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FOREWORD

vi. o -ovember 1979, Colonel B, Devereaux, Jr., Commander and Director of the
-»wy Cold Regions Research and Engineering Laboratory (CRREL) sent the
¥n'lawing letter to Dr. Jagdish Chandra, Chairman of the Army Mathematics
.-t :ag Committee (AMSC).

I. "We would like to extend an invitation that the 26th Conference
of Army Mathematicians be hosted by the U. S. Army Cold Regions
Research and Engineering Laboratory on 10-12 June 1980.

2. Mr. Benjamin S. Yamashita, Public Affairs Officer, will serve
as CRREL's point of contact for administrative arrangements for
the Conference.

3. We look forward tc having the group meet here.”

hr. Chandra was pleased to accept this invitation on behalf of the AMSC. This

.. the second time that CRREL has served as host for one of those meetings.

The Twelfth Conference of Army Mathematicians was held at CRREL, Hanover,

New Hampshire on 22-23 June 1966. For that meeting, Dr. Shunsuke Takagi

nrlzyed much the same role as he did for the 1980 conference, namely he

was responsible for scientific details regarding various phases of the program.

Tt~ AMSC, the sponsors of these meetings, would like to take this occasion to
:ank Messrs. Takagi and Yamashita as well as all other members of CRREL for

making this a very successful conference.

The theme of the 26th Conference was ''Wave Propagation in Solids and Nondestructive
Evaluation Techniques.'" 1In addition to the five invited speakers, there were

wore than thirty contributed papers presented at this meeting. While most

of these papers were given by Army scientists, still there were a surprising

wumber of papers, namely eight, that were delivered by university professcors.

"¢ Jnvited speakers and their topics are noted below.

Speaker and Affiljaticn Title of Address
Professor Jan Achenbach DIRECT AND INVERSE METHODS FOR SCATTERING BY
Merthwestern University CRACKS IN THE HIGH-FREQUENCY RANGE

Professor Constantine Dafermos CAN DISSTPATION PREVENT THE BREAKING OF WAVES?
Brown University

Professor Y. H, Pac THEORY OF ACOUSTIC EMISSION.
Cornell University b !
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Professor James Tasi SHOCK WAVES AND LATTICE DYNAMICS
State University of New York
at Stony Brook

Professor T. C. T. Ting WAVE PROPAGATION IN PERIODICALLY LAYERED
University of Illinois- MEDIA
Chicago Circle

The members of the AMSC would like to express their thanks to the speakers

and research workers who participated in this meeting, and to all the attendees
for supporting it with their many stimulating questions. The AMSC is pleased
to be able to publish in these transactions many of the conference papers

and thus to make available to the scientific community some of the research
results presented at this meeting.
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DIRECT AND INVERSE METHODS FOR SCATTERING
BY CRACKS IN THE HIGH FREQUENCY RANGE

Jan D. Achenbach
Department of Civil Engineering
Northwestern University
Evanston, IL. 60201

ABSTRACT. An important method in guantitative non-destructive evaluation
o2t materials (QNDE) is based on scattering of ultrazsonic waves by cracks. The
sresence of a flaw is relatively casy to detect. The determination of its
size, shape and orientation from the scattered field poses a challenging
inverse scattering problem. In recent years several analytical methods have
heen developed to investigate scattering of elastic waves by interior cracks
and surface~breaking cracks, in both the high- and the low-frequency domains.
The appeal of the high~frequency approach is that the probing wavelength is
of the same order of magnitude as the length-dimensions of the crack. This
gives rise to interference phenomena which can easily be detected. In this
paper we discuss approximate methods for the solution of the direct scattering
problem in the high-frequency domain, which show good agreement with experi-
mental results. The simple analytical solutions to the direct problem suggest
the application of Fourier—type integrals to solve the inverse problem. The
application of two kinds of inversion integrals to far-field high-frequency
scattering data from flat cracks has been discussed.briefly.

I. INTRODUCTION. Reliable methods of quantitative non-destructive
evaluation (QNDE), that can be used not only to detect the presence and the
approximate location of a flaw, but also to determine its size, shape and
orientation are important cornerstones of a damage-tolerant design philosophy.

Among the most useful QNDE methods are those based on the scattering of
elastic (ultrasonic) waves by flaws in solids. In the scattered field
approach it is attempted to infer che geometrical configuration cf a flaw
from either the angular dependence of its far-field scattering amplitude at
fixed frequency, or from the frequency dependence of its far-field scattering
amplitude & fixed angles. In this paper analytical investigations for the
scattered field approach to detection of crack-like flaws are «iscussed.
Scattering by interior cracks, surface-breaking cracks and cracks near a

boundary will be considered.

In experimental work on quantitative flaw definition by the ultrasonic
pulse method either the pulse-echo method with one transducer or the pitch-
catch method with two transducers is used. The transducer(s) may be either
in direct contact with the specimen, or transducer(s) and specimen may be
immersed in a water bath. Most experimental setups include instrumentation
to pate out the relevant pulses in the scattered field on the basis of

arrival times. The application of a Fast Fourier Transform to these pulses

subsequently yields frequency spectra. In the frequency domain the raw
scattering data can conveniently be corrected for transducer transfer functions
and other characteristics of the system, which have been obtained on the basis




of appropriate calibrations. The corrected experimental data can then be
comparcd with theoretical results that have been obtained by harmonic wave
analysis.

For short pulses the frequency spectra of the diffracted signals are
centered in the high-~frequency (short wavelength) range. High-frequency
incident waves give rise to interference processes which can easily be
interpreted, and which can provide the basis for an i(nversion procedure.
Particularly the first arriving signals, which are related to the longi-
tudinal waves in the solid, produce a very simple structure in the frequency
domain.

L Elastodynamic ray theory provides a powerful tool for the computation of
fields generated by scattering of time-harmonic waves by cracks, when the

wavelength of the incident wave is of the same order of magnitude as characteris-

tic length parameters of the crack. Ray theory has the advantage of simplicity

and intuitive appeal. The rules that govern reflection, refraction and edge

diffraction of rays are well established, and it is generally not difficult

to trace rays from the source via the scatterer to an observer.

Considerable progress has been achieved in recent years in the application
of elastodynamic ray theory to scattering by cracks. For cracks in unbounded
solids theoretical results have been given by Achenbach et al [1]-{3]. For
two-dimensional problems ray theory results have been compared with exact
results in Ref.[4]-[5], and with experimental results in Ref.({61}.

The basic concepts of elastodynamic ray theory have been presented by
Karal and Keller [7]. For time-harmonic wave motion, ray theory provides a
method to trace the amplitude of a disturbance as it propagates along a ray.
In a homogeneous, isotropic, linearly elastic solid the rays are straight
lines, which are normal to the wavefronts. An unbounded solid can support
rays of longitudinal and transverse wave motion. These rays are denoted as
L-rays and T-rays, respectively. The free surface of a solid can, in
addition, support rays of surface-wave motion, which are denoted as R-rays.

When a disturbance is applied to the surface of a body, generally a ray
of longitudinal motion as well as a ray of transverse motion are generated.
Upon striking an interface, rays produce reflected and refracted ravs. Such
reflection and refraction problems are well understood. In principle, elasto-
dynamic ray theory can be used to construct scattered fields generated by
cylinders, spheres and other curved surfaces of simple geometrical shapes.
These fields can be constructed by computing the fields on reflected rays
according to well-established rules. The result is called the geometrical
elastodynamics (GE) field. The GE field does, of course, not describe the
diffracted field which penetrates into the shadow region. Another short~
coming of the GE field is that it shows discontinuities at shadow boundaries
and at boundaries of zones of reflected waves. Additional considerations are

"
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required to include the diffracted fiecld. For the high-frequency case
these considerations have resulted in the formulation of the geometrical
theory of diffraction (GTD) which was formulated by Keller {8].

