
xO-A093 617 STANFORD UNIV CA SYSTEMS OPTIMIZATION
LAB

F/G 12/1
NUMERICAL INVESTIGATION OF ELLIPSOID ALGORITHMS FOR LARGE SCA--ETECU)

OCT 80 P E GLL, W MURRAY, M A SAUNDERS DAA629-79-C-011R

UNCLASSIFED SOL-80-27 GINL

S LEVEL
Optimization

Laboratory

1-M

DTIC
S ELECTEDJAN 0 9 1981D

E
3..DISTRUTION STATEMENT A I

C Approved for public release;C-> Distribution Unlimited
L.S
-. j
L.-M Department of Operations Research

Stanford University
Stanford, CA 94305

81 1 08 070

- %

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH,

STANFORD UNIVERSITY
STANFORD* CALIFORNIA 94805

A NUMERICAL INVESTIGATION OF
* ELLIPSOID ALGORITHMS

FOR LARGE-SCALE LINEAR PROGRAMMING

p.I' by
Philip E. Gill# Walter MurraW,

Michael A. Saunders and Margaret H. Wright

TECHNICAL REPORT SOL 00-2T
October 1960

IDTIC
ELECTE

V~JAN 09 19813~~ ~ D 'Sh~yA(I A 4

a ~woeld or pblicreleam.

Research and reproduction of this report were supported by the Department of
Energy Contract DE-ACO3-765P 00326, PA No. DE-AT03-76ER720 18; National
Science Foundation Grants MCS-7926009 and ENGT7-06T61; the Offce of Naval
Research Contract N 0001475-C-0267; and the Army Research Office Contract
DAAG29-Tg-C-01 10.
Reproduction in whole or in part is permitted for any purposes of the United
States Government.

. m

A NUMERICAL INVESTIGATION OF ELLIPSOID ALGORITHMS
FOR LARGE-SCALE LINEAR PROGRAMMINGt

by Aoession For

NTIS GRA&I
Philip E. Gill, Walter Murray, DTIC TAB

Michael A. Saunders and Margaret H. Wright Unannounced []
Justif ication,

Systems Optimization Laboratory
Department of Operations Research By

Stanford University Dist Fibut i c/

Stanford, CA 94305 va '?il : t,

October 1980

ABSTRACT

The ellipsoid algorithm associated with Shor, Khachiyan and others has
certain theoretical properties that suggest its use as a linear programming algo-
rithm. Some of the practical difficulties are investigated here. A variant of the
ellipsoid update is first developed, to take advantage of the range constraints
that often occur in linear programs (i.e., constraints of the form I < aTz < u,
where u - I is reasonably small). Methods for storing the ellipsoid matrix are
then discussed for both dense and sparse problems. In the large-scale case, a
major difficulty is that the desired ellipsoid cannot be represented compactly
throughout an arbitrary number of iterations. Some schemes are suggested for
economizing on storage, but any guarantee of convergence is effectively lost. At
this stage there remains little room for optimism that an ellipsoid-based algo-
rithm could compete with the simplex method on problems with a large number
of variables.

t Th i a slightly re.hed vardon of a paper prpared for the Proceedings of the Workshop on
Large-scalb Linear Proprammiag held at nA1A, Larnburg, Austria, June 2-4, 1980.

I r i l IE l -

§ Introducioa 1

1. INTRODUCTION

Considerable interest has been generated by the publication (Khachiyan, 1979)
of the result that a certain ellipsoid algorithm can find a feasible point for certain
sets of linear inequalities in polynomial time. The algorithm defines an initial
ellipsoid that encloses a finite volume of the feasible region, and proceeds by
defining a sequence of shrinking ellipsoids, each of which contains this feasible
region. The center of one of the ellipsoids must eventually be a feasible point,
for if not, the volume of the ellipsoids will ultimately be smaller than that of the
feasible region they contain (a contradiction).

It is known that a feasible-point algorithm can be adapted to solve the linear
programming problem, and conversely. It is also well known that the simplex
method (Dantzig, 1963), the standard technique for solving linear programs,
is potentially an exponential-time algorithm, and that simple examples exist
that elicit the algorithm's worst-case performance. It is therefore natural for
the question to have been raised: for the solution of linear programs, could
Khachiyan's algorithm prove to be superior to the simplex method?

There are several practical difficulties with the Khachiyan algorithm, and
with various derivatives that have since been proposed. For large-scale problems,
perhaps the most obvious difculty is that the matrix defining the required
ellipsoid is far too large to be stored. The corresponding basis matrix in the
simplex method is smaller in dimension and is invariably very sparse. Also,
the known practical performance of the simplex method (except on contrived
examples) is exceedingly good; in fact it is safe to regard it as a linear-time
algorithm. Therefore, for problems involving more than 100 variables (say), the
hope that an ellipsoid algorithm might prove superior should never have been
high.

A redeeming feature of ellipsoid algorithms is that they do not require
the solution of any large systems of equations each iteration, and therefore do
not require a matrix factorization for that purpose. Also, there is a degree of
arbitrariness about the definition of the ellipsoid, and the general flavor is that of
an iterative procedure. These properties we hope to exploit. Although the bound
on the number of iterations for Khachiyan's algorithm is low compared to that
of the simplex method, it is still far too large to be meaningful. In abandoning
the polynomial-time features of the algorithm, little of practical value will be
lost.

