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ABSTRACT

\\\\£;> This paper is primarily expository in nature and focuses on the all
pervasive importance of f'/f in efficient estimation of location, with
primary emphasis on the role of f'/f in robust estimation. Connections
between M estimators (maximum likelihood-like), R (rank) estimators and L
estimators (linear combinations of order statistics) are discussed and an
alternative heuristic explanation of f'/f 1is given showing why it is an
intuitively reasonable quantity on which to base estimation. The asymptotic
relative efficiency of each class of estimators is shown to be the square of a
correlation coefficient related to f'/f and reasons are given as to why R

estimators might often prove to have superior robustness properties relative

to L and M estimators. ..~
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SIGNIFICANCE AND EXPLANATION

There is considerable discussion in statistics as to how one should
estimate the location (sometimes called the central tendency) of a
distribution. Traditionally the sample mean and its generalization, least
squares, have been used, often in conjunction with outlier rejection rules.
However, there may be considerable loss in efficiency if the mean or any other
preselected estimator is used with data for which it is not appropriate.

This paper provides insight into which characteristics of the parent
distribution of the data have a practical impact on the efficiency of the
estimator. Three classes of estimators are explored and it is shown that in
all three the key quantity is f'/f where f 1is the density function of the
data and f' is its derivative. Correlation coefficients between the f'/f
of the hypothesized data and the corresponding quantity g'/g for the actual
data, are shown to be directly related to the efficiency of each method of
estimation.
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THE UBIQUITOUS ROLE OF f£'/f IN EFFICIENCY ROBUST ESTIMATION OF LOCATION

Brian L. Joiner* and David L. Hall#*+*

1. Introduction .

Three major classes of estimators, L, M and R estimators, have been extensively
studied in the robustness context but relatively little emphasis has been placed on the
similarities and differences among the three classes. An important purpose of this paper
is to demonstrate some of their underlying similarities, and in so doing, gain insight as
to some of their more important distinctions. The key role of f'/f in these matters is

emphasized.

*Brian Joiner is Professor and Director of Statistical Lahoratory, Department
of Statistics, University of Wisconsin-Madison.

**David Hall is Senior Research Scientist, Battelle Northwest Laboratories,
Richland, Washington.

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-80-C-0041.
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2. L, M, and R estimators

In this section we give brief definitions of the three major classes of laratire, J
estimators and in subsequent sections we describe the relationships amonu these thre.o #
classes in large samples.
L-estimators

Of the three classes, the simplest to explain are the L-estimators. An -5 ir

a location parameter A is of the general form

-1
A= ) a, X .
joq iem (1)

where the X(j) are the ordered observations from a sample of size n and the a_ _ .
weights to be applied to the various order statistics. A simple example of ar L=ct-ma¢ >
for a sample or size 4 is

N 1 2 2 1

A== + =X + =X + =X .

s Te ) TE 3 T E

In small samples from known distributions the optimal weights for L-estimates ar:
derived from the expectations and variance-covariance matrix of the order statistics
means of the Gauss-Markov theorem. For large samples it is convenient to represent *&

n

weights by defining a function h(u) on (0,1) such that a, = h __-t/ h__;_ b
i,n ‘n+1 - n+1

the data have cdf FA(X) = F{x = X) with density f{x - )) and if

32&%;:—51 then under regularity conditions it can be shown thar the

f'(x - 1) g§£

asymptotically most efficient function h{(u} for data from F is given by
h(uw) = g(F (u) , v
where g{x) = - %; (£'/f(x)), and F'1(u) is the percent point function or inverse oif of &,
Some examples of optimal *» functions are given in Exhibit 2A. The optimal L

estimator for Gaussian data is the ordinary sample mean and that for dnutrle exponential
data is the median., Trimmed means are optimal L=-estimators for Aistritutione with Zyaea; -
middles and double exponential tails.

M-estimators

The ~ancept of M-estimators (or maximum~likelihood like estimators) was 1mtroin-oF

e o oy S
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Exhibit 2A

Optimal weight functions for L estimators for several
distributions
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Huber (1964). 1In general an M-estimator is defined by a function y(x) and the M-estimate
of the location parameter ) based upon the data {xi} is given by the value of A such
that ? v(xi - X) = 0. The asymptotically most efficient M estimator for data from a

i=1
differentiable density f is the maximum likelihood estimator for which ¢ = =f'/f.

Some examples of optimal ¢ functions are given in Exhibit 2B. Note that for the
Gaussian distribution y(z) = z and the optimal M estimator is the sample mean, while for
the double exponential distribution the best M-estimator is the median. For a distribution
with a Gaussian middle and double exponential tails, the maximum likelihood estimator is a
metrically trimmed mean in which 1 must be calculated iteratively but winds up being the
average of the middle observations after all observations such that lxi - il » k, are
trimmed. The points X t k are those at which the Gaussian portion of the parent
distribution meets the double exponential portions. This metrically trimmed mean is often
called a "Huber estimator" since it was found by Huber (1964) to be the minimax estimator
for data from a Gaussian distribution with arbitrary symmetric contamination. That is, it
is the M-estimator whose worst case variance is minimized over the class of distributions

given by {{1 - €)% + ed} where ¢ is standard Gaussian and H is symmetric about zero,

but otherwise arbitrary.

