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\\\\\f5>1n this paper a semilinear elliptic second-order problem is considered.

Under very general assumptions we give a precise description of the number of

solutions of the problem.‘(These results extend in particular a result due

to A. Ambrosetti and G. Prodi.
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SIGNIFICANCE AND EXPLANATION

: Semilinear elliptic equations (that is, for example, the Laplace equation
perturbed by a nonlinearity) occur in many applications, for example in
combustion theory, biology, population genetics, astrophysics ... . Under

general assumptions, we give a precise description of the number of solutions

of the equation.
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SHARP EXISTENCE RESULTS FOR A CLASS
OF SEMILINEAR ELLIPTIC ' T3LEMS

+

H. Berestycki* and P. L. Lions

Introduction.

The problem considered here is of the following type: let Q be a
bounded regular domain in Rﬁ , we look for solutions u of
du

(1) “Au = glx,u) + £(x) in 8, ue (), ==-0 on

0/%3) (f.r some

where v is the unit outward normal to 238 , fecC
0 < a< 1) and g(x,u) is a smooth nonlinearity satisfying essentially:

!

(2) 1im ﬂiEéEl < 0 < lim gix,t) (uniformly in x € )
trem o
and some appropriate growth condition at += .
If f(x) = tv(x) + f£4(x), where t € R, vE€ ' *(@) with
(3) ¢ 20 in R, v $ 0
we prove (see Section I) that there exists ty(= tg(¢,f4)) € R such that
i) if t > tg , there is no solution of (1);
ii) if t = ty, there is at least a minimum solution of (1):;
iii) if t < ty . there is a minimum solution of (1) and there are at
least two distinct solutions.
This result extends and sharpens many earlier results due to A. Ambrosetti and
G. Prodi [2], M. S. Berger and E. Podolak [S5], P. Hess and B. Ruf [9], J. L.

Kazdan and F. W. Warner [11], H. Berestycki [4], H. Amann and P. Hess [1], F.

N. Dancer [8]. The main assumption that we remove is the "at most linear

$+C.N.R.S.; Laboratoire d'Analyse Numérique, Université P. et M. Curie, 4 Place
Jussieu, 75230 Paris Cedex 05.
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growth at +=" and in addition we prove the existence for t < t; of two
: ordered solutions.

In Section II, we consider the special case of f(x,t) convex in t and
we give some results of a geometrical nature concerning the set of functions
f for which (1) admits a solution. Our main concern is to extend the results
of H. Berestycki [4] to the case in which we no longer assume that g grows

at most linearly at +% .
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I. The general case.

Let a be in (0,1) and let £ ¢ Co'a(ﬁ) . We assume that the
nonlinearity g(x,t) belongs to Co'a(ﬁ) (uniformly for t bounded) and
g(x,t) is Lipschitz continuous in t , uniformly for x in . In

addition, we restrict the growth of g(x,t) for t large by the following

assumption:

(4) lim g(x,t) tP= 0 , uniformly in x € 8 , for some p < %:2;
tr+oo

(if N = 2, ﬁgf may be replaced by any p < » ; and if N = 1 , we make no

assumption at all). We then have

Theorem I.l: Under assumptions (2), (4) and if f(x) = tv(x) + fq(x) with

co,a -

¥ € () satisfying (3), there exists t; € R (t; = t,(¥,f,)) such

that:

i) if t > to, there is no solution of (1);

ii) if ¢ = tgr there is at least a minimum solution of (1);

A

iii) if t to. there is a minimum solution of (1) and there are at

least two distinct solutions.