It should be noted that for sufficiently large frequency the geometrical
elastodynamics field may require no correction, i.e., the scattering pheno-
menon may be entirely dominated by geometrical elastodynamics. Thic is the
case for backscatter from smoothly curved surfaces with radii of curvature very
large as compared to the wavelength. On the other hand, when the scattering
obstacle has a sharp edge, the effect of edge ditfraction may be quite pro-
nounced. FEdge diffraction is particularly relevant for cracks when the
seometrical elastodynamics approximation only gives a shadow zone and two
bundles of reflected rays.

Diffraction by smooth obstacles in elastic solids has been investigated

by Resende [9], who also considered diffracted by an edge in a solid, at
least for the two-dimensional case.

y |

Fig. 1: Wave of anti-plane strain incident on a
semi-infinite crack.

TI. DIFFRACTION OF ELASTIC WAVES BY CRACKS. 1t is instructive to start
a discussion of the interaction of elastic waves with cracks with a brief
review of the simplest problem of that type, which is concerned with incidence
~f waves of anti-plane strain on a semi-infinite crack. With reference to the
coordinate svstem shown in Fig. 1, waves of anti-plane strain are defined by
displacements in the z-direction which depend only on x and v. These dis-
placement components, w(x,v), satisfy the wave cquation

L e v o ap—— Pl <_..'.,<‘»»- PSSO b o




V2w + k,%w =0

where V2 is the two-dimensional Laplacian and k2 = wz/cz, where w is the
circular frequency and c,, is the velocity of transverse waves (c2 = u/p).

Here it is implied that Ihe waves are time harmonic, but the term exp(-iwt)
has been omitted, as it will be in the sequel. An incident wave of anti-plane
strain is defined by

wl(x,y) = A exp[ikTrcos(e-eT)]

where (cos#,.,sing,,) defines the propagation direction, and (r,8) are polar
coordinates as shown in Fig. 1. The conditions ow the faces of the crack are

— =20 x>0, y=20

It should be noted that the problems defined bv (2.1)-(2.3) is completely
analogous to incidence of an acoustic wave on a rigid screen, or of a wmagneti-
cally polarized wave on a perfectly conducting screen. The solution is due to
Sommerfeld , and it can be found in several places.

(2.1)

(2.2)

(2.3)

A detailed derivation of the solution will not be given. It can be checked

that the solution stated below satisfies the conditions (2.1)-(2.3). The
solution is expressed in terms of the rfunction F(z) defined by

[+

F(z) = exp(-iz?) J exp(itz) dt
z
This function has the following property

% s 1
F(-z) = mlexp(-iz® + n mi) - F(z)
For the problem at hand z is real-valued. Integration by parts yields

i

F(z) = 2z

+ 0(z" ) for z > 0

Equations (2.5) and (2.6) imply that

13 2 ) i ~3
- = - = - = +
F(-2z) mlexp(~izs + 4 i) 77 0(z °)

To investigate F(z) for small z we rewrite Eq.(2.4) as

[ Z
F(z) = exp(—izz) { J exp(itz)dt - j exp (it2)dt}
o

(o]

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)




It then follows easily that for |z| < <1

F(z) = 7 exp(%ﬂi) -z + 0(z%) (2.9)

N

The solution to the problem defined by (2.1)-(2.3) is

_1/2 1(6

36770

1
wt(x,y) = Am exp(ikTr- '}.'ni){li‘[(21(,1,1‘)/2 sin

T

+ F[(ZkTr)Zsin Lo 4021} (2.10)

where the superscript t indicates that this is the total solution, i.e., the
incident field is included. Let us investigate some aspects of this solution.
In the limit as r - « , Eq.(2.10) yields

t _ . _ .
W= A{exp[lkTr cos (8 GT) + exp[lkTr cos(e+6T)]}
for ZW-GT < 8 < 2% (2.11)
t . _
w = A exp[lkTr cos(e—eT)] for 8T < g < 2m eT (2.12)
wt =0 for 0 <8 <8 (2.13)

where (2.6) and (2.7) have been used. Equation (2.11) shows the existence of
a zone of reflected waves where the incident wave has been reflected as if
the crack where infinite in extent. Equation (2.11) shows a zone of incident
waves only, and (2.12) shows that there is no wave moticn in the shadow zone
as r > =, In analogy with geometrical optics, the expressions given by
(2.11)-(2.13) are called the geometrical clastodynamics solution (henceforth
denoted by w”’). The geometrical elastodynamics solution is disco.tinuous at
the boundaries of the shadow zone and the zone of reflected waves. The
diffracted field, w , which is defined by

L (2.14)
secures a smooth transition across these boundaries.

When kTr >> 1 the diffracted field follows from (2.6) and (2.7) as

d 3/2

W oA (kTr)_%DTH(OT;O) exp (ikyr) + O[Cl r)”

1 (2.15)




where

1 1
s gin —
9.t cos 2( sin 23T ei"/A

i) = (5)° .

DTH(eT’ ) (n) cosO - c056T (2.16)
is called the diffraction coefficient. Clearly Eq.(2.15) is not valid when
6 =¢,0or & = 27-6_, i.¢., near the shadow boundary and the boundary of the
zone of reflected waves. Exactly on these boundaries the fields follow from
(2.10) and (2.9) as

wl = l»A exp(ik.r) + O[(k r)—z] (2.17)
2 T T

In the immediate vicinities of 8 = 0, and 0 = 21 - ¢, the full solutions (2.10)

must be used. T T

The results given by (2.11)-(2.16) can conveniently be interpreted within
the context of elastodvnamic ray theory. The incident wave consists of an
infinite number of rays. The rays that strike the crack are reflected
according to the usual rules of plane-wave reflection, and they give the
seometrical elastodvnamics solution as given by (2.11)-(2.13). The one rav
that strikes the crack tip gencerates a source at the crack tip with an
amplitude factor which depends on the angle of observation, and whose
radiated field is given by (2.15). It was recognized by Keller [8] that
these elementary observations can be generalized to three~dimensions to
screens (cracks) with curved edges and to other than plane incident waves.

ITI. GEOMETRIC THEORY OF DIFFRACTION FOR SCALAR WAVES. A more
general ''canonical" problem than discussed in the previous section is the onc
of peneral oblique incidence, when the propagation vector of the incident
plane wave makes an angle ¢ with the edge of the semi-infinite screen. For
scalar waves this problem has been solved. Far away from the edge, the
solution shows the interesting property that the diffracted field behaves
locally as a plane wave whose propagation vector emanates from a point on the
edge, and makes an angle ¢ with the edge. In terms of ray theory, the inter-
pretation is that an incident ray which strikes the edge at point O under an
angle ¢, generates a cone of diffracted rays with semi-angle ¢, whose apex
is on the edge at the point of diffraction 0, and whose axis is along the
edge. The fields on the diffracted ravs (the generators of the cone) only
vary along a rav in the distance to the point of diffraction. If ¢ = 7/2
the cone degenerates into a fan of rays, and the solution to the canonical
problem is the one given in the previous section.

The geometric theory of diffraction (GTD) generalizes the results of the
canonical problem to curves edges and incident waves with curves wavefronts.
The Ansatz is that the rays behave in the same way even if the crack edge is
curved, i.e., a cone of diffracted rays is generated whose axis is the tangent




to the edge of the screen. The fields on the diffractec ravs are in terms

of diffraction coefficients (which follow from the canonical problem of plane
wave incidence on a semi-infinite screen with a straight edge), the distance
travelled along a diffracted ray, and the incident field at the point of
diffraction, and certain geometrical correction factors which involve the
curvature of the edge and the curvature of the incident wavefront.

