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ABSTRACT

A design optimality criterion /‘tgigl/: optimality® is applied to the
problem of designing two-level multifactor experiments to detect the presence
of interactions amona the controlled variables. Rule. are given for
constructing tr(&l'— optimal foldover designs and tr(&g/— optimal fractional
factorial designs. Some results are given on the power of these designs for
testing the hypothesis that there are no two-factor interactions.
Modifications of the triglﬂ— optimal designs to satisfy other experimental
objectives (estimability of effects, detection of the presence of other
nonlinear effects, estimation of the error variance) are suggested. Examrles
are given to demonstrate the application cf these designs to (i) screening for

interactions, and (ii) evaluating the first-order assumption in the

sensitivity analysis of a computer COde°<E“-\~,

AMS (MOS) Subject Classifications: 62K05, 62K15.

Xey Words: Design; experiment design; foldover desiqgn; fractional .actorial
design; interaction; main efrects design; minimum aberration;
optimal design; orthogonal array; Resolution IV design; screenirg
design; sensitivity analysis; two~level design; tr(g) -optimali%y.
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SIGNIFICANCE AND EXPLANATION

Experiment designs (plans) in which each controlled variable (factor) can
take one of two specified levels are frequently used in the initial stages of
an experimental investigation, when the objective is to determine which
factors are important and how they interact. This paper is concerned with the
design of such two-level experiments to detect the presence of interactions.
It is shown here how this can be done with very few experimental trials

(runs), even when the number of factors under investigation is large.

Our approach is to define an "optimality" criterion which represents the
ability of a design to detect the presence of interactions. This is based on
the trace of a matrix that depends on the design. We then determine rules for
constructing designs that ma+irize this quantity, over two broad classes of
two-level experimental designs. The main drawback, from a practical point of
view, is that the focus on a single criterion may result in the neglect of
other design objectives. We therefore present some modifications which

imprcve the designs with respect to other criteria.

The designs presented here have application to any experimental situation
in which there is some doubt as to whether the controlled variables act
independently on the response or whether they interact. A particular
application, which is demonstrated in an example in the paper, is to the
sensitivity analysis of computer codes which are used to model physical or

economic systems.
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TWO~LEVEL MULTIFACTOR EXPERIMENT DESIGNS FOR DETECTING

THE PRESENCE OF INTERACTIONS

*
Max D. Morris and Toby J. Mitchell"
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1. Introduction

1.1. The Problem
We consider here the problem of designing two-level experiments to detect the prese~ce

of interactions among k experimentally controlled variables (factors) Xq,Xp,ee¢,Xy»

with reszact to their effect on the expectation n of a randomly distributed response
variable y,. There are no interactions over a specified region of interest y 1if anZ

only if n can be expressed as

AL S AR il L ey VOISR £ 4, vy

1.1}

4

n = n{X) = f1(x1) + fz(X2)+~-o+fk(Xk)

: for suitably chosen functions f£;(X;) when X = (x1,x2,...,xk) € X
We chall restrict attention to just two levels of each factor: Xi- and xl+, cnosen

so that all 2X combinations of levels are in Xe and we shall define the "coded”
factors X4,Xspseee,X), SO that x; = -1 when X; = xi' ané x, = +1 when X; =X, . we
In terms of the coded factcrs,

corners of the cube x; = #1 by K.

shall denote the 2k

(1.1) becomes

bra

(l:hmihmmd.i/mmrg«dmu.cm.m-n L TINE AN e 3 1

: X
f nix) = 80 + - s-'xj [ B
= - i=1 ° ot
= " N §
B H
T ; 2
E 3
e * . e . . :
= Department of Statistics, Mississippi State University. i
- i
A bl i i Wi ~ad ~uv sonel 2
£ 5 Mathematics Research Center, University of Wisconsin-¥adison. Curcentle s
Z under assignment from the Computer Sciences Division, I'm:ion carhide %
Corporation, Nuclear Division, Oak Ridge, Tennessee. z
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an’

Sponsored by the United States Army under Coatract Nos. DAACIO=T8=7-0014
DAAG29~-80-C-0041 and the Applied Mathematicail Sciences Feseaych Proarars,
office of Eneragy Research, U.S. Department of Enerav under cortract

eng=26 with the Union Carbide Cormoration.

PR Y

e
PRI et Bt lentd R ini i ety fue v S LRt

e~ It 3 L Bty
PE T

B S VU Y

e e e e, R Ve

e i N s e i

T T ————

pa s LSRN IS NN -
- T




(or X = (x‘,x:,.-.,xk) < K ’ whore ll -’)/2' } - 1,2,000;“, and
'}

YoMy e e T
i=1

w ot (xy -t
g LY =Xy

A
lo"

[EY Py

A nimple departure from (1,1) allows pairwise interactions, {.8., n can bn axprossod

~as

ki1 k
n(x) = Sor (X, X)) (1.3)
m1 quisy 134773

In terms of the coded factors, (1.3} can he written

TR
nix) = g  + B, x + B, % X {1.4)
O gm P gdy gegey A3

for x € K. This is a conventional model for the analysis of 2-level factorial
expariments (pngaibly incomplete) in which interactions among threse or more factors are
asgumed to he zero. We shall use it here in a somewhat different way, namely, am a device
for the planning of experimants to indicate whether or not the factors affect the response
independently, i.e., as in (1.1)s Our approach will be to assume that (1.4) holds on K,
then to use a design optimality criterion to construct Jdesigns which will be good for
datecting the presence of non-zero Bij's. Even if higher order interacti?ns are prasent,
we would expuact this approach to work, since (1.4) will be a hetter approximation to the
true responsn over K than will (1.2). We should also emphasize that we do not expect nor
require (1.4) to hold outside of K. ‘(It n is a quadratic polynomial over some
continunug region of in;;rest which contains K, for axampla, (1.4) holds on K bhut nnt
avarywhera in the region.)

In this paper, we shall rafer to “he Bjj's in (1.4) as "interactions" and the
H"s ({ ¥ 0) »nn "main effaects". Except for a factor of 2, these are the same as the main

affact.s and Intarantions conventimnally defined for a two-level factorial experiment (Nox

and Huntar (1961)),



Good dontgny (e, the Rownlution V fractional factorials) exist for estimating the
majin effocts and interactions {n the model (1.4), However, tho number nf runs required is

At leamt (k" + 1 + 2)1/2, and may bo cnnsiderably greater than that {f a regular

fractional factorial desian is used,

In thin paper, we conpider a lesn amhitious sxperimental goal, namely to determine
whother or not siqgnifiecant interactions are prasent. B8uch information, obtained early in
an {nvestiaatinn, can he useful in planning subsequent experiments. Initially, we shall
iynore other consideratinna, such as estimability of the main effects and interactions and
egtimability of the error variance 02. These will he discussed in Section 5,

1.2. A Dasign Criterion: tr(L) =optimality

In matrix notation, our model Yor a vector y of n observations, based on (1.4),

ig:
ALyt XL, v E, ElE) w0, V(g 102 (1.5)
where 3, 1s the (k + 1)-vector (B,,3,,...,8,)" and g, is the k,-vector
] d " - .
(01,,u12,...,sk_1'k) of interactiona, with k, = k(k=1)/2. The matrices 51 and 52

depend through (1.4} on the n x k design matrix D, whose uth row is

(x,u.x2”,...,xku).

vWhen the model (1.5) is fitted using the ordinary least squares criterion under the

restriction that szf_g, the expected residual sum of squares is

RRSS + In-r(X,))o” + Bi1B (1.6)

1
- ' -
L= %301 - %

where r(%,) is the rank nf %, and the lack-of-fit matrix I, is

] ]
JRROTRDR, (1.7)

Wa shall not require 5;51 to he nonsingular, hence the use of the generalized inverse

! - . .
%1% i (1.7)

htvinaon's (1272) agenoral aphroach to the problem of detecting i{nadequacy of the model

E{y) = §1g1 wan to nnlact the denign so as to maximize the determinant of I or

nquivalently, to minimize tha ganeralized varfance of the least saquares estimator of Q,.
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the class of desions for which 37 is
=
.

This criterion can be applied only within
estimable. Our approach nere will be more Llosely related to the wor% of Atkinson an?

redorov (1975), whose T~optimality design criterion reduces to the maxamizatinr of
wWiliCnl 1§ unknown.

AR toat AL NSE R P R RIS St

A= BLLSZ. This criterion, auwever, depends upon the value of gz,
Ko,
Jenes and Mitchell (1978) avoi~sd Jnis @:f€izulty by utilizing the relationship between

A and the posit.ve .efinite quadratic form 1 = giggz, which, with proper choice of 7T,
can be interpreted as a measure of the importance of the interaction terms. One of their
criteria iAz-optimelity) requires maximizing the average value of . (over gz) for
constant T:; this is eguivalent to maximizing tr(2—1£). In the present setting, the

Jones-Mitchell T-matrix can be shown to be the identity
In Appendix A, we show that the tr(L)

I, so A, ,-optimization beconmes
~ <

criterion can

maximization of the trace of L.
also be derived by maximizing the expectation of X (no matter what the value of 22 is)
This is the criterion we

under random assignment of factor labels and factor level labels.

& ) Lo M Tt
A it mmf_mmmmm&mfbﬁss‘rﬁmmmm SR > b
h ", iLTAS. [T 7 LAY

shall adopt in this paper.

1.3. Conventions and Notation.
Throughout this paper, the word "design" refers to a two-level design, except for

brief discussion of "center points" in Section 5.3. Wwhen we wish to indicate also the

number of runs {(n) and the number of factors (k), we shall write "“(n,k)-desian".

mmww’mmmmmmwwﬂ.—‘mm

»_,,wnrf.u;wmmmﬁfmﬂf.@mmma.;

The following 1s a selected iist of letters and symbols used 1in the tex:t.

k: Nomber of facters.

k,: Number of two-factor interactions = k(k-1}/2.

fet of 2k nossible combinations of levels of the coded

=

1.

where ¥ =

factors xt,xz,...,xk,

Number of runs in a desian.
\umber of runs in the "half-des:ian” used t~ construct a foldaver 3Inai-~-,

X/n.

a: TInteger value of

Witninass

Remainder cpon dividing

[
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D: Design matrix.

§: Des-gn matrix for the "half-design™.
R §1: Vector of coefficients for the first-order model (20,51,...,31).
QZ: Vector of interaction <oefficients (811,912,-..,Sk_1'k).
51,x2: Matrices of known constants in the model E(y) = §1§1 + 5222.
L: Lack of fit matrix L = X3X, = XJX (XiX.) X}X,.
02: Common variance of the individual observations (yi's)‘
ny: tamber of words of length i in the defining relation of a

fractional factorial desian.

