
. AD-A093 574 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/0 12/S
ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR -- EYCCU)
AUG A0 R ZIELKE DAAG29-80-C-0041

UNCLASSIFIED MRC-TSR-2113 N



MRC Technical Summary Report #2113

Ial ELEMENTARY PROOFS OF AN INEQUALITY

FOR SYMMETRIC FUNCTIONS FOR n < 5

Roland Zielke

0

Mathematics Research Center

University of Wisconsin-Madison .

610 Walnut Street JAN
Madison, Wisconsin 53706 1

August 1980

(Received June 24, 1980)

Approved for public release

Distribution unlimited

Mnsored by

U. S. Army Research Office

p. O. Box 12211
Research Triangle Park

North Carolina 27709

8P



I, UNIVERSITY OF WISCONSIN -MADISON

- MATHEMATICS RESEARCH CENTER

'I') j. LEMENTARY PROOFS OF AN,;,EQUALITY
U,! FOR WYMMETRIC gyNCTIONS FOR n <- 5p

A0,Roland P ielke t1

Technical Summary Reporto.#2l13

August 1980

ABSTRACT /i £1 i-7- 2Y -

For x =(xi, ... , Ixn) E IRr let the elementary symmetric functions

-* 1 be defined by

,(x) x. .. ., 1 ,... ,n. So the real polynomial p X of
JL 1 j

1:5 ... ji<

degree n with leading coefficient 1 and zeros in -x1, .. O-x~ 15i

given by p (t) = tn + i'~(x)tni

Let x,y EIR n be points with '~(X) 5 .(y) fori

It was conjectured (see [21) that this implies *.x) i~'

for every a E(O,11 and i = 1,...,n, where x D.is defined by

x0'

1 n

By an argument involving total positivity, this conjecture ma- bo

reduced to the problem of finding a piecewise differentiablc pcat1

{ (t) It E [0,1]} in] nR with (O) = x, (1) =y and such that

W~t)) is monotone increasing with t for each i =1,...,n 2

This problem looks deceivingly simple but was onlY recently s-

by Efroymson, Swartz and Wendroff using a rather involved acu..

We give elementary proofs for n 5 5.
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SIGNIFICANCE AND EXPLANATION

S Some aspects of the heat transfer in the emergency cooling of

nuclear reactors lead to a nonlinear eigenvalue problem, the

so-called model quelch front problem. Laquer and Wendroff suggested

a procedure for computing bounds of the eigenvalue which depend -

among other things - on the validity of a certain inequality for

elementary symmetric functions. This inequality is of interest in

itself and was recently proved by Efroymson, Swartz and Wendroff

usint a fairly complicated argument. We give an elementary proof

for n 5

~3
*t 'l'" I "  

I

/\

The rosponsibility for the wordinq and views expressed in thif;
descriptive summary lies with MRC, and not with the inthor of
this report.



ELEMENTARY PROOFS OF AN INEQUALITY
FOR SYMMETRIC FUNCTIONS FOR n < 5

Roland Zielke

Let1R 1z z A-< z2 <-5 z}.

Let a :R n _] Rn, a: x -1 G(x), be defined by

n tn  n n-i
r (t-xi) = t+ oi(x)t p x(t) for t EJR.

i=I i=I

So we have a i(x) =  (-1)ix...xj ,i - 1,...,n,
I1j1<... <9ji:5ni

and coR n )  . +.

Let]Rn be partially ordered by "x < y iff xi < y for i = 1,...,n

n
and x y". Let x,y C A- be points with o(x) < a(y) and

M = {z E An o(x)<o(z) <o(y)}. So M is compact.

Theorem A: a) There is a continuous mapping 4: [0,1) - M with

¢(O) = x, (1) = y and a(4(u)) < o(4(v)) for all u,V E [0,1) with

U < V.

b) 0 is continuously differentiable except on a finite set.

By an argument involving total positivity (see []) one may derive

from theorem A the following result:

Theorem B: If zs is defined by za = (-,z11Y,...,-.ZnK) for z C An_ and

E R, we have o(x) 50(y ) for $C (0,11.

Subsequently we shall prove theorem A for n < 5.

Sponsored by the United States Army under Contract No. DAAG29-80-
C-0041 and in part by a travel qrant of the Deutsche Forschunqs-
gjeme inscha ft.



