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ABSTRACT

This thesis examines the differences of deterministic and stochastic

LANCHESTER-type combat models. Using an example of square-law attrition,

solution methods and solutions are described. A new analytic solution

for equal attrition rate coefficients is given. The numerical comparison

includes hypotheses about the expected force levels and the variability

in the expected force levels as a function of time, initial force levels,

and breakpoint force levels.
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I. INTRODUCTION

Combat models are widely used as decision aids in the defense-

planning process, at least within the NATO alliance. Current operation-

al combat models are very complex because combat is a very complex

process. Unfortunately it is difficult (if not impossible) for the

beginner to understand the modelling approaches, concepts and motivation,

that may have been used to build such operational models. However, one

frequently considers a simple model as a paradigm for the development and

understanding of such complex models. This basic approach will be used

in this thesis to explore certain issues in the on-going debate about

the relative merits of stochastic and deterministic combat models.

A simple model is examined to explore differences between a determin-

istic and a stochastic approach to a certain type of analytical combat

model. As already mentioned, combat is a very complex process, but it

is also a complex random process, which can be supported by many examples

from military history. Analytical models are abstractions and very often

simplifications of reality. It seems to be a legitimate question to ask,

what effects the further abstraction of neglecting the randomness in

combat may have. At this moment, it should be pointed out that within

I existing operational analytical models, both stochastic and deterministic

models are used.

Previous work done by SPRINGALL [9] and CLARK [4] evolved around

theoretical aspects. Their main concern was to give exact analytical

solutions and their proofs. CRAIG [5] started to explore the differences

6'1
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between stochastic and deterministic models more from the numerical

point of view, which will be continued in this thesis.

In the next chapter, a deterministic and stochastic version of a

differential combat model will be described. The deterministic versions

are well-known as LANCHESTER's equations of modern warfare, which were

developed in 1914. Combat models, which model attrition from enemy

action through a system of differential equations, are usually referred

to as LANCHESTER-type models of warfare.

r
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II. THE PARADIGM MODELS

A. THE DETERMINISTIC MODEL

First, LANCHESTER's equations of modern warfare will be briefly

reviewed and some simple extensions given.

In 1914 LANCHESTER [7] hypothesized that under "modern conditions"

in a combat between two homogeneous forces the firepower of the surviving

weapons of one side can be concentrated on the surviving targets of the

other side, so that each side's casualty rate is proportional to the num-

ber of enemy firers. This can be described by the following equations:

dx- ay (2.1)

= -bx
dt -(2.2)

with initial conditions

X(O) = x0  (2.3)

Y(O) = YO (2.4)

where a is the attrition rate with which the Y-force attrits the

X-force, similarly for b. X0 and Yo are the initial force levels and

X(t) and Y(t) are the force levels at time t. The force levels, as a

function of time t, can be written as

X(t)=XoCOSh(4y -1a/b Yosinh(f t) (2.5)

Y(t)=yocosh(4a" t)-4bT x0slnh(4a t) (2.6)

The state equation relating initial force levels with force levels at

some time t can be derived by dividing (2.1) by (2.2), separating
r
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variables and integrating to yield

b(xo2-X(t) 2 )=a(yo2-Y(t) 2). (2.7)

This form of the state equation explains why this model is also referred

to as the "square-law" attrition process. WEISS [l] has given a set of

assumptions under which LANCHESTER's equations for modern warfare may

apply:

Al.) Two homogeneous forces are engaged in combat. Every unit

on a particular side has the same capabilities. The attrition

rate may be different for the two forces.

A2.) Each unit on one side is within weapon range of all units

on the other side.

A3.) The effects of successive rounds on the target are

independent.

A4.) Each unit has perfect knowledge of target locations and

fires only at live target (one at a time) killing them at a

constant rate, which does not depend on the number of targets

alive.

A5.) Fire is uniformly distributed over surviving targets.

The above model implies a fight until one force is annihilated.

Therefore the model will be slightly changed by introducing the concept

of unit breakpoints, Xbp and Ybp' which are simply force levels at which

the side, who reaches it first "breaks off" the engagement, leaving the

other side as a winner. Also, to be more precise, it should be noted

that negative force levels for breakpoints equal zero or force levels

9



less than nonzero breakpoints are impossible. So the deterministic

LANCHESTER-type combat model with "square-law" attrition takes the

following form:

dx f -ay Xbp<X(t)

T- Ybp<Y(t) (2.8)

0 otherwise

-bx Xbp<X(t)

t Ybp<Y(t) (2.9)

0 otherwise

with initial conditions

X(O) = x0  (2.10)

Y(O) = YO (2.11)

The model in this form, equations (2.8) through (2.11), was used for

comparisons throughout the thesis.

B. THE STOCHASTIC MODEL

There are several ways to include random variations in LANCHESTER-

type models. These are:

* The attrition rate coefficients may be random variables.

* The enemy's initial force level may be a random variable,

weakening the assumption of perfect knowledge.

* The breakpoints may be random variables.

* The casualty rate is fixed, but the occurrence of casualties

over time may be random.

The only random variation considered here will be the random occur-

rrence of casualties over time. Another specification was to choose a

10



model sim"lar to the "square-law"attrition in order to allow comparisons.

In other words, the question to be asked is "how do random fluctuations

in the occurrence of casualties modify the deterministic results of the

square-law attrition process?"

The approach used here was a continuous parameter MARKOV chain model,

where the time t varies continuously and the number of combatants on

each side is a non-negative integer. Let M(t) be the size of the X-force

at time t with a particular state value m. Let N(t) be the size of the

Y-force at time t with a particular state value n. Let m0 and n0 be the

initial force levels and mbp, nbp be the breakpoint force levels of X

and Y respectively. Fig. I shows the state space of this MARKOV chain

model. Note that at a given time t, any state is described by the two

force levels of the X and Y force. As each side loses units due to

attrition and no replacements are allowed, it is easy to understand why

BILLARD [1] referred to this type of process as a "bivariate death process."

I1
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For the description of the stochastic square-law attrition process

corresponding to the two deterministic differential equations (2.8) and

(2.9), a system of many differential equations, depending on the battle

termination model, is required. This system will be given for a fixed-

force-level-breakpoint battle with square-law attrition.

The following assumptions yield the stochastic square-law attrition

process.

Al.) The attrition process depends only on the current system

state and time and not on the past history (this assumption is

usually referred to as markovian property).

A2.) The probability p one x casualty during the a
time interval t to t+h ahA3.) The probability tim interval t to t+h =a

(one y casualty during the bhA3.)Theprobbilty (time interval t to t+h =b

A4.) The probability of more than one casualty occurring in

the time interval t to t+h is of the order of magnitude o(h),

where lim 1+0 o(h)/h = 0.

A5.) No more casualties can occur once m = mbp or n = nbp.

Making the time interval h infinitesimally small, the following

set of forward CHAPMAN-KOLMOGOROV equations can be developed. Let

P(t,m,n) be the probability that the system is in state (m,n) at a

time t. For convenience each equation is related to a region in the

state space shown in Fig. 2.

13



For m=m 0 and n=n O , Region I

dP(t,mon ) = -(ano+bm O ) P(t,m0 ,nO) (2.12)

for mbp <m<m 0 and n=n O, Region II

t(t,m,no) = an0 P(t,m+l,no)-(ano+bm) P(t,m,no) (2.13)

for nbp<n<n 0 and m=m,, Region III

dP
dt(t,mo,n) = bm0 P(t,mo 9n+l)-(an+bm O ) P(t,mon) (2.14)

for mbp<m<m 0 and nbp<n<no, Region IV

dP(t,m,n) = anP(t,m+l,n)+bmP(t,m,n+l)-(an+bm)P(t,m,n)

(2.15)

for m=m bp and n bp<n<n O , Region V

-- (tmbpn) = anP(t mbp+1n) (2.16)

for n=nbp and m bp <m<m O, Region VI

dP(t,m,n ) = bmP(t,m,nbp+1) (2.17)

for m=mbp and n=n bp, Region VII

P(tmbp9nbp) = 0 for all t (2.18)

because of the definition of a breakpoint force level. The
initial condition is

P(O,mo,n O ) = 1.0 (2.19)

r
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As P(t,m,n) is a joint probability distribution, the follow-

ing must also be true

0 P(t,m,n)sl.0 (2.20)

and

51P(t,m,n) =1.0 (2.21)

mbp n~nb

16



III. SOLVING THE DIFFERENTIAL EQUATIONS

A. SOLUTIONS FOR THE DETERMINISTIC MODEL

Force levels as a function of time were already given in equations

(2.5) and (2.6). It is relatively easy to obtain analytical solutions

for such simple deterministic models as described before. On the other

hand, it is necessary to point out that for models with any degree of

operational realism, analytical methods for solving the differential

equations are usually not available. Therefore, some numerical method

with a digital computer is usually used. TAYLOR [10] has summarized in

his Appendix C the most widely used numerical methods, a discussion of

which seems unnecessary at this point.