R A At ity [ Jen, AR 1 Y Vb G et Wk SRR e M oL &
LI Ry, FARIR S Y i 64, ¥ SR o o b y i M
AT VAN DY i 46 1o e " i AR A A SR '\M,,h.“*}”i'ynmuh’ﬂﬂ"ﬂ

g: Numbe- of strings of aliased two-factor interactions (not counting
the string that is confounded with the overall mean) in a fractional
factorial design.

w: Likelihood-ratio statistic for testing the hypothesis that 22 = 0.

AEATRY B SRS M

2. The Structure of Tr(L)-Optimal (n,k]}~Desiansg

2.1. Orthogonal Arrays of Strength 3

It is clear from (1.7) that tr(L) cannot exceed tr(§i§2) = nk,, and that this

LRI 500 o

i€ a=*

3

upper bound is attained exactly if and only if §;§1 = 0. This condition can occar

only if all design moments of form [il, [ij), and [ij2] are zero, where

AR N Sl

X

M3 askieastri,

@
Ll

forms a complete 23 factorial desian (possibly replicated), 1.e.,

We therefore have the following theorem:

array of strength 3.

it R L ot

Theorem 2.1. If n is a multiple cf R and there exists

n
.
A
i

strength 3 in n runs anéd %k variables, then the set of all such

set of all tr(L}-optimal (n,k)-desians. (An extended version of

-3
3
.
2.
n
]
D
n
by
-

“actorial setup, appears in Morris and Mitchell (1077
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The orthoaonal arrays of the type deoclarced optimal by tha ahave thaorem ~an easily be
eonatructed by "folding over” an orthagonal main effacts desiqgn, ¢.q., A Plackett-Purman
(1946) dentan or a reaular fractional factorial dasign of rasolution ITI1 (fDox and Huntor
(1961)), The latter foldover deatans are members of the familiar class of raaular

fractional factorial dealans of resolution IV,

2.2, Foldovexr Destana and Tr(L)=Optimality: A Conjecture

We now turn tn valuen of n and % for which nn orthogonal array of strenqgth 3
exists., Thenn {nclade ald ﬁnsésmin which n QAZkNV;;VU?; {8 not a multiple of R,

Our first attempt at the constructlon of tr(L)-optimal desiqns in these situations
was a limited computer search in which we used the dasign construction algorithm DETMAX
{Mitchell (1974a)), modified for our purposes to find locally tr(L)-optimal desians.
Designs werc genecrated for % = 4 with n = 6,8,10, and 12, and for k = §

with n = 8,12,16,20, and 24. 1In every case, the design with maximum tr(L) turned out to

be a foldover design, i.e. the design matrix D could be written as

(2.2)

1]
10 W

whare the "half-design" matrix § ia an n % k matrix, n “n/2.

Foldover desluann, introducad by nox and Wilson (1951), have provaed tn he coxtremely
ugnrful {or aatimating main aeffects froe of hing from two=-factor interactions, The results
nf nur computer snarch indicated that this clagn of desiqgna may also be "optimal" for
datecting the prenence of two=factor {nteractions, We oxpress thia apecifically i{n the

follnwing coandyecturns, which we havn not heon ahle to prove.

Conjacturs:  For ovan on, A foldover design exists that {g tr(h)-optimnl in the

clamg of  (n,k)=destyns, where 1, in defined an in (1,7) for theo modal (1.5%),



Although tr(L)~optimal desians for even n are not necessarily foldovers (witness the
resolution V fractional factorial designs), the conjecture implies that one need only
search the class of foldovers to find a tr(L)-optimal dewsign. This is what we shall do

h!:!)(t .

2.3 Tr(g)-Ogtimal Foldover Deiignl

Some simple matrix algebra shows that for a foldover design (2,2) and for the model
dafined by (1.5),

e (82 (2.3)

er(L) = nk® - A
Thus the tr{L) criterion for design selection is equivalent to minimizing tr(g'ﬁ)z,
which is shah's (1960) criterion applied to a first order molel with no constant term.
(Also, see Kiefer (1974), Section 4H.) Thanks to some unpublished results of L. J. Gray
~and some helpful conversations with C. S. Cheng, an optimal E can be constructed easily

by referring to the following rules, derivations of which are given in Appendix B.

~

Gray-Cheng Rules for Constructing § {n 2 Xx)

Case 1: n = 0[mod 4].

Choose § to be a columne-orthoqgonal nox k matrix. Examples most familiar to
gtatisticians are the Resolution II!l two~level fractional factorials, and the Plackett and
Burman (1946) designs,

cage 21 n Z 1(mod 4].

AAd any row with elaments %1 to a column-orthogonal (h=1) x k matrix,

case 1 ; 3 2[mod 4],

(a)y 1f ¥ ¢ ;-2, Aaugmont an (;-2) x k column-orthogqonal matrix with two rows of
41's and _=1'g, chogen Ao that tha ahsolute valus of_ their inner product is less than or

anqual o 1,

Py

:
a4
]
;
“
:
:
¥
W
E
3
2
p
%




S —

column~-srthogonal =asrix

3¢

- ~
or k = n-1, vemove from an (n*2) x %

(b} f % =
1. In Apzmend:x 3, 17 :s

ro¥s whose inner product has absolute value less than or egual to

shown that two such rows exist.

~
Case 4: n £ 3imod 4!.

~
Remove any row from an (n+1) x kX colum-orthogonal matrix.

The Gray-Cheng rules can be applied in virtually all cases of practical i=teres:z, wi=>

~
5 rthogonal (a=1) » %

XK =n= 1(md &), where the colu=n-o

the exception of the case
matzix reguired by the rule for Case 2 does not exist. (See Raghavarao (19239) for special

-
<

~
ccnstructions when a =5, 13, or 25.

-~ o~ A 2 -~
Remark 1. Since :r(g'g)z = ¢r(DD')”, the same rules can be used «hen =2 <

~
simply transpose an oprimal %k x n rmatrix.

Remark 2. The tr(lL)-optimal foldovers derived from these rules are not unicue.
Usually there are several ways to choose the basic colurm-orthogonal matrix and several

ways to add or remove one Or two rows according to the rules. These rmay vield 3ifferent

L (but the same tr(L)) when folded over.

Remark 3. In Cases 1,2, and 4, the class of foldover Jesians derived fro=

Cheng rules is the same as the class of designs obtained by folding over the X =atrrix
{including the column of 1's) for designs constructed accoréding to the rules given
hell (1274b) to achieve D-optimality (in most cases) for the first~order =odai.

Case 3 there are some nminor differences. We would therefore expect the

foldovers to be good for fitting the first-order model {when =2 > 2%) 1if iateraciions ave
found to he negligible.
Upper bounds on tr(L) for foldover Jesigns are easily obtained by sthstitizi=g 14+
ds, whish are sSiven 1< Takla:

{2.3) zhe ninimun tr(s's)z given in Apg
~ -

erived from the v—-Ch

2.1, are attainadle by all foldovers &

g mm:xmm‘mmawm»‘.mmzmafmmtmmm.’&':ammmw
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~ ~

n 2>k n<¥k
Rimod 4) tr(L) kimod 4) tr(L,)
0 k(k=1) 0 K2 (he1)
1 AK(k=1) (1=m"2) 1 (k2=1) (1)
2,k aven RR(k=1)(1 = 2(k=2)(k=1)""2"2)  2,% avan KZ(me1)=2(m-2)
2,k odd AR (1=20=0K RT3 2,5 oad KR (Renye2(3-n 27T
3 Pk (k=1)(1=n"2) 3 (k2=1)(R=1)

Table 2.1. Upper hounds on tr(L) for foldover designs in % variables
and 2n runs. These hounds are attained by all designs derived from
the Gray=-Chary ruleas.

3. Tr(L)-Optimal Fractional Factorial Designs

Since the fractional factorial designs are so well known and widely umed, it is of
interest to know which are the best with respect to the ¢tr(L) critorion, and hov those
compare with the optimal foldovers described in the previous section., We shall restrict
our discussion to the regular 2P fractional factorials. FEvery design in this class has
a unique "defining relation" with 2P=1 ‘'words" which identify the effects that are

completely confounded with the overall mean (Box and Hunter (1961)),

3.1. Characterjzation

From Theorem 2.1 and Theorem C2 in Appendix C, we can characterize tr(L)-optimal

fractional factorial designs as follows:

1. If n > 2k, the tr{(L)-optimal fractional factorlals are the 2P destians

of resolution 4.
2, If n < 2k, the tr(L)-optimel fractional factorials are the 2k =P foldover

designs of rasolution 2 with the fewest 2=-letter words in the defining relatinn.

3.2 Construction

‘The construction of desians-of resolution--24—in well known, so there is no nrahlaee
if n » 2%, unlons one wants to use additional criteria to aelect from Amana the masy
desiqgne availahle. TFor this purpose, we would recommand the "minimum abavration" criteris

of Frias and luntar (1979), which in the presont case amnunta to amlectine Jdotiann +)a

-0

Best Available Copy
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have the fewest words of length 4 :n the defining relation. (See Appendix D for a more

detailed discussaon.) Table 12.15 of Box, Hunter and Hunter (1972) gives a list of minimum

DRSO LRI

aberration designs for k < 11, n < 128,
k=P toldover with the fewest words of length

If n < 2k, we want to construct the 2

2

-

in 1ts defining relation, 1.e., with the fewest pairs of completely confounded factors.
This can be achieved only by distrabuting the factors as evenly as poscible over the set of

P,

* ~
columns in D , the saturated design of resolution »4 in n = n/2 factcrs and n

2 4-1 £-4 16-11 .
' 2IV ' 2IV and 2IV designs. See Box and Bunter

2k-p designs will therefore have the form

*
runs. (Examples of D are the 2

(1961}, Section 5.) The tr(L)-optimal

*
consists of a 2 1 copies of D and 22 consists of a subset of

{21:g21, where 21
k/; and the

S A S

Bl

*
r distinct columns of D , and where a and r are the integer part of

h

remainder, respectively:

a = Int{k/n) (2.1

. (3.2)

4!!§W%MM&%WMMM%@%HM

For construction and analysis, it is convenient to write these designs in terms of

Lt biumiadr i

EPEr.

