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ABSTRACT

Let A be a bounded linear operator in a Hilbert space. If A is
At *t ﬁ
normal then 1logle ull and log le ull are convex functions for all

u # 0. In this paper we prove that these properties characterize normal

operators.
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SIGNIFICANCE AND EXPLANATION

Consider the differential equation

ax

= A
at = %

(1)

in a Hilbert space H . Assume that A:H + H is a bounded linear operator.

Then any solution of (1) is of the form x(t) = ePtu . Suppose that A is a

i normal operator, i.e. AA* =2a*a . Then one can show that the function
loglx(t)ll is a convex function on R. Here Ilxl denotes the norm of x

E in E . The purpose of this paper is to study the converse of this

statement. It turns out that there is a distinction between the finite and

infinite dimensional case of H . In the first case the convexity of

loglix(t)l for all non-trivial solutions x(t) implies the normality of A.
In the infinite dimensional case this result does not apply for a general
A. We show, however, if we assume in addition that 1logly{(t)li is also convex

for all non-trivial solutions of the system

EX = A‘
(2) 3t 4
then A must be a normal operator. Ae
X
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The responsibility for the wording and views expressed in this descriptive
gsummary lies with MRC, and not with the authors of this report.
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A CHARACTERIZATION OF NORMAL OPERATORS
L 4 LX 3
Shmuel Friedland and Luc €. Tartar

1. Introduction.

~

Let H be a Hilbert space over the complex numbers C with én inner
product (x,y). Assume that A:H * H is a bounded linear operator. A
straightforward calculation shows (see the next section)

Lemma 1. Let A:H >* H be a bounded linear operator. If a*A - an" s

non-negative definite then 1ogueAtuH is convex on R for all u =z 0 .

: R At A
Thus if A is normal then logle "ul and 1leogle tull are convex. However,

there are non-normal operators A such that 0 < A*A - AA*. Here, as usual, !
for self-adjoint operators S,T the ineguality S < 7T denotes that T-S is
a non-negative definite operator. For example let H = 22 and choose A to
be the shift operator A(x1,x

*
A
loglle tu" is not convex for u = (0,1,0,++¢). This situation can not hold

2,"°) = (0,x1,x2,--'). In this case

in a finite dimensional H . More precisely we have '

Theorem 1. Let A = P + iQ, where P and O are bounded self-ad-oint

operators. Assume that P has only a point spectrum (i.e. H has ar

orthonormal basis consisting of eigen-elements of P ). Then A 1is normal ¢

and only if

2
(1) 5—2- (1oghe™tul)(0) > 0, for all w # 0 .
at
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Our main result is

Theorem 2. Let A:H +* H be a hounded linear operator.

PRt s iy

Then A

normal if and only if (1) and

2 *

(2) -d—-z- (logie® Eul)(o) > 0, for all w# o,
dat
hold.

We conjecture

Conjecture. Assume that (1) holds. Then

* *
O<AA-RA.
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2. Proofs.

At

Using the group properties of e we easily deduce

Lemma 2. Let A :H + H be a bounded linear operator. Then 1log HeAtuH

is convex on R for all u # 0 if and only if (1) holds.

A straightforward calculation shows

2
- * * *
£ (togte®®un (@) =14 w20 + 2" + 2 muw - (A Huw .
at
Thus (1) is equivalent to the inequality
* 2 2 *2 *
{3) ((A + A )Ju,u) < ((A" +A " + 28 A)u,u)(u,u).

The Cauchy-Schwarz inequality yields
* 2 *2
((A + A Ju,u) € ((A + 3 ) ui{ym) .
As

*2 * * *
+ 2A A~ (AA -~ RA )

(A + A*)2 = A2 + A
the assumption that A*A - AA* » 0 implies the inequality (3). This
establishes Lemma 1 .

To give an equivalent form of the inequality (3) we need the following

lemma.

Lemma 3. Let R,S,T:H » H be self-adjoint non-negative definite

operators. Then

(4) (Ru,u)2 < (Su,u)(Tu,u), for all u e H

if and only if

B e et e e

(5) 2R € o 'S + oT

for all positive a .

Proof. The inequality (4) implies (5) in view of arithmetic-geometric
inequality. Suppose that (5) holds. If (Su,u) = 0 then by letting a tend
to zero we deduce that (Ru,u) = 0 . Thus we may assume that (Su,u)(Tu,u) >

1
0 . In that case choose a = [(Su,u)/(Tu,u)] 2 to obtain (4). n




et A =P + iQ0 , where P and Q are self~adjoint. Then

Lermma 4.

(3) is equivalent to the inequality

(6) iop - 20) < (P - on)?

for all real a .

Proof. A straightforward computation shows that the inequality (3) is

invariant under the transformation A +» A + wl . So we may assume that

P20 . Also in terms of P and Q (3) becomes

(ru,m? < (1p% + 3 (20 ~ QP)Iuw,u) (u,u) .

