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ABSTRACT

The bounds of Birnbaum (1942) and Sampford (1953) for the upper tail

area of the normal distribution are extended to the upper tail of the

t-distribution for arbitrary real degrees of freedom. This generalizes

the results of Soms (1977a) for integral degrees of freedom. Numerical

and theoretical comparisons are made with the bounds of Peizer and Pratt

(1968), Wallace (1959) and Soms (1977b).
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SIGNIFICANCE AND EXPLANATION

Real degrees of freedom arise in the modification of the two-sample

t-test when the variances cannot be assumed to be equal. For small degrees

of freedom both linear interpolation and standard computer routines may be

unsatisfactory. The present paper provides simple techniques for satis-

factory estimates of small tail probabilities.

Ace- ion P. Fr ..

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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BOUNDS FOR THE t-TAIL AREA FOR ARBITRARY DEGREES OF FREEDOM

Andrew P. Soms

1. Introduction

The purpose of this paper is to extend to the tail area of the

t-distribution bounds given by Birnbaum (1942) and Sampford (1953)

for the tail area of the normal distribution based on Mills'

ratio. This extension of Mills' ratio type bounds is completed

in Soms (1977b) and (1979) and the basis for these extensions is

the asymptotic expansion obtained in Soms (1976). An excellent

summary of the normal results can be found in Chapter 33 of

Johnson and Kotz (1970). The organization of this paper is as

follows. In Section 2, we introduce the notation and give needed

previous results. The proofs are given in Section 3, in Section

4 theoretical comparisons between the bounds are made, and

Section 5 consists of numerical comparisons.

2. Statement of Results

Let (x) - (2r) e -x /2 (x) (t)dt, and
R x x

R~ X-F k(x)/O(x), x >0. Then Birnbaum (1942) and Sampford (1953)

gave the following lower and upper bounds, respectively, for Rx:

(x/2 + ( "l+x2,4)) < R < (3x + (l/2+x 2 /16)h (2.1)

-2 - (k~fi)/2 r((k+l)/2)Now let fk(t) - ck(l+t /k) -  c k - k(( )(7)S r(k/2) (7rk) '

Fk(x) - 1-Fk(x) - fk(t)dt, and R - F (x)/((l+x 2 /k)fk(x)), for

real k >0 and real x >0 here and throughout the paper. Then we

will show here that

Soonsored by the United States Army under Contract No. DAA29-80-C-
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[k_;l)x + (+((k+I)x)2) 1- +R <k- +(k~ ((k+l)x)2] -L k +l 2k -C Rx -C 2k+ k 4k

(2.2)

where the lower bound is valid for k > 1 and the upper for k > 2.

Note that if for fixed x, k - - in (2.2) we obtain (2.1) with "<"

replacing "<". A result from Soms (1976) which will be used

subsequently is that

1/x-k/((k+2)x 3 ) <R < 1/x , (2.3)x

for real k > 0 (actually the proof assumed k a positive integer

but this fact was nowhere used).

3. Proofs

Let v(x) - 1/R x . Then

k-i 2)(~Zk 3l
X(x) - V'(x) = v(x)(v(x) - x)/(l+X 2k) (3.1)

and the first result is that 0 < X(x)< 1 for k > 1 (here and

throughout, '" means the derivative).

Theorem 3.1: Let ) (x) be given by (3.1). Then 0 < X(x) < 1

for k > 1.

Proof: For convenience, X(x) and v(x) will be denoted by A

and V. From (2.3) v >x, and hence X >0. Suppose X > 1 for some

x. Then there exists an x such that X > 1 and V' = 0, since from

(2.3) lim X - 1 and it will be shown in Lemma 3.1 that
x -I -W 2

X(O) - 4 ck < 1. Nov
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V k+1 k k-i(i+x/k) 2 -(V x) (vx) ++x 2)/k L+/k (- - x(k)

1+X 2 /k) i /k +2/k xkk

S [V- k-)x/k)(2v-(k+l)x/k 
_ k1l+x 2 / + kL

(2F k+lx k-i>(~l > k-l- 2/kX ---.-- ) - 1 ~ 2/ (-)(X-i) • 0,

i+X2 /k LX V Vj i+x 2/k k

and hence X' > 0, a contradiction, giving the conclusion.

From Theorem 3.1,

v(v - (k-1)x/k) < 1 +x2/k. (3.2)

Completing the square in (3.2) gives

2 2
(v- (k-l)x/2k) < 1 + ((k+l)x/2k) 2

or since v- (k-l)x/2k >0 from (2.3),

(k-)x + (1+ ( k x) 2

L k (+2k)) < Rx, (3.3)

the desired result.

Recall that

V [(v-(k-l)x/k)(2v-(k+l)x/k)k-iI

1+x /k l+x /k-
v -i .) (V-(k-l)x/k)(2v-(k+l)x/k) (34)

l+x 2/k l+x 2/k

Then the second result which will give the upper bound in (2.2) is

Theorem 3.2: Let )' and 0 be as in (3.4). Then, for k > 2,

V, >0 or, equivalently, > > (k-l)/k.

Proof: Suppose ' < 0 for some x. Then there exists an x

such that 0 . (k-l)/k and 0' 0, since 0(0) - 8 Ck 2 > (k-l)/k by

Lemma 3.1 and lim O(x) u (k-l)/k, since lim v/x - 1 by (2.3).

