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ABSTRACT

This thesis examines the differences of deterministic and stochastic

LANCHESTER-type combat models. Using an example of square-law attrition,
solution methods and solutions are described. A new analytic solution
for equal attrition rate coefficients is given. The numerical comparison
includes hypotheses about the expected force levels and the variability

in the expected force levels as a function of time, initial force levels,

and breakpoint force levels.
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I. INTRODUCTION

Combat models are widely used as decision aids in the defense-
planning process, at least within the NATO alliance. Current operation-
al combat models are very complex because combat is a very complex
process. Unfortunately it is difficult (if not impossible) for the
beginner to understand the modelling approaches, concepts and motivation,
that may have been used to build such operational models. However, one
frequently considers a simple model as a paradigm for the development and
understanding of such complex models. This basic approach will be used
in this thesis to explore certain issues in the on-going debate about
the relative merits of stochastic and deterministic combat models.

A simple model is examined to explore differences between a determin-
istic and a stochastic approach to a certain type of analytical combat
model. As already mentioned, combat is a very complex process, but it
is also a complex random process, which can be supported by many examples
from military history. Analytical models are abstractions and very often
simplifications of reality. It seems to be a legitimate question to ask,
what effects the further abstraction of neglecting the randomness in
combat may have. At this moment, it should be pointed out that within
existing operational analytical models, both stochastic and deterministic
models are used.

Previous work done by SPRINGALL [9) and CLARK (4] evolved around
theoretical aspects. Their main concern was to give exact analytical

solutions and their proofs. CRAIG [5] started to explore the differences
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between stochastic and deterministic models more from the numerical
point of view, which will be continued in this thesis.

In the next chapter, a deterministic and stochastic version of a
differential combat model will be described. The deterministic versions
are well-known as LANCHESTER's equations of modern warfare, which were
developed in 1914. Combat models, which model attrition from enemy

action through a system of differential equations, are usually referred

to as LANCHESTER-type models of warfare.




II. THE PARADIGM MODELS

A. THE DETERMINISTIC MODEL

First, LANCHESTER's equations of modern warfare will be briefly
reviewed and some simple extensions given.

In 1914 LANCHESTER [7] hypothesized that under "modern conditions"
in a combat between two homogeneous forces the firepower of the surviving
weapons of one side can be concentrated on the surviving targets of the
other side, so that each side's casualty rate is proportional to the num-

ber of enemy firers. This can be described by the following equations:

ALy (2.1)
dy _
a%_ -bx (2.2)

with initial conditions

X(0) = Xq (2.3) |

¥(0) = y, (2.4)

where a is the attrition rate with which the Y-force attrits the

X-force, similarly for b. X0 and Y0 are the initial force levels and

) X(t) and Y(t) are the force levels at time t. The force levels, as a
‘, function of time t, can be written as

:. X(t)=xqcosh(vab t)-Va/b Yosinh(Yab t) (2.5)

) Y(t)=y,cosh(¥aF t)-1b/a xjsinh(¥ab t) (2.6)

{

. The state equation relating initial force levels with force levels at
p some time t can be derived by dividing (2.1) by (2.2), separating




variables and integrating to yield

blxg -X(t)9)=alyp?-¥(£)?). (2.7)

This form of the state equation explains why this model is also referred
to as the "square-law" attrition process. WEISS [11] has given a set of
assumptions under which LANCHESTER's equations for modern warfare may
apply:

A1.) Two homogeneous forces are engaged in combat. Every unit

on a particular side has the same capabilities. The attrition

rate may be different for the two forces.

A2.) Each unit on one side is within weapon range of all units

on the other side.

A3.) The effects of successive rounds on the target are

independent.

A4.) Each unit has perfect knowledge of target locations and
fires only at live target (one at a time) killing them at a
constant rate, which does not depend on the number of targets

i alive.

A5.) Fire is uniformly distributed over surviving targets.

) The above model implies a fight until one force is annihilated.

) Therefore the model will be slightly changed by introducing the concept
!

) of unit breakpoints, Xbp and pr, which are simply force levels at which

{‘ _ the side, who reaches it first "breaks off" the engagement, leaving the 1

Q other side as a winner. Also, to be more precise, it should be noted

that negative force levels for breakpoints equal zero or force levels




less than nonzero breakpoints are impossible. So the deterministic
LANCHESTER-type combat model with "square-law" attrition takes the

following form:

-

-ay xbp<X(t)
%% = ¢ ybp<Y(t) (2'8)

0 otherwise

-bx xbp<X(t)

g%: { ybp<Y(t) (2.9)

L 0 otherwise

with initial conditions
X(0)
Y(0)

Xq (2.10)
Yo (2.11)

The model in this form, equations (2.8) through (2.11), was used for

comparisons throughout the thesis.

B. THE STOCHASTIC MODEL
There are several ways to include random variations in LANCHESTER-
type models. These are:
* The attrition rate coefficients may be random variables.
* The enemy's initial force level may be a random variable,
weakening the assumption of perfect knowledge.
* The breakpoints may be random variables.
* The casualty rate is fixed, but the occurrence of casualties
over time may be random.
The only random variation considered here will be the random occur-

rence of casualties over time. Another specification was to choose a

10




o —————

model similar to the "square-law"attrition in order to allow comparisons.
In other words, the question to be asked is "how do random fluctuations
in the occurrence of casualties modify the deterministic results of the
square-law attrition process?"

The approach used here was a continuous parameter MARKOV chain model,
where the time t varies continuously and the number of combatants on
each side is a non-negative integer. Let M(t) be the size of the X-force
at time t with a particular state value m. Let N(t) be the size of the
Y-force at time t with a particular state value n. Let My and No be the
initial force levels and mbp’ nbp be the breakpoint force levels of X
and Y respectively. Fig. 1 shows the state space of this MARKOV chain
model. Note that at a given time t, any state is described by the two
force levels of the X and Y force. As each side loses units due to

attrition and no replacements are allowed, it is easy to understand why

BILLARD [1] referred to this type of process as a "bivariate death process."

1




Figure 1 - STATE SPACE OF THE MARKOV CHAIN MODEL
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For the description of the stochastic square-law attrition process
corresponding to the two deterministic differential equations (2.8) and
(2.9), a system of many differential equations, depending on the battle
termination model, is required. This system will be given for a fixed-
force-level-breakpoint battle with square-law attrition.

The following assumptions yield the stochastic square-law attrition
process.

Al1.) The attrition process depends only on the current system

state and time and not on the past history (this assumption is

usually referred to as markovian property).

A2.) The probability P( one x casualty during the)

time interval t to t+h = ah |
- one y casualty during the ) - ;
A3.) The probability P (time interval t to t+h bh |

A4.) The probability of more than one casualty occurring in
the time interval t to t+h is of the order of magnitude o(h),

where 1imh*oo(h)/h = 0.

A5.) No more casuaities can occur once m = mbp orn = "bp'
Making the time interval h infinitesimally small, the following

set of forward CHAPMAN-KOLMOGOROV equations can be developed. Let

) P(t,m,n) be the probability that the system is in state (m,n) at a
) time t. For convenience each equation is related to a region in the
l state space shown in Fig. 2.
' i
;
r
13
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For

s

m=mq and n=ng, Region I

for

dP
Ef(t’mO’"o) = -(an0+bm0) P(t,mo,no) (2.12)

mbp<m<m0 and n=nqy, Region II

for

%%(t,m,no) = ang P(t,m+1,n0)-(an0+bm) P(t,m,no) (2.13)

nyp<N<Ng and m=mg » Region III

for

$B(t.mg,n) = bmy P(t,my,n+1)-(anvbmy) P(t,mgn)  (2.14)

mbp<m<m0 and nbp<n<n0, Region 1V

%%(t,m,n) = anP(t,m+1,n)+bmP(t,m,n+1)-(an+bm)P(t,m,n)

(2.15)
for m=mbp and nbp<n<n0, Region V
%%(t,mbp,n) = anP(t,mbp+1,n) (2.16)
for n=qu and mbp<m<m0, Region VI
g%(t,m,nbp) = bmP(t,m,n, +1) (2.17)
. for m=mQp and n=nbp, Region VII
) i
P(t,mbp,nbp) 0 for all t (2.18)
)
! because of the definition of a breakpoint force level. The
ﬂ initial condition is
b P(0,my,ng) = 1.0 (2.19)




Figure 2 - REGIONS IN THE STATE SPACE
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As P(t,m,n) is a joint probability distribution, the follow-
ing must also be true
0< P(t,m,n)s1.0 (2.20)
and
m n
f i P(t,m,n) = 1.0 (2.21)
memy o 0=,
16




III. SOLVING THE DIFFERENTIAL EQUATIONS

A. SOLUTIONS FOR THE DETERMINISTIC MODEL

Force levels as a function of time were already given in equations
(2.5) and (2.6). It is relatively easy to obtain analytical solutions
for such simple deterministic models as described before. On the other
hand, it is necessary to point out that for models with any degree of
operational realism, analytical methods for solving the differential
equations are usually not available. Therefore, some numerical method
with a digital computer is usually used. TAYLOR [10] has summarized in
his Appendix C the most widely used numerical methods, a discussion of

which seems unnecessary at this point.