IV.  GEOMETRIC THEORY OF DIFFRACTION FUR WAVES IN ELASTIC SOLILS. The
peneral ideas outlined in the previeus section can be extended to elasto-
dynamic theory. A general groundwork for a three-dimensional geometric theory
of diffraction by cracks in elastic solids was given by Achenbach and Gautesen
{1] and Gautesen, Achenbach and McMaken [2]. The main difference between the
scalar and elastic wave problems lizs in the appcarance of both longitudinal
and transverse waves in elastic solids, which are coupled by conditions on the

boundaries.

For plane longitudinal and transverse waves, which are under arbitrary
angles of incidence with a traction-free semi-infinite crack, the fields on
the diffracted rays can be obtained by asymptotic considerations for
wr/c, > > 1. This was shown in detail in Ref.{1]. The results of Ref.[1] pro-
vide "the canonical solutions for a geometric theory of diffraction of elastic
waves. Basic to such a thceory is the result that two cones of diffracted
ravs are generated when a rav carrying a high-frequency body-wave strikes the
edpe of a crack. The surfaces of the inner and outer cones consist of L-rays
(tongitudinal) and T-ravs (transverse), respectively. The half-angles of the
cones are related by Snell’s law. 1In addition there are 2 rays of surface
WaVes. (R-rays) on the faces of the crack; one on each crack face.

incident
ray

Incident ray and cones of diffracted rays
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Figure 2 shows the cones generated by an incident longitudinal ray. tor
this case the diffracted longitudinal rays make the same anple ;. with the
tangent to the edge as the incident ray, and the diffracted ravs 'of transverse
motion are under an angle ¢_ with the edge, where c¢ cosyr = CT Cos ¢I . The
rays of surface wave motion are not indicated in Fig. 2. ’

Let us define primary diffracted ravs as ravs that have interact -d once
with the edge of the crack. Secondary diffracted ravs have interacted twice
with the crack edge, and nt multiple diffracted rays have interacted n times
with the edge of the crack. The total fields at a point of obscrvation are
now not just comprised of the fields on the primary diffracted body wave ravs.
At the edge of the crack rays of crack-face motion are generated, which inter-
sect the crack edges again and generate additionat diffracted body wave ravas.
Some of these secondary diffracted rays will pass through the point of obsecr-
vation. On the faces of the crack, important contributions to the diffracted
ficlds are coming from rays of surface waves because in the first approximation
the diffraction coefficients for the body wave motions vanish on the crack
faces, except for diffracted horizontally polarized transverse wave motions.
In addition, surface wave motions suffer less geometrical decay than body
wave motions.

When a R-ray intersects the edge of a crack, a ray oif retflected surface
wave motion is gencrated, as well as cones of difrfracted ravs of longitudinal
and transverse motions. The reflection coefficients have been discussed in
Ref.[2]. The cones of diffracted L- and T-rays have also been analyzed,
and the associated diffraction cocefficients have been obtained. With the
aid of these results the contributions to the diffracted ficlds ot waves which
travel via the crack faces can be computed. Thus the total diffracted field
consists of primary diffractions and a svstem of higher order diffractions.
Pertinent results have been summarized in Ref.[4].

With GE and €TD the total displacement field is of the form

; d
ut = uE + u

This result is still not valid at the boundaries of the shadow zone and the
zone(s) of reflected waves. 1In a further refinement which is called urniform
asymptotic theory (UAT), the fields at these boundaries are corrocted,

For incident waves with curved wavefronts and for curved diffracting vdioes,
the cones of diffracted ravs have envelopes, at which the ravs coalesce and the
fields become singular. The cnvelopes are called caustics, and CGTD breaks
down at caustics.

Within the context of CTD theory of Refs.[1] and [.], the diftracted field
at a point of observation @ is comprised of contributions corresponding to
"primary' diffracted body-wave ravis, which are directly gencerated by inelfdemt

bodv-wave ravs, and contributions corresponding to "secondary' diffractet bodv-
wave ravs. The latter are generated by rays travelling via the crack faces.
Thus, the diffracted displacement field u at § can be represented by

(4.1




L 1 . . - .
where v and “'Y represent the primary and secondary diffractions, respec-

. T - . . « .

tivelv., In u the svmbol o detines the incident ray, i.e., o« = L or
. . . - 0

= 1, while o defines the diffracted ravy, = L or v+ = T. In Yoy the
svmbol © detines the crack-face rav, i.c., ¥ = RS (surface-symmetric),
- = RA (surface-—antisvmmetric) or ¢ = TH (horizontally polarized transverse).
The <svmhol + defines the bodv-wave ravs senerated by Giffraction of a crack-
tace rav: thus v =1 or v = T. If needed the summations in Eq.(4.2) are

carriced out over all ravs of a particular tvpe passing through 0.  The
number of relevant ravs can be determined on the basis of arrival times in
the time domain.

Results obtained on the basis of Eq.(4.2) have been presented in Refs.
13]-171] and thev have been compared with results obtained by numerical
colutions of a governing singular integral equation.

In Refs.[4] and [5) a hvbrid method has been explored.  In this method
tie crack-opening-displacement (COD) is computed on the basis of ela~to- {
dvnamic rav theory, and the ditfracted ficld is subsequently obtained by
the use of a represcentation theorem.  The advantage of this approach s
that the trouble with rav theory at shadow boundaries and boundaries of zones
of specular reflection is climinated, and caustics onlv need to he dealt with
on the taces ot the crack.

v EXPERIMENTAL RISULTS.  Experimental results in the high-frequenc,
range that are suitable for comparison with theoretical results have been
reported in Ref.[ 6 ], The sample was a circular disk (2.5 x 10 ¢m) of !
titanium alloy which contained a penny-shaped crack of radius 25004 parallel
to the tlat faces, and located at the center of the disk. The disk was i
immersed in water. A transmitter launched a longitudinal wave to the water- b
titaniam interface under normal incidence.  This wave was transmitted into the
solid, dittfracted by the crack, and the dittracted waves were transmitted back
into the flaid, where thev were reccived by oo second transducer. The cxperi-
mental set-up and the processing of the data are discussed in soime detail in
Ket .l [ I-

In the experimental work the nature ot the diftracted signals is deter-
mined by their arrival times. Since the tirst arriving signals are related
to longitudinal waves in the solid, it is possible to pate out and separate 1
thee rarely Tonyitudinal diffracted signals from subsequent signals. By
avpropriate processing of the experimental data, as discussed in Ref.n, the
amplitade=-spectrum is obtained for the longitudinal diffracted waves onlv, 1
[hus tor the present comparison of analvtical and experimental results we need
to consider only the primarv diffracted bodv-wave ravs in our analvtical work.




Fig. 3: Geometry in the plane of symmetry of a penny-shaped crack.

The interference patterns for the first arriving longitudinal waves in
the fluid are generatcd by phase differences and amplitude differences on
the direct rays from the two crack tips, see Fig. 3. Adding the primary
diffracted longitudinal fields from the point O1 and 02 we obtain in the
far-field.

u - F(0,0) exp[iw(s/cL+§/cF) +in/4) U g

F(e,eo) = H exp[—i(wa/cL)(cose - sineo)] + Hzexp[i(ma/cL)(cose - sineo)]

1

. L i
sgn(cosH,) T(GJ) D, (8.;67)
gnlcosdy) T(6;) [D (0,30, 5 =12

H, = 1 7 7- 7
j _ % BT ENEraT SANE
(mSj/cL) (1+sj/c) (1+Sj/E) (1+Sj/C)

(5.1)

(5.2)




Here w is the circular frequency, a is the crack radius, S = AB, Uo

represents the incident wave at point 0, and cL and cp are the velocities

of longitudinal waves in solid and fluid respectively. The geometrical
quantities are indicated in Fig. 3. 1In Eq.(5.3) T(:) is the transmission

cocfficient at the solid fluid interface, and Di(-;-) is the diffraction

coefficicent. For details of the derivation of Eqs.(5.1)-(5.3) we refer to
Ref.6. It should be noted that one of the terms Hj is imaginary, since the

ray has crossed a caustic. Of particular interest is the absolute magnitude
of F,

|F| = {1Hl|2 + |H2|?+ 2|H11|Hélsin 2(wa/cL)(c086—sin60)}% (5.4)

Here we have taken into account that either Hl or H2 is imaginary.
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Fig. 4: Comparison of Eq.(5.4) with experimented results.

