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ABSTRACT

A method of numerical solution is presented for a class of integral equa-

tions which includes linear and nonlinear equations encountered in applica-

tions. A brief sketch is given of methods from classical analysis (inversion

i of power series) and functional analysis (functional and monotone iteration),

together with some of their shortcomings (difficulty of implementation, error
' estimation, and special conditions on operators and initial approximations).
L : Interval functions, which may be considered to be sets consisting of all func-
i tions bounded above and below by given endpoint functions, are defined, and
. the recently developed theory of interval integration is used to construct in-

terval extensions of real integral operators. These interval operators are

used to define an interval iteration process which converges if the initial

interval contains a solution of the integral equation. Furthermore, the end-
point functions of the iterated interval functions provide upper and lower
bounds for the solution at each stage of the iteration, and the interval it-
eration operator can be constructed so that the results of each transformation
‘ ’ can be represented exactly. A numerical example is given of an interval it-

eration which gives a numerical solution of a nonlinear integral equation out-

side the limits of convergence of classical and functional methods. Some prob-

lems connected with the use of interval iteration are also discussed.
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SIGNIFICANCE AND EXFLANATION

Integral equations, particularly nonlinear integral equations, appear as
mathematical models in many applications. In order to extract information
from such models, these integral equations have to be solved, at least approx-

imately. A method for doing this is presented in this paper and compared to

some previous methods. For example, the methods of classical analysis for the
solution of integral equations require more or less complicated manipulations
with infinite series. There are problems of convergence and error estimation,

as the integrals involved usually have to be calculated numerically. Func-
tional analysis views the integral equation as a fixed point problem y = &y
for an integral operator ¢, and suggests solution by functional iteration
Yoe1 = ¢yn, the convergence of which depends on the choice of the initial ap-
proximation Yo and properties of the operator ¢. Although implementation of
functional iteration is simpler in concept than the classical method, the
transformation ¢ usually cannot be applied exactly, which leads to an error
estimation problem for the approximate sequence actually computed. Monotone
iteration avoids some of these difficulties by providing the possibility of
obtaining computable upper and lower bounds for the fixed point y; however,
implementation is possible only if the operator ¢ has special monotonicity
properties, and the initial lower and upper bounds XO' ;6 satisfy special con-
ditions.

Some of the shortcomings of classical and functional analysis can be
avoided by the methods of interval analysis. An interval function Y can be
considered to be the set of all real functions y such that y(x) < y(x) < ;(x)
on the interval a < x < b. However, even though the endpoint functions y, ;
are smooth, the set Y may contain real functions y which are nasty little dev-
ils with no continuity, differentiability, or integrability properties, fThis
creates a difficulty in the definition of integral transforms of interval
functions. This difficulty has been resolved by the recent theory of interval
integration (see MRC TSR #2087), which assigns an interval value to the inte-
gral of each real function. This permits construction of an interval exten-
sion T of the integral transform 4 with endpoint functions which can be in-

tegrated exactly. The interval iteration process Yn = Yn ﬂTYn defined using

+1
T will converge if Y, contains a solution of the integral equation; further-
more, cacl. step of t;c iteration provides upper and lower bounds for the solu-
tion. An example is given where this method works when classical and func-
tional analytic techniques fail. Problems with interval iteration, namely,
excess width (inaccuracy), stalling (Yl = YO), and verification of existence

of solutions are discussed rrankly, and some remedies are suggested.

The rné?bn@ibility fd}"EL%”Qb?EIhE"énd viowsnéxproégkahiﬁ-this desg}iptivéw
summary lics with MRC, and not with the author of this report.