P-estimators

A class of estimators based on rank tests for symmetry and known as R-estimators was
introduced by Hodges and Lehmann (1963). We find these more difficult to explain, but three
statements that provide concise and easily understood intuitive definitions for some are:

- Take as an estimator that value of X for which the rank test scores for the n
values (x1 - ), (x2 - )\),...,(xn - A) give the best balance relative to the origin
{slightly paraphrased from Lehmann, 1975, p. 176);

- An R-egtimate of J is that point of symmetry that is least rejectable by the
specified rank test;

- An Peestimate for 3 is the midpnint »f symmetric confidence intervals for 4 based

~n 3 specified rant aeet statistis.
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Proceeding more formally, consider any rank test for symmetry with score function
J(u) defined on 0 € u < 1 with J(u) = -J(1 - u)., Then for any trial value of 1,
(a) compute {IXi - Al}, 4

(b) find ranks of {'xi - xl},
n

(c) compute s (A) = ) (x, =A) + 3 Ry = 2D
pute = sgn xi ) J ~ T
i=1
where J+(u) = J(% + % u), and (2¢)
sgn(z) = +1, if z > 0 ,
= 0, if 2z =20, E
=~1, if z <0 .,
+
Then the value of X such that S (A) = 0 4is the R-estimate corresponding to the score

function J(u). If there is no value of X such that S+(X) = 0, the R estimate is
usually defined as the mid~point of the interval between the largest value of A such that
S+(k) < 0 and the smallest value such that S+(A) > 0.
The optimal score function for data from the distribution F 1is, under some

regularity conditions, given by

Jlu) = ~£'/8(F ) . (28)
Some examples of optimal score functions and the corresponding rank tests and R-estimators
are given in Exhibit 2C. Most R-estimators must be solved iteratively, just like M-
estimators. Two important exceptions are the optimal R-estimators corresponding to the
Aouble exponential and logistic distributions. For the double exponential distribution the
optimal rank test is the sign test and the corresponding optimal R-estimator is the
medi1an., For the logistic distribution the Wilcoxon test is optimal as is its counterpart, 3
rne Hndaes-Lehmann (1963) estimator, defined as the median of the Walsh averages

(Xi + xj)/2 for 1 €3 .

The nptimal R-estimator for the normal distribution must be solved iteratively and

-1
correponds to the normal scores test with J(u) = ¢ (u), the inverse normal CDF,

-t
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3. Samilarite of seegmgl v . estimators

In crion we emphasize the very close connections between optimal L, M and F-
estlmatars and show nhow the L-M~-estimateors of Rivest (197R) are a natural extension. In
all cases we will assume tne data come from some svmmetric density f known up to a
lacation parameter % anid appronriate regularity conditions oan f will he assumed to
noli.

“primal M oestimators

As mentioned in the preceding section and as is well known the optimal M-estimator for

fata frem € is given by the maximum likelihood estimator XM defined by

. -
Fr/f(x, = A =N .
L/(‘1 n
Jptiral F-estimators
The ontimal R-estimator given by (2c and 24) can be shown to be quite similar to the 3
~1v:imal M-estimator, except that the actual deviations {(xi - A} in the M-estimator are

rerlaced kv "predicted deviations"; that is, by the deviations one would predict based on

af ¢ and the ranks of the absolute values of the deviations. Suppose we define

g RODX = Al

(X, = X)) = SC‘JX’I(Xi - ) . F* rereraaas (3a)

whare F, 1s the cdf of |x - A| for the given £, and F, is its percent point

~law

rTeimn.  Then the optimal rank estimate Ap is simply the solution Xp of

T

£ - =0 .
£ /f(Xi Xp)

s oan Meestimator makes use of the actual deviation while a rank estimator must

rhe antual deviation by some function of {ts rank. Since symmetrv has been assumed

~te rege cralue €4 yuse 15 the value ane would predict based sonlely nn knnwledge of the ranv

MR 4 1% raline nf tre deviation. This is an estimate ~f wow LHig the absolute value

sonal Bage been” £or data from the ¥nown £, In fFormula (3a) the san

N

5f whirth o gide nf A the Aeviation came from, while the nther

crie magepeyie cf ebe devagtiion one woild nredisct.,




Optimal L-estimators

For L-estimators a somewhat
actual deviation is used just as
locally linear function. To see

7 £1/£(X, ) = 1) = 0 evaluated

particular deviation, say (X

analogous result can be shown to hold, except here the

it was for M-estimators, while f'/f is approximated by a
this suppose we start from the M-estimator
now for the ordered observations {x(i)}. Taking some

