AD=A093 608 WISCONSIN UNIV=-MADISON MATHEMATICS RESEARCH CENTER F/6 1271
AN UPDATED VERSION OF THE KANTOROVICH THEOREM FOR NEWTON'S METH=<ETC{U)
oCT 80 G MIEL DAAGZ‘)-BO-C-OD‘U
UNCLASS!F!ED MRC=TSR=2125

u ...........




MRC Technical Summary Report #2125

AN UPDATED VERSION OF THE KANTOROVICH
THEOREM FOR NEWTON'S METHOD

AMA093608

George Miel ™ qefg;-*%

Mathematics Research Center
University of Wisconsin—Madison

J SN

610 Walnut Street P\ A
| ' Madison, Wisconsin 53706 o
! October 1980 N

(Received July 31, 1980}

e

Approved for public release
Distribution uwnlimited

PL

e SN i preaa T

Sponsored by
S. Army Research Office

u.
P. O. Box 12211
I Research Triangle Park

North Carolina 27709 8 0 ]_ z 2 2 0 40

el o GUIAY Hhnge Yk et i KA

—— -

i DG FLE CO




e -

e T

Ve e i, T e s MR R Y T e EN T ) B SRR T O

) nre- Tsﬁ— 1 Q 7>/// % /J)Lq/

1

UNIVERSITY OF WISCONSIN-MADISON

{ MATHEMATICS RESEARCH CENTER

()

7" AN UPDATED YERSION OF THE KANTOROVICH THEOREM
- = FOR NEWTON'S m:moo, =

/ﬂ ‘ George/diel’/

/
’ 7)Technica1 Summary }eps;tQ‘2125
__/
October T980 =+

assTRACT ]/} i -'/ - -4 Z %J’ S
L) Lot 1907 TAOPS

An affine invariant version of the Kantorovich theorem for Newton's

method is presented. The result includes the Gragg-~Tapia error bounds, as
well as recent optimal and sharper upper bounds, new optimal and sharper lower
bounds, and new inequalities showing g-quadratic convergence all in terms of
the usual majorizing sequence. Closed form expressions for these bounds are

given.

AMS (MOS) Subject Classifications: 65H10, 65315, 47H17.

Key Words: Nonlinear equations, Newton method, Kantorovich theorem, Error

/\
bounds f
Work Unit Number 3 - Numerical Analysis and Computer Science / (\

~

. ANV
. ’ "\ @
N R 4 ", ('-
N ST
" S AR Y o"’b
Y WA M)
N Le KT AT R
NS k3
N A )
N
t AN
Department of Mathematical Sciences, University of Nevada, Las Vegas,
Mevada 89154.
~,
~

Sponsored by the linited States Army unaer Contract No. DAAG29-80-C-0041.




-

SIGNIFICANCE AND EXPLANATION

A basic problem in numerical analysis is the computation of the roots of
a nonlinear system Fx = 0, where F : X +X and X 1is a space of N-
tuples. Newton's method consists of the iteration,
Xy chosen, X, = X,_q ~ F'(xn_1)'1Fxn, n»>1 ,
where F'(x,_4) is the Jacobian of F at x,.q+ thus generating a sequence

of N-tuples x = (§ which will hopefully converge to a

1 Fnareerbayte
solution x' = (E:, E;,...,E;). The basic idea of the method is to take each
vector x,  as the solution of an approximating system of N x N 1linear
equations. The Kantorovich theorem gives specific conditions under which the
iterates x will converge to a solution x*, establishing in the process
the local existence and uniqueness of that solution, and it also yields
computable upper and lower bounds for the errors ux' - xnﬂ. For mathematical
expediency, this famous theorem is often stated in terms of operator equations
in Banach spaces, but its major application to actual computer work is
restricted to finite systems of equations as described above. Although the
theorem has been established conclusively in 1948, there is a continuing
effort on the part of researchers to find the best possible and sharpest error
bounds under the hypotheses of the theorem. In practice, when guaranteed
accuracy is needed, error bhounds provide exit criteria, viz., means of
stopping the computation when an approximant has a prescribed accuracy. Thus
the sharpness of error bounds is important, since it translates into saving of

commuter time. This report presents a complete update of the theorem, givina

recent and new sharper error hounds.