B. SOLUTIONS TO THE STOCHASTIC MODEL

Even for this relatively simple stochastic model with fixed force
level breakpoints, which are usually nonzero, a complete set of general
analytical solutions for the differential equations (2.12) through (2.19)
has not been found. On the other side, given some minor restrictions
like a fight to the finish or equal attrition rate coefficients, solu-
tions, or at least solution methods have been proposed which will be
briefly discussed in the next section.

First, the method for getting the state probabilities used here will
be described. Numerical solutions were obtained using the fourth-order
RUNGE-KUTTA method, which is probably one of the best known finite dif-

ference approximations to ordinary differential equations (next to the

17
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EULER-CAUCHY-method). To increase the accuracy of the overall solutions
analytical results for certain regions of the state space were substituted.
These analytical solutions will be stated now. For region I, i.e. no

casualties on either side, the solution to (2.12) is
P(t,mo,no) = exp -(ano+bm0)t (3.1)

which can be derived by the standard method used for this kind of dif-
ferential equation. For the boundary cases, region II and III, i.e.
one of the two sides has not yet had a casualty, TAYLOR [10] has given
the analytical expression as

for My o <M<my and n=ng, Region II

p

P(t,mung) = I, {ano/b(ebt-l)}‘] exp(-(bmg+ang) t) , (3.2)

where J = My=m

for nbp<n<n0 and m=mg, Region III

P(t,mo,n) = %!{bmola(eat-l)}K exp(-(bm0+ano) t) , (3.3)

where K = no-n.

These two equations (3.2) and (3.3) were obtained b
recursively solving equations (2.12), (2.13) and (2.14) "from
the top down."

C. OTHER ANALYTICAL SOLUTIONS

The solutions or solution methods for getting the state

probabilities will only be stated for the square-law attri-

tion process. Only two were used for the numerical work for g

this thesis.

18
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Apparently, one of the "oldest" analytic solutions was |
given by BROWN [3] in 1955 for the general stochastic
LANCHESTER-type combat model with time independent attrition \
rates. His approach and solution will be briefly outlined

for square-law attrition. Consider a path from state

( Mg » Ng ) to some state (m,n). This path can be described
as a sequence of J = ( mg -m) zeros and K = ( g -n) ones,
where a zero corresponds to an X casualty and a one to a Y
casualty. \Using the.binary representation of a positive
integer, one can define to each realization of a battle path
an integer k given by

k =d, ,d d

k,17k,2°"""k,J+K

- . th
where dk,r 1 if the r

casualty along a battle path
corresponding to k is a Y casualty and dk r - 0 otherwise.
Also let IJ K be the set of all positive integers whose

binary representation contains exactly K ones and J zeros.

Then
m = my-r+ EE: d, .
k,r 0 =1 k,J
) r
‘ nk,r = no -J‘% dk,j.

|
” Then BROWN [3]1 has shown that




|

- ————

P(t,m,n) = —%; '/g'ii%;l K

keIJ,K = r=0

exp(-iut)-exp(-tI(mk,r,nk’r))
l(mk’r,nk,rj-iu

where i =V-_f .

1(m,n) = an+bm,

du , (3.4)

= 9k, r+1
kp,r = T-Tu/T(m, o0, )

K

and

I, r41 dk,r+1ank,r+(]“dk,r+l)bmk,r ’

There was no indication that nonzero breakpoints were
excluded. A discussion of this solution follows in the next
section.

About 14 years later, in 1969, CLARK ({4] proposed another
approach which TAYLOR ([10) called a "hybrid analytical-numer-
ical” method. The restriction is that the breakpoints have
to be zero, i.e. it is a fight to the finish. Although
proposed for a general time independent attrition function,
this approach will be outlined for "square-law" attrition.

Then according to CLARK (4] the state probabilities are given
by

20
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for 0<m$m0 and 0<n$n0

P(t,m,n) = mi %O: C';:: -exp(—(ak+bj)t) , (3.5)

J=m k=n

for 0<m5m0 and n=0

3
o

>
o

I e ————

for m=0 and 0<n§n0

e o e’ £ ik

P(t,0,n) = €30 + 2 cd2R -exp(-(akebj)t),(3.7)

and at last there is to remember that P(t,0,0) = 0 for all
m,n
Jsk
partial difference equations.

j times t. The constants C are determined by a system of

For 0<m<j$m0 and 0<n<k$no

! R A
’: a(n-k)+b(m-J) , (3.8)
)
§
;‘
| 2
-




P VL

for 0<m<jsm0 and 0<n=k5nO

cm,n m+l,n
jon T2 5n
b(m-j) »  (3.9)

for 0<m=jsm0 and 0<n<ksn0

a(n-k) ’ (3-]0)

for 0<m=j$mO and O<n=k$n0

but (m,n) # (my,n,)

m m m
o N 0 m,n .
S el sl SRS Sl
L j=m k=n+1 J’k j=m+‘| J!k » (3-]])
. M.,N
with cmO n0 = 1.0
0°"0

22




Also for 0<msj5m0 and 0=n<k5n0

cMs1
¢l o= Mk : (3.12)
ak+bj ;

simitarly for 0=m<j5m0 and 0<n<ks<n

0 !

O,n 1,n
cJ,k = -ancj’k
ak+bj . (3.13)
Then for ]SmSmo
m n
m,0 Q m,0
%,0 = Z Y
o ’ (3.14)

and finally for ]SnSnO

Mo Mo
¢ = -2 :E:: ¢ : (3.15)
: j=1 k=n
& Though having the publishing date of 1979, the next
) approach was published in June 1980 by BILLARD [1). She
ff considered the LANCHESTER-type square-law attrition combat

model as a pure death-process and applied SEVERO's [8]
\ recursive theorem for solving differential equations. As

before, only a fight to the finish has been considered.

LY

23
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The first step is to identify each point (m,n) in the

state space by a counting coordinate k, where

k = ( m0+1)( n0+1)
-m( n0+1)-n . (3.16)
Then
Plt,m,n}= P[t,k] (3.17)
and the differential equations (2.12) through (2.18) take on

a slightly different form. As an example, (2.15) will be
given by

4R(t.k) = anPlt,k-ny-11+bmP [t k-1]
-(an+bm)P[t,k] . (3.18)
The whole set of differential equations was then

expressed in matrix terms as
TR(t) = BP(t) (3.19)

with a solution given as

P(t) = Ce (t) (3.20)

where e(t) is the (m0+1)(n0+1)x1 -vector with elements
exp(bkt) with b, being the K th diagonal element of the
) matrix B. The matrix B can be partitioned into submatrices,
whose m-coordinate is common, due to the ordering defined by
i the counting coordinate k (Equation 3.16).

Then

B = (b,y)s usv = 1,2...my+1




where the submatrices LI have the elements
Euv = (buv(p’q))’ p’q = ]’2"'n0+]'
So the matrix B has the elements

byu(Psp) = -alng-p+1)-b(my-u+1)
for u = 1,2...m0 and p = 1,2...n0

buu(p,p-1) = b(my-u+1) for u = 1,2...mp+1
p = 2,3. n0+1
and
bu,u_](P’P) = a(no-p+1) for u = 2,3...my+1
P 1,2 n0+1

A1l other elements are zero.