Proof": a) It is sufficient to find a 6>0 and a g E 1Pn-1 with

nonnegative coefficients such that p + Ag has n nonpositive

real zeros x1 ),... for all A E [0,61 and o(x )) is strictly

increasing for X E [0,61.

For xn<x n1<.. the claim is trivial. Also trivial is the

following

Lemma 1: If y<x and y1<O, then ui(x) < oi(y) for all i.

We denote d:= p Y-Px We consider the cases n = 2,3,4,5 seperately:

n = 2:

x 2 = x1 : choose g(t) = t, if o 1 (x) < o 1 (y).

If a 1 (x) = o 1 (y), we have d(t) = a for some a>O, and py has no

zeros , a contradiction.

n = 3:

case 1: x 3 < x 2 = x1 : choose g(t) = t, if a1 (x) < a 1(y).

Otherwise we have d(t) = a + at2 for some aa EIR+, and lemma 1

gives a contradiction.

case 2: x 3 = x2 < x 1 : choose g(t) 1 1, if x(x) < 0(y);

choose g(t) = t 2 if o2 (x) < a 2 ( y ) .
Otherwise we have d(t) = at for some a E JR+ implying x. <

for i = 1,2,3, a contradiction.

case 3: x = x2 = x 3: choose g(t) = t(t-x,) , if 0i(x) < oi(y)

for i = 1,2.

Otherwise, if c 1 (x) = o 1 (y), go to n=3, case 1.

If ;2 (x) = o2 (y), consider pP and go to n=2.

n 4:

case 1: x4  x = x 2 ' x1: choose g(t) = 1, if o(X) 0 (y);

2,choose g(t) = t2 if 2 (x) 2 (y )

-2-



Otherwise we have d(t) = at + 8t3 for some ,a E +

=> d' (t) = a + 38t => py(t) > p x (t) and
f I

py (t) > Px(t) for t E (--,0).

So all zeros of p' are smaller than all zeros of p', yielding

a2 (x) < o2 (y), a contradiction.

case 2: a) x 4 < x 3 < x 2 = 1 or b) x 4 = x 3 < x 2 < x 1 :

choose g(t) t , if o 1 (x) < 1(y);

choose g(t) = t 3 , if a 3 (x) < a3(y);

otherwise we have d(t) = a + t 2 , so d > 0, d' < 0, d" > 0 on

(--,o) and d' (0) = 0.

For a) this implies Z(p')c(-,x but also Z(py)f(x 1 ,O)* , a

contradiction.

For b) this implies that either all zeros of py are larger than

all zeros of px ,or that all zeros of p" are larger than all
x y

zeros of p'", in both cases a contradiction.
x

case 3: x 4 < x 3 = x 2 = x1 : choose g(t) = t(t-xl), if

S(x) a 1 (y) and a2 (x) < a2 (y).

3
Otherwise, if a 2 (x) = a 2 (y), we have d(t) =  + at + yt 3 , so

d' (t) = a + 3yt 2 . Now go to n=3, case 1.

2 3
If W(x) = a1 (y), we have d(t) = a + at + yt . So d has only one

zero z in (--,O), d' has only one zero z' in (--,0), d' (0) = O,

z < z' _ 0.

If p, has no zero in (x1 ,O), the same holds for py. But then all

zeros of p' are smaller than all zeros of px' and lemma 1 gives
y

a contradiction.

If pY has a zero in (x1 ,0) we have z E (x1,0) and thus px Py

and p, on (--,z). But then again the zeros of p' are smaller

than those of pI.

-3-



casu 4: x4  x3 = x2  x choose g(t) = t-x2, if o (x) < a (y)
2

and 1 (x) j 1(y); choose cj(t) = t (t-x2), if C 2(X) < a2 (y) and

3 (X) - -)3 (y).

Otherwise: a) If 0 (x) = 0 (y) and u2 (x) = o2 (Y), go to n = 4,case 1.

b) If (x) = y) and o 3 (x) = 3 (y), go to n = 4,case 2b.

C' _ (X) = (y) and .3 (x) = j3 (y), we have d(t) = -,t + Bt2 and

> 0 v.l.o.g.. So p' has its zeros in (x2 ,xl), and d has its nega-

t'vc zero in (xlo). But then x. < Yi for all i, a contratiction.i

d) If " 1(x) = (y) and a2 (x) = o2 (y), we have d(t) = c + 6t3 and

0 0 w.l.o.g. If d had its zero z in (--,Xl], we would have

i xi for all i in contradiction to lemma 1. = z E (xI ,O). Let

z be the local minimum of px. We have py 0 in [Zio], so

Z(p')(-..,x 2 ), for otherwise py would have two local extrema in

(x 2 ,z) with no zero in between. But this again yields a contradiction

to lemma 1.
2

case 5: x4 = x 3 = x 2 = x 1 : choose g(t) = t(t-x 1 ) , if ai(x) i(y)

for i = 1,2,3.

