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ABSTRACT(- -----

A completely integrable partial differential equation is one which has a

Lax representation, or, more precisely, can be solved via a linear integral

equation of Gel'fand-Levitan type, the classic example being the Korteweg-

de Vries equation. An ordinary differential equation is of Painleve type if

the only singularities of its solutions in the complex plane are poles. It is

shown that, under certain restrictions, if G is an analytic, regular

symmetry group of a completely integrable partial differential equation, then

the reduced ordinary differential equation for the G-invariant solutions is

necessarily of Painleve type. This gives a useful necessary condition for

complete integrability, which is applied to investigate the integrability of

certain generalizations of the Korteweg-de Vries equation, Klein-Gordon

equations, some model nonlinear wave equations of Whitham and Benjamin, and

the BBM equation.

AMS (MOS) Subject Classifications: 34A20, 35Q20, 35R30, 47H17, 57S20, 76B15,
76B25

Key Words: Completely integrable partial differential equations, Inverse
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SIGNIFICANCE AND EXPLANATION

Several very important nonlinear partial differential equations can be

solved by the method known as "inverse scattering". This in effect reduces

the solution of the nonlinear equation to that of a linear integral equation,

and it is obviously desirable, given any nonlinear partial differential

equation, to determine whether its solution is amenable to this technique.

Hitherto this determination has been largely a matter of chance, but the

present paper gives a relatively simple systematic test. One looks at the

ordinary differential equations satisfied by similarity solutions of the

nonlinear equation. If these ordinary differential equations are not "of

Painleve type", i.e. if they possess solutions having sincularities other

than poles, then the nonlinear equation is not soluble by inverse scattering.
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THE CONNECTION BETWEEN PARTIAL DIFFERENTIAL EQUATIONS SOLUBLE BY INVERSE

SCATTERING AND ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVE TYPE

J. B. McLeod and P. J. Olver

1. Introduction

The solution of certain nonlinear partial differential ecruations by inverse scattering

techniques has been the rubject of considerable interest in recent years. This techniaue

dates back to a fundamental observation of P. Lax, [26], that some puzzling earlier results

of Miura, Gardner and Kruskal, [33], on the relationship between the Kortewea-de Vries

equation and the eigenvalue problem for Hill's Pauation, could be placed in an extremely

lucid and general theoretical framework. Lax's basic idea was that if a partial

differential equation could be cast into the form

B,L] - BL - LB , (1.1)
dt

where L and R are linear (differential) operators on some Hilbert space with P skew-

adjoint, then the eigenvalues of L would be independent of time t. We will call [1.1) a

Lax representation of the given partial differential equation, and a system of partial

differential equations which can be so represented is often called completely integrable,

although, as will he seen later in this introduction, we shall in this paper find it

convenient to use a somewhat different definition of complete integrability. (The

terminology stems from the interpretation of the KdV equation as a completely intearable

Hamiltonian system, as discovered by Gardner, [16], and developed in great detail hv

McKean, van Moerbeke and Truhowitz, [30], [31].)

For the KdV equation, which is

u + 6uu + u = 0,t x xxx

the operators appearing in the Lax representation are

Sponsored by the United States Army under Contract No. DAAG2 -80C-0 41.



L -D 
2  

u

LR -{4D
3 
+ 3(Du + uD)}

where D = d/dx. The problem of finding the potential u from the spectral data of L,

known as the "inverse scattering problem", was solved by Gel'fand and Levltan, (19]. (See

also [14!, (42! for comprehensive introductions.) Their method involves the solution of a

certain linear integral enuation, the Gel'fand-Levitan eouation, which in general is of the

following form:

K(x,y) + F(x,y) + f K(x,z)H(z,y)dz - 0 . (1.3)

x

(Technically, (1.3) is the Marchenko form, [2g1, of the Gel'fand-Levitan equation.) Here

F and H are constructed from the relevant spectral data of L. Once X has been found,

the potential u is recovered from the values of K on the diagonal x - y. (In the

KdV case, u = 2D[K(x,x)].) Thus the basic technique for solving the initial value

problem for a completely integrable system of partial differential equations consists of

the following steps:

1) Given the initial data u(x,0), determine the appropriate spectral data of the

operator L at time t = 0.

2) Find the time evolution of the spectral data, and hence of the kernel functions

F and H used in the Gel'fand-Levitan equation.

3) Solve the Gel'fand-Levitan equation, reqarding t as a parameter, and thus

recover the solution u of the orininal system.

The inverse ccatterina techninue outlined above has been applied to a number of

physically relevant partial differential equations. Of particular interest is the work of

7akharnv, Manaeov and Shabat, [481-[53], on the nonlinear Schrodinger and other physically

interesting equations, an of Ablowitz, Kaun, Newell and Secur on a general class of

2 x 2 atrix systems, [2), and the three-wave interaction equations, [24). In all cases

the appropriate Sel'fand-Levitan e"iation assumes the form (1.3), although F, H and K

-2-
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may be matrix-valued functions. The formula for recovering the solution u from the

kernel K varies from case to case.

) The one notable drawback in this elaborate theory is that for a given system of

partial differential equations there has not to date been any systematic method of

determining whether or not it has a Lax representation and, if so, how to find the

operators B and L. Previous work has relied either on inspired guesswork, or else on

fixing the form of the operators B and L and seeing what systems of partial

differential equations result. In particular, recent work of Gel'fand and Dikii, [17],

[18], which lists several other references, has used abstract differential-algebraic

methods to give a general classification of pairs of differential operators B and L

such that (1.1) corresponds to a bona fide system of partial differential equations. This

approach, however, while providing a large number of completely integrable systems, is not

yet able to answer the above question of whether a given system is completely integrable.

The basis of the present paper is an observation of Ablowitz and Segur, [51, that the

equations for the group-invariant (self-similar) solutions of known examples of completely

integrable equations turn out to be ordinary differential equations studied extensively by

Painleve and his students around the turn of the century, [10], [381. (See also [22],

[233 for general accounts of the subject and further references.) These equations are

characterized by the property that all their solutions in the finite complex plane possess

only poles as singularities, and hereafter we will refer to an ordinary differential

equation with this property as an equation of Painleve type. (Painleve allowed also fixed

singularities of an arbitrary type, but we will not.) Hastings and McLeod, [21], exploited

this relationship to solve a nonlinear connection problem for the second Painleve

transcendent, and conjectured that the above relationship was not fortuitous:

Conjecture. If a system of partial differential equations is completely integrable,

and G is a symmetry group of this system, then the reduced system of ordinary

differential equations for the G-invariant solutions is of Painleve type.