- A}, we seek a linear Taylor series approximation for

(1)
the function f'/f(x(i) - A). Expanding about the value (x(i) - A)o, let
. 0 o1 af'/f(x(i)-x)
[] - - [l - - - -
T A e e L TRtk R T =y 0
(X ..=})
(1)
Now choose
-0 = A
(x(i) o F (n+1’
as the value about which the Taylor series expansion is taken. Then
. -1, i i -1, i i
1 -— = ' — —-— — - — ——
EU/E(X M) = f re(F(Z7)) + I Mh(=5) - F (el
where h(u) = éfsﬁf (7" '(u)) as given by (2b). But ) f'/f(F-1(;%T)) = 0 since this is

just the MLE of the center of a distribution symmetric about zero with "data" equal to the

symmetric quantiles. Similarly

E h(;%T) . P-1(;%T) = 0 since this is simply an L-

estimate of the same center for the same quantile "data". Thus

v £/E(X

wWhen the right hand half of this

. i
iy " PO h(;:T) . (X(i) - i) .

is set equal to zero, it yields, the L-estimator

n

n . .
§ 2 2
L h(n+1)x(i)/jz1 () -

This process can be seen more clearly in Exhibit 3A. There the curved line is the v

function that is asymptotically optimal for a Tukey lambda variate with parameter =-0.,5.*

*A Tukey lambda variate =z

with parameter v 1is defined by the eguation

z= 10" = 1(1=1u)1/: where U is uniform on (0,1). See, e.q., Joiner and

Posenbhlatt (1971).
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rzxzhipit 3A Continued

The curved line

is
mal for & Tukey i

on the horizontal axis are at tne Zo.nts
N=5 obtservations., Tangent lines are .ra
these noints, These tangjent lines are
analo; of tnoce that define The as;mpics
lent L estirmetor, 7The x's on tnhe hcriz
the ot=zervec <ata, For the il estirator
2y &t the data, movinz the Vv curve lefz

T i
Z, =C. The center of tihe U curve then
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: . =1 i
The circles on the horizontal axis are at the points F 4 for n =5

observations
and a trial value of 4. Tangent lines are drawn to  at these points. These tangent
lines are the small sample analog of those that define the asymptotically equivalent L-
estimator. The x's on the horizontal axis denote the observed data. For the M-estimator

one computes Iy at the data, moving the ¥ curve to the left or right until Iy = 0.

a

The center of the  curve then gives the M estimator AM.

For the L-estimator the process is conceptually analagous except that the tangent line
approximations are used rather than ¥ itself. The smallest value of x uses the first
tangent line, the second smallest uses the second tangent line and so on. Even in this
small sample it is clear that there is little difference between the YV weights and the
weights from the tangent lines. Note also that the tangent lines are not used in the same
fashion as the customary piecewise linear approximation. The smallest data value uses the
first tangent line no matter how far out (or in) that point might fall.

To sum up, when one knows the parent distribution there is a very close connection
among the asymptotically optimal L, M and R-estimators. The M-estimator is the maximum
livelihood estimator, with vy = f'/f and the L and R-estimators are defined by simple

approximations. This close connection warrants summarization.

Optimal M-estimator for f is value of X such that

—

DEV/E(X, = A) =0 ;
1

Optimal R-estimator for f is value of ) such that

£'/f (predicted value of (Xi - M |f and rank of lXi - Al)y = 0;

Optimal L-estimator for f is value of A such that

3 : {linear approximation of f'/f](X(i) - A) = 0.
L-4 estimators
Seeing the intimate connection among these estimators leads one to think of broader
~lasszes of estimators that would combine or include these three. The work of Rivest (1978)
nrnvides sne such ~lass. Rivest has studied a class of L-M estimators defined as the

smlurinrn of

k]
i1




2 T
h\m‘ W(x(i) - 3) 0 .

[ R Set= 1

These estimators would seem to combine features of both L and M-estimators. As one might
conjecture, these estimators turn out to he asymptotically equivalent to maximum likelihood

estimators at F if H and y are such that

VAW o1y g AL
h(u) Ix F (u) = ™ F

That is, the product of h, the L component weight function, and the slope of y, the M

(u) .

component function, must be identical to the derivative of the maximum likelihood score

function. Thus an asymptotically optimal L-M-estimator with h and ¢ functions defined

- ' -
h(u) = 3y F 1(u) -3/t F 1(u)w1/2 would, in some sense, be "half" M and "half" L.
Ix Loax 4

g, L




4. Heuristic view of ¢'/f

In the preceding section we saw that

1 -
_ %_ o Af(x A) +OE(X = 3)

ER

1s the key quantity in efficient estimation of location, be it M, L, or R or even L-M=~
estimation. This important fact seems not to be widely appreciated even though it is
implicit in many sources. In this section we give a heuristic view as to why it is
eminently plausible to bage estimates on f'/f. This intuitive motivation is intended tn
compliment that of the likelihood approach.