In view of Lemma 3 the above inequality is equivalent to (6) for a > 0 .

As P > 0 (6) trivially holds also for « € 0 . Again (6) is invariant under

the transformation A * A + wI . The proof of the lemma is completed. 8

Lemma 5 let P,Q:H > H be bounded self-adjoint operators. Assume that

Pu=qu , u# 0 and suppose that (6) holds. Then

(7) P(Qu) = a(Qu) .
Proof., Let y=u+ sx, where s e Cand (u,x) =0 . BAs
(Bu,u) = ((p - aI)zu,u) = ((P - aI)zu,x) =0, B = % (QP - PQ)Y,
(6) dimplies

2re{8(Bu,x)} + |s|2(Bx,x) < |s|2((P - aI)zx,x).

Since s is arbitrary we obtain that (Buy,x) = 0 if (u,x) = 0. So

Bu = Bu . Finally the egquality (Bu,u) = 0 yields =0, i.e. Bu = 0.

This proves (7). [

Proof of Theorem 1. As P has only a point spectrum H decomposes to a

direct sum of invariant eigen-subspaces of P .

H= ) ®H, (P = ADH, =0 .
Aeo(P)

Lemma 5 implies that QHX c HA . That is PQ = QP which is equivalent to

the normality of A . [ ]

~4-
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At At
i Assume now that 1logle ull and 1logle ull  are convex on R for sl

u # 0 , According to Lemma 4 these conditions are equivalent teo

(8) (P - al)? < % (QP = PQ) € (P - al)?

for all a € R . Then Theorem 2 follows from our last theorem.

Theorem 3. Let B,P:H + H be bounded self-adjoint operators. Assume

that
H u
(9) -(P = al) < B < (P - aI) , u = 2m/(28 - 1)
for all real a , where m » £ ?» 1 are integers, Then B = 0 .,
Proof. Suppose that Pu = ou . Then (9) yields (Bu,u) =0 . Z2pply <he ;
aruquments of the proof of Lemma 5 to deduce Bu = 0. Decompose H = H, ¥ 4,
PH; < H; such that H, has an orthonormal basis consisting of eigen-elements

of P and H, - the orthogonal complement of H, - does not contain arv
eigen-elements of P . Thus BH; = 0 . Therefore it is enough to assume

that P has only a continuous spectrum. Without restriction in aenerality we
may asssume that the spectrum of P 1lies in [0,1]. Consider the spectral
decomposition of P

P = f1 AdE(A).

0
Let
i/n
E, =] dE(A) , i= 1, e00,m .
Yo (i-1)/n
Thus
n
1= § E , EE =38 E, , i3 = 1,000,n .
: 1 13 i3 2
p i=1
Choose a = (2i - 1)/2n . Then (9) yields
-y -}
(10) -{(2n) "E, < E,BE, < (2n) E. .
i i i
. Let y=u+ 8y, uct EiH' y € (I - Ei)H . Then for the same chonyces ¢

a (9) implies

2 - 2
l(Bu,u) + 2Re{s(By,u)} + Is! (By,y)| < (2n) M(u,u) + 1si“(v,v).




The same inequalitv applies if we replace s by =-s. Combine these two

inequalities to get

2IRe{s(By, W} < (2n) P(u,u) + Is1%(y,y) .

(2n) /2

Choose |s| = , arg s = =-arg(By,u) to deduce

u

(1)) (By,u)| < (2n)~ /2[(u,u) + (y,v1/2, uvue EiH, v e (I~ Ei)H .

Let X € o(B). We claim that
(12) Al < 3(2m) (W12

Indeed, there exists x € H such that

1Bx -Axl < (2n) "2, Ixh = 1 .
. 2 n 2 - 1/
as  Ixi€ = § IExI” = 1 we may assume that IExI > n 2 for some
i=1
1< 3<n. So
JE.Bx ~ AE.xl < (2n)” /2 .
3 3
Thus
-u/2

IA) € Vn ((2n) + 1EBxI)

We now estimate HEjBH « Clearly

"EjBﬂ = sup Re{(E Bv,w)} = sup Re{(E.Bv,E w)} <
Tl = lwh = 1 J Iyl = E wi=1 ]
sup Re{(E BE,v,E w)} +
IE. vl = IE wh = 1 I3
3 j
+ sup Re{(E .B(I-E.)Vv,E.w)} .
H(I-E )V = IE vl = 1 3 b J

In view of (10) and (11) we get

sup Re{(E .BE,v,E w)} < (2n) " ,
WE vl = IE . wh = 1 LR
j i
sup Re{ (E_.B(I-E )v,E.w)} < (2n)'“/2 .
n(x-aj)vu = IE i = 1 ] J ]
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u> 1
As B
SF:LCT/db

(12) implies o(B) = (0} .

Combine the above inequalities to deduce (12).

is self~adjoint we conclude that B

is arbitrary and
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