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ABSTRACT

This paper is primarily expository in nature and focuses on the all

pervasive importance of f'/f in efficient estimation of location, with

primary emphasis on the role of f'/f in robust estimation. Connections

between M estimators (maximum likelihood-like), R (rank) estimators and L

estimators (linear combinations of order statistics) are discussed and an

alternative heuristic explanation of f'/f is given showing why it is an

intuitively reasonable quantity on which to base estimation. The asymptotic

relative efficiency of each class of estimators is shown to be the square of a

correlation coefficient related to f'/f and reasons are given as to why R

estimators might often prove to have superior robustness properties relative

to L and M estimators.
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SIGNIFICANCF AND EXPLANATION

There is considerable discussion in statistics as to how one should

estimate the location (sometimes called the central tendency) of a

distribution. Traditionally the sample mean and its generalization, least

squares, have been used, often in conjunction with outlier rejection rules.

However, there may be considerable loss in efficiency if the mean or any other

preselected estimator is used with data for which it is not appropriate.

This paper provides insight into which characteristics of the parent

distribution of the data have a practical impact on the efficiency of the

estimator. Three classes of estimators are explored and it is shown that in

all three the key quantity is f'/f where f is the density function of the

data and fV is its derivative. Correlation coefficients between the f'/f

of the hypothesized data and the corresponding quantity g'/g for the actual

data, are shown to be directly related to the efficiency of each method of

estimation.

The responsibility for the wording and views expressed in this dpscriptive
sunmmary lies with M~R:, and not with thp authors of this report.
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THE UB3IQUITOUS ROLE OF f'/f IN EFFICIENCY ROBUST ESTIMATION OF LOCATION

Brian L. Joiner* and David L. Hall**

1. Introduction

Three major classes of estimators, L, M and R estimators, have been extensively

studied in the robustness context but relatively little emphasis has been placed on the

similarities and differences among the three classes. An important purpose of this paper

is to demonstrate some of their underlying similarities, and in so doing, gain insight as

to some of their more important distinctions. The key role of f'/f in these matters is

emphasized.

*1

*Brian Joiner is Professor and Director of Statistical Laboratory, Department
of Statistics, University of Wisconsin-Madison.

**David Hall is Senior Research Scientist, Battelle Northwest Laboratories,

Richland, Washington.
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2. L, M, and R estimators

In this section we ive brief definitions of the three major classes of 1,ti-.

estimators and in subsequent sections we describe the relationships amonu th.s" thr

classes in large samples.

L-estimators

Of the three classes, the simplest to explain are the L-estioators. A-l .- "

a location parameter X is of the general form

i,n (i)

where the X W are the ordered observations from a sample of size n an,] t€c a,

weights to be applied to the various order statistics. A simple example of a,.

for a sample or size 4 is

1 2 -'6 X() 6 (2) (3) 6 (4)

In small samples from known distributions the optimal weights for L-estinate: r

derived from the expectations and variance-covariance matrix of the order statisti-

means of the Gauss-Markov theorem. For large samples it is convenient to repr~s, t-
0

weights by defining a function h(u) on (0,1) such that a., n  h i / _
in n-l

the data have cdf F (x) = F(x - X) with density f(x - X) and if

f'(x - X) def af(x - then under regularity conditions it can be shown that t-x

asymptotically most efficient function h(u) for data from F is qiven by

h(u) = q(F- I(u))

where g(x) =- (f'/f(x)), and r-1(u) is the percent point function or inverse c
dx

Some examples of optimal functions are given in Exhibit 2A. The optima L

estimator for Causgian data is the ordinary sample mean and that for inumhle exrne'-

data is the median. Trimmed means are optimal L-estlmators for Aistri~utionr wit"' 'Th:

mtidles and double exponential tails.

m-estimators

Th- -,oncept of '-estimators (or maximum-likelihood like estimators wa tr.o
"

' :



DISTRIBUTION OPTIMAL h SKETCH OF h
FUNCTIONS

(mean) 1/2

NORMAL

nlu). 6 1/2  U)

(median)
1/2

DOUBLE EXPONENTIAL 2

h u)_ _2 W I. 2u )0-u ) 2

LOGISTIC

hl). 2(l-tan 2ff~u2'2)) 0

. CuAC 1+ tan 2 (u-1 '2))2 z 0 2

CAUCHY

D.E. hlu). 1-2 a ___u'__I_"_

NORMAL , 0.u< 0

NORMAL -0.E. 1-2<u!1 2

Exhibit 2A

Optimal weight functions for L estimators for several

distributions

NOT-.



liuber (1964). In general an M-estimator is defined by a function (x) and the M-estimate

of the location parameter k based upon the data {x.} is given by the value of X such
1

that ,x - X) = 0. The asymptotically most efficient M estimator for data from ai=1 1

differentiable density f is the maximum likelihood estimator for which t = -f'/f.