4

"group-factors" A, ,A ,.¢.,B (Watson (1961)). An example, for k= 12 and n = 8, is
P 172 ~
n

given 1in Table 6,1 of Section 6.

aliasing relations among the group factors in the usual way;

The aliasing relations can then he determined most easily ;

by first writing down the n

then

R s

(1) replace each group-factor main effect Ay by the sum of the main effects

LSS

of the factors in Group Ai; g
:

i

{

§

replace each two-factor :interachion (h}AT) among aroun-factors bw the

e

(o8

—
0

i

:
A
H .

sun of al) two-factnr irteractisns involvina one factor from group

and one factor “rom grour fH_, and
2

e it

o s

-10-
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& .
) (211} replace the overall mean (denoted by 1 in the notation of Rox and Hunter
(1961)) by 31 plus the sum of all two-factor interactions involving
3 .
: two factors from the same group.
: ~ * B
For ¢tr(L) optimality, it docsn't matter which r of the n columns of D  are &
*
n-run design in r factors, and 2

chosen to form D,. However, 1f we regard B, as an

choose 1t to minimize the sum of squared lengths of the strings of two-factor interactions

among those factors, then the design D = [Q11223 will have minimum aberration among

(This is Theorem D1 in Appendix D.)} The construction of

AR EARAINE 80zt Mg

tr(L)-optimal 2P desians.
= 4,8, or 16; any subset of r columns of D* will do. When

such D, 1S5 easy when n =
<

n = 32, nroceed as follows:
(1) Wraite Jown the saturated 2;3-11 design with generators 1236, 1247, 1258, 1349,

145(11), 234(12), 235(13), 245(14), 345(15), 12345(16).

R o O P M

135(107,
(ii)} Strike out the columns associated with the first (16-r) factors in the .
) following list: 16, 15, 14, 13, 12, 1, 11, 10, 7, 6, 9, 5, 4, 3, 2.
e
This procedure was derived by writing down, for each k, all feasible integer vectors , 4
g

) (fo,f1,f2,...), where fi is the number of strings of length i, finding the one which
and then finding the corresponding design. We have not attempted to

RN e 2

minimizes E 2 fj,

b

n > 32,

o,

i

4

der:ive similar procedures for

3.3. Comgarison of Tr(&)-optxmal Yractional Factorials With Tr(&)—Optlmal Foldovers. f g
i3

When n 1s a power of 2, one would generally prefer to use a fractional factorial 3 i
design rather than the less familiar optimum foldovers of Secticn 2, mainly for reasons of ;
R~ ]

simplicity of construction and analysis. As we shall now see, the optimal fractional fg
factorials are either as good as or "almost" as g:nd as the optimal foldovers with respect gé

R
Per

LA 80t st ke
SERs 7 R Ao S LR,

to  tri(L)-optirality.
2v, the tr(L)-optimal fcldovers

If n, a power of 2, 1s greater than or emial to

tr{L)-ontimal ‘ractional factorials are othoaoanal arrays of strength 3, and so are

and the
optira’ among  (n,¥)-"desians by Thoorem 2,1. In the more interestina case n < 2k, our

ia as follows:

main result (Tioorem 77 of Innendix ©)

RN EIO. opre
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(See (3.2).) Thus the efficiency of the optimal fractional factorial is at least

-%

%

3

]

&

]

2

I

7

it

Given n (a power of 2) and k > n = n/2, a tr(L)-optimal 2k-P design in E

n runs is tr{L)-optimal among all two-level foldover (n,k)-designs 1f and only 1f :

r (the remainder upon dividing k by ;) is 0,1,2,;-1, or ;-2. :

In the cases for which r does not satisfy these conditions, the tr(E)-optxma] ;
2k‘P design is "almost" optimal among foldovers. For example, suppose r = ;/2, where §
~ N - 3
n » 8, which appears to be the "worst case" for the efficiency of the 2k P gesigns é
3

with n < 2k. Since n is a power of 2 and n o> 8, k 1is divisaible by 4 (by (3.2)}, §
3

B

2 A =

so the upper bound on tr(L) for foldover designs, given in Table 2.1, is X" (n-1). The %
23

efficiency of the optimal fractional factorial, relative to this upper bound, can be showr 2
2

~2 2.~ ~ . . .. ~ ~ ' =

to equal 1 - n /(4k (n-1)). For fixed n, this is minimized when k = r + n = 3n/2, §
@

n » 8 here.

24
!

1 - (9(;-1))—1, which is at least .9841, since
We conclude that if one is seeking a tr(L)-optimal (or nearly optimal) foldover ‘ , g
2
in 2n runs where n is a power of 2, one might as well restrict attention to the %
v B
fractional factorials. These designs are easy to construct and the analysis of the data is : g
E
easier to perform than for other types of tr(L)-optimal designms. ’;%
o
.
4. Power of the Likelihood-Ratio Test of the Hypothesis of No Interactions : §
i

5]

In this section, we shall indicate roughly the ability of the designs of Sections 2

and 3 to detect the presence of interactions when a conventional statistical hvpothesis
1

test is used.

4.1. The LR Test for the Presence of Interactions.

We shall restrict attention here to two studies of the power of the laikelihood-ratin

= 0 in the model (1.5}, where £ :s normallv

(LR) test of the hypothesis that 2,

This is not 1ntended to preclade the use of nr~o-

2
dastributed and ¢ ie¢ assumed "known".

forma? or anformal techniques of analyzina the data for the presence of interactirrs.
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The LR test statistic w is R(§2|§1)/02, where R(§2|§1) is the increase in the

8 1s set to 0. This

A S A e A R e

residual sum of sqguares for the model (1.5) that results when £,
statistic has a non-central chi-squared distribution with r(L) degrees of freedom and
non-centrality parameter X/(202), where r(L) 21s the rank of L and A= 35:22.
The calculation of the LR statistic w 1is particularly easy for the foldover E
designs of Sections 2 and 3 when n € 2k. Let yi* and yl' be one-ha £ th2 sum and :
E
one~half the difference, respectively, of the two observations in the i:h foldover b:
pair. Then an equivalent form of the model (1.5) is %
By = 180 + .8, B = B8, 2.1 %

~ ~
where D and §2 are composed of the columns for main erfects and interactions,

respectively, in the half-design, and our notation has been changed temporarily so that

now contains only main effects (not BO). Note that the elements of X+ and y

&

are all uncorrelated and have variance 02/2. When the half-design § has full row rank

o= n/2, as it does for the foldovers of Sections 2 and 3 with n < %, there is no

i.es, y =y . It therefore

contribution to the residual sum of squares from Z-'
follows that the residual sum of squares for the model (4.1) with §2 = 0 is just the sum

This residual sum of sauwares 1s

s W;«%‘&mﬁmmammw&%m&m&mmwm&

of squared deviations of the yi*'s about their average.

in fact R(8,I8) since the row rank of ll:g,l is also n, and the unrestricted molel

fits the data exactly. Thus

R Strontel

[

w = 2§(y:—§*)2/o‘°‘

oy

y
S

for the designs of Sections 2 and 3 with n ¢ 2%,
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4.2, Power Study 1

B A T Y TS

This was ~ ~‘~u:iation study which was conducted for some tr(g)-opt;mal foldeover

designs constructed as indicated in fection 2. Cases examined were % = 3 through R

with n = 4,6, and B8.
For each design, the power of the R test was invest:igated for two values

2 ? . .
8,/067, where may be viewed a5 & measure of the overall magnitude of the

2 L]
of p° = é‘)~2

K is the average squared residual per point which would

1nteractions. (We note thatn g; s

occur if the €irst-order model were fitted to the "true" resnonse (1.4) over X. Thus, for
. . : 2 “ " .
example, if the interactions are such that o = 4, we would expect a "typical" deviation
from the first-crder model at a given ccmbinat:ion of factor levels to be on the order of
2g.}

In each simulation, %v was selected randomly 12,500 times from a uniform
2

O AT LU S M I Lt O I LCIN LS EW 5 80 AL e ke At esSah e

. . . . 2 .
distribution on the sphere gégz = 920 , (o= 1.0 or 2.0), according to a method
described by Marsaglia {1972). For each éﬁ, the non-centrality parameter was computed, ;

then the corresponding power for the LR test at the a = .10 1level was calculated usina
an approximation to non-central cha-squared probahilities aiven by Severo and Zelen
(1960). This procedure generated a distribution of power values, the qiartiles of which

are given in Table 4.1 for each case.
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the test 1is
simulations.

Power Studv 2

AP ST W vpas

R s L S IPEE R A

217
.528
.767

.189
<445
624

.178
.387
.549

.176
.364
.519

.169
<359
.510

.181
.362
517

+455
«675
767

«420
644
.766

. 382
.593
<711

.290
£76
.694

«367
577
<690

.369
.582
<702

+652

.784

767

.661
.787
.863

.631
«751
.831

.48
+ 742
.824

621
.740
-321

634
.752
.834

Power study for small

a =

distribution with mean 9

The designs considerad were the

e e = =

<10,

in (1.5) with normal

randomly from the sphere of radius
The results for each case are bhased on

these desians the test stataistic

and

13
~

In this study we 1nvestigated the pouer of the

2
and variance cb,

P 25

+543

.986
1.500

447
. 955
.998

.409
.910
.992

401
.884
.987

376
.877
.985

.421
.882
. 986

PT.

? 50

.949
.999
1.000

924
.928
1.000

.887
995
1.n000

.736

.993

1.000

.869
.993
. 999

.871
.994

1.000

tr(L)-ontinal foldovers:
of the distribution of the power of the, LR test of the hypothesis
knowr:, qenerated bv select-
The significance level
12500

® 5

.987
1.00»
1.000

.998
1.000
1.000

.996
1.000
1.000

«963
1.000
1.000

+995
1.000
1.000

996
1.000
1.000

LR test, again with

2

wh = AT
where q._ p o /.2

the lenqths of the strings of confounded two-factor interactions.

i.e.

under the assumpt:on that the interactions are drawn indenendently from a normal

triL)-optimal fractional factorials of Sectior 3; for

rte mean and variance are easilv calculated from

(Ser Appenilix E

hﬁ‘i
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The distributior of w was approximated by that of w' = 9112 , where g, and g,
q, <
-2

were chosen so that the mean and variance of w' matched those of w. We determ.ned for

each design the value of p for which the power is .%9 for tests conducted at the

a = .10 level of significance. (Actually, we are discussing expected power here, where

the expectation is taken over the assumed normal distribution of the interactions.) These

3<% <1¢, n < 128,

"minimum detectable" values of p were calculated for {i) n > 2k,

for the designs in Teble 12.15 of Box, Hunter, and Hunter (1978), which a'e minirum

aberration designs of resolution ? 4, and for (ii) n < 2k, 3 < X < 10, n > 4, for the

minimum aberration resolution II foldovers presented in Section 3.2. Some resulis are :

Yo+ 0, In

shown in Table 4.2, for k =5 and k = 10, as well as the limiting cases as

the case k =5, n = 8, for example, the interactions need to be bia enough to cauvse a

":ypical" disturbance of magnitude 2.01c at a randomly selected corner of the 5-cube an B
order to be detected with probability .90 by the LR test with a = .10.