The respnnsibility for the wording and views expressed in this descriptive
summary lieg with MRC, and not with the author of this report.
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AN UPDATED VERSION OF THE KANTOROVICH THEOREM
FOR NEWTON'S METHOD

George Mielf

Introduction. Xantorovich [5] presented in 1939 a preliminary

convergence result for Newton's method. In 1948, he used certain recurrence
relations to establish his now-famous thoerem [6), and a year later, he gave
the first proof based on the majorant principle [7]). Various workers have
presented refinements of the theorem and related results. For a survey of the
theorem's predecessors and successors prior to 1970, see [2, p. 247), [15, pp.
420, 428), {16, p. 404].

With the use of the original recurrence relations, Dennis [1] improved
the Kantorovich error bounds. Tapia [22] derived these improved bounds
directly from Ortega's majorizing sequence [14]. Rall and Tapia [20) further
improved the bounds. Under hypotheses different from the usual ones,
Ostrowski {16), [17] established optimal a priori upper bounds. Gragg and
Tapia (4] used the recurrence relations to get optimal a posteriori upper and
lower bounds. Ptak [19) applied his principle of nondiscrete induction to
derive the optimal a priori upper bounds. With the same principle, Potra and
Ptak [18] obtained a posteriori upper and lower bounds sharper than those of
Gragg-Tapia. Miel (9], [10] used the majorizing seguence to derive the Gragg-
Tapia apper bounds, as well as new optimal and sharper upper bounds. It turns

out (11} that these new bounds are finer than those of Potra-Pték.

+Department of Mathematical Sciences, University of Nevada, Las Vegas,
Nevada BR9154,
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Although the lasting effort that has gone into finding error bounds for
the Kantorovich theorem is suggestive of the theorem's depth and its central
importance in nonlinear numerical analysis, one cannot help yearn for a clean
and definitive statement. Since recent refinements are either scattered or
altogether not in the open literature, our purpose here is to give a complete
update. As it should be, the updated theorem is affine invariant {3], and it
describes clearly in terms of the usual majorizing sequence the Gragg-Tapia
bounds, the recent optimal and sharper upper bounds, new optimal and finer
lower bounds, and new inequalities showing g-quadratic convergence. Since the
elements of the majorizing sequence are known in closed form, we readily get
explicit expressions for all bounds.

Given a sequence {xn}:=0 in a Banach space, if there is a sequence of

real numbers {t }* such that
n” n=0
. .
(1.1) limt =¢t ¢ =, Ix - x <t -¢ '
n n n=-1 n n-1

-] *
then {xn}n=0 converges to some x and the error bounds
* *
(1.2) ix - xl €t - ¢
n n

are valid {14). The following simple result [10], given here for complete-
ness, shows that under certain conditions, the majorizing sequence {tn}:=0
yields error bounds much sharper than (1.2).

LEMMA. If there is a sequence {tn}:=0 of real numbers such that (1.1)

hold and

L—.f (SO S g s: e o




then {x }* converges to some x  and

n n=0

o t - tn 2 £ - tn
R - - < ] - ]
(1.3) Ix Xt < 2 an xn-'l t - ¢t xn xn-i
(¢ ~ ¢t ) n n-1
n n=1
.
t - tn
< y Ix1 - xol .
1
Proof. I1f m > n then
m-n
lenl 2 IVxnl 2
< .
HmeH < Vtm —vq— Vtm —vzn—~
\
Thus for p » 1,
ﬂVxnl
ﬂ - ll ‘ - .
xn+p x (tn+p tn) _VE;_

Take p * ® to obtain the first inequality in (1.3). Finally, use
nvx“n/vtn < IIVx1||/t1 < 1 to get the other two inequalities.
Given Newton iterates for an operator equation Gx = 0,
(1-4) X

-1
ne1 = % ~ G'(x)) Gx

the usual majorizing sequence consists of the scalar Newton iterates,

(1.5) tn = 0, theq = tn - g'(t) g,

of a quadratic polynomial g(t) whose coefficients depend on G and Xq .

Since g satisfies the Kantorovich hyptheses and (1.5) then is a special case

nf (1.4) with G = g and Xp = tn, the bounds in (1.2) and (1.3) are al}




optimal. A standard arqument and the bounds lG'(xn)-1I < --q'(t:“)-1 yield a

quadratic inequality, (2.5) in the sequel, from which one gets lower bounds )

»
for Ix - xnl in terms of Ixn - xnl. The weaker optimality of these

+1
j lower bounds is obtained as in Gragg-Tapia [4].
warnings against the use of majorizing sequences are sometimes sounded.