In the likelihood approach one starts from the fact that the "probability" of the -ata
for any given value of )\ is H1 f(x1 - A). One then finds the value of ) that
maximizes the "probability of t:: data”". Taking logarithms and differentiating leads to
the famjiliar E - %L (x1 = A) = 0 as defining the maximum likelihood estimate of . Ever
after seeing this, many of us still have little "feel"” as to why f'/f "should be" the
defining characteristic.

Here we give an alternative view that seemg to be plausible enough even for many
students taking their first course in statistics. The exposition is all in the context ¢
estimating the location of a symmetric distribution known up to its point of symmetry,
however much is immediately generalizable to broader classes of estimation problems.

The process of estimation can be viewed as essentially the matching of a density wit*
an observed histogram, One might imagine the density function in Exhibit 4A being moved
along the horizontal axis until it provides a good match, in some sense, with the ohserved
data. Once the "best"” match has been found, the location estimate becomes the center of
symmetry of the density function.

The role of f€'/f 1in efficient estimation of location is thus to determine w-en a
gnod match has heen obtained. To see how this is accomplished consider Exhibits 48 ani 47,
These present two microscopic views of the interrelationship hetween the data and the
theoretical density function at different reagions of the horizontal axis. The amcunt cf

information available locally concerning the incremental movement of the densitv relati-e

to the Aata is quite different at the two sites. In Exhibit 4B the local mortion of the




Exhibit 4A

Heuristic view of estimation of location. The cdensity
is moved alone until it "matches" the data as well as

possible. llatches are cetermined by the balancing of

stresses due to the relative steepness of the density

function at various points aleng the horizontal axis,

L]

i.e. by making Z—E =C. The center of symmetry of tnh
density iz then th£ estimate of location for tihe se
data.
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density would fit the local data almost as well if the density were moved slightly to
either side. Thus there is very little local information that could be used to determined
the value of X,

In Exhibit 4C the situation is quite Aifferent. 1In this case any movement of the
density would markedly decrease the quality of the match between the density and the data,
and thus there is much relevant local information concerning estimation of location.

The main difference between Exhibits 4B and 4C is in the relative steepness of the
local part of the density function, i.e. in the magnitude of f'/f. However, even after
considering this, one might still question why f'/f rather than, say f' alone is the
key characteristic in estimation of location. While the answer is not obvious it does seem
heuristically reasonable that the height of a histogram should also be relevant since a
given amount of tilt at the top of a tall histogram may well be less informative than the
same amount in a very short one.

Thus, seen from this view, the role of f'/f is to measure the relative steepness of
the density function and to express the amount of resistance the data exerts to having &
moved away from it. Once i is near the correct value, there will exist stresses from
f'/f on both sides of 1. For any given sample, the value of )\ that balances these
stresses will be the location estimate for that particular sample.

It is interesting %o review these "stregs functions" for several well known
41stributions. Exribit 2B presents =~f'/f for several Adistributions. When considered
from the above viewpoint, the farct that for the Gaussian distribution -f'/f 1s exactly
proportional to the size of =re deviatisn 1s aui1te remarkable. The tails of a Gaussian
distributinn thus aet ever 1n7reasinaly steer as nne mnoves further away from its center in

direct propnrtinn to rhe Aistanne. Hence for a Saussian distribution the amount of

resistance exerted tr ~oocanans o6 . away frorm ar obeervation increases in Adirect
proportinn tn tha =age s e o€ vee daviacioe, T, f cnurse, is the cause of the well
vnnwn prenamennn thav noaslzic stboeryacicns bave areat efferct on location estimation for M
agrimatars haset nn tre Tl lar oaanamr ity ng
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The double exponential distribution, on the other hand, has tails of constant relative
steepness. Thus the stress exerted on ) does not depend at all on how far out in the
tails an observation is. BAll that matters is what side of A the observation is on.

The logistic distribution differs from the double exponential in its central portion
but, as can be seen from Exhibit 2B, its tails are asymptotically equivalent to those of
the double exponential. Thus, once X 1is a substantial distance from an observation,
moving it an arbitrary amount further away makes virtually no difference in the amount »f
force exerted on A by that observation under logistic assumptions.

The Cauchy distribution is different yet: observations at an intermediate distance

from ) exert the most force while those further out exert almost none. Under Cauchy
assumptions, once an observation is far enough away from A, not even the side it is on
matters much. Cauchy tails are asymptotically flat, like a uniform distribution, and thus
contain essentially no information on location. The greatest information concerning
location in a Cauchy distribution is in the "shoulders" of the density which fall off
rather sharply.

The uniform distribution itself represents a limiting case in another direction.
Here, f£'/f shows that the middle part of the data contain no information on location
while the endpoints contain "infinite" information, thus X must exactly balance the two
endpoints, leading to the well known result that the midrange is the MLE and asymptotically
most efficient L estimator for the uniform distribution.

The point of view discussed above is naturally quite closely connected to the idea of
the influence curve introduced by Hampel (1968). Hampel noted that if a derivative of the
functional defining an estimator was taken, the resulting function Q(X,F) could be
interpreted as representing how much effect an observation at x would have on the
estimator with data from F.

