

Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706

August 1980

(Received June 24, 1980)

AOO JIL JOOSOTEd by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709

Approved for public release Distribution unlimited

80 12 22 UD7

(14) MFC-T. T- 113 Than 2x/ UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR $n \leq 5 \bullet$ valto + 10 Roland Zielke 9 Technical Summary Report #2113 August 1980 TE EAN 31-11- -- 14+2 ABSTRACT For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ let the elementary symmetric functions $:= \mathbb{R}^n \to \mathbb{R}$ be defined by $\psi_j(x) = \sum_{i_1} x_{i_1} \dots x_{i_j}, j = 1, \dots, n.$ So the real polynomial p_x of 1≤i₁<...<i_j≤n degree n with leading coefficient 1 and zeros in $-x_1, \ldots, -x_n$ is given by $p_x(t) = t^n + \sum_{i=1}^n \psi_i(x) t^{n-i}$. Let x, y $\in \mathbb{R}^n_+$ be points with $\phi_i(x) \leq \phi_i(y)$ for i = 1, ..., n. It was conjectured (see [2]) that this implies $z_i^{(x^{(i)})} \leq z_i^{(y^{(i)})}$ for every $\alpha \in (0,1]$ and $i = 1, \ldots, n$, where x^{α} is defined by $\mathbf{x}^{\alpha} = (\mathbf{x}_{1}^{\alpha}, \dots, \mathbf{x}_{n}^{\alpha}).$ By an argument involving total positivity, this conjecture may be reduced to the problem of finding a piecewise differentiable path $\{\phi(t) | t \in [0,1]\}$ in \mathbb{R}^n_{\perp} with $\phi(0) = x$, $\phi(1) = y$ and such that ϕ_i ($\phi(t)$) is monotone increasing with t for each $i = 1, \dots, n$ (see [19]). This problem looks deceivingly simple but was only recently s by Efroymson, Swartz and Wendroff using a rather involved argument. We give elementary proofs for $n \leq 5$. 26D05 AMS (MOS) Subject Classification:

AMS (MOS) Subject Classification: 20005 Key Words: real polynomials, inequalities Work Unit Number 3 (Numerical Analysis and Computer Science)

Sponsored by the United States Army under Contract No. DAAG29-30-C-0041 and in part by a travel grant of the Deutsche Forschungsgemeinschaft.

SIGNIFICANCE AND EXPLANATION

Some aspects of the heat transfer in the emergency cooling of nuclear reactors lead to a nonlinear eigenvalue problem, the so-called model quelch front problem. Laquer and Wendroff suggested a procedure for computing bounds of the eigenvalue which depend - among other things - on the validity of a certain inequality for elementary symmetric functions. This inequality is of interest in itself and was recently proved by Efroymson, Swartz and Wendroff using a fairly complicated argument. We give an elementary proof for $n \leq 5$.

Accession For BTIS GRAMI WAT DISS Der mormond Jurthrichtim netriteriad V-V Aunito 1. Con Coins to de and, cr Sherry y ,<u>†:</u>,t

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR $n \le 5$

Roland Zielke

Let
$$\mathbb{R}^{n}_{\underline{+}} = \{z \in \mathbb{R}^{n} | \bigwedge_{i} z_{i} \geq 0\}$$
 and $\bigtriangleup_{\underline{+}}^{n} = \{z \in \mathbb{R}^{n}_{\underline{+}} | z_{1} \leq z_{2} \leq \ldots \leq z_{n}\}$.
Let $\sigma : \mathbb{R}^{n} \neq \mathbb{R}^{n}, \sigma : x \neq \sigma(x)$, be defined by

$$\bigcap_{i=1}^{n} (t-x_{i}) = t^{n} + \bigcap_{i=1}^{n} \sigma_{i}(x)t^{n-i} =: p_{x}(t) \text{ for } t \in \mathbb{R}.$$
So we have $\sigma_{i}(x) = \sum_{1 \leq j_{1} < \ldots < j_{i} \leq n} (-1)^{i} x_{j_{1}} \cdots x_{j_{i}}, i = 1, \ldots, n,$
and $\sigma(\mathbb{R}^{n}_{\underline{-}}) \in \mathbb{R}^{n}_{\underline{+}}.$

Let \mathbb{R}^n be partially ordered by "x < y iff $x_i \le y_i$ for i = 1, ..., nand x \neq y". Let x, y $\in \Delta_{-}^n$ be points with $\sigma(x) < \sigma(y)$ and $M = \{z \in \Delta_{-}^n | \sigma(x) \le \sigma(z) \le \sigma(y) \}$. So M is compact.