Otherwise, if -i(x) = Ci(y) for i = 2 or i = 3, consider px and p',

i.e., go to n=3, case 3.

If 7 (x) = )1 (y) , we have d(t) = + 't 2  + -t 3  with 0 0 w.l.o.q.

Gc to n=4, case 3, corresponding case.

n

We us(- Lhe following notations:

The zeros of Px are z4,z 3 z2 z with Z4<z3_z 2 _z1

The zeros of px are w3,w2,w i t with w3<_w2<wl .

The n'lative zeros of d are p,q,r,... with p!q_<r<...

The neoative zeros of d' are p' ,q' ,r' with p'_<q'<r'

T:, ;at ive zeros of d" arc ,)",'" with p"q"

:., I tmunt " (x) . (y)" is called A i , i O,1,...,4.

,rf, ivonne(,ative real numbers.

-4-



case 1:

a) x 5 < x 4 < x 3 
< x2 =x 1

b) x5  x 4  x3 
< x 2 

<

c) x5  x 4  x3 
< X 2 

= x1

Choose g(t) = t if A, choose g(t) = t3 if A 3.

If 1A 1AiA 3, we have d(t) = + t2 + yt4 => d'(o) = OAd'<O<d" on

(--,O).

a) We have Z(p )c(--,x )0(xx 3 ) and Z(py)n(x 1,O)*p*Z(py)n(x1,O)*

contradiction.

c) Follows from a).

b) We have Z(py )c(-o,x5)U(x2,x1) and Z(py)C(-,z 4 )U(x3 Fz2)UZ 11 0).

If Z(py)C(-,w 3 ], lemma 1 gives a contradiction to 1A3

=> (Z (py)n(--,w31) =1 A (Z(p)f[w2 ,wl1 ) = 2

=> py has 2 zeros in (z3 ,z1 )

->p' has 2 zeros in (z3 ,z2 )

-- py has 1 zeros in (z3 1z2 )c(x3 ,x2), contradiction.

case 2:

a) x5  X 4  x 3  x 2 < x1

b) x5  x 4  x 3  X 2 < x1

c) x 5  X 4 < x 3 =X 2 < x 1

Choose g(t) = 1 if A0 ,

g (t) =  t2  if A2 p

g(t) = t4 if A4.
3

If ,AoAjA 2 AA 4, we have d(t) = at + 8t =, d'>O>d" on (-"-,0).

a) p y has one zero in (x1 ,O) and 4 zeros in (x5 ,x4 )AZ(py)C(z4,z 3 )

=> Z(p" )c(z,z). But p" (0) = P"(0) -> 0 A p(W < pt
y 4  3  y x P (1 0

Z(p'y) n(w10)* o,contradiction.

b) py has one zero in (x1,0) and 4 zeros in (x3 1x2)AZ(py)C(z 2,z1 )

=> Z(py)c(w 1,z1 ), contradiction.

-5-



case 3:

a) x x4 < X = X x

b) x 5  x X x. x

a) Choose q(t) t(t-x I) if A i A A 2,

g(t) t 3(t-xl) if A 3 A A4 ,

g(t) = t(t 3 -X 3 if A A Otherwise we have:
1x3  i 1 A

a) 1) -A2, ,A4 : consider p', py and go to n=4, case 2a).

a) 2) iA 1 AIA 3 : we have d(t) -+ t 2 + )t4 A d' < 0 on (-,0)

Z (P') N ixxIo) t -. But Z(p C( Xx) => Z(')((-,x I) contradiction.

i2 Y3
a) 3) iAI AIA 4 : we have d't) c + t + yt and r > 0 w.l.o.g. So

d,d',d" have exactly one negative zero each, and p < pl < p".

