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ABSTRACT

The numerical construction of a smooth surface with prescribed weiahted

integrals over a domain of interest, is investigated. This construction is

mostly relevant to the estimation of a smooth density function over qeoqraphical

regions, from data aggregated over several subregions. By analoqy to the defini-

tion of the univariate histospline the smooth surface is defined as the solution

to a certain constrained minimization problem. The application of finite element

methods to the numerical solution of this minimization problem is studied. It

is shown that any finite element procedure, convergent for a related boundar:

value problem can be used to construct a sequence of finite element approximations

converging to the smooth surface which solves the constrained minimization problem.

For the case of smoothness requirement of lowest order, a specific finite

element method is considered, and its converqence as the mesh size decreases is

demonstrated numerically for a particular example of xvolume matchin,4 .
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SIGNIFICANCE AND EXPLANATION

We consider a numerical method for the construction of a smooth ,hm:i I"

function from available data in aggregated form. For example, ,pF},i tit ,

population census is given by bureaucratic region (say, statet) and it i: d. ! i r.,i

to construct numerically a smooth function f(xy) intended to be an k,;t imct,

the population density at location (x,y). In order to select from the infinit, Iv

many ways in which this could be done a particular one, we reouire that f be thi'

"smoothest" function matching the prescribed aggregated data. Our measure of

roughness to be minimized by f is the integral over the region of interest of a

quadratic form in all the derivatives of f of a certain order. This order is a

free parameter which can be chosen according to the required degree of smoothness.

By using finite element techniques we reduce the computation of the minimal f to

that of solving a finite dimensional constrained minimization problem of a particu-

lar structure. We show that any finite element scheme which produces good approxi-

mations to the solution of a related elliptic boundary value problem can be used

in order to produce good approximations to the required smooth surface. This

method is discussed in detail for the particular case of "volume matching", under

the requirement of minimal integral of the sum of squares of the first partial

derivatives.
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NUMERICAL CONSTRUCTION OF SMOOTH SURFACES FROM AGGREGATED DATA

Nira Dyn and Warren Ferguson

I. Introduction

This work is motivated by the need for a numerical procedure for the construction of a

smooth surface, describing a certain geographically varying quantity over a finite geograJ~h.-

cal region, given the integrals of the quantity over several disjoint sub-regions. One of

these problems is that of estimating the density of a population over an area as a smooth

function of the geographical coordinates, given the population census according to a certain

bureaucratic subdivision of the area 11], [5]. In this context the additional constraint of

positivity of the surface is in place.

A method for estimating a multivariate smooth function from aggregated data is presented

and analyzed in [5]. The function is chosen by minimizing a region-dependent roughness

criterion subject to the given aggregated data. For the bivariate case and for homoaeneous

roughness criteria the estimating surface is taken as the solution of the following minimiza-

tion problem:

Problem I: Find u* , Hm(P)

m m
/  

mu U 2

(1.1) minimizing Jm(U) ( m -dxdy
Qi=O a\xIy m-1

amonq all function satisfying

(1.2) ii.u 3 !u~ i = i  i=l,..,N

Ifore is a bounded domain in R
2

' i L 2 (2) i=l,...,N and

on -,a bbtical from department of Mathematical Scinces, Tol-Acvt Univ,,n t,-, 1, ,,I

I 'a of l'ave from the Mathematics Department of the univer !it, t A i:

,y the Uni ted stats Ar-m, under Contract No. IAAt;.'!_R-C-.h.
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(13k- 6 L (P), 0 < i < k, 0 < k < m}
ax m au k-i

Since J (u) vanishes on 0 - the ( 2 ) imensional space of all polynomials of total

degree < m, this method of estimating a surface reproduces any surface which is a poly-

nomial in Qm' whenever there is only one polynomial in O satisfying the constraints (1.2).

Thus the degree of smoothness in m, which is a free parameter, can be chosen according to the

required smoothness properties of the surface, but with the obvious limitation that 0 does

not contain a nontrivial polynomial satisfying (1.2) with sl= .... sM = 0. In particular this

m+l
implies that ( + ) < N. This approach is similar to that of [4], 19], where interpolating

2

surfaces are constructed by minimizing region independent roughness criteria of the form

1.4 I i( m_--u)2 dxdy
(14 2 Z ' M-i

R i=O0 -o

The solution to Problem I is characterized in [5], and is shown to be related to a certain

elliptic boundary value problem. This solution can be regarded as a generalization of the

concept of univariate histosplines [2]. The "volume matching" problem in a tensor-product

situation is studied in (10), where the solution is shown to be a tensor-product of uni-

variate histosplines and where a computational algorithm is presented.