A Mechanical Analogy

These observations lead us to propose an alternative mechanical view of estimation of
location. The conventional view is that of finding the balance point of a scale in which

blocks of equal mass have been placed at each data point. This analoay is exact for the

-] =

v ks e e =
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Gaussian case and can be modified to work in other cases by using an analogy with weighted
estimation (c.f., Andrews, 1974).

An alternative view that seems to provide different insight is that of the same
balance, but with blocks of mass proportional tc |§l (Xi - A}| being placed at %1,
depending on the sign of (Xi - ). The masses represent the amount of stress or force
being exerted by the various data points as a function of the relative steepness of ¢£'/f
at that distance from X. For the double exponential, all masses would be of the same size
so that A only seeks to have an equal number of masses on each side. For the Cauchy, the
masses would first increase then decrease in size.

Other Uses of f'/f

That f'/f plays a key role in estimation is of course not new. . 1s explicitly the
central quantity in maximum likelihood estimation and is at least implicit in L and R-
estimation. Fisher information being equal to E(f'/f)2 is thus a measure of the "arount"
of f'/f. The Cramer-Raoc lower bound for the variance of an estimator of location being

equal to — has an analogous interpretation.

'
SteinE§59;§;, Stone (1975) and others have shown that at least asymptotically for
symmetric distributions it is possible to estimate f'/f from the data and thus gain full
asymptotic efficiency for data from any symmetric distribution, subject to mild regularity

constraints. In fact Stone's results can be said to be promising even for the location

problem even in samples as small as 40.

Huber's Minimax Result

A less obvious situation in which €'/f appears to be key is associated with Huber's
(1964) minimax estimator for a type of contaminated data. Huber proposed the followina
problem: suppose F is a symmetric distribution known up to a location parameter and ¥
is any other distribution symmetric about the same point. Then consider the class of
contaminated distributions {(1 - g)F + €H} where ¢ 1is fixed. He asked, which fixed
estimator has the best worst-case variance with respect to this class of distributions?

Huber showed that if F had a strongly unimodal density, i.e. if =£'/f were

monotonic, then under mild regularity conditions the solution was given by an M estimator




of the form

i~z

YiX. =)y =0,
i

where

Vix) = - - x), for x| <c,

1]
~sgn(x) (&=)(0), for Ixl > ¢,

and where c¢ 1is determined by &. Huber interpreted this result as a sort of "fattening
up" of F's tails. However, it seems more pertinent to view it as the removal of the most
informative part of f'/f. For example, if ¥ is Gaussian then =-f'/f is a straight line
with positive slope. The minimax estimator for the above class is known as a "Huber"” and
has the ¢ function shown at the bottom of Exhibit 2B.

Thus nature's best strategy is to take as H that distribution which places all of

its mass in the portions of F that have the greatest relative steepness in such a way as

to make those portions of the resulting density exponential. Hence the worst possible
Huber-type contaminated normal has a Gaussian middle and double exponential tails, and has
as its maximum likelihood estimator the M estimator defined above.
A Conjecture

Huber's proof makes critical use of the assumed strong unimodality of F and thus
does not apply when ¥ is a distribution like the Cauchy. However, we conjecture that
Huber's result holds in a broader class of distributions in the sense that the Huber-type

minimax estimators for any distribution will, under reasonable regularity conditions, be of

the form
f' ‘
Yix) = = ra (x), x € A,
= ~ggni{x) * X, x f§ A,
whers




.

5. f'/f and relative efficiency of estimation

In Section 3 we observed that f'/f 1is the key quantity in defining a fully efficienr
estimator of location. In this section we investigate the problem of relative efficiency
of estimation, where one uses an estimator optimal for data from F, but applies it to
data which actually came from some other distribution G. We show that in such cases the
asymptotic relative efficiency (ARE) of L, M and R-estimators are all determined by
correlation coefficients between f'/f and g'/g. The difference in efficiencies among L,
M and R-estimators is shown to be a matter of the "data" at which f'/f is evaluated.
This provides us with insight as to differences among the three classes.

Efficiencies as Squared Correlations

Correlation coefficients occur frequently in efficiency calculations. Cramer (1945)
showed that if T, was an efficient estimator and T, was a regular unbiased estimator,
then the square of the correlation coefficient between the estimators gave the efficiency
of TZ' Noether (1955), Hajek (1962), and van Eeden (1963) extended this result and showed
in different situations that the Pitman efficiency of certain tests was given by the square
of the correlation coefficient between the test statistics. 1In the context of rank tests
this correlation between the rank statistics reduces to the correlation between the
asymptotic score functions corresponding to the tests (Hajek, 1962). (Note that it is
often much easier to compute the correlation between score functions than it is among the
estimators which they define.)