B. SOLUTIONS TO THE STOCHASTIC MODEL

Even for this relatively simple stochastic model with fixed force

level breakpoints, which are usually nonzero, a complete set of general

analytical solutions for the differential equations (2.12) through (2.19)

has not been found. On the other side, given some minor restrictions

like a fight to the finish or equal attrition rate coefficients, solu-

tions, or at least solution methods have been proposed which will be

briefly discussed in the next section.

First, the method for getting the state probabilities used here will

be described. Numerical solutions were obtained using the fourth-order

RUNGE-KUTTA method, which is probably one of the best known finite dif-

ference approximations to ordinary differential equations (next to the

17



EULER-CAUCHY-method). To increase the accuracy of the overall solutions

analytical results for certain regions of the state space were substituted.

These analytical solutions will be stated now. For region I, i.e. no

casualties on either side, the solution to (2.12) is

P(t,mo,nO) = exp -(ano+bmo)t (3.1)

which can be derived by the standard method used for this kind of dif-

ferential equation. For the boundary cases, region II and III, i.e.

one of the two sides has not yet had a casualty, TAYLOR [10] has given

the analytical expression as

for mb <m<m 0 and n=n O , Region II

P(t,m,no) = 1!jano/b(ebt_l)}J exp(-(bmo+ano) t) , (3.2)

where J = mO-m

for nbp <n<n 0 and m=m O , Region III

P(t,mo,n) = yjjbmo/a(e exp(-(bmo+ano) t) , (3.3)

where K = nO-n.

These two equations (3.2) and (3.3) were obtained by
recursively solving equations (2.12), (2.13) and (2.14) "from
the top down."

C. OTHER ANALYTICAL SOLUTIONS

The solutions or solution methods for getting the state

probabilities will only be stated for the square-law attri-

Ht tion process. Only two were used for the numerical work for

this thesis.

r
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Apparently, one of the "oldest" analytic solutions was

given by BROWN [3] in 1955 for the general stochastic

LANCHESTER-type combat model with time independent attrition

rates. His approach and solution will be briefly outlined

for square-law attrition. Consider a path from state

( m0 , no ) to some state (m,n). This path can be described

as a sequence of J = ( m 0 -m) zeros and K = ( no -n) ones,

where a zero corresponds to an X casualty and a one to a Y

casualty. Using the binary representation of a positive

integer, one can define to each realization of a battle path

an integer k given by

k = dk,ldk,2... dk,J+K

where if the rt h casualty along a battle path

corresponding to k is a Y casualty and dk,r = 0 otherwise.

Also let IJK be the set of all positive integers whose

binary representation contains exactly K ones and J zeros.

Then

mk,r M 0- r+ f dkjj=l '

r

nk,r =n 0  - Z dkj.j=l ' "

Then BROWN [3] has shown that

19
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P(t,m,n) = J4 1 Kk
kc~ -, r--

k eI JK r:O

exp (-Jut)-exp(-tl (m k  r ,nk  r)  du(3 4

1(mkr,nk,r')-iud

where i = V7 ,

l(m,n) = an+bm,

gk,r+l
Kk,r I -liu/l(mk,r,nk,r

and

gk,r+l = dk,r+l ank,r+(l-dk,r+l)bmk,r

There was no indication that nonzero breakpoints were

excluded. A discussion of this solution follows in the next

section.

About 14 years later, in 1969, CLARK (4] proposed another

approach which TAYLOR [10] called a "hybrid analytical-numer-

ical" method. The restriction is that the breakpoints have

to be zero, i.e. it is a fight to the finish. Although

proposed for a general time independent attrition function,

this approach will be outlined for "square-law" attrition.

Then according to CLARK (4] the state probabilities are given

by

20
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for 0<m4m 0 and O<nsn 0

P(t,m,n) = C m n.exp(-(ak+bji)t) *(3.5)

j=m k=n

for O<msm 0 and =

mo no
P(t,m,o) = CM:o+ F. T_ C"T' 0 *exp(-(ak+bij)t) , (3.6)

j-m k=l jk

for m=O and O<n~n 0

m0 no

P(t,O1n) = CO'n + jO,k *exp(-ak+bt)(3.7)

j=m CO~n

and at last thereis to remember that P(t,O,O) =0 for all

times t. The constants CmT are determined by a system of

partial difference equations.

For O<m<j~mo and O<n<k~no

mnC m+l,n + Cm,n+l
Cmln = an j,k bm j,k

a(n-k)+b(m-j)(38

21



for O4m<j~m 0 and 0<n=k~n 0

m n m+,n

b(m-j) , (3.9)

for 0<m=jsm 0 and 0<n<ksn 0

m,n m,n+1
cM,k = bm Cmn

a(n-k) ,(3.10)

for 0<m=j~m 0 and O<n=k~n 0

but (m,n) (moon 0)

5~n - m n - m nn(.1
m~ j=m k=n+l j~k jrn+1 (.1

with cm0 n 1.0.

22



Also for O<msjsm 0 and O=n<k<_n 0

cml

j k bm ,k (3.12)

ak+bj

similarly for O=m<jm 0 and O<nkn 0

O n a ,n
j k : anj,k

ak+bj (3.13)

Then for 1.msm 0

m nlrM'0 0 mO

%' 0  = " Cj,k (3.14)
j=m k=l

and finally for l-n~n0

m0  n
O,n c.,

C 0,0 = "C ,k (3.15)
j=l k=n

Though having the publishing date of 1979, the next

approach was published in June 1980 by BILLARD [1]. She

considered the LANCHESTER-type square-law attrition combat

model as a pure death-process and applied SEVERO's [8]

recursive theorem for solving differential equations. As

before, only a fight to the finish has been considered.

r
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The first step is to identify each point (m,n) in the

state space by a counting coordinate k, where

k = ( mo+l)( n o +l)

-m( n0 +l)-n (3.16)

Then

P[t,m,n]= P[t,k] (3.17)

and the differential equations (2.12) through (2.18) take on

a slightly different form. As an example, (2.15) will be

given by

dP
t(t,k) = anP[t,k-no-lI+bmP[t,k-l]

-(an+bm)P[t,k] (3.18)

The whole set of differential equations was then

expressed in matrix terms as

_ = BP(t) (3.19)

with a solution given as

P(t) = Ce (t) (3.20)

where e(t) is the (m0 +l)(n 0 +1)xl -vector with elements

exp(bkt) with bk being the kth diagonal element of the

matrix B. The matrix B can be partitioned into submatrices,

whose m-coordinate is common, due to the ordering defined by

the counting coordinate k (Equation 3.16).

Then

B = (buv), u,v = 1,2...m 0 +1

24



where the submatrices b have the elements

uv = (b uv(pq)), pq = l,2...n 0 +l.

So the matrix B has the elements

b uu(p,p) = -a(no-p+l)-b(mo-u+l)

for u =  1,2...m 0  and p = 1,2 ...n0

b uu(p,p-l) = b(mo-u+l) for u = 1,2...m 0 +l

p = 2,3...n0+1and

bu,u_l(p,p) = a(no-p+l) for u = 2,3...m0+1

P = 1,2...n 0 +l.

All other elements are zero.

Thus, the matrix B has at most 3 nonzero entries per row

or column. The matrix C can be partitioned in the same way.

Then using SEVERO's (8] theorem and the special form of the

matrix B, only a part of the C-matrix needs to be determined.

