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ABSTRACT

>_In this paper a semilinear elliptic second-order problem is considered.

Under very general assumptions we give a precise description of the number of

solutions of the problem. rThese results extend in particular a result due

to A. Ambrosetti and G. Prodi.
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V

SIGNIFICANCE AND EXPLANATION

Semilinear elliptic equations (that is, for example, the Laplace equation

perturbed by a nonlinearity) occur in many applications, for example in

combustion theory, biology, population genetics, astrophysics ... . Under

general assumptions, we give a precise description of the number of solutions

of the equation.

* r o r

Th'- r -stribility for the wordino; and views expressed in this descriptive
s-r;linv with m~' and n'-)t withi th', Atithorp of iis report.
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SHARP EXISTENCE RESULTS FOR A CLASS
OF SEMILINEAR ELLIPTIC fl':ISLEMS

H. Berestyckil and P. L. Lions

Introduction.

The problem considered here is of the following type: let 2 be a

bounded regular domain in RN , we look for solutions u of

(u) -A U = g(x,u) + f(x) in Q, u E C 2), a = 0 on aS;

where v is the unit outward normal to @ , f e C0 'a(5) (f r some

0 < a < 1) and g(x,u) is a smooth nonlinearity satisfying essentially:

(2) lim g(xt) < 0 < lim g(x,t) (uniformly in x e);t - t
t+-w t++V

and some appropriate growth condition at +

If f(x) = to(x) + f1 (x), where t E R,OeC a () with

(3) p ) 0 in , p 0

we prove (see Section I) that there exists to(= t0 (P,fl)) e R such that

i) if t > to , there is no solution of (1);

ii) if t = t0 , there is at least a minimum solution of (1);

iii) if t < to , there is a minimum solution of (1) and there are at

least two distinct solutions.

This result extends and sharpens many earlier results due to A. Ambrosetti and

G. Prodi (2], M. S. Berger and E. Podolak [5], P. Hess and B. Ruf [9], J. L.

Kazdan and F. W. Warner (111, H. Berestycki [41, H. Amann and P. Hess [1], F.

N. Dancer (8]. The main assumption that we remove is the "at most linear

tC.N.R.S.; Laboratoire d'Analyse Numerique, Universit6 P. et M. Curie, 4 Place

Jussieu, 75230 Paris Cedex 05.
*Mathematics Research Center, University of Wisconsin-Madison and C.N.R.S.,
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growth at +-" and in addition we nrove the existence for t < to  of two

ordered solutions.

In Section II, we consider the special case of f(x,t) convex in t and

we give some results of a geometrical nature concerning the set of functions

f for which (1) admits a solution. Our main concern is to extend the results

of H. Berestycki (4] to the case in which we no longer assume that g grows

at most linearly at - .



I. The general case.

Let a be in (0,1) and let f C C0 ' (T) . We assume that the

nonlinearity g(x,t) belongs to CO'a(T) (uniformly for t bounded) and

g(x,t) is Lipschitz continuous in t , uniformly for x in ) • In

addition, we restrict the growth of g(x,t) for t large by the following

assumption:
N

(4) lim g(x,t) t- P = 0 , uniformly in x E , for some p < -2

(if N = 2, N may be replaced by any p < and if N - I , we make no

assumption at all). We then have

Theorem I.1: Under assumptions (2), (4) and if f(x) = t (x) + fi (x) with

P C 0 'a() satisfying (3), there exists t0  R (t0 = t0 (V,f1 )) such

that:

i) if t > to, there is no solution of (1);

ii) if t = to, there is at least a minimum solution of (1);

iii) if t < to, there is a minimum solution of (1) and there are at

least two distinct solutions.

