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A completely integrable partial differential equation is one which has a
Lax representation, or, more precisely, can be solved via a linear integral
equation of Gel'fand-Levitan type, the classic example being the Korteweg-
de Vries equation. An ordinary differential equation is of Painlev; type if
the only singularities of its solutions in the complex plane are poles. It is
shown that, under certain restrictions, if G 1is an analytic, regqular
symmetry group of a completely integrable partial differential equation, then
the reduced ordinary differential equation for the G-invariant solutions is
necessarily of Painlev; type. This gives a useful necessary condition for
complete integrability, which is applied to investigate the integrability of
certain generalizations of the Korteweg-de Vries equation, Klein-Gordon
equations, some model nonlinear wave equations of Whitham and Benjamin, and

the BBM equation.
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SIGNIFICANCE AND EXPLANATION

Several very important nonlinear partial differential equations can be

solved by the method known as "inverse scattering". This in effect reduces

the solution of the nonlinear equation to that of a linear integral equation,
and it is obviously desirable, given any nonlinear partial differential
equation, to determine whether its solution is amenable to this technique.
Hitherto this determination has been largely a matter of chance, but the
present paper gives a relatively simple systematic test. One looks at the
ordinary differential equations satisfied by similarity solutions of the

nonlinear eguation. If these ordinary differential ecquations are not “of

-

Painleve type", i.e. if they possess solutions having singularities other

than poles, then the nonlinear equation is not soluble by inverse scattering.,
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THE CONNECTION BETWEEN PARTIAL DIFFERENTIAL EQUATIONS SOLUBLE BY INVERSE

SCATTERING AND ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVE TYPE

J. B. McLeod and P, J. Olver

1. Introduction

The solution of certain nonlinear partial differential ecquations by inverse scattering
techniques has been the rubject of considerable interest in recent years. This technique
dates back to a fundamental observation of P. Lax, [26), that some puzzling earlier results
of Miura, Gardner and Kruskal, [33], on the relationship between the Kortewea-de Vries
equation and the eigenvalue problem for Hill's equation, could be placed in ar extremely
lucid and general theoretical framework. ©Lax's basic idea was that if a partial
differential equation could be cast into the form

%% = [B,L) = BL - LB , (1.1)

where L and R are linear (differential) opevators on some Hilbert space with R skew-

adjoint, then the eigenvalues of L would be independent of time t. We will call (1.1) a

Lax representation of the given partial differential equation, and a system of partial

differential equations which can be so represented is often called completely integrable,

although, as will bhe seen later in this introduction, we shall in this paper find it
convenient to use a somewhat different definition of complete integrability. (The
terminology stems from the interpretation of the KdV equation as a completely integrable
Hamiltonian system, as discovered by Gardner, [16), and developed in great detail hv
McKean, van Moerbeke and Trubowitz, [30), (31].)

For the KdV equation, which is L
u + 6uux + u =0, (1.2

t XXX

the operators appearing in the Lax representation are
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L = -D2 -u,
3
B = ~{4D” + 3(Du + ud)} ,
where D = d/dx. The problem of finding the potential u from the spectral data of 1L,
known as the "inverse scattering problem", was solved by Gel'fand and Levitan, [19]. (See
also (14!, ({42! for comprehensive introductions.) Their method involves the solution of a

certain linear integral equation, the Gel'fand-Levitan equation, which in general is of the

following form:

Kix,y) + Flx,y) + [ X(x,z)H(z,y)dz = 0 . (1.3)
x

{Technically, (1.3) is the Marchenko form, (29], of the Gel’fand-Levitan ecquation.} Here
F and H are constructed from the relevant spectral data of L. Once K has heen found,
the potential u 1is recovered from the values of K on the diagonal x = y. (In the

K4V case, u = 2D(K(x,x)].) Thus the bagic technique for solving the initial value
problem for a completely integrable system of partial differential ecquations consists of
the following steps:

1) Given the initial data u(x,0), determine the appropriate spectral data of the
operator L at time ¢t = 0,

2) Find the time evolution of the spectral data, and hence of the kernel functions
F and H used in the Gel'fand-Levitan equation.

3) Snlve the Gel'fand-Levitan equation, regarding t as a parameter, and thus
recover the solution u of the oriainal system.

The inverse ccatterina technique outlined above has bheen applied to a number of
physically relevant partial differential equations. Of particular interest is the work of
7akharov, Manakov and Shabat, [48)-([53], on the nonlinear Schr;dinger and other physically
interesting equations, ani of Abhlowitz, Kaup, Newell and Sequr on a general class of

2 x 2 matrix systems, [2]), and the three-wave interaction equations, (24). 1In all cases

the anpropriate Gel'fand-lLevitan emation assumes the form (1,3), although F, H and X

-2 -
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may be matrix-valued functions. The formula for recovering the solution u from the
kernel K varies from case to case.

The one notakle drawback in this elaborate theory is that for a given system of
partial differential equations there has not to date been any systematic method of
determining whether or not it has a Lax representation and, if so, how to find the
operators B and L. Previous work has relied either on inspired guesswork, or else on
fixing the form of the operators B and L and seeing what systems of partial
differential equations result. 1In particular, recent work of Gel'fard and Dikii, [17],
(18], which lists several other references, has used abstract differential-algebraic
methods to give a general classification of pairs of differential operators B and L
such that (1.1) corresponds to a bona fide system of partial differential equations. This
approach, however, while providing a large number of completely integrable systems, is not
yet able to answer the above question of whether a given system is completely integrable.

The basis of the present paper is an observation of Ablowitz and Segur, [5), that the
equations for the group~invariant (self~similar) solutions of known examples of completely
integrable equations turn out to be ordinary differential equations studied extensively by

Painlev; and his students around the turn of the century, [10], [3B]. (See also [22],

[23] for general accounts of the subject and further references.) These equations are
characterized by the property that all their solutions in the finite complex plane possess
only poles as singularities, and hereafter we will refer to an ordinary differential
equation with this property as an equation of Painlev; type. (Painlev; allowed also fixed
singularities of an arbitrary type, but we will not.) Hastings and McLeod, [21), exploited
this relationship to solve a nonlinear connection problem for the second Painlev;

transcendent, and conjectured that the above relationship was not fortuitous:

Conjecture. If a system of partial differential eguations is completely integrable,

and G 1is a symmetry group of this system, then the reduced system of ordinary

-

differential eguations for the G-invariant solutions is of Painleve type.

This conjecture, if true, would provide a powerful necessary condition to test for

complete integrability. Here we will prove a somewhat weakened version of the conjecture,




which nevertheless proves useful in several applications. There are two restrictions.

