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y. ABSTRACT

A design optimality criterion I - optimalit s applied to the

problem of designing two-level multifactor experiments to detect the presence

of interactions m.eg the controlled variable-;. Rule. are given for

constructing tr(L) - optimal foldover designs and tr(k- optimal fractional

factorial designs. Some results are given 3n the power of these designs for

testing the hypothesis that there are no two-factor interactions.

Modifications of the tr( ) - optimal designs to satisfy other experimental

objectives (estimability of effects, detection of the presence of other A
nonlinear effects, estimation of the error variance) are suggested. Examfles

are given to demonstrate the application of these designs to (i) screening for

interactions, and (ii) evaluating the first-order assumption in the

sensitivity analysis of a computer code.j
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Key Words: Design; experiment design; foldover desiqn; fractional ,actorial

design; interaction; main effects design; minimum aberration; 'R
optimal design; orthogonal array; Resolution TV design; screening
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SIGNIFICANCE AND EXPLANATION

Experiment designs (plans) in which each controlled variable (factor) can

take one of two specified levels are frequently used in the initial stages of

an experimental investigation, when the objective is to determine which
!- o factors are important and how they interact. This paper is concerned with the

design of such two-level experiments to detect the presence of interactions.

It is shown here how this can be done with very few experimental trials

(runs), even when the number of factors under investigation is large.

Our approach is to define an "optimality" criterion which represents the

ability of a design to detect the presence of inte-actions. This is based on

the trace of a matrix that depends on the Oesign. We then determine rules for

constructing designs that ma,.,ize this quantity, over two broad classes of

two-level experimental designs. The main drawback, from a practical point of

view, is that the focus on a single criterion may result in the neglect of

other design objectives. We therefore present some modifications which

imprcve the designs with respect to other criteria.

The designs presented here have application to any experimental situation

in which there is some doubt as to whether the controlled variables act

independently on the response or whether they interact. A particular

application, which is demonstrated in an example in the paper, is to the

sensitivity analysis of computer codes which are used to model physical or

economic systems.
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TWO-LEVEL MULTIF'ACTOR EXPERIMENT DESIGNS FOP DETECTING

THE PRESENCE OF INTERACTIONS

Max 0. Morris and Tobv J. Mitchell

1. Introduction

1.1. The Problem

We consider here the problem of designing two-level experiments to detect the prese-'ce

of interactions among k experimentally controlled variables (factors) X1 X2 . X-

with resnect to their effect on the expectation n of a randomly distributed response

variable y.~. There are no interactions over a specified region of interest X if ar.

only if n~ can be expressed as

n = n(X) =f 1 (X ) + f2 (X2 )4-...+f (X)

for suitably chosen functions fi(Xi) when X = (X11X2 ...Xk) C x.f

We shall restrict attention to just two levels of each factor: Xi and X~j cn0Sel I

so that all 2kcombinations of levels are in X, and we shall define t',e "codeed'

factors xllx 2,...,xk so that xi - when Xi X. and x = +1 whjen X X,' e

shall denote the 2kcorners of the cube xi tl± by K. In terms of the coded lactcrs,

(1.1) becomes

nl(x) 8+ -5x

Department of Statistics, Mississippi State 1huiversity.g

Mathematics Research Center, University of wisconsin-Vaiison. rnr-enti-

under assignment from the Computer Sciences Division, :1nion'. car"'xde
Corporation, Nuclear Division, Oa% Ridge, Tennessee.

Sponsored by the United States Army under Contract % "-Z)q.a-
DAAG2q-8O-C-0O4 1 and the Apnlied 'Mathemat ica SC xeTIC-C 'Ser1-

Office of Rneray Research, U.S. Department of !Fner'4v ':n~lr v'o*,, -., -

enq-26 with the Union Carbide Coroation.

..t......- o



f or x - X , x c K, whor I11 (fX) - f (X ))/2, j- 1,2,...,n, and
I k1i

1( f Cf(X + + (

A nimple dopnrtur, from (1.1) allow. pAirwise interactions, i.e., n can bo expressed

:as

k-1 k

n(x) f i , (X ,X ) (1.3)
i-i j-i+1j

In terms of the coded factors, (1.31 cnn bo written

k k-1 k

n(x) + o 1 1 a x x (1.4)i-I i-1 J-i+1 xx

for x c K . This is a conventional model for the analysis of 2-level factorial

experiments (possibly incomplete) in which interactions among three or more factors are

assumed to he zero. we shall use it here in a somewhat different way, namely, as a device

for the planning of experiments to indicate whether or not the factors affect the response

independently, i.e., as in (1.1). Our approach will be to assume that (1.4) holds on K,

then to use a design optImality criterion to construct designs which will be good for

detecting the presence of non-zero a '5. Even if higher order interactions are present,
ij

we would expect this approach to work, since (1.4) will be a better approximation to the

true response over K than will (1.2). We should also emphasize that we do not expect nor

require (1.4) to hold outside of K. (If n is a quadratic polynomial over some

continuous ro.gion of interest which contains K, for example, (1.4) holds on K but not

everywhere in the region.)

In this paper, we shall refer to the j's in (1.4) as "interactions" and the

Pi 's (i 9' () as "main effects". ,xcept for a factor of 2, these are the name As thp main

nffects and Int,rnntions conv.nt.nnally lefinnd for a two-level factorial V.xpnrIment (Mox

and Flnt.ir (1161)).



00ooi doiqni e,.1., th. MIhNltltton V fractional factorials) exist for estimstinq the

mAni esrrecta inl int.rnctona in the model (1.4). However, the number of runs required is

at IVAet (k" + k + 2)/2, and may bf, cnnailerably qreater than that if a reqular

fractional factorial di.siqn in ued.

In thiM paper, we conider A lemn ambitious experimental goal, namely to determine

wh.ther or not siqrnificant interactions are present. Such information, obtained early in

nn invctlnatlnn, Can he usoful in planning subsequent experiments. initially, we shall

iqnort? other conaideratinna, ouch as estimability of the main effects and interactions and

2
estimanatility of the error variance c * These will he discussed in Section 5.

1.2. AiDesign CrJtr.nn: ti(L) -optimality.

In matrix notation, our moel "lor a vector X of n observations, based on (1.4),

isz

" x1i 1 2 2 + £ ' E (C ) - 0, V (C) - 102.

whore Z, is the (k + l)-vector (B0,3 ,...,3k) and Z2 is the k2 -vector

(a illI12,...,(3 l,k)' of interactions, with k2  - k(k-i)/2. The matrices X I and X2

depend through (1.4) on the n x k design matrix D, whose uth row is

(XluX2u, ... xku ) .

When the model (1.5) is fitted using the ordinary least squares criterion under the

restriction that a2-O, the expected residual sum of squares in

FRSS- n-r(X lo 2  + 2 (1.;)

whero r(X I ) is the rank of X I and the lack-of-fit matrix L is

Wr rhnll not rnquire XX to he nonningular, hence the use of the generalized inverse

(X) in (1.7).

AtlMnnon'n (1172) general ap'iroach to the problem of detecting inadequacy of the model

Y wAM to -n.lnct tho denign so as to maximize the determinant of L or

,,:i1vnlntJ7, t.r mlnImizo, tho generalize]d vartancr of the least: squares estimAtor of7.6



This criterion can be applied only within the class of desions for which 2, is

estimable. Our approach nere will be more Uiosely related to the work of Atkinson an!

Fedorov (1975), whose T-optimality design criterion reduces to the maximizatxo- of

X 3LB This criterion, irauever, depends upon the value of wilic: is unknown.

Jones and Mitchell (1978) avoi .ci ,his dlf''=ulty by utilizing the relationship between

X and the posit.,;r .*efinite quadratic form = ,T2  which, with proper choice of T,

can be inte'rrtted -s a measure of the importance of the interaction terms. One of their

criteriA (A2-optimality) requires maximizing the averaqe value of 1. (over E ) for

constant t; this is equivalent to maximizing tr(T- L). In the present setting, the
~~Jones-Mitchell T-matrix can be shown to be the identity 1, so A2-optimization becomes

maximization of the trace of L. In Appendix A, we show that the tr(L) criterion can

also be derived by maximizing the expectation of X (no matter what the value of S is,

unde radomassgnmnt f fcto laelsand factor level labels. This is the criterion we

shall adopt in this paper.

1.3. Conventions and Notation.

Throughout this paper, the word "design" refers to a two-level design, except for a

brief discussion of "center points" in Section 5.3. When we wish to indicate also Lhe

number of runs (n) and the number of factors (X), we shall write "(n,k)-design".

The following is a selected .1st of letters and symbols used in t.e text.

k: Number of factcrs.

k,: Number of two-factor interactions = klk-l)/2.

K: set ot 2 nossible combinations of levels of the code-i

factors x ,x2. .. .. . .. . where x, = t1.

n: Number of runs in a design.

N: Number of runs in the "half-deson" used t- construct a foei.ver .

a: Integer value of k/n.

r: Remainder epon divi.ina k b. r.

-a- .

a .5



R: Design matrix.

Der'n matrix for the "half-design".