R-Estimators

First we show that the ARE of a rank estimator corresponding to an arbitrary score
function is given by the square of a type of correlation coefficient. Hajek (1962) showed
that when the two sample rank test based on the score function J(u) is applied to data
from a distribution F, the ARE of the test based on J with respect to the
asymptotically most powerful rank test (amprt) for the distribution F is given by the

square of a correlation coefficient, namely

-
.
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[/ J(u)(=£'/£(F (u))dul

2 -1
p (J(u), =~f'/£(F (u)) =

1 1 '
[ dFwau [ - /er (w1 au
0 0

[ o~

(5.1)

van Eeden (1963) proved a similar result for the one sample test for symmetry. Hajek's
result (5,1) is also true for the corresponding rank estimators, as will now be shown
directly.

We assume throughout this section that all distributions considered are symmetric ard
unimodal with finite Fisher information and a differentiable density.
Theorem 5.1: If the R-estimator with score function J(u) is used on data from a
distribution F, the ARE of the estimator based on J{u) relative to the R-estimator
corresponding to the amprt for F is given by (5.1).
Proof: We can assume without loss of generality that F has been scaled so *that its
Fisher information

1

HF) = [ (=£'/£(F (u))idu
0

is unity. The asymptotic variance of the rank estimator with score function J(u) on the

distribution F 1is given by

o
2
[ 3% (0 E(x)Idx
2 ~
g_ = .
. 2 2
[/ IR £ (x)dx]
-0
Now since I(F) = 1, the ARE of this rank estimatnr with respect to the efficient rank

A . 2
estimator for F is just the reciprocal of S Thus
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which after integrating the numerator by parts and recalling that I(F) = 1 gives

1

(f stwe/e(r  u))au?
ARE_(J|F) = u '
R ! 2 ! -1 2
[ a%wadu « [ (-£'/£(F7 (w))%au
0 0

which is t' 2 desired result.
In the above, note that if J is the score function for the amprt corresponding to

some distribution G then the expression for the ARE becomes

-1 -1
ARER(GIF) = 02(-f'/f(F (u)), =g'/g(G (u)))

1 -1 -1 2
(/) ¢'/glG (W)E'/E(F (u))du)
= 3 9 1 . (5.2)
r -1 2. , -1 2
jO /8P (u)lTdu [ [g'/g(6 (u)] "du
0

£'/f and g'/a

Note that this is the square of the correlation coefficient between

with each being evaluated at its own data. Also note the reflexivity of the ARE for rank

estimators. That is (5.2) represents the ARE of the rank estimator with score functinr

-g'/q(G-‘(u)) on the data from F as well as the ARE of the rank estimator with score

function -f‘/f(F'1(u)) on data from G. As an example, the best rank estimator for

Gaussian data, the normal scores estimator, has the same ARE on logistic data, (.95, ac +*.

hest rank estimator for logistic data, the Hodges-Lehmann estimator has on Gaussian data.

The P eafficiencies for a number of other pairs of distributions are computed in Hall

and Joiner (1980h),

g g G i - ' /
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Correlations, Angles and Efficiencies of R-estimators

For R estimatoys Gastwirth (1966) has noted that the score function J(u) of a rank
estimator may be thought of as an infinite dimensional vector. The score function for the
efficient R estimator for F is given by -f'/f P'1(u), which may thus also be thought
of as an infinite dimensional vector. The square of the cosine of the angle between these
two vectors is the ARE of J applied to data from F. This relationship between the ARE
of R estimators and the angles between score functions is further developed in Hall and

Joiner (1980c).

M Estimators

For M estimators a similar but different result is attained:

Theorem 5.2: The ARE of the M estimator defined by the square integrable function Y(x)

on data from F with respect to the efficient M estimator for ¥ is given by

ARE, (Y1) = o2 (H(ET (w)), =£'/£(F 7 (w)))

1
U W () (=£17£(F T () du) 2
0

1 1
[ N anan [ =ererT (w)) 2au
0 o

Proof: The ARE of the M-~estimator corresponding to VY(x) with respect to the efficient M

estimator for ¥, which corresponds to =f'/f(x), 1is

ARE, (V{F) = ———
M cﬁ « I{F)

©

tf \,’J'(x)F(x)dx]2
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! -1 -1 2
{f wF (N E/E(FT (u))du)
= g ' (5.3)
1 2, =1 ! -1 2
J v R tanau [ (£ /6(FT ()] “au
0 0

which is the desired result. Hence the ARE of an M estimator is also given hy the square
of a correlation coefficient.,

From the above theorem the ARE of the optimal M estimator (i.e. the maximum likelihood
estimator) for G when applied to data from F is given by the squared correlation
coefficient

ARE,,(GIF) = p2(-g'/g(F ™ (w)), =£0 /£ () .
As with R-estimators, the ARE is the sguared correlation coefficient between €'/f and
g'/g. The big difference here is that f'/f and g'/g are both evaluated at the actual
data.

The Role of Scale in M Estimation

In M estimation the scale of the data makes an important difference in estimatinrn ~f

location. For example, the ARE of the M estimator %(x = A} when applied to Jata from

X o= A
X2

depends very much on the value of o¢. In R and L estimation, the value ¢

F
o is not a factor in determining ARE. This independence of scale in L and4 P
estimation is a convenience, both practically and theoretically.