This conjecture, if true, would provide a powerful necessary condition to test for

complete integrability. Here we will prove a somewhat weakened version of the conjecture,

-3-
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which nevertheless proves useful in several applications. There are two restrictions.

First, if, in the Lax operator L, some combination of the solution u and its spatial

derivatives occurs, say 9(u), then it is this combination (or combinations) that must

2have only poles as singularities. For instance, if L = D ux , then only Ux is

required to have poles, and thus we may allow logarithmic branch points as singularities of

the solutions of the reduced ordinary differential equations. Usually we will assume

that Q is a linear combination of u and its spatial derivatives, calling this case

linearly completely integrable. Secondly, the same combination Q must satisfy certain

preconditions for the inverse scattering formalism to go through; this means that, when

restricted to the real axis, Q either is periodic or satisfies decay conditions at

x = + , which implies corresponding restrictions on the solutions u that can be

considered. It is only for such solutions that Q(u) must be meromorphic. If a system of

ordinary differential equations has the property that, for such solutions u, the

combination Q(u) is meromorphic, we say that the system is of restricted Painleve type

relative to Q. Our basic result, in rough form, replaces "Painleve type" by

"restricted Painleve type" in the above conjecture.

The first requirement for stating and proving a precise form of the conjecture is to

define what is meant by a partial differential equation beina comnletely integrable.

Rather than take the Lax representation as our starting point, we shall adopt the more

practical view of the Gel'fand-Levitan equation being of primary importance. Thus a

completely integrable system of partial differential eguations is defined as one whose

solutions are found by solving a linear integral eguation nf special tvPe, cf. Definition

2.1 below. This viewpoint is necessitated by the fact that te formal Lax representation

theory of Gel'lfand and Dikii has not reached the point of stating an analogue of the result

of Gel'fand an,- Levitan for an arbitrary scattering operator L, although some formal

progress in this direction has been made in (281, (531. Since in all examples known to th-

authors the Gel'fand-Levitan equation is always of the form (1.3), It might seem reasonable

that this should be true in general, hut Application V in Section 4 below indicates that it

may be necessary to restrict L at least to being of prime order.

-4-



The main tool in our proof is a theorem of Steinberq, t43], which states that if

T(z) is an analytic family of compact operators in a Panach space, then (I - T(z))

provided this inverse exists for at least one value of z, is a meromorphic family of

operators. Under appropriate assumptions on the initial data of our completely integrable

system to ensure that the functions F and H in the Gel'fand-Levitan equation satisfy

certain analyticity criteria, we can conclude from Steinberg's result that Q must be a

meromorphic function of (x,t). Now suppose that G is a one-parameter, analytic, regular

local group of transformations acting on the space of independent and dependent variables

which leaves the set of solutions of the system of partial differential equations

invariant. Then the G-invariant (self-similar) solutions can all be found by integrating a

system of ordinary differential equations on the quotient manifold whose points correspond

to the orbits of G. (See Section 3 for details.) The analyticity of G implies that for

any G-invariant solution whose initial data satisfies the inverse scattering assumptions,

the function Q on the quotient manifold can have only poles for singularities. In other

words, the reduced system of ordinary differential equations must be of

restricted Painleve type relative to Q. This completes the outline of the oroof of our

main theorem; precise statements and proofs will appear in Sections 2 and 3.

In Section 4 we discuss some applications of this result. First we show that the

generalized KdV equation

ut + uPux + Uxxx

can be linearly completely inteqrable only if p = 0, 1, or 2. These exceptional cases

correspond to the Airy equation in moving coordinates, the KdV and the modified KdV

equations, which are well known to be completely integrable. Secondly we consider a

nonlinear K~lein-Gordon equation in characteristic coordinates

uxt f'V(u) *(1.4'

It is shown that if f(u) is a rational function, real for real u and with two

consecutive zeros, simple or double, on the real axis, and if (1.4) is linearly completely

integrable, then f is a polynomial of deqree at most 4. Further, if f(u) is a linear

.1



O.U
combination of exponentials e with the a all rational multiples of some complex

number a, again real for real u and with two consecutive simple or double zeros, and if

(1.4) is linearly completely integrable, then

2 u Ou l28u
f(u) = c2e +ce +c +c e + C2e

for some number 0. The next application shows that certain nonlinear model wave equations

considered by Benjamin, Bona and Mahony, (7], and Whitham, [461, cannot be linearly

completely integrable. The last example deals with the BBM equation, (7],

Ut + UU - uxxt =0 * (1.5)

Although this cannot be treated rigorously by the methods of the present paper, we show

that if the full conjecture were true, then (1.5) could not be linearly completely

integrable. From these results, it can be seen that our criterion for complete

integrability is a powerful preliminary test when considering whether or not a system of

partial differential equations can be integrated by inverse scattering techniques.

A recent preprint of iblowitz, Ramani and Segur, (3], also considers the above

conjecture. They prove a similar result, although they place a rather severe restriction

on the form of the functions occurring in the Gel'fand-Levitan equation for the group-

invariant solutions which is not sufficiently justified. Also, the only groups they

consider are groups of scale transformations; the more general groups that we consider

allow a much wider range of applications.

S
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2. Analyticity Properties of Completely Integrable Differential Eouations

Consider a system of partial differential eauations

A(t,x,u) = n (2.1,

1 m IS
where x,t E R and u (i

, . . . ,
u

m
) C R is a vector-valued function. We assume that the

initial value problem of (2.1) with

u(x,O) = f(x) (2.2)

is well posed for f in some Banach space B of functions, so that for t sufficiently

small, there is a unique solution u(x,t) of (2.1-2). In practice B is either a space

of functions decreasing sufficiently rapidly at + - or a space of periodic functions.

Usually the presence of appropriate conservation laws will ensure that the solutions are

actually global in t, but this will not be assumed a priori. The first task is to make

precise what is meant by (2.1) being completely integrable. Rather than use the usual Lax

representation of the eauation, we will assume a more practical outlook and take the

Gel'fand-Levitan integral equation as our starting point. As the examples demonstrate, in

all known cases there is such an integral eauation for solution of the inverse scattering

problem for the operator L in the Lax representation (1.1).