Some examples of optimal y functions are given in Exhibit 2B. Note that for the

Gaussian distribution y(z) = z and the optimal M estimator is the sample mean, while for

the double exponential distribution the best M-estimator is the median. For a distribution

with a Gaussian middle and double exponential tails, the maximum likelihood estimator is a

metrically trimmed mean in which k must be calculated iteratively but winds up being the

average of the middle observations after all observations such that Ixi - > k, are

trimmed. The points ) ± k are those at which the Gaussian portion of the parent

distribution meets the double exponential portions. This metrically trimmed mean is often

called a "Huber estimator" since it was found by Huber (1964) to be the minimax estimator

for data from a Gaussian distribution with arbitrary symmetric contamination. That is, it

is the M-estimator whose worst case variance is minimized over the class of distributions

given by D1 - c)1 + eH} where 4 is standard Gaussian and H is symmetric about zero,

but otherwise arbitrary.

R-estimators

A class of estimators based on rank tests for symmetry and known as R-estimators was

introduced by Hodges and Lehmann (1963). We find these more difficult to explain, but three

statements that provide concise and easily understood intuitive definitions for some are:

- Take as an estimator that value of X for which the rank test scores for the n

values (x1 - )), (x - X),...,(x - X) give the best balance relative to the origin

(slightly paraphrased from Lehmann, 1975, p. 176);

- Az --estimate of . is that point of symmetry that is least rejectable by the

specified rank test;

- An r-estimate for X is the midpoint of symmetric confidence intervals for based

-a specilie- ran" t, "t Sstls-it.

-4-



DISTRIBUTION OFT IMAL 4 SKETCH OF V,
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NORMAL

DOUBLE EXPONENT IAL
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CAUCHY
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NORMAL -D.E. 1 0

Exhibit 2B

Optimal ',-functionls of u -estimators for several
distributionls



Proceeding more formally, consider any rank test for symmetry with score function

J(u) defined on 0 4 u ( 1 with J(u) = -J(1 - u). Then for any trial value of A,

(a) compute {iX. - Al},
1

(b) find ranks of (IX. - A},
il ,R~lx i - XI) 1

11(c) compute S+M) sgn(x. - A) n+

where J+(u) = J( + - u), and (2c)
2 2

sgn(z) +1, if z > 0

= 0, if z = 0

= -1, if z < 0

Then the value of A such that S (A) = 0 is the R-estimate corresponding to the score

function J(u). If there is no value of A such that S +() = 0, the R estimate is

usually defined as the mid-point of the interval between the largest value of A such that

S ( <) 0 and the smallest value such that 6 (A) > 0.

The optimal score function for data from the distribution F is, under some

regularity conditions, given by

J(u) = -f'/f(F-1(u)) . (2d)

Some examples of optimal score functions and the corresponding rank tests and R-estimators

are given in Exhibit 2C. Most R-estimators must be solved iteratively, just like M-

estimators. Two important exceptions are the optimal R-estimators corresponding to the

louble exponential and logistic distributions. For the double exponential distribution the

optimal rank test is the sign test and the corresponding optimal R-estimator is the

eleian. For the logistic distribution the Wilcoxon test is optimal as is its counterpart,

t'e H'odes-Lehmann (1963) estimator, defined as the median of the Walsh averages

(x + X )/2 for i j .1 J

Trp otimal R-estimator for the normal distribution must be solved iteratively ana

c,)rreponds to the normal scores test with J(u = (u), the inverse normal CDF.

- -I--- ... ...
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JAuI-Co -1(U) 0

NORMAL12
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DOUBLE EXPONENTIALk/

_____________ Ju)- 2U-1 0 ,
LOGISTIC

____________AU). 2tan-r(u- 1~

CAUCHY J1 1+I 2(ff(u-, 2J '

J~u)' 951(u) , -u0~u~u 0

NORMAL D.E.

Exhibit 2C

Optimal score functions of R-estimators for several
distributions



3. 1 ' m !i}: ' f~ ,tt a , " . , , f ma t -r,

To ', rOtr we zohasize the vory close cosne-t ions hetween npt] maT L, M an'l P-

ts: a'.ii ani show -_ow the a.-'a-ost imators of Pivest (1')7R) are a natural extension. In.

al! ,dSOS we will asseimn' t't- -ita come from se vmmetric density f known up to a

loe:tt.n narameter "I anr anprnn!iate re.qularitv conditions on f will he assumed to

nt il "I estiators

As nentioned in the precelinq section and as is well known the optimal M-estimator for

lata tro f is qiven by the maximurn likelihoodI estimator AM  defined hy

f'/f(x i - A ) = 0
I'f( M

,pti:-a S-estimators

The optimal ?-estimator given by (2c and 2d) can be shown to be quite similar to the

-a1 M-qstimator, except that the actual deviations {(x. - )} in the M-estimator are

rpeicel bv "predicted deviations"; that is, by the deviations one would predict based on

w'-:, -7t! ,f fand the ranks of the absolute values of the deviations. Suppose we define

(X, - X) 
= 

sgn(X - ) (3a)
i * "+ n (3a

-1
F is the cdf of Ix - Xj for the given f, and F is its percent point

u-rc -,n. Tenr the ontinal rank estimate x is simply the solution , of

P

,. f'/f(X i  - A),, ) =

7 a M-estirnatnr mak s use of the actual deviation while a rank estimator must

7actial -esiation hy so i f/nction of its rank. Since svmmetrv has been assuned

I:st aT t') !3e is tho -aTus one would preiict .asd sTolely on knowledqe of the rant,

--- , 'a le of t
'
.- leiat I-on. This is it estimat: of how biq the absolute value

' :. "o, i' it- bee," for 'lita fron the 'r:own f. In For-ula (3a) the srn,

.r-.:" '--a nra- " o wb;c5 silo of A the !eviation ,a,, from, while the other

" - ,- t"o' , tio , 000 w ], Fnrt!!ict.