<u>Theorem A:</u> a) There is a continuous mapping ϕ : $[0,1] \rightarrow M$ with $\phi(0) = x, \phi(1) = y$ and $\sigma(\phi(u)) < \sigma(\phi(v))$ for all $u, v \in [0,1]$ with u < v.

b) ϕ is continuously differentiable except on a finite set.

By an argument involving total positivity (see [1]) one may derive from theorem A the following result:

Theorem B: If z^{α} is defined by $z^{\alpha} = (-|z_1|^{\alpha}, ..., -|z_n|^{\alpha})$ for $z \in \mathbb{A}^n_{-}$ and $u \in \mathbb{R}$, we have $\sigma(x^{\beta}) \leq \sigma(y^{\beta})$ for $\beta \in (0, 1]$.

Subsequently we shall prove theorem A for $n \leq 5$.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by a travel grant of the Deutsche Forschungsgemeinschaft.

Proof: a) It is sufficient to find a $\delta > 0$ and a $g \in \mathbb{P}_{n-1}$ with nonnegative coefficients such that $\textbf{p}_{_{\mathbf{v}}}$ + λg has n nonpositive real zeros $x_1^{(\lambda)}, \ldots, x_n^{(\lambda)}$ for all $\lambda \in [0, \delta]$ and $\sigma(x^{(\lambda)})$ is strictly increasing for $\lambda \in [0, \delta]$. For $x_n < x_{n-1} < \ldots < x_1$ the claim is trivial. Also trivial is the following Lemma 1: If y<x and $y_1<0$, then $\sigma_i(x) < \sigma_i(y)$ for all i. We denote d:= $p_v - p_x$. We consider the cases n = 2,3,4,5 separately: n = 2: $\mathbf{x}_2 = \mathbf{x}_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$. If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha$ for some $\alpha > 0$, and p_v has no zeros, a contradiction. n = 3:<u>case 1</u>: $x_3 < x_2 = x_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$. Otherwise we have $d(t) = \alpha + \beta t^2$ for some $\alpha, \beta \in \mathbb{R}_+$, and lemma 1 gives a contradiction. <u>case 2</u>: $x_3 = x_2 < x_1$: choose g(t) = 1, if $\sigma_0(x) < \sigma_0(y)$; choose $g(t) = t^2$ if $\sigma_2(x) < \sigma_2(y)$. Otherwise we have $d(t) = \alpha t$ for some $\alpha \in \mathbb{R}_+$, implying $x_i < y_i$ for i = 1, 2, 3, a contradiction. <u>case 3</u>: $x_1 = x_2 = x_3$: choose $g(t) = t(t-x_1)$, if $\sigma_i(x) < \sigma_i(y)$ for i = 1, 2. Otherwise, if $\sigma_1(x) = \sigma_1(y)$, go to <u>n=3</u>, case 1. If $\sigma_2(x) = \sigma_2(y)$, consider p'_x, p'_y and go to <u>n=2</u>. n = 4:<u>case 1</u>: $x_4 < x_3 = x_2 < x_1$: choose g(t) = 1, if $\sigma_0(x) < \sigma_0(y)$; choose g(t) = t^2 , if $\sigma_2(x) < \sigma_2(y)$.

-2-

Otherwise we have $d(t) = \alpha t + \beta t^3$ for some $\alpha, \beta \in \mathbb{R}_+$. => d'(t) = α + 3 β t² => $p_y(t)$ > $p_x(t)$ and $p_y(t) > p_x(t)$ for $t \in (-\infty, 0)$. So all zeros of p'_y are smaller than all zeros of p'_x , yielding $\sigma_2(\mathbf{x}) < \sigma_2(\mathbf{y})$, a contradiction. <u>case 2</u>: a) $x_4 < x_3 < x_2 = x_1$ or b) $x_4 = x_3 < x_2 < x_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$; choose $g(t) = t^3$, if $\sigma_3(x) < \sigma_3(y)$; otherwise we have $d(t) = \alpha + \beta t^2$, so d > 0, d' < 0, d'' > 0 on $(-\infty, 0)$ and d'(0) = 0. For a) this implies $Z(p'_v) \subset (-\infty, x_3)$, but also $Z(p'_v) \cap (x_1, 0) \neq \phi$, a contradiction. For b) this implies that either all zeros of $p_{\mathbf{V}}^{*}$ are larger than all zeros of $\mathtt{p}_{\mathbf{X}}^{*}$, or that all zeros of $\mathtt{p}_{\mathbf{Y}}^{*}$ are larger than all zeros of p_x^* , in both cases a contradiction. <u>case 3:</u> $x_4 < x_3 = x_2 = x_1$: choose $g(t) = t(t-x_1)$, if $\sigma_1(\mathbf{x}) < \sigma_1(\mathbf{y}) \text{ and } \sigma_2(\mathbf{x}) < \sigma_2(\mathbf{y}).$ Otherwise, if $\sigma_2(x) = \sigma_2(y)$, we have $d(t) = \alpha + \beta t + \gamma t^3$, so d'(t) = β + $3\gamma t^2$. Now go to <u>n=3</u>, case 1. If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha + \beta t^2 + \gamma t^3$. So d has only one zero z in $(-\infty,0)$, d' has only one zero z' in $(-\infty,0)$, d'(0) = 0, $z \leq z' \leq 0$. If p_1 has no zero in $(x_1, 0)$, the same holds for p_v^{\prime} . But then all zeros of $\textbf{p}_V^{\, t}$ are smaller than all zeros of $\textbf{p}_X^{\, t},$ and lemma 1 gives a contradiction.