First, if, in the Lax operator L, some combination of the solution u and its spatial

J derivatives occurs, say O(u), then it is this combination (or combinations)} that must

- : . 2
have only poles as singularities. For instance, if L =D~ + u then only ux is

required to have poles, and thus we may allow logarithmic branch points as singularities of

the solutions of the reduced ordinary differential equations. 'lsually we will assume
that © is a linear combination of u and its spatial derivatives, calling this case

linearly completely integrable. Secondly, the same combination Q must satisfy certain

preconditions for the inverse scattering formalism to go through; this means that, when
restricted to the real axis, Q either is periodic or satisfies decay conditions at

x = + @, which implies corresponding restrictions on the solutions u that can bhe
considered. It is only for such solutions that @Q(u) must be meromorphic. If a system of

ordinary differential equations has the property that, for such solutions u, the

e

-

combination Q(u) is meromorphic, we say that the system is of restricted Painleve tvpe .

relative to Q. Our basic result, in rough form, replaces "Painleve type" by

"restricted Painleve type" in the above conjecture. .

e o i

v The first requirement for stating and proving a precise form of the conjecture is to
define what is meant by a partial differential equation beina comnletely integrable.
Rather than take the Lax representation as our starting point, we shall adopt the more
practical view of the Gel'fand-Levitan equation being of primarv importance. Thus a

) completely integrable system of partial differential ecuations is defined as one whose

solutions are found by solving a linear intearal equation of special tvpe, cf. Definition

2.1 below. This viewpoint is necessitated by the fact that the forral Lax representation
theory of Gel'fand and Dikii has not reached the point of statinag an analogue of the result

of Gel'fand an. Levitan for an arbitrary scattering operator L, although some formal

e S tuling 4

progress in this direction has been made in [28], [53]. Since in all examples known to th~

authors the Gel'fand-Levitan equation is always of the form (1.3), it might seem reasonahle
that this should be true in general, hut Application V in Section 4 below indicates that it

may be necessary to restrict L at least to being of prime order.

-4 -
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The main tool in our proof is a theorem of Steinberg, [43], which states that if
T(z) 1is an analytic family of compact operators in a Banach space, then (I - T(z))-1,
provided this inverse exists for at least one value of 2z, is a meromorphic family of
operators. Under appropriate assumptions on the initial data of our completely integrable
system to ensure that the functions F and H in the Gel'fand-Levitan equation satisfy
certain analyticity criteria, we can conclude from Steinberg's result that @ must be a
meromorphic function of (x,t). MNow suppose that G 1is a one-parameter, analytic, regular
local group of transformations acting on the space of independent and dependent variables
which leaves the set of solutions of the system of partial differential equations
invariant. Then the G-invariant (self-similar) solutions can all be found by integrating a
system of ordinary differential equations on the quotient manifold whose points correspond
to the orbits of G. (See Section 3 for details.) The analyticity of G implies that for
any G-invariant solution whose initial data satisfies the inverse scattering assumptions,
the function Q on the quotient manifold can have only poles for singularities. In other
words, the reduced system of ordinary differential equations must be of
restricted Painlev; type relative to Q. This completes the outline of the proof of our
main theorem; precise statements and proofs will appear in Sections 2 and 3.

In Section 4 we discuss some applications of this result. First we show that the
generalized KdV equation

ut * upux * uxxx =0

can be linearly completely inteqrable only if p =0, 1, or 2. These exceptional cases
correspond to the Airy equation in moving coordinates, the KdV and the modified Kav

equations, which are well known to be completely integrable. Secondly we consider a

nonlinear Klein-Gordon equation in characteristic coordinates

= f' . 1.4
Uoe (u) (
It is shown that if f(u) is a rational function, real for real u and with two

consecutive zeros, simple or double, on the real axis, and if (1.4) is linearly completely

integrabhle, then f is a polynomial of degree at most 4. Further, if f(u) is a linear
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combination of exponentials e 3 with the a all rational multiples of some complex

3

number &, again real for real u and with two consecutive simple or double zeros, and if

(1.4) is linearly completely integrable, then

ezBu +c eBu —— e-Bu ‘e e-26u ,

f(u) = c, 1 0 3 -

for some number g. The next application shows that certain nonlinear model wave equations
considered by Benjamin, Bona and Mahony, [7), and Whitham, {46], cannot be linearly
completely integrable. The last example deals with the BBM equation, {7},

u, +uw - U = 0 . (1.5)
Although this cannot be treated rigorously by the methods of the present paper, we show
that if the full conjecture were true, then (1.5) could not be linearly completely
integrable. From these results, it can be seen that our criterion for complete
integrability is a powerful preliminary test when considering whether or not a system of
partial differential equations can be integrated by inverse scattering techniques.

A recent preprint of iblowitz, Ramani and Segur, [3], also considers the above -
conjecture. They prove a similar result, although they place a rather severe restriction 3
on the form of the functions occurring in the Gel'fand-Levitan equation for the group-~ .
invariant solutions which is not sufficiently justified. Also, the only groups they
consider are groups of scale transformations; the more general groups that we consider !

allow a much wider range of applications.

-6
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2. BAnalvticity Properties of Completely Integrable Differential W®quations

Consider a system of partial differential eaquations

A(t,x,0) =0, (2.1,
where x,t ¢ R and u = (u1,...,um) € Rw is a vector=-valued function. We assume that the
initial walue prohlem of (2.1) with

u(x,0) = f(x) (2.2)
is well posed for f in some Banach space B of functions, so that for t sufficiently
small, there is a unique solution u(x,t) of (2.,1-2). 1In practice B 1is either a space
of functions decreasing sufficiently rapidly at + « or a space of periodic functions.
Usually the presence of appropriate conservation laws will ensure that the solutions are
actually global in t, but this will not be assumed a priori. The first task is to make

precise what is meant by (2.1) being completely integrable. Rather than use the usual Lax

representation of the equation, we will assume a more practical outlook and take the

Gel' fand-Levitan integral equation as our starting point. As the examples demonstrate, in
all known cases there is such an integral equation for solution of the inverse scattering
problem for the operator L in the Lax representation (1.1).

pefinition 2.1. A system of partial differential equations is completelv inteqrable

relative to ©(u) in the Panack space B if there is a linear matrix integral equation of

the form

o

¥(x,yit) + Flx,vit) + [ K(x,z:t)H{z,y;t)dz = 0 , (2.3)
X

called the Gel'fand-Levitan equation, satisfying the following properties:

iy F, H, ¥ are N «x N matrices of functions;
ii) ¥ and M are uniquely determined by the initial Aata (2.2);
iii) for initial data in B, and for all real x, y, all complex €, andi t in
some domain T in €, the funstions F(x - €t,v = et;t) and H(x ~ €t,v = £t;t) are

*
Aanalv*ic in £, t, and there is a Banach space B (not necessarily the same as PB) for

*
whi~k FPlx = et,v = ct;t) € B as a function of vy and the operator




™
T(x,t)f(y) = f f(z)H(z - et,v - et;t)dz
X

is a compact operator in B.;

iv) the Gel'fand-Levitan equation has a unique solution (in B’) for all x and at
least one t in

v) the solution u of the system (2.1-2) can he recovered from the solution ¥ of
the Gel'fand-Levitan equation via a relation of the form

Qlulx,t)] = P[K(x,x,t)], (2.4)

where © is some function of u and its spatial derivatives and P is a polynomial in
¥ and its spatial Aderivatives.