..-



Optimal L-estimators

For L-estimators a somewhat analogous result can be shown to hold, except here the

actual deviation is used just as it was for M-estimators, while f'/f is approximated by a

locally linear function. To see this suppose we start from the M-estimator

I f'/f(X(i ) - X) = 0 evaluated now for the ordered observations {x W}. Taking some

particular deviation, say (X(i) - A), we seek a linear Taylor series approximation for

the function f'/f(X(i ) - A). Expanding about the value (X(i) - A)
0
, let

[(Xi ) (X _ af'/f(X i-A)I
f,/f(X M-i) f/f(X (i)-X ) + [ - CX-)

0 1  C(x-i)
CXi)-)

Now choose

Cx - X)
0 

= F

as the value about which the Taylor series expansion is taken. Then

f,/fCXi-A) = f,/f(F- ih i F-h i )hiCi)n+1> + CX Ci)-X n+-1 - n+1 n+1%7
wf'/f -

where h(u) = Cf.f (F- 1(u)) as given by (2b). But I f'/f(F
- l( 0 since this is

;n+I-

just the MLE of the center of a distribution symmetric about zero with "data" equal to the
symmetric quantiles. Similarly I h(n_1) - 0 s this-' 'n- ) = 0 since thsis simply an L-

estimate of the same center for the same quantile "data". Thus

f'/f(X - A) " h(L-) (X Ci) - X)

When the right hand half of this is set equal to zero, it yields, the L-estimator

n n
L / I hriI )XL i n+1 Ci) j1 n+l

This process can be seen more clearly in Exhibit 3A. There the curved line is the Y

function that is asymptotically optimal for a Tukey lambda variate with parameter -0.5.*

*A Tukey lambda variate z with parameter y is defined by the equation

z =r[U - (1 - U)/. where U is uniform on (0,1). See, e.g., Joiner andl
Posenblatt (1971).

ai

W M
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Exhibi-t 3A Corntinuea

The curve,! line is a ', function for a:- r ..
mal for a 'Tukey variate (-;;itzh =-.5,.

on the horizontal axis are at z:ne Lonr
~'5observations. can Lie ar

these '-oints. These tarn ent lines are tne-
analo0 of those that 'efine th a. n.t::a
l en t Lesti.nator. The X's or. the :-.criZon:Eo. .e. -Z
-:-e otaerveci zata. For the h - esti-.azor n
:- at the data, movin ; the ; curve lefz.........
:- =0. 'he center cf thie curve ethen .tvc

tne t~.o.or te ijrocess I's analco*o, - -

.zez tne za .:er, li'ne atonoa.n
*;aa!-ue of xUzes th~e :s :a-n~en: z e . -

zecon- a, et re ana sc on. -Ven, in t

2 a:e -z is clear that there is little ier.c
thee ;e i t s an d 7:-.eir L ajo:: ..
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The c-irzles on the horizontal axis are at the points F- for n 5 observations

and a trial value of . Tangent lines are drawn to , at these points. These tangent

lines are the small sample analog of those that define the asymptotically equivalent L-

estimator. The x's on the horizontal axis denote the observed data. For the M-estimator

one computes Zy at the data, moving the ) curve to the left or right until Ev = 0.

The center of the % curve then gives the M estimator XM .

For the L-estimator the process is conceptually analagous except that the tangent line

approximations are used rather than itself. The smallest value of x uses the first

tangent line, the second smallest uses the second tangent line and so on. Even in this

small sample it is clear that there is little difference between the weights and the

weights from the tangent lines. Note also that the tangent lines are not used in the same

fashion as the customary piecewise linear approximation. The smallest data value uses the

first tangent line no matter how far out (or in) that point might fall.

To sun up, when one knows the parent distribution there is a very close connection

among the asymptotically optimal L, M and R-estimators. The M-estimator is the maximum

liielihood estimator, with V - f'/f and the L and R-estimators are defined by simple

approximations. This close connection warrants summarization.

Optimal M-estimator for f is value of X such that

f,/f(X. - X) = 0

Optimal R-estimator for f is value of 1 such that

f'/f (predicted value of (X - X)If and rank of IX - )f) = 0;1 1

Optimal L-estimator for f is value of 1 such that

[linear approximation of f'/f] (i) - A) = 0.

L- estimators

Seeing the intimate connection among these estimators leads one to think of broader

-lasses of estimatorF that would combine or include these three. The work of Rivest (1978)

pro'deS one suich -lass. ?ivest nas stuied a class of L-M estimators defined as the

si~ u



n
h'n+1 × 1) - I

n.

