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SIGNIFICANCE AND EXPLANATION

A basic problem in numerical analysis is the computation of the roots of

a nonlinear system Fx = 0, where F : X + X and X is a space of N-

tuples. Newton's method consists of the iteration,

x0  chosen, Xn = Xn_1 - F'(xnl)-I 1Fxn ,  n ; 1

where F'(xn 1) is the Jacobian of F at xn1, thus generating a sequence

of N-tuples x = (n , .... & nN), which will hopefully converge to an nl n2'" nN

solution x = 2 ,...,A ). The basic idea of the method is to take each

vector xn as the solution of an approximating system of N x N linear

equations. The Kantorovich theorem gives specific conditions under which the

iterates xn will converge to a solution x , establishing in the process

the local existence and uniqueness of that solution, and it also yields

computable upper and lower bounds for the errors lx - x nU. For mathematical

expediency, this famous theorem is often stated in terms of operator equations

in Banach spaces, but its major application to actual computer work is

restricted to finite systems of equations as described above. Although the

theorem has been established conclusively in 1948, there is a continuing

effort on the part of researchers to find the best possible and sharpest error

bounds under the hypotheses of the theorem. In practice, when guaranteed

accuracy is needed, error bounds provide exit criteria, viz., means of

stopping the computation when an approximant has a prescribed accuracy. Thus

the sharpness of error bounds is important, since it translates into saving of

romnlter time. This report presents a complete updato of the theorem, qivinq

rprenl ani new sharper error bounds.

T rpsp~nihility f,'r the wording and views expresspd In this descriptive

summary lipq with m~c, and not with the author of this report.



AN UPDATED VERSION OF THE KANTOROVICH THEOREM
FOR NEWTON'S METHOD

George Mielt

Introduction. Kantorovich (5] presented in 1939 a preliminary

convergence result for Newton's method. In 1948, he used certain recurrence

relations to establish his now-famous thoerem [6], and a year later, he gave

the first proof based on the majorant principle [7]. Various workers have

presented refinements of the theorem and related results. ror a survey of the

theorem's predecessors and successors prior to 1970, see [2, p. 247], [15, pp.

420, 428], (16, p. 404].

With the use of the original recurrence relations, Dennis [1] improved

the Kantorovich error bounds. Tapia (22] derived these improved bounds

directly from Ortega's majorizing sequence [14]. Rall and Tapia [20] further

improved the bounds. Under hypotheses different from the usual ones,

Ostrowski [16], (17] established optimal a priori upper bounds. Gragg and

Tapia (4] used the recurrence relations to get optimal a posteriori upper and

lower bounds. Ptak (19] applied his principle of nondiscrete induction to

derive the optimal a priori upper bounds. With the same principle, Potra and

Ptak (18] obtained a posteriori upper and lower bounds sharper than those of

Gragg-Tapia. Miel (9], (10] used the majorizing sequence to derive the Gragg-

TIpi4 upper bounds, as well as new optimal and sharper upper bounds. It turns

out f11] that these new bounds are finer than those of Potra-Ptak.
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Although the lasting effort that has gone into findinq error bounds for

the Kantorovich theorem is suggestive of the theorem's depth and its central

importance in nonlinear numerical analysis, one cannot help yearn for a clean

and definitive statement. Since recent refinements are either scattered or

altogether not in the open literature, our purpose here is to give a complete

update. As it should be, the updated theorem is affine invariant [3], and it

describes clearly in terms of the usual majorizing sequence the Gragg-Tapia

bounds, the recent optimal and sharper upper bounds, new optimal and finer

lower bounds, and new inequalities showing q-quadratic convergence. Since the

elements of the majorizing sequence are known in closed form, we readily get

explicit expressions for all bounds.

Given a sequence {x n in a Banach space, if there is a sequence of
n n0O

real numbers {t such that
n n0O

(1.1) lim tn  = t < , n x - U t -tnn Xn-i n tn-I

then {x n  converges to some x and the error bounds

(1.2) fix -x II 4 t - tn n

are valid (14]. The following simple result [101, given here for complete-

ness, shows that under certain conditions, the majorizing sequence {t nI*
n n-0

yields error bounds much sharper than (1.2).