No attempt is made here to review the literature concerning ellipsoid algo-
rithms (most of which is theoretical in nature). For chronological details we
refer the reader to Lawler (1980), Wolfe (1980a,b), and Goffin (1980). Although
Shor and others have previously developed ellipsoid algorithms in a much more
general setting (e.g., Shor, 1977), we use the term *Khachiyan's algorithm' to
denote the particular ellipsoid algorithm discussed by Khachiyan (1979) and later

2 EllipsoJd Mgorithm For LP Ii

analyzed by Gics and Lovisz (1979) and Aspvall and Stone (1980).

*)2. SOLVING LINEAR PROGRAMS

The primal simplex method is usually implemented to solve linear programming
problems in the following standard form:

LP1: minimize cTz

subject to Az + V = b

where A is m X n. There are no restrictions on m and n, but it is usually true
that m < n. A typical ratio is m P in.

The slack variables y are present to allow the simplex method to be imple-
mented using column operations only. The upper and lower bounds on z and y
allow for equality and inequality constraints of all types. Many of the bounds
could be infinite, but a user would usually be able to assign reasonable values to
them if pressed to do so.

It is important to note that in most real-life examples a large proportion
of the general constraints are equalities, so that many components of y should
be zero at a solution. (Thus, for perhaps half of the constraints, the associated
bounds will be L = u = 0.) It has been suggested that for each such i, some
variable zj could be eliminated. However, when so many equality constraints are
present, this would duplicate much of the computational effort involved in the
simplex method. Furthermore, the number of general constraints would not be
reduced unless the bounds on xi were both infinite. (For example, the simple
lower bound zj ! 1, would be transformed into a general constraint that would
have to be retained, unless l = -co.)

Conversion to a feasible-point problem.
In order to convert a linear program to a feasible-point problem, various sugges-
tions have been made concerning the dual of the linear program (e.g., Aspvall
and Stone, 1980). Because of the inclusion upper and lower bounds above, the
dual of LP1 is complex, and for the sake of brevity we will not give it here.
It is sufficient to note that the combined primal-dual system involves a much
larger number of constraints and (more significantly) a much larger number of
variables than in the primal problem alone. Also, the volume of the feasible

12 Solving Linear Progam

region is essentially zero. At this stage of development, there seems little point
in considering the primal-dual system.

Returning to LP1, we shall instead take the obvious approach of imposing a
"target value" on the objective function. The aim will be to find a point z that
achieves this value and also satisfies the primal constraints. With an ellipsoid
algorithm there is no need to introduce slack variables. We shall therefore
consider the problem

LP2: find a point z

that satisfies CTZ < t

b, _ Ax < bu

I< z <_U

This is exactly equivalent to LP1 if the bounds on Ax are suitably defined and
if the target value t happens to be the optimal value for the objective.

Naturally we still wish to avoid treating a problem whose feasible region has
zero volume. For test purposes we choose to perturb all of the bounds to obtain
the following relaxed problem:

LP3: find a point X

that satisfies cTz < t + 6t

bi - 6bi _5 Ax < b. + 6b,

where the perturbations are positive vectors and will be substantial (rather
than near rounding level). Some of the upper and lower bounds could still be
+oo or -o respectively, but any general equality constraints will now be range
constraints.

In fact, it would be sufficient to relax just the bounds on equality constraints
by a nontrivial amount, as long as the objective perturbation 6t is also significant.

Clearly, if LP1 is well posed and has a known optimal objective t, then the
feasible region for LP3 has nonzero volume. The larger the perturbations the
larger the feasible region. Our reason for dealing with such problems is that
they can be derived naturally from existing LP models with known solutions.
Furthermore, if an ellipsoid algorithm is not able to solve such problems satis-
factorily, then it is unlikely to be of any use on a problem whose solution is
unknown.

4 Elproid AlSorithm, For LP 13

3. AN ELLIPSOID FOR RANGE CONSTRAINTS

Since range constraints arise naturally, it is worthwhile developing an ellipsoid
that takes advantage of them. It will then be possible to accomplish in one
iteration an effect that would take many consecutive iterations with the earlier
ellipsoid algorithms.

In order to define the necessary notation, we shall first derive the usual
updating process in a fairly general way.

The linear transformation.

An ellipsoid may be represented in the form

(z - z)T(RTR)-I(z - xA) < 2 (1)

where zA is its center, a is a scalar, and

is a positive-definite matrix. Given any nonzero vector a, we can transform this
ellipsoid into a hypersphere as follows. Let the vector Ra be normalized to have
unit Euclidean length, and then choose an orthonormal matrix Q (QTQ = I)
that reduces it to the first column of the identity matrix:

-=IlRaIl2,

q = Ra, (2)
1i

Qq = el.

(The matrix Q will not be needed in practice.) Now define some new variables
z according to the linear transformation

Z -X, = ORTQTz.

It is easy to see that the original ellipsoid reduces to zTz < 1, a sphere in n
dimensions with center at the point zk = 0 (i.e., the origin).

If aTz> 1i happens to be the i-th constraint on x, we can define a scalar p
to be the 'scaled residual",

p = (4, - aTzt)/av,

and the corresponding constraint on z will become z > pel. If zA violates the
constraint, and if the constraint cuts the original ellipsoid, p will lie within the
range 0 < p < 1. The transformed ellipsoid and constraint are shown as the
circle and the left-most vertical line in Figures 1, 2 and 3.

.1

13 The Range EMpeold 5

0.5-

Figar0 1. Th rgnlZj/hahnelpod

-1.5~- ---------------__ ____

0.0

Figre w Te orgi. T r/he epcyan ipsid

1.5

--

-0.5

1.00

Figure &. The range ellipsoid.