Definition 2.1. A system of partial differential enuations is completely integrable

relative to Q(u) in the ranacl, space B if there is a linear matrix intpgral equation of

the form

K(x,y;t) + F(x,v;t) + f K(x,z;t)H(z,y;t)dz = n , (2.3)
x

called the rel'fand-Levitan equation, satisfying the following properties:

i) F, 14, w are [1 x ? matrices of functions;

ii) r and 4{ are uninuely determined by the initial data (2.2);

iii) f-)r initial data in 8, and for all real x, y, all complex c, and t in

some 'omai' in C, the funntions F(x - Et,y - Et;t) and H(x - Ct,v - t;t) are

analvlir in k., t, and there is a Ranach space 8 (not necessarily the same as F) f')r

w F(-4 F~x - rt,v - :t;t) t 8 as a iinction rf y and the operatnr

-7-



T(x,t)f(y) = f f(z)H(z - Ct,y - £tlt)dz
x

is a compact operator in 8*;

iv) the Gel'fand-Levitan equation has a unique solution (in B*) for all x and at

least one t in f2;

v) the solution u of the system (2.1-2) can he recovered from the solution K of

the Gel'fand-Levitan equation via a relation of the form

Qlu(x,t)] = P[K(x,x,t)] , (2.4)

where 9 is some function of u and its spatial derivatives and P is a polynomial in

K and its spatial derivatives.

Thus to recover the solution u of a completely integrable system of partial

differential equations, we must solve the Gel'fand-Levitan equation for K, and then solve

the differential equation (2.4) for u. In practical examples, Q is a linear combination

of the spatial derivatives of u, and in this case the system will he called linearly

completely integrable. It should also be remarked that the requirement that iii) hold for

all complex c can certainly be relaxed, although there seems little practical point in

doing so, and that the domain S1 will customarily include the origin or at least have the

origin on its boundary (it might, as in the example of the YdV eauation below, be a sector

of a circle centre the origin).

We now illustrate the definition with two well known examples.

Example 2.2: The Korteweg-de Vries 1'.uation

This is the oriqinal example of the use of inverse scattering techniques, [263,

[32] . T ,. equat ion is

Ut +~u +Ux =0M (2.5)

and has a Lax representation with operators

L - -D - u , (2.A)

B = -{4D
3 + 3(Du + un),

-8-



where D= d/dx. In the case that these operators act on a dense subspace of L2 (R) v'e

appropriate spectral data of L consists of
A k2 -2

i) the eioenvalues A, = -k2'...'A = -kn'
1 1 n n

ii) the associated norming constants, cl,...,c n, defined so that if ,j is the
-k x

eioenfunction associated with A. satisfying ;.(x) - e J, x then
2 3

1 2
c = ,Kdx,

2
iii) the reflection coefficient R(k) for k real and positive, k A, defined

so that there exists a sniution : of L; = Ay" which satisfies the boundary conditions

-ikx ikxJe + V~k)e , x + +c'

1;(x) ~

-ikx

Te tox . -y

The time evclution of the spectral data is deterined by

A.(t) = .(O)
3 3

c.(t) = c (0) exp[Sk 3.ti ( 2.7)
3

R(k,t) = R(k,O) exp[Rik t

The Gel'fand-Levitan equation takes the form

K(x,y;t) + F(x + y;t) + jr K(x,z;t)F(z + y,t)dz = 0 , ( 2 .P)

x

and the solution of the KdV equation is recovered via the simple formula

1 ~u(x,t) = 2 !L K(x,x;t)(.nd

T; , kernel F of the el'fand-Levitan equation is ioien bv

F(x,t) = c (t)er(F-k x] + R(k,t)eik dk

j=1

anl this solution is valid provided the initial data u(x,O) = f(x) satisfies

A (1 + jxl)If(x)jdx < (2.11)

R'"" .: . .



The uniqueness of the solution of (2.8) in the KdV case is a standard result, and the

only item remaining to be checked is Definition 2.1 in condition iii). So far as

analyticity is concerned, the only part of F that could fail to be analytic is that

corresponding to the continuous spectrum of L:

1 f eikXk

Fc(x,t) - f R(k,t)e dk

S R(kO)exp[ik 
3

t +

If we take any reasonable space of initial data for 8, for example that given by (2.11),

then R(k,O) can be extended analytically into the upper half of the k-plane, and

IR(k,O)/k 21 is bounded as Ikl + w. (The function R is closely related to the spectral

density function m of Titchmarsh, and the analyticity and estimates can be obtained by

suitably translating the results in (44, Chapter V].) If therefore we write

Fc(x,t) - I f }R(k,0)exp(Rik t + ikxldk - F2 + F1 , say
- 0

and consider sufficiently F1 , then, if t is real and positive, we can deform the

integral from (0,-) to (0,ca), for any a with 0 < arg a < w i. We can now

increase arg t, but the range for a becomes 0 < arg a < -(i - arg t). Nonetheless

this does allow us to define F1 (x,t) as an analytic function of t for 0 < arg t < n.

(It is also an analytic function of x since for large k the term k
3
t dominates

kx.) If we decrease arg t, the range for a becomes - arq arg a < f , which

allows us to define F1 (x,t) as an analytic function of t for -w < arg t < 0, and so

in fact in the whole complex plane cut along the negative axis. Similar remarks apply to

Further, by using the deformed contours and integrating by parts (integrating eikx

and differentiating the remainder), we see that F P 8, the Hanach space defined by

-10-



I
(2.11), and that the operator T is compact in R, although S is certainly not the only

possible choice for B

Example 2.3: The AKNS Systems

A generalized eigenvalue problem considered by Ablowitz, Kaup, Newell and Segur, [1],

[2], continuing work of Zakharov and Shabat, [51], assumes the following form:

v = -iv + q(x)w ,

x (2. 12)

w = i~w + r(x)v

where 4 corresponds to the eiaenvalue and q(x),r(x) * 0 as jxj + -. If we include a

"time" dependence and suppose that the potentials a(x,t), r(x,t) evolve according to some

evolution equation in such a way that ; is independent of t and, say,

v = a(x,t,;)v + 6(x,t,)w
t (2.13)

Sw t = y(x,t,)v - a(x't,)w

then cross-differentiation between (2.12) and (2.13) leads to

a = -rB + oy
x

x ' 2iCB = qt - 2qa , (2.14)

y x 2i y = rt + 2r.

The equations (2.14) can also be reached via a Lax representation (1.1), if we take

(i -iqf: :
Sir -iD Y

The insistence that (1.1) should be valid when operating on solutions (V) of (2.12) leads

again to (2.14), and conversely.