A,: Vector of coefficients for tiie first-order model 2S -S..-•~ '01 -k_

2 Vector of interaction coefficients (5 ,. l .
-2 1112

X ,X2 Matrices of known constants in the model E(Y) = X IC 
-141 +1- '2-2*

L: Lack of fit matrix L XX - X'X (X' '
-2-2 -2-1 WW -1-2

2
0 Common variance of the individual observations (yi's).

ni: imber of words of length i in the defining relation of a

fractional factorial design.

j q: Nbe- of strings of aliased two-factor interactions (not countinZqt sub-o tr ings of ala w-ato neatos ntcutn

the string that is confounded with the overall mean) in a fractional

factorial design.

w: Likelihood-ratio statistic for testing the hypothesis that 2 0.
-2 -

-2. The Structure of Tr(L)-ntimal (n,k)-Desians

2.1. Orthogonal Arrays of Strength 3

It is clear from (1.7) that tr(L) cannot exceed tr(XX2) = nk, and that this I
upper bound is attained exactly if and only if X1 = 0. This condition can occur if a--

only if all design moments of form jil, !ijj, and tijZ] are zero, where

[i) = x . , [i] = -x x. ,, ij.) x X
1 x . . .

U1j u=1 u

This in turn can hold if and only if every subset of three columns of the desian atr:x Z9

forms a complete 23 factorial design (possibly replicated), i.e., D is an ortvr -̂ "

array of strength 3. we therefore have the fo~lowina theorem:

Theorem 2.1. If n is a multiple ef Q and there exists an orthoconal ir- ," -

strength 3 in n runs and k variables, then the set of all such' orti,oconal arravc - -

set of all tr(L)-optimal (n,k)-desiqns. (An extended version of thi: theoren, '---'

to a general -actorial setup, appears in Morris and M2tchell 1O77, n.-

4 a



Th: orthoonindl arraye of tho type i'clartd orptJMaI by tho Above theorem '-in oniavly he

:onntructed by "foliin. over" An orthroional main effects denign, e.q. a Plackett-Pirman

(1946) dention or a renulr fractional aIetorjal rdanin of resolution ITT (Sox and lIuntor

I( 'I)). Th . litter "ollove" dluns ari maimbers of the familiar class of reotular

fCtaotial factorial destoriLn of renoltit,,n IV.

2.2. Foldover eslionn and Tr(TA-Optimality: A Conjecture

We now turn to valuien of n and k for which no orthogonal array of strength I

existo. Then., inc'.,idn all ciases in whirh n < 2k or n i not a multiple of R.

Our first attempt nt the construction of tr(L)-optimal designs in these situations

was a limited computer search in which we used the design construction algorithm DrITMAX

(Mitchell (1974a)), modlried for our purposes to find locally tr(L)-optimal dosignn.

Designs were generated for k. 4 with n - 6,8,10, and 12, and for k w 5

with n - 8,12,16,20, And 24. In every case, the design with maximum tr(L) turned out to

be a foldover desiqn, i.e. the design matrix D could be written as

D' {](2.2)
where the "half-dntign" matrix 1) is an n x k matrix, n mn/2.

Foldover denionn, tntrnduced by nox and Wilson (1951), have proved to b, extremely

uqeful for ostlmatinq mdin effects free of bias from two-factor interactions. The results

of our computer senrch indicated that this clasn of designs may also be "optimal" for

dotectinq the prnonce of two-factor ifnteractinj. We oxpross this specifically in the

folln-wirq ronjortlire, which wol hai not h.,,n able to prove.

(onjqrturo' Frr ,-;,in n, a fro1'Iv,.r ,?,,'0qn eXi~tM that i) tr(L)-optimal 4
n thre

"class of (n,k)-,,, imm, w e er, t, i ,l,.in,,1 an in (1.7) for tho mode] tI.%).

O\e OO'



Althoulqh tr(L)-optimal demions for even n are not necessarily foldovers (witness the

resolution V fractional factorial designs), the conjecture implies that one need only

search the class of foldovrs to find a tr(L)-optimal design. This is what we shall do

next.

2.3 Tr(L)-Optimal Foldover Designs

Some simple matrix algebra shows that for a foldovar design (2.2) and for the model

defined by (1.5),

2 _-1 -~2tr(L) - nk2  n tr(D) (2.3)

Thus the tr(L) criterion for design selection is equivalent to minimizing tr(2'p)

which is Shah's (1960) criterion applied to a first order model with no constant term.

(Also, see Kiefer (1974), Section 4H.) Thanks to some unpublished results of L. J. Gray

and some helpful conversations with C. S. Cheng, an optimal D can be constructed easily

by referring to the following rules, derivations of which are given in Appendix B.

Gray-Cheng Rules for Constructing D (; > k)

Case 1: n 3 0[mod 41.

Choose D to be a column-orthogonal n x k matrix. Examples most familiar to

statisticians are the Resolution III two-level fractional factorials, and the Plackett and

Burman (1946) demignx.

Ca e 2: n 1 (mod 4].

Add any row with elements t1 to a column-orthogonal (n-1) x k matrix.

Cane Is: n! 2[mo1 41.

(a) If k < n-2, augment an (n-2) x k column-orthoqonal matrix with two rows of

411' and -1'n, ehonen no that the absolute value .oftheir inner product in less than or,!f~lal I
-7I



o ', - _-_______=_i .- 4____ ___ -~~ ---

nb) "f k = or k n-1, remove fro-- an (n2) x k colu-n-= hoqona r -atrix t-,

rows whose inner product has absolute value less than or equal to 1. In Annenx -S, -. :s

shown that two such rows exist.

Case 4: n -3(od 41.

Remove any row from an (-.1 x k colum-n-orthogonal matrix.

The Gray-Cheng rules can be applied in virtually all cases of practical i-.terest, ---_

the exception of the case k = n = 1(mod 4), where the col-n-orthogonal (n-i) x k

matrix required by the rule for Case 2 does not exist. (See Raahavarao (1959) for special

ccnstructions when n = 5, 13, or 25.

..emark 1. Since t(5) 2 
= tr(B3)2 . the same rules can be used whea m Ic: we

simply transpose an optimal k x n matrix.

Renark 2. The tr(L)-optimal foldovers derived from these rules are not unicue.

Usually there are several ways to choose the basic colu~n-orthoconal matrix and several

ways to add or remove one or two rows according to the rules. These may yield different

L (but the same tr(L) when folded over.

Remark 3. In Cases 1,2, and 4, the class of foldover desians derived fro- t-e Gra:-

Cheng rules is the same as the class of designs obtained by folding over the X --atficx

(including the column of I'sl for designs constructed according to the rules given

Mitchell (1974b) to achieve D-optimality (in most cases) for the first-order -oe.

Case 3 there are some minor differences. 'Re would therefore expect the tr T -cs:.a

foldovers to be good for fitting the first-order .odel (when n > 2k) if i-.ter3c:O-ns a-

found to be negligible.

Upper bounds on tr(L) for foldover desions are easily obtained by substit tznc

(2.3) the minimum tr(*D)2 given in A.nmendi;- S. These bunds, whizb are zv'ren.-t -aAle

2.1, are attainable $y all foldovers der;.ve . from tne Grav-Zhenz rules.

M4



n(mod 4) tr( ) k(mod 4) tr(L)

onk(k-1)(1"(1 nk~k-1)(1-n "2) (,2.-1)(n.1)

2,k even nk(k-1)(1 - 2(k-2)(k-1) 1- 2 ) 2, even 12(n-1)-2(n-2)

2,k odd nk(k-1)(!-2(k-1)k "2 ) 2,n odd k2 (n-!)-2(n-1)2n

--2 2
3 nk(k-1)(1-n 2) 3 (k 2-1)(;-1)

Table 2.1. Upper bounds on tr(L) for foldover designs in k variables
and 2n runs. These hounds are attained by all designs dorive, fror,
the Gray-Chr4 rules.

3. Tr(L)-Optimal Fractional Factorial Designs

Since the fractional factorial designs are so well known and widely used, it is of

interest to know which are the best with respect to the tr(L) criterion, and hew those

compare with the optimal foldovers described in the previous section. We shall restrict

our discussion to the regular 2k 'P  fractional factorials. Every design in thip claio hAs

a unique "defining'ielation" with 2P-1  "words" which identify the effects that are

completely confounded with the overall mean (Box and Hunter (1961)).

3.1. Characterization

From Theorem 2.1 and Theorem C2 in Appendix C, we can characterize tr(L)-optimal

fractional factorial designs as followst

1. If n 2k, the tr(L)-optimal fractional factorials are the 1' P  desinn

of resolution )4.

2. If n < 2k, the tr(L)-optimal fractional factorials are the 2kTr folover

designs of resolution 2 with the fewest 2-1etter words in tho dofininq rfhitinn.

3.2 Construction

The construction of-desinns of resolution- )4--in well known, so thore Jq nr) nr0,-,

if n > 2k, unless one wants to use aMitinnal criteria to Aeloct from AmOnm tht, ih A-,

designs nvoalnhle. For this purpose, we woulM recommend the "minimum ahbt'rv.ton" 'v't,,,',

of Frios and 1luntor (1979), which in the present cass amoU nts to 0,lctiMil do 41,ril.

Best Available Copy



have the fewest words of lenoth 4 in the defining relation. (See Appendix D for a more

detailed discussion.) Table 12.15 of Box, Hunter and Hunter (197S) gives a list of minimum

aberration designs for k < 11, n A 128.