Theoretical results obtained from Eq.(5.4) have been plotted together
with experimental data in Fig. 4. The frequency varies from 2 MHz to about
14 MHz. The angle in the solid is 67°(=n/2 -) = 550, The amplitudes of the
first few cycles agree well. At higher frequencies (above 6 MHz) the experi-
mental results are lower than predicted by theory. One®*possible explanation

is the effect of attenuation which is not accounted for in the theory. In
all cases the positions of maxima and minima of the spectra agree well. The
Additional

locations of the maxima are significant for the inversion process.
comparisons with experimental data have been reported in Ref. 6.
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VI. ELEMENTARY CONSIDERATIONS FOR THE INVERSE PROBLEM. The theoretical
expression for the amplitude spectrum given by Eq.(5.4) implies that the
amplitude of the primary diffracted field is modulated with respect to m/cL
with period

P =n/a |cosh - sinOol (5.95)

It is of interest to apply Eq.(5.5) to the experimental measurements. Since
we know that ® = 0,each amplitude spectrum will give a number for a
from the periogicity of the modulation. We have

C

- L
8 7 2 sin(e”) Af (5.6)
L ave

S S
where eL =3 ki GL

consecutive maxima.

and Afave is the average frequency spacing between two

The results of the size determination are given in Table 1. The agreement
between actual crack radius (a - 2500u) and the predicted values is excell-

ent.
OL =7/2 - OL Afave computed a in g
35° 2.18 2530
40 1.87 2630
45 1.83 2450
50 1.68 2460
55 1.60 2410
60 1.47 2500
65 1.39 2510
Table 1: Crack radius a computed from Eq.(5.6) for a penny-shaped crack in

titanium (cL = 6330 m/s)
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VI. SURFACE-BREAKING CRACKS. A surface-breaking crack is one of the

most harmful crack configurations. 1t is, therefore, not surprising that
considerable efforts have been devoted to their detection. In this section
we review two-dimensional solutions to the direct scattering problem for
incident surface waves. The geometry is shown in Fig. 5.

d

Fig. 5: Surface-breaking crack.

The c¢asiest problem for the geometry shown in Fig. 5 is concerned with
scattering of incident body waves of anti-plane strain. The problem has been
considered as a specific and separate problem by some authors. This is,
however, completely unnecessary. Relerring to Fig. 5, the solution can be

obtained from the results tor a crack of lenpth 2d (x = 0,~d < y < d) in an
unbounded medium by taking a svstem of two incident waves which are
symmetric with respect to the plane v = 0.

Unfortunately, the simple symmeiry considerations that hold for the case
of anti~plane strain are not valid for the in-plane case. Svmmetrv considerations
do not work hecause of mode coupling of longitudinal and transverse waves at a
traction-free plane. Thus, it is not possible to construct a system of incident
waves In an infinite solid with an intevior crack, so that the conditions for a
surface~breaking crack are automatically satisfied. Hence the problem of
scattering by a surface-breaking crack must be considered as a completelv
separate problem.

Fxact solutions for the two-dimensional geometry of a crack of depth d in
an e¢lastic half-plane were given in Refs.{10] and {11]. Tn Ref.[11] the
scattered displacement fields due to either a time-harmonic surface wave or a
plane time-harmonic longitudinal or transverse bodv wave incident upon the
crack from infinity are investigated. The total field in the half-plane is
taken as the superposition of the specified incident field in the uncracked
half-plane and the scattered field in the cracked half-plane generated by
suitable surface tractions on the crack faces. These tractions are equal and

13




opposite to the tractions generated by the incident wave in the uncracked
half-plane when evaluated in the plane of the crack. By decomposing the
scattered field into symmetric and anti-symmetric fields with respect to

the plane of the crack, a pair of boundary value problems for the quarter-
plane is obtained. These two boundary value problems are reduced by integral
transform techniques to two uncoupled singular integral equations, which are
solved numerically using a collocation scheme. The derivation of the symmetric
equation has been presented in Ref.[10.], and the derivation of the anti-symmetric
integral equation is presented in Ref.[11]. The cracs-opening displacements are
then easily calculated from the solutions of the singular integral equations.
The exact representations of the diffracted displacemenc ficlds are subse-
quently obtained in the form of finite integrals over the crack length, which
are evaluvated numerically.

8
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Fig. 6: The total field ahead of the crack (forward transmitted
field).

Figure 6 shows the forward transmitted field, and the back-scattered field is
shown in Fig. 7. Apparently most of the incident wave is backscattered.




.5
4 -
- Bs I
l(uR )x
.31
.27
|
OO { { i T 1
0 2 4 6 8 10 12
kgd
Fig. 7 Comparison of c¢xact and approximate dimensionless x-com-

ponents of the displacement fields for the back-scattered
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surface waves, where ](uR )x} ](uR )X]/A(2CT/CR 1).

- - - Ray theorv of Ref. {12]. O-Exact, see [11].

Asymptotic cvaluation of exact integrals of [11].

VIT. INVERSION INTEGRALS. We will consider a first approach to the
inverse problem for a crack in an unbounded solid. In this approach it is
assumed that the scattered field can be adequately represented by ray theory.
Thus, the field at a point of observation Q is assumed to consist of the
summation of the contributions from each of the rays passing through Q.
nature of these rays depends on the location of Q relative to the crack and
There can be direct rays, reflected L- and
T- rays and diffracted 1- and T-rays. If Q is in the shadow zone, only
diffracted rays can pass thropgh Q. The magnitudes of the signals carried by
diffracted rays is O[(ma/cT)*fl as compared to the signals of the direct and
reflected ravs, where a is a characteristic dimension of the crack.

The

relative to the source point S.

In practical evamples we can include primary diffracted rays which are

generated by the incident rays, and secondary diffracted rays generated by
rays travelling via the crack faces. In this discussion we will just consider
the primary diffracted rays, which correspond to the first arriving diffracted

signals. For a flat crack with a smooth edge there are generally two primary
diffracted rays. The points of difiraction on the crack edge are called the
"flash" points. The locations of the flash points are determined by relatively
simple geometrical considerations, based on the rule that the point Q must lie

on a cone of diffracted rays.

15
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For an incident ray of longitudinal motion the displacement fY 14 on a
diffracted ray of longitudinal motion is of the general form

L _ -5 L L . , o
u = [kLSQ(1+SQ/oL)] df Do ,0,58) U cxp(lkLSQ) (7.1)
Here kL = m/cL s SQ is the distance from the point of diffraction D along the

diffracted ray, o, is the distance along the rav frow the point of diffraction
. L . . ; . L )

to the caustic, dL defines the direction of displacement, and DI(;I,GL;G) is

the diffraction coefficient. The angles il and 1L detfiue the direction of the

incident ray relative to a coordinate system at the point of diffraction, ¢

defines the point of observation, and UL defines the incident ray at the point

of diffraction:

- -1 .
UL = A SD exp(lkLSD) (7.2)

where SD is the distance from the source point to the point of difiraction.