Remark I.1.: As it will be clear from an inspection of the proof, the same

result holds if we replace =~A by any uniformly elliptic second-order

operator {with smooth coefficients) and if we suppose that g depends also on
V u:g = g(x,u,p) for (x,u,p) ¢ T x R x RN; we then need to assume that

g{x,t,p) 1is bounded for (x,p) ¢ T x RN and t bounded and that the limits in
N

(3), (4) hold uniformly in p € R . In addition, we may also replace (1) by
(1) -4 u = flx,u,t) in £, u e (M, g% =0 on 90 ;
assuming as in {1]:
- af
(%) vmeR, Ty¢ e () such that TS (x,5,t) 2 ¢(x) >0 ,
for x in &, £ 2m and t ¢

-3-
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such that
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0,a
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Then Lf we define v by v
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n <

-x v

I we first prove that if

. 2,2,
beanded in €7D,
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helicve that the same result is true

Neum

N

N=2

the a priori estimates of
The proof is divided in several steps:
there exist arhbitrary negative subsolutions of (1),

(1) has a solution is of the form

, and

then there exists

in

Indeed, because of {2) we have

for

- ma

+ f{

is

one h
if we

Con
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T3
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N3 rerlaced hy

o

.

genara .

ann boundary condition by a more

+1
%_T {(we then use in the pronf of

i1, Brezis and R. ©. L. Turrer f]

we prove

2) the set »of =

¢-w,t01. 3) that (1) has alwawe

finally 4) that (1) has two Aistir-~~

2

oo O (:) such that

\

€ R X and for some a, C > 0O .,

t,x

x 1 (hfh + C), Gyl J we have obviously
e} o L)

¥) ¢ alx,v) + f(x) .

bounded, all possible solutions of (1) ar-

irleed, Pecause of (6), we deducrs obviously from the maximum princirle that

1
as: ulx) - (Wf”n + ). In prarticulsr
integrate (1) on , we ohtain s
st.;
. 4 . . .
e houndrd in I (), tris implies:
Ialdx Conat, .




In particular we have: Il ~Aull . Fall 1 < Const. . This implies by well=-known
L L

regularity results: liull p < Const., ¥ p < ng . Since g satisfies (4), it
is easy to obtain by a bzotstrap argument:
lull | < Const. .
L
Let us prove now that if (1) has a solution for some t , then for all
s < t, (1) has a solution. Indeed let u be a solution of (1) for ¢+ anéd
let s < t, obviously u is a supersolution of (1) (for s) i.e.:
-Au = g(x,u) + t¢ + f1 3 g(x,u) + s¢ + f1 .
On the other hand, by step 1) above, we know there exists v satisfying
-Av € g(x,v) + s¢ + f1 , v<u.
Then by classical results on sub and supersolutions, this proves our claim.
Thus we know that the set of t such that (1) has a solution is either
(-“,tO] (with t0 < 4°) or (=-w,+») (it is necessarily closed in view of the
a priori bounds proved above). We just need to prove that (1) cannot have a
solution for all t : we argue by contradiction and we suppose (1) has a

solution u, for all t . Then we define Uq, Uy by

3u1 5 =
-Au1 + au, = ¢ in Q@ , 517-= 0 on 230 , u, e CT(R)
au2 2 =
-Au2 + au2 = f1 -C in Q , Frade 0 on 230 , u, e CT() .

In view of (6), we have
>t + in % .
ut u1 u2 in @
Since ¢ satisfies (3), we have u, > 0 in ¥ and thus for t large ennuah
uy > 0 in Q .
Because of (2), we have: g(x,t) 2> at - C for t > 0 for some «a, C > 0P
Then integrating (1) on & and using the fact that u, is positive, we

obtain

Qa f utdx + t f ¢ dx < Const. (indep. of t };
Q Q

-G

e v gmmon e
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) " . . .
since ; v dx > 0 , we obtain a contradiction for t large enouch.
Q

3) Now let ¢t < tq, then (1) has always a minimum solutinn if t < to.

We already know that (1) has a solution u and that all possibls solutions of

1
(1) satisfy: u > - 2 (If1_+ ¢y (a,C given by (6)). But

v= - % (WEN_+ C) is a subsolution of (1) (take v = 0 in Step 1)) and
thus u ? v . Then, by well-known results, this implies that (1) has a

minimum solution u among all solutions satisfying: w 2 v in & . Since all

solutions w of (1) satisfy: w » v in 0§ , u is in fact the minimum

solution of (1).

4) Finally let t < t;, and let us prove that (1) has two distinct

solutions. We are going to use a topological degree argument (we refer to ]
J. Leray and J. Schauder [12], or to L. Nirenberg [15] for a definition and

the main properties of the Leray-Schauder degree).