APPLICATION OF INTERVAL INTEGRATION TO THE SOLUTION OF INTEGRAL EQUATIONS

L. B. Rall

Dedicated to Professor Lothar Collatz on his 70th Birthday

1. Integral equations. 1Integral equations of the form

b
(1.1) y(x) = fo(x,t,y(x),y(t))at, a<x <b,
a

are mathematical models of widespread utility in applications. Equation (1.1)
is an integral equation of second kind, characterized as a biargument equation
by Collatz [9]. This formulation is quite general; it includes the nonlinear

integral equations of Hammerstein type for

(1.2) d(x,t,y(x),y(t)) Kix,t)g(t,y(t)),

and Uhrysohn type if

(1.3) o(x,t,y(x),y(t)) = £(x,t,y(t)).
—
. . . Accession Fo
Furthermore, (1.1) is a Volterra equation in the case that - - .
NTIS CR3&
(1.4) $(x,t,y(x),y(t)) =0, t > x. prIC T7
Unannas veed
For simplicity of discussion, it will be assumed that the unknown function y Ju;tif;is"ifr
is sought as a real-valued function of the single real variable x. However, By L
many of the considerations introduced below extend to more general cases. Distributiﬂ
In actual practice, numerical rather than exact solutions are obtained ___Aﬁai}”“iai
NES
for integral equations (l.1). Such a numerical solution may take the form orDivt ' ‘nag
an approximate solution yn and an associated error bound €0 OF as upper and |
lower bounds for the solution y, that is, functions ;} y such that ]
. (1.5) y(x) <€ y(x) € y(x), a <x <b. '

Given upper and lower bounds (1.5), it is not difficult to derive an approxi-
mate solution and an associated error bound. This approach will be followed
in this paper, using the methods of interval analysis (15}, [16] and the re-

cently developed theory of interval integration [4). First, some numerical

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041
and Danish Natural Science Rescarch Council Grant No. 511-15849.




methods from classical and functional analysis will be sketched briefly for
comparison. The discussion will be limited to direct, as opposed to varia-

tional, methods.

2. Classical analysis. Classical methods apply to equations (1.1) in which

¢(x,t,y(x),y(t)) is a polynomial or has a convergent power series expansion
in y(x) and y(t). Such equations may be written

b
(2.1) y(x) = £(x) + AMg(x,t,y(x),y(t))dt, where g(x,t,0,0) = 0.
a

A simple example is the linear equation of Fredholm [11],

b
(2.2) y(x) = £(x) + AK(x,t)y(t)at,
a

for which classical analysis provides the solution

b
(2.3) y(x) = £(x) + AfT(x,t; M) E(t)at,
a

where T(x,t;*) = N(x,t;2)/8()) is the ratio of convergent power series in A.
The solution (2.3) of (2.2) exists if A(A) (the Fredholm determinant) does not
vanish, and is unique; nonexistence or multiplicity in the case A(A) = 0 are
also understood [11].

An example of a nonlinear polynomial integral equation is the quadratic

equation of Chandrasekhar [5) from the theory of radiative transfer:
1

— X
(2.4) y(x) =1 + J T+ 1 Y(t)y(x)y(t)at,
0

which has been investigated numerically extensively for the case Y(t) = A/2,
0 <A<l [17), [18], [19] , by a number of techniques. Other examples of
polynomial integral equations are the algebraic integral equations defined
by Schmeidler (22], [23].

Nonlinear boundary value problems also provide a source of classical in-

tegral equations [12]. For example, the equation of the forced pendulum [10]

is
1
(2.5) y(x) = £(x) + AfK(x,t)sin(y(t))dt,
C

where

I x(l -t), x <¢t,
(2.6) K(xrt) = 1

t(l -x), x2¢t,

and

1
(2.7) fix) = - fK(x,t)F(t)dt, F(-x) = -F(x), F(x + 2) = F(x),

0]
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F(x) being the driving function applied to the pendulum. Other examples of
classical nonlinear integral equations can be found in the works of Hammerstein
[12] and Lichtenstein ([13].

The basic solution technique, developed by E. Schmidt [24], consists of
a combination of the solution (2.3) of Fredholm with the classical method of

inversion of power series. The solution of (2.1) is obtained as

b
(2.8) yi{x) = £(x) + AfT(x,t,£(x),£(t);A)at,
a

where T(x,t,f(x),f(t);*) is an infinite power series in A with coefficients
which are integral power forms (polynomials) in £(x) and £(t). The following
comments may be made about the classical method:

(i) cCconvergence of the inverse power series may be difficult to estab-
lish, and may be limited. For example, Rall (17] shows that the inverse power

series solution of the Chandrasekhar equation

X
Xx + t

1
A
(2.9) y(x) =1+ ) } y(x)y(t)dt
0

converges for 0 < A < 1/(21n2) 0.72, omitting the values 1/(21ln2) < X < 1.