If p E [x,O]) => Z(p=> Z(p )C(z4,z 3 )

If p < X I => Z(pY) C(-, x 1 ) => Z(PY)C(--'X1) =>
')-=zx 1))  >

p' E (x1 ,O) => Z(pyt)c(z 4,'3

Z(py")c(z4,z3). But p" E xi ,O ) => pxy (Xl) < 0 => Z(p- )n(xIO)*

contradiction.

b) Choose g(t) = t(t-x 5 ) if A1 A A 2,

g(t) = t 3(t-x 5 if A 3 A A4 ,

g(t) = t(t 3 _ Ax Aif Otherwise we have:

b) 1) A-,A\: consider p' and go to n=4, case 2b).
4  PV

b) 2) iA 1 AIA 3 : we have d(t) = + ,t + 6t4
, so d'O d" on ,O)and

Z(p .. 2,x5 ) U (x , ) ,

Z(py)c(- ,z2)U(z 1 ,0 ),

z(p')C( .... ,x5)u  w w .

py has one zero in (-,,x 5 ) and two zeros in (w2 1w 1), for otherwis(

lemma I and A 3 Jive a contradiction.

b) 2) a) Z(p )c(- , 5 ) => lenuma I contradicts 1 A3.

-6-



b) 2) b) (z(pyn,(x 1  2 => (Z(py)n(z 1 ,o) = 1

=> P. has 3 zeros in

=> p" has 2 zeros in (--,x 5) ,contradiction.

b) 2) c) (Z(py)n(x 2 , x 1 )) = 4 = -(Z(py')n(z 1 ,x 1 )) = 3

p)f(z 11x1)) = 2, contradiction

2 3
b) 3) iA 1 AiA 4 : we have d(t) = + 6t + t

b) 3) a) p' E(ziO): If Z(Z(p')nzIO)) = 2, lemma 1 and iA4

give a contradiction.

If Z(py)C(-Xz => Z(P,)Cz2'z I]. From

d"<O in (--,p') follows Z(py)c(w1 , z y ),contradiction.

b) 3) b) p' E[z 2,zI ) => lemma 1 and iA4 give a contradiction.

b) 3) c) p' E[x 5 , z2 ) => Z(py)C(p'z2)U(zl,0)

=> -}Z(py)n(p z3))= 3 => :(Z(py)fl(p z2) 2.

But py>Px>0 in (p,z2)fn(x 5 ,z2 ):D(p~z2 ), contradiction.

b) 3) d) p'<x5 : If #(Z(py)n(x5,z2)) =  2 - Z(py) n (x 5 ,z 2 ) * ¢,

but py>Px>0 on (x5,z2 ) , contradiction.

case 4:

x 5 < X 4 =X 3  x 2 < x1 Choose g(t) = t-x 3 if A 0 A A,
q(t) = t 2 (t-x if A AA

t-3) 2 3'
3 3q(t) = t -x3 if A A A Otherwise

we have:

1) 1A I1A 3: consider p ',p and go to n=4, case 1.

3 4
2) iA AiA 2 we have d(t) = at + t + )t

=> d,d',d", have each exactly one negative zero, and p<p'<p".

One checks that Z(py)c(x3 ,O) or Z(p")c(-,x ) are impossible.

a) p' E(z1 ,O) => Z(py)c(-"'z 4 )U(z 1 ,O).

If p' had 3 zeros in (z1 ,p'), p y would have 2 zeros in (z 1 , p ' ) ,

contradiction.



i" p had 3 zeros in (--,z 4 ), p" would have 2 zeros in (--,z 4 )

- 7p)c( .. ,w 3 ) => )A2 and lemma 1 give a contradiction.

1) p' E[x 3 ,z 1 ):

p ' has exactly one zero > p',p" has at most one zero 2! x-,.
y

p j has no zero _ x 3 , contradiction.

2 has 3 zeros in (p',O), p has 4 zeros in (x ,O ).
y

=> Z(py)c(x I O), contradiction.
) E(- ,,x 3 ) => (Z(py)Nx3z)) 2 2, for otherwise

&3 fx 31z1)

x 3 , contradiction. So we have z(Z(py)N(x 3 , Z1 ) •

but this contradicts py<px<O in (x3 ,zl).

3) iAAiA3 : we have: d(t) = at + Bt2 + yt 4 . Then d and d' hav,-

exactly one negative zero each, p<p', and d">O on (-,O] w. .

so p has 2 zeros in (x3 ,w1 ), i.e., p' has a local maximum r and

a local minimum s with p'<r<s<w I.