Let us first introduce some notations, let ut be the minimum solution
0

of (1) where f 1is given by toe + £,. By Steps 1), 2), 3), we know there

exists a strict subsolution v of

v R
-Av € g(x,v) + ty + f1, v 0 on of2
and a minimum solution u, of (1) (with £ given by ¢ty + f,) satisfying:
v < ue < utO in Q .

We are qgoing to prove the existence of a solution u of (1) which does not
satisfy:

v < u< u in 0
t
n
and thus u > u.  in I u £ u in O .
n

By Step 2) and the a priori hounds, we may choose C, > 0 such that all

solutions u of (1) satisfy: HRVE < ., and we may assume
c(.)
v , o < Coo.
- t = 1

- -




Now in view of the smoothness of g(x,t), there exists X > 0 such that

g(x,t) + At is nondecreasing on [-C4, +C4], for all x in .
Obviously u is a solution of (1) if and only if u 1is a fixed point of the
compact operator K defined on C () by: Kv = u is given by

[_-A u+ du=glx,v)+ v+ ey + £ in T, ue wz'p(Q) (p < =),

]
\ 5% =0 on an .
\
We first prove that if M is large enough, the degree of I - K on
B, = {we @), lwl _ < M} (with respect to 0) is well defined and
c(R)

4a(1r - K, BM,O) =0 .
In order to prove this, we define a family Ks of compact operators in

C(9) defined by: Kgv = ug is given by

oA u + Aus = s(g(x,v) + Av + f) + (1 - s)(1 + v+ + Av) in Q ,
A aus

. — =0 on aft,

\_ 9V

The same proof as in Step 2) gives, that all solutions u, of: ug= Ko u

satisfy: HusH _ <M (indep. of s e [0,1]). We will also assume that
c{)
M > C,. Thus the degree of I - K on By 1is well defined and independent

TN

of s & [0,1):
d(I - K, By,0) = &(I - Kq,By,0) .

. Now, if ug is a solution of: Uy = KO uy , we have

du
+ + 0

2—
0 1 v

=0 on a2 , uo e CT () ,

~A uoz

o+ o

and thus f (1 + u )dx = 0 , which is impossible; thus there is no fixed point
Q
of K, and 4(I - KO,BM,O) =0 .
e then prove that if € = {we (), v < w< u, in ©} then
R 0
atr - »,&0) is well defined and is equal to +1. Indeed let ¢ ¢ € , and

let us Anfine isv on C(R) by

i ¥ u=a¥ v+ (1-38)¢, for sce [0,1] .




e

Recausye: of the choice of v,utO and X we have obviously:
K : &+ ¢ and thus ﬁsz b o.

This implies that d4(1 - ES,OZO) is well defined and independent of

$ <« 16,11, , therefore we deduce

ax - x,0,0) = a(1 - ES,OCO) = A1 - K, 6,0).

Now EOV is constant, equal to ¢ which belongs to & , thus
AT - K, ,6,0) = +1 .

We are now able to conclude: indeed by the above arguments we have

a1 - KB, - #,0) = -1 ;

and this means that (1) has a solution which does not belong to g .
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I1I. The convex case.

We now consider the case where g 1is convex, more prezisely we Aad .o-*

the following problem:

(7) ~Au = ¢(u) + f(x) in &, u € Cz(ﬁ), =0 o oL,
0,a . .

where f ¢ C (V) (for some a € (0,1)) and where . =satistiecs
(8) ¥ 1s strictly convex ¢n R, ¢ € C1(P);

n
(9) 1im 28

t 1

>
where X1 is the first eigenvalue of -4 in [ , with Dirichlet »ounave
conditions.
. . , vlit) . .
It is well-known that if 1lim - < Ny then (1) has a uninue
t >4 -

o, =

. 0 .
solution u for every f € ¢ ‘() . In what follows, we will aseure i-

addition to (8)-(9):

vt
(10) lim é A
t>+00 n
We then define KX to be the set of functiens ¢ in -~ '1(7\ sl ne