If n < 2k, we want to construct the 2 k
-  foldover with the fewest words of length

2 in its defining relation, i.e., with the fewest pairs of completely confounded factors. A

This can be achieved only by distributing the factors as evenly as possible over the set of

columns in DI , the saturated desian of resolution )4 in n = n/2 factors and n

*2 4-1 8-4 16-11
runs. (Examples of D are the 2 , 2 V 2 and 2 designs. See Box and Punter

IV IV IV

(1961), Section 5.) The tr(L)-optimal 2k - D designs will therefore have the form

(2D:0 2, where D consists of a ) 1 copies of D and D consists of a subset of

r distinct columns of D , and where a and r are the integer part of k/n and the

remainder, respectively:

a = Int(k/n) (3.1)

r =k - an (3.2)

For construction and analysis, it is convenient to write these designs in terms of

"group-factors" A ,A2 ,...,A (Watson (1961)). An example, for k = 12 and n = 8, is
n

given in Table 6.1 of Section 6. The aliasing relations can then be determined most easily

by first writing down the n aliasing relations among the group factors in the usual way;

then

(i) replace each group-factor nain efcect A. by the sum of the main efects

of the factors in Group A,;
n i) replace eac two-factor _nteraction (A A ) anong oroun-factors by the

s,= of all two-factor irt-ractions involvino one factor from group A,

and one factor "rom qroun A,, dnd

-10-



(iii) replace the overall mean (denoted by I in the notation of Tox and Hunter

(1961)) by 3, plus the stum of all two-factor interactions involving

I two factors from the same group. A

For tr(L) optimalitv, it doesn't matter which r of the n columns of P are

choose it to minimize the sum of squared lengths of the strings of two-factor interactions

among those factors, then the design D = [P:D] will have minimum aberration amona

tr(L)-optimal 2" -P desiis. (This is Theorem DI in Appendix D.) The construction of

such D, is easy when n = 4,8, or 16; any subset of r columns of D will do. When

n = 32, proceed as follows:

(i) Write .iown the saturated 2 design with generators 1236, 1247, 1258, 1349,

135(101, 145(11), 234(12, 235(13), 245(14), 345(15), 12345(16).

(ii) Strike out the columns associated with the first (16-r) factors in the

following list: 16, 15, 14, 13, 12, 1, 11, 10, 7, 6, 9, 5, 4, 3, 2.

This procedure was derived by writing down, for each k, all feasible integer vectors

(f,f1,f2,... ), where f is the number of strinqs of length i, finding the one which

minimizes , i2 f., and then finding the corresponding design. We have not attempted to

derive similar procedures for n 5 32.

3.3. Comparison of Tr(L)-2 timal Fractional Factorials With Tr(L)-Optimal Foldovers.

When n is a power of 2, one would generally prefer to use a fractional factorial

design rather than the less familiar optimum foldovers of Section 2, mainly for reasons of

simplicity of construction and analysis. As we shall now see, the optimal fractional

factorials are either as good as or "almost" as g,-nd as the optimal foldovers with respect

[ I to tr(L)-optimality.

If n, a power of 2, is greater than or erual to 2k, the tr(L)-optimal fcldovers

anI the tr()-ontinal Iractional factirialq are othoaoal arrays of strength 3, and so are

optiral among (n, )-'iainn by Theorm ?.1. In the nore interestino caqe n < 2k, our

-iain resuilt ~ 'of A-,n i s is ~ follows:

-lo



I
Given n (a power of 2) and k > n =n/2, a tr(L)-optimal 2 k-p design in

n runs is tr(L)-optimal among all two-level foldover (n,k)-designs if and only if

r (the remainder upon dividing k by n) is 0,1,2,n-1, or -2.

In the cases for which r does not satisfy these conditions, the tr(L)-optimal

2k-p design is "almost" optimal among foldovers. For example, suppose r = n/2, where

n ) 8, which appears to be the "worst case" for the efficiency of the 2 designs

with n < 2k. Since n is a power of 2 and n ) 8, k is divisible by 4 (by (3.2)),

so the upper bound on tr(L) for foldover designs, given in Table 2.1, is k2(-1). The

efficiency of the optimal fractional factorial, relative to this upper bound, can be slowV

'-2 2-
to equal 1 n /(4k (n-I. For fixed n, this is minimized when k = r + n = 3n/2. A

(See (3.2).) Thus the efficiency of the optimal fractional factorial is at least

1 - (9(n-1)) -
, which is at least .9841, since n ) 8 here.

IWe conclude that if one is seeking a tr(L)-optimal (or nearly optimal) foldover

in 2 runs where n is a power of 2, one might as well restrict attention to the

fractional factorials. These designs are easy to construct and the analysis of the data is

easier to perform than for other types of tr(L)-optimal designs.

4. Power of the Likelihood-Ratio Test of the Hypothesis of No Interactions

In this section, we shall indicate roughly the ability of the designs of Sections 2

and 3 to detect the presence of interactions when a conventional statistical hypothesis

test is used.

4.1. The LR Test for the Presence of Interactions.

We shall restrict attention here to two studies of the power of the lxkelihood-rati '

(LR) test of the hypothesis that 6, = 0 in the model (1.5), where r is norral'v

distributed and a2 is assumed "known". This is not intended to preclade the 'ise of n-

forma' or informal techniques of analyzina the data for the presence Ce interactio.s.



2II i
The LR test statistic w is R(8 lB 1/a2, where R(l2B is the increase in tq

t S-2 - 1 -2 -1

residual sum of squares for the model (1.5) that results when B is set to 0. Thisf -2

statistic has a non-central chi-squared distribution with r(L) degrees of freedom anI

2
non-centrality parameter X/(2a ), where r(L) is the rank of L and X 3L22L

The calculation of the LR statistic w is particularly easy for the foldover

designs of Sections 2 and 3 when n < 2k. Let yi+  and yJ be one-ha f the sum an6

one-half the difference, respectively, of the two observatimns in the izh foldover

pair. Then an equivalent form of the model (1.5) is

-!
E() = I10 + 2 2 E(v ) = Dl, 14.1)

where D and X are composed of the columns for main erfects and interactions,
- -2

respectively, in the half-design, and our notation has been changed temporarily so that
now contains only main effects (not 80). Note that the elements of X and

1 -

are all uncorrelated and have variance 2 /2. When the half-design D has full row rank

= n/2, as it does for the foldovers of Sections 2 and 3 with n < k, there is no

contribution to the residual sum of squares from y, i.e., y = y It therefore

follows that the residual sum of squares for the model (4.1) with S = 0 is just the sun

of squared deviations of the y. 's about their average. This residual sum of snuares is

in fact R(2 18 ) since the row rank of 11:i I is also n, and the unrestricted molel

fits the data exactly. Thus

w .- 22y

-- v

-13
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4.2. Pewer Study I

This wab - -. ,ation study which was conducted for some tr(L)-optmal foldoloer

designs constructed as indicated in Section 2. Cases examined were k 3 through R

with n = 4,6, and S.

For each design, the tL.wer of the :R test was invest.atei tor two values
p2 2 2

of P= _22/ , where rasy be viewed as a measure of the overall nagnitude of the

interactions. (Ve note that B;Z2 is the averaqe squared residual per point which would

occur if the first-order -odel were fitted to the "true" resnonse (1.4) over K. Thus, for

2
example, if the interactions are such that 0 = 4, we would expect a "typical" deviation

from the first-order model at a given ccmbination of factor levels to be on the order of

2a.)

In each simulation, 2 was selected randomly 12,500 times from a uniform
2

distribution on the sphere e2 = 2, (o = 1.0 or 2.0), according to a methodk2

described by Marsaglia (1972). For each 6, the non-centrality parameter was computed,

then the corresponding power for the LR test at the a = .10 level was calculated usina

an approxi-ation to non-central ch2-squared probabilities aiven by Severo and Zelen

(1960). This pzocedure generated a distribution of .ower values, the criartiles of which

are given in Table 4.1 for each case.

.5

Z

I4

K

-

'1

4ti



p=1 P=2

k n ".25 P. P.75  P.2 5  P. 50 75

3 4 .217 .455 .652 .543 .949 .987
6 .528 .675 .784 .986 .999 1.00'
8 .767 .767 .767 1.00 1.000 1.000

4 4 .189 .420 .661 .447 .924 .998
6 .445 .644 .787 .955 .998 1.000
8 .624 .766 .863 .998 1.000 1.000

5 4 .178 .382 .631 .409 .887 .996
6 .387 .593 .751 .910 .995 1.000

8 .549 .711 .831 .992 1.000 1.000

6 4 .176 .290 .481 .401 .736 .963
6 .364 .F76 .742 .884 .993 1.000

8 .519 .694 .824 .987 1.000 1.000

7 4 .169 .367 .621 .376 .869 .995
6 .359 .577 .740 .877 .993 1.000
8 .510 .690 .921 .985 .999 1.000

8 4 .181 .369 .634 .421 .871 .996
6 .362 .582 .752 .892 .994 1.00 
8 .517 .702 .834 .986 1.000 1.000

Table 4.1. Power study for small tr(L)-optinal foldoverst Quartiles
of the distribution of the power of the 2 LR test of the hypothesis
A2 = 0 in (1.5) with normal c and 0 known, generated bv select-
ing 82 randomly from the sphere of radius Pa. The siqnificance level
the test is a = .10. The results for eacl5 case are based on 12500
simulationj.

4.3. Power Study 2 2J

In this study we investigated the power of the LR test, again with o2 "known",

under the assumpt:on that the interactions are drawn inleoendently from a nornal

distribuLion with mean 0 and variance a , where 3.= 02/V2 i.e. 1(2; ) = o $3
b n a 2 -

The desions considered were the tr(L)-optimal fractional factorials of Sectior 3; ror

these desians the test statistic w and itq mean and variance are easily calculated from

the ]enqtbs of the strin"g of con ound!d two-factor interartions. (Se, Appen.ix F for

details.

