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ABSTRACT
The bounds of Birnbaum (1942) and Sampford (1953) for the upper tail
area of the normal distribution are extended to the upper tail of the
t-distribution for arbitrary real degrees of freedom. This generalizes
the results of Soms (1977a) for integral degrees of freedom. Numerical

and theoretical comparisons are made with the bounds of Peizer and Pratt

(1968), Wallace (1959) and Soms (1977b).
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SIGNIFICANCE AND EXPLANATION

Real degrees of freedom arise in the modification of the two-sample

t-test when the variances cannot be assumed to be equal. For small degrees

of freedom both linear interpolation and standard computer routines may be

unsatisfactory. The present paper provides simple techniques for satis-~

factory estimates of small tail probabilities.
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BOUNDS FOR THE t-TAIL AREA FOR ARBITRARY DEGREES OF FREEDOM

Andrew P, Soms

l. 1Introduction

The purpose of this paper is to extend to the tail area of the
t-distribution bounds given by Birnbaum (1942) and Sampford (1953)
for the tail area of the normal distribution based on Mills'
ratio. This extension of Mills' ratio type bounds is completed
in Soms (1977b) and (1979) and the basis for these extensions is
the asymptotic expansion obtained in Soms (1976). An excellent
summary of the normal results can be found in Chapter 33 of
Johnson and Kotz (1970). The organization of this paper 1is as
follows. In Section 2, we introduce the notation ard give needed
previous results. The proofs are given in Section 3, in Section
4 theoretical comparisons between the bounds are made, and

Section 5 consists of numerical comparisons.

2. Statement of Results

. 2 - @
Let ¢(x) = (2w)-& e X /2, Fk(x) = I ¢(t)dt, and
- x
Rx = Fk(x)/¢(x), x>0. Then Birnbaum (1942) and Sampford (1953)

gave the following lower and upper bounds, respectively, for Rx:

-1 -1
(x/2+ (142?70 <r_< (x4 (1/24x% /160 . (2.1)

y~Cktd/2 o _T((k+1)/2)

2
Now let £ (t) = ¢, (1+t“/k ’
k k ko r(x/2) (mk)®

;‘k(x) =1-F (x) = Ixfk(t)dt, and R_ = l'-'k(x)/((1+x2/k)fk(x)), for

real k>0 and real x>0 here and throughout the paper. Then we

will show here that
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Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041 and the University of Wisconsin-Milwaukee Graduate School.




-1 -1
[(k;i)x . [1+((k-;11()x)2]!5] <r_< [(3;2;1),( N {k;llc+ ((kﬁ)x)z]*j '
(2.2)
where the lower bound is valid for k > 1 and the upper for k > 2.
Note that if for fixed x, k - = in (2.2) we obtain (2.1) with "g"
replacing "<". A result from Soms (1976) which will be used

subsequently 1is that

1/x - k/ ((k+2)x°) <R_<1/x , (2.3)

for real k>0 (actually the proof assumed k a positive integer

but this fact was nowhere used).

3. Proofs

Let v(x) = 1/Rx. Then

Ax) = VD) = v v - B x) /(LK) (3.1)

and the first result is that 0<A(x) <1l for k > 1 (here and

throughout, means the derivative).

Theorem 3.1: Let A(x) be given by (3.1). Then 0<A(x) <1

for k > 1.

Proof: For convenience, A(x) and v(x) will be denoted by A
and v. From (2.3) v>x, and hence A >0. Suppose A > 1 for some
x. Then there exists an x such that A > 1 and X' = 0, since from

(2.3) 1im * = 1 and it will bSe shown in Lemma 3.1 that
x-m
2

A(0) = 4ck <1. Now




e e p——

AN =4

NMe——d—— v-EL K e Y (v-l oy kL
(1+x2 /%) 2 k k 14x2 /% [14x2/x k k
R (V= (k-1)x/k) (2v=(k+1)x/k) _ k-l]
2 2 ¥
1+x°/k | 1+x° /k
v k+1 x k-1 v k-1
eV |a(2-krlx) > &=Ly i-1) > 0,
1+x2/x kv k:l 1+x%/x K -

and hence A' > 0, a contradiction, giving the conclusion.

From Theorem 3.1,
Vv - (k-1)x/K) <1 +x2/k. (3.2) {
Completing the square in (3.2) gives
(V- (k-1)x/2K)2 < 1+ ((k+1)x/2k)2 ,

or since v - (k=-1)x/2k >0 from (2.3),
-1

k-1)x (k+1)x. 2
[ X [1'*“'3El‘) ] <R_, (3.3)

the desired result.

Recall that

A' = v [(v-(k-l)x/k)(2v-(k+1)x/k) _ k-%} -

1+x2/k 1+x2/k k
- vz (6 _Eil)’ ¢ = (v-(k-l)x/k)§2v-(k+1)x/k) (3.4)
1+x" /k 1+x” /k

Then the second result which will give the upper bound in (2.2) is

Theorem 3.2: Let X' and ¢ be as in (3.4). Then, for k > 2,

A' >0 or, equivalently, ¢ > (k-1)/k.

