the remaining rows we can scale the reduced problem so it looks like
a set covering problem. At this point Chvéital’s original analysis (or Theorem
2.1) tells us the error is at most H(max; < <n d;). Let § be a fixed, arbitrarily
small number.

The new algorithm is,

Greedy 2:
z «0
2z «0
while b # 0 do
begin
for each j, if 3,7, 6;; < 1 then
for any row ¢ such that a;; 7 0 has not been scaled so far,
scale row ¢ to 4.
k +— argmin ;¢ ;cn(ei/ X7l 047)
zx +—zZp+1
b,' — b.' — Gk for all ¢
G;; +— min(a,;, b;) for all ¢, 5
2 2zt
if zx = uy then Ay + 0
end

The main result is
Theorem 4.1. Consider the program
minimize cz
Az 2> b (P)
0<z<u zinteger
where a,;, b;, ¢; > 0, each row has been scaled so that the minimum non-gero
entry is at least 1, and d; is the number of non-zero entries in the j°th column of

A. I £* is the optimal solution and Greedy 2 is applied to (P) giving a solution
Z then

m

z
2 < g fol ) 14

t=1

Proof. Fix j. Recall from the proof of Theorem 3.1 that the only step that used
the hypothesis of integrality of the constraint data was in showing that

vy w,— @ H! m
J? J
2 ———_w', < H(E G"j).

r==] J

s=1
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Thus to prove Theorem 4.1 it suffices to show that

v w—w t1 m

3 _i_w';_ < 1og(z a.',-) + 1+ H(d;).

r=1 3 =1

Let g be the iteration such that w} > 1 but w;"'l < 1. We claim

q w; __ r+1 m
3 T < log(z a.-,-) +1 (4.1)
r=1 2 1=1
Yy j - 11)'+1 |
> T < H(d;). (4.2)
r=q-+41 J

The scaling, however, does cause one problem with the previous analysis. At
some iteration r, a;; may be scaled down to 6. Since p;; and p; reflect the prices
paid by the greedy beuristic and the heuristic does not actually cover up the
interval [0, al ) we should not include this cost. To avoid this diiﬁculty, we define

ij to be the value of a;; at iteration r before any scaling and a; the value after
scalmg, and similarly for @} and w}. If we no longer integrate over the intervals
[a];,8];), the analysis goes through and we have

vy @t — ﬂ)'.+1

ct J 3
-~ < max -
cx 1sjsn Wy

Since w;'H < ﬂ)""l we may replace @]+ by w ! and the bound is only
larger.

To see why (4.2) is true observe that after iteration g, each non-zero entry
in column j is equal to 4, and thus w"‘*‘1 < djé. Furthermore since § < 1, if

a“.",?*‘1 7 0 then every nonzero entry in row ¢ is the same, §. Thus if a,; is reduced
again it is reduced to 0. The columr sum must be reduced by some multlple of :
6. Upon factoring out the § from top and bottom of * (w} — w'+ )/w} ", we !

see that the sum
vy w' — w'.+1

>
w'

r=g-1 J

may be analysed as before in the case of integral data; w}’“/d < dj, thus

vy w’ 7+1

|
3 -—’—;—-— < H(d;). j

re=g-41 J
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To obtain the bound (4.1) we solve the optimisation problem
g wi—wt!

2q = maximum ———-Tf———

w'.

r==1 J

sftwj > 2wi>1 wit!>o0

where w} is viewed as fixed, the rest as variable. This is solved in Lemma 4.2
and z, is shown to be converging up to log(w}) + 1 asq— oo in Lemma 4.3.

Lemma 4.2.
2 =g — (¢ — (w}) ~HeY,

Proof. For ease of notation define B = w} and make the substitution yg4-1—y =
wiforr=1,...,q+1.

q
24 = maximum E .!I_r___y:_—_l
r=1 y'

stB2y, 22w 21 y 20

This is equivalent to

g
%q = ¢ —minimum Y Lt
ya==1 yf
St B2y 22N 21 y20.