*
To obtain an approximation to the minimum detectable valuve of p, (¢ (a,P,%,n}, say),

=
5 for specified significance level a and power P, once can use the ecuation for the
*
%; limiting value as X + ®, which can be shown to be ‘
(: . ;
= H
= * 2 2 1/2 :
3 © = - 1)/2) (4.3

p (a,P,®,n) [(Xc;u/xq;P 1/2] &

AL e,

noint of the Xy

2

whexre ¢ = n/2-1 and xz.“ is the upper 100a% percentaae

*
distribution. {See Appendix E.) Saince o

33
"

does not change ruch with X, (3.3) can

*
used to approximate p {(a,P,k,n).

Although the results of Tables 4.1 and 4.2 do not represent a very comorehensive st .
i
of power, they dc serve to indicate roughly what the user can expect from the Aesizonc > {3
i
- i3
Sectionz 2 and 3 with respect to their abhility to detect the preseace of iateract:i:aone.,  I7 13
the next section, we shall consider other design ob-ectives.

. N
: H
: £l
3
1 3
-16- N 3
§
:
: i
- 2
= p
£ :
- iF

i

R




Croranres ey

n
k 4 8 1€ 32 o] 128
5 ‘ 8.42 2.01 1.20 0.85 0.60 0.42
10 8.76 2.10 1.22 0.82 0.82 0.50
® 9.23 2.20 1.27 0.90 0.68 0.54

Table 4.2. Power study 2: Minimum detectable values of p for

the LR test of the hypothesis 22 =0 at the a = .10 significance

2
level, ¢ known, using tr(lL)-optimal fractional factorials
described in Section 3. Here a value of p is “"detectable”™ 1f the expected

power of the test is at least .90 when the elements ﬁz are drawn

independently from a normal distribution with mean 9 ané variance
o2 = p26%/k,. i.e., E(813.) = plo’
b =P or iee., E(83, p o,

5. Modification of tr(L)-Optimal Designs to Suit additional Objectives

~

Seldom is an experiment plaumned in practice with just a single purnose in mind, so we

shall now examine the designs of Sections 2 and 3 with respect to some other ohijectives and

suggest some design modifications.

5.1. Fitting the First-Order Model

When n ? 2k, the tr(L)-optimal designs are orthogonal (or nearly so) for the firs:-

order model: E(y) = §1§1, so they need no modification te estimate §1 efficiently.

When n < 2k, however, the tr(L)-optimal foldovers presented in this paper do not verrmiz

estir ‘n of 81 in the first-order model. For thece s:tuations, we tried several

appro s to the constructicn of "“compromise desians” which would have relatively gk

values of tr(L) and would also provide estimability of 51 {Morris and “itch~il
™ 2

(1977)). Our most successful procedure was the fcllowina. The size of the €inal de<iar,

e

is specified as well as the size of a smaller foldover dez:ian, 2In.

ue

n,
tr(L)-optimal foldover design in 2n runs :s then obtained ani auamenterd with +ho
2

n - 2n  runs whi~h maximize the determinant of 5;51 for the “i1nal derian,

T
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Compromise Jesigns were constructed :n this way for X

= 4 chroagh, %, wi=h

n = k+2 through 2k-1 and varvinz n. The augmentation was done using the DFTVMAX

Tre desiens which have the mirimum number oF augmenting v

algorithm (Mitchell (197420

for fixed n are precentzed in Table S.1. For <hage rininally augmented

tr(L)-optinal des:gns, the augrnentation does net affect tr(L); :n fact, the "extra" runs

(those not marked with an aster:ist ir the tahle) are not used at all ir the LR test of

%
S
=3 the hypothesis that I = 2. Thre user of one of the compronise designs in Table 5.1 can
e ! - 7
ol
: therefore refer to the results of Section 4, partaculariy Table 4.1, for an indication of

Y DT PR & s 7
BT 2, R AT 0 & S0 A RN A 00 Ot R e e N e

the ability of the desian z¢ 3etect the presence of 1nteraczions.

X

e

LY

~ #
k2n n 2
ki

4 4 & 1103 1110# ati1 1911 o3
4 6 7 1001* 1010 1111 1109 %
2

5 4 7 011311*  01000* 27110 09011 09101 E
S 6 8 01001*  01100* 21111 10101 00000 g
S 8 9 11000%  FO0NI* ,ICINE £1101% 00100 ) L g
6 4 8 119100%  0201M* 123110 111111 031109 030110 ‘
6 6 9 111i00* 911710+ 01416+ 111111 110119 001110 1
& 8 10 010100%  01801H*  111800%*  116111* 911110 100110 Z
6 10 11 100111* 301121+ 21M5G1*  161001%  100000* 001010 3
7 4 9 0186001* £111111% 1110007 0111002 1101010 1001001 1101109 ‘ g
76 10 0108070* S511109%  APrA111% 1010901 0911011 6110111 10108010 z
7 8 11 ©100010%* 3016510%  QC21AED*  O000111% 1000001 1101010 1600109 ;¥
7 10 12 £011901* 1311117 1390181%  1111101*% 1001611* 9010011 0001111 P
7 12 13 0110119% 030900 2M111C1* 6910011F 1111011*  1110101* 01016000 £
&

€ 419 11011011% AM1AICTIY M1679111 19206201 0100100C 00011101 0DG1IN010 13061110 %
8 6 11 11109030+ 13010017+ 16191110* 11119111 00110190 01200110 1£000101 93100011 3
8 8 12 1£001601% 211977217 11714101+ 0DR10ALA* 00111101 01011711 11111000 01061198 %
3 10 13 15110000% 3011310 % 20191901 111110114 11100181 10011161 00110111 17000011 . g
312 13 111111117 11101657 13196169 119007 21 10110510% 10100101* 21110000 11010191 1%
& 14 15 110110€0*% 171111379 £35617119% 11901111% 01111101¢ 00061100* 11100100¢ 1001317 4
{3

Tarle S5.1. Torpromise lesiana oonetructad hy autmentina Cr/] J=apt:inal desians to nernit §
= astirability o° main <ffests.  ~he matation U 1c 103 te rafer en the level "-1", Fact 'g
design also contains *'ea Snldorer of ryuns mavvseed wit- Y, 2
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- Before going on to the consideration of other desiagn objectives, we should remark that 3

= 3

< - £ . . R R :

P ¥ unaugmented tr(L)-optimal designs with n < 2k can be of practical use, even though they .

= r & ——— H

s § ) do not permit estimation of 81. This is particularly true when one is dealing with a .
3 ~

= : large number of factors and the number of runs is quite limited. Common nractice is to use g

E= . : a first-order design in hopes that the main effects will override the interactions, and i

TN

then perhaps to follow up with further runs to seek out interactions among the large main

ol Pl i

A

=ffects. When substantial interactions are present, however, inferences drawn from a main

effects design, and subsequent experinental plans based on those inferences, may be
misguided. tWhat we are suggesting here is that in some cases it may be worth spending a

few early runs (4 to 8, say) in order to find out, in a general way, how important the

interactions are.

5.2. Identifying the Second-Order Interactions

: Once the presence of interactions has been established, additional runs can be made to

identify the larger ones. If one can afford it, one micht wish to augment the initial

| et 3 3 /5 B UM A W AN 8, e B A1 0 20 S I AT P b A st o $ans s s

: tr{L)-optimal design to provide estimates of all the interactions, e.g., Example 4 of
Mitchell (1974a). 1In many situations, it will be more efficient to concentrate on a subset

of interactions, as in the following example, condensed from Morris and Mitchell (1977).

Example 5.1. This is a hypothetical example with 7 factors, in which data were

st

el

simulated according to the equation y = 64 - Txy - 19x3 - 16xyx3 * ¢, where ,
€ ~ N(O,az), and ¢ = 5.5. The initial design was a tr(L)-optimal 2;:4 design,
constructed as indicated in Section 3. The design points, data, and estimates of strinags
of confounded effects are shown in Table S.la. Assuming & is known, the LR test
statistic for the hypothesis of no interactions is 20R6.86/30.25 = 68.99, which is hichly

c e 2 . . .
significant when referred to the x3 distribution. Clearly, tb~ most likelv candidates

1V R A LR LD AN L0k £ At # S K EDEOERE AR S ARLI AT Earn a3 S1Tmn

+ 3 + 8 + 3 + 3 (Cince

inte i are those in the string + .
for large interactions those string 913 314 23 24 a9 a7

. . . . : 2 c .
the estimate of the three strings of interactions are 1indepen-dent, the x3 statistic coald

I ok

have been nartitinned to give a separate lack of fit test for each strina. In the present
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interactions.

case, this would lead to rejection of the null hypothesis only for

3+...+367.) Eight

additional runs were needed to estimate the main effects and the six suspected

These runs were chosen using DETMAX to maximize the determinant of LN

all 16 runs, where the model is now

7

= T
Bo * 4 %8y P oxxByy b Rk By b XxgB

0
i=1

*oxKBey XX Bgq -

xg ¢ Xg X3%, Xq0%, X v
-1 -1 -1 -1 66.04
1 -1 -1 1 78.63
-1 1 -1 1 62.36
1 1 -1 -1 66.96
-1 ~1 1 1 88.45
1 -1 1 -1 98.39
-1 1 1 -1 14.46
1 1 1 1 28.05
+ = 62:
So + 812 + 834 56 62:92
81 + 52 = =5.58
g = -19.
53 + 4 9.96
55 + 56 = 5,09
8, = 1.46
] + + + ] = =0,
87 % 8yy B35+ 535 * §gs 0.5
23 2 Q = .79
15 " 846 T S35 * Tae * Fye 3.7
3,. +8,,+ 3 + 3 3 = =15
13 14 23 2 57

Tahle 5.%a. Data and estinates of effecis for the

Example 5.1,

| e

(5.1)
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The data for the A new runs and the estimates of the parameters in the new model are gives

in Table S.1b. Thu parameter estimates are not _very precisn, since we hava addad the

fewest runs possible to achieve estimahility.

interactions are not negligible and have discovered the important one.