This part will be omitted here, but the final result will

be given by

k
P(t,k) Z c(k,j).exp(bjt) (3.21)

j=l

where c(k,j) is the (k,j)th element of the solution matrix C.

The previous two approaches have required that the force

level breakpoints be zero. Now, a result will be given whose

restriction is that the attrition rate coefficients be equal,

but nonzero breakpoints are allowed. For further reference

it will be called the Equal-Attrition-Rate-Coefficient-

Solution (EARCS).

25



Let a = b = f.

For m bp<.m m0 and nbP<nno

P(t,m,n) = Cmn
(m +n o-m-n)!

(l-eft)mO+nOmn .exp(-f(m+n)t) (3.22)

for m = mbp and nbp<n~n0

P(t,mbp n) = fn C(mbp+l n)
J!

J(_1)k (j~) {1-exp(-ft(m bp +l+n+k)) 2.3k f~mbp+l+n+k) , (2.23)

k=O

where J = m o+no-mbp-l-n

for n = nbp and m bp<m<m 0

) = fm C(m,nbp+l)

P(t'mnbp) K!

K ( (lJ K) flexp(ftmrn bpJ))
T (l J f(m+l +n bp+J) , (3.24)

j=0

where K = m0+n0 - m- nbp-l.

The coefficients C(m,n) satisfy for mbp <m<m 0 and n bp<n<no

the following partial difference equation

C(m,n) = nC(m+l,n) + mC(m,n+l) (3.25)

26



with the boundary conditions
C~m~0) = mo-m

C(m,no) = (no) for mbp<mm 0

and
no-n

C(m0 ,n) = (mO ) for nbp<n~n0

This result has been developed using a method verbally pro-

posed by TAYLOR. The method will now be outlined. ISBELL

and MARLOW (6] described a stochastic LANCHESTER-type attri-

tion process with a different attrition function. Instead of

the attrition of one force being proportional to the number of

of enemies of the opposing force as in the square-law attri-

tion (e.g. for the attrition of the M-force let

A(m,n) = an

be the attrition rate and

B(m,n) = bm

the attrition rate for the N-force with square-law attrition),

their attrition rates looked like

A(m,n) = an+cm

and

B(m,n) = bm+dn

with the restriction that

a+c = b+d.

But with c=d=O and a=b=f we are back to square-law attrition.

This leads to equations (3.22) and (3.25). Equations (3.23)

and (3.24) were derived in the following way (e.g. for 3.23).

Solving equation (3.22) for m = m bp+l yields
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C(mbp+l,n) .exp(_ft(mb+l+n)\
P(t~mbp~n) (mo+no-mbpl ~nbp

.(l-e'ft)mO+nOmbp -l-n (3.26)

substituting for the second factor its BINOMIAL expansion

ci

k=O

with J = mo+no-m bp- 1 and multiplying through by the third

factor. Then using equation (2.16), the differential equation

for m = mbp and nbp<n~n0 9 and substituting equation (3.26)

into the extended form, it can now easily be integrated to

yield equation (3.23).

D. DISCUSSION

In the discussion of the analytical solutions outlined in

the last section, there is one important point. BROWN (3]

himself points out that unless m is close to m0 and n is

close to no his result (equation (3.4)) is of "little practi-

cal interest." Most of the analytical solutions,especially for

more general LANCHESTER-type models, have little more than

"symbolic" character. BROWN's solution is a good example

of that.

In comparing the solutions given by BILLARD [2] and

CLARK [4], this author has the feeling that both solutions are

equivalent and only the representation is different. This
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intuitive guess needs verification. It may be concidence

that CLARK [41 and SEVERO [8] published their work in the

same year.

The last presented solution (equation (3.22) through

(3.24)) seems to be relatively handy for use on a computer.

It has a big advantage over numerical solution methods other

than its accuracy, because it is an exact result. Like

CLARK's method, the coefficients have to be calculated only

once for a given set of input data. Then, to get the state

probabilities for a certain point in time you have to make

only one set of calculations, as opposed to the numerical

methods where one has to go from time t = 0 to time t = t

in small time steps and then have only an approximate result.

E. IMPORTANCE OF THE STATE PROBABILITIES

The state probabilities as a function of time are the

key to calculating several quantities of interest. These

are expected force levels as a function of time, variances

and standard deviations in the force levels and also the

probability of winning. These quantities are necessary to

legitimately compare the stochastic with the deterministic

results.

To get at least a feeling of how the state probabilities

V evolve over time, the joint probability distribution will be

presented in a 3-D-picture. It is indeed surprising that

more use has not been made of computer graphics to
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investigate the dynamics of a stochastic LANCHESTER-type

combat model. Table I gives the data used for the next five

figures. These figures may be thought of as "snapshots" of

the joint probability for the survivors in this battle taken

at a sequence of increasing times.

3
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TABLE I

Data for the Numerical Example I

Force Levels m0 = 40 mbp = 0

n o = 40 nbp = 0

Attrition Rates a = 0.008 M casualties per
minute and N firer

b = 0.004 N casualties per
minute and M firer

At Times tI - 0.025 tf

t2 = 0.250 tf

t 3 = 0.500 tf

t 4 = 0.750 tf

t 5 = 1.000 tf

where tf = 155.81 minutes is the time a

deterministic battle with the same force

levels and unit breakpoints ends, i.e.

x(tf) = 0.0 and y(tf) = 28.28
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At the time t = 0 all probability is located at

(mo,n O ) in the state space (Region I). As time passes, the

probability mass is distributed over more states, with the

mode moving away from the diagonal towards the winning side.

All points in the state space with breakpoints, i.e. (mbp n)

and (mnbp) for all m and n, are absorbing states, probability

mass is absorbed in that states. The sum of probability mass

in Region V (see Fig. 2) represents the probability, that the

N-force wins at that given time, in Region VI that the M-force

wins.

The next five figures show a similar sequence of plo~s for

the joint probability P(t,m,n) for the force levels M(t) and

N(t). The data is explained in Table 2. Note the small dif-

ferences because of the nonzero force level breakpoints.

Probability mass having reached the breakpoint "piles" up

there. The state space is reduced by the fixed force level

breakpoints, but the probability distribution evolves basical-

ly in the same qualitative manner as in the previous example.
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TABLE 2

Data for the Numerical Example 2

Force Levels m0 = 40 mbp = 8

no = 40 nbp = 8

Attrition Rates a = 0.008 M casualties per
minute and N firer

b = 0.004 N casualties per
minute and M firer

At Times tI = 0.025 tf

t 2 = 0.250 tf

t 3 = 0.500 tf

t 4 = 0.750 tf

t 5 = 1.000 tf

where tf = 120.68 minutes is the time a

deterministic battle with the same force

levels and unit breakpoints ends, i.e.

x(tf) 8.0 and y(tf) : 28.83
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IV. EVOLUTION OF THE FORCE LEVELS

A. THE DETERMINISTIC MODEL

The evolution of force levels as a function of time, X(t) and Y(t),

has already been stated in equations (2.5) and (2.6). The next two

figures show the force levels with different breakpoints. It is easy to

realize that introducing a nonzero breakpoint does not change the under-

lying function. In other words, using X(t) as an example, for both

figures the same curve was used but at the point where the X-force reaches

its breakpoint, the curve is "cut." From that point in time, there are

no more changes in the force levels. So introducting a nonzero break-

point only shifts the discontinuity (marked by DXI in Fig. 13) up along

the curve to DX2.

The probability for one side to win is either one or zero, because

it is a deterministic model. To easily determine which side is going to

win, a victory prediction condition can be obtained by solving each force

level equation (2.5) and (2.6) for the time to reach its breakpoint txbp

by substituting X(t)=xbp and tYbp by substituting Y(t)=Ybp. Then X will

win if tybp < txbp, which leads to the prediction condition. X will win

a fixed force breakpoint battle if and only if

a2 y2
Xa(y - p

b(x2  Xp) . (4.1)

This shows that given the initial data one can predict the outcome

of the battle in terms of force levels and time until the battle

finishes.
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B. THE STOCHASTIC MODEL

Every possible state (m,n) in the state space has associated with it

a certain probability between zero and one which is a function of time.