These estimators would seem to combine features of both L and M-estimators. As one miqht

conjecture, these estimators turn out to be asymptotically equivalent to maximum likelihood

estimators at F if H and are such that

h(u) * L F-I(U) = ' F (u)axx

That is, the product of h, the L component weight function, and the slope of ,, the M

component function, must be identical to the derivative of the maximum likelihood score

function. Thus an asymptotically optimal L-M-estimator with h and functions defined
-1 r~f/f F-1 1

by h(u) L FCI(u) a/-- F(u) :
/ 2  

would, in some sense, be "half" M and "half" L.
ax a

RA

p.



4. Heuristic view of f/f

In the preceding section we saw that

f, af(X - X)
- f(X - A)f ak

is the key quantity in efficient estimation of location, be it M, L, or R or even L-RM

estimation. This important fact seems not to be widely appreciated even though it is

implicit in many sources. In this section we give a heuristic view as to why it is

eminently plausible to base estimates on V/f. This intuitive motivation is intended t,

compliment that of the likelihood approach.

In the likelihood approach one starts from the fact that the "probability" of the data

n

for any given value of X is a f(X - A). One then finds the value of A that

maximizes the "probability of the data". Taking logarithms and differentiating leads to
r f

the familiar V - L (X - X) - 0 as defining the maximum likelihood estimate of A. Even. f i

after seeing this, many of us still have little "feel" as to why f'/f "should he" the

defining characteristic.

Here we qive an alternative view that seems to be plausible enough even for many

students taking their first course in statistics. The exposition is all in the context rf

estimating the location of a symmetric distribution known up to its point of symmetry,

however much is immediately generalizable to broader classes of estimation problems.

The process of estimation can be viewed as essentially the matching of a density with

an observed histogram. One might imagine the density function in Exhibit 4A beino moved

along the horizontal axis until it provides a good match, in some sense, with the observed

data. Once the "best" match has been found, the location estimate becomes the center of

symmetry of the density function.

The role of f'/f in efficient estimation of location is thus to determine when a

good match has been obtained. To see how this is accomplished consider Exhibits 4n an! 4'.

These present two microscopic views of the interrelationship between the data and the

theoretical density function at different reoions of the horizontal axis. The amount Of

information available locally concernino the incremental movement of the density relati-e

to t ,e data is rquite different at the two sites. In Exhibit 4P the local oortion of t'm
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density would fit the local data almost as well if the density were moved slightly to

either side. Thus there is very little local information that could be used to determined

the value of X.

In Exhibit 4C the situation is quite different. In this case any movement of the

density would markedly decrease the quality of the match between the density and the data,

and thus there is much relevant local information concerning estimation of location.

The main difference between Exhibits 4B and 4C is in the relative steepness of the

local part of the density function, i.e. in the magnitude of f'/f. However, even after

considering this, one might still question why fe/f rather than, say f alone is the

key characteristic in estimation of location. While the answer is not obvious it does seem

heuristically reasonable that the height of a histogram should also be relevant since a

given amount of tilt at the top of a tall histogram may well be less informative than the

same amount in a very short one.

Thus, seen from this view, the role of f/f is to measure the relative steepness of

the density function and to express the amount of resistance the data exerts to having

moved away from it. Once is near the correct value, there will exist stresses from

f/f on both sides of '. For any given sample, the value of X that balances these

stresses will be the location estimate for that particular sample.

It is interestinq to review these "stress functions" for several well known

distributions. Exhibit 2B presents -f'/f for several distributions. When considered

from the above viewpoint, the fact that for the Gaussian distribution -f'/f is exactly

proportional to the size of the deviatno. is 7iite remarkahle. The tails of a raussian

distribution thus vet Pe'r i reasinnL' s'eer, as one moves further away from itr center in

direct proportio 7 tc the sa-ce. H-c' for a daossian distribution the amount of

resistance exerted t ,, "e' , fro' d,. ),H:ervation increares in direct

proportion to t- -,i :,, ,f course, is the cause of the well

-nown phenomenon -a- o-:t ' : r;aur,. u ,roat Pffe't on location estimation for M



The double exponential distribution, on the other hand, has tails of constan-t relative

steepness. Thus the stress exerted on A does not depend at all on how far out in the

tails an observation is. All that matters is what side of A the observation is on.

The logistic distribution differs from the double exponential in its central portion

but, as can be seen from Exhibit 2B, its tails are asymptotically equivalent to those of

the double exponential. Thus, once X is a substantial distance from an observation,

moving it an arbitrary amount further away makes virtually no difference in the amount of

force exerted on A by that observation under logistic assumptions.

The Cauchy distribution is different yet: observations at an intermediate distance

from exert the most force while those further out exert almost none. Under Cauchy

assumptions, once an observation is far enough away from X, not even the side it is on

matters much. Cauchy tails are asymptotically flat, like a uniform distribution, and thus

contain essentially no information on location. The greatest information concerning

location in a Cauchy distribution is in the "shoulders" of the density which fall off

rather sharply.