It is now assumed that we know a point O in the vicinity of the crack,
while the source point S and the point of observation ( are far from the crack.
Let §S’ §Q and % denote the position vectors of S, Q and the flash point D

{ = = = ! >>
relative to 0. Let Xq Igsl, XQ |§Q| and Xp 'ED‘ , then Xg, XQ X

Defining the unit vectors gQ = gQ/xQ and 2 = §S/xS, we can write
S, ~ x. = (X3 (7.3)
Qo ¥
SD " Xg T (§S-§D) (7.4)

Equation (7.1) may then be expressed in the form

u L ~%
= F d k. ° exp(-ik q-x.) (7.5)
GL(xS)GL(xQ) ~L L kl,~ *>

where the bisector vector ¢ is defined as
g = ?(S + EQ s (7.6)

and

G, (x) = (4mxy L exp (ik, ) .7
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The function F follows from (7.1).

The form the diffracted field given by (7.5) suggests simple Fourier-type
inversions integrals to recover the size, shape and orientation of a crack
from the far-field data. The following inversion integrals have been inves-
tigated in some detail in Ref.[13].

J exp(ikLg.}) f(kL) dk, (7.8)

—

(D 0

i

(i 00 J( K exp (il q.0) 1) dk (7.9)

where » defines a test point in the mediums.

Suppose we now take the experimentally obtained amplitude spectrum of
the carly-arriving longitudinal diffracted signal, and divide it by GL(XS)
and GI(XO)' It may then be assumed that the result is of the general form

given by the right~hand-side of (7.5). We then apply the inversion integral
given by (7.9) to this result. By virtue of the relation

cxp(ikLp) dkL = §8(p) (7.10)

3]

R

we obtain a Dirac delta function when

g-O- %)) =0 (7.11)

Thus, the application of (7.9) to the right-hand side of (7.5) will give a
delta-function behavior when the test point A is located in a plane through
the flash point normal to the known bisector vector g. For convenience

A can be taken along gq. By taking many points of observation Q, the crack
edge can, in principle, be constructed. Tor further discussions we refer to

Ref.{13].

it should of course be realized that the scattered field is generally only
known over a finite frequency range. In that case the applicatica of the
inversion integral yields a function of the form sin(klx)/x rather than a Dirac

delta function, and the position of the plane corresponds to the principal peak.
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SOLITARY WAVES AND SHOCK PROFILES IN
THE THREE-DIMENSTONAL LATTICE

John D. Powell and Jad H. Bat+teh*
Applied Physics Branch
Ballistic Modeling Division
Ballistic Research Laboratory, USAARRADCOM
Aberdeen Proving Ground, MD 21005

ABSTRACT. The propagation and interaction of solitary waves in a
three-dimensional, monatomic, face-centered-cubic lattice are investi-
gated. The atoms which constitute the lattice are assumed to interact
through a Morse-type interatomic potential. A sequence of solitary
waves is generated by subjecting the lattice to shock compression at a
steady rate and, from the numerical solution of the atomic equations of
motion, the stability of the solitary waves is studied. It is pointed
out that in general the pulses are not so stable as in similar one-
dimensional models and, in particular, are rather unstable when encount-
ering oscillations transverse to thelr propagation direction. It is
41so observed that under some conditions coupled longitudinal and trans-
verse solitary waves can propagatc in phase at the same velocity through
the lattice. The long-wavelength, continuum limit of the equations of
motion is then derived and it is demonstrated analytically that these
equations also predict the existence of the coupled-wave profiles ob-
served numerically. The way in which solitary waves may affect the
shock profile and conventional assumptions regarding it in solids is
also discussed.

I. INTRODUCTION. In some recent calculations we have investigated
the propagation of shock waves in both one-dimensional [1,2] and three-
dimensional [3] discrete, crystal lattices. Our efforts have been moti-
vated to some extent by the early computer-molecular-dynamic calculations
of Tsai and coworkers [4] which revealed a number of anomalous effects
in the shock profile. Our work has tended to substantiate these findings
and has suggested that the existence in the lattice of solitary waves,
or rather well-defined, fairly stable pulses, could account for the un-
expected results. It has, therefore, been of some interest to us to
study the properties of a solitary waves, particularly in three dimen-
sions, since this problem has rececived relatively little attention in
the literature.

In this paper we will discuss the results of our investigation of
the properties of solitary waves in a threc-dimensional lattice. After
defining the model, we begin by demonstrating how solitary waves can be

*Present address: Science Applications, Inc., Atlanta, GA 30339
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generated in the lattice and how their stability can be investigated
using a computer-molecular-dynamic technique. The contiruum limit of
the equations of motion will then be taken and it will be shown that
these cquations are capable of predicting analytically many of the same
effects revealed in the numerical study. Finally, we discuss briefly
the anomalous effects in the shock-wave calculations, and suggest how
the properties of the solitary waves account for these effects. The
discussion in this paper is intended to be more abbreviated and quali-
tative than that presented elsewhere. For greater detail, the reader
is referred to the literature [3,5].

11. MODEL AND EQUATIONS OF MOTION. The three-dimensional model
which we have employed in the calculations is shown schematically in
Figure 1. It consists of a face-centered-cubic lattice which is made
as long as neccessary in the z direction to complete the calculation
and which is periodic in the x and y directions. A typical cross
section of the lattice is shown on the left-hand side of the figure
and contains eight unique atoms; we have, however, in many calculations

' employed as many as 32 atoms in the cross section. Planes of atoms

normal to the z axis are numbered consecutively, beginning with the
first located at z=0, and atoms within a given plane can be numbered
any convenient manner.

The atoms within the lattice are assumed to interact through a
Morse-type interatomic potential. Thus, the equation of motion satis-
fied by the ath atom in the ith plane can be written

2> - -+ - -+
d ri,a _ RAO Z e_ZR(AoIri,u‘rj,Sl l)—e—R(Ao|ri’a—rj,B|—l)
dt B,J
N N (1)
. ri,a-rj,s .
-> >
7Ty !

. . I3 . > .
All quantities have been made dimensionless: r,  represents the posi-

»
tion vector to oth atom in the ith plane, and is normalized by the lat-
tice constant; AD is the lattice constant, normalized by the separation

of an isolated atom pair at minimum potential; 1 represents the time,

P . .
normalized by (m/D)” a_s where m is the atomic mass, D the dissociation
energy, and a the lattice constant; and R is a parameter indicating

the degree of nonlinearity in the Morse potential. The sums over ) and
B in Eq. (1) go over all atoms in the vicinity of the (i,a)th for
which an appreciable interaction occurs. Equation (1) just represents
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Newton's second law tor the atoms in the lattice sud we are concerned
with solving this equation numerically for cach atom ant, from the sclu-
tion, inferring the response of the lattice to any exc.tation. lor the
calculations discussed, the cquations were solved under the assumption
that R was given by 6.29, a value which is appropriate for ¢ lattice of
nickel atoms [6].

I1I. GENERATION OF SOLITARY WAVES AND NUMERTCAL STUDY OF TilFiR
STABILTTY. A secquence of solitary waves can bc generated in the laitice
by having each atom initially at rest in its equilibrium position and
subjecting the lattice to shock compression. To do so we drive the
end-most planc of atoms, located at z=0, along the positive z ax1is at 4
constant compression velocity. The formation of the solitary waves can
be scen most easily by looking at a series of velocity-time trajectories
of various planes of atoms in the lattice subsecquent to their being ex-
cited by the shock front. A typical set of such trajectories is shown
in Figure 2. Each plot is begun at time LS which corresponds to the

time at which the plane in question is first encountered by the shock,
and vy denotes the (common) velocity of atoms in the 1th plane, nor-

malized by vD/m.