Thus to recover the solution u of a completely integrable system of partial
differential equations, we must solve the Gel'fand-Levitan equation for X, and then solve
the differential ecquation (2.4) for u, In practical examples, Q is a linear combination
of the spatial derivatives of u, and in this case the system will he called linearlv

completely integrable. It should also be remarked that the requirement that iii) hold for

all complex € can certainly be relaxed, although there seems little practical point in
doing 8o, and that the domain § will customarily include the origin or at least have the
origin on its boundary (it might, as in the example of the K4V equation below, be a sector
of a circle centre the origin).

We now illustrate the definition with two well known examples.

Example 2.2: The Korteweg-de Vries [guation

This is the original example of the use of inverse scattering techniques, [2f),
[32]. Twe equation is
U, + Auu + u =0, (2.5)
t x AXX
and has a Lax representation with operators

L= -D2 -u, (2.F)

B = -{4D°> + 3(Du + uM} ,

-8-
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3 - where D = d/dx. In the case that these operators act on a dense subspace of LZ(R) the
}

f appropriate spectral data of L consists of

. : . 2 2
: . i) the eiaenvalues )\1 = -k1,...,kn = -kn,
ii) the associated norming constants, CqresesCpy defined so that if ¢ . is the
-k x
eigenfunction associated with X_i satisfying srj(x) ~e , X + +®, then
© b
-1 2
c, = f v ax,
‘] -0

iii) the reflection coefficient R(k) for k real and positive, 1<2 = ), defined

so that there exists a smiution y of Ly = Ay which satisfies the boundary conditions

kx

-ikx i
e + D(k)e ’ X o+ 4+

.
¢{x) ~
-ikx
T(kye T, x > - .
. The time evclution of the spectral data is determined by

A(t) = A (0) ,
B 3

c.(t) c.(0) exp[ak%t] ' (2.7}
] J ]
! R(k,t) = R(k,0) exp(Rik3t] .

The Gel'fand-Levitan equation takes the form

©

K(x,yit) + Flx + y;t) + | X{x,z;t)F(z + y,t)dz = 0 , (7.9)
X

and the solution of the KdV equation is recovered via the simple formula

e e mm

d -~

' ! ulx,t) = 2 = K(x,xit) . (2o
\i The kernel F of the Gel'fand-Levitan equation is aiven bv
i

{
%% 2 1 ® ikx

o F(x,t) = | c (thexpl-k.x] + o= [ R(k,t)e dk , IRLE
v Nt j 3 2n
’E j=1 -

r ani tkis solution is valid provided the initial data u(x,n) = f(x) satisfies

\< ar

; Do IxDfx) [dx < = (2.1
/'Z - o

1
oij

'\ -V

}

j

‘

f

. e .
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The unigueness of the solution of (2.8) in the KAV case is a standard result, and the
only item remaining to be checked is Definition 2.1 in condition iii). So far as
analyticity is concerned, the only part of F that could fail to be analytic is that

corresponding to the continuous spectrum of L:

Fo(x,t) = 5= [ ROk, t) e ¥*aK

-0

= 1 | R(x,0)exp(8ik’t + 1kx]dk .

If we take any reasonable space of initial data for B, for example that given by (2.11),

then R(k,0) can be extended analytically into the upper half of the k-plane, and

lR(k,O)/k2| is bounded as |k| + ». (The function R is closely related to the spectral

density function m of Titchmarsh, and the analyticity and estimates can be obtained by

suitably translating the results in (44, Chapter V}.) If therefore we write

0 ®
F (x,t) == [[ + [ |R(k,0)exp(Bik>t + ikxldk = F, + F_, say ,
c 2m 0 2 1

and consider sufficiently F1, then, if t 1is real and positive, we can deform the

integral from (0,®) to (0,a®), for any a with 0 < arg a < % m. We can now

increase arg t, but the range for a becomes 0 < arg a < % (r - arg t). Nonetheless
this does allow us to define F,(x,t) as an analytic function of t for 0 < arg t < 7m.
(It is also an analytic function ¢f x since for large k the term k3t dominates

1
kx.) If we decrease arg t, the range for a becomes - = arg t < arg a <

3 n, which

1

3

allows us to define F,(x,t) as an analytic function of t for =7 < arg t < 0, and so
in fact in the whole complex plane cut along the negative axis. Similar remarks apply to
Foe
Further, by using the deformed contours and integrating hy parts (integrating eikx

and differentiating the remainder), we see that F & B, the Banach space defined by

-10 =
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(2.11), and that the operator T 1is compact in R, although B 1is certainly not the only
possible choice for 8",

Example 2.3: The AKNS Systems

A generalized eigenvalue problem considered by Ablowitz, Kaup, Newell and Sequr, [1],
[2), continuing work of Zakharov and Shabat, [51], assumes the following form:
v, = -igv + g(x)w ,
(2.12)
= +
wx 1w rix)v ,
where { corresponds to the etaenvalue and gq{x),r{x) + 0 as |x| » ®, If we include a
"time" dependence and suppose that the potentials a(x,t), r(x,t) evolve according to some

evolution equation in such a way that { is independent of t and, say,

v, = alx,t,;)v + B(x,t,5)w ,
(2.13)
v, = Yix,t,Z)v = alx,t,;)w ,
then cross-differentiation between (2.12) and (2.13) leads to
a = -rB + ay ,
X
B, *+ 2iC8 = q_ - 2qu , (2.14)

-~ 2i = + .
Yy 2izy r, 2ra

The equations (2.14) can also be reached via a Lax representation (1.1), if we take

{ iD -iq a B8 ]
!
J

ir -ip Y -a

The insistence that (1.1) should be valid when operating on solutions (:) of (2.12) leads
again to (2.14), and conversely.