-15-
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The 3istributior of w was approximated by that of w' g X w'ere a an C:,

A were chosen so that the mean and variance of w' matched those of w. We determ.ned for

each design the value of P for which the power is .90 for tests conducted at the

-i a = .10 level of significance. (Actually, we are discussing expected power here, where

the expectation is taken over the assumed normal distribution of the interactions.) Tlesp

"minimum detectable" values of p were calculated for (i) n ) 2k, 3 ( k < 10, n < 128,

for the designs in Teble 12.15 of Box, Hunter, and Hunter (1978), which a-e mini:nu

aberration designs of resolution > 4, and for (ii) n < 2k, 3 < k 4 10, n > 4, for t e

mininum aberration resolution II foldovers presented in Section 3.2. Some results are

shown in Table 4.2, for k = 5 and k = 10, as well as the limiting cases as k in

the case k = 5, n = 8, for example, the interactions need to be big enough to cause a

"aypical" disturbance of magnitude 2.01a at a randomly selected corner of the 5-cube in

order to be detected with probability .90 by the LR test with a = .10.

To obtain an approximation to the minimum detectable value of P, (c (aPk,n), say),

for specified significance level a and power P, once can use the equation for the

limiting value as k + -, which can be shown to be

*(cP,' ,n) ((2 2  
- 1)/211/ 2  (4.3)

a ,;P

2
where q = n/2-1 and x is the upper 100n% percentaae noint of t'e o

distribution. (See Appendix E.) Since o does not change rnch with k, (4.3) can e

used to approximate P (a,P,k,n).

Although the results of Tables 4.1 and 4.2 do not represent a very connrehens~ve st';.

of power, they dc serve to indicate roughly what the user can expect fron tle lsiar n

Sections 2 and 3 with respect to their ability to detect the presence of -tr io

the next section, we shall consider other design ob-ectives.

-16-
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k I 4 8 16 32 128

5 8.42 2.01 1.20 0.85 0.60 0.42

10 8.76 2.10 1.22 0.89 0.69 0.50

i 9.23 2.20 1.27 0.90 0.68 0.54

Table 4.2. Power study 2: Minimu detectable values of P for

the LR test of the hypothesis 2 0 at the a = .10 significance
2

level, a known, using tr(L)-optimal fractional factorials

described in Section 3. Here a value of P is "detectable" if the expected

power of the test is at least .90 when the elements -^ are drawn
::2

independently from a normal distribution with nean 0 and variance

2 p2 o2/k2a b= P iA2' e., 2) = t2

5. Modification of tr(L)-Optimal Desiqns to Suit Additional Objectives

Seldom is an experiment planned in practice with just a sinale purpose in mind, so we

shall now examine the designs of Sections 2 and 3 with respect to some other objectives and

suggest some design modifications.

5.1. Fittinq the First-Order Model

When n ) 2k, the tr(L)-optimal designs are orthogonal (or nearly so) for the first-

order model: E(y) = X1 i%, so they need no modification to estimate S efficientlv.. .. 1 "

When n : 2k, however, the tr(L)-optimal foldovers presented in this paper do not ner'i:

estir n of B in the first-order model. For these situations, we tried several

appro s to the construction of "compromise desians" which woull ha-ve relatively hiao

values of tr(L) and would also provide estimability of ( {Morris and "itc-'l

(1977)). Our most successful procedure was the followino. The si7e of tbh linal ,1o~in-.

n, is specified as well as the size of a smaller foldover e:an, 2n. A

tr(L)-optimal foldover design in 2n runs is tlcn ohta nei ani au.n-eA wtr -

n- 2n runs whi-h maximize the deternmnant of X;% for t1,O :-a! .

I i
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Comromse esinswere co"''utd !n thi way for 'K 4 throaal, wit

n %,k+2 throuch 2<-l a".d varvina ;. The aucnnen.tatjon was done usina the IIFTM'X

algorithm (Mitchell (1974all. T-e iesiorns whiicl, have the -nrurin numlher o auam.ontinqg runs

for fixed n are or eeted in 7able 5.1. For t -ase rininally augm~ented

tr(L)-ontinal des-ans, tlhe a-ui-enzation Cioes not affect tr(L), xn fact, the "extra" runs

(those not nark ed with an aste-is' -r the tahlel are not used at all in tho LR test of

ti'e hypothesis that = -.th user of one of the compronisp desjqins in Table 5.1 can

therefore refer to the results of Section. 4, particularly Table 4.1, for an indication of

the abilitv of the eesian to ietect the oresence of interactions.

k 2n n

4 4 6 1101'* 1110* Q I 'I 1011
4 6 7 1001* loin* 1111* 1100

5 4 7 01111* 01000" 0"%119 (10011 00101
5 6 8 01001' 110O' 0211 10101 00000

5 8 9 11000* r0001' ~11" P1191* 00100

6 4 8 110100' CV01'1 -101110 11i11 OillCoo Oioll'

6 6 9 111100' 011010' n~il110. 111111 110110 001110
6 8 10 010100' 010010* 111000' 110111' 011110 100110
6 10 11 100111* 3011C* o11.~1')l iC11iool' ioooo' 001010

7 4 9 0100001' 0)111111' 1110001 01110003 1101010 1001001 1101100
'7 6 10 0100no '0f11100' * 'l 1010^01 001l1011 0110111 1010010

7 a 11 0100011" i30010' C 00 0011 1000001 1101010 1000100
7 10 12 0011001' 101111'.11001 1111101' lliol 1001011' 0010011 0001111
7 12 13 01110110' toi000C" n011101* r-1)1 0 0 1 1 * 11110()11' 1110101' 0101000

8 4 10 11011011i* lOI~Cil* I "1()111 1 1)00000C(11 01001000 00011101 00010010) 100C01i110V
8 6 11 111f'OC 11100)11* 10101110'* ii11'111 0(0110100 01000110 nIC00010 1 00100'fl1 1

8 80 13 1001001'* IC1il0I11'* 1V11 00010'l 0 01"l911101 001101 1110 101101

3 12 14 11111111' 111 0 ~1.1~ A 1f~1 101I0 100.01 e1110000 11010101

2 14 15 11011000'* 1M1111 '" l A 1.11 1111111'" 0 111110 1' 0001100' 11100100' 1no1.11 111

7a!hIe S.1. >-'rnro- -e lt-s':-r-tA i n~., I r", )-rt Ies- -nr- In -rn;t

desian also contais -q -)- r'f run,- -a-- 'Iw;!-

-7- 7 -;,3
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Before going on to the consideration of other design objectives, we should remark that

unaugmented tr(L)-optimal designs with n < 2k can be of practical use, even though they

do not permit estimation of 6 " This is particularly true when one is dealing with a

large number of factors and the number of runs is auite limited. Common oractice is to use

a first-order design in hopes that the main effects will override the interactions, and

then perhaps to follow up with further runs to seek out interactions among the large main

!fects. when substantial interactions are present, however, inferences drawn from a main

effects design, and subsequent experimental plans based on those inferences, may be

misguided. What we are suggesting here is that in some cases it may be worth spending a

few early runs (4 to 8, say) in order to find out, in a general way, how important the

interactions are.

5.2. Identifying the Second-Order Interactions

Once the presence of interactions has been established, additional runs can be made to

identify the larger ones. If one can afford it, one miaht wish to augment the initial

tr(L)-optimal design to provide estimates of all the interactions, e.g., Example 4 of

Mitchell (1974a). In many situations, it will be more efficient to concentrate on a subset

of interactions, as in the following example, condensed from Morris and Mitchell (1977).

Example 5.1. This is a hypothetical example with 7 factors, in which data were

simulated according to the equation v = 64 - 7x, - 19x 3 - 16xlx 3 + C, where

2 *7-4
C - N(00 ), and a = 5.5. The initial design was a tr(L)-optimal 2 design,

constructed as indicated in Section 3. The design points, data, and estimates of string,

of confounded effects are shown in Table 5.1a. Assuming o2  is known, the LR test

statistic for the hypothesis of no interactions is 20R6.86/30.25 = 6.99, which is hiahlv L
2

significant when referred to the X distribution. Clearly, t1- most likely canaidates

for large interactions are those !n the string 61 + J4 + B3 + S + S + 3" 'ince
13 14 3 24 17 r,7

the estimate of the three strings of interaetions are inaependent, th'e 3 tati-tic cojld

have been nartitioned to qi,,- a separate lack of fit test for each strinq. in tho present



30

case, this would lead to rejection of the null hypothesis only for B 3. .. +%.,.) E£cht

additional run3 were needed to estimate the main effects and the six suspected

interactions. These runs were chosen using DE"MAX to maximize the determinant of X'X for

all 16 runs, where the model is now

7
E(y) 0 + X + xix 3813 + x

1
x4 814 + X2 x3 823 X x 4 2 4  (5.1)

+ x5 x7857 + x6 xT8 6 7

4

x5 •x6  x3 ,x4  x1,x2  x7  y

-1 -1 -1 -1 66.04

1 -1 -1 1 78.63

-1 1 -1 1 62.36

1 1 -1 -1 66.96

-1 -1 1 1 88.45

1 -1 1 -1 98.39

-1 1 1 -1 14.46

1 1 1 1 28.05

+ + + =62-.92

0 12 +34 856

81 + = -5.58 -

83 + 4 -19.96

5 + 6 = 5.09
5 6

87 = 1.46
7 -

+8 8 + = -054
17 + 27 35 +  36 45 46

'S + 3.79
+15+16 + 5 +8 2 + M3 47

13 14 23 24 57 A7

Tahle 5.la. Data and estinates Of effects cor t . :-
Example S. I.