The uniform distribution itself represents a limiting case in another direction.

Here, f'/f shows that the middle part of the data contain no information on location

while the endpoints contain "infinite" information, thus X must exactly balance the two

endpoints, leading to the well known result that the midrange is the MLE and asymptotically

most efficient L estimator for the uniform distribution.

The point of view discussed above is naturally quite closely connected to the idea of

the influence curve introduced by Hampel (1968). Hampel noted that if a derivative of the

functional defining an estimator was taken, the resulting function Q(X,F) could be

interpreted as representing how much effect an observation at x would have on the

es~timator with data from F.

A Mechanical Analogy

These observations lead us to propose an alternative mechanical view of estimation Of

location. The conventional view is that of finding the balance point of a scale in which

bloc'Ks of en~ual mass have been placed at each data point. This analoov is exact for t',,



Gaussian case and can be modified to work in other cases by using an analogy with weighted

estimation (c.f., Andrews, 1974).

An alternative view that seems to provide different insight is that of the same

balance, but with blocks of mass proportional to If- (X - X)I being placed at ±i,
f i

depending on the sign of (X - J. The masses represent the amount of stress or force1

being exerted by the various data points as a function of the relative steepness of f'!f

at that distance from X. For the double exponential, all masses would be of the same size

so that X only seeks to have an equal number of masses on each side. For the Cauchy, the

masses would first increase then decrease in size.

Other Uses of V/f

That f'/f plays a key role in estimation is of course not new. ! is explicitly the

central quantity in maximum likelihood estimation and is at least implicit in L and P-

estimation. Fisher information being equal to E(f'/f)
2 

is thus a measure of the "arount"

of '/f. The Cramer-Rao lower bound for the variance of an estimator of location being

equal to 1 has an analogous interpretation.
E(f'/f)

2

Stein (1956), Stone (1975) and others have shown that at least asymptotically for

symmetric distributions it is possible to estimate V/f from the data and thus gain full

asymptotic efficiency for data from any symmetric distribution, subject to mild regularity

constraints. In fact Stone's results can be said to be promising even for the location

problem even in samples as small as 40.

Huber's Minimax Result

A less obvious situation in which f/f appears to be key is associatem with Huber's

(1964) minimax estimator for a type of contaminated data. Huber proposed the followina

problem: suppose F is a symmetric distribution known up to a location parameter and

is any other distribution symmetric about the same point. Then consider the class o.

contaminated distributions {(l - E)F + CH) where c is fixed. He asked, which fixed

estimator has the best worst-case variance with respect to this class of distributions?

Huber showed that if F had a strongly unimodal density, i.e. if -f' /f were

monotonic, th-n under mild regularity conditions the solution was given by an M estinator



of the form

N

1i= 1

where

=-L(x), for IxI < c
ff

= -sgn(x) 4--.c), for Ixl ) c,

and where c is determined by c. Huber interpreted this result as a sort of "fattening

up" of F's tails. However, it seems more pertinent to view it as the removal of the most

informative part of f'/f. For example, if F is Gaussian then -f'/f is a straight line

with positive slope. The minimax estimator for the above class is known as a "Huber" and

has the function shown at the bottom of Exhibit 2B.

Thus nature's best strategy is to take as H that distribution which places all of

its mass in the portions of F that have the greatest relative steepness in such a way as

to make those portions of the resulting density exponential. Hence the worst possible

Huber-type contaminated normal has a Gaussian middle and double exponential tails, and has

as its maximum likelihood estimator the M estimator defined above.

A Conjecture

Huber's proof makes critical use of the assumed strong unimodality of F and thus

does not apply when F is a distribution like the Cauchy. However, we conjecture that

Huber's result holds in a broader class of distributions in the sense that the Huber-type

minimax estimators for any distribution will, under reasonable regularity conditions, be of

the form

(x) -- (x), x e A

-sgn(x) X, x f A,

where

A x (x)l K)
f



5. f'/f and relative efficiency of estimation

In Section 3 we observed that f'/f is the key quantity in definino a fully ,fficient

estimator of location. In this section we investigate the problem of relative efficiency

of estimation, where one uses an estimator optimal for data from F, but applies it to

data which actually came from some other distribution G. We show that in such cases the

asymptotic relative efficiency (ARE) of L, M and R-estimators are all determined by

correlation coefficients between f'/f and g'/g. The difference in efficiencies among L,

M and R-estimators is shown to be a matter of the "data" at which f/f is evaluated.

This provides us with insight as to differences among the three classes.

Efficiencies as Squared Correlations

Correlation coefficients occur frequently in efficiency calculations. Cramer (1945)

showed that if T, was an efficient estimator and T2 was a regular unbiased estimator,

then the souare of the correlation coefficient between the estimators gave the efficiency

of T2 . Noether (1955), Hajek (1962), and van Eeden (1963) extended this result and showed

in different situations that the Pitman efficiency of certain tests was given by the square

of the correlation coefficient between the test statistics. In the context of rank tests

this correlation between the rank statistics reduces to the correlation between the

asymptotic score functions corresponding to the tests (Hajek, 1962). (Note that it is

often much easier to compute the correlation between score functions than it is among the

estimators which they define.)