Remark I.I.: As it will be clear from an inspection of the proof, the same

result holds if we replace -A by any uniformly elliptic second-order

operator (with smooth coefficients) and if we suppose that g depends also on

N
V u:g = g(x,u,p) for (x,u,p) e 0 x R x R ; we then need to assume that

- Ng(x,t,p) is bounded for (x,p) C Q x R and t bounded and that the limits in

(3), (4) hold uniformly in p c RN . In addition, we may also replace (1) by

2- u
(1') -A u = f(x,u,t) in Q , u S C ), = 0 on a o

assuming as in [11:

(5) V m E R, F r £ ((a) such that -L x,,t) '(x) > 0

fnr x in [2, m and t £ R



1.2. Assurn[ti,, (4) if, i t.-,chriiri 15nomption which irntr'-s t'-at

solutions of (1) are a priori houndeo3 ( cf. the proof of Tt -orem T.1 below.
N +

.- hlicve that the same result is true with N replaceI by 2 For
N-2

i- Iar reason, if we replace Neumann boundary condition by a more uemera

N N+ 1
'then we need to replace - by N-1 (we then use in the proof of

N-2 N-1

:neorem 1.1, the a priori estimates of ii. Prezis and P. F. L. "urr,' ").

Pro, of Theorem 1.1: The proof is divided in several steps: we prov

1) there exist arbitrary neoative subsolutions of (1), 2) the set of

such that (1) has a solution is of the form (-c,t01, 3) that (1) has
0

-inimum solution if t < to, and finally 4) that (1) has two listir.-

--;olutions for t < t0 *

0' , 2 (. 772

Let C ) , then there existsuc v S ( 1 Ch that

-A v 4 q(x,v) + f(x) in y , in - 0 on

Indeed, because of t2) we have

q(x,t) > -at - c for tx t P x 2 and for some a, C 0

Then Lf we define v by v = - max I (; fi: + C), I.i 3 we have obviously
V ca cc

V '. ', andr

v = 0 -t v - r + fix) A(x,v) + f(x)

'<. first prove that if t is hounded, all possible solutinns of (1) at .

.,-undl-1 in C , ).

.eed, because of (6), we lodur- obviously from the m, xlrrm princiole t~t

is a solution of (1), ono has: u(x) I (!fI + C). In articu]3r

n '1rie in I ( . ext, if we inteqrat( (I) om we o-'tain

n(x,u) =-" f(x) " C('nt.;

'atisflp! (2) a ,i i' "'iindr, in 1,(1)), thIi- imiljs:

ST ,U 
I

x< (' , nf,;t . l , r ,q t'.



In particular we have: 1l-Aull ulUll 4 Const. . This implies by well-knnwn
L L

regularity results: Hiull L Const., V P < N- . Since g satisfies (4), itLp N-2

is easy to obtain by a bootstrap argument:

lull 4 Const.
L

Let us prove now that if (1) has a solution for some t , then for all.

s 4 t, (1) has a solution. Indeed let u be a solution of (1) for t an4

let s < t, obviously u is a supersolution of (1) (for s) i.e.:

-Au = g(x,u) + t'P + f1 ) g(x,u) + S: + fl

On the other hand, by step 1) above, we know there exists v satisfying

-Av < g(x,v) + sP + fi I v 4 u

Then by classical results on sub and supersolutions, this proves our claim.

Thus we know that the set of t such that (1) has a solution is either

(-,t 0] (with t0 < +-) or (--,+-) (it is necessarily closed in view of the

a priori bounds proved above). We just need to prove that (1) cannot have a

solution for all t : we argue by contradiction and we suppose (1) has a

solution ut for all t . Then we define ul, u2  by

u 2 2F-Au +cau, = in -=0 on 3 , u C C(2)

2 2 12= 2)
-Au2 + au = f1 - C in 0 , -- 0 on 3 , u2 C C2

In view of (6), we have

u ) t u + u in .
t 1 2

Since o satisfies (3), we have u1 > 0 in and thus for t large en'uih

ut > 0 in Q2

Because of (2), we have: g(x,t) > at - C for t 0 for some a, C > '

Then integrating (1) on 2 and usinq the fact that ut is positive, we

obtain

a r utdx + t f 4 dx . Const. (indep. of t );!&2



since dx > 0 , we obtain a contradiction for t large onouCh.