Thus, the matrix B has at most 3 nonzero entries per row
or column. The matrix C can be partitioned in the same way.
Then using SEVERO's [8] theorem and the special form of the
matrix B, only a part of the C-matrix needs to be determined.
This part will be omitted here, but the final result will

be given by

k
P(t.k) = D clk,i)-exp(byt) (3.21)
j=1

where c(k,j) is the (k,j)th

element of the solution matrix C.

The previous two approaches have required that the force
level breakpoints be zero. Now, a result will be given whose
restriction is that the attrition rate coefficients be equal,
but nonzero breakpoints are allowed. For further reference
it will be called the Equal-Attrition-Rate-Coefficient-

Solution (EARCS).
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let a = b = f.

<
For mb2<m.m0 and nbp<n5no

= Cim,
P(t,m,n) = (mo+£2-;2n7f

.(1-e-TtyMg*ng-m-n rexp(-f(m+n)t) (3.22)

form = mbp and nbp<n5n0

P(t,mbp,n) = fn C(mgg'”sn)
J k {4 1-exp(-ft(mb +1+n+k))
.%:0 (-1) (k) { f(mbp+]+ﬁ+k) , (2.23)

where J = m0+n0-mbp-1-n

for n =

nbp and mbp<m5mO

fm C(m,nbp+1)
K!

P(t,m,nbp) =

]'e"p('ft("‘”*"bp”))}, (3.24)

K
ST (e K { :
(-1) j Flmtl+ng +3)

j=0

where K = m0+n0-m-nbp-1.

The coefficients C(m,n) satisfy for mbp<m<m0 and nbp<n<n0
the foliowing partial difference equation
C(m,n) = nC(m+1,n) + mC(m,n+1) (3.25)
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with the boundary conditions

my-m
C(m,no) (no) for mbp<m$m0

and

no-n <
C(mo,n) = (mo) for nbp<n_n0

This result has been developed using a method verbally pro-
posed by TAYLOR. The method will now be outlined. ISBELL
and MARLOW [6] described a stochastic LANCHESTER-type attri-
tion process with a different attrition function. Instead of
the attrition of one force being proportional to the number of
of enemies of the opposing force as in the square-law attri-
tion (e.g. for the attrition of the M-force let

A(m,n) = an
be the attriticn rate and

B(m,n) = bm
the attrition rate for the N-force with square-law attrition),
their attrition rates looked like

A(m,n) = an+cm
and

B(m,n) = bm+dn

) with the restriction that
) atc = b+d.
! But with c=d=0 and a=b=f we are back to square-law attrition.

This leads to equations (3.22) and (3.25). Equations (3.23)
N and (3.24) were derived in the following way (e.g. for 3.23).

Solving equation (3.22) for m = +]1 yields

My p
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\ C(mbp+1,n)
'N) =
bp (m0+n0-mbp-1-n)!

P(t,m -exp(-ft(mbp+1+n))

(1-e-ft)m0* M0 Mpp-1-N (3.26)

substituting for the second factor its BINOMIAL expansion

J
J

k=0
with J = m0+n0-mbp-1 and multiplying through by the third
factor. Then using equation (2.16), the differential equation
for m = LI and nbp<nSn0 , and substituting equation (3.26)
into the extended form, it can now easily be integrated to

yield equation (3.23).

D. DISCUSSION

In the discussion of the analytical solutions outlined in
the last section, there is one important point. BROWN [3]
himself points out that unless m is close to my and n is
close to Ny his result (equation (3.4)) is of "little practi-
cal interest." Most of the analytical solutions, especially for
more general LANCHESTER-type models, have little more than
"symbolic" character. BROWN's solution is a good example
of that.

In comparing the solutions given by BILLARD [2] and
CLARK [4], this author has the feeling that both solutions are

equivalent and only the representation is different. This
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intuitive guess needs verification. It may be concidence
that CLARK (4] and SEVERO [8] published their work in the
same year.

The last presented solution (equation (3.22) through
(3.24)) seems to be relatively handy for use on a computer.
It has a big advantage over numerical solution methods other
than its accuracy, because it is an exact result. Like
CLARK's method, the coefficients have to be calculated only
once for a given set of input data. Then, to get the state
probabilities for a certain point in time you have to make

only one set of calculations, as opposed to the numerical

methods where one has to go from time t = 0 to time t = t

in small time steps and then have only an approximate result.

E. IMPORTANCE OF THE STATE PROBABILITIES

The state probabilities as a function of time are the
key to calculating several quantities of interest. These
are expected force levels as a function of time, variances
and standard deviations in the force levels and also the
probability of winning. These quantities are necessary to
legitimately compare the stochastic with the deterministic
) results.
! To get at least a feeling of how the state probabilities
}‘ evolve over time, the joint probability distribution will be
‘ presented in a 3-D-picture. It is indeed surprising that

more use has not been made of computer graphics to

oY
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investigate the dynamics of a stochastic LANCHESTER-type

combat model. Table 1 gives the data used for the next five
figures. These figures may be thought of as "snapshots" of
the joint probability for the survivors in this battle taken

at a sequence of increasing times.

30




TABLE 1

Data for the Numerical Example 1

Force Levels mg = 40 mbp =0
ng = 40 nbp =0
Attrition Rates a = 0.008 M casualties per
minute and N firer
b = 0.004 N casualties per
minute and M firer
At Times t.l = 0.025 tf
t2 = 0.250 tf
t3 = 0.500 tf
t4 = 0.750 tf
t5 = 1.000 tf

where tf = 155.81 minutes is the time a
deterministic battle with the same force
levels and unit breakpoints ends, i.e.

) x(tf) = 0.0 and y(tf) = 28.28
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Figure 3 - FLOT OF JOINT PROBABILITIES P(t,m,n)

with data according to Table 1
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rigure 4 - rLOT OF JOINT PROBABILITIES P(%,m,n)

with data according to rable 1

33




T!(t.-.n)

rorce Level, n

N
% AR
et
ARG
QLRI
R
00090,
OO

Figure 5 - PLOT OF JOINT PROBABILITIES P(t,m,n)

with data according to Table 1
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') P(t,m,n)

rigure 6 - rLOT OF JOINT PROBABILITIES P(t,m,n)

with data according to Table 1
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Wr(t.n,n)

rigure 7 - PLOT OF JOINT PROBABILITLIES P(t,m,n)

with data according to Table 1
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At the time t = 0 all probability is located at
(mo,no) in the state space (Region I). As time passes, the
probability mass is distributed over more states, with the
mode moving away from the diagonal towards the winning side.
A1l points in the state space with breakpoints, i.e. (mbp,n)
and (m,nbp) for all m and n, are absorbing states, probability
mass is absorbed in that states. The sum of probability mass
in Region V (see Fig. 2) represents the probability, that the
N-force wins at that given time, in Region VI that the M-force
wins.

The next five figures show a similar sequence of plo.s for
the joint probability P(t,m,n) for the force levels M(t) and
N(t). The data is explained in Table 2. Note the small dif-
ferences because of the nonzero force level breakpoints.
Probability mass having reached the breakpoint "piles" up
there. The state space is reduced by the fixed force level
breakpoints, but the probability distribution evolves basical-

1y in the same qualitative manner as in the previous example.
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TABLE 2

Data for the Numerical Example 2

Force Levels my = 40
ng = 40

Attrition Rates a =0.008
b = 0.004

At Times t] = 0.025
t, = 0.250
t3 = 0.500
ty = 0.750
te = 1.000

te

mbp =
nbp -
M casualties per

minute and N firer

N casualties per
minute and M firer

where tf = 120.68 minutes is the time a

deterministic battle with the same force

levels and unit breakpoints ends, i.e.