(ii) Implementation requires somewhat complicated algebraic manipulations

to obtain the terms of the inverse power series; furthermore, approximations
to the solution resulting from numerical integration and truncation of the in-
verse series lead to a problem in

(iii) FErrxor estimation which may be difficult, or at .least tedious.

Some of these difficulties may be overcome by the use of the methods of
functional analysis.

3. Functional analysis. Another approach to the solution of nonlinear inte-

gral equations is through the methods of functional analysis, which is analysis
in normed linear spaces (see, for example, the books by Collatz (7], (8]} for
basic definitions and examples). The fundamental idea is to formulate (or re-

formulate) the integral equation (1.1) as a fixed point problem

(3.1) y = ¥y

in a complete normed linear (Banach) space S[a,b] of functions having some
distinguishing property (continuity, square-integrability, etc.). For example,
in a direct formulation of (1.1) as a fixed point problem (3.1), the operator
? would be defined by

b
(3.2) (%2) (x) = [¢(x,t,z(x),z(t))dt, =z € S[a,b].
a

Appropriate conditions are imposed on the integrand so that the transformed




function ¢z also belongs to the space S[a,b]. There is a vast literature on
the solution of (3.1) by functional analytic methods. The techniques which
will be mentioned here are functional {(or simple) iteration, and monotone it-
eration.

4. Functional iteration. The form of the fixed point problem (3.l1) suggests

solution by iteration, that is, the formation of the sequence {yn} defined by
(4.1) y = Qyn, n=20,1,2,... .

This method will be called functional iteration. If ¢ is continuous, and the
sequence {yn} converges to a point y, then y will satisfy (3.1). A construc-
tive fixed point theorem will guarantee the convergence of the sequence (4.1)
for some Yo to a fixed point y of ¢ in some region YO containing yo. Such a

theorem will be useful numerically if it also provides an error bound
(4.2) €, 2 y - ynH, n=20,1,2,...,

where ifi e = 0, in terms of the norm |l - | for S{a,b]. Examples of construc-
tive fixed point theorems which provide error bounds are the contraction map-
ping theorem and the theorem of Kantorovich on the convergence of Newton's
method [19]. The following comments may be made about functional iteration:
(i) convergence of the sequence {yn} depends strongly, in most cases,
on the choice of the initial point yo, for which there is no general recipe.
For example, with the initial point yo = 0 in the space C[0,1l] of continuous
functions, the contraction mapping theorem guarantees convergence to the solu-
tion of the Chandrasekhar equation (2.9) only for 0 < A < 1/(41n2) = 0.36,
while the Kantorovich theorem gives 0 < A £ 1/(21n2) = 0.72 as the correspond-
ing range, which is essentially the same result given by classical analysis
[19). 1In some cases, this situation can be remedied by a better choice of ini-
tial points yo, but there are also problems with fixed points which repel the

sequence {yn) even for some y with |ly - yOH > 0 arbitrarily small.

0
(ii) Implementation of functional iteration is conceptually much simpler

than inversion of power series; however, it is usually not possible to apply
the transformation & exactly. This means that some approximations, such as
numerical integration, must be used, and instead of {yn}, an approximate se-

quence {zn} is actually computed.

(iii) Error estimation thus will require bounds for Hzn - ynH in addition
to the bounds (4.2) given by the theory. Although it is a challenge to find
such error bounds, the necessity to do so is hardly an advantage of the use of
functional iteration.

In some problems, more favorable results can be obtained by the use of

partial ordering of the space S[a,b].




5. Monotone iteration. A natural way to introduce a partial ordering into

a space S(a,b] of functions is by means of the definition that y < z if and

only if
(5.1) yi{x) € z(x), a<x <b.

A monotone iteration T is a process which generates a sequence of lower bounds

{En} and a sequence of upper bounds {un} for a fixed point y of #:

5.2 2 <& s ... 528 <.,. < < ... < < ... < < .
( ) 0 l n Y un ul UO

The iteration (5.2) is symbolized by

(5.3) (L ;s u

0l )y = T<1n ,un), n=20,1,2,...,

n+l

where {( , ) denotes an interval in the partially ordered space S[a,bl, that is,
(5.4) (v, w ={z|v<zz<sw, v,wzE€S[a,b]l.