(7) has at least one solution. In addition we get

0,1

A {f e ¢’ (), (7) has at least two distinct sclutirrs-

m

1
A {f ¢ CO’

9

() , (7) has exactly one solution:

obviously K

B VB .
. . sl -
Our first result states (setting X = C 'l(ﬁ)):

Theorem II.1: Under assumptions (8)-(9)-"10), K 1is & convex ces, qeba

0
with X # ¢ and E - K 1is nonempty, unbounded,

Furthermore for all f € K , there exists a ri=ira~ =~Tution a0 -F

such that the first eigenvalue of the operateor =i = V'(u) (with Tivaichlot

boundary conditions) is nonneqative.
0
In addition Am - K {an 3K A,), and for all f o ¥ *hen ¢he Sivs

- 1

1

eigenvalue of the operator -4 - '(u) is positive.

Q.




Remark JI.1: This resuit mav be extended ro the casre of mnre qgencryal ellirtie
9

3 operators an' to more aeneral boundary cunditions (in particular MNeumann
conditions). In addition, we may assume that ¢ depends on x ((9),(17)
being uniferm in x £ L),

Remark IT.2: This result is an axtension of 2 result Aue tc H. RBerestycki

{4, where it is assumed in addition that: 1lim
>0

1é£l < \2 , where k2 is

A

the second eigenvalue of =A . However 1n that special case a more precise

description of X may be given: indeed (see {4]) i) K 1is closed,

G
ii) z =1<={f~;c0’1
m

(0

, {7) has exactly twn solutions}. We will s.o

g .
below that if we relax the assump-ion: 1lin '(g) < Ao then we need some
a +>400
assumpticn to ensure that A = X, and that K 1is closed.

m

¢
Let us for the moment indicate that in general for f in X (7} may

have more than two solutions (even an infinite number of solutions): take

u

¥ (u) = EEE e and f =0, N <10 with & the urit ball in RN - see n. D.

Joseph and T. 5, Lundgren {10}]). Furthermore we do not know any other

, () . ©
assumption than: lim (f < A?' tno ensure that for f in ¥ , (7) has
>+ - v

exactlv two sclutions.

womar« 1I1.3: For f in K , the minimum solution u of (7) depends
continucusly on £ .

To simplifv notations, we may assume without loss of aeneralitv: J(0) = 0

Before acing into the proof, let us give two resnlts which answer the

cpettons railsed ahove (in Termark I1.2): (we assume for the sake of

cimplilaits Nz 30,

o el

[P

17 -




Theorem I1.2: Under assumptions (8)-(9)-(10) and if we assume:

- N2
- ~ =2
(1) lim  {&(t) h(t) 2/N t 2} =0, lim g(t)t N2 -0 ,
>4 t++0 0
where @(t) = ft ¢(s)ds and h(t) =1é 2(t)t - d(t) > 0 ; then Am = K and thus
0
A, = 9K. In addition, for f in 0K, the first eigenvalue of the operator

1

{-3 = ¥'(u)) is zero, where u is the corresponding solution of (7).
Remark TI.4: Let us give a few examples where the (technical) condition (11)
is satisfied:
i) if ¥ satisfies: 8 ¢(t)t -~ F(t) 2 0 for t 2 to, and for some

5 : (0)) then h(t) > (b~ 8) t ¢(t), and if we know that
- (N+2) /(N-2)

lim S(t) t =0
400
N-2
-2/N =2 -2/N ~2/N =2 vit) N
then ¥(t) h(t) t < Ct g(t) ¢t g(t) t £C N and thus
N
t

(11) is satisfied and soon as we have

99(t)t = F(t) > 0 for t > t, and for some 9 ¢ (0,))

(12) - (N+2) /(N-2)

lim s(t) t = 0.

[ s :
. i

ﬁ (12) has bheen introduced by A. Ambrosetti and P. H. Rabinowitz (3], and
A +2 ’
> contains in particular £(t) = |t|P for 1 < p < g:; . .
! - - f

ii) 1if ¥ satisfies: 1lim $(t) t N/(N-2) =) , then (11) is satisfied.