Observe that any optimal solution will have yop = 0, y; = B. We can now solve
the minimization problem via a dynamic programmming recursion. Define

q
V(B, q) = minimum 2 Yr—1
y=1 Yr

st B>y,2- 2321 w20

— mini ¥ -
= mizimum { gtV 1)}-

By the comments above V(B,1) = 0 and we now show by induction on q that

V(B,q) = (g —1)B—Y/a—1), (4.3)
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Assuming (4.3) holds for q,...,1 we compute

e v ~1/(q— 1)}

14 = kA _ )

(B,g+1) minimum { g tla—1y

Taking the first derivative with respect to y and setting the result to 0 we have

1 _(9=1\(—v/@@—n-1) _
B (q—l)y =0

Solving,
e §= Ble—1)/a,

If B> 1then B > § > 1 and upon taking the second derivative we see it is
always positive for y > 0, so § is a global minimum,;

9 f{—9=D=2 >0 fory >0
(@—1) - -

Substituting back we have

(¢—1) —1/(q—
V(B,q+1)= _B:__”_ +(q— 1)(3(1—1)/q) Yle—1)
B
= qB'—l/q.
Thus
zg=q— (g 1)(w}) 7=, .
Lemma 4.3.
1(@) =241 —1=q(1 —B~/9) tlog(B) asg— oo.
Proof.
7@ =(1—B~Y9)+q(—1/¢*)B~"/ log(B)
=1-— 3-1/4(1 + l—-—°‘;3)) >0
iff BY/1 > (1 + l_"_g.(ﬂ)
q
iff (—ll-log(B)> log (1 + %!og(B))
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iff a > log(l + a)
with a = 11log(B) o f' > 0 always.

1—B —1/q i
lim = lim ———— f
Jim, /(@) am /g
by I’Hopital’s rule
_ —(1/4*)B—*/%10g(B)
= lim
q—00 —1/¢?
= log(B). 4
Since f'(q) > O for all g and the limit is log(B) we have then that 2, converges
monotonically up to 1 + log(B), as g — co. §

5. Some Negstive Resuits

A much more satisfactory result for an approximation algorithm would be one
that gave a fixed bound, r, on the error independent of the size of the problem
data. If no such algorithm existed one might hope to at least show that the
existence of such an algorithm implied » = NP (see [2]). Alternatively a nice
extension of the above results would be to the case where negative numbers were
allowed in the matrix. The following result suggests that such an extension is
unlikely. This technique is analogous to a result of Garey and Johnson[2] on the
maximum independent set problem.
Consider the integer programming problem

2z, = minimum cz
Az > b (P1)
z; =0,1 j=1,...,n

where a,; € {0,1, —1},5; € {0,1},¢; € {0,1} for all 1, .

Theorem 5.1. Let z* be the optimal solution to (P;) and let 2 be a solution given
by an approximation algorithm. Either there is a polynomial approximation
scheme to solve (Py) such that

-E%-gl+e for arbitrary ¢ > 0

ez
or there does not exist any polynomial approximation scheme that gives

-ciSr forany r > 1.
ez

First we need
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Lemma 5.2. Given any problem of the form P; we can create another problem,
call it P, of the same form with optimal value 2; such that

7 = (z1)%.

Furthermore, given anr solution to P, with value v, we can extract from it a
solution to problem P, with value v; such that

v < ()t

Proof. For simplicity we start with the case k = 2. Consider

n
23 = minimum Z(c.-c)z‘

t==x1
8/t Az* —by; >0 (P2)
Ay > b

z§-=0,1 yi=0,1

where ¢;c is the vector ¢ times the scalar ¢;, z* is an n-vectorfori = 1,...,n,y
is an n-vector, dy; is the vector b times the scalar y;.
It is easy to check that P, is a problem of the form P;. Next, observe that

if y¢ = 1 in some solution then Az® > by, = b, thus ¢z’ > 2. Let ({z"}:.;l, y)
be a feasible solution to P3, then

Y > Tl = Y cdeslu

1<i<n 1<i<n 1<i<n
< 1 <i<
32
22 2 : esys = 2121 = (1)°.
1<i<n

Let y* be the optimal solution to P;, then we claim that ({z:"}:.;v y) given by

y=1y"
g={£ if yi =1,
0, otherwise,

is an optimal solution to P, since,

Y (o= 3 edeshns

1<i<n 1<i<n
=2 Z Cis
1€ign
= (2)?
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thus 2; = (2;)%. This proves the first part. Again let ({z"}:.:_l, y) be any feasible

solution to P5 and let 2 be the vector that minimizes

min {cy, . min c::‘}

<is<n

g0 that ¢2 < ¢z’ and ¢z < cy.

vu= Y cfez)> . eierys

1<i<n 1<ign
> Y cdemlyi > (c8) Y, ewn 2> (e2)?
1<i<n 1<i<n
which implies that
ez < (vo)t.