Ry judicious choice of the functions a, 8, Y, the AKNS system (2.14) gives rise tc a
larae variety of physically interesting equations, including the Kdv, modified K3v, sine-

Gordon, nonlinear Schrodinger, and others. For instance,

-11~




q=u, r=u,
a = -21;2 - ilul2 P

B = 2¢u + 1ux ,

Y = 2¢u - 1Gx .

leads to the nonlinear Schrodinger equation
i, = -u_ + 2u|u|2 ’
t xX

whereas

1 1
45772 % T2 %
a= i cos u ,

L 14
B =y = i sin u
L14

leads to the sine~Gordon equation
U = sin u .
In fact, a system of AKNS type with any given dispersion relation can be found!
The spectral data for (2.12) is constructed as follows. For [ real, consider the
solutions satisfying the following asymptotic boundary conditions:

¢ ~ (;)e-iix , ¢~ (-2)eicx

’ K+ =0

¢"'(;)e-i:x, X * 40,

-~

b~ (e

Then

v = alf,t)y + b, IV,

= -a(g,t)y + blg,t)y

|

1
for some a,b,a,b. If (1 + {x|)g,(t 4+ {x|)r € L (R', then a (respectively a) can, as
functions of [, be analytically extended to the upper (lower) half plane, and their zeros

correspond to the eigenvalues of (2.12)., Let F = F. + Faq. where

L]
1 blgLe) _igx
Fc(x't) 27 {a atg, 0 ¢ a .

-12-
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which corresponds to the continuous spectrum, and

N icnx
Pd(x,t) = -] Z cne ,
n=1

which corresponds to the discrete spectrum consisting of the zeros, Cj' of a(g) in the

upper half plane (for convenience assumed simple) and appropriate norming constants cj

Similarly construct F = Fc + Fd from a and b. Then if
0 =-F
I

the Gel'fand-Levitan equation takes the form (with t-dependence suppressed)

Kix,y) + F(x + y) + [ X(x,2)F(z + y)dz = 0 ,

x
where
1(1 K1
X = - .
K2 K2

The potentials q and r are recovered via
q(x) = -2K1(x,x), ri{x) = -2£2(x,x) .
{Note that the sine-Gordon case gives an example in which the operator Q in (2.4) is
nontrivial.) Finally, it remains to discuss the time evolution of the spectral data.
Under the assumption that
alx,t,5) * ao(t), B(x,t,z) + 0, vyi(x,t,5) + 0

as |x| * @, it can be shown that

a(z,t) = a(g,n) ,
b(Z,t) = b(C,O)exp[-zuo(c)tl B
t} = (0 2
Cj( } CJ( )
cj(t) = cj(O)exp[-Zao(cj)t] .

-13-
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If, in addition, lao(;)/; +® as |g| » =,

previous example show that, for suitable initial data, F(x,t) is analvtic in ¢t

then arguments similar to those used in the

for

all x, and also analytic in x. 2 larage class of AKNS svstems satisfies these additional

assumptions.

We now investigate the properties of the solutions of a general intearal equation of

Gel'fand-Levitan type. Our main tool is the following theorem of Steinberg,

431,

ogeneralizing a theorem of Dolph, Mcleod and Thoe, [13), for the case of Hilbert-Schmidt

operators,

Theorem 2.4. Let B be a Banach space, and let T(z) be an analytic family of

compact operators defined for z € £ C C, Then either I - T(z)

is nowhere invertible for

1

z e or (I - T(z))"~ is meromorphic for =z ¢ @,

Let us write the Gel'fand-Levitan eauation (2.3) in the symholic form
(I + T(x;t))K(x,y;t) + F(x,y:;t) = 0 ,
where T(x,t) denotes the family of intearal operators

T(x,t)Ely) = [ f(2)H{z,v;t)dz .
X

It will always be assumed that T(x,t) is a compact operator for each fixed

instance, this is quaranteed if

o0 o
I lH(y,z;t)lzﬁydz <,
X %

indeed, in this case T is Hilbert-Schmidt.

To apolv Steinherg's theorem, we treat the time ¢t
that it would not Ao any aood to look at x
integration for T(x,t) depends on x,
analytic for a large enough class of functions.) Now, for all
H(x,v:t) depends analytically on t for t e Q, then the operators T(x,t)

analytically on t. 1If furthermore F(x,y;t) 1is analytic in ¢,

-14-
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(x,t).

as the complex parameter.
as this parameter since the domain of
and so the operators could not possibly be
X, v, if the kernel

depenqa

(2.15)

(2.16)

For

(Note

then Steinberq's theorem




implies that

K(x,yit) = =(1 + T(x,£))" Flx,yst)

is, for each fixed (x,y), a meromorphic function of t. (It is one of the assumptions of
complete integrability that the inverse exists for at least one t.) Therefore

Qlulx,t)] = P[K(x,x;t)]
is also a meromorphic function of t for each fixed x.

Theorem 2.5. If a system of partial differential equations is Q-completely integrable

in the Banach space B, and if the initial data u{x,0) € B, then the function

Qluf{x,t)] is meromorphic in t for t e @ and each fixed x.

A slight generalization of this theorem will prove to be of use in the sequel.

Suppose that the time axis is "skewed", by making the change of variables
(§,€> = (x + €t,t)
for some real €. If u = f(x,t) is the solution to the "unskewed" equation, then
u= E(;,Z) = f(; - ez,;) is the solution in terms of the new coordinates. If we let
;(;,;;Z) = K(; - e;,; - EE:E) B
then K is a solution of a Gel'fand-Levitan equation of the form
©
K(X,yit) + F(x ~ €8,y - €t;8) + [ K(X,z:t)H(Z = €t,y - et;£)dz = 0 .

~

x

Therefore the "skewed" equation is also completely integrable, which gives the following
theorem.,

Theorem 2.6. If a system of partial differential equations is Q-completely integrable

in the Banach space B, and if the initial data are in B, then the function ¢Q(uix,t)]

is meromorphic in (x,t) for x & C, t € fi.
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3. Symmetry Groups and Group—-Invariant Solutions

Given a system of partial differential equations
Afx,u) =0, x€ R, ueRr , (3.1
a symmetry group will be a local Lie group of transformations G acting on the space
Rm x R of independent and dependent variables which preserves the set of solutions of
(3.1). The group acts on the solutions by transforming their graphs. For simplicity, we
will restrict our attention to projectable groups, meaning those in which the
transformations are all of the form (;,G) = (a(x),B(x,u)). If u = f(x) 1is a solution,
the transformed solution will be given by the formula
We R o= a7, TGN
provided a is invertible. The details of this theory can be found in [8], (34] and [37).

