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ABSTRACT I
For x = (X1""'Xn) €2Rn let the elementary symmetric functions
Lj =R" > R be defined by
U.{x) =) X, ...%X, , j = 1,...,n. So the real polynomial p_ of
J l.] lj »

1$i1<...<i.Sn
J

degree n with leading coefficient 1 and zeros in B ST s is

n .
given by px(t) = ¢" +_Z1vi(x)tn .
l=

Let %,y EZR: be points with &i(x) < :i(y) for i = 1,...,n.

It was conjectured (see [21]) that this implies :i(x*) < .i<y‘;
for every « €(0,1) and i = 1,...,n, where xa is defined by

x* = (x?,...,xﬁ).

By an argument involving total positivity, this conjecture may be
reduced to the problem of finding a piecewise differentiable path
{o(t) |t € [0,1]} iniRi with ¢(0) = x, ¢ (1) = vy and such that

‘5 (6 (t)) is monotone increasing with t for each i = 1,...,n ‘=« [’
This problem looks deceivingly simple but was only recently s
by Efroymson, Swartz and Wendrcff using a rather involved argu...

We give elementary proofs for n £ 5.

AMS (MOS) Subject Classification: 26D05
Key Words: real polynomials, inegualities
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SIGNIFICANCE AND EXPLANATION

Some aspects of the heat transfer in the emergency cooling of

nuclear reactors lead to a nonlinear eigenvalue problem, the
so-called model quelch front problem. Laquer and Wendroff suggested
a procedure for computing bounds of the eigenvalue which depend -
among other things - on the validity of a certain inequality for

elementary symmetric functions. This inequality is of interest in

itself and was recently proved by Efroymson, Swartz and Wendroff

u31n%§f falrly complicated argument. We give an elementary proof
/»r“'?)
for n

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the author of

this report.
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ELEMENTARY PROOFS OF AN INEQUALITY
FOR SYMMETRIC FUNCTIONS FOR n < 5

Roland Zielke

{z €1Rn|/\2. > 0} and &

n
= {z €ER, |2z, S 2, S...5 2 }.
i (g ( LA

) G e ) o P

I+

+R ', ot X » o{x), be defined by

n n :
T (e=x.) = %+ ] o, (x)t"F =: p_(t) for t €R.
. 1 . 1 X
i=1 i=1
So we have o (x) = ] (=1)*%: «..X; ,i=1,...,n,
123,<...<j;=n 31 Ji

and o (R.) <TR,.

Let R" be partially ordered by "x < y 1iff X, ¥y for i =1,...,n
and x % y". Let x,y € Af be points with o(x) < o(y) and

M= {z € Aflo(x)ﬁo(z)ﬁc(y)}. So M is compact.

Theorem A: a) There is a continuous mapping ¢: [0,1] > M with
$(0) = x, ¢(1) =y and o(¢$(u)) < o(o(v)) for all u,v € [0,1] with
u < v.

b) ¢ is continuously differentiable except on a finite set.

By an argument involving total positivity (see [1]) one may derive
from theorem A the following result:

n

Theorem B: If z* is defined by z" = (-1211%".,-iznla) for z € & and

+ € IR, we have o(xB) < c(yB) for g8 € (0,11].

Subsequently we shall prove theorem A for n < 5.

Sponsored by the United States Army under Contract No. DAAG29-80~
C-0041 and in part by a travel grant of the Deutsche Forschungs-
gemeinschaft.
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with

Proof: a) It is sufficient to find a 60 and a g € P

n-1
nonnegative coefficients such that Py + Ag has n nonpositive

(})

real zeros xfx),...,xéx) for all » € {0,8) and o(x ) is strictly

increasing for A € [0,§].

For xn<x <o o<xy the claim is trivial. Also trivial is the

n-1
following
Lemma 1: If y<x and y1<0, then ci(x) < oi(y) for all i.

We denote d:= p -py- We consider the cases n = 2,3,4,5 seperately:

Y
n = 2:
Xy = Xyt choose g(t) = t, if 01(x) < 01(y).
If 01(x) = 01(y), we have d(t) = o for some >0, and py has no

zeros , a contradiction.

n = 3:

case 1: Xy < %Xy = X4 8 choose g(t} = t, if 01(x) < 01(y).
Otherwise we have d{t) = a + 8t2 for some a,B e:m+, and lemma 1

gives a contradiction.

case 2: X3 = X5 < X3 choose g(t) = 1, if oo(x) < oo(y);
choose g(t) = t2 if oz(x) < o, (y).