R-Estimators

First we show that the ARE of a rank estimator corresponding to an arbitrary score

function is given by the square of a type of correlation coefficient. Hajek (1962) showed

that when the two sample rank test based on the score function J(u) is applied to data

from a distribution F, the ARE of the test based on J with respect to the

asymptotically most powerful rank test (amprt) for the distribution F is given by the

square of a correlation coefficient, namely

M N



1 -Jf J(u)(-f'/f(F 1 (u dul
2

p (J(u), -f'/f(F- 1(u)) 0 1

f J2(u)du f [-f/f(F-1 u)] 2du
0 0

van Eeden (1963) proved a similar result for the one sample test for symmetry. Hajek's

result (5.1) is also true for the corresponding rank estimators, as will now be shown

directly.

We assume throughout this section that all distributions considered are symmetric an'

unimodal with finite Fisher information and a differentiable density.

Theorem 5.1: If the R-estimator with score function J(u) is used on data from a

distribution F, the ARE of the estimator based on J(u) relative to the R-estimator

corresponding to the amprt for F is given by (5.1).

Proof: We can assume without loss of generality that F has been scaled so that its

Fisher information

1
I(F) f [-f'/f(F-

1 
(u)).du

0

is unity. The asymptotic variance of the rank estimator with score function J(u) on the

distribution F is given by

(F x))f(x)dx

2 -
OR=

[ J'(F(x))f 2(x)dx 2

(ow since I(F) = 1, the ARE of this rank estimator with respect to the efficient rank

2
estimator for F is just the reciprocal of u P Thus



(J' J' (F(x) )f 
2 

xidc]
2  J ' u) f(F

1 I u) ) ,u' 2

ARE (JIF) =1 -0
2 21

P J J(F(x))f(x)dx J (u)du
0

which after integrating the numerator by parts and recalling that I(F) I gives

t J~u)f'/f)F- (u))dul

ARE (JIF) = 1 2 u u 1-f/ -1()]2d

0 0

which is t'a desired result.

In the above, note that if J is the score function for the amprt corresponding to

some distribution G then the expression for the ARE becomes

ARE R(GIF) = P2 (-fl/f(F C~u)'), -g'/g(G- 1 u)))

0 - 2 1 -1 1 2 52

If /(G (ulf/f(F[g'g ( u)]du u
0

Note that this is the square of the correlation coefficient between f'/f andc zo"

with each being evaluated at its own data. Also note the reflexivity of the ARE for ra1-'k

estimators. That is (5.2) represents the ARE of the rank estimator with score functior

-g' /g(G- 1Cu)) on the data from F as well as the ARE of the rank estimator with score

foinction -f'/f(Fl
1
(u)) on data from G. As an example, the best rank estimator for

Gaussian data, the normal scores estimator, has the same ARE on loqistic data, 0.95, as

hest rank estimator for logistic data, the Hodges-Lehmann estimator hias on 7,aussian dv-ti.

The P efficiencies for a number of other pairs of 11strihutions Are comrrote! in

an,] Joiner )9t)



Correlations, Angles and Efficiencies of R-estimators

For R estimators Gastwirth (1966) has noted that the score function J(u) of a rank

estimator may be thought of as an infinite dimensional vector. The score function for the

efficient R estimator for F is given by -f'/f F-
1
(u), which may thus also be thought

of as an infinite dimensional vector. The square of the cosine of the angle between these

two vectors is the ARE of J applied to data from F. This relationship between the ARE

of R estimators and the angles between score functions is further developed in Hall and

Joiner (1980c).

M Estimators

For M estimators a similar but different result is attained:

Theorem 5.2: The ARE of the M estimator defined by the square integrable function (x)

on data from F with respect to the efficient M estimator for F is given by

ARE (,fIF) = p
2
(V(F-

1
(u)), -f'/f(F-1 (u)))

ff (F-1(u))(-f'/f(F-1 (u)))du] 2

0
1 1

f 2(F 1(u))du f C/f(F-1(u))) 2du0 0

Proof: The ARE of the M-estimator corresponding to i(x) with respect to the efficient M

estimator for F, which corresponds to -f'/f(x), is

AREM( IF) 2
S M I(F)

S '(x)F(x)dxJ
2

00 1
2 (x)f(x)dx f [/f F- 1(u)2du
-~ 0

[ , (x)f'(x)dx 32

00 1

y 2(x)f(x)dx " [f,/f F (u)] 2du
0



2l

f (x) f d1
[] ( f(x) dx

f X)

SW2(x)f(x)dx (f'/f F- 1(u)]2 du

1f -(F1(u '/ -1 U)U2

0
-0 (5.3)

2 
2
(F-I(u))du [f'/f(F-1(u)] 2du

0 0

which is the desired result. Hence the ARE of an M estimator is also given by the square

of a correlation coefficient.