Nov using (3.1),

-3-



.[ (X-(k-l) /k) (2v-(k+l)x/k) + (v- (k-1)x/k) (2X-(k+l)/k) ](I+x 2/k)-2 (l+x 2/k)x /k

(l+x 2/k)
2

(v-2x/k) -((k-l)/k) (2v-(k+l)x/k) + (v-(k.-)x/k) (2,-(k+l)/k) (3.5)

(l+x2 /k)

Suppose V < 2x/k. Then x < v < 2x/k, since v >x by (2.3), and so

kx < 2x, which is impossible since k > 2, and so v > 2x/k. Adding

and subtracting (v-2x/k)(k-l)/k to the numerator of (3.5), gives,

after some simple algebra, [' = [(v-2x/k)( -(k-l)/k) +

2(v-(k-l)x/k)(X-l)]/(l+x 2/k) < 0, since < (k-l)/k by assumption

and A < 1 by Theorem 3.1, which is a contradiction and completes

the proof.

From Theorem 3.2,

(v-(k-l)x/k)(2v-(k+l)x/k) > (k-l)(l+x 2/1k)/k ,(3.6)

and completing the square in (3.6) gives

(v-(3k-l)x/4k)2 > (8(k-l)/k + ((k+l)x/k) 2)/16 , (3.7)

and since v >(3k-l)x/4k, (3.7) gives, after some algebra,

R < [ )x + L- + ( k) x,,21 (3.8)

which is the remaining part of (2.2).

To complete the proofs of Theorems 3.1 and 3.2 we need
2 2

Lemma 3.1: 1-4ck > 0 for k >0 and 8ck > (k-l)/k for k > 2.

Proof: The proof is an immediate consequence of the fact

shown in Soms (1979) that for k > 0 the ck are a strictly increas-

ing function of k with limit 1/27. For the sake of completeness

we provide a brief outline of that proof. Let g(k) = _dk Zn ck =
kk

2 -( _ k+. y(') _ k where Y(x) is the digamma function (see,

e.S., Abramowitz and Stegun, 1965, p. 258). From Artin (1964,
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p. 17), h(k) - 2 -( (k+2)(k+2i+l)* By the

Euler-MacLaurin formula,

1 k+l +1 1
2 k 2 k(k+l) < h(k)

1
and so h(k) > , giving the conclusion.

It is reasonable to ask whether consideration of derivatives

of R would also lead to bounds. In fact it does lead to
x

analogues of the bounds of Gordon (1941), but these bounds, just

as in the normal case, are inferior to (2.2). For the details of

these and some other second-best bounds the reader is referred to

Soms (1977a).

4. Theoretical Comparisons

We give here the three types of other bounds with which

either numerical, theoretical, or both comparisons will be made.

The bounds of Peizer and Pratt (1968) are

x 2(k+2) < R < 1 (k+2)(k+4)x +2(k+l)k (4.1)
x 2(k+2)+k x x (k+2)(k+4)x 2+2(k+1)1-+k(k+4)

the bounds of Wallace (1959)

2 2f k (4.2))I
.1- [ (k Xn (1+x2/k)) %  < R < i.-OC(l-i/2k) (kV Zn (1+x2!)% (4.2)

(l+x 2 /k)fk(x) x (l+x 2 /k)fk(x)

1
k > - for the upper bound, and of Soms (1977b)

P(X,Ymi n ) < Rx < P(X,Ymax) (4.3)

vhere p(x,y) 1+ , for k >2, y k -

(x 2+ 4 ck 2 (l+y) ) +yx in 2(k+2)ck

Ymax w 4ck 2 /(l-4ck 2 ), for k< 2 the definitions of ymin and ymax

are interchanged and for k-2, ymin - Ymax and Rx a p(X,Ymax).

-5-



Let us denote the lower bounds of (2.2), (4.1), (4.2), and (4.3)

by SL, PL, WL, and EL, respectively, and the upper bounds by SU,

PU, WU, and BU.

Then, after some algebra, comparison of (2.2) with (4.1)

yields the following results. SL is better (bigger) than PL for

x< k/(k+2) . SU is better (smaller) than PU for x < - b +2 2a

4a c) , where

2
a - -2(k+2)(k+4)

b - -2k(k+4)(2k 2+3k+4)

2 2and c - 4(k-l)k (k+l)

Analytical comparisons with Wallace (1959) appear impossible.
BL is better than SL for k>k where 1<k <2, and for

sufficiently large x and 1 < k < ko, SL is better. For suffic-

iently large x, SU is better than BU. Further analytical compar-

isons here are prohibitively difficult.

We note here that for k = 1, we have the Cauchy distribution

and (2.2) and (2.3) combine for the interesting simple and sharp

result

1 < -2 dt < 1IT (1+x2  7r f l +t2 r

5. Numerical Comparisons

2
Let g(x) - (1+x /k)fk(x). Then (2.2) gives

g(x)SL < F k(x) < g(x)SU , (5.1)

and we can approximate Fk(x) by L - g(x)SL and U g(x)SU. This

is done in Table 1 for selected degrees of freedom and known t

percentiles (Cramer, 1946, p. 560).
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From Table 1 is appears that the approximation using the SL

and SU-bounds gives good results if F k(x) is less than or equal

to .1.

In Table 2, SL, PL, WL, and BL are given and in Table 3, SUJ,

PU, WU, and BU, for selected x and k. In the calculation of the

WL bounds for extreme tails the Boyd (1959) approximation for the

tail area of the normal distribution was used. A "-" indicates

the bound is inapplicable.

While the superiority of SL to EL for k - 1 is not apparent from

the tables, it is seen by direct calculation that, for example,

for x = 50 SL is bigger than EL. In general, for lower bounds

EL is best while the picture is mixed for upper bounds. For x

larger than in the tables the performance of SL and SU would be

better than for EL and EU.
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