Otherwise we have d(t) = ot for some « € R,, implying X, <Yy

for i = 1,2,3, a contradiction.

case 3: Xy = X5 = X3 choose g(t) = t(t—x1), if oi(x) < oi(y)

for i = 1,2.

Otherwise, if 01(x) = 01(y), go to n=3, case 1.

1f az(x) = °2(y)' consider p;,p§ and go to n=2.

n = 4:

case 1: Xqg 7 Xy = Xy 7 Xqd choose g(t) = 1, if 5 _(x) O(y),

choose g(t) = t“, if ~2(x) nz(y)




Otherwise we have d(t) = at + Bt3 for some a,8 €:R+.

=> d'(t) = a + 38t => P, (t) > p,(t) and

t

Yy
So all zeros of p§ are smaller than all zeros of p;, yielding

p, (£) > p, (t) for t € (-=,0).

o5(x) < g,(y), a contradiction.
case 2: a) Xy < X3 < Xy = X, Or b) Xy = X3 < Xy < Xgi

choose g(t) =t , if o,(x) < 04(y);

choose g (t) t3, if c3(x) < 03(y);

a + Btz, sod> o0, 4d' <0, @" > 0 on

otherwise we have d(t)
(~=»,0) and 4'(0) = O.
For a) this implies Z(p&)c(—m,x3), but also Z(p&)n(x1,0)¢ ¢, a
contradiction.

For b) this implies that either all zeros of p§ are larger than
all zeros of p; , or that all zeros of p; are larger than all
zeros of p;, in both cases a contradiction.

case 3: X, < Xq = X5 = Xy choose g(t) = t(t-x1), if

01(x) < 01(y) and oz(x) < az(y).

Otherwise, if °2(x) = az(y), we have d(t) = o + Bt + yt3, SO

a'(t) = B + 3yt2. Now go to n=3, case 1.

2

Iif 01(x) = 01(y), we have d(t) = o + Bt" + yt3. So d has only one

zero z in (-«,0), d4' has only one zero z' in (-~,0), 4'(0) = O,

z £ 2' £0.

If p, has no zero in (x1,0), the same holds for p&. But then all
zeros of p§ are smaller than all zeros of p;, and lemma 1 gives

a contradiction.

If py has a zero in (x4,0) we have z € (x1,0) and thus Py - py

Y
than those of p;.

and p; » P

on (-=,2z). But then again the zeros of p; are smaller




case 4: g 7 Xy F X, 0 X cheocose g(t) = t-xz, if oo(x) < oo(y)
2
and ~1(x) < :1(y): choose g(t) = t (t-xz), if cz(x) < oz(y) and

Tyl < 33(y).

Otherwise: a) If uo(x) = ao(y) and oz(x) = 02(y)’ go to n = 4,case 1.
b) If 31(x) = Cl(y) and 03(x) = 03(y), go to n = 4,case 2b.
¢ Lt ;O(x) = 'O(y) and 43(x) = J3(y), we have d(t) = ot + Bt2 and

a,2 > O w.l.o.g.. So p; has its zeros in (x2,x1), and 4 has its nega-

tive zero in (x1,o). But then X; < Yy for all i, a contratiction.

@) If -, (x) = o, (y) and o,(x) = 0,(y), we have d(t} = a + 8t° and
a,> - O0Ow.l.o.g. If d had its zero z in (—w,x1], we would have

75 X4 for all i in contradiction to lemma 1. =» z € (x1,0). Let
z

1 be the local minimum of p,. We have p§ > 0 in [21,01, so
Z(p;)c(~w,x2), for otherwise py would have two local extrema in
(xz,z) with no zero in between. But this again yields a contradiction

to lemma 1.

case 5: Xg = X3 = X5 = X choose g(t) = t(t—x1)2, if oi(x) < ai(y)

for i = 1,2,3.

Otherwise, if ai(x) = ci(y) for i = 2 or i = 3, consider p; and p§,

i.e., yo to n=3, case 3.

If ax) = 01(y), we have d(t) = . + Btz + yt3 with ¢,y ~ O w.l.0.9.