6 BMIpaod Akorlihma For LP 13

An updated ellipsoid.
A new ellipsoid with center at the point zk+l - 9e, and with all major axes
equal except for the first, must take the form

a~z,_ 82 + Zj2 1.
j=2

(The three quantities 8, a and 8 have yet to be specified.) In matrix notation,
this is

(Z - Zk-+-)T 6 1)(z -zk+1) : 1,

which becomes

(z - zt+T)R-tQ")QR-T(Z - Zt+1) <

in the original coordinates. We wish to write this in a form analogous to equation
(1), namely (z - 2h+l) (AA)-(z - zk+') < O'2, (3)

where
a =- RTR and 72 = .2/,i.

It follows that

= RTQT(I -- (1 -)e~eT)QR
= RT(I - 6qqT)R

= RT(I - fqqT)2 R,

and so

= B -6ppT, (4)
= (I- CqqT)R, (5)

0= oy, (6)

Zw+ = Zt + re, (7)

weep = Rrq, (8)
2 =- 1/h e ' (9)

#2 # /a , (10)
6 1 _- #, (11)

C 6/1 + 0). (12)

13 The Range ElUpoid T

The range empsold.
We must now choose 0, a and 8 in some optimal way. To do this, we first
specify where the surface of the new ellipsoid should be, by imposing two simple
constraints. This determines a and 8 in terms of 9. The volume of the new
ellipsoid can then be minimized with respect to 9.

Figure 1 illustrates where Khachiyan's updated ellipsoid was chosen tM lie,
and Figure 2 shows the so-called deep-cut ellipsoid that was later proposed by
many authors. Both cases can be obtained from the "range ellipsoid", which we
shall now derive.

In general, the constraint defining the above transformations will take the
form

i _< az < u,.

The lower bound gave rise to the scaled residual p, and the upper bound defines
a similar quantity r as follows:

p = (4,- a'zk)IoV,

r = (ui - aTk)/oV, (13)

0= (p +),
= (1-- 2)+__(1--r)

where p is the mid-point of the scaled range, and 0 will be useful below. The

transformed range constraint is

pe<1 z< rel, or p :5 Zl < r.

This is shown as the two vertical lines in Figure 3. (We are considering the case
where u, is small enough for the second line to pass through the hypersphere,
i.e., the inequality r < 1 is satisfied. Otherwise, we simply set r = 1.)

Clearly the ellipsoid in Figure 3 will contain all of the relevant feasible region
if it cuts the hypersphere at the points zl = p and zl = T. Assuming p < T,
this gives the two conditions

(p V)2 +_ p(1 pl) _1, (14)
" ~~~~~~a(r --#2+ p1- 2 ,(

from which we can deduce expressions for a and 8 in terms of 0:

a

_2 + - +.. 1, (16)
a A

1+ (r - p)2

- 4

• '" • , ,4 5...

S BlUjwoid AJlorithm, For LP 13

Now the volume of the new ellipsoid relative to the hypersphere is 1/V/6 -1.
Hence, the volume can be minimized by choosing 0 to satisfy

0 __ O_ .

This leads to the quadratic equation

(n+ 1) 2 2n+ + (p+ 1) ,

and since it is clear from the figure that 9 must lie to the left of the mid-point
p, the required root of the quadratic is given by

JA-,

4 _(n + 1) (n2 - 1)(r 2 - p2) 2 + ?p2 - 1.

This completes the derivation. The optimal range ellipsoid is defined by equa-
tions (2)-(13) and (16)-(17).

Discussion.
Setting r = 1 gives the deep-cut ellipsoid in Figure 2, and p = 0, r = 1 gives
the original (Shor/Khachiyan) ellipsoid in Figure 1.

If p = r, i.e., if the original range constraint was actually an equality
constraint, equations (14) and (15) will be dependent. In this case the updated
ellipsoid reduces to a subspace, and in equations (4)-(12) we would take 0 = p,

V 1/a = 0, /8 = 1 - p2 ,'= 0, and 6 = =1.

Postscript.
A recent translation from Kibernetika (Shor and Gershovich, 1979) shows that
both the deep-cut ellipsoid and the range ellipsoid were known to those authors
prior to July 1978. (They use the terms "segment" and "layer" for the respective
ellipsoid constructions.) The expression given for the center of the layer ellipsoid
matches the quadratic equation above, and therefore confirms our particular
derivation.

4. STORING THE ELLIPSOID

For derivation purposes we represented the ellipsoid matrix above by B = RTR.
The best way to store B in practice is naturally open to question. Although we
are primarily concerned with large problems, it is worthwhile considering small
problems first.

- -... - . , . / -. ,

§4 Storing the E//ipsold 9

The dense case.
One pleasing feature of an ellipsoid algorithm is that it can be 'super stable',
provided a little care is taken with its implementation. By super stable we mean
that rounding errors may slightly retard convergence but will not prevent it.
This statement may come as a surprise, since the original algorithm has been
criticized on numerical grounds. It is important to note that the mere fact that
the matrix B can become ill-conditioned does not necessarily imply that the
algorithm is unstable. Indeed it is quite possible for B to be singular without
incurring any ill effects, provided it is represented in an appropriate manner.

The main operation in question is the recurrence of a positive-definite matrix
given a rank-one modification:

S-= B- 6pp.

This problem occurs in many algorithms and a fully satisfactory solution is
known. In other situations we usually wish to solve some linear equations with
the updated matrix, and hence it has proved beneficial to recur the Cholesky
factorization B = LDLT, where L is lower triangular and D is diagonal. In the
present context we only need to form products of the form Ba, so "invertibility"
of B or its factors is not relevant. Nevertheless, it can be helpful to recur the
Cholesky factors, because there are procedures for doing so that guarantee B will
retain numerical positive definiteness (e.g., Gill, Murray and Saunders, 1975).
Any rounding errors incurred simply cause the computed ellipsoid to be slightly
larger than it would be analytically.