>4 ;

Indeed since ¥ 1is convex, it is easy to prove that h(t) »? ag{t) - ©; and

thern

seohe) 2N 272 < et el \:(1:)'2/N 22 - celt)




If we consider the particular case ¢(t) = |t|P (with 1 < p ¢ ® ) then
. . . N+2
(8)-({9)-(10) hold obviously and (11) holds if and only if p < N7 * The
: s s : N+2
following example shows that such a restriction is needed and that oo is the
0

critical exponent for A, to be equal to X .
Fxample: We assume that 2 is starshaped (N > 3), ¢(t) = [t|P with

N+2 . :
p 2 o2 and we take f = 0 . Then (7) is equivalent to
(7') Au=uP in ©,u>0 in 2, u=0 on 32, uecXD .

Then in view of the results of S. I. Pohozaev [16]), (7') has a unique
solution u = 0. Thus 0 € A1. But by an obvious application of the implicit

function theorem, for £ in Co’a(ﬁ) small, (7') has still a solution and
therefore f € K. Hence 0 € g .

Finally concerning the question of the closedness of K , let us just
indicate that problem is entirely similar to the following problem: let

*
(0,X ) be the maximal interval such that there exists a solution of

(13) ~A u =A@ (u) + £(x)), uscz(ﬁ), u=0 on a9 ;

o e ™

where we assume £ 2 0, ¢ (0) > 0; then does there exist a solution of (13)

*
for A = A ? This question is answered in M. G. Crandall and P. H. Rabinowitz
[7] (see also F., Mignot and J. P. Puel [14]) and just applying their results
and techniques, we obtain:

Proposition II.1l: If one of the following conditions is satisfied

t ¥ (t) 3 8 ¥(t), for t 2 t and for some 0O > 1, t. >0,
—_— 0 —— o}
(14)
- ( N+ -

lim wit) t (N+2)/(N-2) =0 ;

t>40
4 (15) v(t) = at™ + y(t), for t > 0 and for some a > 0, where | savisfi~--

. .
‘ 1im Y8 o im i—‘f—’-: 0 ; !
' trecc ¢ trdoo  £TT

g )

or

A

. -12-




r

. 2 e
¥ is a class ¢ and satisfies:

—

(16)
\\ for . *t ; with 0 < B < 2 + u + /ﬁ and N < 4+ 2L+ 4V

where ty 2 0 ; then K is closed.

2 , )
(el 2 ()", o piotre

Let us remark that the results of D. D. Joseph andi 7. S. Luniagren ~°°°

show that these conditions are nearly optimal (see also {71, (14!, for
examples of nonlinearities ¢ satisfying (14), or (18), cxr (1f)).

Let us now prove Theorems II.1 and Theorems II.2:

0
Proof of Theorem 1I.1: We only prove that Am < K, since all the otrer

statements follow directly from the proof of H. Berestycki [4!.

Let f0 € Am, there exist at least a minimum solution of (2) u an? ancther

distinct solution, say u > u . Since we have

=0tu - u) = ¢(u) - ¢(u) =

this implies that the first eigenvalue of the operator

¥(u) - ¢(u)
-A -

u -

0 . But since ¥ 1is strictly convex, we have

v(u) - ¢ (u)

>¢'(u) in Q ,
u-u =

therefore the first eigenvalue of the operator -4 - v'(u) is positive. 7.

by an obvious application of the implicit function theorerm, for f near
0
in X , (7) has a solution i.e.: f_ ¢ X .

0

{this last function being extended by v'(u) on sy in




Froof of Trempen 0. - Tt . Vo, owe know (ty Theoyeen P11 0t

U4 omanimum golation of 70 apd that o farst elgenvalue of =L - LT u) e

. poertive,  To prove thot oA, we ast need to show rhere o s1s8te g

™

solution v of

Powrv = Jrater v ) = Ciatvdy an v e 0O
€17y

. v > ) tr . (LA o,
\

Since ~ satisfies (11) a~d sin e o firsr ergenvilue of =7 - J'iug)

positive, we may apply t:ue <nistence resalts of Po L. Lions [131 o conrlude,

L
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