The reasons given are the apparent r-order of convergence, the coarseness of

! the bounds, and the difficulty in computing the required constants. The

PR U——

arguments against majorizing sequences should perhaps be re~evaluated, since
the updated theorem shows that the majorizing sequence does imply q-quadratic
convergence and that new error bounds are sharper than the usual ones. The
problems associated with the local nature of the estimates and the verifica-
.q tion of hypotheses, however, do remain. 1In this connection, we point to
research on computer verification of semilocal conditions by interval analysis

{
C and on interval versions of Newton's method [12]), [13), [21]).
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2. The llpdated Theorem. Let X and Y be Banach spaces and let D be

an open convex subset of X. The open ball {x : lx - xg I < r} and its
closure are densted by S(xg,r) and §(x0,r) respectively.
THEOREM. Let F : D X + Y be Prechet differentiable. Assume that

F'(xo) is invertible for some xo € D, and that

IF' (x) T (F'(x) = B (y))0 < Kix = yb, xyeD

-1
]
By (xo) Fxou a ,

* *
S(xo,t ) ¢ D, t = (1t -Vt -h)/K, h=2xa< 1 ,

Consider the scalar iterates (1.5) for the guadratic polynomial

g(t) = § t2 - t + a. Then

. - : s . *
i) The iterates Xa+1 = X = F'(xn) 1Fxn exist, remain in S(xg,t ), and
converge to a root x* of F.

ii) The root x* is unique in S(xo,t**) n D, t** = (1 + /1 = hy/K, if

-_— *k
h < 1, and in S(xo,t ) if h = 1.

iii) The upper error bounds (1.3) are valid.

1 - xnﬂ < 2IIxn+1

2 *
i / (o1 - “n / (£ = the)
1+/1+4 (———- 1+ /1 + 4 ————0 Ix - x|

2llxrl+ - an

- +1
\fn tn-1 (t -t )2 n
n
*
Cllx - x 1 .
n
t* t 2
* = *
W) dx o= x & ——
n+1 . 2 n
(t -t
n

Also, the uniqueness statement (ii) and the bounds in (iii), (iv), and (v) are

best possible.




Proof. Consider the scaling,

(2.1) Gx = F'(xy)"'Fx .

) |
i The Banach lemma implies that G'(x) is invertible for every x ¢ S(xo,t*). !

If both x and Hx = x - G'(x)"'Gx are in S(xo,t') then

K/2

- - x|
1 KilHx xol

IHx - xﬂ2 .

IH(Hx) - Hxl <

The sequence {tn} satisfies the conditions “x1 - xoﬂ < t1 =a, ty_q <ty

' lim t, = t*, and

]
K/2 v T 5
. (2.2) R 2
( n (t -t )
n n-1

] An induction argument shows that {xn} exists in S(xo,t*) and that the
o hypotheses of the lemma hold. We thus get (i) and (iii). Consideration of

*
the simplified Newton method yields (ii). TLetting e, =t = t,, we have

' 2
* en * *
! (2.3) eo =t , en+1 il Ve ¥ A=t -t '
S
f e
-1 -1 1 2 n+1
2.4 l ' " < -' T e e— 2 am O .
‘ ( ) |G (xn) g (tn) T X 5
, n e
: n
)
I
From the identity
X .4 =~ % = (x = x) +G(x ) 1Gx" - Gx_ - G'(x)(x - x.))
n+1 “n n Xn X *n = (xn X *n ’

a mean-value theorem, and (2.4), we get
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+1* ”
(2.5) L Ix - x H2 + Ix - x I - lIx -x 1 >0 .
2 n n n+1 n
e
n
The sharper lower bounds in (iv) follow. Use Ix -~ x Il €t -t and
n+1 n n+1 n
en+1 tn+1 - tn
=
2 2 !
e (t -¢ )
n n n=1

which results from (2.2) and (2.4), to get the other lower bounds. Use (2.4)
and a mean-value theoren on
* -1 * *
lx = x I < IG'"(x. ) I IGx =Gx = G'(x )(x =~ x )
n+1 n n n n

to get (v). Obtain the optimality as indicated in the introduction to
complete the proof.