The study of monotone iteration owes much to the work of Collatz {61, (7], [8]
and Schr¥der [25]1, [26].
The use of monotone iteration to solve the fixed point problem (3.1) de-

pends on a monotone decomposition of the operator . An operator % is said

to be isotone if v < w =» 0v < ®w, and antitone if v < w = v > dw. ¢ has a

monotone decomposition if one can write

(5.5) ¢ =0 +o,

with 01 isotone and 02 antitone. The iteration operator T defined by

. = ] , ¢ o 2
(5.6) ™4a,u) (Ol +°2u lu + ) )

will generate a monotone iteration if T(QO ,uo) c (10 ,uo) (181, 51.1). Fur-
thermore, the Schauder fixed point theorem ([8], p. 358) states that a fixed
point y of ¢ satisfying (5.2) will exist if (EN ,uN) is compact for some .
Monotone iteration lends itself to numerical approximation somewhat more
readily than functional iteration, for if a numerical iteration operator T
can be found such that T(2 ,u)> D7 ,u) , then the satisfaction of the con-

dition T(lo ,uo) c{L ,uo) guarantees that the sequences obtained from

0
(5.7) (& ,u) =DA%, u), n=0,1,2,...,
n n 0 0

will satisfy (5.2). Thus, the need for a separate error estimation can be
avoided. For example, Rall (18] gives an example of monotone iteration which
bounds the solution of the Chandrasekhar equation (2.9) above and below by
step functions for A = 0.5. The success of monotone iteration, however, de-
pends upon:

(i) Monotone decomposition of the operator ¢, which may not be easy (or

possible), and
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(ii) Convergence of the iteration depends on the choice of the initial

interval, as the condition

. . c ,u_?
(5.8) T(lo uo) (20 uO

must be satisfied. For example, the operator ¢ defined by (2.9) is isotone
for y 2 0, so one may take T = ¢ (¢2 = 0). Condition (5.8) is satisfied for

intervals of the form ( 1,M) cnly if 0 £ A £ 1/(21n2) and

(1 - vl -2A1n2) s M < L (1 + V1 - 2X1n2)

1
(5.9) A1ln2 Aln2

(18], so that limitations again apply in this simple problem.

(iii) Compactness of the interval ( QN ,uN) must be verified for some N in
order to establish existence of the fixed point y. Collatz ([8], §5.4) gives
some useful criteria for compactness of sets of functions defined by integral
operators of the types occurring in practice. However, it should be pointed
out that if the fixed point y is known to lie in the initial interxrval on the
basis of some independent argument, then the monotone iteration will provide
upper and lower bounds without the necessity of verifying compactness.

Interval iteration, which will be introduced below, is similar to mono-
tone iteration in that it provides upper and lower bounds for fixed points
which belong to the initial interval. However, the convergence of interval
iteration will be seen not to require monotone decomposition of the operator
nor satisfaction of an inclusion condition of the type (5.8).

6. Interval analysis. The basic units of interval analysis [15], [16] are

the closed, nonempty real intervals
(6.1) I=1(a,b] =1{x | a<zx<b}.

The set of real numbers R is identified as a subset of the set IR of intervals

(6.1), with each real number r corresponding to the degenerate interval [r,r]

with equal lower and upper endpoints. One writes
(6.2) v = [r,r]

for brevity.

In the same way that real analysis is concerned with transformations f
of one real number into another, symbolized by y = f(x), interval analysis is
the branch of mathematics which deals with transformations F of one interval
into another, for which the notation J = F(I) is used. A crucial property of
interval transforms is inclusion monotonicity, which will now be defined.

Definition 6.1. An interval transformation F is inclusion monotone if and

only if
(6.3) I cJ=»F(I) CcF(J).