If G 1is a local, projectable, one-parameter group, its infinitesimal generator is a

vector field of the form

m n .
v = ) Ei(x) —EI + 3 22 (x,m) —35 .
i=1 9x j=1 du

Denote the partial derivatives of the uj by

. Ikl 3
3
ui = k“ Cokom Ry k)
Ix
and let
3 j P

D, =——+ | uw  —,
ot g kA4 Bui

where k,i = (k,,ee0,ky + Y,e00,ky), denote the total derivative with respect to xt,

-
Define the prolongation of v to be the vector field
pr ; = ; + X ;2 ' (3.2)

where

¥




k, k k
(Here Dk = D11022 .o Dmm.) Then the following theorem provides the infinitesimal

criterion for G to be a symmetry group of a given partial differential equation.

Theorem 3.1. Let G be a connected local Lie group. Then in general G is a

symmetry group of the system of partial differential equations (3.1) if and only if

-
pr v(A) = 0 (3.3)

whenever A = 0 for all infinitesimal generators ; of G.

A precise statement and proof of this may be found in [34]), or, in simplified form, in
[35]).
, Example 3.2. Consider the generalized KdV equation

H + = .

) Blxu) 2u +wPu =0, (3.4)
) ( where p is a positive integer. Let G denote the one-parameter group of scale
$ transformations
-pA_ ~3pA_ 2)

(x,t,u) *» (e “'x,e t,e u), A eR.

The infinitesimal generator of G is

e et o ——

= 3 9 ]
v = =pxX Fi 3pt 3t + 2u 73 "

: From the prolongation formula (3.2), we find that

- = 3 9 9 3
pr v= v + (p+2)ux o + (3p+2)ut Tu + (2p+2)uxx Tu + (3p+2) Ta + hee
x t xx XXX

1
‘ Therefore

-
P
= + 2 =
pr v(4) (3p+2)ut (3p+2)u a + (3p4‘..)uxxx (3p+2)4 ,
so that the infinitesimal criterion (3.3) is verified, We conclude that if u = f(x,t) is
~ 3pA
any solution of (3.4), so also is u = ezxf(epxx,e P t). This may be checked directly.

In general, to find the symmetry group of a given system of partial differentijal

TR e s

-
equations, one looks for all vector fields v satisfying (3.3). This necessitates the

solution of a large number of elementary partial differential equations for the coefficient

. functions 51, ¢j of v, which is easily done in practice, as in the above mentioned

references.




Now, given a symmetry group G, a G-invariant (or self-similar) solution of (3.1) is

) a solution which is unchanged by the transformations in G. The fundamental property of G~
i invariant solutions is that, roughly speaking, they may all be found via the integration of
a system of partial differential egquations in fewer independent variables. To make this

precise, we must assume that G acts "“regularly” in the sense of Palais, {39). This

requires

i) that all the orbits of G have the same dimension, 1,
ii) <that, for any point (x,u), there exist arbitrarily small neighborhoods N such
that the intersection of any orbit O of G with N is a pathwise connected subset of O.
(The prototypical group actions excluded by the second requirement are the irrational
flows on the torus.)}
\ 1 Under these two assumptions, it is well known that the quotient space M = R x Rn/G,
o8 whose points correspond to the orbits of G, can be naturally endowed with the structure
of a smooth (although not always Hausdorff) manifold. Moreover the G-invariant solutions
of (3.1) are all obtained by integrating a reduced system 4/G = 0 of partial differential
equations on M, which necessarily has 1 fewer independent variables. Precise
statements and proofs of these results may be found in [34].

For our purposes, the construction of the reduced system for the G-invariant solutions
proceeds as follows: Local coordinate systems on the quotient manifold M are provided by
a "complete set of functionally independent invariants of G", cf. [37]. If G is
projectable, these are functions of the form

E’(x),...,&m‘l(x), w1(x,u),...,wn(x,u) '
which are unchanged under the action of G. The functional independence means that the

Jacobian matrix

[ a£/9x o

| dw/3x 3w/3u
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is everywhere nonsingular. The reduced system A/G = 0

will then be found in terms of the

new independent variables El and the new dependent variables wJ.

Example 3.3. Return to the generalized XdV equation and the group of scale

transformations G of the previous example. Note that G acts regularly on

zo = R3 ~ {0}, the origin being a singular point. The quotient manifold M = ZO/G is a

complicated, non-Hausdorff manifold. However, if we restrict our attention to the subset

defined by t > 0, then a complete set of functionally independent invariants of G is

provided by

£ = xt-1/3, w = t2/3pu (3.5)
Viewing w as a function of §, we compute
u = t-2/3pw ’
-2 _4_2
u o= - %; t 3p w - 1 xt 3 3p w' o,
-1l_2
ux =t 3 3p w' ,
_l-i_.
u = ¢ P ey
XXX

the primes denoting derivativeg with respect to £. Substituting these expressions into
3

-] —

(3.4), and factoring out t 3p, we obtain the reduced ordinary differential equation
B N I e (3.6)
3p 3

Every solution of (3.6) gives rise to a scale-invariant solution of the generalized K4V

equation, via the transformation (3.5). 1In the special case p = 2 (the modified Kav

equation), (3.6) can be integrated once, so that

-1 w3 + % Ew + k

e
v 3

.
for some constant k. This may be recognized as the second Painleve transcendent, [23].

Now we restrict our attention to a Q-completely inteqrable system, A = 0, of partial

differential emuations in two independent variables, (x,t). Let G bhe a one-parameter

local projectable symmetry group of the given system, such that the transformations in

5, when extendel to complex values of the variables (x,t,u), are analytic. Let GO

denote the projected aroup action on  (x,t)-space. Assume further that the action of Gy

-19 -
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on. some domain Dy is regular in the sense of Palais, so that all the G-invariant
solutions of A = 0 defined over Do are found by integrating a system of ordinary
differential equations, A/G = 0, defined over the image M, of D in the cuotient

manifold M.

Theorem 3.4. Suppose A4 =0 is a Q-completely integrable system of partial

differential equations in the Banach space B with an analytic, regular, projectable, one-

parameter symmetry group G. If u = f(x,t) is a G-invariant solution of A =0 with

initial data lying in B, then the combination corresponding to Q of the solution of the

reduced system of ordinary differential equations is meromorphic in My, the image of

€ xQ in M.

Proof. Since Go is analyvtic, the orbits of Go in the (x,t)-plane must be
analytic curves. If the solution of the reduced equation had a singularity other than a
pole on Mo, the corresponding G-invariant solution would have a similar singularity along
the orbit corresponding to the gingular point. This, however, would contradict Theorem
2.6.