Gc to n=4, case 3, corresponding case.

n = 5i

we usc the following notations:

N ] i e
The zeros of p, are 24,23,22,21 with 24523£22521.
17 with w35w25w1.

The nrjative zeros of d are p,q,r,... with psgsr<...

The zeros of p; are ws,w,,w

The neaative zeros of 4d' are p',q',r' with p'<g'sr’

Too negative zeros of d" are p",qg" with p"<q".

T B3t atement "

x(x)-ml(y) is called Ai' i =0,1,...,4.

e 4 . are nonnedative real numbers.




case 1:

a) Xg < X4

A
x
A
x

N
0

_lx

b) Xg < X, = X3 < Xy < 2y

c) Xg & X, = Xg < Xy = X,

Choose g(t) = t if A4, choose g(t) = t

3

2

If 1A1A1A3, we have d(t) = a + Bt + yt

(==,0).

a) We have Z(py)C(-m,xS)U(x4,x3) and Z(p&)n(x1,0)¢¢-‘Z(py)ﬂ(x1,0)* ¢

contradiction.

¢c) Follows from a).

b) We have Z(py)c(—m,xs)u(xz,x1) and Z(p§)c(-w,z4)u(x3,zz)u(z1,O).

4

if Aj.

=> d' (o) = OAd'<0<d" on

If Z(p;)c(—W,w3], lemma 1 gives a contradiction to 1A;.

=> #(Z(p;)n(-w,w3]) =1 Ag(Z(p,;)ﬂ[wzrwﬂ) = 2

=> p§ has 2 zeros in (23,21)

=> p§ has 2 zeros in (23,22)

=> py has 1 zeros in (23,zz)c(x3,x2), contradiction.

case 2:
a) x5 < Xy < x3 =X, < X,
b) x5 = Xy < X3 < X5 < X

c) x5 = x4 < X3 = Xy < Xy
1

Choose g(t) = if Ao’
g(t) = t? if A,
g(t) =t4 if A,.

4
If 1AOA1A2A1A4, we have d(t)

a) py has one zero in (x1,0) and 4 zeros in (XS,X4)AZ(p§)C(Z4,Z3)

at + Bt3

=> 4'~0>d4" on (-~,0).

=> z(p;)c(z4,z3). But p; (0) = p;(O) 20 A p'(w,) < p;(wj) =

z(p;)ﬂ(wlo)* ¢ ,contradiction.

b) py

=> Z(p;)c(w1,z1), contradiction.

Y 1

O =

: : '
has one zero in (x1,0) and 4 zeros in (x3,x2)AZ(py)C(22,z1)




m“l—:ﬁ',, LT

case 3:
a) Xg £ Xg <Xy = ox, =X
b) Xg = X, = Xq < X~ % Xy
a) Choose g{t} = L(t-x1) if Ai A A2,
g{t) = t3(t-x1) if Ay A Ry,
g(t) = t(ts-x?) if Al A A4. Otherwise we have:
a) 1) 1A2A1A4: consider p;, p; and go to n=4, case 2a).
a) 2) 1A1A1A3: we have d(t) = a + atz + yt4 AQd' <O on (-,0) =
Z(p;)ﬂ\x1,u) ¥ -. but Z(pJCJ—m,X1) => Z(pi)C(~w,x1) contradiction.
a) 3) 1A1A1A4: we have d't) = o + btz + yt3 and ¢ > O w.l.0.g9. SO

”n

d,d',d" have exactly one negative zero each, and p < p' < p
— . , - ' -
If p € [x,,0) => Z(py)c(k5,x4)u(x1,p) > Z(py>c(¢4,z3)

If p < x, => Z(py)c(-W,x1) => Z(p&)c(-x,XT) => =

p € (X1,O) => Z(py )C(z4,z3)
Z(p§)c(z4,z3). But p" € (x,,0) => p;(x1) < 0 => z(p§)n(x1,0)¢ L,

contradiction.

b) Choose g(t) = t(t—xS) if Z\1 A AZ'
3 -
ag(t) = t (t—xs) if Ay A Ay,
3.3

It

g(t) t(t7-xc) if A, A A4. Otherwise we have:

1

b) 1) 1A2AnA4: consider p;, p; and go to n=4, case 2b).