We sce that the shock front introduces an oscillatory wave profile
at the second plane which is very similar to that of a harmonic, one-
dimensional chain. As the shock propagates farther, however, and the
atoms become farther displaced from their equilibrium positions, non-
lincar cffects become increasingly important. These effects tend to
steepen the profile as can be seen in the trajectory of the 20th plane.
Furthermore, it is found that the higher-amplitude pulses propagate at
a higher velocity and, consequently, the pulses tend to spread apart as
they form. The spreading effect can bc seen by comparing the separation
of peaks at the 20th and 40th plane. Asymptotically, which for practical
purposes occurs by about the 40th plane, the pulses approach the same
height and the spreading ceases to occur. At this point a sequence of
solitary waves has formed in the vicinity of the front and they will
propagate indefinitely into the lattice without changing their shapes.
Physically, they represent a balance between the dispersion in the
lattice, which tends to spread the pulses out, and the nonlinearity in
the lattice which tends to steepen them. In the event that the solitary
waves are stable to various types of perturbations, they are called
solitons.

A single solitary wave can be i-olated from the seguence near the
shock front and its properties studied.  The first gquestion that might
be investigated is to ask the extent to which the solitary waves are
stable to mutual collisions in three dimensions. To investigate this
problem we launched two solitary waves, having equal but oppositely
directed velocities at opposite ends of a lattice that was 48 planes
long. Shown at the top of Figure 3 is the rightward-moving solitary
wave as 1t encounters the 13th plane in the lattice. The leftward-
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Figure 2. Evolution of solitary waves near the shock front.
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moving pulse, not shown, v now at the S5th Junce. The two paloes
collide in the vicinity ot the 2itn pluane and o very noni.roar anter-
action ovcurs as can be seen in tac center of the figu ¢, Finallv, at
4 much later time, the collision has occurred and the neeative-velocity
solitary wave huas reached the 13th plane whose trajectory is shown on
the bottom of the figure.

1t is evident from the latter tragectory that some substantial
oscrlilations are Jeft behind atfter the collision, and the pulses are
not cospletely stable. This case might pe compared with the correspond-
g vase inoone dimension where previous caleulations [1,2] indicated
that the pulses were, tor the Morsce lattice, stakle to within the accu-
riecsy ot the numerical data,  fven In the three dimensions, however, the
mtesrity ot the palaes 1s maintained tairly well,

Wweohave alwo anve: tigated the stability of the solitdry waves to
st lb-amplitude, longitudinal and transverse planar oscillations and to
racdon thermal oscillations in the lattice by sending a solitary wave
throupgh a repion of the lattice which contained one or more of these
particular types ot oscillations. Without belaboring the detuils, we
found e-sentiially that the pulses were tairly stable both to small longi-
tudinal o-crllathyons and to thermal backpground, but were rather unstable
to pienar oscrllatyns an the transverse direction.  In fact, a rather
tteresting effect ocourrod when s cent g osolitary wave of sutticiently
Wishoamplotade through a recien of the lattice whidh contained transverse
plaar ool tatrons dn the v o direction, The incident pulise, shown at
the top ot fapure d, was Jongrtadinal and had anoamplitude of about 5060,
Pt the pate were stable 1o the transverse oscitlations, we would expect
the peiive to emerpe tron the oscrliatory region with 1ts shape anchanged.
wht we actiaal by obaerved, however, shown on the lower haltf ot the figure,
wa o that twe pulsen emerved, one longitudinal and one transversce.  We
have t flowed therr propagation some Jdistance inte the lattice and found

thas thes propapate exactly in phate and ar the same propayation veloc-
vt he bave theretors called the emergent palses coeupled solvtary waves,
Aoovrht bhe aapected, the cmerpent longaitadinal pulse has an amplitude

st h e smadler than the incident palse (3017 here compared to 3.60) .
videntlo, the tonvstudinal solitary wave aceentuates the transverse

planar oo callatrons anatially present 1nothe lattice, thereby producing
tin crpted pulses observed an o thie ot

P,

Eve RESULTS PREDE b0 By oo TN e™M  OVTTONS D senee the results
T e mhn;f Celtion are k'\'.’.'l-;lf("rrt:l,\'iH\l’!?."l"}‘C—ilrlA, 1T v ut Interes, to
ar owhetiior we can obtain approvicate andalvtic solutions for the soli-
v wane proteles and predict the existence of coupled solitary waves.
P cttort to do oso we made a number of simplifying assum tions in the
ettt ot motion represented by bqo Lo Farst, we took the continu-
mebae t ot the cquation whaich <houtd be valid for excitations whose
waie ben, th e lony compared to the anterparticle scparation. ke re-

tained o the it not onl, the usual harmonie terms, but alwo the
4

lomewt order terms an the dispersion and n o the nonlincarity ot the lat-
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bigure 4. Generation of coupled solitary waves. The upper part of
the figure shows a longitudinal solitary wave incident on
a region of the lattice containing transverse planar
oscillations. The lower part shows the two emergent

solitary waves,




tice. Sccond, we restricted oursclves to only planar oscillations in

the longitudinal (z) direction and one transverse (y) Aircction. There-
fore, each atom in a particular plane normal to the z axis had, at any
time, a vclocity identical to every other atom in the plane. The other
transverse direction could have been included also, but doing so greatly
complicates the algebra without really clarifying any essential physics

of the problem. Third, we assumed that each atom in the lattice interacts
with only its nearest neighbors, of which there are 12 in a face-centered-
cubic lattice. Finally, sincc the solitary waves represent steady,
travelling-wave solutions to the equations of motion, we assumed solutions
for the y and z components of the planar velocities of the form

"

v =v (z-C1)

y = Vy vy (8)

1"

<
"

VZ(Z—CT) VZ(E)

The unknown parameter C represcnts the propagation speed of the solitary
waves. Identical arguments were chosen for the two functions since the
coupled pulses were found to propagate in phase.

The assumed forms of the solutions indicated in Eq. (2) were then
substituted into the continuum equations derived in the manner discussed
above (sce Ref. 5 for details) and two coupled, nonlinear, second-order
differential equations were obtained for the planar velocities:

/7 -
v = aqv._ - 48v v 3a
avy - ARV, (3a)

o Sv.t ey f 3b
Ve Vs Vo T BV, - (3b)

The primes represent differentiation with respect to £ and the parameters
n, B, vy, and § ar- given by

2,2

a = 12(C7/CL - 1)

8 = 3(3R-1)/C (4)
2, .2

vy = 12(C7/ ¢ - 1)

5 = 18(R-1)/C.

Here C9 = 2/2 R is the long-wavelength longitudinal sound speed in the

crystal, and Ct=2R is the corresponding transverse speed. The solution
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ot kgs. (3) should predict the profiles of the coupled solitary wuaves
in the continuum limit. Of course, for the case vy=0, the solution of

the cquation for v corresponds to the profile of an isolated longi-

tudinal solitary wave.

Unfortunately Eqs. (3) are still too difficult to solve analyti-
cally, but are obviously easier to solve numerically than is ty. (1)
Their numerical solution can be effected by assuming an amplitude Voo

for the longitudinal pulse and deriving from Eqgs. (3) the corresponding
amplitude, Vio? of the transverse pulse. One {inds [5]

V.= v . (3)

The equations are then integrated numerically assuming that thelr maxi-
mum values are attained at £=0. It is found tha*t solutions which remain
fin te at infinity are obtained only if the appropriate value of C,
found by trial and error, is used in the numerical solution.