3) Now let t ( t , then (1) has always a minimum solution if t 4 to.

We already know that (1) has a solution u and that all possibli, solutions of

(1) satisfy: u > - - (Ufil. + C) (a,C qiven by (6)). But
Ia

v - - (llfil + C) is a subsolution of (1) (take y 0 in Step 1)) and

thus u > v . Then, by well-known results, this implies that (1) has a

minimum solution u among all solutions satisfying: w > v in 2 . Since all

solutions w of (1) satisfy: w > v in 2 , u is in fact the minimum

solution of (1).

4) Finally let t < to, and let us prove that (1) has two distinct

solutions. We are going to use a topological degree argument (we refer to

J. Leray and J. Schauder [12], or to L. Nirenberg [15] for a definition and

the main properties of the Leray-Schauder degree).

Let us first introduce some notations, let u be the minimum solutionto

of (1) where f is given by t0o + fl. By Steps 1), 2), 3), we know there

exists a strict subsolution v of

av-AV 4 g(x,v) + t; + f1 , = 0 on

and a minimum solution ut of (1) (with f qiven by t¢ + fl) satisfying:

v < ut < u t in

We are qoing to prove the existence of a solution u of (1) which does not

satisfy:

V < u < Ii in

t o tanl thus u > u t  in 11 , 11 u in .

By Sten 2) and tb- a priori hounds, we may choose C1 > 0 such that all

solutions u of (1) satisfy: f111 < (, and we may assume

C() 1

-t--

-n -o



Now in view of the smoothness of g(x,t), there exists X > 0 such that

g(x,t) + At is nondecreasing on [-CI , +cI], for all x in .

Obviously u is a solution of (1) if and only if u is a fixed point of the

compact operator K defined on C (7) by: Kv = u is given by

f-A u + Au = g(x,v)+ Xv + t + f, in 7, u e w2'P() (p < ),

Lu = 0 on D.

We first prove that if M is large enough, the degree of I - K on

B M= w C(S), lwil _ < M1 (with respect to 0) is well defined and

d(I - K, BM•O) = 0

In order to prove this, we define a family Ks  of compact operators in

C( ) defined by: KsV = us is given by

+
-A u + Au = s(g(x,v) + Av + f) + (1 - s)(l + v + Xv) in 02

s s

s= 0 on aQ.

The same proof as in Step 2) gives, that all solutions u s of: Us= Ks u

satisfy: lu II _ < M (indep. of S [0,11). We will also assume that
s

M > C1 . Thus the degree of I - Ks on BM is well defined and independent

of s F [0,11:

d(I - K, BM•0 ) = d(I - K0 ,BM,0)

Now, if u0  is a solution of: U0 = K0 U 0 ,we have
au 0 2

-A u0 = u0 + ,-=0 on af , u0 E C2(Q)
+

and thus J (1 + u0)dx = 0 , which is impossible; thus there is no fixed point
0

of Kn and d(I - K0,BM,0) = 0

We then prove that if 0' = {w e C(S2), v < w < u in 2) then• to

d(I - -,0,0) is well defined and is equal to +1. Indeed let F - , and

let us define K v on C(Q) by

. s Y v 1 ( - s), for s £ [0,1.

--_--------------



Becatis- of the choice of v,u t and X we have obviously:

K (!0 and thus K: 3 - C'.
s

-ihis implies that d(I - K ~~fO is well defined and independent of

s , ,1 therefore we deduce

d (I - K,L0',O) = d (I - is ,@O) = d (I - K~ ,YO).