In order to gain more insight into the stochastic process not a single

realization of a battle has to be considered, but an average battle.

Therefore the expected value of the force levels (i.e. averages) as a

function of time and the variances in the force levels were investigated.

The straight forward way to compute the expected force levels involves

the knowledge of the probability distribution P(t,m,n). Then

E(M(t) )= m P(t,m,n) (4.2)

mbp nbp

n 0E(N(t) )=_. n t P(t,m,n) (4.3)

nbp mbp

are the expected values of the force levels as a function of time.

There are some other ways to calculate the expected force levels,

one of which will be stated here. Recall the "hybrid-analytical-

numerical" method to get the state probabilities (equations 3.5 through

3.15). CLARK [4] has also shown that the ith moment of, for example,

the M-force level may be computed as

E(Mi(t) D(i) + 0 D i) exp(-(ak+bj)t ) (4.4)
0,u  j=l k=l

with for lj~m0 and l~ksn0
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k
D"= 5. mi 7-Cm,nj,k m=l n= ,k (4.5)

D(i) = . m i  rO,n(46
0,0 :.. 0,0(46

m= 1

This again emphasizes the strong point of CLARK's solution. For a

given set of battle parameters the coefficients Cj~k have to be computed

only once. Then with this information and relatively small computa-

tional effort not only the state probabilities but also the first and

second moment of the force levels can be computed. This determines the

variance in the force levels at the same time, e.g.

Var(M(t) ) = E(M2 (t)) E(M(t)). E(M(t)) (4.7)

On the other side, the weak point is that CLARK [4] considered only

breakpoints equal zero.

Many authors have discussed one side's probability of winning or

probability of winning conditioned on a certain number of survivors,

which always eliminated the parameter time by integrating from time t=O

to infinity. This may be legitimate to answer absolute (meaning time

independent) questions about who will win, but for direct comparisons

with the deterministic model, this author has the feeling that the best

question to ask regarding a winner is:

What is the probability of one side winning given the stochastic battle

lasted as long as the deterministic one?

The calculation of these probabilities gives another interesting

probability, because given the time t = tf (final time of the determin-

istic battle)
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P(battle has not yet finished) =

I-P(M winslt=tf)-P(N winslt=tf) (4.8)

There has also been work done regarding the distribution of the

time to finish a battle. But this is beyond the scope of this thesis

(SPRINGALL [9)).

C. DIFFERENCES IN THE FORCE LEVELS

The deterministic model, especially the force level equations (2.5)

and (2.6), describe a process with continuous state parameters where, in

reality, the possible states are integers. Quoting from LANCHESTER [71:

Since th forces actually consist of a finite number of finite units
(instead of an infinite number of infinitesimal units) the end of the
curve must show discontinuity, and break off abruptly when the last
man is reached; the law based on averages evidently does not hold
rigidly when the numbers become small.

LANCHESTER suggested that his differential equations may be good

approximations only as long as the force sizes are large. He also stated

that the equations are based on averages, implying an underlying stochas-

tic process.

This shows that there must be a difference in the force levels which

should become significant when the number of combatants is small. This

difference was called bias by CLARK [4] and TAYLOR [10]. It can be shown

that

dE(M(t)) _aE(N(t))+aB (t) (4.9)
dt n

and

dE(N-t)) =bE(M(t))+iB M(t) (4.10)
dt m

where
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Bn(t) = nbp-" P(t,m,nbp )+ T nP(t,mbp,n) (4.11)
mbp+l nbp+l

and

Bm(t) = mbp-" P(t'mbpTn)+ Z7- mP(t,m,nbp) . (4.12)

nbp+l mbp+l

The bias terms Bm(t) and Bn(t) can be interpreted as the expected

values of M(t) or N(t) conditioned on the fact that the battle has

already ended at time t, for example,

Bm(t)=E (M(t))IN(t)=nbp or M(t)=mbp) (4.13)

In other words, equation (4.9) says the expected casualty rate of the

M-force is proportional to the expected number of survivors of the

N-force given neither of the two forces has reached its breakpoint.

Define the bias of the X-force as ax(t) = E(M(t))-X(t) and the bias

of the Y-force as Ay(t) = E(N(t))-Y(t). Then using equations (2.8) and

(2.9) together with (4.9) and (4.10) it follows that

d tAx = -aay+aBn(t) (4.14)

d

E Ay = -bAx+bBm(t) (4.15)

with the initial conditions x(O)=) and Y(O)=). This has the solution

t

~0 -B (s)sinh("'r' (t-s))lds, (4.16)
m
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and
t

o -B n(s)sinh(-'a'(t-s))Ids 
(4.17)

Since for a fixed, nonegative argument z, the cosh(z) is always

greater than the sinh(z), it is easy to visualize that in most of the

cases both biases are positive, meaning the expected force levels of the

stochastic model are higher than the deterministic force levels. This

has been shown by CLARK [4] and CRAIG [5] and confirmed by this author.

In the rest of the cases the winner's bias is negative or close to zero

and the loser's bias is positive. Two examples are given in Table 3.
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TABLE 3

Examples for cases where one bias is positive and the other

bias is negative.

A. Y-force wins in a fight to the finish

x0= Y0 
= 4 0  a = 0.08

Xbp 0 b = 0.04

Ybp 0

tf : 15.581 Ax(tf) = 3.22

Ay(tf) = -0.23

B. Y-force wins in a fight with equal initial force levels,

but different breakpoints.

x0 =Y = 15 a = 0.08

X bp = 12 b = 0.08

Ybp = 6

tf = 2.85 Ax(tf) = 0.15

AY(tf) = -0.10
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An interesting point has to be mentioned regarding case B of

Table 3. Here the expected force level of the winner is

smaller than the expected force level of the loser at the

time a deterministic battle ends.

To get a better feeling for the differences in the force

levels, the next two figures show as an example a large spec-

trum of force level behavior. The data and notation is

described in Table 4. There are four battles with four dif-

ferent breakpoints drawn as they evolve over t.rie from zero

to the time an equivalent deterministic battle ends.
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TABLE 4

X= 40 X bp (1) = 40-0.2i

Y 0 = 40 Y bp(1) = 40-0.2i

a = 0.09 for i = 1,2,3,4

b =0.07

Mi = E M(t)
for i = 1,2,3,4

Ni =E N(t)

Where the index i corresponds to the battle with

the i th breakpoint force level:

X-force is always loser

V-force is always winner
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CRAIG (5] has formulated hypotheses concerning the biases in the average

force levels based on his work. His hypotheses were partially confirmed,

but in some cases they have to be modified. Therefore, another similar

set of hypotheses will be given and supported by Fig. 15 and Fig. 16, as

well as some of the later figures.

H 1) Given fixed initial force levels and attrition rate coefficients,
as the breakpoint force levels increase, the numerical bias for the
loser decreases. The biases for the winner do not show this monotone
trend except for the case of symmetric parity.

H 2) Everything else constant, the bias of the loser increases with
increasing initial force levels; this is also true in the symmetric
parity case for both forces.

H 3) Given the initial force level ratio is close to one at the time
corresponding to the end of the deterministic battle, the bias of the
loser is always larger than the bias of the winner.

H 4) At the time corresponding to the end of a deterministic battle,
the biases become larger as the forces come closer to parity.

H5) The biases at times corresponding to less than one half the

duration of the deterministic battle are negligible.

The case of symmetric parity, i.e. equal initial force levels,

breakpoints and equal attrition rate coefficients seems to be kind of a

"limiting" case. For example, at parity the biases of both forces behave

in the same manner and are equal. In Fig. 17 the biases at the time a

deterministic battle ends as a function of the initial force levels and

as a function of the breakpoints are presented. It is also another

verification for the hypotheses H 1 and H 2.

57



X= o 6' jOoa

4.00

r= 0.2

30 T=0,4

2.0-

Figure 17 B IASES IN SYMM4ETRIC PARITY

58



N~os IA ) 0- 10 f a 0.08

2.0- =1:4y cset ol

'os

a~y

0.