For the limiting case in which Vyo << V“o’ however, it is possible

to obtuain an approximate analytic solution to Egs. (3). The scolution
may be viewed as the first step in an iterative procedure. We proceed
by noting that since v is small, we can, as a first approximation, set

it equal to zero in Eq. (3b). The resulting equation can then be re-
duced to a quadrature and integrated to yield,
3y 2
v, = 5¢ sech” (. ey . (&)

We now substitute Eq. (6) into Eq. (3a), reducing it to a second-order,
linear differential equation which 1s identical in form to the time-
independent Schroedinger equation. The equation can be solved by series
solution [5] and, for the case R=6.29, we obtain

C = 1.60 ¢, (")

and -

5.21
v = v/ sech
Vo

(2.3°). (8)

VQO represents the amplitude ot the transverse solitary wave in this

approximation. Using the value of C represented by Eq. (7), wc obtain
from Eq. (6)

7
v_ = 9.8 sech™(2.35). (93
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We should emphasize that bgs. (&) and (9) represent only a very
approximate solution to Egs. (3). The solution predicts, for instance,
that the amplitude of the longitudinal solitary wave i. the coupled-
wave profile 1s identical to that for an isolated longitudinal solitary
wave having the same value of C; actually, the amplitude of the longi-
tudinal pulse is reduced in the coupled configuration and the amount of
reduction depends on the amplitude of the transverse pulse. Furthermore,
the value of vio is not predicted by the analytic solution in lowest

order and, if one wishes to compure analytic and numerical solution:,
this parameter must be tit to the numerical results. Finully, the
lowest-order approximation yields onty one acceptable eigenvalue and
therefore only one solution to the cquations. Other solutions do exist,
however, ard these are no doubt predicted by the hivher-order terms.

Despite these limitations, the solutions represented by hkgs. (8)
and (9) do predict the solitary-wave profiles quite well in the limit
v << v . To demonstrate this agreement explicitly, we have solved

EQs. (3} numerically for a longitudinal solitary wave having an ampli-
tude of about 10.2. The solution was found to diverge at infinity
U e85 C was given by the value, € = 1.68C2. From Eq. (5), then, the

amplitude of the transverse wave is about 1.5. The results of the
numerical calculation are shown by the solid-line curves in Figure 5,
in which velocity protfiles are plotted as a function of 7/C. Since
it 15 apparent that vy << v_in this casce, the analytic solutions

represented by Eqs. (8) and (9) should approximate the profiles reason-
ably well. A graph of the anualytic solution for the longitudinal wave

[Eq. (9)}] i1s shown by the dashed curve at the top of Figure 5. Further-
more, when we set V;O = 1.5 in Eq. (8) and attempted to plot the trans-

verse polse on the lower graph in Figure 5, the analytic result was
found to be coincident with the numerical result to within the accuracy
with which we could plot the data. Obviously the agreement is quite
good.

As a final point, we should indicate that we have observed coupled
solitary waves in our numerical studies of the discrete-lattice equations
only for rather large-amplitude longitudinal solitary waves. Further-
more, we have been unable to obtain convergent numerical solutions to
Fgs. (3) whenever we assumed an amplitude for the ltongitudinal ulse
that was smaller than that predicted by the analytic solution, namely,
9.8. Apparentiy, then, a threshold amplitude exists for the lonyi-
tudinal solitary wave, below which 1t cannot support the propagation
of a4 transverse wave coupled to it. Furthermore, in the continuum
limit, that amplitude is predicted by the analytic solution in lowest
order.
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Figure 5. Comparison of numerical and analytic solitary-wave profiles.
The solid line represents the numerical solution of Eqs. (3),
the dashed line the analytic solution.
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V.o BFPECTES OF SOLTTARY WAVES ON sHuck Probilhs. A ndivated

previously our interest in the study of solitary waves ur.o.ce rrom

attempts to explain anomalous ettfects which occur in L. computer-
molecular-dvnamic simulations of shock propagation in drscrete crystal
lattices. Those calculations were carriced out using the sime model

discussed here and the shock wave wias again initiated and sustained by
driving the end-most plane of atoms at a constant compression velocity.
lsually, however, we allowed for some initial thermal motion in the
lattive prior to compression in order to simulate an initial ambient
temperature.  Nevertheless, we still observed solitary waves, both
t~olated and coupled, propaguting amid and interacting with the thermal
bachground in the lattice. The existence of the solitary waves in the
l.ttice can account for some rather unexpected results which occur in
theo shock-wave calculations.

First, because the pulses which arc growing into solitary waves
proparate at speeds which increase with increasing amplitude, they tend
to spread apart as they form. This spreading effect gives rise, at
least at early times and for low ambient temperatures, to a nonsteady
shock profile. Thus, the transition region between the two equilibrated
piarts ot the lattice becomes lonyer as the shock wave propagates farther
into the crystal. This effect was first noted by Tsal and coworkers [4]
in carlicr shock-wave calculations,

second, because of the fair degree ot wtability of the solitary
wiaves, the approach to thermal ecuilibriam behind the shock front is
rather =low., It is clear that it the solitary waves were completely
stable (solitons), no mechanism would exist tor destroving this orderly
progression of energy and thernal equilibrium could never be attained.
Because the pulses do decay somewhat as they are sgbjected to various
perturbations, however, there is a tendency tor the lattice to equili-
brate, but only at distances far behind the front.

Finally, one of the more interesting anumalous eftects which
occurs in shock-wave simulations is the existence of an overshoot in
the thermal-cnergy density directly behind the front. In particular,
it one defines a “temperature” associated with cach Cartesian direction,
it is found that each temperature overshoots its final equilibrated
valuce behind the front for strong shocks. The erfect is shown in Figure
6, where cach of the three temperatures 1s plotted as a tuncticon of
position behind the shock when the front Is at the 320th plane. The
overshoots in the three Cartesian dircctions can be accounted tor by the
existence of high-amplitude, coupled solitary waves behind the front.
For weak shock waves, 1t was obscerved that the overshoots in the trans-
verse directions disappeared.  In that case, cvidently, the amplitudes
of the longitudinal solitary waves lie below the threshold for which
coupled solutions can exist.

All three of these effects are clearly in contradiction to the
usual assumptions and/or results of continuum-mechanical treatments.
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Those calculations predict that the shock wave is steady, that the
shock-front thickness is quite small, and that the temper-ture rises
montonically from its ambient vaiue ahead of the shocx to its final
value behind the shock. In future calculations it would be of interest
to make the model more realistic in an effort to determinc whether any
of these effects is likely to occur in real solids.
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TRAVELING WAVE SOLUTICNS OF A MODEL SYSTEM
FOR FLAME PROPAGATION
SHAO-SHIUNG LIN
Mathematics Research Center, University of Wisconsin
ABSTRACT

A simplified model for flame propagation is derived from the lowest order
terms of the asymptotic expansion (in terms of a suitable length scale) of the
full set of nonlinear equations for gaseous combustion in an open infinite
tube. It is shown the simplified model system supports unique traveling wave
sclutions determined by the unburned gas state. The problem of the "cold
boundary difficulty” is analyzed.

1. INTRODUCTION. It is well-known that the flame fronts in a combustible

gas mixture are generated as a balance of the energy release from chemcial
reactions and transport processes such as heat conduction or chemical species
diffusion. A model for the flame propagation based on the assumption that the
density of the gas be constant during the combustion process has been studied
in detail (5], [2]. 1In this paper, we intend to improve the model by taking
account of the fact that the gas expands after the combustion, and hence
induces motion of the gas. We will discuss the existence, uniqueness, and
properties of the flame fronts. We will, in particular, take note of the
"cold boundary difficulty".

The model under study is derived from the lowest order terms of an
asymptotic expansion of the complete set of equations governing the dynamics

of gaseous combustion. The asymptotic expansion is done with respect to a

Sponsored by the United States Army under Contract No. DAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS78-09525 AO1.
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II.

typical length scale of the reaction zone.

flame front necessarily remains constant.