N x(tf) = 8.0 and y(tf) = 28.83
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with datea according to Table 2

Figure 8 - rLOT OF JOINT PROBABILITIES P(t,m,n)
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with data according to ‘rable 2
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rigure 11 = PLOT OF JOINT PROBABILITIES P(t,m,n)

with data according to Table 2
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IV. EVOLUTION OF THE FORCE LEVELS

A. THE DETERMINISTIC MODEL

The evolution of force levels as a function of time, X(t) and Y(t),
has already been stated in equations (2.5) and (2.6). The next two
figures show the force levels with different breakpoints. It is easy to
realize that introducing a nonzero breakpoint does not change the under-
lying function. In other words, using X(t) as an example, for both
figures the same curve was used but at the point where the X-force reaches
its breakpoint, the curve is "cut." From that point in time, there are
no more changes in the force levels. So introducting a nonzero break-
point only shifts the discontinuity (marked by DX1 in Fig. 13) up along
the curve to DX2.

The probability for one side to win is either one or zero, because
it is a deterministic model. To easily determine which side is going to
win, a victory prediction condition can be obtained by solving each force
level equation (2.5) and (2.6) for the time to reach its breakpoint txbp
by substituting X(t)=xbp and tybp by substituting Y(t)=ybp. Then X will
win if tybp < txbp, which leads to the prediction condition. X will win

a fixed force breakpoint battle if and only if

2 2
alyq = Yho)
Xo/Yg > g g
b(x0 - xbp) . (4.1)

This shows that given the initial data one can predict the outcome

of the battle in terms of force levels and time until the battle

finishes.
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B. THE STOCHASTIC MODEL
Every possible state (m,n) in the state space has associated with it
a certain probability between zero and one which is a function of time.
In order to gain more insight into the stochastic process not a single
realization of a battle has to be considered, but an average battle.
Therefore the expected value of the force levels (i.e. averages) as a
function of time and the variances in the force levels were investigated.
The straight forward way to compute the expected force levels involves

the knowledge of the probability distribution P(t,m,n). Then

Mo Mo
E(M(t) )=Z m Zp(t,m,n) (4.2)
Moo Mo

no m
E(N(t) ) Z ni P(t.m.n) (4.3)
Mo Myp

are the expected values of the force levels as a function of time.
There are some other ways to calculate the expected force levels,

one of which will be stated here. Recall the "hybrid-analytical-

numerical” method to get the state probabilities (equations 3.5 through

h

3.15). CLARK [4] has also shown that the it moment of, for example,

the M-force level may be computed as

, . Mg N ,
EMi(e) ) = D(()‘()) +§>_:] k{% n§‘,)( exp(-(ak+bj)t ) (4.4)

3 <3 <t <
with for 1-J$m0 and 1-k-n0




. (4.5)
pli) - 28: m 0N (4.6)
0,0 0,0 : ’

This again emphasizes the strong point of CLARK's solution. For a
given set of battle parameters the coefficients C?:E have to be computed
only once. Then with this information and relatively small computa-
tional effort not only the state probabilities but also the first and
second moment of the force levels can be computed. This determines the

variance in the force levels at the same time, e.g.

Var(M(t) ) = EM (£) ) - EM(E)) - E(M(E)) . (4.7)
On the other side, the weak point is that CLARK [4] considered only
breakpoints equal zero.

Many authors have discussed one side's probability of winning or
probability of winning conditioned on a certain number of survivors,
which always eliminated the parameter time by integrating from time t=0
to infinity. This may be legitimate to answer absolute (meaning time
independent) questions about who will win, but for direct comparisons

with the deterministic model, this author has the feeling that the best

question to ask regarding a winner is:

What is the probability of one side winning given the stochastic battle
lasted as long as the deterministic one?

The calculation of these probabilities gives another interesting
probability, because given the time t = tf (final time of the determin-

jstic battle)
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P(battle has not yet finished) =
1-P(M wins|t=t.)-P(N wins|t=tf) . (4.8)

There has also been work done regarding the distribution of the
time to finish a battle. But this is beyond the scope of this thesis
(SPRINGALL [9}).

C. DIFFERENCES IN THE FORCE LEVELS
The deterministic model, especially the force level equations (2.5)
and (2.6), describe a process with continuous state parameters where, in
reality, the possible states are integers. Quoting from LANCHESTER (7]:
Since th- forces actually consist of a finite number of finite units
(instead of an infinite number of infinitesimal units) the end of the B
curve must show discontinuity, and break off abruptly when the last C
man is reached; the law based on averages evidently does not hold |
rigidly when the numbers become small.
LANCHESTER suggested that his differential equations may be good
approximations only as long as the force sizes are large. He also stated
that the equations are based on averages, implying an underlying stochas-
tic process.
This shows that there must be a difference in the force levels which

should become significant when the number of combatants is small. This

difference was called bias by CLARK [4) and TAYLOR [10]. It can be shown

that
EMUED) - _aE(N(t))+aB, (t) (4.9)
and
QE_(ZJt_t_)l = -bE(M(t))+B_(t) (4.10)
where
49




T N

my ng
Bn(t) = Myp E P(t,m,nbp)+ E nP(t,mbp,n) (4.11)
mbp+1 nbp+1
and
"o M
Bm(t) =My, E P(t,mbp,n)+ E mP(t,m,nbp) . (4.12)
nbp+1 mbp+1

The bias terms Bm(t) and Bn(t) can be interpreted as the expected
values of M(t) or N(t) conditioned on the fact that the battle has

already ended at time t, for example,

By()<E (M(£))[N(t)=ny, or M(t)m, ) (4.13)

In other words, equation (4.9) says the expected casualty rate of the
M-force is proportional to the expected number of survivors of the
N-force given neither of the two forces has reached its breakpoint.

Define the bias of the X-force as ax(t) = E(M(t))-X(t) and the bias
of the Y-force as ay(t) = E(N(t))-Y(t). Then using equations (2.8) and
(2.9) together with (4.9) and (4.10) it follows that

gf ax = -any+aB (t) (4.14)
g5 by = -bax+bB_(t) (4.15)

with the initial conditions x(0)=) and Y(0)=). This has the solution

t
ax(t)=Vab /' (8_(s)va/Beosh(Vab (t-s)
0
-B_(s)sinh(Vab (t-s))}ds,  (4.16)
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and

t
by(t)= ¥ab_f 8,(s) Vo/acosh(/ab(t-s)
G
-B_(s)sinh(+/ab(t-s))}¥ds . (4.17)

Since for a fixed, nonegative argument z, the cosh(z) is always H
greater than the sinh(z), it is easy to visualize that in most of the
cases both biases are positive, meaning the expected force levels of the

stochastic model are higher than the deterministic force levels. This H

has been shown by CLARK [4] and CRAIG [5) and confirmed by this author.
In the rest of the cases the winner's bias is negative or close to zero

and the loser's bias is positive. Two examples are given in Table 3.
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TABLE 3

Examples for cases where one bias is positive and the other

bias is negative.

A. Y-force wins in a fight to the finish

Xg =Yg *© 40 a = 0.08

Xpp = 0 b = 0.04

Ypp = O

te = 15.581 Ax(tf) = 3.22
Ay(tf) = -0.23

B. Y-force wins in a fight with equal initial force levels,

but different breakpoints.

Xg = Yp = 15 a = 0.08
| xbp = 12 b = 0.08
A

.pr=6

0.15

|-. tf = 2-85 AX(tf)




An interesting point has to be mentioned regarding case B of
Table 3. Here the expected force level of the winner is
smaller than the expected force level of the loser at the
time a deterministic battle ends.

To get a better feeling for the differences in the force
levels, the next two figures show as an example a large spec-
trum of force level behavior. The data and notation is
described in Table 4. There are four battles with four dif-
ferent breakpoints drawn as they evolve over ticie from zero

to the time an equivalent deterministic battle ends.
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TABLE 4

X0 = 40 Xbp(i) = 40-0.21
Y0 = 40 pr(i) = 40-0.21
a = 0.09 for i = 1,2,3,4
b = 0.07
Mi = E M(t)

for i = 1,2,3,4
Ni = E N(t)

Where the index i corresponds to the battle with

the ith

breakpoint force level:
X-force is always loser

Y-force is always winner
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Figure 16 - DETERMINISTIC AND EXPECTEl FORCE LEVELS FOR

THE Y - rORCE
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CRAIG (5] has formulated hypotheses concerning the biases in the average
force levels based on his work. His hypotheses were partially confirmed,
but in some cases they have to be modified. Therefore, another similar
set of hypotheses will be given and supported by Fig. 15 and Fig. 16, as
well as some of the later figures.
H 1) Given fixed initial force levels and attrition rate coefficients,
as the breakpoint force levels increase, the numerical bias for the
loser decreases. The biases for the winner do not show this monotone
trend except for the case of symmetric parity.
H 2) Everything else constant, the bias of the loser increases with
increasing initial force levels; this is also true in the symmetric
parity case for both forces.
H 3) Given the initial force level ratio is close to one at the time
corresponding to the end of the deterministic battle, the bias of the
loser is always larger than the bias of the winner.