If p_y has a zero in $(x_1, 0)$ we have $z \in (x_1, 0)$ and thus $p_x \cdot p_y$ and $p'_x \cdot p'_y$ on $(-\infty, z)$. But then again the zeros of p'_y are smaller than those of p'_y . <u>case 4:</u> $x_4 = x_3 = x_2 + x_1$: choose $g(t) = t - x_2$, if $\sigma_0(x) < \sigma_0(y)$ and $\sigma_1(\mathbf{x}) < \sigma_1(\mathbf{y})$; choose $g(t) = t^2(t-\mathbf{x}_2)$, if $\sigma_2(\mathbf{x}) < \sigma_2(\mathbf{y})$ and $\sigma_{3}(\mathbf{x}) < \sigma_{3}(\mathbf{y})$. Otherwise: a) If $\sigma_0(x) = \sigma_0(y)$ and $\sigma_2(x) = \sigma_2(y)$, go to n = 4, case 1. b) If $\sigma_1(x) = \sigma_1(y)$ and $\sigma_3(x) = \sigma_3(y)$, go to n = 4, case 2b. c) If $z_{\alpha}(x) = z_{\alpha}(y)$ and $z_{\beta}(x) = z_{\beta}(y)$, we have $d(t) = \alpha t + \beta t^{2}$ and $x_{1,2} > 0$ w.l.o.g.. So $p_1^{"}$ has its zeros in (x_2, x_1) , and d has its negative zero in $(x_1, 0)$. But then $x_i \le y_i$ for all i, a contratiction. d) If $\gamma_1(x) = \sigma_1(y)$ and $\sigma_2(x) = \sigma_2(y)$, we have $d(t) = \alpha + \beta t^3$ and $\alpha,\beta = 0$ w.l.o.g. If d had its zero z in (-∞,x₁], we would have $y_i = x_i$ for all i in contradiction to lemma 1. => $z \in (x_1, 0)$. Let z_1 be the local minimum of p_x . We have $p'_y > 0$ in $[z_1,0]$, so $Z(p_v') \subset (-\infty, x_2)$, for otherwise p_v would have two local extrema in (x_2,z) with no zero in between. But this again yields a contradiction to lemma 1. <u>case 5</u>: $x_4 = x_3 = x_2 = x_1$: choose $g(t) = t(t-x_1)^2$, if $\sigma_i(x) < \sigma_i(y)$ for i = 1, 2, 3. Otherwise, if $\sigma_i(x) = \sigma_i(y)$ for i = 2 or i = 3, consider p'_x and p'_y , i.e., go to <u>n=3, case 3</u>. If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha + \beta t^2 + \gamma t^3$ with $\beta, \gamma > 0$ w.l.o.g. Go to n=4, case 3, corresponding case. <u>n = 5</u>: We use the following notations: The zeros of p'_x are z_4, z_3, z_2, z_1 with $z_4 \le z_3 \le z_2 \le z_1$. The zeros of $p_x^{"}$ are w_3, w_2, w_1 , with $w_3 \le w_2 \le w_1$. The negative zeros of d are p,q,r,... with p≤q≤r≤... The negative zeros of d'are p',q',r' with p'sq'sr' The negative zeros of d" are p", q" with p" $\leq q$ ". The statement " $\cdot_{i}(x) \cdot \cdot_{i}(y)$ " is called A_i, i = 0,1,...,4. ., , , are nonnegative real numbers.