Real and interval tramnsformations are related through the idea of an

vy




.ﬁ-v." j"‘ -

ol

e A AT TUS NN Wy e

interval extension of a real transformation.
Definition 6.2. An interval transformation F is called an extension of
a real transformation f if

(6.4) £(I) ={y vy=£(x), x€1I}cF(I)

for each interval I in the domain of definition D of f. 1In addition, if F is !

inclusion monotone, then it is called an interval extension of f.

What is called interval arithmetic is an interval extension of ieal

arithmetic [15], [16]. The rules for the four basic operations are:

[a,b] + [c,d]
[a,b] = [c,d]
[a,b] x [c,d] [min{ac,ad,bc,bd} , max{ac,ad,bc,bd}]; 1
[a,b] * [c,d] = [a,bJXIé‘,%J, cd > 0.

[a+c , b+dl;

fa-d , b-c];
(6.5)

In actual computation, only a finite set of numbers are available, the

so-called machine numbers. An interval I is said to be exactly representable,

or representable for short, if its endpoints are machine numbers. The pro-
cess of finding the smallest representable interval I which contains a given

interval J is called directed rounding (lower endpoints are rounded down, and

upper endpoints are rounded up). Directed rounding may be used to obtain in-
terval extensions F of real transformations which are exactly representable,
that is, F(I) is a representable interval for each representable interval I.
The use of interval extensions of this type allows automatic estimation of the
error of calculation of the corresponding real transformation [15], [16]1, as
if the data x are known to lie in a representable interval I, then the results
y = £(x) will be contained in the representable interval J = F(I). It is es-
sential that the interval extension F of f be inclusion monotone in order to
be able to perform directed rounding to obtain a representable interval ex-
tension. It will be assumed that the interval extensions cited in the follow-
ing are representable.

7. 1Interval functions. The concept of an interval function, introduced in

(4], is fundamental to the theory of interval integration.

Definition 7.1. An interval function Y assigns to each x in its interval

of definition I = [a,b] the interval
(7.1) Y(x) = [y(x),v(x)].

One writes Y = [X,';jr where the real functions y, ;Aare called the endpoint
functions (or simply endpoints) of Y.
An interval function Y may he identified with its graph, which is the

set of points




(7.2) Y = [a,b]x¥(x) = {(x,y) | y(x) Sy £y(x), a <x b}
in the x,y-plane. For the present purposes, however, it will be more useful
to consider an interval function Y as a set of functions, namely all real

functions y such that y <y < ;, that is

(7.3) Yy={y | yx) < y(x) < v(x), a £ x € b,

In this light, a real function y is simply the degenerate interval func-
tion
(7.4) Yy = {y .yl

with equal upper and lower endpoint functions.

An interval function Y, defined as the set (7.3), differs from an inter-
val (y,y) in a partially ordered space in the following way: 1In S[a,b]l,
an interval consists only of elements of the space (continuous functions or
whatnot), including the endpoint functions, while the endpoint functions
y < ; of an interval function Y are arbitrary, and the only property of a
real function y € Y which is required is that (7.3) is satisfied. Thus, even
if the endpoint functions y, ; of Y are smooth, Y may contain functions which
have no continuity, differentiability, or integrability properties in the
ordinary sense. The theory of interval integration developed in [4] resclves
this difficulty.

8. Interval integration. As constructed in [4], the interval integral of an

interval function Y over an interval I = [a,b] on which it is defined is the
interval

b - —
(8.1) Jroax = (f yxax, [lyooax),

a -

where II denotes the lowcr Darboux integral of a function over I (the supremum

of the integrals of all step functions less than or equal to the function),

and II denotes the upper Darboux integral of a function over I (the infimum of

the integrals of all step functions greater than or equal to the function) [14).
As these Darboux integrals always exist in the extended real number system
(14], the theory of integration of interval (and hence real) functions is ex-
tremely simple in this sense [4].

Theorem 8.1. An interval function Y is integrable over each interval I
on which it is defined.