H 4) At the time corresponding to the end of a deterministic battle,
the biases become larger as the forces come closer to parity.

H5) The biases at times corresponding to less than one half the
duration of the deterministic battle are negligible.

The case of symmetric parity, i.e. equal initial force levels,
breakpoints and equal attrition rate coefficients seems to be kind of a
"limiting" case. For example, at parity the biases of both forces behave
in the same manner and are equal. In Fig. 17 the biases at the time a
deterministic battle ends as a function of the initial force levels and
as a function of the breakpoints are presented. It is also another

verification for the hypotheses H 1 and H 2.
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Consideringthe changes in magnitude of the biases for battles like
in Fig. 15, 16 and 17, CRAIG [5] came to the conclusion that when the
forces are closer to parity, the biases at the deterministic battle's
end increase. Several battles were fought starting with symmetric parity
and then varying the force levels and the attrition rate coefficients.
Sample results are shown in Fig. 18 and Fig. 19. In Fig. 18, the initial
force levels were changed giving the Y-force ten and twenty percent
higher initial force levels. The biases at the end of the deterministic
battle are plotted as a function of the breakpoint force level ratio
r-= xbp/xo.

Fig. 18 supports CRAIG's hypothesis, as does Fig. 19. Here not the
initial force levels but the attrition rate coefficients were changed in
order to deviate from symmetric parity. The last way to deviate from
symmetric parity is a case where the deterministic model gives equal

answers for different battles. The data and the results are shown in

Table 5.




——

TABLE 5

Equal initial force level battle with non equal breakpoints

Xg = 15 Yo = 15 a=b=f=0.08
Xbp Yho ax(te) ay(te)
12 12 1.08 1.08
12 9 0.71 0.63
12 6 0.15 -0.10
12 3 0.68 0.58
9 9 1.62 1.62
9 6 1.14 0.93
9 3 1.06 0.75
6 6 2.15 2.15
6 3 1.67 1.22
3 3 2.84 2.84
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The X-force level at time te is the same as the Y-force level. Thus,
the expected force level for the winner (i.e. the Y-force) is smaller than
the expected force level of the loser (the X-force), because Ax(tf) is
always larger than Ay(tf). This is easy to see when one remembers the
way the expected force level is computed (equation (4.3)). Since the
Y-force has a lower breakpoint, there are states (m,n) possible where
nbp<n<mbp. Apparently these states have a nonzero probability associated
with them, which decreases the expected force level below the expected
value for the X-force. This might be a starting point for further

studies.

D. VARIABILITY IN THE FORCE LEVELS

Naturally in the deterministic case there does not exist any variabil-
ity in the force levels. On the other hand, for the stochastic model, the
variance in the force levels as a function of time is a measure of the
dispersion of the number of survivors about their mean value.

CLARK [4] has hypothesized two different types of behavior for the
variance in the force levels, which are shown in Fig. 20 for the data
presented in Table 2. The first type of behavior is that of the variance
for the N-force, i.e. the variance increases monotonely as a function of
time and is asymptotic to a Timiting value. It was found that this type
of behavior occurs when the side is going to win and for the case of
symmetric parity. The second type of behavior shown is the variance of
the M-force, Var(M(t)), as a function of time. This increases to a
maximum value then decreases asymptotically to a limiting value. This

type of behavior is associated with the loser of the battle.
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The variance in the force levels is a function of the initial and
breakpoint force levels, the battle time and the attrition rate
coefficients. Unfortunately one does not know what this dependence is.
Based on many numerical results a set of hypotheses will be stated and
the next figures will support them.

H 1) Given fixed initial force levels and attrition rate coefficients,
as the breakpoint force levels increase the variance of the force levels
decrease.

H 2) Everything else constant the variance of the loser's force level
increases with increasing initial force levels. This is also true for
both variances in the case of symmetric parity.

H 3) Given the initial force ratio is close to one at the time
corresponding to the end of the deterministic battle the variance

of the loser's force level is always smaller than the winner's variance.
H 4) At the time corresponding to the end of the deterministic battle
the variance in the loser's force level increases as the forces come
closer to parity. This trend is not true for the variance of the win-
ner, except for the case of symmetric parity.

It was the intention of this author that the set of cases to illus-
trate the hypotheses are the same as in the illustrations (Fig. 17, 18
and 19) of the hypotheses about biases. So, Fig. 21 shows the force
level variances for the different initial force levels and different
breakpoints for the case of symmetric parity. In Fig. 22 the variances
for a battle with equal attrition rate coefficients but varying initial
force levels show that H 4 is only true for the loser. This point is
emphasized by Fig. 23, where with constant and equal initial force levels

the attrition rate coefficients were varied.
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V. COMPUTATIONAL ASPECTS

A. USING THE NUMERICAL SOLUTION

For most of the numerical work, the state probabilities have been
obtained using the fourth-order RUNGE-KUTTA method. The accuracy of the
results was increased by substituting the available analytical results
for the Regions I, II and III.

The disadvantage is that this solution method needs a 1ot of CPU-time.
For the battle in Example 1, with the data given in Table 1, the calcula-
tion of the state probabilities, expected force levels and variances led
to a CPU-time on an IBM-360 computer of almost 90 minutes with a time
step size of 0.05 minutes. That was the reason why, in the examples the
attrition rate coefficients were increased by one magnitude, which brought
the computer usage down to a CPU-time of around 12 minutes with the same
time step size of 0.05 minutes. The sum of the state probabilities at
every time step was used as a measure of accuracy. Surprisingly, its
deviation from 1.0 was always in the fourth or fifth decimal, which proves
the robustness of the RUNGE-KUTTA method. Also, the fact that for the
Regions I, II and III analytical solutions were substituted at each time
step did not change the final outcome considerably. It was found that
without the analytical partial solutions the sum of probabilities tended
to be slightly higher, changing the sum of probabilities from, for
example, 0.99998 to 1.00003.
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B. THE EQUAL ATTRITION RATE COEFFICIENT SOLUTION

After the development of the equal attrition rate coefficient solution
(EARCS) outlined in Ch. III.C, it was implemented on an IBM-360 comput-
er. The CPU-time for the calculation of the state probabilities, expected
force levels and variances for a given point in time always stayed below
20 seconds, which emphasizes its computational advantage.

Further research showed two shortcomings of the EARCS, which are
easily overlooked. The coefficients C(m,n) vary over a wide range start-
ing at 1.0 and depending on the initial force levels.

For example for a battle with

My = 20 mbp =15
ng = 40 nbp = 20
f =0.08 tf = 1.60995

€(20,40) = 1.0 but C(16,21) = 4.9297077276x103.
Also, the binomial coefficients in equations (3.23) and 3.24) vary over a
wide range starting at 1.0 to 1352078 for the above example. This shows
that the capacity the computer, in terms of the number of significant
digits, is able to carry limits the implementation of this solution in
v the present form.

Another reason why this solution is not the end of the numerical
problems is the fact that in the given form, equations (3.23) and (3.24)
require computation of an alternate sum consisting of terms whose factors
are relatively large binomial coefficients and small numbers between zero

and one. This produces truncation errors, which yield nonsensical results

1ike negative variances and sums of probabilities greater than one.
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VI. CONCLUSIONS

Throughout this thesis, only LANCHESTER-type square-law attrition
with fixed initial force levels and fixed attrition rate coefficients
has been considered for a deterministic and a stochastic version. The
stochastic version required much more computational effort. So, given
the need for an analytical model as opposed to the use of simulation,
there is not much to gain from the application of a stochastic model
when the force levels are large and the forces are not near parity. In
these cases the deterministic version essentially produces the same
results, at least in qualitative terms. For smaller force levels or
forces near parity, the stochastic version may be helpful to get more
information about the dynamics of combat.