An illuminating example of M scale dependence is afforded by the family of scale

t distributions. For this family the optimal  functions all have identical shape:

|
!x—¢\‘, u l
Yoo = (v + 1) '

v o] o+ u2] ’

where u = . The roles nf ¢ and v are thus totally confounded in M estimation




for the t family. One can achieve, for example, 100% efficiency with the  for, any
t, say the Cauchy, on data from any other t just by using a "wrong" value of o.

Lack of Reflexivity of M Efficiencies

The reflexivity of efficiencies that R estimators possess is not attained by M
estimators. That is, the AREM(FIG) is in general different from AREM(GIF). The amount
of difference depends in general on the scaling of the distributions. For example, in
Exhibit 5A we see that

AREM(Cauchyllogistic) is not equal to

AREMtlogisticICauchy) for any of the four choices of scale considered.
For R-estimators,

ARER(logistiCICauchy) = ARER(Cauchyllogistic) = 6/«2 = 60.79%.

An even more extreme example of lack of reflexivity is provided by the Gaussian and
Cauchy, where

AREM(GaussianICauchy) = 0, for all choices of scale.

On the other hand AREM(CauchyIGaussian) is positive for all choices of scale, and is 57%

when the two distributions are expressed in their standard form. The AREp is 43%, either

way, no matter what sgcale is used.
L Estimators '
The ARE of L estimators is also given by a squared correlation coefficient.
Theorem 5.3: The ARE of the L estimator with weight function h(u), where
h{1 = u) = h(u) and f1 h(u)du = 1, on data from F with respect to the efficient L
0

estimator for F 1is given by

AREL(th) = Dz[A((h,F)(u)), -f'/f(F-1(u))]

where

u u
A, Py (w) = [ 0 —DEL g o ! ontoracr e . (5.4)

172 8P (b)) 1/2
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Exhibit 5A

IMustration of strong dependence of asymptotic relative efficiency
of M estimators on choice of scaling function. A1l but one of the scaling
functions are analogous to the median absolute deviation in that they

are a percentile of the {Iyi';il}' For example, MAD = §

.50
[0.50 quantile of {Iyi-yil}]. Efficiencies for the same 1 function on the

same data, range from, e.g., 56% tn 75% depending on the choice of scaling

function.

(a)

Maximum likelihood estimator for Cauchy applied to logistic data, and
vice versa. Note that for the scaling function S 1 both M estimators

have efficiencies higher than the 60.8% of their rank counterparts.
Efficiencies (in %)

Scaling function * ’

X Applied
Estimator -5
to ) ) S {Info)
MLE for data from .1 .50 .67

logistic Cauchy 61.4 | 57.2 | 52.2 60.4

Cauchy logistic | 81.6 | 77.0 | 71.2 £0.6 ‘

*

Each § was multipled by a k such that 100% efficiency was attached by the
MLE on its own data. Thus, f?r example the logistic estimator had

kp = [Sp (on logistic data)]™’.




(b)

Tukey bisquare applied to Student t data.

efficiency on normal data.

Efficiencies (in

The tuning constant k
in the bisquare was, in each case, selected to produce 95

<)

Scaling function
Data from S 55 5_50 S 75
k 15.268 7.213 4.229
Cauchy 75.3 70.2 56.3
t with v=2 | 90.8 89.7 86.1
v= 3 | 95.7 95.3 94.1
v=5 | 98.4 98.4 98.3
v=10 | 98.7 98.8 99.0
v=30 | 97.2 97.3 97.4
norma 95.0 95.0 J 95.0

The results in this Exhibit are due to Lane Bishop.
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u
Proof: Since A(h,F)(u) = f ___g%fl__ dt, h(u) = £(F-V(u))A'(h,F)(u), where
4 1/2 £(F (t)) 1
A'(h,F)(u) = - A(h,F){(u). Thus, since f h(u)du = 1,
0

,
[ e st Py wdu = 1,
0

Integrating by parts gives that

1

- [ A B (WACEET ) = 1.
o]

Now assume without loss of generality that I(F) = 1 and recall (see, e.g., Huber, 1972)

2=
L

the ARE of the L estimator h(u) on data from F is given by

1
that the asymptotic variance of an L estimator is given by o f Az(h,F)(u)du. Then
0

AREL(h|F)

Q |=
2N

1
tf ath,E(waer (w1?
0

o2
[ a%(n, P (wau
0

1

[ A, B (w8 (w)) a2
0

1 1
[ A%t (wau [ e/ () Pau
0

0
which was to be shown.

' -
when h(u) = (-g'/qg) (G 1(u)), 2o that it is the optimal weight function for the
distribution G, the ARE of it on data from F is:
2 v -1
AREL(GlF) = p“(A(=(g'/g) (G (u)),F)(u), -£'/£(F (u))] .