Altrough simple in character, interval integrals have many of the proper-
ties of real integrals. Some of the most important are [4]:

Theorem 8.2. Interval integration is inclusion monotone with respect to

integrands; that 1is,




b b
(8.2) Y cz = [Y(x)ax © [Z(x)dx.
a a
In {(8.2), inclusion of interval functions simply means set inclu.ion with
respect to their graphs ({7.2) or as sets of functions (7.3).
Theorem 8.3. Interval integration is an extension of real intcgratinon
it the sense tlrat if the real function y is Lebesgue (L) integrable, “hen
b b
(8.3) (L) [y (x)ax € [y(x)ax.
a a
Interval integration is actually a Riemann-type integration. I1f the
real function y is Riemann (R) integrable, then

b b
(8.4) (R) fy(x)dx = [y(x)ax,
a a

which follows directly from (7.4) and (8.1) as, by definition, a function i:=
Riemann integrable if and only if its upper and lower Darboux integrals are
equal [14].

From Definition 6.2 and Theorems 8.1 and 8.2, there fcllows

Theorem 8.4. Interval integration is an interval extension of real
(Riemann and Lebesgue) integration.

Interval integrals also have a mean (interval) value property, and in-
definite interval integrals have continuity and differentiability propcrtics
similar to real integrals {4}. For the purposes cf this parer, only the fol-
lowing relationships between interval and Riemann integrals wi'? be needed.

Theorem 8.5. If y, ; are Riemann (R) integrable, then

b b b
(8.5) Jr(x)ax = [(R) [y(x)dx , (R) fy(x)ax].
a a a

Equation (8.5) follows from (8.1) and the definition of the Riemann in-
tegral [14]. The importance of this result is that it allows the constru tion
of representable interval extensions by choice of uprer and lower endroint
functions which have known Riemann integrals (piecewise polvnemials, etc.).

The following result (4] will also be useful, as it gives a necessavy
and sufficient condition for an interval integral to be degenerate {th.=t 1o,
a real number).

Theorem 8.6.

b
(8.6) f[Y(xyax = [r, ]
a
if and only if each real function y € ¥ is Riemann inteaqrable, and
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b
(8.7) r = (R) [y(x)ax, y € Y.
a

Before going on to an application of interval integration, it should be
pointed out that intervals, and hence interval functions, do not form linear

spaces. For example, from (6.5),
(8.8) fo,11 - (0,11 = (-1,1)],

there being no inverse element for addition of nondegenerate intervals. Hence,
interval analysis is a mathematical topic distinct from functional analysis.

9. Interval iteration. Using interval integrals, an interval extension T of

the integral operator ¢ defined by (3.2) can be constructed in the following
way: Form a {(representable) interval extension F of the function ¢, and de-
fine T by

b
(9.1) (1Y) (x) = [F(x,t,¥(x),¥(t))dat,
a

which will be a (representable) interval function for (representable) interval
functions Y(x).

Definition 9.1. The sequence {Yn} defined by

(9.2) Yn+l=YnﬂTYn, n=20,1,2,...,

is said to be generated by interval iteration, starting from the initial in-

terval YO
Convergence and divergence of the sequence {Yn} will now be defined.
Definition 9.2. The sequence defined by (9.2) is said to be divergent
if
(9.3) Yy = @ (empty)
for some N.

Otherwise, the sequence is convergent, which means that

(9.4) Y = Y = N Y
n:

is nonecmpty, as the intervals Yn are closed, and

> ... DY DL,
(9.5) YO Yl ] n

by (9.2).

Theorem 9.1. If the initial interval contains a fixed point y of ¢,
then the interval iteration (9.2) will converge.

procf: By construction, if y € YO is a fixed point of ¢, then y € TYO;
thus 7 < Yl and vy € Y ,Y3,...,Yn,... by mathematical induction. Thus {Yn}

2
is a zequence of nonempty sets, which is conveirgent by definition. QED.

_10_
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Interval iteration provides upper and lower bounds for fixed points y

of i i = '— '
¢ in YO for Yn [xn yn] one has

(9.6) xn(x) < y(x) < ;;(x), a < x <b.

Of course, (9.3) cannot happen if YO contains a fixed point y of ¢. This
gives

Theorem 9.2. If the interval iteration diverges, then there is no fixed
point y of ¢ in the initial interval YO.

This is simply the contrapositive of Theorem 9.1, and provides a conclu-
sive demonstration of nonexistence in case (9.3) holds.