Now K 0 v is constant, equal to ,; which belongs to ' , thus

d(I - K 0',O) = +1

we are now able to conclude: indeed by the above arguments we have

d(I -KfB M- C*',O) = -1

ani this means that (1) has a solution which does not belong to ~

MOO"



II. The convex case.

We now consider the case where q is con.,,o., rrore pr';,: < :

the following problem:
(7) -A u = ;(u) + f(x) in 2 , u £ - 2 (.), u =  fl r ,

0 ,a
where f c C (0() (for some Q c (0,1)) and where t isf J

(8) is strictly convex .n R , C (p);

(9) lim (t) < X
-w t

where 1 is the first eiaenvalue of -, in I , with Diricilet -un ....

conditions.

It is well-known that if lim t) , then (1) has a u nt 1t++w

solution u for every f E C'(2) . In what follows, we wi l wu

addition to (8)-(9):

(t)
(10) lim ) Xt

We then define K to be the set of functiorns f in C -

(7) has at least one solution. In addition we set

C0 ,1 -
A = {f e C (2), (7) has at least two distinct scutim

0,1 -
A, = {f C C (Q) , (7) has exactly one solu:tjn

obviously K = Am U A,

Our first result states (setting X = C '()):

Theorem II.1: Under assumptions (8)-(9)-'10), K is a r,,v x -,.

0
with K ¢ and E - K is nonempty, unboundpd.

Furthermore for all f C K , there exist; A r-i-'o,- - o'

such that the first eigenvalue of the operator -. - - 2 (u) (wit ; 'i::chK , -

boundary conditions) is nonneQative.
0

In addition A K (and 3K A ), and for all f 9 , n
m1

eiqenvalue of the operator -A - "(u) is positivo.-o



Pomark TI. 1: "hIs rocI., t- mav h'e oxtended,, rn theif raj o )f mr'rp rqrtp*!; i a -I t C.

operators an,! to more seneral houndary -unditions (2ri particular Neumann

conditions. T admitorn, w- may assumre that ; ierens on x ((C),(1n ' )

beinc" uniform i . x )

Remark II.2: This result is an ?xtenior, of .' result due to H. BerestyckJ

[4], where it is assumed in addition that: lim ---- I 2, where 2 is

t + t 2 2
the second eienvalue of -A . However in that special case a more precise

description of K may be qiven: indeed (see [,4) i) K is closed,

ii) A M K = if C () , (7) has exactly two solutionsl. We will som

below that if we relax the assumption: lim "2 ,, then we need some
t 20I t ++

assumption ro ensure that A = K, and that K is closed.
M

C
Let us for the moment indicate that in general for f in K (7) may

have more than two solutions (even an infinite number nf solutions): take

; (u) = - eu and f = 0, N < 10 with 2 the uit hall in RN - see 7. D.
N-2

Joseph and T. S. Lundgren [10] ). Furthermore we do not 'know any other

t)

assumption than: lim t < to ensure that for f in Y , (7) has

exactly two solutions.

.nr 11.3: For t in K , tbe minir.u solution u of (7) depends

cont inuouetv, on f

To simp'i , notations, we "a'; aso1me without loss of qeneralitv: ^(n) n

Refore r ing into the proof, let us give two results which answer tbrj

, 'ine r~t L.od ahove ri P ,-ark 11.2): (weo assume for the sahe o,f



Theorem 11.2: Under assumptions (-()(1)and if we assume:

N+2
-2/N -2 N-2

(11) lrn f{D(t) h(t) t 1 0 li ;r ~(t)t =0

t+wt++ 0
where 0 (t) = rt .(s) ds and h (t) = 1/ 2  ,(t) t - 0 (t) ;o 0 ; then A = K and thus

___ __ -0

A, 3K. In addition, for f in aK, the first eigenvalue of the operator

(-A : '(u)) is zero, where u is the corresponding solution of (7).

Remark 11.4: Let us give a few examples where the (technical) condition (11)

is satisfied:

i) if ; satisfies: 0 (tWt - F(t) > 0 for t > to, and for some

S(021/2 ) then h(t) ) 012 0 ) t ;(t) , and if we know that

lim ~ ct t(N+2 )/(N-2) =

4+0~ N-2

then '.(t) h(t)- / t2 4 C t ;(t) t2/ ' (t) / t2 4 and thus
N

t.