If we let h, denote the efficient weight function for F, we have




u hf(t)
Ah F)(u) = / = at
172 £0F e))
u
== & eerTnae
12

—£ /(P (w)) .

1f we now let hq denote the efficient weight function for G, equation (5.4) can he
expressed more symmetrically as
ARE_ (GIF) = pz(A(hg,F)(u),A(hf,F)(u)) .
Like M-estimators, L-estimators do not have the reflexivity of efficiency possessed Ly
R-estimators. For example, the mean, which is the efficient L-estimator (as well as !~
estimator) for the Gaussian distribution, has an ARE of 50% when used on double exponential

data; while the median, which is the efficient L estimator (as well as R-estimator) for

the double exponential distribuiton, has an ARE of 64% when used on Gaussian data. The

corresponding R-estimators have ARE equal to 64% in both cases.
Relationships
It is useful to emphasis the similarities and differences among the correlation

coefficients for the three classes of estimators. Repeating the ARE formulas derived above

we have:
2 -1 -1
ARER(GIF) = p [=g'/q(G (u)), -£'/£(F (u))] ,
-1 -1
AREM(GIF) = pz[-«;'/s(F (u)}, =£'/£(F (u))), and
2 -
AREL(GIF) =p (A(hg,F‘)(u), ~£'/E(F 1(u))] .

Note that in R estimation asymptotic relative efficiency is determined by how well
f'/f and g'/g correlate when each is evaluated at its own data. In contrast, for ™
estimation, asymptotic relative efficiency is determined by how well f'/f and u' o
correlate when both are evaluated at the actual data, F'1(u). For L estimation the

situation is different still, 1In this case linear approximations to f'/f and qa'‘’as are

~30=-
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evaluated at their own data and then smoothed by the distribution of the actual data.
Asymptotic relative efficiency for L depends upon how well thse two smoothed versions
correlated,

A Further Connection

An obvious similarity among the correlation coefficients is the presence of
-f'/f(F-1(u)) in each of them when the 4data are from the distribution F. Thus the
correlations may all be interpreted as being with the optimal rank score function for the
actual data. We can couple this interpretation with the result of Hajek (1962) that for
any rank score function one can find a corresponding distribution whose amprt has thrat
score function. With appropriate conditions on ¢y and h it would thus be possible to

find distributions GV,F and Sy, F with I(G, F) = I(Gh’F) = 1 such that

.

q', - ) -1
—¥.F (G“‘1F(u)) = _1_M)_)__
Yo

%, F S

G aau
0
and
_g'
h,F (G:F(u” - A(h,F) (u)
F [ A%(h,F)(u)du
0
That is, the functions
-1
v( (u))

1
© 3 r uau
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0

and

A(R,FY(u)
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N
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would correspond to the score functions of the amprt's for the distributions Gw £
’
Thus the score functions for rank estimators and their correlations

and
Gh,F‘ respectively.
contain information concerning not only the efficiencies of rank estimators but alse

implicitly the efficiencies of M and L estimators. This approach might conceivably be

useful in extending the interpretation of some of the results presented in Joiner and Hall

(1979).




6. Conclusions

This paper has emphasized the important role played by f£'/f in determining the
efficiency of all three major classes of location estimators: L, M, and R. In all
three, f'/f is used to define tte asymptotically efficient estimator and a heuristic view
is given as to why f'/f might be an intuitively reasonable guantity on which to base
location estimation. The asymptotic relative efficiency of each of the three classes of
estimators is seen to depend upon the degree of agreement between f'/f of the
hypothesized distribution and the corresponding quantity g'/g for the distribution which
actually generated the data.

The insight gained in this paper is used, in several companion papers, to develop
other results useful in robust estimation. In Hall and Joiner (1980b) a number of
numerical and analytical results are given for the asymptotic relative efficiencies of R
estimators optimal for some distribution F when applied to data from some other
distribution G. Then in Hall and Joiner (1980c) the R efficienciocs are used to develop
several useful low dimensional representations of the space of distributions. Underway is
a quantative comparison of the relative efficiencies among the three classes of estimators
{Joiner and Hall, 1980d4). This comparison was prompted by the relationship noted here that
in the correlation coefficient that determines R efficiency, f'/f and g'/g are bhoth
evaluated a* their own data, while for M and L estimation the hypothesized estimator
is, at least in part, evaluated at the actual data. This suggests the possibility of some
general efficiency rohustness for R estimators. However, Bishop's result (cited 1in
Exkibit SA) shows that there exist pairs of Aistributions and choices of scaling functions
for which hnotr M estimators (i.e., for F on G data and for G on F data) have
better ARE than thneir R counterparts.

Tn still anntter related parer (Jniner, Hall and Bishop, 1980e) the close relationship
between the defining eaua<i~ns for L, * and P estimators is used to extend these
results to the gemaeral l1near wodel,  This extension is equivalent to what Rickel (1976)

17 tte context of M estimators.

tae ~3lled "reangde nrcertatyonc
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