Ry judicious choice of the functions a, 8, Y, the AKNS system (2.14) gives rise to a

larae variety of physically interesting equations, including the Kdv, modified KdV, sine-

Gordon, nonlinear Schrodinger, and others. For instance,

-- l-



q-u, r-u,

2 2a -21C - iul

8= 2Cu + iux

y = 2CU - iux

leads to the nonlinear Schrodinger equation
iu = + 2ulul2

iut -Uxx ,

whereas

S ux ,  r- ux

ia = - COS U

S= y =
" sin u

leads to the sine-Gordon equation

Uxt sin u

In fact, a system of AKNS type with any given dispersion relation can be found[

The spectral data for (2.12) is constructed as follows. For real, consider the

solutions satisfying the following asymptotic boundary conditions:

(1e-i~x 'c (_01 i~x~ ( )_1'e , x -

-(O)ei~x (I)e~' X +

Itt

Then

= -e(,t) + ,t)

for some a,b,a,b. If (I + ixtlq,(1 + fxI)r e L (RI, then a (respectively a) can, as

functions of ;, be analytically extended to the upper (lower) half plane, and their zeros

correspond to the eigenvalues of (2.12). Let F = Fc + F., where

F (Xt) = f (tt) eixd;
c 21t a( -t)

-12-



which corresponds to the continuous spectrum, and

N inx
F d(x,t) = -i [ ce

n1

which corresponds to the discrete spectrum consisting of the zeros, 4., of a(t) in theJ

upper half plane (for convenience assumed simple) and appropriate norming constants c.

Similarly construct F = Fc + Fd  from a and h. Then ifF 0-F
the Gel'fand-Levitan equation takes the form (with t-dependence suppressed)

K(x,y) + F(x + y) + f K(x,z)F(z + y)dz = 0
x

where

K 2  X 2

The potentials q and r are recovered via

q(x) = -2K1 (x,x), r(x) = -2K2 (x,x)

(Note that the sine-Gordon case gives an example in which the operator Q in (2.4) is

nontrivial.) Finally, it remains to discuss the time evolution of the spectral data.

tinder the assumption that

a(x't, + 0 (), 6(x,t,)- 0, Y(x,t,4) + 0

as Ixi , it can be shown that

a(;,t) - a(C,n) ,

b(,t) = b(,0)exp[-2cLo( )t,

ct) = c (0)exp-2c0(C )tI

(t) = (0)e3-

~-1.-13-



If, in addition, Il()/ I as I I * , then arguments similar to those used in the
0

previous example show that, for suitable initial data, F(xt) is analytic in t for

all x, and also analytic in x. A large class of AKNS systems satisfies these additional

assumptions.

We now investigate the properties of the solutions of a general integral equation of

Gel'fand-Levitan type. Our main tool is the following theorem of Steinberg, [431,

aeneralizinq a theorem of Dolph, McLeod and Toe, 131, for the case of Hilbert-Schmidt

operators.

Theorem 2.4. Let B be a Banach snace, and let T(z) he an analytic family of

compact operators defined for z e P C C. Then either I - T(z) is nowhere invertible for

z E 2 or (I - T(z))
-I 

is meromorphic for z c P.

Let us write the Gel'fand-Levitan enuation (2.3) in the symbolic form

(I + T(x;t))K(x,y;t) + F(x,y;t) = 0 , (2.15)

where T(x,t) denotes the family of integral operators

T(x,t)f(y) = f(z)H(z,v;t)dz . (2.16)
x

It will always be assumed that T(x,t) is a compact operator for each fixed (x,t). For

instance, this is guaranteed if

' f NH(Y,z;t)f2lydz <
x x

indeed, in this case T is Hillert-Schmidt.

To apoly Steinberg's theorem, we treat the time t as the complex parameter. (Note

that it would not do any aoo to look at x as this parameter since the domain of

integration for T(x,t) depends on x, an( so the operators could not possibly be

analytic for a large enough class of functions.) Now, for all x, y, if the kernel

"(x,y;t) depends analytically on t for t E Q, then the operators T(x,t) depend

analytically on t. If furthermore F(x,y;t) is analytic in t, then Steinberg's theorem

-14-
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implies that

K(x,y;t) te-(I + T(x,t))- F(x,y;t)

is, for each fixed (x,y), a meromorphic function of t. (it is one of the assumptions of

complete integrability that the inverse exists for at least one t.) Therefore

Q[u(x,t)] = P[K(x,x;t)]

uxis also a meromorphic function of t for each fixed x.
Theorem 2.5. If a system of partial differential equations is Q-completely integrable

~in tile Banach space B, and if the initial data u(x,0) F B, then Lhe function

Q[u(x,t)] is meromorphic in t for t c 2 and each fixed x.

A slight generalization of this theorem will prove to be of use in the sequel.

Suppose that the time axis is "skewed", by making the change of variables

(x,t) = (x + Ft,t)

for some real E. If u = f(x,t) is the solution to the "unskewed" equation, then

u = f(x,t) = f(x - et,t) is the solution in terms of the new coordinates. If we let

K(x,y;t) = K(; - Et,y - £t;t)

then K is a solution of a Gel'fand-Levitan equation of the form

K(x,y;t) + F(x - Et,y - Et;t) + K(x,z;t)H(z - Ct,y - Ett)dz = 0

x

Therefore the "skewed" equation is also completely integrable, which gives the following

theorem.

Theorem 2.6. If a system of partial differential equations is Q-completely integrable

in the Banach space B, and if the initial data are in B, then the function Q[u~x,t)]

is meromorphic in (x,t) for x f C, t c t1.

-15-



3. Symmetry Groups and Group-Invariant Solutions

Given a system of partial differential equations

&(x,u) =0, x C , u CRn , (3.1)

a symmetry group will be a local Lie group of transformations G acting on the space

Rm x Rn of independent and dependent variables which preserves the set of solutions of

(3.1). The group acts on the solutions by transforming their graphs. For simplicity, we

will restrict our attention to projectable groups, meaning those in which the

transformations are all of the form (x,u) = (W(x),V(x,u)). If u - f(x) is a solution,

the transformed solution will be given by the formula

u = f(x) = B(o -x), f(a Cx)))

provided a is invertible. The details of this theory can be found in (8], (34] and [37).

If G is a local, projectable, One-parameter group, its infinitesimal generator is a

vector field of the form

m n
v I x&-W + I I ( xu) -

ii ax j=1 auj

Denote the partial derivatives of the u
J 

by

= k k = (kI,...,k )
ax 

k  1 m

and let

S + I uj  ,

axi  jk k,i auk

where k,i - (kl,...,ki + 1. km), denote the total derivative with respect to x
i .

Define the prolongation of v to be the vector field

pr v + k au- (3.2)j~k ku

wherp

1; -D+ 1 "i •

i ax

-16-

- - ... + : : + + :+ .