=> p has a local maximum 1 E(r,s), and d(1)>O.YI
io2 r E>O sufficiently small, d(-c)<O contradictic.

case 5:

x. x4 < x3 < x2 =x 1 : choose g(t) = t(t-x 3 ) if A1 A A2 ,

g(t) = t 3 (t-x3) if A 3 A A 1,

g(t) = t(t 3 -x 3 ) if Al A A4. Otne; -

;ise we have:

O AiA 3 : go to n=5, case la.

3
2) 2A AiA 4: we have d(t) = a + st + )t , so d'>O>d" on -O .2 4!

Z(Py,)c(x5,z3)U(z2', )AZ (Py)c(w3,w2)U(wIO)

> ' has at least 2 zeros in (z2 ,xl) and 1 zero in (xr,w3)

p has a local minimum in (z 2 ,x 1 ) and a local maximum in ,

- has at least 2 zeros in (- ,O), contradiction.
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3) A 1AA 4 : we have d(t) = + t2 + 7t .

=> d,d',d" have each exactly one negative zero, and p<p'<p".

We have either Z(py )c(-,x3 or Z(py )C(x 3,O):

Z(p )c(-,x implies Z(py )c(--,x 3 ) => p'>X1=> p">x contradiction.

Z (p y)C(x3,O0) implie.; Z (py )a(z2,O) => Z (p y )C(z 2,0) => Z( py )C:(z 2, w1)

=> p"I<w, => p'<w1 => Z(p )n(xI o* => x1<p<p'<w1 contradiction.

case 6:
2

x 5  - X 4  = x 3  = x 2  < x 1 : choose g(t) = (t-x5) if A AA I  A A 2

g(t) = t2 (t-x5) if A 2 A A 3 A A4

gtt) +x 5t 2 2
9(t) = ( 2+x5 t+x 5 ) (t-x5 ) 2

4_ 3_ 3 4
t -x 5t -x 5 t+Xs, if A A 3 A A,. A A4 .

Otherwise we have:

1) (iA1AA 3 ) or (iA1 ^AA4 ): consider px,Py and go to n=4, case 4.

2) iA 0AiA 3 : go to n=5, case 4,3).
2t3

3) AA 1A4 : we have d(t) = at + t2 + yt

=> d has 2, d' has 2, d" has 1 negative zero, and p<p'<q<q'<O,p'<p"<c'

From p"<w follows that p" has at least 2 zeros in (max{Plx 5 ,w1 ).1 y1 5 f 1

So p' has a local maximum r and a local minimum s with p"<r and

x5 <r<s<w I. => d' (r)>O => either r'<q'<r or r<p'<q'

As py has a local maximum 1 E(r,s) and d(l)>O, we have 1 €(p,q),

so r<l<q<q', and so finally r<p'<q' => r<p",contradiction.

case 7:

x5 < x4 = x3 = x2 = x I: choose g(t) t(t-x I ) 2 if A1 A A2 A A-.

Otherwise we have:

1) iA 2 or iA3: consider and go to n=4, case 3.I) 2 o IA: cns2er xP

2) iA1: we have d(t) + t2  + -,t3  + It4  with :, 0 w.i.o.q.•

-9-



d has at most 2 z, ros in (-,,O). If d had no zero or rne- doublo

zeru in (--,O) , ltruma 1 and iAI would give a contradiction.

=> d has exactly 2 zeros in (-,o,0), as well as d' and d", and

p<p'<q<q'<O and p'<p"<q'<q"<O.

claim 1: Z(r2'c(-,,w ]=> d" has no zero in [x1 ,O].
-3v

Proof: explicit computation gives p"<p" on [x l O ] .

claim 2: x 5 q => Z(p ,}C(-, ,q').
5y

claim 3: p!x I lq' => either p <z,, or py has 2 zeros in (q',O).

Proof: If p' has less than 2 zeros in (q',O),py has no zero
Vy

there, so Zkpy)- ,Xl]. If now Py had a zero < z

lemma 1 and 1A I would yield a contradiction.

From q_<x 5 would follow Al by lemma 1, a contradiction. So we have

x-sq => p'<xl, for otherwise xI<p'< q ' => Z(py)-(x,,P') because of

claim 2 -> Z(p"')C(x 1 ,p'), contradiction.

a) x 1 <q => x 1 <q' > Z(py)C(-X) Z(p)C( for

b) q<x I  :> Z(Pyk:-(-:,x )  :> Z(P,.(Dy 4

otherwise lemana 1 and ,A

yield a contradiction.