If equality constraints are admitted, B will become singular and we can again
update the Cholesky factors in a way that guarantees positive semidefiniteness.
(Some of the diagonals of D will be exactly zero.) This would be preferable to
updating B itself, but it is not safe to assume that subsequent iterates will satisfy
the equality constraints to within working accuracy. To avoid unreasonable loss
of feasibility with respect to the equality constraints it would be necessary to
continue checking them. If one of them is not satisfied to within the required
tolerance, it would be necessary to repeat the rank-reduction process. The net
effect is therefore almost identical to treating equalities as range constraints.

An alternative to B - LDLT is the factorization B - RTR with R held as
a dense, square matrix. On numerical grounds there is little to choose between
the two approaches, even if singularity arises owing to the presence of equality
constraints. (For example, Wolfe (1980b) has implemented the deep-cut ellip-
soid using o2B - jTj with square J, and mentions performing 30,000 updates
without numerical difficulty.) However, the Cholesky factorization requires less
work per iteration and only half the storage, i.e., essentially the same require-
ments as if B itself were maintained as a symmetric matrix.

... - . 4'

10 EW Jpod Alsorithma For LP 14

The spase case.
For large n it is clearly not practical to represent B using dense matrices. The
only obvious approach is to start with B = I or some diagonal matrix (requiring
minimal storage) and then update B or its factors in some kind of product form.
It is known how to update Cholesky factors in the form

L = LkLkI... Lo,

where each factor Lj is triangular and can be stored compactly using two n-
vectors. However, there are more efficient alternatives. From equation (4) above
we see that the factorization B = RTR would give the product form

R -- (I- fkqkq_)...(I- lqlq)Ro, (18)

requiring storage of a scalar e.j and one n-vector qj per iteration. Even more
simply, we have

B = Bo -61pp ... 6kPkP, (19)

a direct summation that requires the same storage as the product form of R, but
about half the work per iteration.

One possible advantage of using (18) rather than (19) is that the vectors
{qj} are almost certainly more sparse than the vectors {p.}, at least initially.
However, since both sets of vectors rapidly become dense (particularly if the
violated constraint vector a is chosen as an aggregation of several violated
constraints), this advantage is of little significance. The fact that only one pass
is needed through the vectors {pj} each iteration, weighs heavily in favor of (19).

In the dense case we argued against working with B itself. This was because
the Cholesky factorization offered superior numerical reliability at no cost in
terms of storage or work. In fact, it would be safe to work with B as long as
there are no equality constraints or very narrow ranges, and as long as the scaled
residual p is prevented from being very close to one.

A fundamental difficulty with both the product form (18) and the summa-
tion form (19) is that the storage required grows steadily with each iteration.
This is analogous to sparse implementations of the simplex method, in which
the factorization of the basis matrix tends to occupy more and more storage
each time it is updated. A vital difference is that the basis matrix can be refac-
torized periodically in a compact form that seldom requires storage for more
than 5m nonzeros. In other words, the simplex method's workspace can be
condensed when necessary without any loss of ground; the next iteration will
not be materially different from what it would have been had the condensation.1 not taken place. Unfortunately this does not appear to be true for the ellipsoid

", algorithm.

The need to compactify storage is discussed further below under the heading
of "resetting" and "cycling" strategies.

. " - e -'- * [--

S Impkmextatio Aspects 11

5. IMPLEMENTATION ASPECTS

An ellipsoid algorithm for solving the feasible-point problem (such as problem
LP3) would ideally take the following form:

1. (Initialize.) Set k = 0 and choose an initial ellipsoid defined by zo, B and
a, such that B is positive definite and at least part of the feasible region
satisfies (z - xo)TB-(z - zo) !5 a 2

2. (Terminate?) If 2 h satisfies the constraints to within a required tolerance,
accept it as a feasible solution and terminate.

3. (Choose a constraint.) Select, or construct, a constraint of the form 1i <
aTz < ui that is not satisfied to the desired accuracy.

4. (Update.) Obtain new quantities zA;+1, R and 0 by a process such as the
one described in section 3. Set k = k + 1 and return to step 2, using the
new quantities in place of the old.

We need to consider how each step of such an algorithm might be implemented
on a machine with finite precision and finite storage. It will be necessary to
introduce certain changes to the algorithm, and some of these will unfortunately
invalidate the proof of convergence.

Choice of initial ellipsoid.
Since the method proceeds by shrinking the volume of an ellipsoid enclosing
a solution, the efficiency of the method will be doubly enhanced if the initial
ellipsoid has a small volume. (Over-estimating the initial size of the ellipsoid
permits zk to move far away from zo. It also slows the initial rate of reduction
in volume.)

In some cases the user may be able provide an estimate of the distance from
zo to the feasible region. Alternatively, it would not be unreasonable to ask the
user to place sensible lower and upper bounds on all variables. An initial ellipsoid
could then be defined from a diagonal matrix with assurance that it contained
some feasible points. However, it would probably be a gross over-estimate of the
dimensions that would in reality suffice.

In practice, some general procedure for choosing an initial ellipsoid is re-
quired, whether sensible bounds on the variables are available or not. Barring
use of the simplex method, it seems that any procedure that is guaranteed to
enclose part of the feasible region is likely to give an initial ellipsoid that is much*1 too large for the subsequent algorithm to be efficient. An estimate without such
guarantees may be adequate, provided we have some means of increasing the size
of the ellipsoid should the estimate prove to have been too small.