Figure 18 -BIASES WITH DIk*FERENT INI'rIAL FORCE LEVELS

59



5.0 8p --YB P
T&x 4y Case ] an b 0 0. 08

Bia ses Cse ]r q m 0.09
bm 0.07

4.0 Cse aQ 0.o8
b=0.0j

3.0
]rAX

2.0

.0

o 0.2. 0.1 0.6 0.3 V;X IP o

Figure 19 - BIASES WITH DIFFERENT ATTRITION RATE

COEFFICIENTS

60



Consideringthe changes in magnitude of the biases for battles like

in Fig. 15, 16 and 17, CRAIG [5] came to the conclusion that when the

forces are closer to parity, the biases at the deterministic battle's

end increase. Several battles were fought starting with symmetric parity

and then varying the force levels and the attrition rate coefficients.

Sample results are shown in Fig. 18 and Fig. 19. In Fig. 18, the initial

force levels were changed giving the Y-force ten and twenty percent

higher initial force levels. The biases at the end of the deterministic

battle are plotted as a function of the breakpoint force level ratio

r = Xbp/XO.

Fig. 18 supports CRAIG's hypothesis, as does Fig. 19. Here not the

initial force levels but the attrition rate coefficients were changed in

order to deviate from symmetric parity. The last way to deviate from

symmetric parity is a case where the deterministic model gives equal

answers for different battles. The data and the results are shown in

Table 5.
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TABLE 5

Equal initial force level battle with non equal breakpoints

X= 15 Y= 15 a = b = f = 0.08

Xbp Ybp AX(tf) AY(tf)

12 12 1.08 1.08

12 9 0.71 0.63

12 6 0.15 -0.10

12 3 0.68 0.58

9 9 1 .62 1 .62

9 6 1.14 0.93

9 3 1 .06 0.75

6 6 2. 15 2.15
6 3 1 .67 1 .22

3 3 2.84 2.84
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The X-force level at time tf is the same as the Y-force level. Thus,

the expected force level for the winner (i.e. the Y-force) is smaller than

the expected force level of the loser (the X-force), because Ax(tf) is

always larger than AY(tf). This is easy to see when one remembers the

way the expected force level is computed (equation (4.3)). Since the

Y-force has a lower breakpoint, there are states (m,n) possible where

nbp<n<mbp Apparently these states have a nonzero probability associated

with them, which decreases the expected force level below the expected

value for the X-force. This might be a starting point for further

studies.

D. VARIABILITY IN THE FORCE LEVELS

Naturally in the deterministic case there does not exist any variabil-

ity in the force levels. On the other hand, for the stochastic model, the

variance in the force levels as a function of time is a measure of the

dispersion of the number of survivors about their mean value.

CLARK [4] has hypothesized two different types of behavior for the

variance in the force levels, which are shown in Fig. 20 for the data

presented in Table 2. The first type of behavior is that of the variance

for the N-force, i.e. the variance increases monotonely as a function of

time and is asymptotic to a limiting value. It was found that this type

of behavior occurs when the side is going to win and for the case of

symmetric parity. The second type of behavior shown is the variance of

the M-force, Var(M(t)), as a function of time. This increases to a

maximum value then decreases asymptotically to a limiting value. This

type of behavior is associated with the loser of the battle.

63

I III II , ,. .. i .... " . . .



The variance in the force levels is a function of the initial and

breakpoint force levels, the battle time and the attrition rate

coefficients. Unfortunately one does not know what this dependence is.

Based on many numerical results a set of hypotheses will be stated and

the next figures will support them.

H 1) Given fixed initial force levels and attrition rate coefficients,
as the breakpoint force levels increase the variance of the force levels
decrease.

H 2) Everything else constant the variance of the loser's force level
increases with increasing initial force levels. This is also true for
both variances in the case of symmetric parity.

H 3) Given the initial force ratio is close to one at the time
corresponding to the end of the deterministic battle the variance
of the loser's force level is always smaller than the winner's variance.

H 4) At the time corresponding to the end of the deterministic battle
the variance in the loser's force level increases as the forces come
closer to parity. This trend is not true for the variance of the win-
ner, except for the case of symmetric parity.

It was the intention of this author that the set of cases to illus-

trate the hypotheses are the same as in the illustrations (Fig. 17, 18

and 19) of the hypotheses about biases. So, Fig. 21 shows the force

level variances for the different initial force levels and different

breakpoints for the case of symmetric parity. In Fig. 22 the variances

for a battle with equal attrition rate coefficients but varying initial

force levels show that H 4 is only true for the loser. This point is

emphasized by Fig. 23, where with constant and equal initial force levels

the attrition rate coefficients were varied.
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V. COMPUTATIONAL ASPECTS

A. USING THE NUMERICAL SOLUTION

For most of the numerical work, the state probabilities have been

obtained using the fourth-order RUNGE-KUTTA method. The accuracy of the

results was increased by substituting the available analytical results

for the Regions I, II and III.

The disadvantage is that this solution method needs a lot of CPU-time.

For the battle in Example 1, with the data given in Table 1, the calcula-

tion of the state probabilities, expected force levels and variances led

to a CPU-time on an IBM-360 computer of almost 90 minutes with a time

step size of 0.05 minutes. That was the reason why, in the examples the

attrition rate coefficients were increased by one magnitude, which brought

the computer usage down to a CPU-time of around 12 minutes with the same

time step size of 0.05 minutes. The sum of the state probabilities at

every time step was used as a measure of accuracy. Surprisingly, its

deviation from 1.0 was always in the fourth or fifth decimal, which proves

the robustness of the RUNGE-KUTTA method. Also, the fact that for the

Regions I, II and III analytical solutions were substituted at each time

step did not change the final outcome considerably. It was found that

without the analytical partial solutions the sum of probabilities tended

to be slightly higher, changing the sum of probabilities from, for

example, 0.99998 to 1.00003.
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B. THE EQUAL ATTRITION RATE COEFFICIENT SOLUTION

After the development of the equal attrition rate coefficient solution

(EARCS) outlined in Ch. III.C, it was implemented on an IBM-360 comput-

er. The CPU-time for the calculation of the state probabilities, expected

force levels and variances for a given point in time always stayed below

20 seconds, which emphasizes its computational advantage.

Further research showed two shortcomings of the EARCS, which are

easily overlooked. The coefficients C(m,n) vary over a wide range start-

ing at 1.0 and depending on the initial force levels.

For example for a battle with

m0 = 20 mbp = 15

n0 = 40 nbp = 20

f = 0.08 tf = 1.60995

C(20,40) = 1.0 but C(16,21) = 4.9297077276xi0 33.

Also, the binomial coefficients in equations (3.23) and 3.24) vary over a

wide range starting at 1.0 to 1352078 for the above example. This shows

that the capacity the computer, in terms of the number of significant

digits, is able to carry limits the implementation of this solution in

the present form.

Another reason why this solution is not the end of the numerical

problems is the fact that in the given form, equations (3.23) and (3.24)

require computation of an alternate sum consisting of terms whose factors

are relatively large binomial coefficients and small numbers between zero

and one. This produces truncation errors, which yield nonsensical results

like negative variances and sums of probabilities greater than one.
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VI. CONCLUSIONS

Throughout this thesis, only LANCHESTER-type square-law attrition

with fixed initial force levels and fixed attrition rate coefficients

has been considered for a deterministic and a stochastic version. The

stochastic version required much more computational effort. So, given

the need for an analytical model as opposed to the use of simulation,

there is not much to gain from the application of a stochastic model

when the force levels are large and the forces are not near parity. In

these cases the deterministic version essentially produces the same

results, at least in qualitative terms. For smaller force levels or

forces near parity, the stochastic version may be helpful to get more

information about the dynamics of combat.

Also, there exist one case where the deterministic version cannot

differentiate between several different battles. That is the case of

equal initial forces, equal attrition rate coefficients, but different

breakpoint force levels. This also rectifies the further development of

the equal-attrition-rate-coefficient-solution (EARCS).

Using an analytical model, the discussed way of introducing random-

ness into the model seems not to be very enlightening. Therefore, it is

suggested that another way to include random effects should be explored.