=> Z(p")(-,x)AX,<'<' => X <p" => Z(p")c(-,w) contradiction= py y. ...,3A] q < > X > Z p

to claim 1.

case 8:

x 5  = x 4  = x 3  2  x 1 : choose q(t) = t(t-xl) if A1 A A 2  A A3 A A .
!1

1) A2 or A 3 or -A4 : Px and py can be treated as n=4, case 5.

2) 1A1 : same as n=5, casu 7.

b) Let 11 11 denote l;"Y fixed norm inR n .

We construct- f1,f2 . ,E 1j) with correspondini zeros x 1) ,x ,

(o) 4,k)
as follows: Lot f I ano x : x. If 1or- k O, x Mu 11*

-10-



given, for every

g E S:= if EIPn-1, max f(t);= I
tE[O, 11

let 6 be maximal such that
g

a) for all \ E[0,6], fk+Xg has n zeros zg() . (.

with z 
E M

g

b) a(z(X))is strictly increasing for X E[O,, ].
g g

A
Let g E S be a function with

I (zA - ci (f )II = max 3 (z - 0 fgES g '

(k+l) (@
and define fk+1 = fk + 66g, x = z

So Px and every fk are connected by a path along which is

strictly increasing, and this path corresponds to a polygonal

(o) (1) . I( (k)).W hae t
are in a(M) with corners o (x ,'(x ,)( )

show fk = Py occurs for some k.

Suppose the contrary, i.e. o(x (k) '(y) for all k = 1,2,...

As{o(x(k))! is an increasing sequence, c":= lim ,(x (k )) exists.
k ,

x " (k) - (.,')

Let x= lim x , so " =i (x ), and f, the corresponding
k -

polynomial.

There is a g E ]Pn- 1' and a 60 such that f +. has n zeros

z ) (.z with Z (.)E \n for all L E[0,2,'] and (z(  ) ) is

strictly increasing with E[O,2 , ]. Let II '(z ' )-,(x ) II

We shall show that for every 0, thore is an index and a

E In-1 (near g) such that

1) fk+\g has n zeros z " ' ) with z )E Al fo- all [O, ],

2) 1;7 is strictly incrasinq tor [O, ],

-11]-



3) 11 c~z ) ) - o(z( )II

(This implies II a(x (k+1))ll-> a ( ()) > II II +CL-c>ll a 11

for all sufficiently small 6>0, a contradiction.)

Let C>O be arbitrarily fixed and k so large that

(f-fk) (t)i< 7 for all t E 1:= [2xn-1,11, and
kn

X (k) -x II < 7.

So in an Z-neighbourhood of every zero z of f of multiplicity

in, fk has exactly m zeros couting multiplicities.

As the functions g in part a) of the proof were constructed only

in view of the multiplicities of the zeros of fo, can be con-

structed correspondingly in view of the zeros of fk"

As an example, we consider the case n=5, case 8 (leaving the

analogous details of the other cases to the reader):

For f(t) = (t-x) we had g(t) (t-x )3t.

5 (k) i k) (k) (k)For fk(t) = 7T (t-x. )with x < x <...<x , we choose

(t) t-x Ck) (t-x(k) ) (t-x(k))t

=> max{j(g-_)(t)} = O(7), and
tEI

max{j(f,0 +6g)(t) - (fk+6-)(t)I} =  0(7).
tEI

As f +6g has 2 simple zeros * xI, fk+6
' has simple zeros near

these.

For sufficiently small 7 and large k, statement 3) above holds,

too.

-12-
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kBSTTACt (cont.)

with leading coefficient 1 and zeros in -x l ,.. .,-x is given by
nn

p (t) = tn + n -i.(x)tn-i.
i=l

I't, x,v , (R n be points with '. (x) < (y) for i = 1,...,n.
+ 1 1

' wa coniectured (see (21) that this implies (. (x") < ",i(y) for every

t('),1 and i = 1,...,n, where x is defined by x = (x- ).1 n

Lv: ar. argument involving total positivity, this conjecture may be reduced to

the problem of finding a piecewise differentiable path {((t) it ( 10,1l i in

V + with $(O) = x, t(l) = y and such that '.($(t)) is monotone increasing

with t for each i = 1,...,n (see [11). This problem looks deceivingly

uimrle but was only recently solved by Efroymson, Swartz and Wendroff usin; a

rather involved argument. We give elementary proofs for n < 5.