Thus Theorem 3.4, in a certain restricted sense, states that the reduced eguation for
the G~invariant solutions must be of Painlevé type. However, since the initial data for
the G-invariant solutions must lie in B, it is not for every solution of the reduced
equation that ©Q is required to have only poles for singularities. In effect we can
consider only those solutions which either decay sufficiently rapidly at + « along the
real axis, or are periodic along the real axis. This restriction seems inescapable given
the particular method of proof. It would be extremely interesting to remove these

restrictions and prove the conjecture of the introduction in fully generality.
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4. Applications

I. The Generalized KAV Equations

Consider the equation

+ P
u uu +u =0, (4.1)

where ~p is a nonnegative integer. 1In Example 3.3, the equation governing the scale- i

invariant solutions was derived. However, this third order ordinary differential equation
is rather complex to analyze in full, and we therefore apply our results to a simpler class
of self-similar solutions, namely the travelling wave solutions. Here the symmetry group
is

Gc : {x,t,u) * (x + cA,t + A,u), AER,
where ¢ denotes the velocity of the wave. The invariants of Gc are £ = x - ¢t,u, and
the reduced equation for Gc-invariant solutions takes the form

w''' + uPu' - cu =0 ,

primes denoting derivatives with respect to £. This can be integrated once:

-1 p+1

1
L ) + - .
u P+ u cu + 3 4

Multiplying by wu', a further integration yields

2 =2 p+2 2
= — e + + + . N
e+ Vip+2) u cu du e (4.2)

for some constants d,e. Thus the general travelling wave solution will be expressed in

(u*)

terms of the hyperelliptic function corresponding to the squafe root of the (p + 2)-th
order polynomial on the right of (4.2). The following two results characterize the
singularities of the solutions of (4.2).

Theorem 4.1 (Painleve's Theorem). Consider the ordinary differential equation

G(u',u,£) =0,

where G 1is a polynomial in wu' and u, and analytic in £. Then the movable

sinqularities of the solutions are poles and/or algebraic branch-points.

Theorem 4.,2. Consider the equation

(u)? = r(w) , (4.3)

where R is a rational function of u. Then the solutions of (4.3) are all meromorphic in

€ if and only if R is a polynomial of degree not exceeding 4.




The nroofs may be found in Ince, {23!, and Hille, 22, p. 623), Note that if 1 Fkras
an algebraic branchk point, so also does any linear combination of u and its
derivatives. Therefore, for (4.1) to be linearlv completely inteagrable, (4.2) must satisfy
Theorem 4.2, Thus p = 0,1, or 2, and in these cases the solutions are given by elliptic
or trigonometric functions. Note that p = 0 corresponds to the linear case, p = 1 to
the KJV equation, and p = 2 to the modified KdV eauation, all of which are known to he
integrable by inverse scatterinrg.

To complete the demonstration that the generalized XdV egquations are rot linearly
completely integrable for p # 0,1,2, we must place the complete integrability in a
suitable Banach space B, and to do so we creck the asymptotic behavior of the travellina
wave solutions at + @, If we reauire that u,ux + 0 as |Ix| *+ ® then d=e =10 in
(4.2). Moreover tre polynomial on the right of (4.2) now has a double zero at u =0 and

1
/p. Standard technicues, cf. [47], allow us to

a simple zero at uo = [% (p + 1)(p + 2)c]
conclude the existence of travelling wave solutions with positive velocities decayving
exponentially for x| » o, and reaching an extreme value of U,. Thus for p odd, the
travelling waves are humps with U, the peak value, while for p even, both hurps and
trouahs occur. The important point, however, is the exponential decay of these waves for
[x! + », and the fact that for p # 0,1,2, they have complex nonpolar singqularities. If
trherefore we take for the Panach space B a snace of functions vanishing exponentially, we
have shown that the generalized ¥4V eqguations are not linearly completely integrable
in B for ©» *#,1,2, and this completes the deronstration that these ecuations can be
solved hy inverse scattering only when p = 0,1 or 2. This result is in accordance with
numerizal evidence, 15!, that only in these special cases do the equations have soliton
solutinns,

IT1. *nnlinear ¥lein-Gnrdsn Fauations

Tfonsider the ror~linear ¥lein-nordor eaquation in characteristic coordinates
u = f'(v) , (4.4)
xt

smere  f 15 an analvtic fun<tion of 1, real for real n, and prime denotes

larivative, ™o cases e will he most interested in are when f  is a polynomial or a

-]




finite sum of exponential functions. We will determine necessarv conditions on f for
{4.4) to be linearly completely integrable by analysis of the sinqularities of the
travelling wave solutions. If ¢ 1is the velocity, £ = x - ct, then the reduced equation
for the Gc—invariant solutions of (4.4) is
-cu'' = f'(u) . (3.5)

Multiplying (4.5) by u' and intearating yields

=S @ =t 4 x (4.5)
for some constant k. For simplicity we shall assume that k can h. chosen so that uy
(real) is a simple or double zero of f(u) + k and there is a second consecutive simple or
double zero for some real use. This assumption ensures that the initial data u(x,0) can
be chosen to lie in a suitable Banach space R:

i) if uy and u, are simple zeros, so that a solution of (4.6) oscillates

between u, and u,, we take R to be a space of periodic functions;

ii) if uy is a double and u, a simple zero, so that a solution of (4.6) decays
exponentially to u, as 1€] + », we take B to be a space of functions exponentially
converging;

iii) if vy and wu, are double zeros, so that a solution of (4.6) tends
exponentially to u, as £ + ® and to u, as £ » -» (or vice versa), we can again
take B to be a space of functions exponentially converging, but to different limits.

The following theorem {stated in the context of (4.4) although it applies generally)
is an immediate conseaquence of considering a linear combination of u and its
derivatives. 1t tells us what sinqularities are possible for solutions of linearly
completely integrable equations.

Theorem 4.3. Suppose for some constant k that the analytic function f(u) + X has

two _consecutive simple and/or double zeros on the real axis. Then, if the nonlinear Klein-

Gordon equation (4.4) is linearly completely integrable in the relevant Banach space

indicated above, it must be the case that any solution of (4.6) (with ¢ having the

opposite sign to f(u) + k between the zeros) has as singularities only poles or

logarithmic branch~points.




-——

that, for some k,f(u) + k has two congecutive simple and/or double zeros on the real

A logarithmic branch-point is by definition a singularity such that some linear

combination of derivatives has a pole. It arises in practice if the scattering operator

L depends only on U, U, rees, SO that Qfu] in turn depends only on derivatives, and to
demonstrate that this situation can indeed rise, consider the sine-Gordon equation
Uy = sin u .
It was indicated in Example 2.3 that this is completely integrable, and to examine it in
the context of Theorem 4.3 we take
f(u) = -cos u, k=0 .
The solution of (4.6) is then
V2 sin(% u) = sn{c-v2 (£ + &)},
where sn is the Jacobi elliptic function with modulus k = 1//5 , cf. [9]. This is well
defined for ¢ > 0. Now sn has simple poles on a certain rectangular lattice in €, and
so u has logarithmic singularities at these lattice points. The reason for the
appearance of these nonpolar singularities is the fact that u, rather than u appears in ’
the scattering operator L. We note that u, on the other hand does have only poles for
singularities. .