Interval iteration thus stands in a converse relationship to functional
iteration. 1If the sequence {yn} defined by 4.1) converges to a point y € YO'
then this establishes existence of a fixed point y of & in Yo, for continuous
d. On the other hand, if ¢ has no fixed point in YO, then the sequence {yn}
cannot converge to a point of YO, it must diverge from Yo. In this sense,
the relationship between functional and interval iteration is shown in Table

9.1.

Functional Iteration y = dy . Interval Iteration Y =Y NTY
n+l n ‘ n+l n n

Cconvergence = Existence J Existence = Convergence

Nonexistence = Divergence Divergence = Nonexistence

Table 9.1. Functional and Interval Iteration

In actual computing practice, there are only finite sets of lower and up-
per bounds available. Thus, all convergent interval iterations will be ob-

served to converge in a finite number of steps, that is

(9.7) YN+1 = YN # @

for some N. This is called finite convergence. In theory, of course, the

limit (9.4) may require an infinite number of iterations, but the iteration
(finite or infinite) can be stopped at any point a satisfactory answer is ob-
tained from the standpoint of accuracy.

10. Convergence in width. This is related to the idea of an interval con-

traction [1l].

bnfinition 10.1. The width of an interval function Y on an interval

I = {a,b] is




_ sup _ sup.= _
(10.1) wiy) = o w(Y(x)) er{y(x) y(x) }.

It follows from this definition that w(Y) = 0 if and only if Y =y, a
real (degenerate interval) function.

pefinition 10.2. The interval iteration sequence {Yn} defined by (9.2)

is said to converge in width if it is convergent and

lim _
(10.2) e w(TYn) = 0.

Convergence in width obviously implies convergence to a real function,
furthermore, the following result holds.
Theorem 10.1. If the sequence {Yn} defined by (9.2) converges in width,
then
lim
(10.3) Y= e Yn

satisfies the integral equation (l.1) in the sense of Riemann integration,

that is
b
(10.4) y(x) = (R) [¢(x,t,y(x),y(t))dt, a < x < b.
a
Proof: The convergence (10.3) in width implies y = Ty, hence .
b
(10.5) Y(X) = IF(x'tIY(x) ry(t))dtl
a .

a degenerate interval integral for each x. As ¢(x,t,y(x),y(t)) € F(x,t,y(x),y(t)),
(10.4) follows from Theorem 8.6. QED.

11. A numerical example. As a simple example, a calculation was done of an

interval iteration applied to the Chandrasekhar equation (2.9) for X = 1.0,
which is outside the range 0 € X < 21n2 in which the previously considered
methods from classical and functional analysis could be applied. The initial
interval is taken to be YO = [1, 3}, and the interval extension consists of

bounding the integral above and below by step functions, making use of the

fact that the integral transformation of the step function
(11.1° o(x) = Mi, si_1 < X < si, i=1,2,...,n,
where s_ =0, s =1, is
0 n
A = .
(11.2) () (x) = 1 + = xM.» } In{(x + s )/(x+s )M,
2 i j=1 3 j-l j
si.1 < X < Si' i=1,2,...,n. The function (11.2) is monotone increasing -

in each subinterval, so upper and lower bounds were obtained by evaluating

the transform of the upper step function at the right ends of the intervals,
and the transform of the lower step function at the left endpoints. Directed

rounding to two decimal places was employed, and the actual calculations were

-12 -

R ' —— Q........../ L.."*“ P . T




B A

ol

R e e i

done with an HP-33E pocket calculator with si =1i/8, 1 = 0(1)8. The approxi-

mate solution y was taken to be the harmonic point

(11.3) y(x) = h{a,b] = 2ab/(a + b)

of the calculated interval a = y(x), b = ;(x), which minimizes the maximum

percentage error

(11.4) p = pla,b] = 100+(b - a)/(a + b)

over the interval {[21]. The results are summarized in Table 11.1.

x { Y y i y | Error
0.000 f 1.00 | - f 1.00 ' 0.0%
0.125 | 1.22 | 1.45  1.33 . 8.7%
0.250 i 1.38 | 1.90 1 1.60 ; 15.9%
0.375 | 1.52 | 2.41 i 1.86 : 22.7
0.500 { 1.65 | 3.00 { 2.13 ; 29.1%
0.625 3 1.76 | 3.00 5 2.22 | 26.1%
0.750 | 1.86 | 3.00 | 2.30 | 23.5%
0.875 I 1.95 | 3.00 | 2.36 ; 21.3%
1.000 | 1.95 @ 3.00 | 2.36 | 21.3%

Table 11.1. 1Interval Solution of (2.9) for A = 1.0.