A1A3: we have d(t) = a1 + ﬁtz + 6t4, so 4'<0-d" on (--,0)and

b) 2) A,

Z2{p el XU x,,x,),
Z(py)C(~ﬁ,22)U(z1,O),
Z(py)c(°"“'xs)U(W2,W1).

p; has one zero in (—',xs) and two zeros in (w2,w1), for otherviisc

lemma 1 and A3 give a contradiction.

b) 2) a) Z(py)c(—v,xs) => lemma ) contradicts 1 A,.




b) 2) b) *(Z(py)ﬂ(xz,x1) =2 => l(Z(p§)ﬂ(z1,O) = 1

=> p, has 3 zeros in (==, %c)

=> p; has 2 zeros in (-N,xs)'contradiction.
4= S(2pgIN(zy,x)) = 3

[}

b) 2) ¢) n(Z(pY)n(xz,x1))

- #(Z(p;)n(z1,x1)) = 2, contradiction

2 3

b) 3) 1A, AA,: we have d(t) = a + gt~ + yt .

1 4

b) 3) a) p' €(z,,0): If #(Z(p&)n[z1,0)) = 2, lemma 1 and 1A,

give a contradiction,
' - - '
If Z(py)c( 124) => Z(py)c(zz,z1]. From
d"<0 in (-»,p') follows Z(p;)c(wl,zy),contradiction.

b) 3) b) p' E[zz,z1) => lemma 1 and 1A, give a contradiction.

4
b} 3) c) p' €[x5,22) => Z(p&)c(p}zz)u(z1,0)

= L [ ] = — st [} - -
> v(Z(py)n(p,z3)) 3 => “(Z(py)n(p,zz)) 2.
But Py>px>o in (p,zz)ﬂ(xs,zz)b(p;zz), contradiction.

b) 3) 4) p'<x5: If #(Z(p§)n(x5,22))= 2 = Z(py) n (XS’ZZ) * ¢,

but p >px>0 on (x5,22), contradiction.

Y
case 4:

Xg < Xy = Xy = X, < X4 Choose g (t) t-x, if Ao A A

3
t2(t-x

1 ’
3) if A2 A A3,

if AO A A

Q
fad
fi

)

g(t) = t)-x3

3 Otherwise

3
we have:

1) 1A AR consider pé,p? and go to n=4, case 1.

2) 1AOA1A2: we have d(t) = at + ﬁtj + \t4.

=> d,d',d4", have each exactly one negative zero, and p<p'<p".
One checks that Z(p;)C(XB,O) or Z(p;)c(-m,x31 are impossible.
a) p' €[z1,0) => Z(p&)c(-w,z4)u(z1,0).

If p; had 3 zeros in (21,p'), p; would have 2 zeros in (21,p'),

contradiction.




T e
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'f pg, had 3 zeros in (-=,z,), p; would have 2 zeros in (-+,2z,)

> a(p;)C(—w,w3) => A, and lemma 1 give a contradiction.

2
bhyop! €[x3,z1):

- p! has exactly one zero > p',p; has at most one zero 2 x,.

Zo " has no zero 2 X3y contradiction.

t* ' has 3 zeros in (p',0), Py has 4 zeros in (x,,0).

=> Z(py)C(x1,O), contradiction.
Sy E(—w,x3) => #(Z(p&)n(x3,z1)) 2 2, for otherwise
3Lp;)C(—m,x3), contradiction. So we have :(Z(py)ﬂ(x3,21)}
- N . > . 1
but this contradicts py<px<0 in (x3,z1).
3) 1AOA1A3: we have: d(t) = ot + Btz + ytq. Then d and 4' havu

exactly one negative zero each, p<p', and d">0 on (-«,0] w.l.c.a..

SYe} p; has 2 zeros in (x3,w1), i.e., p§ has a local maximum r and

a local minimum s with p'<r<s<w1.

=> p  has a local maximum 1 €(r,s), and d(1l)>0.
¥ }=>p€(l,0)=>p'<u,

ror ¢>»0 sufficiently small, d(-eg)<0O contradicticn.

case 5:
X = X, < Xy < X5 = X choose g(t) = t(t—x3) if Ay A By,
g(t) = > (t-xy) if Ay A A,
g(t) = t(t7=x;) if A, A A . Othei-
wise we have:
"' aAyAaiA5: go to n=3, case la.
2Y A ANA,: we have d(t) = a + 5t + yt3, so d'>0>d" on (~-,0).