The method we have used is to set the initial o2B equal to the hyperaphere
a 2 1 where the radius a is chosen so that the initial scaled residual p takes a

12 EU~peod Algorithm For LP 15

specified value, such as 0.5 or 0.1. The smaller the value of p the more likely the
ellipsoid will be sufficiently large. However, the initial rate of convergence will
be correspondingly slower.

Expanding and shrinking the ellipsoid.
It is worth noting that it is not essential for there to be a feasible point within
the initial ellipsoid. Subsequent ellipsoids will always contain regions that were
not contained in their predecessors. Also, at every iteration we will consider
altering the current radius a to ensure that the scaled residual satisfies

0 < Pmin P Pm z <1.

(Typical values are Pm ,i = 0.01, pn. = 0.9.) These are heuristic values to
prevent the current ellipsoid from being 'too big" or 'too small", respectively.
In particular, if p > pn,=, we assume that the ellipsoid is too small and increase
a accordingly.

Unfortunately, a value of p > 1 will ultimately arise in the case where no
feasible point exists. The strategy of expanding the ellipsoid therefore eliminates
any hope of confirming the non-existence of a feasible point. (On the other
hand, such confirmation was never a practical reality with the original algorithm
either.) More seriously, if P.. becomes active and forces an increase in o, the
proof of convergence is invalidated because the ellipsoids are no longer continually
shrinking.

The interpretation of a small value of p is that all the violated constraints
pass close to the center of the ellipsoid. Under such circumstances it seems
reasonable to shrink the size of the ellipsoid by reducing a. This should not
interfere too seriously with the proof of convergence. In any event, not to do so

, would result in a long succession of small p values, and the corresponding volume
reduction would be negligible.

Choice of constraint.
The proof of convergence does not depend on which violated constraint is chosen

P. to construct the next ellipsoid, but it seems reasonable to suppose that the rate
of convergence may depend critically on the choice made. The reduction in
volume of succeeding ellipsoids is greater the larger the value of p. Therefore it
may appear that p should be maximized. This could be done if the quantities
aiTBa, were recurred for each constraint vector ai. However, additional work
would be required, and in reality it would be a poor strategy. The reason is
that the ellipsoid may be very oblate. (This would be certain if the problem has
narrow range constraints.) The scaled residual pi = (i-th violation)/(a(aiTBaJ*)
may be very large just because aTBai is very small. It is not the volume of the

€ ..

rimplmentation AapcU 13

ellipsoid that is of overriding concern, since the volume can be arbitrarily small
if the ellipsoid tends towards a subspace, and this can happen at any stage.

Instead of the above, we adopted the obvious strategy of choosing constraints
with the largest violations. For consistency the general constraints were always

scaled so that 1 I Ia 3 I = 1.
Intuitively, choosing just a single violated constraint would seem to be a

myopic strategy, and indeed it was found to give a poor rate of convergence in
the early iterations. It is worth noting that when B is represented in summation
form, the product

Ba = (Bo - 61l'- -App~

is computed by setting to 4- Boa and then performing the operations
i- arph , +o- Wo -l~p

for j from 1 to k. The pi's are stored as dense vectors, but if a is just one row
ai from the original constraint matrix it will be very sparse, and so the scalars
7r can be computed at negligible cost. Hence in the sparse case, an iteration can
be performed almost twice as fast if violated constraints are not aggregated.

In spite of the previous comment, overall performance is usually much
improved if a violated constraint is constructed from the set of all violated
constraints, according to

a = wGi

for appropriate indices i and weights wi. The weights we have experimented with
are wi = ri, V'-, and 1, where ri is the violation for the i-th constraint.

A disadvantage of this aggregated constraint (apart from giving a dense a)
is that unless all of the constraints involved have reasonable upper and lower
bounds, the aggregated range is unlikely to be small. Most of the advantage of the
range ellipsoid will therefore be lost. One way of avoiding this drawback would
be to form three separate aggregated constraints, one from any narrow range
constraints (e.g., perturbed equalities), one from normal range constraints, and
one from the remainder. At each iteration, one of these aggregated constraints
would be chosen. However, this variation was not tried.

Resetting strategies.
Even with B represented in product or summation form, the most serious im-
plementation difficulty is still the amount of storage required. After k updates
to an initial ellipsoid we need to store k dense vectors pj, each of length n. For
large n it is clearly not practical to allow k to exceed 100 (say), and the work per
iteration for such a large k would far exceed that involved in a typical iteration
of the simplex method.

Ideally we would like to define a new ellipsoid at some stage, with the same

center zk and the following three properties:

14 Elipsoid Algorithm, For LP 15

1. it should have a sparse representation;
2. it should be similar in volume;
3. it should enclose the original ellipsoid.

For example, the current o2B could conceivably be replaced by oAI where),
is the largest eigenvalue of B. This would obviously satisfy properties 1 and 3.
However, the new volume is likely to be considerably larger than before. We have
been unable to define an ellipsoid that has all three properties, and it is probable
that no such ellipsoid exists. Instead, since we have some means of increasing
the size of the ellipsoid should it prove to be too small, it may be sufficient to
satisfy properties 1 and 2.