Even a0, in 16 runa we have found that

This use of

_ tri{L)-optimal deaigns to {dentify a few strings of potential 1nt¢}|ct£on-, whish are then

‘broken down by further runs, is very similar in spirit to Watson's (1961) approach to the

problem of screening for main effects.

Xy X2 ¥y x4 g Xg Xq 14

1 -1 1 -1 -1 -1 1 13,10

-1 -1 1 -1 -1 1 -1 70.08

1 -1 -1 1 -1 -1 1 91.69

-1 -1 1 -1 1 -1 -1 75.46

-1 1 1 -1 -1 1 1 62,958

1 -1 1 1 -1 -1 -1 22.07

1 -1 -1 -1 1 1 1 #6.90

-1 1 1 -1 1 -1 1 74,80

By = 62,92 By = 0.63 By, = =16.59 Bg, = 0.43
- - N - .92 m =], ]t

By = =661 By = 4.70 By 5 Ben 1,18

[ L) -
B, = 1.03 Bg = 0.3 Byy = =4.57
B, = -20.59 B, = 1.46 Boy = =0.14

Table 5.1b,

Had the initial Rerun design in this nxample aiven to indication of the pransence of

Additional data and estimatos of effects for the
model (5.1) in Example S.1,

interactions, we could have chomsen our additional eight runs to aive a good cstimate of

parameters in the firat-order model, as Jdescribed in Bection 5.1,

e
dasign would then turn out to he the 2 3

(Morris and Mitchell, 1977), The

Iv

Thoe

resulting YG=yun

danig with aencratora 1234, 1254, and 1287

interactiona should be examined aaain at thia noagine,

the



. ). Detecting the VPrusnnce of Othar NenelLinear I'ffaectn

If some of the factors aro continumun, then thare may well be dopartures from the

*irst-order model that do not involve interactions, The two=level designs considered in

this paper will not bu goad for detectino such effects,

The most obvious augmontation {n thie canse would involve adding one or more "center

E-rulnt" runa in which the quantitative factors are all pet to a central value. Takinag a

formal deoign optimality approach, Jonas and Mitchall (1975, Section 4.3.1) applied their
-Az-optimality criterion (from which our tr(L)-optimality was derived) to the two-factor
quadratic response surface model, and indeed found in all cases (n = 4 - 10) that the
optimal designa for a rectangular region of interest were supported entirely on the corners
and at thae center of the reaion,

When n < 2k, the use of a center point also alds in i{dentifying the interactions (by
separating a string ol interactions from 80), but does not seem very efficient in terms
of tha tr(L) criterion. It can be shown that the increase in tr{L) resulting from the
addition of a row of X 0's to a foldover (n,k)~desiim s (nk2 = old tr(L))/{(n+1), which
is relatively small, especially when compared with the gain that can be made by adding a
new foldover pair,

We have not considered the cquestion of how many center points to add, nor the more

intarcsting question of how to take canter points when not all the variables are

quantitativae.

5.4, Eatimation of gi

In our discussion of the LR test for the presence of intaractions, and in Example

5.1, wea assumed that 02 was "Vnown"., We shall now considar designs with the dual purpoae

of maximizing tr(L) and ohtaining an estimate of o’ through replication of gome runs.

Connidar the construction of a4 tri(l)=nptimal fnldover design under the rastriction

]

L ~ “~ “
that nq rows nf tha n x v half=dosinn D are ranlicated once, where n < % + n.e

Whan % 30,1, or 3 (mnd 4), thin {e achievaed hy replicatina any ;n foldover pairs of a

-22=



tr(lL)-optimal

(2;-2;e,k)-doa1qn. (See Appendix ®.,) If X 3 2(mod 4), we can use the

following procedure. Partition a column orthogonal (k«2) x (;-;F) matrix D. as

Ro = (B:R).

~N

where A has ;e columns and B han n -2:9 columns.

Now let the Xk x ; matrix D have the form

i )
where [2a1a,
be a column~or

Qo two rows

transpose D,
tr(L)-optimal

short proof is

When n >
tr(L)=-optimal
of Section 2.3
satisfy these

rows (1,=1,=1,

1

-

A A B
(] L] ]
By™i2y 2y &
] 1 1
2 2 B

(V-

+ B;E € 1. (Note: 1if ;-;e =k or ;-;e = k=1, choose D instead to

2| 0

thogonal (k+2) x (;-;e) matyix. 21 is then formed by removing from
(ay a2} By) and (a; a) b)) that satisfy the above property.) If we now
and fold it over, the result will be a 2n x k foldover design which is
subject to the restriction that ;e foldover pairs are replicated once. A

given in Appendix F.

k + ;e' we have not found a general procedure for constructing

designs subject to replication of ;e foldover pairs., However, the rules
are not very restrictive,-and it is doften—possible to construct designs that
rules and also replicate some runs. For example, the 6 x 4 matrix with

1, (1,1,=1,=-1), (1,-1.1,-1)', (1,1,1.1)'. wvhere the asterisks indicate

raplication, yields a tr(L)=optimal design (Case 3 of Section 2.3) when folded ovar,

6. Example:

Sensitivity Analysis for a Computer Code

The Oak Ridge Invarasa Cnde (ORINC), (Ott anAd Hedrick (1977)), is used to calculate

temperature an
reactor, given

thermocouple t

d heat flux at the surface of the electric heater rods in a simulated nuclear
the heat yeneration rate, the genmetry, thermophysical parameters, and the

emperatura at an axial pnsition of one nf the rods.

-23=
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To determine the sensitivity of ORINC's results to variations in key parameters, a

=7
computational experiment was conducted. The experimental design was a 32-run 2;3

fractional factorial design in the 12 factors (parameters): (1) Mgh radius, (2) inconel

oI

thickness, (3) Bn thickness, (4) inner sheath thickress, (5) outer sheath thickness, (§)
gap size, (7) thermocouple temperature, (8) power peaking factor, (9) voltage, (10)
amperage, (11) Mg0 conductivity, and (12) Bn conductivity. The two levels of each
parameter were at one standard deviation above and below the nominal valie of that

parameter, where the standard deviations were based on given "uncertainty distrabutions".

R A S TS e SR MO AN

Y3 oY, A Y

Sensitivities were defined in terms of main effects, calculated in the usual way. Strings .

of two-factor interactions were also estimated and found to be negligible. Assessments of

importance of effects were based on relative magnitude; there is no statistical error

g e

involved.

In the following, we shall use some of the data from this computer experiment to

YT T

demonstrate how a small preliminary tr(L)-optimel design might have been used to provide

an early assessment of the importance of interactions. The chosen 8-run <tr(L)-optimal

: 212'9 design, augmented by the center point, is shown in Table 6.1, with the heat flux
results of the ORINC runs and the calculated effects. (Table 6.1 shows only the heat

flux y(t) at time 0; however, each ORINC run gives the values of heat flux as a function

of time, and the effe:cts may be plctted in this way.)
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F %
% b
T2
g
Group A4 Group A2 Group A3 Group A4 Pesponse 3
2,11,12 1,3,4 6,7,10 5,8,9 (v(0)-500000) /100 j
- - - - 401
+ - - + 392
- + - + 261 E
+ + - - 239
* 3
- - + + 422 3
. 2
+ - + - 400 3
- + + - 267" 2
+ + + + 261" 3
0 0 0 0 329 3
,;
VB
* 12-8 : &
Also used in the followup 2 design %
111 S
%
Group Aliasing Factor Aliasing Effects %
g
A, 2 4+ (11) + (12) - 7.4 “;’;
A, 1+3+4 -73.4 2
v 2
L]
A3 6 + 7 + (10) 71 ; 2
Ay 5+8+9 3.6 5;‘
A1A2 + A3A4 12 + 23 + 24 + 1(11)+.,.+5(10) + 8(10) + 9(10) 0.4 . g
.
A1A3 + A2A4 26 + 27 + 2(10) + 6(11)+.,..+45 + 48 + 49 0.4 t §
)
Rqd, + ByAg 25 + 28 + 29 + S(11)+,..+46 + 47 + 4(10) - 0.1* Eg
. 3
2(11) + 2(12) + (11)(12) + 13+,..+58 + 59 + 89 1.4 L=
" obtained by subtracling the cuenlcor point vegronse from the average of the other
points

Table 6.1. A tr(L)-optimal 212'9 design plus center point, with data from FExa=mvle
6.1. The numbers in the factor aliasing relations stand for subscripts on the
coefficients (B8's} in the mogdel.

On the hasis of these results, we would tentativelv infer that interactions are
negligible, althouah we still need to be aware of possible "cancellations" within
interaction strings. We can then proceed with a first-order desian with some confidence

that the larger main effects will correctly identify the parameters to which the O¥I\”
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results are most sensitive. In thre present case, 12 additional runs, combined with the j
. s . 12-8 . . . !
four marked with an asterisk in Table &.1, vield a 2III design with qenerators 125, 1136, ;
3
147, 238, 249, 34(10), 123(11), and 234(12). The main effects are given in Table 6.2, y
(For simplicity we calculated these effects using only the 16 runs of the 212'8 design.) * )
Factor Effect Factor Effect Factor Effect :
1 -16.7 8 ~34.2 9 37.8 E
2 -15.2 5 < 10 7.2 K
3 -26.8 7 0 LA 9.6 L
;3
4 ~29.8 8 0 12 C L3
C 2
. 12- o ] P
Table 6.2, Main effects from ?III design in Examu.l. N 8
b
i3
Had this investigation 1nvolved a very larae number of factors, augmentation to . g
s
estimate all main effects might not be feasible. A reasonable approach in this case miqght $£
%
be to estimate individual effects only within main effect strings that appear to be large ;;
in the initial design (Watson (1361)). For these factor screening applications, one should . ff
t
attempt to assign "+" and =" to each factor in such a way that a “+" corresponds to i
an anticipated increase in response, I1f one's guesses of the direction cf effects are i
I
correct, this will eliminate the possibility of "cancellations” within strings of main ’
S
effects. ?3
;
§
7. Summary and Conclusions. 43
¥e have qgiven here the results of the application of a design ontimality craterion H
maximization of <4r{l where L = ¥X!¥X_ - X! Lt Txt to the nrohlem of desianina §
( ) =T Lot 5215‘1('\.1&1) ?5,1}5.3) ° of desiani 3
~wo-level n-run experimerts %o dataent +he nresence of two-factor interactions (éy) amona 3
d <
v-factarz 1n the rodel Tiy) = 5121 + 3233, where 31 condists of a constant tert So g
2 1 K
and mawn effects, <
&
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: N
i
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When n is a multiple of 8, the ¢tr(L)-optimal designs are orthogonal arrays of

strength 3 (e.g., Resolution IV fractional factorials), if such an array exists (Section

2.1). 1In other cases, it appears that we can restrict attention to the class of foldover

designs (Section 2.2). A simple set of rules can be used to construct

tr(L}~optimal foldovers (Section 2.3) for nearly all n and k of practical interest.