- 4 -

case 1: a) $x_5 < x_4 < x_3 < x_2 = x_1$ b) $x_5 < x_4 = x_3 < x_2 < x_1$ c) $x_5 < x_4 = x_3 < x_2 = x_1$ Choose g(t) = t if A_1 , choose $g(t) = t^3$ if A_3 . If $1A_1 \wedge 1A_3$, we have $d(t) = \alpha + \beta t^2 + \gamma t^4 => d'(0) = 0 \wedge d' < 0 < d''$ on (-∞,0). a) We have $Z(p_y) \subset (-\infty, x_5) \cup (x_4, x_3)$ and $Z(p_y') \cap (x_1, 0) \neq \phi \Rightarrow Z(p_y) \cap (x_1, 0) \neq c$, contradiction. c) Follows from a). b) We have $Z(p_y) \subset (-\infty, x_5) \cup (x_2, x_1)$ and $Z(p_y) \subset (-\infty, z_4) \cup (x_3, z_2) \cup (z_1, 0)$. If $Z(p_y^{"}) \subseteq (-\infty, w_3]$, lemma 1 gives a contradiction to A_3 . $= : \#(\mathbb{Z}(p_{v}^{"}) \cap (-\infty, w_{3}^{"})) = 1 \wedge \#(\mathbb{Z}(p_{v}^{"}) \cap [w_{2}^{"}, w_{1}^{"}]) = 2$ $=> p_v'$ has 2 zeros in (z_3, z_1) $=> p_v'$ has 2 zeros in (z_3, z_2) p_y has 1 zeros in $(z_3, z_2) \subset (x_3, x_2)$, contradiction. case 2: a) $x_5 < x_4 < x_3 = x_2 < x_1$ b) $x_5 = x_4 < x_3 < x_2 < x_1$ c) $x_5 = x_4 < x_3 = x_2 < x_1$ Choose g(t) = 1 if A_0 , $g(t) = t^2 \text{ if } A_2,$ $g(t) = t^4 \text{ if } A_4.$ If ${}_{1}A_{0}^{\Lambda_{1}}A_{2}^{\Lambda_{1}}A_{4}$, we have $d(t) = \alpha t + \beta t^{3} => d'>0>d'' \text{ on } (-\infty, 0)$. a) p_v has one zero in $(x_1, 0)$ and 4 zeros in $(x_5, x_4) \wedge Z(p_y') \subset (z_4, z_3)$ => $Z(p_{y}^{"}) \subset (z_{4}, z_{3})$. But $p_{y}^{"}(0) = p_{x}^{"}(0) ≥ 0 \land p_{y}^{"}(w_{1}) < p_{x}^{"}(w_{1}) = 0 \Rightarrow$ $Z(p_v^{"}) \cap (w_1 0) \neq \phi$, contradiction. b) p_y has one zero in $(x_1, 0)$ and 4 zeros in $(x_3, x_2) \wedge Z(p_y') \subset (z_2, z_1)$ $=> Z(p_v') \subset (w_1, z_1)$, contradiction.

-6-

÷

b) 2) b)
$$\exists (z(p_y) \cap (x_2, x_1) = 2 \Rightarrow \forall (z(p_y') \cap (z_1, 0) = 1)$$

 $\Rightarrow p_1' has 3 zeros in (-*, x_5) + contradiction.$
b) 2) c) $\exists (z(p_y) \cap (x_2, x_1)) = 4 = \exists (z(p_y') \cap (z_1, x_1)) = 3$
 $\Rightarrow \exists (z(p_y') \cap (z_1, x_1)) = 2$, contradiction
b) 3) $\imath A_1 \land A_4$: we have $d(t) = a + \beta t^2 + \imath t^3$.
b) 3) a) $p' \in (z_1, 0)$: If $\exists (z(p_y') \cap (z_1, 0)) = 2$, lemma t and $\imath A_4$
give a contradiction.
If $2(p_y') \subset (-*, z_1) \Rightarrow 2(p_y') \subset (z_2, z_1]$. From
 $d'' \cdot O$ in $(-*, p')$ follows $2(p_y') \subset (w_1, z_2)$, contradiction.
b) 3) b) $p' \in [z_2, z_1] \Rightarrow lemma 1 and $\imath A_4$ give a contradiction.
b) 3) c) $p' \in [z_2, z_1] \Rightarrow lemma 1 and $\imath A_4$ give a contradiction.
b) 3) c) $p' \in [z_2, z_1] \Rightarrow lemma 1 and $\imath A_4$ give a contradiction.
b) 3) d) $p' < (z_1, z_2) = 2(p_y') \subset (p_1 z_2) \cup (z_1, 0)$
 $\Rightarrow \exists (Z(p_y') \cap (p_1 z_2)) = 3 \Rightarrow \exists (Z(p_y) \cap (p_1 z_2)) = 2$.
But $p_y \triangleright p_x \succ 0$ in $(p, z_2) \cap (x_5, z_2) \supset (p_1 z_2)$, contradiction.
b) 3) d) $p' < x_5$: If $\exists (Z(p_y') \cap (x_5, z_2)) = 2 \Rightarrow Z(p_y) \cap (x_5, z_2) + \diamond$,
but $p_y \triangleright p_x \succ 0$ on (x_5, z_2) , contradiction.
 $case 4:$
 $x_5 < x_4 = x_3 = x_2 < x_1$: Choose $g(t) = t - x_3$ if $A_0 \land A_1$,
 $g(t) = t^2(t - x_3)$ if $A_2 \land A_3$,
 $g(t) = t^3 - x_3^3$ if $A_0 \land A_3$. Otherwise
we have:
1) $\imath A_1 \land A_3$: consider p'_x, p'_y and go to $\underline{n=4}$, case 1.
2) $\imath A_0 \land A_2$: we have $d(t) = \imath t + \imath t^3 + \imath t^4$.
 $\Rightarrow d, d', d''$, have each exactly one negative zero, and $p < p' < p''$.
One checks that $Z(p_y'') \subset (-x, z_4) \cup (z_1, 0)$.
If p'_y had 3 zeros in (z_1, p') , p''_y would have 2 zeros in (z_1, p') ,
contradiction.$$$