-23-



The data for the A new runs and the estimates of the parameters In the new model are qivor,

In Table 5.b. Tho parameter estimates are not-varypreisep, sinee we have added the

felwest runs possible to achieve estimahility. Even an, in 16 runs we hays found that

Interactions are not negligible and have discovered the important one. This use of

tr(k)-optimal designs to identify a few strings of potential interactions, whi.c.h are then

broken down by further runo, is very similar in ipirit to Watson's (1961) approach to the

problem of screening for main effects.

xi x2 x3 X4  xX X6 xy

1 -1 1 -1 -1 -1 1 13.10

-1 -1 1 -1 -1 1 -1 70.08

1 -1 -1 1 -1 -1 1 91.69

-1 -1 1 -1 1 -1 -1 75.46

-1 1 1 -1 -1 1 1 62.95

1 -1 1 1 -1 -1 -1 22.07

1 -1 -1 -1 1 1 1 F6.99

-1 1 -1 1 -1 1 74.F0

;- 62.92 ; - 0.63 1 -- 16.59 5 - 0.430 4 13 57

0$1 -6.61 05 . 4.70 014 - 5.92 66 -1.1P1 1 67

02 - 1.03 66 0.3 023 - 4.57

03 " -20.59 07 - 1.46 4 - -0.14

Table 5.b. Additional data and estimates of effects for the
model (5.1) in Example 5.1.

Had the initial R-run design in this nXamPl0 given no indiication of the nresenco of

interactions, we could have chosen our nidditionAl ci ht runs to cive a good CePtmArt O 
"

parameters in the firnt-order model, as dencribod in Section 5.1. The resultino 16-ru-

7-3
desiqn wouli then turn out to he the 2 1 V mio with atenrA 1234, 11C5, AniP%7

(Morris and Mitchell, 1977), The interActimns shoull be oxineil 1,,101 At a ,t i,l*.

-21-



5. Petocting the 1rosonce oP other Nmn-tjLnpar rffectn

If 9omO of the ftArst"1 are contInuoun, then thre may well he departuros from the

*irtt-order model that do not involve interactions. The two-level de"iqns roneidered in

this paper will not be good for detecttnn such effect.

Tho most obvious aunoMntation in thi case would involve adding one or moro "center

roint" rune in which the quantitativ factors are all set to a central value. Takino a

formal decign optimalitv approach, Jonee and Mitchnll (1975, Section 4.3.1) anplied their

A'-optimality criterion (from which our tr(L)-optimality was derived) to the two-factor

quadratic response surface model, and indeed found in all cases (n - 4 - 10) that the

optimal designs for a rectangular region of interest were supported entirely on the corners

and at the center of the region.

when n ( 2k, the use of a center point also aids in Identifying the interactions (by

separating a string o: interactions from B0), but does not seem very efficient in terms

of the tr(L) criterion. It can be shown that the increase in tr(L) resultinq from the

addition of a row of k O's to a foldover (n,k)-desirn is (nk2 - old tr(L))/(n+1), which

is relatively small, especially when compared with the gain that can be made by adding a

new foldover pair.

We have not considered the question of how many center pointR to add, nor the more

interesting question of how to take center points when not all the variables are

quantitative.

2
5.4. Estimation of a

in our discussion of the LR teat for the precenco of interactions, and in rxample

5.1, we assumed that 0 was "known". We shall now considar desigmo with the dual purpose

of maximizing tr(L) anti ohtaininq an Pstimate of a2 through replication of come runs.

Conslder the conqtruction of A tr(T)-optimal folrlover des.lin under the rnstriction

that n rows of th n X hhlf-doeein ; aro rnlicated onCo, where ; < 1 ' ,

Whon 3 0,1, or 3 (mre, 4), thin ic Achievold by replicating any n fnldover patrn of a

-22-



tr(L)-optimal (2n-2nPk)-desiqn. (See Appendix r.) If k : 2(mod 4), we can use the

following procedure. Partition a column orthogonal (k-2) x (n-ne) matrix D as

20 "[h]' where A has n columns and a ham n -2n columns.

Now let the k x n matrix D have the form

A A aI'

!2 -2 t2

where 12aa + b 1b2I < 1. (Notei if n-n' k or n-n * k-1, choose D instead to-1t2 + 1-2 e e-o

be a column-orthogonal (k+2) x (n-n ) matrix. DI is then formed by removing from

20 two rows (A; A tb') and (; a b;) that satisfy the above property.) If we now

transpose DI and fold it over, the result will be a 2; x k foldover design which is

tr(L)-optimal subject to the restriction that ne foldover pairs are replicated once. A

short proof is given in Appendix F.

When n > k + _n , we have not found a general procedure for constructinge

tr(L)-optimal designs subject to replication of n foldover pairs. However, the rules

of Section 2.3 are not very restrictive, and it is often--possible to construct desi.ns that

satisfy these rules and also replicate some runs. For example, the 6 x 4 matrix with

rows (1,-1,-1,1), (1,1,-I,-I), (1,-1,1,-1)*, (i,1,1,1)*, where the asterisks indicate

replication, yields a tr(L)-optimal design (Case 3 of Section 2.3) when folded over.

6. Example: Sensitivity Analysis for a romputer Code

The Oak Ridge Inverse Code (ORINC), (Ott and Hedrick (?77)), is used to calculate

temperature and heat flux at the surface of the electric heater rode in a simulated nuclenr

reactor, given the heat yeneration rate, the qeometry, thermophymical parameters, anl the

thermocouple temperature nt an axial position of one of the rode.

-23-



To determine the sensitivity of ORINC's results to variations in key parameters, a

2112-7
computational experiment was conducted. The experimental design was a 32-run 217

IV
fractional factorial design in the 12 factors (parameters): (1) MMg radius, (2) incone!
thickness, (3) Bn thickness, (4) inner sheath thickress, (5) outer sheath thickness, 16)

gap size, (7) thermocouple temperature, (8) power peaking factor, (9) voltage, (10)

amperage, (11) MgO conductivity, and (12) Bn conductivity. The two levels of each

parameter were at one standard deviation above and below the nominal valte of that

parameter, where the standard deviations were based on given "uncertainty distributions".

Sensitivities were defined in terms of main effects, calculated in the usual way. Strings

of two-factor interactions were also estimated and found to be negligible. Assessments of

importance of effects were based on relative magnitude; there is no statistical error

involved.

In the following, we shall use some of the data from this computer experiment to

demonstrate how a small preliminary tr(L)-optimel design might have been used to provide

an early assessment of the importance of interactions. The chosen 8-run tr(L)-optimal

12-9design, augmented by the center point, is shown in Table 6.1, with the heat flux

results of the ORINC runs and the calculated effects. (Table 6.1 shows only the heat

flux y(t) at time 0; however, each ORINC run gives the values of heat flux as a function

of time, and the effects may be plctted in this way.)

-2I4-
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Group Al Group A2  Group A3  Group A4  Pesponse

2,11,12 1,3,4 6,7,10 5,8,9 (v(0)-500f00)/1nA

401

+ - - + 392

+ -+ 261

+ + -239

- - + + 422*

+ - + 400*

+ + - 267*

+ + + + 261*

0 0 0 0 329

*Also used in the followup 2 design

Group Aliasing Factor Aliasing Effects

A1  2 + (11) + (12) - 7.4

A2  1 -&- 3 + 4 -73.4

A3  6 + 7 + (10) 7.1

A4  5+8+9 3.6

A1 A2 + A3 A4  12 + 23 + 24 + 1(11)+...+5(10) + 8(10) + 9(10) 0.4

AIA 3 + A2A4  26 + 27 + 2(10) + 6(11)+...+45 + 48 + 49 0.4

AIA 4 + A2 A3  25 + 28 + 29 + 5(11)+...+46 1- 47 + 4(10) - 0.1

2(11) + 2(12) + (11)(12) + 13+..+56 + 59 + 89 1.4

pointo-taind by subtracLisi L he pc.:- -nt respnse from the average of the otherpoints

Tabl 6.1 A r(L)optial 12-9Table 6.1. A tr(L)-optimal 2 design plus center point, witb data from Exa-ie
6.1. The numbers in the factor aliasinq relations stand for subscripts on the
coefficients (B's) in the model.

On the basis of these results, we would tentativelv infer that interactions art,

negligible, althouah we still need to be aware of possible "canceliations" wit'-n

interaction strings. We can then proceed with a first-order dcsian witV, qnm' confio-c-c

that the larger main effects will correctly identify the parameters to wlich th'e ivi

jt

A
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results are most sensitive. in te present case, 12 additional runs, combined with the
. 12-8 egwthenrtr12,3,

four marked with an asterisk in Table 6.1, yield a 22 desig with generators 125, 136,

147, 238, 249, 34(10), 123(11), anO 234(12). The main effects are given in Table 6.2.

(For simplicity we calculated these effects using only the 16 runs of the 212-8 design.)

Factor Effect Factor Effect Factor Effect

1 -16.7 5 -34.2 8 37.8

2 -15.9 6 0 10 7.2

3 -26.8 7 0 11 R.6

4 -29.8 8 0 12 C

Table 6.2. Main effects from 212 design in Examvl-

Had this investigation involved a very larae number of factors, augmentation to

estimate all main effects might not he feasible. A reasonable approach in this case might

be to estimate individual effects only within main effect strings that appear to be large

in the initial design (Watson (1961)). For these factor screening applications, one should

attempt to assign " " and "-" to each factor in such a way that a "+" corresponds to

an anticipated increase in response. If one's guesses of the direction of effects are

correct, this will eliminate the possibility of "cancellations" within strings of main

effects.