The resetting strategy we have used is as follows. At some specified frequency
(every K iterations where K = 20, say), the current ellipsoid

(z - Zj)B T-I(z - Zk) 02

is replaced by
(Z- Zk)TD- 1(z - ZA;) _< ((o)2 ,

where D = diag(B) and (o = 0.9, provided the choice of 0.9 leads to a satis-
factory value of p on the next iteration. It can be shown that if jo = 1, the
new ellipsoid would enclose the old one along its smallest axis, but not along its
largest axis. From Figure 3 we see that the volume at the fringe of the ellipsoid
along the largest axis may not even be within the initial ellipsoid, so its omission
may not prove to be crucial. The "reduction factor" fo is an attempt to compen-
sate for the over-estimate that the diagonal ellipsoid makes along the shortest
axis. Little can be said about how the new ellipsoid compares to the old along
intermediate axes, but we would expect the shorter ones to be enclosed and the
longer ones not to be.

CyeliM strategies.
*"Resetting" amounts to discarding all modification vectors pj every K iterations.

An alternative is to retain K modifications throughout. At each iteration a new

update is added but the one from K iterations earlier is discarded. (We call this
"cycling" because the new update simply overwrites the old one in storage; the
point at which the replacement occurs cycles around a workspace of fixed size.)

It can be shown that at each iteration, this cyclic update gives an ellipsoid
that encloses both the ellipsoid from the previous iteration and the ellipsoid that
would be present had no discards ever been made.

Note that although updates are discarded from B, their effect on zt and o
is not. This latter point is of some importance, since the volume of the current
ellipsoid would otherwise reflect only the last K updates. Also, it is vital in this
variation of the algorithm that a decrease every iteration. This will occur only
if p is larger than 1/n. (Hence the introduction of Pi earlier.)

16 Resatk and Obarvatioa IS

6. RESULTS AND OBSERVATIONS

Most of the ideas discussed here have been implemented in a Fortran program on
an IBM 370/168. Some existing LP models were used as test problems. These
were input in standard MPS format and stored in single precision. Since access
is required to the rows of the constraint matrix, a row list of its nonzero elements
was formed from the usual column list. All computation was performed in double
precision (approximately 15 decimal digits).

The dimensions of some of the LP models are as follows:
Name Rows Columns Equalities
WEAPON 12 100 0
SHARE2B 99 79 13
ISRAEL 175 142 0
BANDM 306 472 305
STAIR 357 467 209

Many test runs were made on these and other problems. Figures 4-6 il-
lustrate a typical set of results. The inescapable conclusion is that even the best
variant of the ellipsoid algorithm performs exceedingly poorly. The hope that a
point would be reached where a "good basis" could be identified was rarely real-
ized, even when a small sum of infeasibilities was attained. Some variants could
be said to perform better than others, but the difficulties of comparison were
complicated by the fact that convergence does not occur in any conventional
sense. There is no quantity (such as the sum of infeasibilities) that decreases
monotonically, and only in exceptional circumstances was a feasible point ever
found.

The following are some tentative conclusions, observations, and (where pos-
sible) explanations.

1. There was usually a rapid initial reduction in the sum of infeasibilities. This
was followed by slow but discernible convergence. Eventually the sum of
infeasibilities oscillated around a steady-state value. If this value was small
enough, a feasible point would occasionally be obtained by chance.

2. Choosing a single constraint is usually much worse than aggregating con-
straints. (Clearly, reducing one infeasibility without regard to the others
will have, in the short term, an unpredictable effect on the total sum of
infeasibilities.)

3. Weighting aggregated constraints by ri can produce oscillations about a
(perturbed) equality constraint; i.e., the iterates zk are reflected back and
forth across the constraint and converge only slowly towards it. This was a
symptom of the single-constraint strategy when the range ellipsoid was not
used. It arises when the aggregated range is too large for the features of the
range ellipsoid to take effect.

16 B/psoid AlgorAhms For LP 16
4. Using V,/ as weights tended to reduce the oscillations, because the smaller

weights would soon allow some other equality constraint to dominate in the

aggregation. It would sometimes result in slightly poorer performance on
problems for which oscillation was not a difficulty, but it seemed to be the
best compromise.

5. Choosing equal weights was often a poor strategy, since the most violated
constraint would sometimes remain the same for thousands of iterations.
This is the opposite extreme to oscillation and justifies the previous com-
ment.

6. The resetting frequency K was not critical. Resetting more frequently
often resulted in a more rapid initial convergence, particularly if the initial
ellipsoid was very large. This was because of the reduction factor (o that
was applied each reset. However, the subsequent convergence would usually
be slower. The net result was a degree of invariance with respect to the
frequency (assuming that even the largest K was small compared to n). The
range of values tried was 5, 10, 20, 30, 40, and 50. The value K - 20 seems
to be a reasonable value in practice. The work and storage per iteration
are then roughly equivalent to refactorizing the basis in the simplex method
every 50 iterations.

7. Problem SHARE2B was small enough to allow use of K = 200 (= 2.2n -

normally an unthinkable ratio). This was the one case where termination
at a feasible point could reasonably be expected. However, the total work
and iterations far exceeded that required by the simplex method to solve
the unperturbed problem exactly.

8. In spite of its promising properties, the cycling algorithm did not perform
more favorably than the resetting algorithm. In fact, since there was no
artificial shrinking of a at the end of each K iterations, both the initial rate
of convergence and the overall performance tended to be worse.

9. Forcing a reduction in o on resetting eventually results in violated constraints
lying outside the current ellipsoid. Not forcing a reduction meant poorer
initial convergence. Possibly the size of the reduction should be related
to the estimated progress made during the last K iterations. Progress is
ultimately so slow that this would suppress any artificial reduction each
reset. This in turn would ensure that progress was slow or non-existent,
once Pvn" starts forcing an increase in u during the iterations.

10. In most cases the target objective value was reached at a point where the
sum of infeasibilities was reasonably low. (Of course it could also be reached
in an early iteration at the expense of gross infeasibility elsewhere.)