(Here k km

D1 D2 ... D .) Then the following theorem provides the infinitesimal

criterion for G to be a symmetry group of a given partial differential equation.

Theorem 3.1. Let G be a connected local Lie group. Then in general G is a

symmetry group of the system of partial differential equations (3.1) if and only if

pr v(A) - 0 (3.3)

whenever A - 0 for all infinitesimal generators of G.

A precise statement and proof of this may be found in [34], or, in simplified form, in

[351.

Example 3.2. Consider the generalized KdV equation

A(x,u) u + upu + u f 0 , (3.4)ut --x xxx

where p is a positive integer. Let G denote the one-parameter group of scale

transformations

(x,t,u) + (e-Pxx,e 3PXt,e 2u), X E R

The infinitesimal generator of G is

v = -px 7- 3ptL+ 2u

From the prolongation formula (3.2), we find that

pr v = v + (p+2)ux + (3p+2 )ut * + (2p+2)uxx + (3p+2) +
ux 9_t uxx uxxx

Therefore

pr v[A] = (3p+
2
)ut + (3p+2)uPux + (3p+2)uxxx = (3p+2)A

so that the infinitesimal criterion (3.3) is verified. We conclude that if u = f(x,t) is

any solution of (3.4), so also is = e 2 ef(Px,e 3P~t). This may be checked directly.

In general, to find the symmetry group of a given system of partial differential

equations, one looks for all vector fields v satisfying (3.3). This necessitates the

solution of a large number of elementary partial differential equations for the coefficient

functions , J of v, which is easily done in practice, as in the shove mentionel

references.

-17-
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Now, given a symmetry group G, a G-invariant (or self-similar) solution of (3.1) is

a solution which is unchanged by the transformations in G. The fundamental property of G-

invariant solutions is that, roughly speaking, they may all be found via the integration of

a system of partial differential equations in fewer independent variables. To make this

precise, we must assume that G acts "regularly" in the sense of Palais, [39]. This

requires

i) that all the orbits of G have the same dimension, i,

ii) that, for any point (x,u), there exist arbitrarily small neighborhoods N such

that the intersection of any orbit 0 of G with N is a pathwise connected subset of 0.

(The prototypical group actions excluded by the second requirement are the irrational

flows on the torus.)

Under these two assumptions, it is well known that the quotient space M = Rm x R n/G,

whose points correspond to the orbits of G, can be naturally endowed with the structure

of a smooth (although not always Hausdorff) manifold. Moreover the G-invariant solutions

of (3.1) are all obtained by integrating a reduced system A/G - 0 of partial differential

equations on M, which necessarily has i fewer independent variables. Precise

statements and proofs of these results may be found in [34].

For our purposes, the construction of the reduced system for the G-invariant solutions

proceeds as follows: Local coordinate systems on the quotient manifold M are provided by

a "complete set of functionally independent invariant6 of G", cf. [37]. If G is

projectable, these are functions of the form

1(X ) .... M 1(x ), w 1(x ,u ) ... ,wn lx ,u

which are unchanged under the action of G. The functional independence means that the

Jacobian natrix

aw/ax aw/auJ



is everywhere nonsingular. The reduced system A/G 0 will then be found in terms of the

new independent variables Fi and the new dependent variables w5.

Example 3.3. Return to the generalized _dV equation an the group of scale

transformations G of the previous example. Note that G acts regularly on

Z - R
3  

{0}, the origin being a singular point. The quotient manifold M = Zo/G is aZ0

complicated, non-Hausdorff manifold. However, if we restrict our attention to the subset

defined by t > 0, then a complete set of functionally independent invariants of G is

provided by

= 
1
/
3 , w - t2 3

pu . (3.5)

Viewing w as a function of , we compute

U -2/3pwu=t w
2 4 2 :

2 -1 1 3 3p

1 23

1 - L

u =t w3w,
x

2
U =x t 3p w.0',

the primes denoting derivativeg with respect to C. Substituting these expressions into

(3.4), and factoring Out t 3 we obtain the reduced ordinary differential equation

S2 1 i2 w - 1 &w, + ww' + w ... = 0 (3.6)

Every solution of (3.6) gives rise to a scale-invariant solution of the generalized KdV

equation, via the transformation (3.5). In the special case p = 2 (the modified KdV

equation), (3.6) can he integrated once, so that

1 3 Iw"=--w + w
3 3

for some constant k. This may be recognized as the second Painleve transcendent, [23].

Now we restrict our attention to a Q-completely integrable system, A = 0, of partial

differential equations in two independent variables, (x,t). Let G be a one-parameter

local projectable symmetry group of the given system, such that the transformations in

G, when extendel to complex values of the variables (x,t,u), are analytic. Let Go

lenote the nrojecte' group action on (x,t)-space. Assvmp further that the action of Go

-19-



or some domain Do  is regular in the sense of Palais, so that all the G-invariant

solutions of 6 = 0 defined over D0 are found by integrating a system of ordinary

differential equations, A/G = 0, defined over the image M. of Do  in the muotient

manifold M.

Theorem 3.4. Suppose A = 0 is a Q-completely integrable system of partial

differential equations in the Banach space 8 with an analytic, regular, projectable, one-

parameter symmetry group G. If u = f(x,t) is a G-invariant solution of A = 0 with

initial data lying in B, then the combination corresponding to Q of the solution of the

reduced system of ordinary differential equations is meromorphic in Mo, the imaqe of

C x Q in M.

Proof. Since Go  is analytic, the orbits of Go  in the (x,t)-plane must be

analytic curves. If the solution of the reduced equation had a sinoularity other than a

pole on Ho, the corresponding G-invariant solution would have a similar singularity along

the orbit corresponding to the singular point. This, however, would contradict Theorem

2. 6.

Thus Theorem 3.4, in a certain restricted sense, states that the reduced equation for

the G-invariant solutions must be of Painleve type. However, since the initial data for

the C-invariant solutions must lie in 8, it is not for every solution of the reduced

equation that Q is required to have only poles for singularities. In effect we can

consider only those solutions which either decay sufficiently rapidly at + - along the

real axis, or are periodic along the real axis. This restriction seems inescapable given

the particular method of proof. It would be extremely interestinq to remove these

restrictions and prove the conjecture of the introduction in fully generality.