The bounds in the theorem are expressed in terms of the majorizing
sequence, but since Newton iterates for quadratic polynomials are known in
closed form, [8, p. 28] or [17, Appendix F], these bounds can be given
explicitly.

COROLLARY. Assume that the hypotheses of the theorem hold and let

E 2] * * R
A=t -t and 06 =t /t . Then
210x - x| 2% - x |
+ *
?m1_"q,3____f < :::er1 L —— < lIx - x I <
4 n / 2n
1 +/1 + 48 1e/1+ 2 128 x - x 1
2 2 2n +1 n
(1 + 98 ) 1+ 86
n n
, n=1 2
-y Ix = x H2 < 62 Ix - x < 80 o lix, = x_1
-1 n=1 2n 1 0
a(l - 87 )

if o< 1, ani
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;T T
~n+1 2 *
2 - 1), - < 1+ 2 - - 1) £ - <
2(V2 ) X x | 2 a(v1 " Ixn+1 xnl ) fix X
n=-1
2 2 -n+1
- 1© < - < ! - x|
"xn xn_1l Hxn xn_1n 2 Ix1 KO

if h =1,
Proof. We first solve the nonlinear difference equation (2.3). 1If

h =1 then A =0 and

= o—n*+1
(2.6) e =2 a
- . _ _ .2
If h < 1, let u, = en/(en + A), thus getting u0 = g, un+1 = un. Tha
o0
solution is un = 0§~ , and so,
n
2
AB
(2.7) e = —m—m—m—m—— ,
n oh
1 -6
for h < 1. Now use (2.6) and (2.7) on
2 / 2 *
faet T %) L % Sner S )
-t = e & ¢ TTTETEIEETES S OTTETTTTT ~ =
tn n-1 “n-1 “n (¢ -t ) (e -2 )
1 n
1
paray o etz,.,
n

to obtain the desired expressions.
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3. 2marks and Numerical Example. We point ouat features of the abnve

version of the Kantorovich theorem.

3.1. The theorem is affine invariant and the transformation (2.1) is an
optimal scaling (3].

3.2. Statement (iv) gives an improvement of the Gragg-Tapia lower
bounds, since the latter are equivalent to the left-most bounds.

3.3. The inequalities in (v) show that the majorizing sequence yields
not only second r-order convergence, but the stronger second g-order as

2
well. Indeed, if h < 1 then (2.,3) implies that 1lim e /en = 1/ < =,

n+1

3.4, The two right-most bounds in (1.3) are equivalent to the upper
bounds of Gragg-Tapia. The bounds with ﬂxn - xn_1H2 are in practice
considerably sharper.

3.5. The recent bounds of Potra-Ptak [18], obtained by nondiscrete

induction, become in our notation,

*
Y(A/2, dn+1) < Ix - xnﬂ < §(A/2, dn), dn = "xn - xn_1N ,
1/2 1/2 1/2
Y(s,t) = (s2 + 4t2 + 4t(s + t7) ) - (t + (s2 + tz) y |,
1/2
S(s,t) = (s2 + t2) -5 .

These bounds are sharper than those of Gragg-Tapia. However, it turns out

* 2 2 . .
that (t =~ tn)dn/(tn - tn-1) < §(A/2, dn), see [11]. Numerical experiments

also indicate that the sharper lower bounds in (iv) are finer than
Y(8/2, 4 ).

3.6. In practice, the user should employ the sharpest bounds,

24
n+1 * 2
] < Ix - x I <A .
(3.1 1+ /T 723 4 Ix *n ndn
n n+1
-9-
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The following recurrence relations are convenient for programmed computation:

(3.2) ( - an —1 2an
. a, = (t +t )Y , a =2 ——
o] n+1 P A2a2
n
. = , = - AR .
(3.3) A1 8/a An+1 An(2 n)

Use (2.3) and an = 1/(2en + A) to verify (3.2). For (3.3), see [10, p.

192].

3.7. We borrow an example given in [18]. The table lists all the bounds

1 3
stated in the theorem for the scalar cubic F(x) = 3 (x~ - 1), with

Xq = 1.3, a = 0.236095, K = 0.209727. The bounds in (3.1), especially the

upper bounds, are seen to be sharper.

-11, -
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