7. Surnary and Conclusions.

We have given here the results of the application of a deqiqn ontimality criterion

(maximization of tr(L) where L =1 X _X , t

'two-level n-run experire-q tto .etet the nrecence of two-factor interactions (2) amono

1 -factors in the rodel = X" .2 where C consists o a constant ter- F

S an- na in effects.

z- s
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When n is a multiple of 8, the tr(L)-optimal designs are orthogonal arrays of

strength 3 (e.g., Resolution IV fractional factorials), if such an array exists (Section

2.1). In other cases, it appears that we can restrict attention to the class of foldover

idesigns (Section 2.2). A simple set of rules can be used to construct

tr(L)-optimal foldovers (Section 2.3) for nearly all n and k of practical interest.

Within the class of regular fractional factorial designs, the tr(L)-optimal designs

are the resolution IV designs if n ) 2k. If n < 2k, the optimal fractional factorials

are foldovers with the fewest words of length two in the defininq relation (Section 3.1).

These can be easily constructed through the use of "croup-factors" (Section 3.2). A

Z9
comparison of tr(L)-optimal fractional factorials with the tr(L)-optimal foldovers,

when n is a power of two, indicates that the former are either equally good or nearly as

good as the latter with respect to tr(L) (Section 3.3). To choose among the ootimal

fractional factorial designs, we recommend the Fries-Hunter minimum aberration criterion.

* The results of two different studies of power (Section 4) give a rough indication of

the ability of the tr(L)-optimal designs to detect thp presence of interactions when a

22likelihood-ratio (X2 ) test of the hypothesis 2 = 0 is used, with a2 "1cnown".
-2

Designs presented in this paper have some weaknesses with respect to other design

objectives. These can be overcome through augmentation of various kinds. To achieve

estimability of 61 when k + 2 4 n 4 2k-i, .ie present some "compromise" designs which I
have a tr(L)-optimal design as a nucleus (Section 5.1). uqmentation to identify m

important individual interactions is illustrated by means of an example (Section 5.2). If

the factors are continuous, the addition of a center point is an aid to detection of the

Z .;presence of other non-linear effects, narticularly auadratic terms (Section 5.3).
2

Estimation of 2 can be achieved by replicatina some foldover pairs, an. some simple

rules are given in Section 5.4 for constructing tr(L)-ootimal foldovers suhject to the

specified replication reauirements. 
J
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When k is large and the number of runs in limited, some of the desiqns Dresented

here are effective as preliminary designs for detecting in relatively few runs whether it

is reasonable to proceed with an experimental strategy based on a first-order model. An
example of this type of application, to a sensitivity analysis of a computer code, is aiven

in Section 6.
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Appendix A: Maximization of L0 Under a Design Randomization Scheme 14

Consider an (n,k)-design D, with corresponding matrices X' and L as lefine i

in (1.5) and (1.7). We further define H = X (XX )'X<; thus L = X2(I-)2" For anv

x, Hx is the projection of x onto the space spanned by the columns of X anc

x'(:-H)x is the distance from x to that space.

We propose to select the design DR for the experiment by the following tw(-staae

randomization scheme R = R I2:

R1 : Randomly relabel the factors in D so that each one of the k! possible

lahelings has the same probability of realization.

with probability 0.5, reverse the levels of factor i in P, i,,

each i 1,2,...,k.



The matrices X '( H and L are obtained from DR in the same way that

and L are obtained from D.

The expectation of 6 2L 8 under the randomization R is

R - RR 2 JR

E E E (B'X (I-H)X 2 R2
JR1 R21R1 -(2-2R )2R-2

(The substitution of H for HR  is justified by the fact that the columns of X span

the same space as the columns of X , so the distance from any vector to that space is

invariant under the randomization.

We can express X2R as

x =x 2 (A.2)
1 2

where P is a perratation matrix which permutes the columns of X, accordina to R

and is a diagonal matrix with diagonal elements +1 or -1 reflecting the effect
2

of R2  on the columns of X PR*.A specific .... al element of 9R, has the forn A

-2ERP

qiqj where qi and aj axe (independently) o, .r -1 with probability 0.5. Given

i r P P ' LP ,(B'(X2 (-H)X2Rd2) =RJ Z.,

- tr[P L (Q S :,Z ) . (A.-R -PR P I R -P -2.. -
1 1 2 1 2 2

-29-.1-
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A typical uiagonal element of (O gg',' in and 2 2 2
R2 -P "2R 'R2I P ii ) * l! anIR typRc1l
2 1 2 2 2 1 '

ofr-dianonel elements are 1 Cqlc1 ) 0 (q I j q k 9 4) and
R 2 14 1 1 , %

h P IR ((11q j 11 ik) =0 (1 k). Hlence (A,3) can he simplified and substituted Into

(A.) to yield

E R XR ER[R P P 1 13] w tr[LE, (1I' EPP'.) (A.4)
2

where P is a diaaonal matrix with diaqonal elements 0 2 Since P is a permutatiOn

matrix, P P' is a diagonal matrix obtained by permuting the diagonal elements of R.
R1 IR

Over all such permutations generated hy the randomization procedure 1 , the expectation

Er (P P I is just ; I where ( (T 2 .)/k Substituting into (A.4), we finally
P1 - 1  ii 2

obtain

E R(X) - b tr(L) . (A.5)

This result implies that ER ( R)  is maximized by choosing n to maximize tr(L),

regardless-of the value of 02. (The subsequent data-,analysis should, of course, be made

conditional on the design that was actually selected.)

Appendix 8: Minimization of Tr('D) 2 , I-Tere Idij I I.

The following results Justify the rray-Cheng rules for constructing the x

matrix ; in Section 2.3. For simplicity of notation, we use D and n here instead of

D and n

.et D he an n x v matrix whosn nlpenti d, must be +1 or -1. We want to

2
minimize tr(D'D) , which is the sum of srumrtr of th elenments of 'D. Since the

dliagonal "lpmonts of W'f nro lrcill to m for all 0, we can rentrI t attention tn thp



We shall assume here that k ' n. The results for k n follow directly from the

2 2
fact that tr(D'O)

2 = tr(DO)

IrCase 1: n S 0, mod 4.

If D is column-orthogonal, it is optimal, since the off-diaqonal elements achieve

their minimum in absolute value, 0. we then have tr(2'D) 2 = kn 2 . This construction can

ii be used whenever a Hadamard matrix of order n exists. (s of 1977, the smallest order

for which a Hadamard matrix had not been constructed was 268, according to Hedayat and

I Wallis (1978). We are not aware of any changes in this list since then.)

Case 2: n Z 1, mod 4.

Since the off-diagonal elements cannot be 0 in this case, it is evident that if all

the off-diagonal elements of DID are +1 or -1, then D is optimal. We can construct

such a D by augmenting an (n-l) x k column-orthogonal matrix with any row of +I's

2 2 2
* and -1's. We then have tr(D'D) = kn + k(k-1) = k(n + k-i). The only subcases in

which this construction cannot be used (assuming a Hadamard matrix of order (n-i) exists)

* are those in which k = n. Solutions for n = 5, 13, and 25 are given by Raghavarao (1959);

we are not aware of solutions for other cases with k = n.

Case 3: n B 2, mod 4.

By Ehlich's (1964) Lemma 3.4, the maximum possible number of zeros in D'D is k2/2

if k is even and (k2 -I)/2 if k is odd. Suppose 0 is formed by augmenting an

(n-2) x k column-orthogonal matrix with two rows of +1's and -1's, chosen so that their

inner product is n if k is even and +1 or -1 if k is odd. Then DD will

contain the maximum number of zeros possible, and all the non-zero off-diaoonal elemer''3 of

D'D will attain their lower bound in absolute value, 2; hence D is optimal.

The construction above suffices when k 4 n-2. if k = n or k = n-I, we can resort

to a different method. By a similar argument to the one above, it can be shown that the

removal of two rows from an (n+2) Y k cobimn-orthogonal matrix A, again chosen ,o have

-31-
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inner product with absolute value 0 or 1, yields an optimal D. The only guestion is

whether two such rows can be found in A. We first treat the case k = n, and assume

there is no orthoqonal pair of rows in A. Then the inner oroduct of any two rows of A

has absolute value at least 2, so

2 ~ n2
tr(AA') > (n+2)n + 4(n+2)(n+i) (3.1) $

where we use the fact that the left hand side is equal to the sum of squares of the

elements of AA'. But

tr(AA')
2  tr(A'A)2 = n(n+2)

2 (.2)

I,
since A is column-orthogonal, and it is easily shown that (B.2) and (B.1) are

incompatible. A must therefore have at least one pair of orthogonal rows. An analocous

argument can be used to prove the same proposition for the case k = n-1.

The optimum values of tr(D'D)2  for Case 3 can easily be shown to be

kMn2 + 2(k-2)1 when k is even and kn2 + 2(k-1) 2 when k is odd.

Case 4: n B 3, mod 4.

If we remove any row from an (n+l) x k column-orthoaonal matrix, the resultina natri'<

will be optial, by the -xme argument used for Case 2 above. As in Case 2, 1?he opt~u-

2 2
tr(D'D) is k(n + k-i).

Remark: The above arguments establish lower bounds for tr(D'D)- even for the

(sparse) pairs (n,k) for which the suggested construction is not possible.

I, i

I _ _ I
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Appendix C - On Tr(L)-Optimality in the Class of Regular Fractional Factorials

Theorem C1. No 2
k -P fractional factorial design having words of length I or 3

in its defining relation can be tr(L)-optimal among regular fractional factorials.
The proof is by construction of the superior 2

-p design F2 (F1 ,i) where 2 s

obtained from a giver 2
k -P design F, by folding over, for suitably chosen x, the half

of F1 in which xi  1. we shall use the notation il, !ijl, [ijZ] to refer to first-,

second-, and third-order design moments, respectively.