The author's opinion is that working with attrition rate coefficients

which are random variables seems more promissing to gain insight into

the dynamics of combat. Further down the line there should be some
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consideration on the usage of combinations of the possibilities to

include random effects as given in Chapter II.B.
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APPENDIX A

I C THIS PROGRAM COMPUTES THE STATE PROBABILITIES USING THE FOURTH
2 C ORDER RUNGE-KUTTA METHOD. PLOTS OF THE EXPECTED FORCE LEVELS AND
3 C VARIANCES AS WELL AS 3-0-PLOTS FOR THE STATE PROBABILITIES ARE

4 C OBTAINED.
5 C
6 DIMENSION P1 (33,33). P2(33.33). T3D(20)
7 DIMENSION XMTISOO). XNT(SOO). 0T(500). VMSOO), VN(SO0l.
a I VMBISSIt. VNB(SsI). VO(SSI), VARX1551). VARY(S511, TIM(551)

9 DIMENSION EST(313).D(313,.F 2.1SIZE121.KX 1O) .KT tOOl,WK(l.,1.3)
10 1 PC('t,41t.CST41l.CETERM(i4t
il LOGICALiI ION(11.41)
12 DIMENSION DETERM(313)
IS RERLwS TTL(12)/?12- "/
Il REAL KI. K2. K3, K4
IS CALL ERRSET(208,600.-I.1)

16 F(11-0.
17 F (21 -O.

Is LINES-
19 SIZE(li)-6.
20 SIZE(2)-8.
21 OFLAG - 0.
22 NKXTm1O0
23 READ(S.21) MBP. MO. NBP, NO
241 READ(S.221 RA. BB
25 READ(S.22 H, FTIM
26 READ(5.211 N30
27 READ(S,22) EPSO. EPSPTT
28 T3DUI) - 9999.
20 IF (N30 .LT. 1 GO TO 25
so READ(S.22) (T30(lo. I-I.N30)
51 25 CONTINUE
32 C
33 C N30=NUMBER OF 3D-PLOTS, H=SIZE OF TIME STEP
314 C FTIME-FINALTIME. EPSO.EPSPTT ARE ZERO LEVELS

35 C TD(I) FRACTION OF FTIME WHEN TO PLOT 3D
IR6 C
97 DO ID I-I.N30
so T30(I)-FTIMwT3D(I

59 10 CONTINUE

No 21 FORMAT16IS)
%1I 22 FORMAT(8FIO.5)
42 WRITE(6,28) MBP. MO. NBP. NO
4S 28 FORMAT(// SX. 'M S A N S'. 5X. 416 /1
44 WRITE(6.291 AA. BB

vS 29 FORMAT(/ 5X. 'A B', 9X. 2FO.3 /I
IS WRITE(6.30) M. FTIM
47 30 FORMAT(I/ 5X. 'INITIAL H A FINAL TIME (a LOOPS , X HI'. 5X 2F]0.3/)
I8 WRITE(6,3I) N30
q9 SI FORMAT(// 5x, 'a, OF 3-0 PLOTS', 2X. 16 /1
50 IF (N30 .LT. 1) GO TO 36
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51 NRITE(8,21 EPSQ.EPSPTT

52 24 FORMAT(/ SX,'EPSO='.FIO.5.SX.'EPSPTT",FIO.5)
53 NRITE(6.32) (T30(I), I-I.N30)

54 32 FORMAT(/ SX. 'AT TIME'. 2X. IOFiO.3 ii

55 36 CONTINUE

56 MO MO + 1
57 NOI - NO 1
58 NS - NOI -NBP

59 MS - MOI -MBP

60 MSL - MS + I
61 NSL " NS +1
62 8MO - BB " MO
63 ANO - AA m NO
6a OANB - ANO / 8B

65 OBMA - BMO / AR
6 BAT - -(BMO * ANO)
67 DO 47 M " I,M5
68 VM(MI) , MBP + MI - I

69 '17 CONTINUE
70 DO 48 HI - INS
71 VNINI) - NBP + NI - 1

72 18 CONTINUE

73 L-0
718 N3 - 1
75 TPLOT - T3D(N3)
78 TIME - 0.
77 50 CONTINUE

78 IF (TINE .GT. FTIM) GO TO 210

79 52 CONTINUE

so TIME - M w L
I LaL 1I
82 LB - 0
83 TIM IL) - TIME

8 IF ( L .EQ. 21 GO TO 53
85 IF (TIME .LT. TPLOT) GO TO 60

86 C

87 C SET NEXT PLOT TIME
88 C

89 N3 a N3 * 1

90 TPLOT - T3D(N3)

9 IF(N3.GT.N3D) TPLOT-9999.

92 53 CONTINUE
93 C
94 C LB , L WHEN TIME TO PLOT
95 C

96 LB - L

97 EBT - EXP(BB TIME) - I.
98 EAT - EXP(AA , TIME) - 1.

99 RE - GANB w EBT

100 BE a OB8MQ " EAT

74



301 ORE - EXP tORTm TIME)
102 Fj - 1.

103 JJ -
1011 C
105 C NO VALUE OF i - ZERO AT MO.NO

Jo6 C
107 FN -1.
108 KK mI
109 QFKI..
110 OFJw1.
M1 C
112 C NO VALUE OF K - ZERO AT MO.NO

113 C
lii4 60 CONTINUE

115 IF (L .ED. 1) GO TO 500
lie 00-0.
117 0o '100 NI - I.NS

lie N - NOI - NI
119 hL -NSL -NI

120 NLI - NI. * 1
121 ANJ - AA wN
122 C
123 C
124S 00 300 Mi - I.145

125 14 - MCI- M1
128 ML MSL51 - MI

127 ML! ML * 1
J28 841 *BawM
129 ABA - ANJ + 0141
ISO IF (M .ED. MO) GO TO 502

131 IF (M .EQ. MOP) GO TO 5041

132 If (N .EQ. NO) GO TO 506
133 IF (N .ED. MOP) GO TO S07

1341 C
135 C DEFAULTS TO ALL INSIDE POINTS

136 C
137 KI a ANJocP2(ML1.NL) + BMIwP2(ML.NLI) -ABAwP2(ML.NL)

138 PT - ANJw0.5w (PI(MLI.NL)+P21MLI.NLII + 0141.. w (PI(ML.14LII
139 1 P2(ML.NLIJI
1110 K2 - PT - ABA w (P?(ML.NL) * H%'O.5wK1)
1111 3(3 - PT - ABA m (PZ(ML.NLI 4 tlwO.5wK21

112 K(I - ANJiqP2(MLI.NL) + BMINP) (MLNL2) - ABA. (P2 (ML.NLI + KwK33)

1113 P1(MLNLI - P2(141.14) + (1/6.0) w (KI*2.0.K2 + 2.0ocK3 * K1
1441 GO TO 200
IllS 502 IF (N AD0. NO) GO TO 503

1116 IF (N .EQ. NOP) GO TO 507
1417 C
1118 C 14-MO. N--NO.NBP
1119 C
ISO Kl BMloeP2(ML.NLI) -AOAwP2(ML.NLI
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IS1 PT a BI'12)wO. 5 s (P1I (ML.NL 1) + P2 (ML.NL I 1
152 9(2 - PT - ABA m (P21MLNL) + HwKI*O.5)

153 K(3 a P7 - ABA x (P2(ML.NL) + HwK2wO.5)

1511 KU a B111 " PI(ML.NLI) - ABA to (P2(1ML.NL) + MpwK31

155 PI(ML.NLJ - P2(ML.NL) + In/6.) m (f(J*2.0w12 *2.0wK3 *KY)

156 UF (LB .EQ. L) GO TO 601
157 GO TO 200
I58 c
159 C H-HO. NwNO
I6O C
161 503 CONTINUE

182 PI(ML.NL) - EXP(-ABA oc TIME)

163 IRITE(B,1O2) L. N. NL,NL. P1(NL.NLI

1611 GO TO 200
165 50Y IF (N .EQ. NBP) GO TO 505
166 C
167 C
168 C fH-HBP. N-- Nep
169 C
170 9(1 - ANJ m P2(MLI.NLI

171 K(2 a ANJ m 0.5 w (Pl NLI.NLI + P2(NLI,NLfl
172 K3- K2

173 K11 - ANJ m P1(MLI.NLI
1711 PI(ML.NL) - P2(ML.NL) + (H1/6.01 w (NI *2.O'd(2 *2.0.NK3 *K4)

17S GO TO 200
176 C
177 C M-MBP. N=NSP
178 C
179 SOS CONTINUE

1SO P1(ML.NLI - 0.0
1ei GO TO 200
182 C
183 C N-NO. N-.-HBP. HO

1811 C
185 506 9(1 - ANJwP2(NLI.NL) - ABAmP2HML.NLI
286 PT - ANJ N0.5w (PtI(MLI.NL) * P2(MLI.NL))
187 K(2 - PT7 ABA N(P2(ML,NL) + fiwO.SmK11
1a8 X(3 - PT7 ABA w(P2(ML.NLI + 21w0.5wK2)