Tn the present work we investigate the applicability of finite element methods developed

for the solution of elliptic boundary value problems, to the construction of approximation, to

the solution of Problem I. We discretize Problem I by minimizing (1.1) subject to (1.2) amon

all functions in a finite dimensional subspace of 1m(') spanned by "finite elements". It

is shown that any finite element scheme, convergent for a related elliptic boundir" valu,.

iroblem, can be used to construct a sequence of finite element aplproximation convroilne! to

the solution of Problem I.

In case the surface is required to be nonncoative we are le,! to:

Problem If: Find u Hm( ) minimizinq (1.1) amono all nonneeatl\v( functions -ati'f i'-i:

(1.2).

vor the case m = I the discretized version of Problem II becomes a juadratic j;rn-

gramminq iroblem when the discretization is made by nonneqative finite eloments, and a

characterization of the discr.tization solution is given.

-2-
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The numerical computation of the solution to the discretized Problem I involves a solution

of a large scale linear system of a special structure, with a main part resemblinq the linear

system characteristic to the finite element solution of the related boundary value problem.

Iterative schemes for the computation of the solution of such large systems are analyzed ill

2 2 \2
Problem II is formulated for m = I and for )(u) = 1- dxdy in the context

of "volume matching" in 1ll) where an iterative procedure is presented fur thle numerical

computation of an approximate solution. The procedure is tested on several examples, anti the

iterations converge. Yet no proof of converqence is ciiven. This procedure with the, additional

condition u =0 on thle boundary r of - and without thle steps that imposv tinnnaat ivity,

is in fact one of the converqing iterative schemes of 161 (see also Section 5) . Trhc iril lem-In-

tation of the nonneativity in 1111 seems to be incorrect, Ii view of thle character izat ion of

the solution to the discretized version of Problem I I (Sect ion 1), 11nd no't alwavti s, Pta

remarked in [11).

Iterative schemes for Hte computation of sollot ioio, to the O~e ~dvi;o of P ll'

II for mI = 1,* and thet converoonce of thlwt!O ;IlutI111I ion till'.~ Slotl iO f till cotit Ilooool'

problem, are eL tne inIve';t)1itIt.

In Sect Ion I., thI e r', sU It it I -111ts'I roIusI It tlt ';otlt J(io Of I'10iet-s1 I iti it IIVII-W III

Sect in ; we' dii tir tI -t I Zl-II I IAI1 1. hir tti' I ti III l '- it 1 1 Ith1., 1 I t I. i IIII I

for m t1, and fort II - I w It h t ni, lin-lot te t I % it ra I lt 1. I Tow c Il eiiy iiitt 0, t h, t

ele Menqt r;o 111t Ion,, I ; dealIt i It i in I, I I ' , %I ItI orttpItI tI'I l SI t
t 

11 1, .I h, It

tmi.-0- ii- -h-s,.hi tit it i it to*xiru III I Slt im si.



Characterization of the solution of prolii~i 1.

The analysi s of Problem I in' '1 is made unt2. r 0.

of (1.') wi th' tile SULsI-ace. of dimension!. n

iii x.y of total deg4ree m

Th., only polynomnial I QM Which Satisfies rJ. I I

eq!uivalently'

i21 ank- q M.N W= l .....

Tile chara~cter izat ion of thL solut i t .)I.

formn as6,ociatvd with the functional jI c -1',
in

12.2)A (u,,v)-

It is 'Ilown i7. VIthat thle s'uIut i.n ' L.

111ilo:

in

wl tt n, t
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(2.7) Lq' q*. s., ii ..

and where i' 1 < i < N-M, is the unique solution in Hm(.) of the following boundlary vjai:,

problem, formulated variationally as:

(2.8) A (&iv) = S €iv for all v Hm(2')
1

(2.9) S *ij 0, j=l....
1)

In (2.8)

H

(2.10) = .i M 'Y .