We note that tr(L) is the sum over all pairs (i < j) of the squared distance fron

x.. (the column of X corresponding to to the space spanned by the colunns of

-2 ) t

" In a regular fractional factorial design this squared distance is either n (if

x is orthogonal to X ) or 0, so tr(L) is just n times the nu.ber of columns in •-ij

?S2 that are orthogonal to X1.

Given a 2 _P design F, with words of length 1 or 3 in its definina relation,

the construction of F2 (F1 ,i) with larger tr(L) is based on the following lenLas.

Lemma C1. For any i such that i] l 0, any column of x that is orthooonal to
-2

* X in F is also orthogonal to X in F2 (Fi,i).

Proof of Lemma C1. Suppose x! X = 0 in Fi. This implies in particular =

[ij] = 0 in F1 , so x. ana x. form a 22 factorial desian (oossiblv replicated,, a

property we shall hereafter refer to as Property A. It is easily seen that x. an6 x

also have this property in F2(Fli). Because F2 (Fi i) is a foldover, all its o.i-orier

* design moments are 0, so x 1 0 in iff (i"I = 0 n e have

already established that lij] = 0, so the lemmna is proved for colurns of the for:
x.. We still need to consider columns of form xwithi), w cth X'n

F,. We then have [ji] = 0 and IijL] = 0, and we recall that wat choqe- -,r- -',-

- [il = 0. Thus x. and x have Property A in F, and alsn in F " 0 iI wicl -

as above to the result that x' =0 in 
z-
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Ro mark on t.,mma Cl Tho lenmm i jlwe that for Any ciivun 2kp fractlonsil factorial

deoi~in, there exints a P fraC.tional fActoriml foldovpr design with tr(l1 at least no

credt a that of the vt\evi desiq,. Thm lemmAn which follow estnhlimh the

tr(L)- s uperiority of the foldover when the giv(,n dlestin hais mintnti of order I or 3.

Lemma C2. If k-p > 2 and there exictn s Ruch that jJ 9 0 In V1 then there

exists I such that F2(1110) hao ereater tr(1,) than does F1.

Proof of Lemmn C2. Let x and x be two columns having Property A in F1 . (Two

such columns Always oxist when k-p > 2.) Since [ 9f I 0 in F ,  0 in Fi .

But oj£] - 0 r ,1 aivi also in F2 1FI1,i), which Implies that x' ; 1 0 In

IF (F1,i. The .ftt of colutmn in X2 that are orthogonal to X in F (1,,) therefore

includes x as well as ali the columns of X2  that were orthogonal to X in P1  (by

Lemma CI) so Lemma C2 in proved.

Remark on Lemma C2. In the case k-p 1 1, which is not covered by the leuna, there

are only 2 runs, and tr(L) Is always 0..

Lemma C3. Let all first-order design moments in the deasqn F1 be 0, and

suppose that F1 has at least one non-zero third-order moment [jk]. Then F2 ( 1 ,i) has

greater tr(L) than loon FI.

Proof of Lemma c3. In FI , fiJi - 0 (otherwise (k I¥ 0) hence x and xj have

Property A in F, and in F2(T1,i). Thtus [1i) - 0 In r(F 1i,) so x! X - 0 in

F2(l1,i). Recall that x! I r 0 In (, k # 0 there), so by the same

arqumont iisedl in the proof o Lemma C2, we concldid that there are more columnA of X

orthogonal to X in F(l:I,i) than In PV

Proof of Thoorem C. rv'ory word of lengjth I or 3 in the defininq rolation

corroaponIN to a non-zoro firnt or thir.d ord.ir r1estin moment. Tommas C2 and e3 Imply that

such drnians always hav, lower tr(T) than am.. t2k p  fractional factorial fonIdover,

which hnn no wordi of nd. lenqth brica.qn it. i n foldovor.

Theorem C2. If n e 7k, a n-n!niary ronIitlon for a 2k  Of-Mitin to b,

trfl)-ontimal In ti-- 'lntin ,of r,.ltvilr fractlnnel factnrials I" that It be a foidover

'I-fl In
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Proof: With appropriate relabeling of the variables, p generators of a

design can be chosen so that they have the form: W1 (k - p + 1), W2 (k - p + 2),...,W (k),

where each W. is a word composed of letters (variables) in the set 1,2,...,k-p There

are, in general, n = 2k-_
P candidates for each W. (including the "word" with no

letters), which we denote by C , j = 1,2,...,n. If we denote by m(C) the number of

times C. is selected as one of the Wi's, then we see that the vector m =

(m(C1l,...,n(Cn))' determines the resulting 2k -P  design.

we first consider a design F1 with words of odd length in the defining relation, and

show that it cannot be tr(L)-optimal. If there are any words of length 1 or 3

present, the result follows immediately from Theorem C1, so we need considcr only desiens

whose first- and third-order design moments are 0. For such designs, tr(L) - n(k2-n2),

where n2  is the number of words of length 2 in the defining relation, so

tr(L)- optimality is equivalent to minimization of n2. Words of length 2 occur in two2-5

ways: i) as generators in which W. has length 1 and (ii) as the product of two
1

generators havin, identical Wi . Thus,

n % m.(m-1)/2 + M. (C.1)

where J= {jIC has length 1}. Since F has words of odd length PS) in its

defining relation, any set of generators for F1  must contain at least one word of odd

length. Without loss of generality, we choose one of these odd generators and denote it

by C ,k where C has even length )4. It follows that m = 0 if C. has length one

less than C * and C is contained in C (i.e.. the length of C.C is 11:

otherwise, there would he a word of leneth 3 in the defining relation. Denote one of

these i's for which mj 0 by %' ow we find ]" such that i) n. ) 2 or (ii)

" c I and m. ) 1. 'Such a j" nust exist; otherwise, n, = 0 by enuation (C.1)

and F1 would b a resolution IV d.sian in n ( 2k runs, which is irnos-ihle (Webb

(19(1-, 6ar9oin (1q6g).) Define a now 2 desiqn 2 by addinn 1 to ni* (nakinI

A 4



Wi

it 1) and subtracting 1 from mj.. Fron (C.1), we see that this reduces the

contribution of mj. to n2  but leaves the contribution of m, at 0. Thus has

fewer two-letter wrds in its defining realtion than does F,, and so has larcer tr(L).

Ve have thus established that in order for a 2k-3 design with n < 2k to be

tr(L)-optimal, its defining relation .-tuSt consist entirely of words o even lencth. .=---

this is the same as requiring it to be a foldover design. (For examule, it is easy t' seA

that if a design with no odd words in its defining relation is split into two parts,

according to whether x, = +1 or xI = -1, each part is the negative of the other.)

Theorem C2 is therefore proved.

Remark: Theorem C2 can be extended to the case n 2k. The triL)- optim-3 .

fractional factorial design in this case is the *minimal" or "saturated" resolution If

design and must therefore be a foldover (Marcolin (1969)1. 4

Theorem C3: Given n (a power of 2) and k > n = n/2, a tr(L)-oztimal 2k -"

design in n runs is tr(LJ-optimal among all two-level foldover (nk)-desiqns if an!Q

only if r (the remainder upon dividing c by mn is ,, 1, 2, n - 1. or - 2.

Proof: We shall consider only the case k B 2 (=od 4) in detail. The 3r=-ent for e
the other cases is similar. As noted in the proof of Theore C2, the value of tr(l) for

optimal fractional factorials is:

tr(L) nlk(k-l)/2 - n!C.2-

where n2 is the number of two-letter words in t.he definin, relation. S:nce n, :s t','

sane as the number of pairs of completely confounded factors, we car refer to the

construction of Section 3.2 to obtain

n= r(a-:la/2 * (n-rlala-l)'

where a and r are defined (: (3.1) and (3.2). Subst.tntnc! --. 31 :nt, .'7'

-36-
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tr(L) k2 (;-1) = r(-r) (C.4)

fo the ontimal fractional factorials. These designs are necessarily foldovers, sinco

n < 2k (Section 3.1). We now refer to Table 2.1, which gives, for the case k 1 2

(mod 4) and n event

tr(k ) k (n-I) 2[ -2)

where L is the lack-of-fit matrix for an optimal foldover. Equations (C.4) and (C.5)

are the same iff r - 2 or r n n-2. Similar arguments, applied to the cases k 2 0, 1,

or 3 (mod 4) yield Theorem C3.

Appendix D. "Minimum Aberration" As A Supplementary Criterion for Choosing Among

Tr(L)- Optimal Fractional Factorial Designs.

Fries and Hunter (1979) introduced the concept of aberration as an extension of

resolution in classifying 2 k ' fractional factorial designs according to their

confounding properties. Let (nln 2 ,...,nk) be the word-length pattern for the 2k -P

design DI, i.e., ni is the ntunber of words of length i in the defininq relation.

, ,n2 ',.,nk') be the word-length pattern for another 2 kn
' desian

D2. Then D has lower aberration than 02 (which we express by D < D2 ) if and only

if there exists J such that nj - njI', j - ,2,...,J-1 and nj < nj'. Clearly, if D I <

n2 and D2 < D31 then DI < D31 so the concept of aberration may he used to rank

designs. The best designs under this criterion are the minimum aberration desians: 1 1

a minimum aberration design in a given class if there is no dcniqn r in sucl..

that p,< DI . This criterion is cotsistent with the more famMliar "maximum ronoltition"

criterion but Is much more sensitivo to differences in thp structirv nV thP altlsint

(confounding) relationships.
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We recommend thi use of the minimum aberration crAterioi to eupplement

tr(L)- optimality when choosing a 2
k ' p design to detect the presence of interactions.