289 K% a ANJ w P1(MLI.NL) - ABA w (P2(NL.NLI + Hw9(3)

190 PI(HL.NLI - P2NML.NLI + (H/6.0) w (KI + 2.0olK2 + 2.0-9(3 K 941

191 IF (LB .EO. L) GO TO 502

192 GO TO200
293 C
1911 C N-NBP. A N-NOP. N-HO

195 C
198 507 CONTINUE
197 9(2 - 8141 m P204L.NLI)
298 K(2 - 89(1 N 0.5 " (PI(ML.NLII P21.NLII)

199 3 - K2
200 K(4 a 69(1 PI(ML.NLII
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201 PI (ML.NLI P2(ML,NLI (H/6.0) w (KI * 2.0.K2 + 2.0wK3 * K4)

202 GO TO 200
203 C
20 C ALSO M=MO. N--NBP.NO
205 C
206 601 CONTINUE

207 IF((BE.LT.I.).AND. (KK.GT.9)) GO TO 255
208 C
209 C COMPUTE PTT IF BE > 0 & KK < 10
210 C
211 PTT-BAE
212 DO 250 IND-I.KK
213 XIND-IND
214 PTT-PTTwBE/XIND
215 250 CONTINUE
218 GO TO 260
217 255 PTT-O.
218 260 CONTINUE
219 KK - KK + I
220 IF((ABS(PIHML.NLI -PTT)J.LE.EPSPTT) GO TO 199
221 GO TO 700
222 C
223 C M-MBP. N-NO

22 C
225 602 CONTINUE
226 Fi(AELT.1.).AND.(JJ.GT.9)} GO TO 270
227 C
2298 C
229 C COMPUTE PTT IF RE > 0 4 JJ < 10
230 C
231 PTT-BAE
232 00 265 IND=1,JJ
233 XIND-IND
2311 PTT-PTTmAE/XIND
235 265 CONTINUE
236 GO TO 275
237 270 PTT-0.
238 275 CONTINUE
239 JJ = JJ + I
210 FlIRBS F PIMLNL) -PTT)).LE.EPSPTT) GO TO 199
241 700 CONTINUE
2112 C
243 C TIME REDUCED 112
241 C
245 L a L - I
246 NRITE(6.?01) TIME, M. N. H
217 701 FORMATW/I 5X, 'K VALUE IS REDUCED BY HALF AT TIME - . F8.3.

248 1 ' N I S 15. ' N = . 15. ' FROM . F8.3 /
249 H=0.5-H
250 WRITE(6,102) L.M.N.KK. PTT. PI(ML.NLI.QFK. QFJ.00.OFLAG
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251 102 FORMAT(/ 2X. 41S. 7F12.51

252 OFLAG-O.
253 GO TO 52
25M 199 P7T-PI (ML.NL)
255 200 CONTINUE
256 0O-QO*P! IML.NL)
257 300 CONTINUE
258 400 CONTINUE
259 QJ-ABS (00-1.1
260 IFfQQI.LE.EPSQI GO TO 401
261 QFLAG-I.
262 GO TO 700
263 Q01 CONTINUE
2564 C
265 C COMPUTE VARX (T) VARYT.N5qR(TIMBAR(T).0(T)
266 C
267 SM3 - 0.
268 Sm8 - 0.
269 So - 0.
270 SM2 - 0.
271 SN2 - 3.
272 DO 415 MI - IMS
273 RM VM(MI)
2741 RM2 - RMwRM
275 00 410 NI - 1.NS
276 RN - VN(NI)
277 RN2 - RN"RN
278 PT - PI(MI.NI)
279 P21MI.Nl1 - PT

260 SMB - SMB + RMwPT
281 SN8 - SN8 I RNwPT
282 So - SO ' PT
283 SM2 a SM2 + RM2 w PT
284 SN2 a SN2 + RN2 w PT
285 4JO CONTINUE
286 415 CONTINUE
287 VMB(L) - SMB
288 VNB(L) - SNB
289 VO(LI - SO
290 VARX(LI - SM2 - SMBwSMB
291 VRRT(L) - SN2 - SNB-SNB
292 C
293 C RETURN TO MAIN LOOP (50) IF NOT TIME TO PRINT
29 C
295 IF (N3D .LT. I) GO TO 430
296 IF(LB.NE.Ll GO TO 430
297 IF(LO.EO.21 GO TO 430
298 C
299 C ROJUST X.Y. VECTORS FOR PLOT
300 C
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301 00 IS 24-1.24
302 15 ESTIKI-K-1

303 DO 16 2-2.NS
3011 DETER22242-K-1
305 16 CONTINUE
306 DO 115 1-1,12
307 CST(1)-I

308 CETERMNIIP-!
309 00 115 J-.1.41

310 PCJI.JI=0.o
311 115 CONTINUE
312 MP-1
313 MP-41
311* ALP-IS.
315 BETA-30.
316 PIIAX.FI (1.12
317 00 116 1-1.245
318 WRITE (6.19911.P1~ U *12 *PI (I 1
319 199 FORMAT0' .25.10X.2FI5.51
320 116 CONTINUE
321 DO 18 1-1.245
322 00 18 J-I.NS
323 IF(PHI.IJ.GT.PMAX) PMAx.PI(T.JI
324 18 CONTINUE
325 CONST-B.O/PMAX
326 00 19 1=2.245
327 N-I+H8P
328 DO 19 J-1.NS
329 H-J+NBP
330 P1 (1,J2-CONSTwP1 (1.J)

331 PC(N.M2-PI(U.J)
332 19 CONTINUE
333 CALL PLTSO1 (CST.24P.CETERM.NP.PC.ALP,BETR.FTTL.SIZE.2. IDN.IKX.KY.N
334* 124X'.LINES2
335 C
336 4*30 CONTINUE
337 C
338 C
339 C PLOT HERE
34*0 C RETURN TO MAIN LOOP
312 C
31*2 GO TO SO
3143 500 CONTINUE
31*4 00 501 1 - 1,245
34*5 00 502 J - 1.NS
US1 Plil.J) - 0.0
3117 501 CONTINUE
3118 PI(MS.NS) - 1.0

34*9 GO TO 41
350 C
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SsI c FINAL TIME RACHED
352 C
3S3 210 CONTINUE
354 WILTE16.2111 TIME. FTIM. L
3SS 211 FOR4ATII/ 5K, 'COMPUTED TIME ', F10.3, 5K. 'INPUT FINAL TIME
356 1 F10.3. 5K. 'a OF LOOPS TO REACH FINAL TIME ', 1S5/
357 00 215 1 uI.L
358 WRITES.,213) YMB11). VNB(I), VOIII. VARXI. VARTI. TIM(I)
359 213 POAMAT12X. 12FIO.Sl
360 215 CONTINUE
361 650 FORMA701
362 MRITEI6.6501
363 CALL PLOTP(TIM.VMB.L.0)
364 WRITE(6.650)
385 CALL PLOTPITIM.VPRX.L.0)
366 WRITE (6,6S01
367 CALL PLOTPITIMVNB,L.O1
368 WRITE 6,6501
389 CALL PLOTP(71M.VARY.L.01
370 STOP
371 DEBUG SUBCHK
372 END