Theorem 4.4. Suppose that f(u) is a rational function, real for real u and such

axis. If the Klein-Gordon equation u = f'(u) is linearly completely integrable, then

xt

f 1is a polynomial of degree not exceeding 4.

The proof is immediate from Theorems 4.1-2.

To discuss the case where f is a polynomial of degree <€ 4, one can try other
similarity solutions of (4.4), or else quite different tests. For example, it can be
shown, [12], that when f 1is of degree > 2, so that f' 1is nonlinear, (4.4) has only
finitely many polynomial conservation laws, while a theorem of Gel'fand and Dikii, (17},
[18]), states that if a system of partial differential equations has a Lax representation,

then there are an infinite number of polynomial conservation laws.
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Next we consider the case where f is a finite sum of exponential functions

For simplicity, we restrict our attention to the case where aj = nja for some a € C

some rational numbers "j' By dividing a by the common denominator of the "j’ we may
assume the ny are integers. Now let v = exp(au), so that v' = avu'. Thus v
satisfies
c 5 n_ +2
-Swnfetev?) (4.7)
2a ]

liote that Theorem 4.2 cannot be applied here since v may have singularities not shared
by u. However, since u' =v'/av, it is necessary to find conditions on (4.7) such that
the function v'/v, for solutions Vv, has no movable algebraic branch-points. This
requires a more detailed investigation of the proof of Theorem 4.2. It suffices for our
purposes to note the following:

Lemma 4.5. Consider the ordinary differential equation

(v)2 = v Pp(v) ,

where P is a polynomial with P(0) # 0 and n is a positive integer. Then for any

50 € C there is a solution v with algebraic branch-point at Eo. This solution has a

Puiseux expansion

v(g) =

j a g - 50)3”

He-8

1

with a, # 0, and the rational number r is given by

(m+ 1" if n = 2m,

i)

o
1t

It

i) r=202m+ 37 if n=2m+ 1.

The proof of this result can be inferred from Hille, [22, pp. 681-682].
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Lemma 4.6. Suppose v has an algebraic branch-point at io. Ther v'/v has no

branch-roint at io if and only if v(&) = (f = &o)rf(ﬁ) for r rational and f

meromorphic_at EO.

Proof. Assume without loss of generality that Eo = 0, Let v have the Puiseux

expansion

vig) = £

he-8

aAEJr '
j=0 ’

where m is an integer and ao # 0. Let a, he the first nonzero coefficient for which

kr is not an integer, if such exists. Now

<=
il

-1 ; f s ; : R
where bo = ao and the first nonzero coefficient hﬁ with 9r not an integer is

-1
b = =a a ". Furthermore
k k o
15 '
vt o= & Z (m + j)ra.E,Jr .
3=0 >
Therefore .
L] 1 © 3
v - r
ra A
=0 -
kr
and the coefficient of # is
¢, = =mra a-1 + (m + k)ra a-1
k %o o f
wrich vanishes only whken a = Ne This proves the lemma.

Propeosition 4.7. Consider the ordinary differential equation
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Given So € €, there exists a soluticn v of (4,8) such that v'/v has an algebraic

branch-pgint at EO, unless {4.£) is of the special form

(4.9)

for some integer k.

Proof, Ilet Eo = 0 and assume hN +0, b n # 0. By lemma 4.4 all solutions must bhe

of the form v(§&) = irf(g) with r rational and f meromorphic at 0 if we are to avoid

an algebraic branch-point for v'/v. Thus
-1
(w12 = e e 102,

and

so that, ecuating the fractional powers of £, we sgee that bj = 0 unless Jjr = 2r + 1
for sorme inteqer 1. If n > 0, it follows from lemma 4.5 that bj = 0 unless

2mAd (m+ 1) for n=2m,

n

i) 3

4 mod (2m + 3) for n = 2m + 1 .

n

or ii) 23
In particular, the only neasative values of j which satisfy these congruences are
1 - y@n and =n, the first value occurring only when n is even.

Next set w = 1/v, Then (4.8) becomes

Since w'/w = -v'/v, w must satisfy the same conditions as v. Therefore, if
> 4, hj = N unless
i} § 22 mod v - 1) if o= 2M,
or 11V 23 T4 mod (2 - 2) {Ff o= 2w 1
The only positive valies nf 1 satisfyina these are N, vén + 1 and 2, the second only

if N is even. “ormparisnn nf the tun aets of conaruences then shows that (4.,R) must be of

the remiired fnre,
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Theorem 4.8, Suppose f(u) is a linear combination of exponential functions e J

with aj = nja, nj rational, a complex. Suppose further that £f(u) is real for u

real, and that, for some real k, f(u) + k has two consecutive simple and/or double zeros

on the real axis. If the Klein-Gordon equation Uy ™ f'(u) is linearly completely

integrable, then f must be of the special form

fu) = | c.el®, (4.10)
3=

whexe B is a rational multiple of «.

It is interesting that the form (4.10) for f includes the double sine-Gordon
equation
u = a sinau + b sin(l au) ,
Xt 2
for which numerical studies of Dodd and Bullough, [11], indicate the existence of soliton
solutions. A recent preprint by Gibbons and Fordy, [20], contains the result that the
special case of (4.10) when f£(u) = e?¥ + ¢"¥ does have a Lax representation, but it is

not known whether the result extends to a general function f(u) of the form (4.10).

III. Model Wave Equations of Whitham and Benjamin

The integro-differential eguation

u, + uu, + Hiul =0, (4.11)

where H 1is the integral operator

HIEN(x) = [ H(x - y)E(y)dy ,
-0
was proposed by whitham, [46], [47), as an alternative to the KAV equation for long waves
in shallow water which could also model breaking and peaking. Here H is taken to be the
Fourier transform of the desired phase velocity c¢(k), where k is the wave number. Of

particular interest is the case

c(k)-——-—212, v>0,
vo o+ k

=28~
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so that

1 =-vlx]|
H(x) = >y ¢

Note that H 1is the Green's function of the operator D2 - v2 =D so that (4.11) is
equivalent to the differential equation
+ = . .
U[ut+uux] u =0 (4.12)
It can be shown, [15], that (4.12) possesses travelling wave solutions u, with ful »n
as Ix| » =, and amplituies between 0 and some maximum height. Computer studies
indicate that these waves may be solitons, i.e. interact cleanly. One possiblyv undesirable
feature of (4.11) is the extremely fast propagation of short-wave components, and for this
reason Benjamin, Bona and Mahony, [7], proposed the alternative model
+ - = . ' .
u, vu H[ut] 0 (4.13)
Again, in the special case, (4.13) can be rewritten as
- = . o1
D[ut +u ] -u =0 (4.14)