Minimum aberration designs appear to he good with respect to:

(i) maximizing the number of degrees of freedom q for two-factor interactiong, and

(ii) distributing the k2  k(k-1)/2 interartions evenly over the q strings of

completely confounded interactions.

We shall consider the cases n ) 2k and n < 2k separately.

n ) 2k.

The tr(L)-optimal 2 kp designs are precisely those of resolution > 4. In thin

case, we are unable to prove a direct relationship between minimum aberration and i) and

(ii) above, but the following results may be useful for those who wish to explore the

matter further. Let hi be the number of two-factor interactions that appear in exactly

i of the n4  4-letter words in the defining relation, i - 0,1,...,n 4. Then

)hi = k2 . k(k- )/2 (D.1)

(ih i)/6 - 4 (.2)

jhi/(i+1) q (D.3)

Average (string length) - k2 /q (0.4)

Average ((string length) 2 (k2 +6n 4q . (D.5)

If we note that the number of strinqs of length i+1 is h,/(i+1), these results are adl

straightforward. O)np conseauence of them is that, among designs with the same degrees of

freedom for interactions (a), the minimum aberration design distributes the interactions

"evenly" amonq the Y strings hy -iniiziinq the dispersion of the string lengths, where we

dlfine disperi in to horh rijm of rquarr.s deviations from the average.
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n < 2k.

The tr(L)-optimal 2k-p desians in this case are foldover designs of resolution 2,

having ti fewest possible words of length 2 in their defining relations. (Appendix C.)

The aliasing relationships for suri a design include n = n/2 strinqs of two-factor

intiLactions, counting the one which is completely confounded with the overall mean. If we

define the length of each such string to be the number of two-factor interactions in it,

then the average string length is obviously k In. The following lemma provides a formula

for the average squared string length.

Lemma D1. 7n a 2k-p foldover design of resolution 2, the average squared length of

the n strings of two-factor interactions is [k(k-1)/2 + Gn + 2(k-2)n2]/ , where 04

and n2  are the number of 4- and 2-letter words, respectively, in the defining relation.

Proof. Let nij be the number of four-letter words that include i and j, and let

nij be the number of two-letter words that include i or 3 (but not both). Then

* will be confounded wich exactly nij + nij other two-factor interactions, and the length

of the string that includes 0.. is n., + n. + 1. Now let v be the number of

interactions which re in a string of length Z. Clearly, vk/Z is the number of strincgs

of length Z, and the sum of squared string lengths is M £1v/Z) = (nj + ni' * 1),

where the second summation is over all pairs I 4 i < j < k. Since each 4-letter word in

the defining relation contributes one unit to each of 6 different nij's, . nij = 6n4.

Similarly, n'. = 2(k-2)n and the lemma then follows directly.
ii3 2'

Since k, n2, and n are all fixed in the class of tr(L)-optimal 2k-p designs

with n < 2k, this lemma shows that the minimum aberration criterion here is equivalent to N

minimizing the dispersion of the lenqths of the strings of two-factor interactions. (This

holds true even if we omit the strinq which is confounded with the overall mean, since the

length of that srrinq is fixed at n2.) 4

The construction of minimum aberration tr(L)-optimal 2 kpk dosiuns w)hen n < 2k is

facilitated by the followinq theorem.

-31- :
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Theorem D1. Let D = ( D 2  be the n x k design matrix of a 2k -
" fractional

factorial design (n < 2k) such that D consists of a 1 1 copies of the columrs of the
D*

saturated design 0 of resolution ) 4 in n = n/2 factors and n runs and D2

consists of a subset of r distinct columns of D If D minimizes the disnersion of
-2

the lengths of the two-factor interaction strings in the class of regular fractional

factorial foldover designs in n runs and r factors, then D has minimum aberration ink
the class of tr(j)-optimal 2k

-p designs.

Proof: By the results of Section 3.2, D is tr(L)-optimal no matter which r

columns of D are chosen to form D2. Now consider the strings of two-factor interactions

in the aliasing relationships of D. If we ignore all interactions involvina the factors

in 02. the string that is confounded with So will have lenoth na(a-I)/2, and each o

2-
the remaining (n-i) strings will have length a n/2. Now consider all interactions of t'.e

form 8ij, where xi is a factor in D and xj is a factor in 2 " For fixed ,

there are na such interactions, a of them in each string. If we do the sane for all

r i's, and include these interactions in the aliasing relations for D, the 0- st:n

will have length ra + na(a-1)/2 and each of the remaining strings will have length

c = ra 4 A2n/2. The only interactions we have ignored so far are those that involve two

factors'from D " If we finally include these in the aliasinq relations for D, we w~i2
-2

add ci, say, to each string length, i 1,2,...,n, where the ci's are the str'nn

lengths for the (n,r)-design alone. The dispersion of the string lengths (exclulii-.
22i

the 80 -string) is therefore the same in D as it is in D2 " If the choice of n

minimizes this dispersion, then, by the remark after Lemma 01, D has minim= aberyit-

V in the class of tr(L)-optimal 2' p  designs and Theorem D1 is proved.
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Appendix E. The Approximate Distribution of the Liaiihood ratio Statistic for TeStina th'-

Hypothesis of !-, Interaction, When the Interactions are Drawn From a Normal Distribution,

and a Tr(L)-2 2ial Fractional Factorial Desiqn is Used.

This Appendix provides back-up material for Section 4.3, %.hich gives the results o a

power study conducted under the assumption that the "true" iteractions H 's) are Irawn

independently from a normal distribution with mean 0 and variance o

We restrict this discussion to tr(L)-optimal 2kp dsiqns in n runs. If w, is

the value of the contrast in the observations which estimates the ith string of confoude!

two-factor interactions, the likelihood ratio statistic w for testing 2 =  in the
2-

model (1.4) is, for a 2"known",

2' 22
W = n w/.

where q is the number of such strings. (The string of two-factor interactions that is

confounded with B is not included.)
0

Under the assumed normal distribution of the interactions and the assumption of

normally distributed errors in (1.5), the wi's are independently 2 2 + o2/n) where

Z is the length of the string associated with wi . The mean and variance of w ar7

therefore:

2 2 2
E(w) = nS a /a + a = nP S /k + a.2'

l b ~ 1 2

2" 2 2 2 2 4 2 2V(w) = 2 L7W.b/a 1)2= 2(nP S /k + 2no S /k, + a)

i b 2 2 12

where S = Sz and p2 k When x = C for al! , wis
2 2 a2 o

distributed as (nZp /k, + I)x . Although the t.'s are seldom :dentical, tv are

, - 4 1 -



generally quite close, especiallv when the choice among tr(L)-optima! d. signs is made

using the minimum abe:ration criterion as recommended in Section 3.2. We would therefore

expect the distribution of w to be well approximated by that of w' where

and g2 are chosen so that the mean and variance of w' match those of w glven in (E.2)

and (E.3). This approximation was the basis for the power study discussed in Section 4.3.

If k is a multiple of n, i.e., k = mn, then nm(m-1)/2 interactions will be

confounded with S and the remaininq ones will be distributed equally among a = n-i
0

2 22 2
strings. Thus t. = Z k /n, so w is distributed as (k 0 /V + )X , which

' 2n-1
approaches (2p +1)X. as k * =. Using this as an approximation for the distribution

of w when k is large, we find that the power will be P when

2 2 2= (X- /X - 1)/2. This result was used to find the "mininum detectable" value

of P for large k in (4.3).

Appendix F. Tr(L)-Optimality Under a Replication Restriction

Consider the construction of a tr(L)-optimal foldover design under the restriction

that n rows of the n x k half-desion D are replicated once, whe:e n ( k + ne. From
e

the discussion in Section 2, we see that the problem is the same as that of choosing the

k x n matrix A and the k x (n-2n matrix S so as to minimize tr(DO') where
e e --

0' = [A:A:B. If k 1 0, 1, or 3 (mod 4) this problem is solved simply by choosing

SA:B! to be the design matrix of a tr(L)-optimal half-design in k runs and n - n

factors. This can be verifiel by notin tat the inner pro,-uct o' any pair of columns of '

will then have its lowest possible magnitude (0 or 1), except for the n pairs
e

corresponding to the required replicated colu'ins. If 1 Z 2 'mod 4), the solution is 14

slightly more complicated. We construct 'A:P] by lgment:ng a column-orthogonal matrix
wi 03" chse sota 2

with two rows (a1':b ) an' '> . chosen o that 12a1'a 1'b ( 1. (If

n-n = k or n-n = k-I, two ucb rows will ha- he removed insteai. See Case 3 ol

Appendix R.) It can be verified that will then have the maxtmum noss2hle number of

-de-.__
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pairs of orthogonal columns, by Ehlich's (1964) Lemma 3.4. The inner product of any of the

remaining pairs of columns of D' will achieve its lowest possible absolute value (2),

except for the n e pairs correspondinq to the reouired replicated columns.

Once the matrix D' has been constructed, we simply transpose it and fold it over to

obtain a tr(L)-optimal design subject to the restriction that n of the foldover pairs
e

be replicated. In practice, care is required only when k S 2 (mod 4); for all other

values of k, the procedure ia equivalent to replicating any n foldover pairs of a
e

tr(L)-optimal design.
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