Within the class of regular fractional factorial designs, the tr(L)-optimal designs

are the resolution IV designs if n 2 2k. If n < 2k, the optimal fractional factorials

are foldovers with the fewest words of length two in the defining relation (Section 3.1).

These can be easily constructed through the use of "aroup-factors" (Section 3.2). A

comparison of tr(L)-optimal fractional factorials with the tr(L)~optimal foldovers,

when n is a power of two, indicates that the former are either equally good or nearly as

good as the latter with respect to tr(L) (Section 3.3). To choose among the optimal

fractional factorial designs, we recommend the Fries~-Hunter minimum aberration criterion.
The results of two different studies of power (Section 4) give a rough indication of

the ability of the tr(L)-optimal designs tc detect the presence of interactions when a

: ; : 2 : : .
likelihood~ratio (X ) test of the hypothesis §2 =0 1is used, with ¢ "known" .

Designs presented in this paper have some weaknesses with respect to other desagn

objectives. These can be overccme through augmentation of various kinds. To achieve

estimability of §1 when k + 2 € n < 2k-1, +e present some “compromise” designs which

have a tr(L)~optimal design as a nucleus (Section 5.1). 3Augmentation to identify

important individual interactions :1s 1llustrated by means of an example (Section 5.2). 1If
the factors are continuous, the addition of a center point 1s an aid to detection of the
presence of other non-linear effects, marticularly quadratic terms (Section 5.3).

can be achieved by replicating some foldover pairs, an. some simple

Estimation of ¢

rules are given in Section 5.4 for constructing tr(L)~ontimal foldovers subject to the

specified replication reguirements.
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When k is iarge and the number of runs in limited, some of the designs nresented

SREA

here are effective as preliminary designs for detecting in relatively few runs whether it

is reasonable to proceed with an experimental strategy based on a first-order model. &An

example of this type of application, to a sensitivity analysis of a computer code, is aiven

D o

el

in Section 6.

s Sadhy
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3 ' Appendix A: Maximization of gégﬁz Under a Design Randomization Scheme

2 0
N
: Consider an (n,k)~-design D, with corresponding matrices §1, §2, and L as defined

u
SO

in (1.5) and (1.7). We further define H = X (XjX)'Xj; ‘thus L = XJ(I-F)X,. For anv

i

R o T T

oy
X

X, Hx is the proiection of X onto the space spanned by the columns of §1 andé

x'{i-H)x is the distance from x to that space.

~ ~

We propose to select the design Do for the experiment by the followina twe=-stace

randomization scheme R = R R,s

Ry: Randomly relabel the factors in D so that each one of the X! possible

I e

labelings has the same probability of realization.

&

i

~
9

1mienententliv S5

%

Gl

Byt with probability 0.5, reverse the levels of factor 1 in

e

e

each {1 = 1,2,...,k.
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The matrices X

Xipe¥opelige and L

and L are obtained from D.

R R

= [ 3 :
The expectation of AR §25R§2 under the randomization R 1s
= ]
Ep(Ap) = Ep Ep IR (B3Lg8,)
1 21 3
E
(A. 1) 3
= t 1 -1
SR1ER2|R1 (B%pr L%k, - i

are obtained from D; in the same way that 51,32.8,

(The substitution of H for ER is justified by the fact that the columns of 51? span
the same space as the columns of 51, so the distance from any vector to that space is :
2
invariant under the randomization. i
Wi
e can express §2R as
X =X 02
Xor = %Eg Rr (A2)
12
;2
%
i
g
where ER is a perratation matrix wvhich permutes the columns of X, accordina te Ry i
and gR is a diagonal matrix with diagonal elements +1 or -1 reflecting the effect
2
of R2 on the columns of §2ER « A specific ¢..%. al element of On has the forn
1 2
9395 where q; and a; ae (independently) ~+: or -1 with probability 0.5. CGiven
i
3 f
33
i
E (8! (I-H)X  3,)) = E (82QL PL LP_Q_ 8)) ER
XoRgp A RILIRE Lo¥p Lp YLR g ko 2]
Rle1 2~2R 2R~2 RZ‘R1 2 R2 P‘l R1 52 2 %
i
= tr(P' LP_E Q. 8,80 1 . (A
R, R, R2!R1 R2 2MEER, 3
§§
=
-20- E ;
.
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. typical diagonal alement of PRZlR1(2Rn£2L2QR2) in FR2!R1l"iqjcij’ c" and typical
' - " 4, i

off-diagonal elements are Fk,lkt(qiqjqkqialjckﬁ) =0 ({7 3597 k¢ L) and

2 2

hnzlki(qiqjqkaijﬂik) =0 (i y¥ 99 %), Hence (A.3) can be simplified and suhstituted into
(A1) vo yield

- ] '
E(AQ) = Ep triRr LR, B) = triLE (P BEL )] (R.4)
1 1 1 1 1 1
whore R is a diaqonal matrix with diaqonal alements ij. Since ER is a permutation
1
matrix, BR gg& is a diagonal matrix obtained by permuting the dlagonal elements of BR.
1 1

Over all such permutations generated hy the randomization procedure Ry, the expectation

E_(P_BP' ) 4is just b I where h w (Z E 82 )/k,+ Substituting into (A.4), we finally
R, ~R,~R, ~ {3 137772
obtain
E (M) = b etr(L) . (A.5)

This result implies that ER(XR) is maximized by choosing D to maximize tr(L),
regardless of the value of-vﬁi.-~(The subsequent data--analysis should, of course, be made

conditional on the design that was actually selected.)

Appendix B:  Minimizatinn of Tr(Q'Q)z, \Where 'dij' -1,

The following results justify the Gray-Cheng rules for constructing the Xy
matrix E in Section 2.3. For simplicity of notation, we usec D and n here instead of
5 and n.

fest D he an n x % matrix whnge elements dij munat he +1 or =1, We want to
minimiza tr(g'g)z, which in th@ sum of sausres of the olements nf D'De Since the
Afagonai nlements of NH'D are eminl ta n for all D, wn can restrict attention tn the

nff=Afinnonal alanenta.
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We shall assume here that k € n. The results for k > n follow directly from the

fact that tr(p'®)? = tr(opn’.

Case 1: n = 0, mod 4.

If D is column-orthogonal, it is optimal, since the off-diagenal elements achieve

their minimum in absolute value, 0. We then have tr(g'g)z = knz. This construction can

be used whenever a Hadamard matrix of order n exists. (s of 1977, the smallest order

for which a Hadamard matrix had not been constructed was 268, according to Hedayat and
Wallis (1978). We are not aware of any changes in this list since then.)

Case 2: n = 1, mod 4.

Since the off-diagonal elements cannot be 0 in this case, it is evident that if all

the off-diagonal elements of D'D are +1 or =1, then D is optimal. ¥e can construct

such a D by augmenting an (n-1) x k column~orthogonal matrix with any row of +1's

2

and ~1's. We then have tr(g'g)z = kn~ + k(k-1) = k(n2 + k-1). The only subcases in

which this construction cannot be used (assuming a Hadamard matrix of order (n-1) exists)

are those in which k = n. Solutions for n = 5, 13, and 25 are given by Raghavarao (1959);

we are not aware of solutions for other cases with k = n.

Case 3: n = 2, mod 4.
By Ehlich's (1964) Lemma 3.4, the maximum possible number of zeros in D'D is x2/2

if k 1is even and (k2—1)/2 if % is odd. Suppose D is formed by augmenting an

{n-2) x k column-orthogonal matrix with two rows of +1's and -1's, chosen so that their

inner product is 0 if %k 1is even and +1 or =1 if k 1is odd. Then D'D will

contain the maximum number of zeros possible, and all the non-zero off-diaaonal elemepr:s of

D'D will attain their lower bound in absolute value, 2; hence D is optimal.

¥ <n-2. If X =n or %k = n-1, we can resort

The construction above suffices when

to a different method. By a similar argument to the one above, it can be shown that the

removal of two rows from aa (n+2) » % column-orthogonal matrix A, again chosen o have
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;; inner product with absolute value 0 or 1, yields an optimal D. The only cuestion 1s
= whether two such rows can be found in A. We first treat the case k = n, and assume
there is no orthogonal pair of rows in A. Then the inner oroduct of any two rows of A
has absolute value at least 2, so
012 2
tr(AR') 3 (n+2)n" + 4(n+2)(n+1) (3.1)
where we use the fact that the left hand side is egqual to the sum of sguares of the
elements of AA'. But
tr(aa)? = tr(a'a)? = n(ne2)? (2.2)
since B is column-orthogonal, and it is easily shown that (B.2) and (B.1) are
incompatible. A must therefore have at least one pair of orthogonal rows. An aralogous )
argument can be used to prove the same proposition for the case %k = n-1.
. 2 : :
The optimum values of tx(D'D) for Case 3 can easily be shown to be
kin? + 2(k-2)] when k is even and kn? + 2(k=1)% when ¥ is odd.
Case 4: n = 3, nod 4.
If we remove any row from an (n+1) x k column-orthoaonal matrix, the resulting matrix
D will be optimal, by the :ame argument used for Case 2 above. As in Jase 2, the oprimu~
2 2
tr(D'D) is kin + k-1).
el
Remark: The above arguments establish lower bounds for tr(B’'D)” even for the
(sparse) pairs (n,k) for which the suggested construction is not possible.
E
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Appendix C - On Tr(L)-Optimality in the Class of Reaular Fractional Factorials

Theorem Ci, XNo Zk'p fractional factorial design having words of length 1 or 3
in its defining relation can be tr(L)-optimal among regular fractional factorials.
The proof is by construction of the superior 2k-p desian FZ(F1,1) where ¥y, 1S

obtained from a given 2k=p design F, by folding over, for suitably chosen 1, the half

of F; in which x; = 1. We shall use the notation {il, 133}, {iji} to refer to first-,

second-, and third-order design moments, respectively.