The results given are crude, but were obtained with very little effort,
and can be used as initial intervals for a more refined calculation. Some-
what better results can be obtained with the choice si = (i/8)2, i = 0(1)8,
as used in (3], and the replacement of step functions by piecewise linear
functions results in a large increase in accuracy at the expense of a little
more computation, a main result of {2], {3]. The point of the above calcu-
lation is that it gives a qualitative idea of the behavior of y(x), and was
obtained outside the range of straightforward application of classical and
functional analysis, for example, the monotone iteration described in (1€},
which required an enormous amount of computer time to attain four decimal place
accuracy for the case A = 0.5.

12. Problems with interval iteration. Some features of interval iteration re-

quire further investigation, and should be considered in connection with its
computational application.

(i) Existence nf fixed points must be verified independently; convergence
of the interval iteration is a necessary, not a sufficient condition.
This may not be much of a barrier in actual practice, as cven nonconstruc-

tive fixed point theorems may be used in combination with interval iteration.

-13_
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(11) Excess width may be observed in the limit interval Y of a conver-
gent interval iteration. This may be defined as follows: Suppose that S is

the set of fixed points of ¢ in the interval YO. S may be enclosed in an in-

terval Y* = [y* ,;31 with endpoint functions defined by
y*(x) = inf{y(x) i y €5}, a <x <b,
(12.1) _ |
y*(x) = sup{y(x) ' y € 8}, a < x < b.

It follows from S YO that Y¥* c Yn, n=20,1,2,..., and hence ¥* c Y. Thus,
Y* is the "best" result which can be obtained by interval iteration starting

from YO' and the quantity
(12.2) E(Y,Y*) = max {wly ,y*] , wiy*,y]}

is called the excess width of Y over Y*.

One way to reduce excess width is by making the interval extension T of
¢ a sufficiently accurate approximation. Caprani and Madsen [1) have shown
that if ¢ is a contraction, and T approximates ¢ to o{(w(Y)), then the interval
iteration (9.2) will converge in width, an hence have excess width zero. 1In
[2), methods for construction of such accurate approximations are shown, using
mean value forms, with numerical examples given in [3].

(i1i) Stalling of an interval iteration occurs if YO c TYO, which means
that Yl = YO. Here, no information has been lost, but none has been gained,
either. Kemedies for stalling include more accurate approximation of ¢ by the
interval operator T, and "suitable choice" of the initial interval YO. As in
the case of the choice of the initial point yo for functional iteration, no
general rules can be prescribed for the latter task. However, it might be ex-
pected that the choice of a set containing a fixed point might be easier on
the basis of outside information about the problem than the selection of a
single point close to the solution.

In the application of interval iteration, the key step appears to be the
construction of a sufficiently accurate interval extension in the initial
i-hase. Once the interval iteration is started, it automatically yields lower
and upper bounds for the solution of the integral equation, which can be used
toc construct approximate solutions with error bounds, as in the simple example
in (11. Further implications and applications of interval iteration will be

reported in subsequent papers.
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20. Abstract, continued

initial approximations). Interval functions, which may be considered to
be sets consisting of all functions bounded above and below by given end-
point functions, are defined, and the recently developed theory of interval
integration is used to construct interval extensions of real integral

operators. These interval operators are used to define an interval iter-

ation process which converges if the initial interval contains a solution
of the integral equation. Furthermore, the endpoint functions of the
iterated interval functions provide upper and lower bounds for the |
solution at each stage of the iteration, and the interval iteration oper-

ator can be constructed so that the results of each transformation can

be represented exactly. A numerical example is given of an interval it~

eration which gives a numerical solution of a nonlinear integral eguation

outside the limits of convergence of classical and function methods.

Some problems connected with the use of interval iteration are also discussed.
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