J

e Reius and Oberrvaflo 17

11. The algorithm is highly sensitive to scaling - much more so than the
simplex method. Scaling the constraints by rows is essential. Scaling them
by columns (i.e., scaling the variables) would doubtless help in general, but
was not tried. The problem ISRAEL was one with poor column scaling,
and although the algorithm was able to reduce the sum of infeasibilities
by several orders of magnitude, it was unable to obtain an objective value
anywhere close to the target.

12. If the original problem was really one of finding a feasible point and if
the volume of the feasible region was large, the algorithm tended to per-
form much the same as described, but with a somewhat greater chance of
terminating. A dramatic improvement could be made in this situation by
shifting the constraints inwards, i.e., by changing Az > b to Az > b + 6b,
where 6b is positive. In effect, a feasible point to the original problem was
then found in the rapid convergence stage of the algorithm.

13. One of the more difficult matters is to propose a stopping criterion that
recognizes the time when further progress is unlikely. Of all the usual
quantities that could be monitored, the most stable would probably be the
size of the maximum constraint violation, ri.

Some of these observations are illustrated in the following figures. For
comparison, the simplex method was applied to unperturbed linear programs,
cast in the form LP2 with t set to the optimal objective value (see section 2).
Hence, all iterates except the last were infeasible. The beginning and end of the
simplex iterations are marked by a cross.

The ellipsoid algorithms were applied to perturbed problems of the form
LP3, with equality-constraint bounds perturbed each way by 5%. (If the i-th
components of bi and b. were both P, the quantity 6,8 = 0.05(1l#1 + 1) was
computed and the bounds on the i-th row of Az were taken to be P - 6P and
8 + 6P.) The perturbation to the objective value was 6t = 0.01t. During the
test for feasibility, a constraint was considered violated only if the residual ri
exceeded 0.05.

The curves drawn for the ellipsoid algorithms have been smoothed to show
the general trend. The quantity plotted is the minimum sum of infeasibilities
achieved during the previous 10, 20 or 50 iterations. The actual sum varies
erratically with iteration number and would lie above the curves shown.

I-.l -

is BDIwoid Agon-ithm For LP 16

400 _ , i u, , , , , i , ,

Cycling strategy

Resetting strategy

300 Simplex method

200-

100 -

0 -.x

0 100 200 300 400

Figure 4. Problem SHARE2B. Sum of infeuibilities vs. iteration number.

Comparison of resetting and cycling strategies with large initial radius.
K =20, po= 0.01, ao = 6500, pma =0.01, wi -i -

1. The sum of infeasibilities increases substantially in the early iterations. This
is typical when the initial radius 0o is large.

2. The bound p _ pn, was often active, particularly after each reset. This
leads to a more rapid reduction in a for the resetting strategy, and hence to
greater initial progress.

3. Approximate cpu times:
Ellipsoid algorithm, cycling: 5.6 seconds for 400 iterations.
Ellipsoid algorithm, resetting: 4.8 seconds for 400 iterations.
Simplex method: 2.4 seconds for 108 iterations (solution found).

J6 Remuku and Obaermtoaa 19

30 - - -Cycling strategy

Resetting strategy

20- ... Simplex method

10

0 .. X -

0 100 200 300 400 500

Figure S. Problem SHARE2B. Sum of infeasibilities 'vs. iteration number.

Comparison of resetting and cycling strategies with smaller initial radius.
K = 20, po = 0.1, ao~ = 650, p,,j. = 0.0127 = i/,Ain, wi = r.

1. The bound p,,ft was active for both ellipsoid algorithms during early itera-
tions, red ucing or and allowing rapid initial progress.

2. The Zier scale used for the vertical axis illustrates the slow terminal con-

vergence that can be expected in general.

20 Bllipoid Algouithma For LP 16

1500 I I i tI~

W=j

1000 Simplex method

500 "

0 X

0 200 400 800 800 1000

Figure 6. Problem STAIR. Sum of infeaibilities vs. iteration number.

Comparison of weights w, = 1 and wi = Vr- in aggregated constraints.
Resetting strategy with K = 30.

Po = 0.1, ao = 2500.

1. The ellipsoid algorithms could not be expected to converge within a tolerable
time.

2. This is a difficult example even for the simplex method (in which the basis
factorisations are unusually dense). The workspace required by the simplex
method is slightly more than that needed by the ellipsoid algorithms (storing
30 updates).

3. Approximate cpu times:
Ellipsoid algorithms: 53 seconds for 1000 iterations.
Simplex method: 50 seconds for 537 iterations (solution found).

OOF J

ReaMua and Obanratkoim 21

Final comments.
The main hope was that a feasible point to a perturbed linear program could
be found that would suggest a good set of basic variables in the LP sense. This
hope was not realized. There are several reasons for this, particularly with large
problems. In practice, there are frequently many Lagrange multipliers (dual
variables) that are zero or close to zero. This means that a feasible point to
the perturbed problem need not be close to any vertex. Also, the size of the
perturbations used was sufficiently large that for a many-variable problem, an
accumulation of small changes in some variables could allow other variables to
take on values quite unlike their optimal values.

Given a system of linear equations Bz = b, the effect on z of a perturbation
to b has been studied at length (e.g., Wilkinson, 1965). For example, if the
components of 6 were perturbed by 1% and if the condition number of B were
greater than 100, then the perturbed solution may be different from z in all
figures. In most linear programs, we would expect the condition number of
the basis matrix to be 100 at least. Hence, even if a feasible solution could be
found to a perturbed problem, we could not expect to recognize the solution
if the perturbations were as much as 1%. On the other hand, for problems
containing any equality constraints, the hope for obtaining a solution when the
perturbations are as small as 1% would seem to be remote.