Also, there exist one case where the deterministic version cannot
differentiate between several different battles. That is the case of
equal initial forces, equal attrition rate coefficients, but different
breakpoint force levels. This also rectifies the further development of
the equal-attrition-rate-coefficient-solution {EARCS).

Using an analytical model, the discussed way of introducing random-
ness into the model seems not to be very enlightening. Therefore, it is
suggested that another way to include random effects should be explored.
The author's opinion is that working with attrition rate coefficients
which are random variables seems more promissing to gain insight into

the dynamics of combat. Further down the line there should be some

7




consideration on the usage of combinations of the possibilities to

include random effects as given in Chapter II.B.
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DO NOWNREWDN -

- e i b e s
~PPNEWBLN-D

16
19

OO

3OO0 00

APPENDIX A

THIS PROGRAM COMPUTES THE STATE PROBABILITIES USING THE FOURTH
ORDER RUNGE-KUTTA METHOD. PLOTS OF THE EXPECTED FORCE LEVELS AND
VARIANCES AS WELL AS 3-D-PLOTS FOR THE STRTE PROBABILITIES ARE
OGBTAINED.

DIMENSION P1(33,33), P2(33,33), T3D(20)

DIMENSION XMT (500), XNT (500), QT (S00), VMI(500}, YNI(S00},

1 YMB (551}, VNBI(551), VO(S51), VRARX(551), VARY (5511, TIM(551)
DIMENSION EST (313),D(313),F(2),S1ZE (2) ,KX (100) ,KY (100) , WK (41,41,3)
1 ’ PC i, 413 ,CSTWND ,CETERM (Y1)
LOGICAL~] IDN(41,41)
DIMENSION DETERM(313)
REAL»B TTL(12) /12" */
REAL K1, K2, K3, K4

CALL ERRSET (208,600,~1, 1}
F(3)1=0,

F (2) =0.

LINES=0

SIZE (1) =6.

SIZE (2) =8.

OFLARG = 0.

NKXY=100

RERD (5,21) MBP, MO, NBP, NGO
READ (5,22) RA, BB

RERD (S,22) H, FTIM

READ (5,21) N30

RERD 15, 22) EPSO, EPSPTY

T30 (33 = 9999,

IF (N3D .LT. 1) GO TO 25

READ (5,22) (T3D(1), I=1,N3D)
2S CONTINUE

N3D=NUMBER OF 3D-PLOTS, H=SIZE OF TIME STEP
FTIME=FINALTIME, EPSQ,EPSPTT ARE ZERO LEVELS
T30(1)= FRACTION OF FTIME WHEN TO PLOT 3D

00 10 I=1,N3D
T30 (1) «FTIMnT3D (1}
10 CONTINUE
21 FORMAT (16195)
22 FORMAT (8F10.5)
WRITE (6,28) MBP, MO, NBP, NO
28 FORMAT (// 5X, "M S & N S°, 5X, YI6 /)
WAITE (6,29) AA, BB
29 FORMART (/ SX, ‘A & B*, 9X, 2F10.3 N
WRITE (6,300 H, FTIM
30 FORMAT [/ SX, °“INITIAL H & FINAL TIME (s LOOPS w H) *, SX, 2F10.3/)
WRITE (B,31) N3D
31 FOAMAT (// SX, 's OF 3-D PLOTS', 2X, 16 /)
IF (N30 .LT. 1) GO TO 386
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aoo0

[z W alel

24

32
36

47

S0

S2

S3

WRITE (6.24) EPSQ,.EPSPTT
FORMAT (/ 5X, "EPS0=",F10.5,5X, ‘EPSPTT=",F10.5)
WRITE (6,32) (T3D¢(]), I=1,N3D)
FORMAT (/ SX, °"AT TIME®, 2X, 10F10.3 /)
CONTINUE

MO1 = MO + 1}

NOj = NO + 1}

NS = NO1 -~ NBP

MS = MO1 ~ MBP

MSL = MS + 1§

NSL = NS +1

BMO = BB » MO

ANO = RR » NO

GANB = RAND / BB

0BMA = BMO / AA

BAT = - (BMO + AN

DO 47 M1 = §,MS

VM(M1) = MBP * M1 - |
CONTINUE

DO ys8 N1 = 1,NS

YNI(N1) = NBP *+ N1 -1
CONTINUE

L=0

N3 = |

TPLOT « T3D (N3)

TIME = O.

CONTINUE

IF (TIME .GT. FTIM) GO TO 210
CONTINUE

TIME = H w L

L=l *1

LB =20

TIM(L) = TIME

1F ¢ L .EQ. 20 GO TO S3

If (TIME .LT. TPLOT} GO TO 60

SET NEXT PLOT TIME

N3 = N3 +

TPLOT = T3D (N}

IF (N3.GT.N3D) TPLOT=9999,
CONTINUE

LB = L WHEN TIME TO PLOT

LB = L

EBT = EXP(BB » TIME) - 1.
EAT = EXP{RA »« TIME) - 1.
AE = QANB = EBT

BE = QBMA w ERT
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101
102
103
104
108
106
107
108
109
110
11}
112
113
14
115
116
117
118
119
120
121
122
123
124
128
128
127
128
129
180
181
132
133
134
135

137

138

139

y 140
141

) 142
143

) T}
T

! 146
: T}
} 148
: 149
150

~

(2]

(g

OO

[z g N ]

60

502

1 PR(ML.NL1Y)

BAE = EXP (BAT = TINME)
FJ = §.

JJ =1

NO VALUE OF J = ZERO AT MO,NO
FX = §.

KK = |

OFKe].,

QF J=1.

NO VALUE OF k = ZERO AT MO,NO

CONTINUE

IF L .EQ. 1) GO 70 500
Q0=3.

00 400 NI = I,NS

N = NO1 - NI

KL = NSL - NI

NL1 = NL + |

ANJ = AR w N

DO 300 M1 = I,MS

M = MOl - M1

ML = MSL - M1

HLl = ML ¢+ )

BM] = BB w M

ABA = ANJ + BM]

IF (M .EQ. mO) GO 10 502
1F (M .EQ. MBP) GO TO SOY
IF (N .EQ. NO) GO 10 508
iIf (N .EQ. NBP} GO TO 507

DEFAULTS TO ALL INSIDE POINTS

K1 = ANJxP2 (ML1,NL) + BMIxP2 (ML,NL1) - ABAwP2 (ML,NL)
PT = ANJuO.Sw (P13 (ML1,NL)*P2 (MLI,NL)) + BMIn0.S » (P! (ML,NLI) <+

K2 = PT - ABA » (P2 (ML,.NL) + Hx0.SwK])

K3 = PT - RBA » (PR(ML,NL) + Hw»(.5xK2)

K4 » ANJuP) (MLI,NL} + BMIxP] (ML,NL1) - ABAw (P2 (ML, NL) + HxK3)
PIIML,NL) = P2 (ML,NL) + (H/6.0) » (K1+2.0%K2 + 2.0mK3 + KW)
GO 10 200
IF (N .ED.
IF (N .EQ.