We note that ¢tr{L) is the sum over all pairs (i < j) of the squared distance fron

X.. (the column of 52 corresponding to Sij) to the space spanned by the colunns of

§1. In a reqular fractional factorial design this sguared distance is either n (2f

244 is orthogonal to X.) or 0, so tr(L)

Ez that are orthogonal to {1.

is just n times the number of columns in

Given a 2X°P design Fy with words of length 1 or 3 in its definming relation,

the construction of Fz(F1,i) with larger tr(E) is based on the following lemnas.

Lemma C1. For any i such that {i) = 0, any column of 52 that is orthoaonal %o
51 in F1 is also orthogonal to 51 in Fy(F,,1i).

Proof of Lemma Cl. Suppose x;j §1 =0 in Fie This implies in particular

£8Y = tac
i i

{ij] =6 in F,, so X, ana 5j form a 22 factorial design (possibly replicatedr, a

property we shall hereafter refer to as Propertvy A. It is easily seen that X ané x_

also have this property in PZ(F1,i). Because Fz(F1,i) is a foldover, all :1ts odd-orier

design moments are 0, so 5;j 51 =0 in Fy(F,,i) Iiff {ii} = 0 z1n F,(Fq,3). We have

already established that [ij) = 0, so the lemma 1s proved for colurns of the form

Eij' We still need to consider columns of form Eji(j¥x.i*i), with  x'. 51 =0 i=
Fy. We then have {32} = 0 and ({ijf] = 0, and we recall that i wag chomer anch *has~

N :
anase

(i} = 0. Thus 51 and Ejﬁ have Property A in F,, and also in F,fF,, i), which

as above to the result that 5g£ X, 20 in Fy.
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Remark on Lamma C1. The lemma shows that for any aiven 2%°P  fractinnal factorial

design, there oxints a 25°T
areat as that of the gtven design. Thea lomman which follow eptablish the

tri(L)= supeviority of the foldover whon the given desian has moments of order 1 or 3.

Lemma C2, If kep > 2 and therc exists 3 nuch that {3j) ¥ 0 in ¥,, thon there

" oximts { such that Pz(F,.i) hag aqreater tr(l,) than does F,.

Proof of Lemma C2, lLet X and %,

such columne alwayn exist whan ke-p 7 2.) 8ince [3) ¥ 0 in F,, xi, X Y0 in P4,

be two columns having Property A in F,. (Two

But  {3L) = 0 in F, and also in F,(F,, 1), which implies that x

' -
3T L 9 fin

FZ(P1,11. The aut of columna in 5? that are orthogonal to 51 in FZ(P1,1) therefore

ag well as all the columna of ¥, that ware orthogonal to X  in Fy by

includes ;

%41
Lemma C1) so Lemma C2 {s proved,

Remark on Lemma C2. In the case k=p = 1, which {8 not covered by the lemma, there

are only 2 runs, and tr(L) is always 0,

Lemma C3. Let all first-order design moments in tha 2k'p den.gn Fy be 0, and

suppose that F, has at least one non-zero third-order moment [13k]. Then F,(¥,,1) has

greater tr(L) than does F,.

Proof of Lemma ¢3. In Fy, {1j) =« 0 (otherwise (k) ¢ D); hence x and  x have

i ~3
Property A in Fy and in Fz(P1,i). Thus {i3} = 0 in Fz(F1,i) 80 5i1 51 =0 in
Pz(F1,i). Recall that 5;ﬁ 51 Y0 in F, (bacaure [iik] ¥ 0 there), so by the same
arqument nsed i{n the proof of Lemma C2, wa conclide that there are more columna of 52

nrthogonal tn 51 in F7(P1,i) than fn ¥,

Pronf of Thoorem Cl., Fvoery word of length v or 3 in the defining rolation

corragponds to a non=zarn firat or thir! ordur destgn moment. Lemmas €2 and €3 imply that
such derians always have lower tri(l)  than saome ak=p fractional factorial fnldover,
which has no words »f nrid tangth hncanan §t §in a feoldover,
Thenrom €2, 1f n ¢ 2%, a nneanaary eondition for a 2= Qnsian ta be
trit,)=nntimal §n thr clann of reanlar fractional factorials {8 that 1t be a foldover

Amngn,

-4
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Proof: With appropriate relabeling of the variables, p generators of a
design can be chosen so that they have the form: Welk - p+ 1), Wz(k -p+ 2),...,wp(k),
is a word composed of letters (variablies) ir the set 1,2,.s..,%~p . There
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a.

where each L
are, in general, n = 2X~P  candidates for each wi {including the "word” with no
the number of

e

letters), which we denote by Cj, j=1,2,ce.,n. 1f we denote by m(Cj)

}“E

=4

e B times Cj is selected as one of the Hi's, then we see that the vector m =

i - -
determines the resulting 2° P design.

(m(C1),...,m(Cn))'
with words of odd length in the defining rvelation, and

we first consider a desian ¥y
1 or 3

MBI RN LT TURIrS

show that it cannot be tr{L)-optimal. 1If there are any words of length

present, the result follows immediately from Theorem C1, so we need consider only desians

P
)

whose first- and third-order desion moments are 0. For such designs, tr(L) = n(kz-nz).
where n, is the number of words of length 2 in the defining relation, so

tr(L)- optimality is eguivalent to minimization of n,. Words of length 2 occur in two
and (ii) as the product of two

(i) as generators in which wi has length 1

mvw;:umdmemé.«mm.::ummmwmw

=P
= - ways:
= p generators having identical W®;. Thus,
H : 2
n, = Z ®.(m_~1)/2 + E £ (c.1)
5733 je3,

o

has words of odd length (25} in its

.
,
L S e e

Rt v

AN

j. since F,

.

where J, = (jlcj has length 1

nust contain at least one word of odd

R

defining relation, any set of generators for Fy

m.m.mm,mmmw,mmm:m:’-"-“;

wWithout loss of generality, we choose one of these odd generators and denote it

length.
has length one

by € .k where C , has even lenath 24. It follows that mj =0 if C
o]
- N V;
less than €, and C_ is contained in C, (i.e.. the length of C,C ., is 1}: ,§
3 3 3 35 3
a word of length 3 in the defining relation. Denote one of . ,%
{
{:%3

ctherwise, there would bhe
such that (i} ni“ 2 3 or (1)

ey

- -

0 by 3'. Now we find 3"

‘mmm\j{mwwﬁmﬂw*l\”mmm [PPSR

these 3j's for which my = v
3" € 31 and R, 2 T. {Such a 3" +=ust exist; otherwise, =, = 0 by eaquation (C.1) %
J = E
2
and F, would he a resnlution 1V desien ir n ¢ 2k runs, whichk is irpossible (Webh T =
1 ioE
. h- . . . :.E
. {1952), “argolin (1362).) Define a new 27 ° design Fy by addina 1 to ~., (nmakina £ s§
33
12
F 8
35
2

a7y
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it 1) and subtracting 1 <£rom mj“‘ From (C.1), we see that this reduces the

contribution of mju to n, but leaves the contribution of s @t 0. Thus F, hes

Pl
fewer two-letter words in its defining realtion than dees F,, and so has larger triL).
¥'e have thus established that in corder for a 2“'5’ design with =n < 2% %0 be

tr(g)—optimal, its defining relation nust consist entirely of words c© even
this is the same as requiring it to he a foldover desiaon. (For example, 1t is easy ¢ sae
that if a design with no odé words in its defining relation is split into two par:s,
each part is the negative of the other.)

according to whether x; = 41 or x, = -1,

Theorem C2 is therefore proved.
= 2k. The tr(l)- optimal

Theoren C2 can be extended to the case n

Remark

£ractional factorial design in this case is the "minimal®™ or “saturated” resolution I

design and must therefore be a foldover (Margolin (1969)}.

Theoren €3: Givem n (a power of 2} and k>;=n/2, a2 tr{L)-optimal 2

design in n runs is tr(L)-optimal amoxng all two-level foldover (n,k}-designs

37

o
s

-~ -~
only if r (the remainder upon dividing kX Py n} is %, 1, 2, n~ 1, or
Proof: We shall consider only the case k = 2 {=od &) in Zetail. The argument for
the other cases is similar. As noted in the proof of Theorez C2, the value of =r{i) for

optimal fractional factorials is:

tr{z) = nlk(k-1)/2 - 222!

where n, is the number of two-letter words in the defining relatic

same as the number of pairs of completely confounded factors, we cav

construction of Section 3.2 to obtain

rla-1las2 » (n-rlala=1)72

(2]

{k~r}{r+k=-n}/2n

where 2 and r are defined v (3.1) and (3.2). Substitutine IT.33 inn IT.7Y s e
-36-
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er(L) = k2 (A=1) = r(f-r) (C.4)

for the ontimal fractional factorials. These Aesigns are necessarily foldovers, since
n < 2k (Section 3.1). We now refer to Table 2.1, which gives, for the case % 2z 2

(mod 4) and n even:
* 2~ ~
tr(L ) = k" (n=1) - 2(n=2) (C.5)

N .
where L is the lack-of-fit matrix for an optimal foldover. Equations (C.4) and (C.5)
are the same iff r =2 or r = n-2. Similar arguments, applied to the cases % = 0, 1,

or 3 (mod 4) yield Theovrem C3.

Appendix D. "Minimum Aberration" As A Supplementary Criterion for Choosing Amona

Tr(L)~ Optimal Fractional Factorial Designs.

Fries and Hunter (1979) introduced the concept of aberration as an extension of
resolution in classifying 2k-p fractional factorial designs according to their
confounding properties. Let (“1'“2""'“k) be the word-length pattern for the 2k=p
design D1, ifee., ny is the number of words of length { in the defining reiation.
Similarly, let (n1',n27f...,nk')' he the word-length pattern for another 2%~7 design
Dye Then D, has lower aberration than D, (which we express by D, < D,) if and only
if there exists J such that ny = nj’, j= 1,2,0.,3~1 and ny < nz'« Clearly, if D, <

Dy and Dy < Dy, then Dy ¢ Dy, 8O the concept of aberration may he used to rank

<o

designs. The best desigrns under this criterion are the minimum aberration desians: N, s

a minimum aberration design in a given class 1f there i8 no desian D {in such

that n < D1. This criterion is consistent with the rora fami{liar "maximum resolution®

criterion hut lg much more mensitive tn differences in the atructure nf the aliagino

(confounding) relationehips.