Regarding convergence, the difficulty remains that if the problem is too
large to allow the ellipsoid matrix B to be stored and updated continuously,
then the assurance of convergence is lost. In spite of certain optimism during
the early stages of this research, we can only conclude that for large-scale linear
programs, the prospects for developing an efficient ellipsoid algorithm are indeed
quite bleak.

Acknowledgement

We wish to thank Professor Jean-Louis Goffin for bringing the paper by Shor
and Gershovich (1979) to our attention.

22 ElpsoJd MUozitSm For LP 5s

REFERENCES

Aspvall, B. and Stone, R. E. (1980). Khachiyan's linear programming algorithm,
Journal of Algorithms 1, 1-13.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton Univer-
sity Press, New Jersey.

Gfcs, P. and Lovisz (1979). Khachiyan's algorithm for linear programming,
Report STAN-CS-79-750, Computer Science Department, Stanford Univer-
sity, California.

Gill, P. E., Murray, W. and Saunders, M. A. (1975). Methods for computing and
modifying the LDV factors of a matrix, Math. Comp. 29, 132, 1051-1077.

Goffin, J. L. (1980). Convergence results in a class of variable metric subgradient
methods, Working Paper 80-08, Faculty of Management, McGill University,
Montreal, Quebec, Canada. To appear in the Proceedings of the Nonlinear
Programming Symposium 4, held in Madison, Wisconsin, July 14-16, 1980.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming, Do-
klady Akademiia Nauk SSSR Novaia Seriia 244, 5, 1093-1096. [English
translation in Soviet Mathematics Dokiady 20, 1 (1979), 191-194.]

Lawler, E. L. (1980). The great mathematical sputnik of 1979, University of
California, Berkeley, California (February 1980).

Shor, N. Z. (1977). The cut-off method with space dilation for solving convex
programming problems, Kibernetika 13, 1, 94-95. [English translation in
Cybernetics 13 (1978), 94-96.]

Shor, N. Z. and Gershovich, V. I. (1979). A family of algorithms for solving con-
vex programming problems, Kibernetika 15, 4, 62-67. [English translation
in Cybernetics 15 (1980), 502-508.]

Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem, The Clarendon
Press, Oxford.

Wolfe, P. (1980a). A bibliography for the ellipsoid algorithm, IBM Research
Center Report No. 8237 (April 1980).

Wolfe, P. (1980b). The ellipsoid algorithm, in Optima, 1 (Newsletter of the
Mathematical Programming Society, June 1980).

I.

t -J . , • . • - _

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (1111100 em__________________

REPOT DMMETA.TON AGEREAD ISTRUCTIONSREPOR DOCMENTTIOWPAGEBEFORE CONPLETUG FORM
2. GOVT ACCESSION11 NO S. RCIPIIENT*S CATALOG NUMBER

Iw. (Now u ue S. TYPE OF REPORT A-PZRIOO COVERED

-A jUMERICAL J.NVESTIGATION OF E~LLIPSOID $St*h
4-G LAG-SCALE LINA/7*.6RITHMS -(LARGE E YER 6. ERFOMING RM RPORT UMBE

OGRAMMING#

Micae A ane MraeH.igh DAAG29-79-C-b110.j

10.* PERFORMING ORGANIZATIO NDME AND ADDRESS / N1:75c-6

DeprtentofOperations Research -SOL

Stanford University - NR-047-143
Stanford, CA 94305 (~ 7_____________

It. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709 2

14. MONITORING AGENCY NAME & ADDRESS(If different kboo Controling Office) IS. SECURITY CLAS. (of.hi M. rpMQ1

Office of Naval Research - Dept. of the Navy UNCLASSIFIED
800 N. Quincy Street
Arlington, VA 22217 IUDECLASSI FICATION1 DOWNGRADING

1S. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of th. abstract entered its Stock"2. it 41ff.,.,i kmn Repr)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Caoinb@ a, reverse side if neoeeawy and Idetify by Week number)

ELLIPSOID ALGORITHM

LINEAR PROGRAMMING

20. ABSTRACT (Cate a r evee eie I eeeaw and I mIU Ip Meekusber)

SEE ATTACHED

00 U, co-ro 17 EIorO I NOV 6S It OSSOLcTE 6)~ 6

ScUMTV CLAMPICAIOI OF THIS PAGE 19110 *al 66"11

4-- ~ ----- ./-

UNCLASSIFIED
OXCUTIY CLASSIPICATION OF THIS PAGC(Wh[a DO*a RMIN8

SOL 80-27: A Numerical Investigation of Ellipsoid Algorithms
for Large-Scale Linear Programming

The ellipsoid algorithm associated with Shor, Khachiyan and others has
certain theoretical properties that suggest its use as a linear programming algo-

rithm. Some of the practical difficulties are investigated here. A variant of the

ellipsoid update is first developed, to take advantage of the range cqtstrants
that often occur in linear programs (i.e., constraints of the form I-JN ':5 U,
where u - I is reasonably small). Methods for storing the ellipsoid matrix are
then discussed for both dense and sparse problems. In the large-scale case, a
major difficulty is that the desired ellipsoid cannot be represented compactly
throughout an arbitrary number of iterations. Some schemes are suggested for
economizing on storage, but any guarantee of convergence is effectively lost. At

this stage there remains little room for optimism that an ellipsoid-based algo-

rithm could compete with the simplex method on problems with a large number
of variables.

.1

SEUIYCAbSA1@FY* AU..e!j