-20-
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4. Applications

I. The Generalized KdV Equations

Consider the equation

+u% + u =0 (4.1)
t x xxx

where -p is a nonnegative integer. In Example 3.3, the equation governing the scale-

invariant solutions was derived. However, this third order ordinary differential equation

is rather complex to analyze in full, and we therefore apply our results to a simpler class

of self-similar solutions, namely the travelling wave solutions. Here the symmetry group

is

G : (x,t,u) + (x + cx,t + X,u), X C R
C

where c denotes the velocity of the wave. The invariants of Gc are = x - ct,u, and

the reduced equation for Gc-invariant solutions takes the form

U' + uPu
l 

- cu' =0,

primes denoting derivatives with respect to . This can be integrated once:

U''
= 
'---!-Iu

p +
' + cu + d•

pp +1p+1

* Multiplying by u', a further integration yields2)2uP+2 2

U) = -2 p2u + cu + du + e , (4.2)(p + 1)(p + 2)

for some constants d,e. Thus the general travelling wave solution will be expressed in

terms of the hyperelliptic function corresponding to the square root of the (p + 2)-th

order polynomial on the right of (4.2). The following two results characterize the

singularities of the solutions of (4.2).

Theorem 4.1 (Painleve's Theorem). Consider the ordinary differential equation

Gu',u, ) ffi 0

where G is a polynomial in u' and u, and analytic in &. Then the movable

singularities of the solutions are poles and/or algebraic branch-points.

Theorem 4.2. Consider the equation

(u')
2  

= R(u) , (4.3)

where R is a rational function of u. Then the solutions of (4.3) are all meromorphic in

C if and only if R is a polynomial of degree not exceeding 4.

-21-
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The proofs may be found in Ince, [23!, and Hille, f22, p. 63 Note that if u )-as

an algebraic branch point, so also does any linear combination of u and its

derivatives. Therefore, For (4.1) to be linearly completely intearable, (4.2) must ;atisfy

Theorem 4.2. Thus p = 0,1, or 2, and in these cases the solutions are given by elliptic

or triaonometric functions. Note that p = 0 corresponds to the linear case, p = I to

the K3V equation, and p = 2 to the modilied KdV eauation, all of which are known to he

integrable by inverse scatterirn.

To complete the demonstration that the generalized KdV equations are rot linearly

completely intearable for p * 0,1,2, we must place the complete integrability in a

suitable Banach space 8, and to do so we check the asymptotic behavior of the travellina

wave solutions at + -. If we renuire that u,u, - 0 as IxI + -, then d = e = 0 in

(4.2). Moreover the polynomial on the right of (4.2) now has a double zero at u = 0 and1 i/
a simple zero at u. = [1 (p + 1)(p + 2)c]

/p
. Standard technicrues, cf. [47], allow us to

o2

conclude the existence of travelling wave solutions with positive velocities decaying

exponentially for Ix * , and reachina an extreme value of uo .  Thus for p odd, the

travelling waves are humps with up the peak value, while for p even, both humps and

trouohs occur. The important point, however, is the exponential decay of these waves for

Ix! - ", and the fact that for p * 0,1,2, they have complex nonpolar singularities. If

therefore we take for the Banach space B a snace of functions vanishing exponentially, we

have shown that the generalized KdV equations are not linearly completely integrable

in B for n A 1,1,2, and this completes the demonstration that these epuations can be

solved hy in-erse scatterinc only when p = 0, 1 or 2. This result is in accordance with

numerical e',idence, r151 , that only in these special cases do the eauations have soliton

snlutior.

II. -nlinear yKein-Gordnn Snuations

Conriler the nn irear vlein-pordor eauation in characteristic coordinates

uxt = f,(,) , (4.4)

f i- an analytic tunction of u, real for real u, and prime denotes

1, ti .... .4J c e I1 h- nost interested in are when f is a polynomial or a

-22-
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finite sum of exponential functions. We will determine necessary conditions on f f,r

(4.4) to be linearly completely integrable by analysis of the singulFrities of the

7 travelling wave solutions. If c is the velocity, x - ct, then the reduced equation

for the G c-invariant solutions of (4.4) is

-cu' = f'(u) (4. 5)

Multiplying (4.5) by u' and integrating yields

c 2
- (u') = f(u) + k (4.6)

for some constant k. For simplicity we shall assume that k can N, chosen so that u

(real) is a simple or double zero of f(u) + k and there is a second consecutive simple or

double zero for some real u2 . This assumption ensures that the initial data u(x,O) can

be chosen to lie in a suitable Banach space 8:

i) if u1 and u 2 are simple zeros, so that a solution of (4.6) oscillates

between u 1 and u 2 , we take B to be a space of periodic functions;

ii) if ul is a double and u 2 a simple zero, so that a solution of (4.6) decays

exponentially to uI as * , we take B to be a space of functions exponentially

converging;

iii) if u, and u 2 are double zeros, so that a solution of (4.6) tends

exponentially to ul as * and to u2  as + -- (or vice versa), we can again
J2

take B to be a space of functions exponentially converging, but to different limits.

The following theorem (stated in the context of (4.4) although it applies generally)

is an immediate conseauence of considering a linear combination of u and its

derivatives. It tells us what singularities are possible for solutions of linearly

completely integrable equations.

Theorem 4.3. Suppose for some constant k that the analytic function f(u) + k has

two consecutive simple and/or double zeros on the real axis. Then, if the nonlinear Kleir-

Gordon equation (4.4) is linearly completely integrable in the relevant Banach space

indicated above, it must he the case that any solution of (4.6) (with c having the

opposite sign to f(u) + k between the zeros) has as singularities only poles or

I} logarithmic branch-point'.

.- 2
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A logarithmic branch-point is by definition a singularity such that some linear

combination of derivatives has a pole. It arises in practice if the scattering operator

L depends only on ux,Uxx,..., so that Q[u] in turn depends only on derivatives, and to

dem3nstrate that this situation can indeed rise, consider the sine-Gordon equation

Uxt = sin u

It was indicated in Example 2.3 that this is completely integrable, and to examine it in

the context of Theorem 4.3 we take

f(u) = -cos u, k = 0

The solution of (4.6) is then

V2 sin(- u) = sn{c
-
1/ ( +

where sn is the Jacobi elliptic function with modulus k 1/r , cf. [9]. This is well

defined for c > 0. Now sn has simple poles on a certain rectangular lattice in C, and

so u has logarithmic singularities at these lattice points. The reason for the

appearance of these nonpolar singularities is the fact that ux rather than u appears in

the scattering operator L. We note that ux on the other hand does have only poles for

singularities.

Theorem 4.4. Suppose that f(u) is a rational function, real for real u and such

that, for some k,f(u) + k has two consecutive simple and/or double zeros on the real

axis. If the Klein-Gordon equation Uxt = f'(u) is linearly completely integrable, then

f is a polynomial of degree not exceeding 4.