-7-

$$\left\{ p_{y}^{e} had 3 \text{ zeros in } (-*, z_{4}), p_{y}^{e} \text{ would have 2 zeros in } (-*, z_{4}) \right\} \\ \left\{ \lambda_{(p_{y}^{e})} (c(-*, w_{3}) => \lambda_{2} \text{ and lemma 1 give a contradiction.} \right\}$$

$$p' \in (x_{3}, z_{1}):$$

$$if p_{y}^{e} has exactly one zero > p', p_{y}^{e} has at most one zero > x_{3}.$$

$$io p_{z}^{e} has no zero > x_{3}, \text{ contradiction.}$$

$$i' p_{y}^{e} has 3 \text{ zeros in } (p', 0), p_{y} has 4 \text{ zeros in } (x_{1}, 0).$$

$$=> Z(p_{y})c(x_{1}, 0), \text{ contradiction.}$$

$$i' p_{z}^{e} (-*, x_{3}) => \Re(Z(p_{y}^{e}) f(x_{3}, z_{1})) \geq 2, \text{ for otherwise}$$

$$Z(p_{y}^{e})c(-*, x_{3}), \text{ contradiction. So we have $\Re(Z(p_{y}) f(x_{3}, z_{1})) \geq 1,$

$$\text{ but this contradicts } p_{y} q_{x} < 0 \text{ in } (x_{3}, z_{1}).$$

$$3) \lambda_{0} \wedge \lambda_{3}: \text{ we have: } d(t) = \alpha t + \beta t^{2} + \gamma t^{4}. \text{ Then d and d' have }$$

$$exactly one negative zero each, p0 on (-*, 0] w.l.e.g..$$

$$so p_{y}^{e} has 2 zeros in (x_{3}, w_{1}), i.e., p_{y}^{e} has a local maximum r and a local minimum s with p'

$$=> p_{y} has a local maximum 1 \in (r, s), and d(1)>0.$$

$$for <>0 sufficiently small, d(-e) < 0 \qquad \text{ contradiction.}$$

$$g(t) = t(t^{3}-x_{3}) \text{ if } A_{1} \wedge A_{2},$$

$$g(t) = t(t^{3}-x_{3}) \text{ if } A_{1} \wedge A_{4}. \text{ Otherwise we have: }$$

$$i) \lambda_{1} \wedge \lambda_{1} \wedge \lambda_{4}: \text{ we have } d(t) = \alpha + \beta t + \gamma t^{3}, \text{ so } d'>0 d' \text{ on } (-*, 0).$$

$$is we have:$$

$$i) \lambda_{1} \wedge \lambda_{1} \wedge \lambda_{4}: \text{ we have } d(t) = \alpha + \beta t + \gamma t^{3}, \text{ so } d'>0 d' \text{ on } (-*, 0).$$

$$is Z(p_{y}^{e}) c(x_{5}, z_{3}) U(z_{2}, x_{1}) \wedge Z(p_{y}^{e}) c(w_{3}, w_{2}) U(w_{1}, 0)$$

$$> p_{y} \text{ has at least 2 zeros in } (z_{2}, x_{1}) \text{ and } 1 \text{ zero in } (x_{5}, w_{3})$$

$$> p_{y} \text{ has a local minimum in } (z_{2}, x_{1}) \text{ and a local maximum in } (x_{0}, w_{2}) = P_{y} \text{ has a local minimum in } (x_{0}, x_{1}) \text{ and a local maximum in } (x_{0}, w_{1}) = P_{y} \text{ has a local minimum in } (x_{0}, x_{1}) \text{ and a local maximum in } (x_{0}, w_{1}) = P_{y} \text{ has a local minimum in } (x_{0}, x_{1}) \text{ and a local maximum in } (x_{0$$$$$$

> 4 has at least 2 zeros in $(-\infty,0)$, contradiction.