1 1+M j=l
M

where hI 1 are constants determined by the condition:
ij j=l

(2.11) f q~i = 0 for all q c

In case 2 is a smooth domain the boundary value problem (2.8), (2.9) can11 rcfolr;1,1.

as (51:

x
2

+ 
=  in

'% x 2 D 21 1

(2.12) &i = 0 on ' m < j , 2m-I

L i  = 0, j=l ......

In (2.12) F is the boundary of 2, and ,. 2 ar diiffIrcntiai ,l.r ,:

m ,....,2m-l, such that the generalized Green Formula holds:

(2.13) A (uv) V(-1) - + - u +

m-i
+ y ' 2m - - i
j=0 I " -M

with the jth normal derivative of v.
In3
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In particular, for m=l, 6 = and for m=2, - 6 3 + 2 2 with
l 3n 2 2' 3 32)n9n 3n0 T

the tangential derivative.



3. Discretization of Problem I and Problem II.

Let Vn  be the span of n linearly independent functions v1 ,. vn  satisfying the

following assumption:

Assumption 3.1.

Vn  contains the space , and

n Q

the linear functionals LI , .... LN in (1.2) are linearly independent over Vn

The first requirement in Assumption 3.1 can be met with vl,.... vn  piecewise polynomials

in x,y of total degree < m, with local supports, such that v C .Cm- I , i=l,....n. The1

second requirement can be guaranteed by taking n large enough and the supports of v1 .  v

small enough, with their union containing 2. In the "volume matching" problem, where

(3.1) Liu = u, i=l,....N

for . 2 a partition of 2', the second part of Assumption 3.1 is satisfied, if to each

p. there corresponds a nonnegative function in V whose support is contained in . Both1 n1

requirements can be met if vl,...,V n (n>N) are tensor products of m
th 

deuree univariate

B-splines (10], although such a choice is not efficient computationallv for m 1 1.

The discretized version of Problem I with respect to V is 131:n

Problem ID: Find v , Vn

minimizinq j (v)

amonq all functions satisfying (1.2).

Theorem 3.1: There existq a unioue v V which selves Problen I . This solution is• i; D

the unique clement in V which stj1;fies:

I: i

(3.2) A (VV.) =- , , il .,

I I

n

wh..r,, ar , "'nsta-ts t :fln

-7-
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(3.4) 1 y' f qj 0 for all
j=l •

n
Proof: Any solution of Problem ID v = bv, must satisfy the necessary conditi:.

i=l

(3.5) db i

db. m "+ = 1~ fv.-s)= ~ ..

since Problem I is an n-dimensional constrained minimization problem. In (3.5)
D 3

are the Lagrange multipliers corresponding to the constraints (3.3). Differentiatinc (3.",

we obtain conditions (3.2). In view of the first part of Assumption 3.1, (3.4) follows

directly from (3.2).

In order to demonstrate the existence of a unique element v in V satisfying then

necessary conditions (3.2) and (3.3), it is sufficient to show that the system

(3.6)(z > )=
' o , s_,

admits a unique solution, where b (bI .... ,bn) , = ( 1 .. ) ,s =(s I ....

the matrices A and E are defined as

n nn
(3.7) A n n  {A ,v j) i=, =, En- N = f Nnxn i i1j1 ~N . ji=l,j=l

Thus to complete the proof we show that the system

(A. E\x 0

E IE 0)\ />

n N
with x R , v R , admits only the trivial solution. Now the matrix A is n::c,,: :v.

,definite since by' (3.7) and (2.2) for any x t R 
n

n

(3.8) x TAx Am x
i
v.

'  
xv. 0 with ecualitv

n

iff xv.

- -

-- .- - -- ~----



Rewriting (3.8) we obtain

(3.9) Ax + Ey= 0, E'x =

n

and therefore x'Ax = -x'Ey = 0, which together with (3.8) implies that X v . On
i=l

the other hand the equation E'x = 0 of (3.9), in view of (3.7), becomes

(3.10) n €i 
=  

0, i=l ...... N

n
Since xv c Q , (3.10) is consistent with Assumption 2.1 only if x = 3. Hence b (3.2)

j=lJ J N

Ey = 0 or equivalently f v. I  y.j~ = 0, i=l,...,n which is consistent with Assumption 3-

2 j1
only if y = 0.

When the functions vl,... ,vn  are of local support, as is the case in the finite elem ent

method, the nonnegative definite matrix A in (3.6) (and in (3.15)) is sparse, and of szec:al

structure. These properties of A allow one to efficiently solve the system (3.G) ;sing on.e

of the iterative methods analyzed in (6]. (One such method is presented in Section 5).