From the above theorem the ARE of the optimal M estimator (i.e. the maximum likelihood

estimator) for G when applied to data from F is given by the squared correlation

coefficient

ARE M(GIF) = 2(-g'/g(F 1(u)), -f'/f(F I(u))

As with R-estimators, the ARE is the squared correlation coefficient between f'/f and

g'/g. The big difference here is that f'/f and g'/g are both evaluated at the actual

data.

The Role of Scale in M Estimation

In M estimation the scale of the data makes an important difference in estimatir. of

location. For example, the ARE of the M estimator (x - ) when applied to data fro-

F,- depends very much on the value of a. In R and L estimation, the valuje

a is not a factor in determining ARE. This independence of scale in T and P

estimation is a convenience, both practically and theoretically.

An illuminating example of M scale dependence is afforded by the family of scale]

t distributions. For this family the optimal 4 functions all have identical share:

J=(v +1) 2
[1+ u 

2

Swhere u 
= The roles of a and v are thus totally confounded in M estimation

" M

........-- r



for the t family. One can achieve, for example, 100% efficiency with the for, any

t, say the Cauchy, on data from any other t just by using a "wrong" value of 0.

Lack of Reflexivity of M Efficiencies

The reflexivity of efficiencies that R estimators possess is not attained by M

estimators. That is, the ARE M(FIG) is in general different from AREM(GIF). The amount

of difference depends in general on the scaling of the distributions. For example, in

Exhibit 5A we see that

ARE M(Cauchyllogistic) is not equal to

ARE M(logisticICauchy) for any of the four choices of scale considered.

For R-estimators,

2ARE R(logisticICauchy) = ARER(Cauchyllogistic) = 6/r = 60.79%.

An even more extreme example of lack of reflexivity is provided by the Gaussian and

Cauchy, where

ARE M(GaussianICauchy) = 0, for all choices of scale.

On the other hand ARE (CauchylGaussian) is positive for all choices of scale, and is 57%

when the two distributions are expressed in their standard form. The ARER is 43%, either

way, no matter what scale is used.

L Estimators

The ARE of L estimators is also given by a squared correlation coefficient.

Theorem 5.3: The ARE of the L estimator with weight function h(u), where

h(1 - u) = h(u) and f h(u)du = 1, on data from F with respect to the efficient L
0

estimator for F is given by

2 -ARE L(hJF) = p 2A((h,F)(u)), -f'/f(F (u))]

where

A(h,F)uu) f h t) dt __ _h(t)d(F (t)) (5.4)

1/2 f(F It)) 1/2

-26-



Exhibit 5A

Illustration of strong dependence of asymptotic relative efficiency

of M estimators on choice of scaling function. All but one of the scaling

functions are analogous to the median absolute deviation in that they

are a percentile of the {1y i -yiO}. For example, MAD = S 50

[0.50 quantile of {lyi-Yil}]. Efficiencies for the same ' function on the

same data, range from, e.g., 56% to 75% depending on the choice of scaling

function.

(a)

Maximum likelihood estimator for Cauchy applied to logistic data, and
vice versa. Note that for the scaling function S.1, both M estimators

have efficiencies higher than the 60.8% of their rank counterparts.

Efficiencies (in %)

Estimator Applied - Scaling function *

to S.l S.50 S.6 7  (Info) "

MLE for data from II

Cauchy logistic 81.6 77.0 71.2 80.6

logistic Cauchy 61.4 57.2 52.2 60.4

Each S was multipled by a k such that 100% efficiency was attached by the
MLE on its own data. Thus, fQr example the logistic estimator had
kp = [Sp (on logistic data)] -'.

-27-



(b)

Tukey bisquare applied to Student t data. The tuning constant k
in the bisquare was, in each case, selected to produce 95%
efficiency on normal data.

Efficiencies (in %)

Scaling function

Data from S.25 ] S'50 S75

k 15.268 7.213 4.229

Cauchy 75.3 70.2 56.3

t with v= 2 90.8 89.7 86.1

v 3 95.7 95.3 94.1

\= 5 98.4 98.4 98.3

v=lO 98.7 98.8 99.0

v=30 97.2 97.3 97.4

normal 95.0 95.0 95.0

The results in this Exhibit are due to Lane Bishop.



Proof: Since A(hF)(u) ; hl dt, h(u) - f(F
1
'(u))A'(h,F)(u), where

1/2 f(F- It)) 1

A'(h,F) (U) != A(h, F) (u). Thus, since f h (u) du 1
du 0

f f(F- (u))A'(h,F)(u)du
0

Integrating by parts gives that

-fA(h,F)(u)d(f(F- 1 u))) 1
0

Now assume without loss of generality that I(F) = I and recall (see, e.g., Huber, 1972)

that the asymptotic variance of an L estimator is given by a2 f A A
2
(h,F)(u)du. Then

L

the ARE of the L estimator h(u) on data from F is given by

ARE L(hjF) 2
LL

Ef A(h,F)(u)d(f(F- (U)))]

0

f A 2(h,F)(u)du
0

f A(h,F)(U)f'/f(F -1(u))du3
0

I A 2 (h,F)(u)du f [f'/f(F C1 u)))] du
0 00

which was to be shown.