3) $A_1 \wedge A_4$: we have $d(t) = \alpha + \beta t^2 + \gamma t^3$. => d,d',d" have each exactly one negative zero, and p<p'<p". We have either $Z(p_y) \subset (-\infty, x_3]$ or $Z(p_y) \subset (x_3, 0)$: $Z(p_y) \subset (-\infty, x_3)$ implies $Z(p_y'') \subset (-\infty, x_3) \Rightarrow p' > x_1 \Rightarrow p' > x_1$ contradiction. $Z(p_y) \subset (x_3, 0)$ implies $Z(p_y) \subset (z_2, 0) \implies Z(p_y') \subset (z_2, 0) \implies Z(p_y') \subset (z_2, w_1)$ => $p''<w_1$, => $p''<w_1$ => $Z(p'_y) \cap (x_1, 0] \neq \phi \Rightarrow x_1 .$ case 6: $x_5 = x_4 = x_3 = x_2 < x_1$: choose g(t) = $(t-x_5)^2$ if $A_0 \land A_1 \land A_2$ $g(t) = t^{2}(t-x_{5})^{2} \text{ if } A_{2} \wedge A_{3} \wedge A_{4}$ $g(t) = (t^2 + x_5 t + x_5^2) (t - x_5)^2 =$ = $t^4 - x_5 t^3 - x_5^3 t + x_5^4$, if $A_0 \wedge A_1 \wedge A_3 \wedge A_4$. Otherwise we have: 1) $(1A_1 \wedge 1A_3)$ or $(1A_1 \wedge 1A_4)$: consider p'_x, p'_y and go to <u>n=4</u>, case 4. 2) $A_0 A_1 A_3$: go to <u>n=5</u>, case 4,3). 3) $A_0 A_1 A_4$: we have $d(t) = \alpha t + \beta t^2 + \gamma t^3$. => d has 2, d' has 2, d" has 1 negative zero, and p < p' < q < q' < 0, p' < p'' < q'. From $p'' < w_1$ follows that p''_{v_1} has at least 2 zeros in $(max(p''_1x_5), w_1)$. So $p_{\mathbf{v}}^{*}$ has a local maximum r and a local minimum s with $p^{\prime\prime}\!<\!r$ and $x_5 < r < s < w_1$. => d'(r) > 0 => either r'<q'<r or r<p'<q'. As p_v has a local maximum $l \in (r,s)$ and d(1)>0, we have $l \in (p,q)$, so r<l<q<q', and so finally r<p'<q' => r<p",contradiction. case 7: $x_5 < x_4 = x_3 = x_2 = x_1$: choose g(t) = t(t-x_1)² if A₁ \land A₂ \land A₃. Otherwise we have: 1) ${}^{1}A_{2}$ or ${}^{1}A_{3}$: consider p'_{x}, p'_{y} and go to <u>n=4</u>, case 3. 2) ${}_{1}A_{1}$: we have $d(t) = a + \beta t^{2} + \beta t^{3} + \delta t^{4}$ with $r, \beta = 0$ w.l.o.g..

-9-

=> d has at most 2 zeros in $(-\infty, 0)$. If d had no zero or one double zero in $(-\infty, 0)$, lemma 1 and γA_1 would give a contradiction. => d has exactly 2 zeros in $(-\infty, 0)$, as well as d' and d", and p < p' < q < q' < 0 and p' < p'' < q' < q'' < 0.

- <u>claim 1</u>: $Z(p_V') \subset (-\infty, w_3] \Rightarrow d''$ has no zero in $[x_1, 0]$.
- <u>Proof</u>: explicit computation gives $p_x^* < p_y^*$ on $[x_1, 0]$.
- $\underline{\text{claim 2:}} x_5 \le q \implies Z(p_V') \subset (-\infty, q').$
- <u>claim 3</u>: $p' \le x_1 \le q' =>$ either $p' < z_4$, or p'_v has 2 zeros in (q', 0).
- <u>Proof</u>: If p'_y has less than 2 zeros in $(q', 0), p'_y$ has no zero there, so $Z(p'_y) \subset (-\infty, x_1]$. If now p'_y had a zero $\leq z_4$, lemma 1 and A_1 would yield a contradiction.

From $q \le x_5$ would follow A_1 by lemma 1, a contradiction. So we have $x_5 \le q \Rightarrow p' < x_1$, for otherwise $x_1 < p' < q' \Rightarrow Z(p_y') \subset (x_1, p')$ because of claim 2 => $Z(p_y') \subset (x_1, p')$, contradiction.

a)
$$x_1 < q \Rightarrow x_1 < q' \Rightarrow Z(p_y) \subset (-\infty, x_1)$$

b) $q \le x_1 \Rightarrow Z(p_y) \subset (-\infty, x_1) \Rightarrow Z(p_y) \subset (-\infty, x_1)$ $\Rightarrow Z(p_y) \subset (z_4, x_1)$, for

otherwise lemma 1 and ${}_{1}A_{1}$

yield a contradiction.