In analogy to the characterization (2.6)-(2.11) of the solution of Problem I we have:
n

Theorem 3.2. Let b,y be the solution of (3.6). Then v = b v .has the uniaue represcnt-

N-M il1
ation v = cir) i + q*, with q* Qm satisfying f i i=i ,... :.", and wh-ere fcr

1 < i < N-M, n. E V is determined uniquely by
1 n

(3.11) A (ni v ) = f jv j=l .... n
m i 3 1

(3.12) f 0, jl ... IM

with 0i }N-- defined by (2.10).

Proof: First we observe that (3.11) and (3.12) admit a unique solution. In fact tl :

system corresponding to (3.11) is singular, but by (3.8) and (2.10) the riaht-1,a1i ii.

system is in the span of the columns of the matrix of the system -A. Henc (1.I) t

solution, and all solutions differ by a polynomial in 0 . Conditions (3.12) dct-1-n: o

unique element from this set of solutions, in view of (2.1).

-9-



The functions rj1  .I N M  are linearly independent in view of (3.11), (2.10) and the

linear independence of L 0, .. .,LN  over Vn . Therefore the (N-M) x (11-M) matrix with entries

,, is non-singular, since by (3.12), (2.10) and (3.11)

= i = A (n.'>)

11 j+*M Ki' n3

and the bilinear form A (') is an inner-product in the subspace {u!u -- I(f )

u. = 0, j.Hence aiven s, there exists a unioue

c (c . cN) ' such that

/N-M \

(3.13) c C. r si , i .M4l .

N n

and the function v = c 'i~ + q* = bv, satisfies (3.2) and (3.3), in view of (3.11),
i=l i~l

(3.12) and (3.13). This completes the proof of the theorem.

Before proceeding to the analysis of the convergence of the solutions of a sequence of

discretized problems to tie solution of the continuous problem, we consider the discretized

version of Problem II. The discretization is done by considering Problem II in the subspace

V namely looking for d = (d1 ... d )' such that w =7n d v > D in -, minimizes

3m(u) of (1.3) among all positive functions in V satisfyina (1.2). In case the condition
mn
n

d v > 0 in . is equivalent to the condition d > 0, the discretized version of Problem
i= 1
II becomes a quadratic programming problem in terms of A, E, s, d, namely:

Problem IID: Find d , R
n

(3.14) minimizing d'Ad

among all vec. rs satisfying E'd = , d > 0

The solution of (3.14) is characterized as the unique solution to the problem (8]:

Ad-EY > 0

d'(Ad-E-,f - 0
(3. 15)

E'd S s

d>0

4 .. . . .... ..-10-



with -Y= 1)* "N N constants determined uniquely by (3.15).

For the case M=l the functions in i (2W) are not necessarily continuous (H m! N C!.)

for m _2) , and the positivity must be interpreted not pointwise but in the followinq sense:

ut H ( is "positive" in 2, if it is the limit of a sequence of positive functions in

C (2.) inl the Sobolev norm

22 u2 2
f J u T)() (I) dxdy

In this case (- L one can take v 1 . vn to be piecewise linear with local supports, such

that v.> 0 in 2', and that for a regular mesh of points tx 1 ,...,x n, , v I(X 1 11

.~~,..n. Such a choice is furnished, for example, by supports of the form:

Corresponding to each support of the above form, centered at x., the finlitke eleMent v 1

a linear function within its support which vanishes on the boundairies of the support .i tI

fies v.i (x,) 1, v.i (x) _ - For tich a choice of finite elements

n
(31)clv. 0 in '( .. ) ~0

and the characterization (3.15) is val id. Th is characterization is the key to the development

of an efficient algor ithn for the ,oluition oif (1.14) for a large and sparse mat rix A, wh i ic

takes into account thle spuc ial st riietire (if A. We intend to inlvest i~tate this alulor ithm else-

where.

.- . ........ .....