The proof is immediate from Theorems 4.1-2.

To discuss the case where f is a polynomial of degree 4 4, one can try other

similarity solutions of (4.4), or else quite different tests. For example, it can be

shown, [12], that when f is of degree > 2, so that f is nonlinear, (4.4) has only

finitely many polynomial conservation laws, while a theorem of Gel'fand and Dikii, (17),

[18], states that if a system of partial differential equations has a Lax representation,

then there are an infinite number of polynomial conservation laws.
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Next we consider the case where f is a finite sum of exponential functions

m at.U

f(u) = ce C a E CL cO , c.,t.j

3=0

For simplicity, we restrict our attention to the case where a. = n for some a E C an]3 3

some rational numbers n,. By dividing a by the common denominator of the n,, we may

assume the n. are integers. Now let v = exp(au), so that v' = cvu'. Thus v

satisfies

- c 2 n. +2
-2 (v') = Z cv * (4.7)

Note that Theorem 4.2 cannot be applied here since v may have singularities not shared

by u. However, since u' =v'/av, it is necessary to find conditions on (4.7) such that

the function v'/v, for solutions v, has no movable algebraic branch-points. This

requires a more detailed investigation of the proof of Theorem 4.2. It suffices for our

purposes to note the following:

Lemma 4.5. Consider the ordinary differential equation

(v')2 = v-np(v) ,

where P is a polynomial with P(O) * 0 and n is a positive integer. Then for any

0 E C there is a solution v with algebraic branch-point at &o. This solution has a

Puiseux expansion

v(t) = a ( -.
j=1

with a, 0, and the rational number r is given by

i) r = (m + 1)
-  

if n 2m,

ii) r = 2(2m + 3)
-  

if n = 2m + 1

The proof of this result can be inferred from Hille, [22, pp. 681-682].

-25-
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Lemma 4.6. Suippose v has an aloetraic branch-point at Then v'/v has no

branch-noint at o if and only if v(F) = (I - r for r rational and f

meromnrphic at ,

Proo . Assume without loss of generality that F° = 0. Let v have the Puiseux

expan s ion

v(11) ,r
m r a .Cjr

where m is an integer and a * 0. Let a. he the first nonzero coefficient for which

kr is not an inteaer, if such exists. Now

_ :-mr D b jr

-I
where b = a anrl the first nonzero coefficient h with jr not an integer is

bk = -a a- Furthermore
k 0o

v= mr-1 (m - j)rajF;r
j=0

Thereforeii v 1
-= F-; [ jj

v =0

kr iand the coefficient of is

-1 -1
ck =-mraka + (m + k)raa ° 1

ko0

wl-ich vanishes only when a v . This proves the lemma.

Proncsition 4.7. Cnnsider the ordinary differential eouation

-, N

(v')- = .v . (4.P)
j=-n

-2R
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Given £ C, there exists a solution v of (4.A) such that v'/v has an algebraic

0branch-point at o"unless (4.P) is of the special form

22 2, v
j

l
+ 2

(v')2 C. + (4.9)

for some integer k.

Proof. Let = 0 and assume b * 0, b B 0. By Lemma 4.A all solutions must be
0 N -n

of the form v(&) =rf(1) with r rational and f meromorphic at 0 if we are to avoid

an algebraic branch-point for v'/v. Thus

W)2 2r (E-1 f )2(v.)2 = 2r(r -1f + f,)2

and

v= jrfj,

r so that, eouating the fractional powers of , we see that b. = 0 unless jr = 2r +

for some intener i. If n > r, it follows from Lemma 4.5 that b. = n unless

i) j 2 mod (m + 1) for n =2m,

or ii) 
2j - 4 nod (2m + 3) for n = 2m + 1

In particular, the only necative values of j which satisfy these congruences are

I -
1
/2n and -n, the first value occurring only when n is even.

Next set w = 1/v. Then (4.P) becomes

N
(w')2 b 4-jw) = Lbw

3wj=-n

Since w'/w -v'/v, w must satisfy the same conditions as v. Therefore, if

N > 4, h. = u nless

1) 2 mnl fk .. . 1) i f ":= 2P,

or 1i) 2j - 4 mA '2!* - 2) if = 2'4 + 1

Th only positi7e va] iep of i satirfyinn these are N, 1/2M + I And 2, the second only

if ": ir en. -n-niri,on or the two eets of coonruences then shows that (4.F) must be of

the reriui rel 'r-.
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Theorem 4.8. Suppose f(u) is a linear combination of exponential functions e

with a . nja, n rational, a complex. Suppose further that f(u) is reel for u

real, and that, for some real k, f(u) + k has two consecutive simple and/or double zeros

on the real axis. If the Klein-Gordon equation uxt - f'(u) is linearly completely

integrable, then f must be of the special form

2
f(u) = ce j u 

, (4.10)

where 8 is a rational multiple of a.

It is interesting that the form (4.10) for f includes the double sine-Gordon

equation

uxt - a sinau + b sin(- au)
xt 2

for which numerical studies of Dodd and Bullough, [11], indicate the existence of soliton

solutions. A recent preprint by Gibbons and Fordy, (20), contains the result that the

special case of (4.10) when f(u) - e2 u + •-u  does have a Lax representation, but it is

not known whether the result extends to a general function f(u) of the form (4.10).

III. Model Wave Equations of Whitham and Benjamin

The integro-differential equation

ut + uux + H[u x] - 0 , (4.11)

where H is the integral operator

H(fl(x) - f H(X - y)f(y)dy

was proposed by Whitham, [461, [47), as an alternative to the idV equation for long waves

in shallow water which could also model breaking and peaking. Here H is taken to be the

Fourier transform of the desired phase velocity c(k), where k is the wave number. Of

particular interest is the case

c(k) = 2 1 2 , V>0,

2 + k
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so that

H(X) L e-J'2v

Note that H is the Green's function of the operator D - v = D so that (4.11) is

equivalent to the differential equation

V[u t + UUx] + ux = 0 . (4.12)

It can be shown, [15], that (4.12) possesses travelling wave solutions u, with Jul + n

as lxl l , and amplitcies between 0 and some maximum height. Computer studies

indicate that these waves may be solitons, i.e. interact cleanly. One possibly undesirable

feature of (4.11) is the extremely fast propagation of short-wave components, and for this

reason Benjamin, Bona and Mahony, [7], proposed the alternative model

+ uu - H[u = 0 . (4.13)
t t

Again, in the special case, (4.13) can be rewritten as

V[u + uux] - ut = 0. (4.14)
t x t

In general, we will let V be any constant coefficient linear differential operator

n= ci) i , cn  0 .ii

We show here that the model equations (4.12), (4.14) cannot be integrable by inverse

scattering methods. As usual, consider the travellinq wave solutions of these enuations.