=> $Z(p_y') \subset (-\infty, x_1) \land x_1 < q' < q'' \Rightarrow x_1 < p'' \Rightarrow Z(p_y') \subset (-\infty, w_3)$ contradiction to claim 1.

case 8:

 $x_{5} = x_{4} = x_{3} = x_{2} = x_{1}: \text{ choose } g(t) = t(t-x_{1})^{3} \text{ if } A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}.$ 1) ${}_{1}A_{2} \text{ or } {}_{1}A_{3} \text{ or } A_{4}: p'_{x} \text{ and } p'_{y} \text{ can be treated as } \underline{n=4, \text{ case } 5}.$ 2) ${}_{1}A_{1}: \text{ same as } \underline{n=5, \text{ case } 7}.$

b) Let [[]] denote any fixed norm in \mathbb{R}^{n} . We construct $f_{1}, f_{2}, \ldots, \in \mathbb{P}_{n}$ with corresponding zeros $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \in \mathbb{N}$ as follows: Let $f_{0} = p_{\mathbf{x}}$ and $\mathbf{x}^{(0)} = \mathbf{x}$. If for $k \ge 0$, $\mathbf{x}^{(k)}$ and f_{k} are

-10-

given, for every

$$g \in S:= \{f \in \mathbb{P}_{n-1} | \max | f(t) \} = 1\},\ t \in [0,1]$$

let δ_{α} be maximal such that

a) for all $\lambda \in [0, \delta_g]$, $f_k + \lambda g$ has n zeros $z_{g_1}^{(\lambda)}$, $\dots, z_{g_n}^{(\lambda)}$ with $z_g^{(\lambda)} \in M$ b) $\sigma(z_g^{(\lambda)})$ is strictly increasing for $\lambda \in [0, \delta_g]$. Let $\hat{g} \in S$ be a function with

and define
$$f_{k+1} = f_k + \delta_{\hat{q}} \hat{g}$$
, $x^{(k+1)} = z_{\hat{q}}^{(\delta_{\hat{q}})} - \sigma(f_k) \parallel$,

So p_x and every f_k are connected by a path along which γ is strictly increasing, and this path corresponds to a polygonal are in $\sigma(M)$ with corners $\sigma(x^{(0)}, \sigma(x^{(1)}, \ldots, \sigma(x^{(k)}))$. We have to show $f_k = p_y$ occurs for some k. Suppose the contrary, i.e. $\sigma(x^{(k)}) \leq \sigma(y)$ for all $k = 1, 2, \ldots$. As $\{\sigma(x^{(k)})\}$ is an increasing sequence, $\sigma^{(n)} := \lim_{k \to \infty} \sigma(x^{(k)})$ exists. Let $x^{(n)} := \lim_{k \to \infty} x^{(k)}$, so $\sigma^{(n)} = \sigma(x^{(n)})$, and f_{∞} the corresponding polynomial.

3) || $c(z^{(\delta)}) - \sigma(\tilde{z}^{(\delta)}) || < \varepsilon$. (This implies $|| \sigma(x^{(k+1)}) || \ge || \sigma(\tilde{z}^{(\delta)}) || \ge || \sigma^{\infty} || + \alpha - \varepsilon > || \sigma^{\infty} ||$ for all sufficiently small $\varepsilon > 0$, a contradiction.) Let $\tilde{\varepsilon} > 0$ be arbitrarily fixed and k so large that $|(f_{\omega} - f_{k})(t)| < \tilde{\varepsilon}$ for all $t \in I := [2x_{n}^{\infty} - 1, 1]$, and $|| x^{(k)} - x^{\infty} || < \tilde{\varepsilon}$.

So in an $\tilde{\epsilon}$ -neighbourhood of every zero z of f^{∞} of multiplicity m, f_k has exactly m zeros couting multiplicities. As the functions g in part a) of the proof were constructed only in view of the multiplicities of the zeros of f^{∞} , \tilde{g} can be constructed correspondingly in view of the zeros of f_k . As an example, we consider the case <u>n=5</u>, case 8 (leaving the analogous details of the other cases to the reader): For $f_{\infty}(t) = (t-x_1^{\infty})^5$, we had $g(t) = (t-x_1)^3 t$. For $f_k(t) = \int_{\pi}^{5} (t-x_1^{(k)})$ with $x_5^{(k)} \le x_4^{(k)} \le \ldots \le x_1^{(k)}$, we choose $\tilde{g}(t) = (t-x_2^{(k)})(t-x_4^{(k)})t$ $=> \max\{|(g-\tilde{g})(t)|\} = O(\tilde{\epsilon})$, and $t\in I$ $\max\{|(f_{\infty}+\delta g)(t) - (f_k+\delta \tilde{g})(t)|\} = O(\tilde{\epsilon})$. As $f_{\infty}+\delta g$ has 2 simple zeros $*x_1$, $f_k+\delta \tilde{g}$ has simple zeros near these.