This proves the lemma for k = 2.
‘We now go by induction. Assume we have the problem

2 = minimum dz
Dz > h
z; = 0,1

The P4 problem is

Z)41 = Minimum Z (cid)z*
1<i<n
Dz' —hy; >0
Ay > b
z_‘,-=0,1 yi=0,1

Problem Py is of the proper form if P, and P, are. Let ({z‘}:.'_l,y) be a

solution to Pr4g.

z (C“)z‘ > z c‘(dz‘)m > Z c;(z,‘)w
1<i<n 1€i<n 1<i<n

25 ), e 2 an=(n)tn==l""

1<ign

§5

(Px)

(Pr+1)
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Let y* be the optimal solution to P,, and we claim as before that ({“}Lv y)
given by

y
' =

*

y
“optimal solution to P,", ifys=1,
0, otherwise,

is optimal to Pxy.

41 = Z ei(dz’) = Z ci(dz®)ys = Z ci(zx)ys

1<i<n 1<i<n 1<i<n

— _ — oV — (5 )k

=z ), e¥i=nn=()zn=(n)""
1<i<n

Now let ({"}?-v y) be any feasible solution with value v; 1. For each § let u®

be the best solution obtained to the P, problem from the z* vector as before.
Let u be the best among the u'’s and y so that by induction we have

cu' < (dz')ll *

and _

cu < cu' cu < cy
Finally,

. , .k

1= 3 efdz) > Y cldz) > D eeu)ys
1<i<n 1<i<n 1<i<n
> (cu)* E esyi > (cu)*eu = (cu)*+?
1<i<n

thus

cu < ("t+1)1/“+1) .

We can now prove the theorem. Assume we have a problem P, and an

algorithm for which _c_z; <r. Let ¢ > 0 fixed. Pick k large enough so that
cz

ri/b < 1 + ¢. Note that k is fixed since it depends only on the fixed ¢. Now

construct problem P, from P, as above. Apply the algorithm to P, and obtain

a solution (with value v,). From this we construct a solution to P, (with value
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v1). The lemma above says that (2;)* = z; and (v1)* < v, thus we have

k k
(g}.) = —-__(vl)k < ﬂ‘. <r
(21) 2k

2y - -

which implies

Bcplb<1ge
£3]

If the original problem P; had n variables and m constrants then the problem
P would have n 3% _ n' variables and m Y"%_ n constraints. If our algorithm
ran in O(p(m, n)) time and gave at worst an error of r, applying it to Py above
would give a solution procedure that ran in O(p(mn*, n*+1)) time and gave an
error of r1/%. Thus either there is no polynomial approximation scheme that has
a fixed error bound, or there is a polynomial approximation scheme that can be
adjusted to give an error bound of 1 4 ¢ for arbitrary ¢ > 0. §

We turn now to an even simpler problem, the set covering problem with unit
costs. Presumably this is a more tractable problem. From Theorem 2.1 we know
the error is bounded by H(k) where the maximum number of ones in any column
is k. An example where the error is exactly H(k) from Johnson|[3] is given below
for the case k = 3. Here¢ = (1,...,1)and b =(1,...,1).

1 1
(1 1 \
1 1
1 1
1 1
1 1
1 1
1 1
1 1
A= 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 J
\ 1 1
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£ =(,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)

It might appear that all that is needed to reduce the error substantially is to “nd
a proper tie-breaking rule. That is, some way to decide among the columns that
have the longest lengths. Unfortunately, we have

Theorem 5.3. Applying the greedy heuristic to the set covering problem with
unit costs, no tie-breaking rule, i.e. a rule that chooses between columns of the
same length, can guarantee an error less than H{k) — 3.

Proof. We construct an example where the column choice is forced for the greedy
algorithm and any tie-breaking rule would not change the column choices. The
matrix A is constructed for the case of £ = 4 (see next page); the extension
to arbitrary k should be clear. First construct a matrix D with k columns and
k(k — 1) rows where each column has (k — 1) 1’s.

(* )
1
1
D=11
1
1
11
U

Create a block diagonal matrix with the matrix D on the diagonal. The columns
of this will make up the optimal solution. The greedy heuristic covers the first k
rows of each copy of D with columns of length k, the next k rows with columns of
length £ — 1, ... the next to last k rows with columns of length 3 and the last &
rows with columns of length 1. The entire case k = 4 is below. At each iteration
the greedy algorithm picks a column of maximum length and no tie-breaking
rule would ever be used to any advantage. §

e peagry e . cmasgrr
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\

£=(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0)
z = (o’oﬁolololo'o’o)ololoﬁol l) 1! 1’ l’ 11 l) 1! 1) 1’ ll 1! 1’ 1) 1! 1' 15 ll 1' 1)

1
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