NO) GO 70 SO03
NBP) GO TO 507

M=MO, N-=NO,NBP

K1 = BMIwP2 (ML,NL1} - ABA=P2 (ML,NL)
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151
152
153
154
155
156
157
158
159
160
161
182
163
164
185
166
167
168
169
170
in
172
173
i
175
178
17
178
179
180
181
182
183
184
185
186
187
188
169
180
181
192
193
194
195
198
197
198
199
200

OO0 NnOMOO OO0

ooOon

[ M a sl

503

S04

50°

506

507

PT = BMIx0.5 w (P1(ML.NL1) + P2 (ML,NL1))
K2 = PT - RBA w (P2IML,NL} + HxKix0D.S)
K3 = PT - ABA » (P2{ML,NL} + HvK2%0.5)

KU = BMI » P1(ML,NL1) - ABR w (P2IML,NL) + HuK3)

Pl (ML, NL) = P2(ML,NL) + (H/6.) » (KI*2.0nK2 + 2.0xK3 + Ky)
if B .EQ. L) GO T0 601

GO 10 200

M=MO, N=NO

CONTINUE

P1ML,NL) = EXP(-ABR » TIME)

WRITE (6,102) L, N, ML,NL, P1(ML,NL)
GO T0 200

1F (N .EQ. NBP) GO TO SOS

M=MBP, N-= NBP

K1 = ANJ » P2 (MLI,NL)

K2 =« ANJ w 0.5 » (PI(MLI,NL} + P2{MLI,NL))

K3 = K2

KN = ANJ w» P1(MLI,NL)

PI(ML,NL) = P2(ML,NL) + (H/6.0) » (KI + 2.0xK2 + 2.0%K3 + K4}
GO 10 200

M=MBP, N=NBP
CONTINUE
Pl ML,NL) = 0.0
GO 10 200

N=NQ, M-=MBP, MO

K1
PT

ANJwP2 (ML1,NL) -~ ABA»P2 (ML.NL)

ANJ » 0.5 » (Pl MLI,NL} + P2{MLI,NL))

K2 PT ~ ABA » (P2 (ML,NL) ¢+ Hx0.SwK{l

K3 PT ~ ABA » {P2(ML,NL! + Hu0.SwK2)

K4 = ANJ » P1{MLI,NL) - ABR = (P2 (ML,NL) + HxK3)

P1(ML,NL) = P2 (ML,NL) + (H/6.0) » (K1 + 2.0%K2 + 2.0%K3 + KY)
IF (LB .EQ. L) GO TO 602

GO0 10 200

N=NBP, & N=NBP, M=MD

CONTINUE

K1 = BMI w P2(ML,NLI)

K2 = BM] » 0.5 » (P (ML,NL1) + P2(ML,NL1})
K3 = K2

K4 = BMI » P1(ML,NLI)

76




201 P1 {ML,NL) = P2 (ML,NL) + (H/6.0) = (K1 + 2,0%K2 + 2.0%K3 + KY)
202 GO TO 200
203 [
204 c ALSO M=MO, N-=NBP,NO
205 c
206 601 CONTINUE
207 IF((BE.LT.1.).AND. (KK.GT.9)) GO TO 255
208 o
209 [ COMPUTE PTT IF BE > 0 & KK < 10
210 c
21l PTT=BRE
212 DO 250 IND=1, KK
213 XINDs IND
214 PTT=PTTwBE/XIND
21§ 250 CONTINUE
218 GO TO 260
217 255 PI1T=0.
218 250 CONTINUE
219 KK = KK + 1§
220 IF ((ABS (P11 (ML,NL) -PTT)) . LE.EPSPTT) GO TO 1998
221 G0 18 700
222 c
223 [ M=MBP, NaNO
224 C
225 602 CONTINUE j
228 IF C(RE.LT.1.) .AND. (JJ.GCT.9)} GO TO 270 :
227 ¢
228 I
229 [ COMPUTE PTT IF AE > 0 & JJ < 10
230 [
231 PTT=BAE
232 DO 265 IND=1,JJ
233 XIND=1IND
234 PTT=PTTwRE/XIND
23S 2685 CONTINUE
1 238 GO T3 275
297 270 P1Teq,
238 27S CONTINUE
239 JI s JJ o+ }
; 240 IF LIABS (P} (ML, NL) -PTYT)).LE.EPSPTT) GO TO 199
vl 700 CONTINUE
} 242 [
f 243 ¢ TIME REDUCED 1/2
\ 244 c
‘ 24s Ll -1t
r 246 WRITE (6,701) TIME, M, N, H
. 247 701 FORMAT (/7 SX, °'H VALUE 1S REDUCED BY HALF AT : TIME = °*, FB8.3,
J 248 1 * Me *, 15, ° N= * 15 * FROM *, F8.3 /1)
' 248 H=0.5%H
250 WRITE (6,102) L.M,N.KK, PTT, P1(ML,NL),QFK, QFJ,QQ,QFLAG




251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
27
272
273
2N
275
276
277
278
279
280
281
282
283
284
285
286
28?7
208
289
290
291
292
293
294
295
296
297
298
299
300

o000

500

OO0

102

199
200

300
400

uo1

430
415

FORMAT (4 2%, 41§, 7F12.95)
QF LAG=0.

GO TO S2

PTT=P} (ML, NL)

CONTINUE

QQ=0Q0+P1 (ML, NL)

CONTINUE

CONTINUE

0801=ABS (Q0-1.)

IF (QQ1.LE.EPSQ) GO TO 4Ol
QFLAG=1.

G4 10 700

CONTINUE

COMPUTE VARX (T), VARY (T} ,NBAR(T) ,MBAR(T),Q (M)

SM3 = 0.

S8 = 0.

SQ = 0.

SM2 = 0.

SN2 = Q.

DO 415 M1 =2 1,MS

RM = vMIMD)

AM2 = RMxRM

D0 410 NI = |,NS

RN = VN IN1)

RN2 = RNw»RN

PT = P1(M1I,NI}

P2 (M1,N1) = PT

SMB = SMB + RM~PT
SNB = SNB + RN=PT

SQ = S0 + PT

SM2 = SM2 + RM2 w» PT
SN2 = SN2 + RN2 = PT
CONTINUE

CONTINUE

VMBIL) = SMB

VNBI(L) = SNB

var = Sa

VARX (L) = SM2 - SMB»SHB
VARY (L) = SN2 - SNB«SNB

RETURN TO MAIN LOOP (S0 IF NOT TIME TO PRINT
IF (N30 .LT. 1) GO YO 430

IF(LB.NE.L) GO TO 430

1F (LB.ED.2) GO TO 430

ROJUST X,Y, VECTORS FOR PLOT
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301
302
303
30y
305
306
307
308
309
310
311
312
313
31y
315
3186
317
318
319
320
321
322
329
324
325
326
327
328
329

h 330
331

332

333

33y

335

336

337

338

339

30

) Sy1
342

) 343
auy
s
LT
347
g
349
350

MOPOOOO

B0 15 K=§,MS
15 EST (K} =K-)
DO 16 K={,NS
DETERM (K) =K-1
16 CONTINUE
Do 115 1=1,4)
CST =l
CETERM (]} =1
DO 115 J=1,U1
PC(l, 1=0.0
115 CONTINUE
MP2y |
NPayt
ALP=15,
BETA=30.
PMAX=P1(1,1)
DO 116 I=1,NS
WRITE (6,199 1,P1 (1 .1y, PI (I, 1)
199 FORMAT (* *,15,10%,2F15.5)
116 CONTINUE
DO 18 1=1,MS
0O 18 J=1,NS
IF (P31 (1,0 .GT.PMRX)
18 CONTINUE
CONST=8.0/PHAX
D0 19 1=1,MS
N=}+MBP
D8 19 J=1,NS
M=J+NBP
P1 (1, ) =CONST=P1 (1, )
PC(N,MI=PL (1,0}
19 CONTINUE
CALL PLT3D! (CST,MP,CETERM,NP,PC,ALP,BETR,F,TTL,SIZE,.NK. IDN, KX, KY. N
1KXY,LINES)

PMAX=PL (1, J)

430 CONTINUE

PLOT HERE
RETURN TO MAIN LOOP

GO 76 50
500 CONTINUE
p0 503 1 = 1,MS
DO S0) J = 1,NS
PYI], 0 = 0.D
CONTINUE
Pl (M5,N5) =
GO 10 401

501
1.0
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351
352
353
354
ass
3568
957
358
358
360
361
362
363
364
365
38%
367
368
369
370
37
372

t

210

211

213
215
650

FINAL TIME RERCHED

CONTINUE

WRITE 16,2111 TIME, FTIM, L
FORMAT (/7 SX, °CaMPUTEQ TIME °,
1 F10.3, SX.
00 215 1 »1,L

WRITE (6,213) yMBiDh, VNBII}, VO(1), VARX (]}

F10.3, 5,

FORMRT 12X, 12F10.%3
CONTINUE
FORMAT (*1 Y)

WRITE (6,650}

CALL PLOTP(TIM,VMB,L,D)
WRITE (6,850

CALL PLOTP(TIM, VARX,L,D)
WRITE (6,650)

CALL PLOTP(TIM, VKB, L. D)
WRITE (6,650

CALL PLOTP(TIM, VARY,L, D)
s10P

DEBUG SUBCHK

END
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DD DUVEWN

OO0

THIS PROGRAM CALCULATES THE STRTE PROBABILITIES FOR THE EQUAL

APPENDIX B

ATTRITION RATE COEFFICIENT SOLUTION (EPRCS).