4. Convergence of the discretized solutions.

The characterization (2.3), (2.4) of the solution to Problem I differs from the cr.aract(r-

ization of weak solutions to elliptic boundary value problems (1], [3], by the fact that t:-..

richt-hand side of (2.3) is not given, but instead its structure up to N constantF 1E

and there is additional information on the solution in integral form given by (2.4).

theless in the analysis of the convergence of a finite element scheme to the solution of

Problem I, the convergence of that finite element scheme to the solution of the followin

boundary value problem is relevant:

(4.1) Am(Uv= f fv for all v 4 Hm(P), f C L 2(Q), I fq = 0, q e Q2 ,

LiU = 0, i=l,...,M

Let Vh denote a space of finite elements such that the area of the support of each.

2 2element is bounded from below and above by ah and 8h respectively (0 < a . .

finite elements approximation to the solution of (4.1) is uh E Vh  satisfying [11, 131:

Am(uh,V) f fv, V t Vh
(4.2) 2

Lu 0 i=,.

hiTheorem 4.1. Let u~uh be determined by (4.1) and (4.2) respectively, and let v, * V~ b-

the finite elements approximation to the solution of Problem I, u*. If

(4.3) IU-UhI _ B(u)h
'
, v 0

where B(u) is a constant depending on u, and .111 is a norm with the protertv

(4.4) Jvl %[Ivj! , v C H"( ,

then for h 0 small enough

(4.5) ijvh-ufli Gh" with G = G(m, , ...., ,s. . s .

-12-



Proof: By the result cited in Section 2 in (2.2) - (2.6)

N-M
(4.6) u*= c * + q*, q* c Q, f q*i = 

si, i=l ,..., M
i= I

where i is the unique solution to problem (2.8), (2.9) which is of the form (4.1).

by ri the finite-element approximation to Ei, determined uniquely by:

(4.7) A (niv) f iv, v E Vh

f ni j = 0, j=l .... M
2

we conclude from Theorem 3.2 that

N-M

(4.8) vh = cii + q*

while by assumption (4.3) of the theorem

(4.9) II i-nijI < B(i)h
v
, i=l,....N-M

Now c = (cI. ... c)' and c* = (c*,....c*)' satisfy

N 1 N

(4.10) Lc* = 0, Kc=a

where

(4.11) L = {A Nij) K {A(ni ,1 ( q* N

m 1 ) 1 m 1J ij~l 3 ~ j=M+1

Hence

-N-M
(4.12) c-c* = K (L-K)c* = (I-L -) L Fc*, F = L-K I {fii=l

In view of (4.9) and the property (4.4) of the norm I'-f

(4.13) IfijI <_ fy k-nil 1j+m _ II j+MII 2 ,-nj2 H G ),

L (P) L W)

with G = GO max Ij+MIIL 2 B()1.
1,) L (Q)

-13-



Therefore F (:4-M) Gh ', and for ii small ,,nouch such that L-F 7 4.1

yields1-
(4.14)

: F , h

with G, L2 L c .

To complete the proof of the theorem observe that 1,% (4.0) and (4.8)

N-'I N-'! M-M N-M N-M
V = - v c (, -, + (c -c*)(, -. + Ic -c .1=1 i 1 i1=l i i i 1 11 =l

which in view of the bounds (4.9) and (4.14) becomes:

N-M ,-N N-M
iv C (. )h 6 hB(')h' + h'Ii 1 i i 2 iI ' "

with 5 dependinj on the bilinear form A (',') ' the functions and thl
e data

s I , . ,s N •

Thus we have reduced the convergence problem related to the solution of Problem I by

finite elements sc2hemes, to the converounce of these schemes for elliptic boundarv value

problems of the form (4.1) - the Neumann p2roblems.

-14-



5. Computation of a volume matching surface for m-1.

In this section we specialize to the volume matching problem with M-1. Problem I then

becomes:

Find u* H ( )

minim z nc. (u) - rlu2 + u )dxdy
• x 1.

(5.1) among all functions satisfying

Us, i,...,N1

with ...... N a partition of

For this problem an appropriate finite element method uses "tent" functions in C(.'),

with support of the form (7):

+f z ' 2

1 2 1 . ....

z I  z, 2 3 4  2, z{ 6 Z 7

['Ilure ". I

If we denott! by z,., the vertic.s of thtie rectanqular mesh covering ., then the

element v with sup)ort centered at z is determined by being piecewise linear and satis-

fyinq the inte~rpolation onlitions:

v(z ) I
(5.2)

V1z+L1 v(zi1- I V( I +K vlz- vlzi+(41 K+1 : i-K-I

with r tht nul)-r (if j oint, Z In eall' row (if the mesh.