(11) is satisfied and soon as we have

5S;(t)t - FMt ) 0 for t. ) t 0  and for some 0 e(012
(12 -(N+2)/(N-2)

lim. ;(t) t =0.

(12) has been introduced by A. Ambrosetti and P. H. Pahinowitz [31, and

L+2
contains in narticular ;(t) = JtIP for 1 < p < N-2

ii) if - satisfies: lim 1;(t) tN. N2  0 , then (11) is satisfied.

Indeedi since ; is convex, it is easy to prove that h(t) -) at) -C; and

then

14-2

',t t- 2/N t-2 C - ;t- 2/N t-2 C ';(t)

t



If we consider the particular case (t) w ItI p  (with I < p < ) then

N+2
(8)-(9)-(10) hold obviously and (11) holds if and only if p < N-- . The

N+2
following example shows that such a restriction is needed and that L is the

0
critical exponent for Am to be equal to K

Fxample: We assume that 2 is starshaped (N ) 3), ;(t) = ItIp  with

p t-2 , and we take f 0 . Then (7) is equivalent to

(7') -A u = u
P  in 2 , u ) 0 in £ , u = 0 on 3P, u c C2)

Then in view of the results of S. I. Pohozaev [16], (7') has a unique

solution u R 0. Thus 0 e A But by an obvious application of the implicit

function theorem, for f in C0 'a(£) small, (7') has still a solution and

0
therefore f c K. Hence 0 s K

Finally concerning the question of the closedness of K , let us just

indicate that problem is entirely similar to the following problem: let

(0,X) be the maximal interval such that there exists a solution of

(13) -A u =A( O(u) + f(x)), u 6 C2(£), u = 0 on 3£2

where we assume f > 0, p(0) > 0; then does there exist a solution of (13)

for X = X ? This question is answered in M. G. Crandall and P. H. Rabinowitz

(7] (see also F. Mignot and J. P. Puel [141) and just applying their results

and techniques, we obtain:

Proposition II.l: If one of the following conditions is satisfied

(14) r t '(t) > e k(t), for t ) to  and for some 0 > 1, t0 > 0

lir @(t) t- (N+2)/(N- 2) =0;

t++CO

(15) [ (t) = atm + t(t), for t ) 0 and for some a > 0, where sa:i'.-

= '(t)-lira ) lira 0-t -CO t m  t++0 t m - 1

~-12-



2 2

r P is a class c and satisfies: (t) . (4), t u .

(16)

for " t ; with 0 < 6 < 2 + W + a and N < 4 + 2p + 4v-.';

where t0 > 0; then K is closed.

Let us remark that the results of D. D. Joseph and "* S. LunT.r:S.

show that these conditions are nearly optimal (see also [71 , (14', for

examples of nonlinearities O satisfying (14), or (15), cr ,16)).

Let us now prove Theorems II.1 and Theorems 11.2:

0
Proof of Theorem II.1: We only prove that A c K, since all the other

statements follow directly from the proof of H. Berestycki [4'.

Let f £ A , there exist at least a minimum solution of (2) u an anothr€
0 m

distinct solution, say u > u . Since we have

-A(u u) = 4(u) - ';(u) uu - U)

this implies that the first eigenvalue of the operator

(u) -(u)

-A - (this last function being extended by .'(u) on,
U U

0 . But since P is strictly convex, we have

P(u) - (u)

> ,'(u) in Q ,

therefore the first eigenvalue of the operator -L - ;'(u) is Positive.

by an obvious application of the implicit function theorem, for f en'-

0
in X , (7) has a solution i.e.: f e K

i0

-13- :_

lL .....
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V Y)"~ in -

V >C

Fince sa t i sFie s (1 i rU r r .j eoi ui, D f -

positive, mariy 1;Pply t:,t *-~s t eie r 'it s )f P. L.Lions ( -~ onr!,'ie.
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