In general, we will let 0 be any constant coefficient linear differential operator

wWe show here that the model equations (4.12), (4.14) cannot be integrable by inverse
scattering methods. As usual, consider the travelling wave solutions of these eauations,.
If ¢ denotes the velocity, then the reduced equation, after integration, is

D[% (u - c)zl + a(u+d) =20, (4.1%)
Here d is a constant of integration, a = 1 in the Whitham model, a = c in the
Renjamin model, and D now denotes d/df, £ = x - ct. Since n~-th order eauations
of Painlev; type have not been classified, we resort to Painlev;'s original "a=method" to
analyze the singularities of the solutions of (4.15). The basic result is found in Ince,
123, p. 319).

lemma 4.9. Suppose Alu,f{,a) = 0 is an analytically parametrized family of ordinary

differential equations for a in some domain { containing 0 as_an interior point. 1If




[, SO d

e = - e —ei—

2o

e A .~ gD 0 WA NPT TV

the general solution uf%,x) is uniform in £ for a ¢ O ~ {0}, then it will be uniform

for a = 0.

In our case, let & = % + aZ. Then if we consider u as a function of g, (4.1%5) .

becomes

1 2
(c D+ ac n +oeue + anco)[: (u - c)?] + a'alu + 4y =0,

where D now denotes d4/df. For o =0, this reduces to

Dn(% (w=-o =0,
the solution of which is

u=c + JF:Eﬁ

for an arbitrary polynomial Py of degree < n - 1. This, for appropriate Py has an
algebraic branch-point at ¢ = 0, so that, by the lemma, solutions of (4.15) must also
have non-logarithmic branch-points. (This involves a slight extension of the lemma above,
but it is easy to infer its truth from the proof given by Ince.) 1If these solutions also
satisfy decay or periodicity properties, Theorem 3.4 (together with Theorem 4.3) shows that ‘
model equations (4.12), (4.14) cannot be linearly completely integrable. In particular,
Whitham's equatinn with D = 02 - v2 is not integrable by inverse scatterina. '

IV. The PBM Equation

The equation
u_ + uu_ - u =10 (4.16)

was proposed by Beniamin, Pona and Mahony, [7), as an alternative model to the ¥dV eguation
for the descriptionn of long waves in shallow water. 1In [36] it was shown to possess only
three independent conservation laws, and therefore by the results of Gel'fand and Dikii
cannot be completely inteqrable Our consideration of this example runs into difficulties
hecause thre self-similar sonlutions do not satisfy any decay or periodicity properties, and
the func4inns 7 we ~an allow are limited, but we will indicate the method here.

First we rnokte thar (4,14) adrits the symmetry group

- X
f,%,m) » (x,2e t,e 1), AeR,

nf€ nzale wransforeatin-

e Irvariants € 5 are provided by x and w = tu, for t > 0,

and the ralined eogati Yor T=irrariant salarions is then
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W't ww' —ws=0, (4.17)
the primes denoting derivatives with respect to x. It can be readily checked, by the
procedure in Ince, [23], that (4.17) is not of Painlev; type. Indeed, it is of type i(b)
on page 330 of Ince. Applying the a-method as Ince does, one can readily check that
branch-points appear, although possibly only logarithmic, and this, granted the existence
of a suitable Banach space R, would show that the BBM equation is not Q-completely
integrable for @, say, the identity.
However, a closer investigation of the behavior of the real solutions of (4.17) is
required. Since x does not appear, it can be integrated to yield
(1 - w')ew' = ce bﬁwz (4.18)
In principle, this equation can again be integrated by solving for w' in terms of w. To
investigate the solutions qualitatively, note that w' =0 if and only if wz =2 log c,
¢ 2 1. The only double root is when c = 1, and only in this case do solutions decay at
+® or =%, However, it is readily seen that a solution decaying at one endpoint cannot
decay at the other, nor are periodic solutions possible. Thus we are unable to apply our

results to this case.

V. Lax Pairs of Composite Order

Gel'fand and Dikii, [17], (18], succeeded in classifying all Lax pairs of differential

operators of the following special type. Let

Lo= D"+ u 0" % 4 L. 4D+ oy

o
be a scalar differential operator of order n with u = (“0""'“n-2) independent C
functions, and D = d/dx. They showed that for each integer m not a multiple of n,

there is a differential operator

p = o Dm-2

m + pm,m-2 *oeee * pm,1D + pm,n

of order m, the p, i b2ing polynomials in the uj and their derivatives, such that the
’

Lax representation

-31-
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is a genuine, nontrivial system of evolution equations

u, = Km(u) . (4.19)

Moreover, the P are unique if we require the coefficients

m to have no constant

pm,j
term.

Congsider the stationary solutions of the system (4.19), i.e. those in which u 1is
independent of t. These satisfy the system Km(u) = 0, or equivalently, the "stationary

Lax representation"

[P L] =0 . (4.20)

Theorem 4.10. If the orders n, m of the operators L, Pp in the Lax

representation of (4.19) are not relatively prime integers, then stationary solutions of

(4.19) with arbitrary singularities in the complex plane exist.

Proof. Let k > 1 be the greatest common divisor of m and n. Consider the

operator

M= DX + v, D2 4 L+ vD+y,,
whose coefficients vj(x) are sufficiently differentiable for x € R but are otherwise
arbitrary functions. Then

Lo = M™%, om0 o= o™k

obviously satisfy the stationary Lax representation (4.20) and, moreover, using the
formalism of Gel'fand and Dikii, it is easy to prove that Pm,o is derivable from I..n’0
via the same formulae as gave Pn from L. Therefore each such My gives a stationary
solution of the evolutionary system (4.19).

Now suppose that Ln is any such operator, where n 1is a composite number. If there
exists a Gel'fand-Levitan type of integral equation for solving the inverse problem for the
operator Ly, then Theorem 3.4 would imply the meromorphic character of the group-
invariant solutions of the evolutionary system (4.19), using similar arguments to those
used in the integration of the Korteweg-de Vries equation. This, however, is in
contradiction to Theorem 4.10 for the case of time-invariant solutions. (The relevant

symmetry group is just translation in t.) This indicates that such a differential

operator of composite order does not have an inverse-scattering formalism in the sense that

-32-
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the Schrodinger operator does - either no such Gel'fand-Levitan equation exists, or the

) assumptions regarding analyticity are not justified. 1Indeed, we know of no such Gel'fand-

Levitan equation for any operator of composite order, e.g. for order n = 4,

o e —— o s —— .
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