-1i.

-15~ .

.. . ... . .*.. . . ..:"- __- ... . .. .. - . .



To obtain the matrix A in (3.5) we observe that for the case support tv

(5.3) A (V IV ) - i-31 = 1, i-i K

0 otherwise

In case support (v) 0 support (v.) , it # 0€! the entries of the co'reslOn,! 0: i, .

,alculated accordinq to the geometry of the domain

The matrix E in (3.5) is computed by considering the geometry of th, lartt',:

N" In particular if support (vI c . then the elements of the cc re .0,, .

E are determined b%',

(2(5.4) ', vi -<h
2  

if =j

S 0 if i¢j

Since for i such that support (v ' = i ¢ there is no correspondino row In A ':,

the diagonal of A consists of positive entries only. Therefore the computation. t,"

solution of the linear system (3.6) can be performed by one of the iterative scheme ,::,2'

in [6] . For the computation of the numerical example to be presented, we use a ocr.wia.'. - .

JOR scheme obtained by 11 ittinq the matrix of the system (3.6) in the follwine wa :

Wit): B = i-diao A, C = B-A, 0 - 1. This splitting corre::ponds to th' e I :tt Il-:

matrix A according to the classical JOR method (121 . The converoence of thi- it, it

scheme to the solution of the system ( 1.0 from any" initial ouess is quarante,-, lv - .

in V I , ';incve A and F satisfy the following reuuirements: A is sinmetric n:l

definite with positive entries along the diagonal; the only common vectol to the nul

of A and E' Is x = d.

The computation of each iterant is accomplished in three -stes:

- 11



(1) Given b W compute x from

X- B- 1Cb W
)

(2) Solve for k the linear system of order N(<<n)

(EB-IE)y~
k l  

E'x -s

(3) Compute b
(k+ l ) 

from

(k+l) - (k+l)

Hence the computation of b
(k + l) 

involves two multiplications of a vector, t*ro matr-x

B
-
1
. 

This computation requires 2n multiplications since B is diagonal. Moreov r, tnc

matrix EIB- I E of the order N <<n, can be initially factorized into the product LL

where L is lower triangular.

Then each step (2) involves only one forward and one backward substitution, each of orJ- _

N. For the actual computation it is not necessary to store the matrices B, C, E, hut t_

store sufficient information for the performance of multiplication of each if these natri:-,

by a vector.

Under the restrictive assumption, that all boundaries of , I'. N li- aloiv ,.r1-

zontal and vertical mesh lines, the determination of the elements of B, - and E 1 ,: t:.

computation is considerably simplified. It is sufficient to store an arra: of dim,'n,•r.

with each row indicating the subregions which contain the four parts of the 5ll},ort of

corresponding finite element (these parts are denoted by 1, 2, 3, 4 in 'iour
- 

5.1). T!

information contains also the geometry of the domain if an additional reason

assumed to contain all those parts of the n supports which are not contain,,d In

The convergence of this finite element scheme as h -) to the olution of ('.P :1

from Theorem 4.1, in view of the convergence properties of this sch,,c when .; 1 1i 'l 1

value problems of the form 171:

A (u,v) = f fv dxdv for any v 1I

(5.5)

fv=

-17-



wItn f fI , t . It is snow. in [7] that the L (. onveroence of this finite

elcmetit scneme' as ' , to the solution of (5.5 is 0(h), if ,-u arf Lipschitz

n ft iI u,)U S

W. cmi letv this section hk jresentinq a numerical result whicii demonstrates the conver-

qvtct. of this finite element scheme, as h - 0, to the solution of a Kroblem of the form

(5.1). The jroblem we will consider has

= 10,11 10,11

:2 " I [ ,11

2 1
3 2 '

S 4

1

In Table 5.1 we present the values of vh and an estimate of vh - u*r at the points

(x,z) = (,,3 and (),i). Table 5.1 suaqests that for this problem the converqence of the

finite element scheme is at least 0(h), and possibly O(h ), as h - 0.

(Xy) = ( ,1 1I (x ,%) o -, )

I h h I h hh
"  

V v ,vU*' V :-*

-v 4

8 ,4.540 .232 17.J39 .04,)

16, 9.711 .261 1.01 .0I

24 9.747 .025 173)4 .005

32 9.761 .0l1 17.02 .003

Tat, I v
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