LEMMA. If there is a sequence {t )= of real numbers such that (1.1)
n n=n

hold and

to  0, t < t I li x n tn n 2Ix n x n0 n-1 n n+1 n (t nI2 - Xn-I

n tn-
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then (x I converaes to some x and
n n-0

t tn  t tn
(1.3) Ix* - x n 1 - 2 Ixn - xn 11 4 -n - Ix - xn-lln ( t .t.)2 n - tn -tn. 1  n -

tn tn- -t

Proof. If m > n then

'l~x ) m-nIxI 2

Iit_( ( Vt ( n
n n

Thus for p 1, ( IxI' 2

n+p n np n n

Take p + - to obtain the first inequality in (1.3). Finally, use

lIVx Il/Vt 4 IIVXll/t 4 1 to get the other two inequalities.
n n

Given Newton iterates for an operator equation Gx = 0,

(1.4) Xn+1 ' xn - G'(Xn)-Gxn

the usual majorizing sequence consists of the scalar Newton iterates,

(1.5) tn  0, tn+ I  tn - q'(tnlIg(tn)

of a quadratic polynomial g(t) whose coeffic'ients depend on C and x

Since q satisfies the Kantorovich hyptheses and (1.5) then is a special case

nf (1.4) with C = q anI xn  to , the hotinds in (1.2) ani 11.3) are all

-3-
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optimal. 4 standard argument and the hounds IG'(x ) 1 4 -g'(t ) yield a
n n

quadratic inequality, (2.5) in the sequel, from which one gets lower bounds

*

for Ix - xn I in terms of Ix - x I. The weaker optimality of these

lower bounds is obtained as in Gragg-Tapia (4].

Warnings against the use of majorizing sequences are sometimes sounded.

The reasons given are the apparent r-order of convergence, the coarseness of

the bounds, and the difficulty in computing the required constants. The

arguments against majorizing sequences should perhaps be re-evaluated, since

the updated theorem shows that the majorizing sequence does imply q-quadratic

convergence and that new error bounds are sharper than the usual ones. The

problems associated with the local nature of the estimates and the verifica-

tion of hypotheses, however, do remain. In this connection, we point to

research on computer verification of semilocal conditions by interval analysis

and on interval versions of Newton's method (121, [131, (21].

-4-



2. The T~pdated Theorem. Let X and Y be Banach spaces and let D be

an open convex subset of X. The open ball {x : ix - x 1)II < r} and its

closure are denoted by S(x0 ,r) and S(x0,r) respectively.

THEOREM. Let F : D X + Y be Frechet differentiable. Assume that

F'(x 0 ) is invertible for some x0 C D, and that

IIF'(x 0 ) (F'(x) - F'(y))II 4 KIIx - yII, x,y C D

IIF'(x 0 ) Fx011 < a

S(x 0 ,t) c D, t = ( I - / - h)/K, h = 2Ka 4 1

Consider the scalar iterates (1.5) for the quadratic polynomial

g(t) = t - t + a. Then
21

i) The iterates x = Xn - F'(xn)- Fxn exist, remain in S(xo,t*), and

converge to a root x of F.

* **** =(1 + V1i h)/K, ifii) The root x is unique in S(x0 ,t ) n D, t

h < 1, and in S(x 0 ,t) if h = 1.

iii) The upper error bounds (1.3) are valid.

21Ixn+ 1  - x 11 211x - xl
iv)n n - n+1)

1tt -t_2 nn 1 n

ix - x li
n

t - t n 1  . 2t
v) Ax - xn~ll 2 i -x •

n+1
V). n 11 2 IIx x n 0l

(t - t
n

Also, the uniqueness statement (ii) and the bounds in (iii), (iv), and (v) are

best possible.

-5-



Proof. Consider the scaling,

(2.1) Gx -= x) F

The Banach lemma implies that G'(x) is invertible for every x c S(x,,t*).

If both x and Hx = x - G'(x) 1 Gx are in S(xo,t*) then

II1i(Hx) - HxII 4 1 V(/- 2~
1- KiHx - x 0 I -xI

The sequence (tin satisfies the conditions 11x 1  x 0 11 t, a, t n-.1 < n

lim tn =t ,and

(2.2) 1K2 -_____

An induction argument shows that (x n exists in S(xo,t*) and that the

hypotheses of the lemma hold. We thus get Mi and (iii). Consideration of

the simplified Newton method yields (ii). Letting en =t -tnt we have

e 
2

(2.3) e0 = t e n+1 = 2e n* += t -t

- -1 1 2_ e 2 +
(2.4) IhG'(x 11 -g' (t _

n n -Kt K~ 2
n en

From the identity

Xn1- Xn (x x n) + G'(x ) - 1l(Gx* -Gx~ n G'(xn)(x* -Xn))