2 4
> 7 (pi,)c(xs,ZB)U (ZZ,X,)AZ (p;)C(wywz)U(w] ,0)

v

p; has at least 2 zeros in (22,x1) and 1 zero in (xg,wj)

)

> 15 has a local minimum in (22,x1) and a local maximum in [
Y

~ 1 has at least 2 zeros in (-+,0), contradiction.




3) 1A1A1A4: we have d(t) = o + 8t24-yt3.

=> d,d',d" have each exactly one negative zero, and p<p' <p".

-~ ; (= - .

We have either Z(py)c\ ,x3] or Z(py)c(x3,0).

Z(py)c(-x,xl’ implies Z(py")c(—w,x3) => p'>X1=>'p">X1 contradiction.
1 13 ~ -, - n / = 1) 3

Z(py)C(x3,O) impiies Z(py)C(zz,O) > Z(py)c\zz,O) > Z(py)c(zz,w1)

=> p"<w,, => p'<w, => Z(p§)ﬂ(x1,01¢ ¢ => X,<p<p'<w, contradiction.

case 6:
= v = — . _ _ 2 .
Xg = X, = X3 = X, < Xgi choose g(t) = (t XS) if AO A A1 A A2
= 2. .
glt) = t7 (¢t x5) if A2 A A3 A Ay
_ 2 2 _ 2 _
g(t) = (¢t +x5t+x5)(t x:)" =
4 3 .3 4 |
= t -x5t —x5t+X5, if AO A A1 A A3 A A4.

Otherwise we have:
1) (1A,A145) or (1A1A1A4): consider pé,p& and go to n=4, case 4.

2) 1AOA1A : go to n=5, case 4,3).

3

3) 1A0A1A4: we have d(t) = at + Btz + Yt3-

=> d has 2, d' has 2, d" has 1 negative zero, and p<p'<g<g'<O,p'<p"<aq’.

From p“<w1 follows that p; has at least 2 zeros in (max{p;xs?,w1).
So p& has a local maximum r and a local minimum s with p"<r and

X <I<S<w,. => a' (r)>0 => either r'<g'<r or r<p'<qg'.

As py has a local maximum 1 €(r,s) and d(1)>0, we have 1 €(p,q),

so r<l<g<q', and so finally r<p'<q' => r<p",contradiction.

case 7:
_ _ _ . _ _ 2 .
Xg < x4 = x3 = x2 = Xy choose g(t) = t(t x1) if A1 A A2 A AS‘
Otherwise we have:
1) 1A, or 1Aj: consider p;,p; and go to n=4, case 3.
2) 1A1: we have d(t) = . + 8t2 + 3t3 + $t4 with -,7 0O w.1l.0.9..
-9_




=+ d has at most 2 zeros in (--<,0). 1f & had no zero or one double

zerv 1n (=«,0), lemma 1 and 1A1 would give a contradiction.

=> ¢ has exactly 2 zeros in (--,0)}, as well as d' and d", and
p<p'<qg<q’'<0 and p'<p"<g'<q"<0.

claim 1: Z(p"ic{-«,w.
—————— e ~\7 J

}=> d" has no zero in Lx],O].

Proof: explicit computation gives p;<p; on [x1,O].

claim 2: x5£q => Z(p&)c(—~,q').

claim 3: p'sx15q' => either p'<z4, or p§ has 2 zeros in (g',0).

Proof: It p; has less than 2 zeros in (q',O),p§ has no zero

PN ~ [ | — . <
there, so Z\py)c( ,x1]. I1f now py had a zero < 244

lemma 1 and 1A, would yield a contradiction.
From qug would follow Al by lemma 1, a contradiction. So we have
Xosq => p'<x1, for otherwise x1<p'<q' => Z(p;)c(x1,p') because of
claim 2 => Z(p§)C(x1,p'), contradiction.
a) Xy<q => x1<q' => Z(p;)c(—m,x1)

b) qsx, => Z(pyk;ﬁm,x1) => Z(p;)c(-m,x1)

}=> Z(p&)c(z4,x]), for

otherwise lemma | and 1A1
yield a contradiction.
=> Z(p§)c(—m,x1)Ax}<q'<q" => x1<p" => Z(p;)c(—»,wg) centradiction

to claim 1.