“37=
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We recommend tha use of the minimum aberration criterion to supplement
tr(L)= optimality when chooming a ak-p dasign to detect the prasence of interactions.
Minimum aberration designs appear to he gnod with respect tn:
(1) maximizing the number of dagroes of fraedom q for two~factor intevactione, and
(i1) distributing the k, ~'k(k-1)/2 interactions avenly over the q strings of
compietely confounded interactions.
We shall consider the cases n > 2k and n < 2k scparataly.

n 2 2k.

The tr(L)-optimal 2k'P designs are precisely those of resolution ? 4. 1In this
case, we are unable to prove a direct relationship hetween minimum“gberratinn and (1) ana
(ii) above, but thg following results may be useful for those who wish to explore the
matter further. Let h, be the number of two-factor interactions that appear in exactly

i of the n, 4-letter words in the defining relation, i = 0,1,...,n4. Then

):hi =k, = k(k=1)/2 (p. 1)

(Ith1/6 = n, 0.2)

Zhi/(in) = g (D.3)

Average (string length) = kz/q (N.4)
Average [(string lenqth)zl = (k2+6n4)/q . (D.5)

If we note that the numher of strinas of lenagth i+1 1is hj/(i+1), these results are all
straightforvard. One congeaquence of them is that, among designs with the same degrees of
freedom for interactions (ag), <the minimum aberration design distributes the interactions
"avanly" ameong the A strings hy ~inimizing the Aispersion of the strinc lengths, where we

Aafine Algpersinn tn he tha sum 0 squares rdeviations from the average.

Rest Available Gopy
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having t: > fewest possible words of length 2 in their defining relations.

The aliasing relationships for suci

n < 2k.

The <r(L)-optimal 2k-p desians in this case are foldover designs of resolution 2,

(Appendix C.)

a design include ; = n/2 strings of two~factor

inte:aztions, counting the one which is completely confounded with the overall mean. If we

define the length of each such string to be the number of two~factor interactions in it,

then the average string length is obviously kzlg. The following iemma provides a formula

for the average squared string length.

Lerma D1, 71 a 2P foldover design of resolution 2, the average squared length of

~

the n [k{k~1)/2 + Gn4 + 2(k—2)n2]/;, where n,

strings of two-factor interactions is

and n, are the number of 4~ and 2-letter words, respectively, in the defining relation.

Proof. Let nij be the number of four-letter words that include i and 3j, and let

i or 3 (but ot both). Then Bii

be the number of two-letter words that include

1
nij
will be confounded wich exactly nij + n;j other two-factor interactions, and the length
of the string tha% includes Bij is nij + n; + 1, Now let v, be the number of
J

interactions which are in a string of length £. Clearly, vz/l is the number of strings
of length &, and the sum of squared string lengths is | 22(Ve/2) ) (nij + nij + 1),

£ i)
where the second summation is over all pairs 1 < i < j € k. Since each 4-letter word in

the defining relation contributes one umit to each of 6 different nij's, z njy = 6n,.
i
Similarly, z n;. = 2(k-2)n2, and the lervna then follows directly.
i) J
Since Xk, Ny and n are all fixed in the class of tr(L)-optimal 2P designs

this lemma shows that the minimum aberration criterion here 1s equivalent to

(Thas

with n < 2k,

minimizing the dispersion of the lengths of the strings of two-factor interactions.

holds true even if we omit the string which 1s confounded with the overall mean, since the

length of that srring is fixed at “2')

The construction of minimum aberration tr(L)-optimal PASSY desians wvhen n < 2k is

facilitated by the following theorem.

-39-
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Theorem D1, Let D = [g1122] be the n x k design matrix of a 2P fraceional

(n < 2k} such that D, consists of a > 1 copies of the columrs of the

factorial design 1

* ~
saturated design D of resolution 2 4 in n = n/2 factors and n runs and D
~a
L]

*
consists of a subset of r distinct columns of P . If 22 minimizes the dispersicn of

the lengths of the two-factor interaction strings in the class of regular fractional

factorial foldover designs in n runs and r factors, then D has minimur aberration in

L1000 3B 00 39100 kb o AN 0 S SN R

the class of tr(L)-optimal 2P gesigns.

Proof: By the results of Section 3.2, D is tr(L)-optimal no matter whick r

*
columns of D are chosen to form 92. Now consider the strings of two-factor interact:ions

in the aliasing relationships of D. 1If we ignore all interactions involving the factors

in 22, the strang that is confounded with 80 will have lenath ;a(a—1)/2, ané each o€
the remaining (;—1) strings will have length a2;/2. Now consider all interactions of .2

is a factor in D,. For fixed 3,
~2

is a factor in D and xj

form Sij' where Xy 1

If we do the same for all

~
there are na such interactions, a of them in each strang.

Td bt Bt ik v b MBt¥R et AR LS A e 8

.

D, the 2 - strirnc

i
o

r i's, and include these interactions in the aliasinag relations for

and each of the remaining strings will have length

will have length ra + ;a(a-1)/2

W0

2~ :
c =13+ an/2. The only interacticns we have ignored so far are those that involve
factors from 22. 1f we finally include these in the aliasing relations for D, we wiil

add €;+ say, to each string length, i = 1,2,...,;, where the ci's are the sty na
lengths for the (n,r)-design 22 alone. The dispersion of the string lengths (excludin~

fal

If the choice of s

the Bo-string) is therefore the same in D as it is 1n D,.

minimizes this daspersion, then, by the remark after Lemma D1,

D has minimum aberrvatier

in the class of tr(L)-optimal Ek_p desians and Theorem D1 is proved.
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The Approximate Distraibution of the Likslihood Ratio Statistic for Testing the

Appendix E.

Hypothesis of !, Interaction, When the Interactions are Drawn From a Normal Distrabution,

and a Tr(L)-Optimal Fractional Factorial Design is Used.

This Appendix provides back-up mater:ial for Section 4.3, vhich gives the results of a

power study conducted under the assumption that the "true" iteractions (Bl-'S) are Arawn
J

independently from a normal distribution with mean 0 and variarnce oi.

1S

3

We restrict this discussion to tr(L)~-optimal 2k=p dsigns in n runs. If w

b
,%
%ﬁ‘
¥
]
g
£
i
A§
£
ij
H
%
2
7
2
3
Z
3

LEE string of confounded

in the chservations which estimates the

the value of the cnntrast

w for testing 22 =3 in the

i

two-factor interactions, the likelihood ratio statistic

),
i

model (1.4) is, for 02 “known”,

G AT o e e e o)

(The strang of two-factor interactions that is

”
ot

where ¢« is the number of such strings.

confounded with 60 is not included.)

Under the assumed normal distribution of the interactions and the assumption of

2

. n 2
w;'s are independently .\'(O,x.lcb + 57 /n) where

normally distributed errors in (1.5), the
The mean and variance of w are

£ is the length of the string associated with w;

therefore:

SRR o ity

2
ki

.
P T AR S

2 2 (£.21

2
E{w) = ns1ob/c +g=np S1/k2 + a

2,2 2 24 2 2
Viw) = 2 g(nziob/o + 107 = 2n"p 8, /K + 2m078, 7k, 4 a) .

fo

re
"N

2 ~ -
6. When X =t for all 1, w .
1

"2 2 2
where 8, = g L., 8, = i Lo and p° = kzob/

2 .
distributed as (nipzlkﬁ + 1)xq. Although the (. °'s are seldom 1dentical, thev are

-—h
TS b

i

y
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23 generally gquite close, especiallv wvhen the choice among tr(L)-optimal designs is nade
L3
= using the minimum abesration criterion as recommended in Section 3.2. We would therefore
3 expect the distribution of w to be well approxirated by that of w' = g1xi . where g,
2 .

and g, are chosen so that the mean and variance of w’ match those of w agiven in (E.2)

R M ARG G g o b Kb "‘m"“NWK‘!‘WW«‘&‘*R'%WMQ&_M e . ﬁE#
Rl S ) T

2.

£

B and (E.3). This approximation was the bhasis for the power study d:iscussed in Section 4.3.
b ~ ~ ~

E= If kX is a multiple of n, 1.e., x = mn, then nmi{m-1}/2 1interactions will be

33

- remaining ones will be distributed equally among « = n-1

confounded with 30 and the

(%o, + 1x% , which
n-1
this as an approximation for the distribution

2
strings. Thus £, = £ =%k /n, so w is distributed as

A DA £

«

k¥ + ®, Using

2
approaches (29"+1)xi as

n=1
of w when k is large, we find that the power will be P when ]
>
2 2 2 : . " 3
g7 = O /X - 1)/2. This result was used to find the "minirmum detectable" value %
n-1;a n-1;P E
of p for larae k in (4.3}. %
3
]

Aopendix F. Tr(L)-Optimality Under a Renlication Restriction
.

the restriction

o

Consider the construction of a tr(L)-optimal foldover design under

Sk LS,

~ ~ ~ ~
rows of the n X k¥ half~desian D are replicated once, whese n < k + n_. From
.

that n
e

of choosing the

the discussion in Section 2, we see that the problem is the same as that
N

<

where

k % ne matrix A and the k x (;—2;23 matrix B so as to minimize tr(éﬁ')
Rt = [5:52%}. If k20, 1, or 3 (mod 4) this problem is solved sinply by choosing

~

(Q:BE to be the design matrix of a tr(&)—optzmal half~design in %k runs and n =~ 2,

bl Lt dl AR AN AR B,

This can be verified %V notinc that the inner prorfuct of any pair of columns of D'

factors.

-~

2

will then have its lowest possible maqnitude (0 or 1), except for the ne pairs

I % £ 2 ‘med &), the solution as

T

corresponding to the reguired replicated coluams.

LN
el

slightly more complicated. We construct :g] by augmenting a column-orthogoenal natrix
N

‘3, * DB SN (1f

with two rows (31'191') ana (37‘:22')L chosen so that 123, 'a,
~ ~ ~ o~
n=n = k or n~-n = ¥%-1, two such rows will have be remcved 1astead. See Case 3 of

Appendix B.) It can be verified that D' will %hen have the raximun nossibie number of

P
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pairs of orthogonal columns, by Ehlich's (1964) Lemma 3.4. The inner product of any of the

remaining pairs of columns of §' will achieve its lowest possible absolute value (2),

except for the Ke pairs corresponding to the required replicated columns.
Once the matrix §' has been constructed, we simply transpose it and fold it over to

obtain a tr(L)-optimal design subject to the restriction that ;e of the foldover pairs

X £ 2 (mod 4); for all other

In practice, care is required only when

be replicated.
;e foldover pairs of a

values of k, the procedure is equivalent to replicating any

tr(L)-optimal design.
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