APPENDIX B

I c
2 C THIS PROGRAM CALCULATES THE STATE PROBABILITIES FOR THE EQUAL
3 C ATTRITION RATE COEFFICIENT SOLUTION iEP.RCSI.
'1 C A 3-D PLOT IS PRODUCED USING THE VERSATEC PLOTTER.
5 C
8 IMPLICIT REALRB (A-H.O-ZI
7 CALL ERRSET(208.2S5,1O.Il
8 DIMENSION CISD.S0l.MSO;).N150,FSD0,PTMNSO.SO1
9 REALmi' SIZE(2),FL(2,.4K(4I.41.3).X141.(1).P(11.41)
10 DIMENSION KXI1OO),1KT(1OO'
1I LOGICALm.I IDN(l.4IJ
12 F.EAL'.8 TTL(I21/12mO
13 READ15.100)MO.MBP.NO.NBP
14 READ (S. 10 1A
Is READ15.1D2)TIME
16 READiSID3IIFfII.1-1.411
17 C
Is C F(IlI/1-FACTORIAL. DONE 10 SPEED UP THE PROGRAM
19 C
20 WRITE(6.802)M0.MBP.NO.NJBP.R.TIME
21 802 FORMAT(' '.UI.2F10.S1
22 MO=MO-MBP
23 ND-NO-NBP
24 MCI=MOtI
25 NOI-NO~I
26 MBPI-MBP.1
27 NOPI-NBP~I
28 MBP2-M8P+2
29 NSP2=NBP.2
s0 RMO-MO
31 RNO-NO
32 DO 10 1-1.41
33 Be 10 J-I.'II
311 C(I.JI-0.0
35 PTMN(I. J -0.O0
36 PfI.JI-0.0
37 10 CONTINUE
38 C (MOI.,NOI I -I.D0
39 Do 20 I=2.MD
'10 J.M8P*I
'11 C(J.NOII- RNO'..dMD-I*Il
'12 20 CONTINUE
U13 00 21 I-2.ND
'14 J-NBP4I
'15 C(MO1,Jl- RMOw*IND-I+I)
'18 21 CONTINUE
V1 DO 22 I-2,HD
'18 MC-MOI-I
'19 MM-MOI-I*I
50 MPLUS.MM*1
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51 00 22 J-2.ND
52 NC-NOI-J
53 NN-NOI-J~I
54 NP1.U5=N~1

55 C(MM.NNI -NCA C (HPLLS.NNJ+PI-' C (MM. NFLUS)
56 22 CONTINUE
57 C
So C END OF COEFFICIENT CALCUJLATION

59 C

60 FI-RwTIME

61 Do 25 I.HBP2.KDI
62 D0 25 J=NBP2.NOI
63 1J'.1~J
64 K.MO Nc-Ij +2

66 KK'.KtZ
67 IJ1=1.-2
68 F3-0EXP(PFlljl
69 PTMN (1,J)-F2xF3tqC (I J] "F M0
70 25 CONTINUE

71 100 FORMRT (4151
72 101 FORMRT(FIO.51

73 102 FORMAT(FIO.5)

7vJ 103 FOAMPfOEI7.11)
75 C
76 C FOR NBP<N<NO

77 C
78 DO 30 II-I.ND

79 NFCRCE=NBPll
B0 J.MO+NO-MBP-1-NF0RCE
01 FRCT-MBP'l.0.NFORCE

82 SUM]-c1.0-0EXPiPJmFPtT))/l Am.FACT3

83 SUMINT-SUMI
84 00 301 K=IJ

85 FACT-FACT+1.0
86 ADDFRC= (-1.01 'w'd

87 FRACTN 11.0-EI.PWjFAFCIIM A-.FACT)
8s COMBT-1.0

ag DO 302 K(J-1,K
90 RKJ-flJ

91 COHBI'. u-RKJ+1.0)/RMJ
92 COMBT-COMBT-COMBI
93 302 CONTINUE

94SUMINT'.SUMINT*RODFPC.FRPCTN-'COMBT
95 301 CONTINUE
96 NMBP-J4I

971 NBOUNO=NFORCE~l

go PFRC"AwiNFORCE.F (NMBP) "C IM8F2.NB0UN01)
99 PTMN(MBI.NCOUND1 =PFAC'.SUMINT
100 30 CONTINUE
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101 C
102 C FOR MBP<M'mo
103 C
104 00 40 11zI.MD
Jos NFORCE-MBP+I1
106 J-MO*NO-N8P-I-MFORCE
107 FACT-NBP*1.D.HFORCE
108 SUMI-UI.0-DEXPP1l-FACTn,( A-.FACT)
109 SUMINT-SUM11
110 DO 401 K=I.j
III FRCT-FACT4I.0
112 RDDFAC-(-I.Dnu.K
113 FRACTN= (I.D-DEXP (F1' FACT1 if A-FACT)
114 COMBT-i.0
115 DO 4102 iKJ-1,K
116 RKJ-KJ
117 COMBI- LJ-RKJt 1.01 IAKJ
118 COMBT'COMBT-COMBI
119 402 CONTINUE
120 SUMINT-SUMINTIPODFAC.FRACTN.COMBT
121 401 CONTINUE
122 MNBP=J+1
123 MBOUND-MFORCE~l
124 PFRC-Ao.MFORCE..F (MNBP) wC (MBOUt4D,NBP2)
125 PTMN (MBOUND. N8Pl P~FAC SUmINT
126 40 CONTINUE
127 DO UiS 1-tH8pi.?I0
128 00 45 J=NBP1.N01
129 K-1-1
IS0 L-J-1
131 WRITEt6.6D1IIK.L.PTMNfl.J)
132 801 FORMAT(I' P(T.'.15' 15' =.17W

133 45 CONTIN"E
134 C
135 C bATA ADJUSTMENT FOR PLOT
136 C
137 NROW41
138 NCOL-41
139 NKXT-100
140 LINES-0
141 ALPHA-IS.
142 BETA-3D.
143 FL(I1-0.D
144 FL(21-D.0
145 SIZE(11-6.0
146 SIZE (21-8.0
147 C
248 C SCALING
149 c
IS0 PHAX-PTMN(I.II
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151 Do 50 1.1.41

152 X (1) -1
153 Do 50 J=2.'JI

154 1 i) -J
155 IF(PTMNNOJI.GT.PMAXIPMAX-PTMNI.JI
156 50 CONTINUE
157 CONST=8.0/PMAX
158 DO 51 1-1.41

159 Do 51 J-1.41
160 P iI. J) - SNGL fCDNST-FIT MNI11. J1
161 51 CONT1NUE
16e C
263 C
164 C IF OTHER FORCE LEVELS CHANGE PLOT ARGUMENTS

255 C
166 CALL PLT30IIXNNO.YNCOL,P.PLPHR.BETA.FL.TTL.SIZE.WK.
267 wIDN.KX.tKr.NKXY.LINESi

268 C
269 C EXPECTED VALUES AND VARIANCES
170 C
171 EM-0.0
172 EMM-0.0
173 VARM-0.0
1714 SPROB-0.0
175 DO 60 II-MBPI.MCI

176 1-11-1
177 SPT-0.0
178 00 60) JJ-NBPINDS
179 SPT-SPT+ PTMNIII.JJI
ISO 601 CONTINUE
181 EM-EmtIWSPT
182 EMPI.EMMt Iw1wSPT
183 SPROB.SPROB+SPT
1814 60 CONTINUE
285 VARN-EMM-EM-EM
186 EN-0.0
187 ENN-O.0
188 YARN.O.0

l8g 00 70 II-N8P1.NO1
190 1-11-1
191 SPT-.O

192 0O 701 JJsM8P1.MOI
193 SPT-SPT. PTHN(JJ.II2
1914 701 CONTINUE

195 EN-EN+IwSPT
196 ENN-ENN4 IwlwSPT
197 70 CONTINUE
198 VARN.ENN-ENwEN
199 WRIYET6.8051 EM.EN.VPR3M,VARN
200 805 FORMAI' %'.EXPECTED VALUES M N'. SOX.' VARIANCE M ./
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201 0 '.O17.II.IOX. 0!7.11.T51.017.11. IOX, 017.11)
202 NRITE(6.1100) SPROB
203 1100 FORMAT(' SUM OF PROBABILITIES '.DI7.1l)
20%1 STOP
205 END
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