a mean-valoe theorem, andi (2.4), we get,



(2.5) ej+1 11X* - x1 11 2 + Ix - x 11-X X(

n

The sharper lower bounds in (iv) follow. Use Ix n1- X n 11 t n1- t nand

e S t n -1tn

e (t -t )
n n n-i

which results from (2.2) and (2.4), to get the other lower bounds. Use (2.4)

and a mean-value theoren on

Fix* - x n I 111 IIG'(x n) 1 II lx* - Gxn - G'(xn )(x* - x nI

to get (v). Obtain the optimality as indicated in the introduction to

complete the proof.

The bounds in the theorem are expressed in terms of the majorizing

sequence, but since Newton iterates for quadratic polynomials are known in

closed form, (8, p. 28] or [17, Appendix F), these bounds can be given

explicitly.

COROLLA~RY. Assume that the hypotheses of the theorem hold and let

A =t -t and e t /t .Then

211x n - x nI 211x n1- xn 11

n n n 2- n n

1 + n 2i 2n n1 Xn

.2 n n-I
-II~ lix -2462 I x 1Il<-A------* ix -x 1

n n-1 n n-1 2n

if' h < 1, .3nJ



2(V2 - 1)11x - x II 2 -n+a(/1 + - Xl x 1) +fx x
na n+1 n

1 ix - x 112 4 lix - x 11 2-n+1lxl - 1o
a n n-1 n n-1 1

if h = 1.

Proof. We first solve the nonlinear difference equation (2.3). If

h 1 then A = 0 and

(2.6) en =2-n+la

2
If h < 1, let un 

= e /(e + A), thus getting u0 = e, u 1 =u n T en n n+I n
2 
n

solution is u = 0 , and so,
n

n
A e

(2.7) e = ,
n n

for h < 1. Now use (2.6) and (2.7) on

2 n ( 2 "e)n -2 t - tn  en
"- 1" 'it n en_ e+ -- - --- --------

n n 1 - (t n  - tn r 1
)  (e n - e n "

e A etc.,
n

to obtain the desired expressions.

'4
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3. -.marks and Numerical Example. We point oait feitures of the above

version of the Kantorovich theorem.

3.1. The theorem is affine invariant and the transformation (2.1) is an

optimal scaling (3).

3.2. Statement (iv) qives an improvement of the Graqq-Tapia lower

bounds, since the latter are equivalent to the left-most bounds.

3.3. The inequalities in (v) show that the majorizing sequence yields

not only second r-order convergence, but the stronger second q-order as

well. Indeed, if h < 1 then (2.3) implies that lim e /e 2 / < ~
n+1 n

3.4. The two right-most bounds in (1.3) are equivalent to the upper

bounds of Gragg-Tapia. The bounds with fix n- x n- 1 are in practice

considerably sharper.

3.5. The recent bounds of Potra-Pta'k [18) , obtained by nondiscrete

induction, become in our notation,

y(A/2, d 1 ) < lix x n 11 < 6(A/2, d n, d n= 1ix n- x n11

Y~~~s~~~t) ~ ns 2 
n-i2+4~ t212)12 ( +( /

11/2

2 21/
tS(s~t) = (s + t ) -s

These bounds are sharper than those of Gragg-Tapia. However, it turns out

that Ct* - t )d 2/Pt - t 2 < 6(A12, d ), see [111. Numerical experimeitz
n n n n-1 n

also indicate that the sharper lower bounds in (iv) are finer tlhia

y(A/2, d )
n+ 1

3.6. In praictice, the user should employ the sharpest bounds,

(3.1) 
2d n+1 < lx- x 11 Ad2

1+ (W~ Tn n n~1 n - 1



The following recurrence relations are convenient for programmed computation:

. ** -1 2a
(3.2) a0 = (t + t a , n+I  I + Aa 2

n

(3.3) A, = e/a, An+I = An(2 -AAn ) .

Use (2.3) and a = 1/(2e + A) to verify (3.2). For (3.3), see (10, p.
n n

192].

3.7. We borrow an example given in (1P]. The table lists all the bounds

stated in the theorem for the scalar cubic F(x) = " (x3  1), with
3

x0 = 1.3, a = 0.236095, K = 0.209727. The bounds in (3.1), especially the

upper bounds, are seen to be sharper.

:4
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