When h(u) = (-g'/g) (G C1 u)), so that it is the optimal weight function for the

distribution G, the ARE of it on data from F is:

ARE L GF A-g/)(C- (u)),F)(u), -f'/f(F- 1CU))

If we let h f denote the efficient weight function for F, we have

, =.-



u hf(t)

A(hfF)(u) f - dt
1/2 f(F (t))

= - (-f'/f(F 1(t))ldt

1/2

= -f./f(F 
1
(u))

If we now let h denote the efficient weight function for G, equation (5.4) can be

expressed more symmetrically as

ARE L(GIF) = p 2(A(h ,F)(u),A(hfF)(u)) •

Like M-estimators, L-estimators do not have the reflexivity of efficiency possessed hv

R-estimators. For example, the mean, which is the efficient L-estimator (as well as M-

estimator) for the Gaussian distribution, has an ARE of 50% when used on double exponentlal

data; while the median, which is the efficient L estimator (as well as R-estimator) for

the double exponential distribuiton, has an ARE of 64% when used on Gaussian data. The

corresponding R-estlmators have ARE equal to 64% in both cases.

Relationships

It is useful to emphasis the similarities and differences among the correlation

coefficients for the three classes of estimators. Repeating the ARE formulas derived abovve

we have:

ARE R(GIF) = p 2[-g/g(G -1(u)), -f'/f(F- 1(u))

ARE M(GIF) = p 2[-g'/g(F- 1(u)), -f'/f(F-1 (u))], and

ARE L(GfF) = P2 (A(hg,F)(u), -f'/f(F- (u))] .

Note that in R estimation asymptotic relative efficiency is determined by how well

f'/f and g'/g correlate when each is evaluated at its own data. In contrast, for

estimation, asymptotic relative efficiency is determined by how well f'/f and u' a

correlate when both are evaluated at the actual data, F-
1
(u). For L estimation the

situation is different still. In this case linear approximations to f' /f and a' 'ci aro

----------- -------- S.. -



evaluated at their own data and then smoothed by the distribution of the actual data.

Asymptotic relative efficiency for L depends upon how well thse two smoothed versions

correlated.

A Further Connection

An obvious similarity among the correlation coefficients is the presence of

-f'!f(F (u)) in each of them when the data are from the distribution F. Thus the

correlations may all be interpreted as being with the optival rank score function for the

actual data. We can couple this interpretation with the result of Hajek (1962) that for

any rank score function one can find a corresponding distribution whose amprt has that

score function. With appropriate conditions on W and h it would thus he possible to

find distributions G ,F  and Gh,F with I(G, ,F IGh = I such that

-9 F (G 1 (u)) (F 
- 1 

(u))

,F 2 (F- (u))du
0

and

-9'h,F (G- 1 A(h,F)(u)CC, Flu))=
9
hF hFA

2
(h,F)C(I) du

That is, the functions

J(F (u))

2 (F-(U))du

0

and

A) ,F (u)

A 2



would correspond to the score functions of the amprt's for the distributions G,, and

Gh, F, respectively. Thus the score functions for rank estimators and their correlations

contain information concerning not only the efficiencies of rank estimators but also

implicitly the efficiencies of M and L estimators. This approach might conceivably be

useful in extending the interpretation of some of the results presented in Joiner and Hall

(1979).



6. Conclusions

This paper has emphasized the important role played by f'/f in determining the

efficiency of all three major classes of location estimatorst L, M, and R. In all

three, f'/f is used to define the asymptotically efficient estimator and a heuristic view

is given as to why f'/f might be an intuitively reasonable quantity on which to base

location estimation. The asymptotic relative efficiency of each of the three classes of

estimators is seen to depend upon the degree of agreement between f'/f of the

hypothesized distribution and the corresponding quantity g'/g for the distribution which

actually generated the data.

The insight gained in this paper is used, in several companion papers, to develop

other results useful in robust estimation. In Hall and Joiner (1980b) a number of

numerical and analytical results are given for the asymptotic relative efficiencies of P

estimators optimal for some distribution F when applied to data from some other

distribution G. Then in Hall and Joiner (1980c) the R efficiencius are used to develop

several useful low dimensional representations of the space of distributions. Underway is

a quantative comparison of the relative efficiencies among the three classes of estimators

(Joiner and Hall, 19POd). This comparison was prompted by the relationship noted here that

in the correlation coefficient that determines R efficiency, f'/f and g'/g are both

evaluated at their own data, while for M and L estimation the hypothesized estimator

is, at least in part, evaluated at the actual data. This suggests the possibility of some

general efflciency robustness for R estimators. However, Bishop's result (cited in

Exhibit A) shows -hat there exist pairs of distributions and choices of scaling functions

for which both M estimators (i.e., for F on G data and for G on F data) have

better ARE than their P counterparts.

:n still anot-er relat'] paper (Joiner, Hall and Bishop, 1980e) the close relationship

between t'- defisn in eia-1i,ns f'r ,! and P estimators is used to extend these

results 
t o the lesri. ,int.r , This extension is equivalent to what nickel (197F)

has-a~ "~:'I s-r~i~ i- -v context of 'Iestimators.
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