case 8:
3
X, = = X, = X, = X.: choc = - i A .
5 X, 3 Py 1 cse g (t) t(t x1) if A1 A By A AS A A,
1) 1A2 or 1A3 or ~A4: p; and p§ can be treated as n=4, case 5.
2) 1A1: same as n=5, casc 7.
b) Let i Il denote any fixed norm in R".
We construct £4,50,,...,€ W“ with corresponding zeros x(]),x(z),---f(M
. ) -
as follows: Let f_ - by and x(o‘ = x. 1f for k = O, x‘“) and (k are




given, for every

. | [— ,»
h-1Max LE () 1%,

g € Si= {f €P
tefo,1]

let dg be maximal such that

\
a) for all i E[O,Gg], fk+xg has n zeros z;'l ,...,zg

—
~—

1 n

with zé\)E M
b) o(zéx))is strictly increasing for 1 E[O,dg].
Let 3 € S be a function with

(8A) (8§ )

Ho (z, 6 - o(fk)H = max os(z_ 9 - n(fk)ll,
g ges 9
d define £ = £+ 8.q, x KTV (og!

an efine £, , = £ ng, x = 23

So Py and every fk are connected by a path along which - is

strictly increasing, and this path corresponds to a polygonal

(©) (DK

are in o (M) with corners o{(x ,c{ ). We have to

e, 0

show fk = py occurs for some k.

Suppose the contrary, i.e. o(x(k)) « v(y) for all k = 1,2,...

As{o(x(k))} is an increasing sequence, o := lim J(X(k)) exists.
k o

Let X := lim x(k), so o = n(x(m)), and £ the corresponding

krw
polynomial.

There is a g € P__,. and a &0 such that f +:g has n zeros

27,2/ wien 20 € 3D for a1l v €f0,2:7,ana 2" s
strictly increasing with - €[0,28]. Let .« = [ v(z(\))-f(x('))ll.
We shall show that for every - 0, tihecre is an index and a

g € P _, (near g) such that

1) fk+xa has n zcros Zi;?..,zé') with ?(')e AT for all - €[0,3],

2) ’(3(\)) is strictly increasing for « €[0,'],




2 %)) CARRRRTED

€.

3V e - o
(This implies 1l o (x ™M)z 1oaE )2 1 0™ +ame>n o™l
for all sufficiently small ¢>0, a contradiction.)

Let ©>0 be arbitrarily fixed and k so large that

(£ ~£,) (£)|< € for all t € I:= [2x-1,1], and

!Ix(k)—xmn < .
So in an t-neighbourhood of every zero z of £° of multiplicity
m, fk has exactly m zeros couting multiplicities.

As the functions g in part a) of the proof were constructed only
in view of the multiplicities of the zeros of fm, E can be con-

structed correspondingly in view of the zeros of fk.

As an example, we consider the case n=5, case 8 (leaving the

analogous details of the other cases to the reader):

For £_(t) = (t—x?)s, we had g(t) = (t-x1)3t.
For fk(t) = ii(t—xi(k))with xék)s xék)s...sx;k), we choose
5(t)=(t-x2(k) (t-xék)) (t-xik))t
=> max{| (g-g) (t) |} = 0(%), and
tel
max{| (£ _+6g) (t) - (£,+89) (t) |} = 0(F).
teT

As f +8g has 2 simple zeros # Xy fk+5§ has simple zeros near

these.

For sufficiently small ® and large k, statement 3) above holds,

too.




(1]

[2]
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ABSTKRACT (cont.)

with lvading coefficient 1 and zeros in -xl,...,--xn is given by

n .
n n-1
p(t) =t + ) ML

i=1

It x,v € mf be points with ¥ (x) < ¢, {y) for i=1,...,n.

"+ was coniectured (see [2]) that this implies wi(xu) < mi(ya) for every

43 X
l,...,xn).

ve (0,11 and 1 =1,...,n, where x" is defined by x(1 = (x
I+ an argument involving total positivity, this conjecture may be reduced to

the problem of finding a piecewise differentiable path {¢(t)|{t e (0,11+ in

F: with $(0) = x, $(1) = y and such that wi(¢(t)) is monotone increasing
with t for each i =1,...,n (see [1]). This problem looks deceivingly

simple but was only recently solved by Efroymson, Swartz and Wendroff usinag a

rather involved argument. We give elementary proofs for n < S.