Proof: Suppose )\' < 0 for some x. Then there exists an x

2

such that ¢ < (k-1)/k and $' = 0, since ¢(0) = 8ck > (k-1)/k by

Lemma 3.1 and 1lim ¢(x) = (k-1)/k, since lim v/x = 1 by (2.3).
x+® xX+®

Now using (3.1),




_[(X-(k-l)/k)(Zv-(k+l)x/k)4-(v—(k-l)x/k)(2%-(k+1)/k)](1+x2/k)—2(1+x2/k)x¢/k
(14x2 /K) >

o'

- (V=2x/k)¢=((k=-1) /k) (2v=(k+1)x/k) + (v=-(k-1)x/k) (2} -(k+1) /k) . (3.5)
(1+x2/k)

Suppose VvV < 2x/k. Then x < v < 2x/k, since Vv >x by (2.3), and so
kx < 2x, which is impossible since k > 2, and so v >2x/k. Adding
and subtracting (v-2x/k)(k-1)/k to the numerator of (3.5), gives,
after some simple algebra, ¢' = [ (v-2x/k) (¢~-(k-1)/k) +

2 (v- (k-1)x/k) (A=1)1/ (1+x2/k) < 0, since ¢ < (k-1)/k by assumption
and A <1 by Theorem 3.1, which is a contradiction and completes
the proof.

From Theorem 3.2,

(V- (k=1)x/K) (2v= (k+1)x/k) > (k=1) (1+x2/K) /k , (3.5)
and completing the square in (3.6) gives

(v-(3k-1)x/4k) % > (8(k-1)/k + ((k+1)x/k)2)/16 , (3.7)

and since v > (3k-1)x/4k, (3.7) gives, after some algebra,

4k 2k 4k

’
-

-1
- ‘- ik
R_ < [f3k Lx [k 1, (Lk+Dx, } ] ’ (3.8)
which is the remaining part of (2.2).
To complete the proofs of Theorems 3.1 and 3.2 we neced
2> 0 for k>0 and 8¢, > > (k=1)/k for k > 2.

Proof: The proof is an immediate consequence of the fact

Lemma 3.1: 1-4c¢

shown in Soms (1979) that for k>0 the ¢, are a strictly increas-
ing function of k with limit 1/v/27. For the sake of completeness
wve provide brief outline of that proof. Let g(k) = d gn e, =

L a dk k
+
3 W(-il) - % ?(%) - f%, where ¥Y(x) 1is the digamma function (see,

€.8., Abramowitz and Stegun, 1965, p. 258). From Artin (1964,




p. 17), h(k) = 3 v(&) - 2

Euler-MacLaurin formula,

1, k+l
7 W

and so h(k) > f%, giving the conclusion.

It is reasonable to ask whether consideration of derivatives
of Rx would also lead to bounds.
analogues of the bounds of Gordon (1941l), but these bounds,
as in the normal case, are inferior to (2.2).

these and some other second-best bounds the reader is referred to

Soms (1977a).

4. Theoretical Comparisons

(k+21) (k+2141)°

2 k(k+1) -

By the

In fact it does lead to

For the details of

We give here the three types of other bounds with which

either numerical, theoretical,

The bounds of Peizer and Pratt (1968) are

2

(k+2) (k+4)x2+2 (k+1) k

o

_§_1£1£l_ <r <1
x° (k+2)+k * x

the bounds of Wallace (1959)

1-0[ (k &n (1+x2/k))*] R <
(1+x? /) £, (x) x

k > % for the upper bound, and of Soms (1977b)

P(‘:Ynin) < Rx < P(x’Ymax) ’

1+y

(k+2) (k+4) x2+2 (k+1) k+k (k+4)

1-0[(1-1/2k)%(k 2n (1+x k))%]

or both comparisons will be made.

(4.1)

(1+x2/k)fk(x)

vhere p(x,Yy) = 3 3
(x +he, " (1+y)

for k>2, ¥y

(4.3)

—k
2
2(k+2)ck

2 2
- 4 1-4 <
Y € ] ( Sy ), for k<2 cthe definitions of Yoin and Ymax

are interchanged and for k=2, Yni

and Rx - p(x.ymax).

just

,  (4.2)



tand

Let us denote the lower bounds of (2.2), (4.1), (4.2), and (4.3)
by sSL, PL, WL, and BL, respectively, and the upper bounds by SU,
PU, WU, and BU,

Then, after some algebra, comparison of (2.2) with (4.1)

ylelds the following results. SL is better (bigger) than PL for

X'<k/(k+2)%. SU is better (smaller) than PU for x < - %L +
2 3 a
b -4ac
(*——3——) , where
4a
a = -2(k+2) (k+4)2
b o= -2k (k+4) (2k2+3k+4)
and c = 4(k-1)k%(k+1)?% .

Analyticél comparisons with Wallace (1959) appear impossible.

BL is better than SL for k >k°, where 1 <k° <2, and for
sufficiently large x and 1 < k ¢ ko, SL is better. TFor suffic-
iently large x, SU is better than BU. Further analytical compar-
isons here are prohibitively difficult.

We note here that for k=1, we have the Cauchy distribution
and (2.2) and (2.3) combine for the interesting simple and sharp

result

1 1 [ 1 1
——— = —_— dt < — ,
1r(1+x2);5 Ty 1+t2 X

5. Numerical Comparisons
Let g(x) = (1+x2/k)fk(x). Then (2.2) gives
g(x)SL < F, (x) < g(x)SU , (5.1)

and we can approximate Ek(x) by L = g(x)SL and U = g(x)SU. This
is done in Table 1 for selected degrees of freedom and known t

percentiles (Cramer, 1946, p. 560).
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From Table 1 is appears that the approximation using the SL
and SU-bounds gives good results if Ek(x) 1s less than or equal
to .1,

In Table 2, SL, PL, WL, and BL are given and in Table 3, SU,
PU, WU, and BU, for selected x and k. In the calculation of the
WL bounds for extreme tails the Boyd (1959) approximation for the
tail area of the normal distribution was used. A "-" indicates

the bound is inapplicable.

While the superiority of SL to BL for k=1 is not apparent from
the tables, it is seen by direct calculation that, for example,
for x =50 SL is bigger than BL. 1In general, for lower bounds
BL is best while the picture is mixed for upper bounds. For x

larger than in the tables the performance of SL and SU would be

better than for BL and BU.
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