For sufficiently small $\tilde{\epsilon}$ and large k, statement 3) above holds, too.

-12-

References

- [1] Efroymson, G.A., Swartz, B. and B. wendroff: An inequality for symmetric functions. Submitted to "Advances in Mathematics".
- [2] Laquer, H.T. and B. Wendroff: Bounds for the model quelch front; to appear.

REPORT DOCUMENTATION PACE	READ INSTRUCTIONS
REFURI DUCUMENTATION FAGE	BEFORE COMPLETING FORM
	MAL.
2113 VT D-A073	577
TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
	Summary Report - no specifi
ELEMENTARY PROOFS OF AN INEQUALITY	reporting period
FOR SYMMETRIC FUNCTIONS FOR $n \leq 5$	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(4)
Roland Zielke	DAAG29-80-C-0041 1
PERFORMING ORGANIZATION NAME AND ADDRESS	AREA & WORK UNIT NUMBERS
Althematics Research Center, University of	Work Unit Number 3 -
10 Walnut Street Wisconsin	Numerical Analysis and
ladison, Wisconsin 53706	Computer Science
CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
, 5. Army Research Onnce	August 1980
. O. Box 12211	13. NUMBER OF PAGES
esearch Triangle Park, North Carolina 27709	13
MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADING
pproved for public release; distribution unlimited.	
pproved for public release; distribution unlimited.	sen Reportj
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed on Block 20, if different fro SUPPLEMENTARY NOTES	san Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed onlored in Block 20, if different fro	sen Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed on Block 20, if different in SUPPLEMENTARY NOTES	sm Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different in SUPPLEMENTARY NOTES	sen Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed on Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary and identify by block number) real polynomials, inequalities	san Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed enfored in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary and identify by block number, real polynomials, inequalities	xm Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block number, real polynomials, inequalities ABSTHACT (Continue on reverse eide if necessary and identify by block number)	ser Report)
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number, real polynomials, inequalities ABSTHACT (Continue on reverse elde if necessary and identify by block number, For $x = (x_1,, x_n) \in \mathbb{R}^n$ let the elementary symm	$\frac{1}{2} = \mathbf{L}^{n} \cdot \mathbf{L}$
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block number, real polynomials, inequalities ABSTHACT (Continue on reverse eide if necessary and identify by block number, For $x = (x_1,, x_n) \in \mathbb{R}^n$ let the elementary symm be defined by	$\frac{1}{2} = \mathbf{F}^{\mathbf{n}} \cdot \mathbf{F}$
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different from SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number, real polynomials, inequalities ABSTHACT (Continue on reverse elde if necessary and identify by block number, For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ let the elementary symm be defined by $\psi_j(x) = \int_{-\infty}^{-\infty} x_1 \dots x_i$, $j = 1, \dots, n$. So the real p	$\frac{1}{2} = \mathbf{E}^{\mathbf{E}} + \mathbf{E}$
pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number, real polynomials, inequalities ABSTHACT (Continue on reverse elde if necessary and identify by block number) For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ let the elementary symm be defined by $\psi_j(x) = \int x_1 \dots x_i$, $j = 1, \dots, n$. So the real j $1 \le i_1 \le j$	$\frac{1}{2} = \mathbf{E}^{\mathbf{E}} \cdot \mathbf{E}$

_

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

| | | ABSTRACT (cont.)

with leading coefficient 1 and zeros in $-x_1, \ldots, -x_n$ is given by $p_x(t) = t^n + \sum_{i=1}^n \psi_i(x)t^{n-i}$. Let $x, y \in \mathbb{R}^n_+$ be points with $\psi_i(x) \leq \psi_i(y)$ for $i = 1, \ldots, n$. The was conjectured (see [2]) that this implies $\psi_i(x^{\alpha}) \leq \psi_i(y^{\alpha})$ for every $i \in (0,1]$ and $i = 1, \ldots, n$, where x^{α} is defined by $x^{\alpha} = (x_1^{\alpha}, \ldots, x_n^{\alpha})$. By an argument involving total positivity, this conjecture may be reduced to the problem of finding a piecewise differentiable path $\{\phi(t) \mid t \in \{0,1\}\}$ in \mathbb{P}^n_+ with $\phi(0) = x, \phi(1) = y$ and such that $\psi_i(\phi(t))$ is monotone increasing with t for each $i = 1, \ldots, n$ (see [1]). This problem looks deceivingly simple but was only recently solved by Efroymson, Swartz and Wendroff using a rather involved argument. We give elementary proofs for $n \leq 5$.