If c denotes the velocity, then the reduced eouation, after integration, is

V[- (u - c)
2] + a(u + d) = 0 .

2

Ilere d is a constant of integration, a = 1 in tte Whitham model, a = c in the

Penjamin model, and D now denotes d/dE, C = x - ct. Since n-tb order eauations

of Painleve type have not been classified, we resort to Painleve's original "a-metho" to

analyze the sinqularities of the solutions of (4.15). The basic result is found in Ince,

f23, p. 319].

Lemma 4.9. Suppose A(u,C,a) = 0 is an analytically parametrized family of ordinarv

differential equations for a in some domain £ containing 0 as an interior point. If

-2q-
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the aenerAl solution j :0 is uniform in F for a c P {0}, then it will be uniform

for a = 0.

In our case, let = a , g. Then if we consider u as a function of , (4.1 )

become-

(c n + n-1 2 n
n- +... +c ) -(u - c) + na(u + d)= ,

where D now denotes d/d . For a = 0, this reduces to

L (- (u - c) = 0
2

the solution of whicl' is

u = c + Vn

for an arbitrary polynomial Pn of degree ( n - 1. This, for appropriate Pn' has an

algebraic branch-point at = 0, so that, by the lemma, solutions of (4.15) must also

have non-looarithmic branch-points. (This involves a slight extension of the lemma above,

but it is easy to infer its truth from the proof given by Ince.) If these solutions also

satisfy decay or periodicity properties, Theorem 3.4 (together with Theorem 4.3) shows that

model equations (4.12), (4.14) cannot be linearly completely integrable. In oarticular,

2 _2
Whithar's equation with D = D - V is not integrable by inverse scatterina.

IV. The PRM Equation

The eauation

+uu Ux t = 0 (4.16)

was proposed by Benamin, Pona and Mahon,, [71, as an alternative model to the XdV equation

for the description of long waves in shallow water. In [36] it was shown to possess only

three independent conservation laws, and therefore by the results of Gel'fand and Dikii

cannot he comoletely inteqrable Our consideration of this example runs into difficulties

because tlhe self-similar solutions do not satisfy any decay or periodicity properties, and

the finctions ) we ca- allow are limited, but we will indicate the method here.

First we r.te tht (4.1r) admits the symmetry group

" : 't Ju) (x,e t,e u), A C R

of ; cale tr -rva-. -',ar.s r 0 are provided by x and w = tu, for t > 0,

and the r'1 -:e,] ,:-: ,, "-,r ";- i ant~'~- s ions is then



W'I + ww' -w 0 , (4.17)

the primes denoting derivatives with respect to x. It can be readily checked, by the

procedure in Ince, [231, that (4.17) is not of Painleve type. Indeed, it is of type i(b)

on page 330 of Ince. Applying the a-method as Ince does, one can readily check that

branch-points appear, although possibly only logarithmic, and this, granted the existence

of a suitable Banach space 8, would show that the BBM equation is not Q-completely

integrable for Q, say, the identity.

However, a closer investigation of the behavior of the real solutions of (4.17) is

required. Since x does not appear, it can be integrated to yield

1, 2
(1 - w)ew = ce( 4.18)

In principle, this equation can again be integrated by solving for w' in terms of w. To

investigate the solutions qualitatively, note that w' = 0 if and only if w
2 
= 2 log c,

c ) 1. The only double root is when c 1 1, and only in this case do solutions decay at

+- or -. However, it is readily seen that a solution decaying at one endpoint cannot

decay at the other, nor are periodic solutions possible. Thus we are unable to apply our

results to this case.

V. Lax Pairs of Composite Order

Gel'fand and Dikii, [17], [18], succeeded in classifying all Lax pairs of differential

operators of the following special type. Let

L, D' + Un_2 Dn-2 + ... + ujD + U0

be a scalar differential operator of order n with u = (u0 ,. .,Un_2) independent C

functions, and D = d/dx. They showed that for each integer m not a multiple of n,

there is a differential operator

S+ Pm,m-2 Dm 2 + + pm,1D + pm,O

of order m, the Pm,i bing polynomials in the uj and their derivatives, such that the

Lax representation

3L
n

t= [P ,L n
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is a genuine, nontrivial system of evolution equations

ut = Km(U) . (4.19)

Moreover, the Pm are unique if we require the coefficients pmj to have no constant

term.

Consider the stationary solutions of the system (4.19), i.e. those in which u is

independent of t. These satisfy the system Km(u) = 0, or equivalently, the "stationary

Lax representation"

[PmLn] = 0 ° (4.20)

Theorem 4.10. If the orders n, m of the operators Ln' Pm in the Lax

representation of (4.19) are not relatively prime integers, then stationary solutions of

(4.19) with arbitrary singularities in the complex plane exist.

Proof. Let k > I be the greatest common divisor of m and n. Consider the

operator

Mk = Dk + Vk_2Dk'2 + ... + viD + v0

whose coefficients vj(x) are sufficiently differentiable for x C R but are otherwise

arbitrary functions. Then

Ln,o = (Mk)nts Pm,0 = (Mk)m

obviously satisfy the stationary Lax representation (4.20) and, moreover, using the

formalism of Gel'fand and Dikii, it is easy to prove that Pm,O is derivable from Ln,O

via the same formulae as gave Pm from Ln. Therefore each such Mk gives a stationary

solution of the evolutionary system (4.19).

Now suppose that Ln  is any such operator, where n is a composite number. If there

exists a Gel'fand-Levitan type of integral equation for solving the inverse problem for the

operator Ln, then Theorem 3.4 would imply the meromorphic character of the group-

invariant solutions of the evolutionary system (4.19), using similar arguments to those

used in the integration of the Korteweg-de Vries equation. This, however, is in

contradiction to Theorem 4.10 for the case of time-invariant solutions. (The relevant

symmetry group is just translation in t.) This indicates that such a differential

operator of composite order does not have an inverse-scattering formalism in the sense that

-32-
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the Schrodinger operator does - either no such Gel'fand-Levitan equation exists, or the

assumptions regarding analyticity are not justified. Indeed, we know of no such Gel'fand-

Levitan equation for any operator of composite order, e.g. for order n = 4.

1
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