A

3-0 PLOT 1S PRODUCED USING THE VERSRTEC PLOTTER.

IMPLICIY REAL%8 (A-H,0-2)
CALL ERRSET (208,256,10, 1}
DIMENSION € (50,50),M150) ,N(501,F (S0),PTMN(S0,50)
REALwY SIZE(2),FL(2) , WK1 ,41,3),X(41),Y (41} ,P 41, 41)
DIMENSION KX (1001 ,KY (100}
LOGICALw1 DN (41,41}
REAL»B TTL (12) /12" */
READ (5, 100) MO, MBP, NO, NBP
RERD (5,101)R
RERD (5, 102) TIME
READ (5,103) (F(1),1=1,41)

F(l1=1/]-FACTBRIAL, OONE 7O SPEED UP THE PROGRAM

802

10

20

el

WRITE (6,802) M0, MBP, NO,NBP,AR, TIME
FORMAT (*  ",415,2F10.9)
MD=MO-MBP

ND=NO-NBP

MO1=M0+]

NO1=NO*]

MBP1=MBP+1

NBP1=NBP+1|

MBP2=MBP+2

NBP2=NBP+2

RMO=MO

RANO=NQ

00 10 1=1,41

0O 10 Js=1,41
C(),N=0.0
PTMUN (], ) =0.0
P(l,0)=0.0

CONTINUE

€ Mo1,NO1)=1.0

00 20 1=2,MD

J=MBP+]

C(J,NOY) = ANOww (MD-1+1}
CONTINUE

DO 21 }=2,ND

J=NBP+]

C(M01, J1= RMOww (ND-1+11)
CONTINUE

DO 22 1=2,MD

MC=MO1-1

MM=MO1-1+1

MPLUS=MM+ ]
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S1
52
S3
Sy
55
56
57
58
59
60
61
62
63
64
65
1
87
68
69
70
n
RL
73
74
5
7%
77
8
79
80
81
82
83
a8y
83
88
87
88
8%
90
81
32
93
9y
95
86
a7
a8
99
100

22

C ENO

25
100
101
102
103

C FOR

302

301

30

DO 22 J=2,ND

NCaNG1-J

NN=NO1-J+]

NPLUS=NN+1

C (MM, NN =NCx  C (MPLUS NNJ +MCx  C (MM, NPLUS)
CONTINUE

af COEFFICIENT CALCULATION

Films-AnTIME
DO 25 1=MBP2,MOI
DO 25 J=NBPZ2,NO!
1J=1+J
KaMO+NO-1J +2
F2=(1.0-DEXP (F1)) %=K
KK=K+1
1J=14-2
F3=0EXP (FlxlJ
PTMN (1, J) =F 2%F 3% (1, J) »F (KK)
CONTINUE
FORMAT (41
FARMART (F10.5!
FORMART (F10.5)
FORMAT (D172.11}

NBP<N<NO

DO 30 11=3,ND
NFORCE=NBP+11
J=MO+NO~MBP-1-NFORCE
FACT2MBP+1 . O+NFORCE
SUMI={1.0-DEXP(FIwFALT)) /1 AxFACT)
SUMINT=SUM]
DO 301 K=1,J
FACT=FRCT+*1.0
ADDFAC= (~1.0) K
FRACTN={1.0-0EXP (FI~FACTY) 7 1 A=FACT)
COMBT=1.0
DO 302 KJ=1,K
RKJ=KJ
COMBI= (J-RKJ+1.D) /BRKJ
COMBT=COMBTCOMBI
CONTINUE
SUMINT=SUMINT+RDDFAC«FRACTN~COMBY
CONTINUE
NMBP= ¢}
NBOUND=NFORCE+1
PFAC=AxNFORCExF (NMBP) »C (MBP2, NBOUND)
PTHMN (MBP1, NEOUND) =PFAC*SUMINT
CONTINUE
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
13
132
133
134
135
136
187
138
189
140
141
142
143
144
145
146
147
148
189
150

c

C FOR MBP<M<MO

c

o

402

401

40

801
45

D0 40 11=1,MD

MFORCE=MBP+]]

JsMO+NO-NBP-§ -MFORCE

FACT=NBP+1.0+HFORCE

SUMI=(1.0-DEXP (FIxFACTI) 7 { AxFACT)

SUMINT=SUM]

DO 401 K=1,J

FACT=FACT+1.0

ADDFACE (-1.0) »xK

FRACTN= (1.0-DEXP (FI1xFACT) )/ ( AxFACT)

COMBT=1.0

DO 402 KJ=1,K

RKJ=aKJ

COMBI= (J-RKJ+1.0) /RKJ

COMBT=COMBTXCOMB1
CONTINUE

SUMINT=SUMINT +RDDFACKFRACTN=COMBT
CONTINUE

MNBP=J+1

MBOUND=HFORCE+1
PFRC=AxMFORCE «F (MNBP) »C (MBOUND, NBP2)
PTMN (MBOUND, NBP 1) =PFAC=SUMINT
CONTINUE

DD 45 1=MBP1, MO}

DO yS J=NBP1,NOI

Ke]-1

LeJ-1

WRITE (6,801 K, L, PTHN(I, )

FORMART (* Pu(T,*, 15,°,°,15,") = *,017.11)
CONTIN''E

€ DATA ABJUSTMENT FOR PLOT

c

c

NROW=U 1
NCOL =4}
NKXY=100
LINES=0Q
ALPHA=1S.
BETA=30.
FL(1)=0.0
FL(2)=0.0
SIZE (11 =6.0
S1ZE(2)=8.0

C SCALING

€

PMAX=PTMN (1, 1}
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151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
e}
175
176
177
1?28
179
180
181
182
183
18y
185
186
187
168
183
190
191
192
193
194
195
196
197
188
199
200

OO0

[ M

DO S50 I=1,41

X(])e]

08 50 J=1,4l

Y(H=J

1F (PTMN (1, ) .GT.PMRX) PHAX=PTHN (I, N}
S0 CONTINUE

CONST=8.0/PMAX

DO S1 I=1,4t

00 51 Jsi,yi

Pil, ) = SNGL {CONSTwPTMNI], 1)
51 CONTINUE

IF  OTHER FORCE LEVELS CHANGE PLOT RARGUMENTS
CALL PLT301 ¢X,NRON, Y,NCOL,P, ALPHA,BETA,FL, TTL,SIZE, WK,
" IBN, KX, KY  NKXY.LINES)
EXPECTED YALUES AND VYARIRNCES
EM=0.0
EMM=0.0
VARM=0.0
5PR0OB=0.0

DO 60 !1=MBP1,MO)
1=11-1
SPT=0.0
DO 601 JJ)=NBPI, NOI
SPT=SPT+ PIMN{11,J)
801 CONTINUE
EM2EM+ IwSPT
EMM=EMM+ IwixSPT
SPROB=SPROB+SPT
60 CONTINUE
VARM=EMM-EM~EM
EN=0.0
ENN=0.0
YARN=0.0
DO 70 11«NBP1,NOI
I=l1~1
SPT=0.0
D0 701 JJ=MBP!, MO}
SPT=SPT+ PTMN(JI, 1]
701 CONTINUE
EN=EN+ I wSPT
ENN=ENN+ Iw]wSPT
70 CONTINUE
VARNENN-EN=EN
WAITE (6,8051 EM,EN.VRAM, VARN
B80S FORMAY ¢* *, "EXPECTED VALUES M , N', 5SOX,*' VRRIANCE M.N ./
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i
201 w«' *,D17.11,10X, D17.11,751,017.11, 10X, D17.1D)
202 WNRITE (6,1100) SPROB
203 1100 FORMAT (* SuM OF PROBABILITIES °,.Dt17.1D)
20y SToP
20s END
]
|
i
1
‘-v
)
)
}
}
\
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