THE GOVERNING EQUARIONS.

where Y =

constant.

The chemical reaction in the combustion process is assumed to be of the

form

and exothermic with a heat release of quantity Q@ per reaction.

the mass fraction of the reactant, the law of mass action demands that the

laws of mass, momentum, energy and chemical species.

(=2 < x < ®) and time

+ =
Pe (pu)x 0

2
+ =
(pu)t + (pu p)x vu

& pu + pe), + (uls pu® + pe) + u Pl

2(T,€)
T

= (XTx)x + v(u ux)x + 0

w(T,€)

(pE)t + (pue)x = 6(psx)x - -

p = p{T,p) ., e = e(T).

paper. The identities in (5) are the equations of states.

a polytropic ideal gas,

R
p = RTp , e=Y—_1-T

reactant + product,

reaction term in (3) and (4) be of the form

v(T,e) = z €A(T) [

36

Thus, the pressure across the

If we also assume that the density

is constant, our model reduces to the reaction-diffusion model studied in [5].
Gaseous combustion obeys the conservation

In one space dimension

t > 0 the corresponding set of nonlinear pde is:

(1)

(2)

(3)

(4)

(s5)

For the notation in these equations, see the nomenclature at the end of the

In particular,

cp/cv is the specific heat ratio of the gas, and is assumed to be

Since

e 1 e B i 4 e e s




where the reaction rate A(T) 1is assumed to be of Arrhenius type with an

ignition temperature T;

0 . if 0 <TCT
A(T) = E (6)
exp(~- = J, if T > T,

In general, Ty is obtained from actual experiment.

The gas mixture is also assumed to be in exact stoichiometric ratio so
that, when the chemical reaction has completed, only the products remain.

A discussion of these model equations and other ommitted mechanisms can

be found in [6].

I1I. THE SIMPLIFIED MODEL EQUATIONS FOR FLAME PROPAGATION. It is well-

known that a flame front in a typical (hydrocarbon) gas mixture propagates
into che quiet unburned gas with a speed having order of magnitude 100
cm/sec. This speed of propagation is highly subsonic. This fact is
consistent with an analysis of weak deflagrations in the ZND model {2]. It is
also well-known that, in order to predict correct flame speed, it is necessary
to take account of the internal mechanisms of the reaction zone. That is, the
effects of heat conduction or chemical species diffusion are essential to the
formation of the flame fronts. Therefore, to obtain a simplified model for
flame propagation from (1)-(5), we shall assume that

(a) the gas is non-viscous (v =0 in (2), (3)),

(b) the gas 1s incompressible, and

(c) the typical length scale for the reaction zone L0 = (Gr)xﬁ is much

smaller than a typical length scale of the environment.

Then, if we introduce the dimensionless time and length scale

" t x x
t:-T-' X = i—a_—,
0 X




and form an asymptotic expansion with respect to the inner scale Ly, the

equations (1)-(4) become

o>

pC Ta + puc Ta = ( % Ta Ja + Q ¢(e,T)
P t x X X

peE. + pue,. = (pe.). = ¢(€,T).
t x X X
Thus, within the reaction zone, the pressure p remains constant.
In this report, we will study this simplified system., We will from now

on write x for x and t for t , and will rewrite the simplified

equations in the form:

P, *+ (pu) =0 (7

A
pc T, + puc T = (57T,),+2vm (8)
pE, + pue = (pex)x - #(e,T). (9)

As for the equations of state in (5), the assumption (6) implies that the gas
can expand only due to temperature increase. Thus
p = p(T) , p*'(T)Y <0 . (10)

IV. TRAVELING WAVE SOLUTIONS INTERPRETED AS FLAME FRONTS. < he flame

fronts travel through the gas mixture with a definite speed and burn the
unburned gas to a definite burned gas state. Therefore we shall interpret the
flame fronts as traveling wave solutions of (7) - (10). Thus we look for

solutions of the form
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T (x,t) = T (), £ = x4+ Ve , (1)

I u u
u 0 u 1
-=) = T ’ T ®) = T , T K < .
: (-=) o ! (=) 1 0 Ti 'r1

(12)
V in (11) is an unknown quantity which represents the speed of the flame.
That ¢ =1 and Ty < T; in (12) shows that the gas is unburned at
£ = -» , Similarly, the gas is completely burned at £ = ® , Thus we may take
va0. The main result is:

Theorem 1: Assume that A(T) is bounded. Then, given any unburned gas

state at £ = -», there is a unique V 2 0 and a corresponding unique burned

gas state at £ = @ such that equations (7)-(10) have a unique traveling wave

solution of the form (11), (12).

Furthermore, T1 =Ty + %—— and there exists a unique number m > 0
P
such that
m= p(T(£))(u(g) + V) for all ¢ .

Thus, the burned gas state is specified by the relations

m m
Ve —=u , U, & ——— =V ,
po 0 1 p(T1)

The uniqueness in the theorem depends very much on the assumption that
'r1 > 0 . See the remarks in Section VI.

The flame profile obtained in this theorem represents the internal
structure of the reaction zone. Outside the reaction zone, the flame

structure is mainly gas dynamical. This fact can be used to prove the
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exitstenre of weak deflagr ot -0 o e Wt 1 e vt

The proof of this theorem will e padlilimed an et L. e.sewierc.

However , we will {llustrate the method of [ ro ¢ im0 o Lal case,
Ve ,!:FJW FOFCR THE CTRE OV '1_‘ '_ikl‘ 7“”"/‘-?;‘;7 1 “,”.I, . Tre lawis

number 1n (7)-(10) 15 defined to be

&
by
L = - .
[ A
}7
In this sectieon, we shall assure that LT v oter ail T . T

assumpticr will lead to the conservation of the t-.ral cnttaipy.

Substituting (11) into (7)-{(9), we obtain that

PIT(E))I(u(g) + V) = m = constant {13)
A
c,r TUS (5T e Qv (LT (14)
met = (et - T (15)
iT ., . \
where T' = S (£) , etc. Arplication of raxisur Srincir les to (Y4 arnd
ar op ¥

implies that, if (13)-(15) and (12)have a scinrian, then
€'(g) <06, T'() >0
and €(§), T{(f{) are bounded. Thus,

€' (2®) = T' (=) = 0 . 16 )

Now, from (14) and (15),

m{c T' + Qc') = ( X T' + ppe')! (17
p &
Integrating (17) from f = -= to general § vyiells
A
T4+ Qe) = [ T+ Qpet) + T . 1
m(cp Qe ( 3 T Qpe') m(cp 0 + Q) (18
Similarly, integrating (17) from £ = @ to general { qGives
m(c T + Qe) = | LS T gpe') + me T, . (19)
p 8 p !

Thus if (12)-(15) have a solution, a comparison of (18) and (19) gives
+ Q0= .
cpTo Q CpTl (20)
Ty 1is uniquely determined by Ty ¢ (20) 18 true no matter whether L =1

not. Note that we have used (16) in the derivation of (17) and (18).

A0
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Suppose that L =1 , 1.e.

then the quantity

will satisfy
mH = pH' + mH(-=) ,
H(-®) = H(w) .
This follnows from (18) and (20). Crviously,
H{{) = H(=) for all & . (21)
Thus ii{%} 1s conserved Jur:iny tre combustion process. The quantity H 1s
the total enthalipy of (Th-010),
Using (21}, (14} ani (15! can be comhined 1nto a simple nonlinear

ei1genvalue preblem

T(-=) = TO P T{(®) = T_ ,

where ™ arpears as *he el1genvalue. That this problem has a unique

solut:on ™ and T:l) follows from a well-known phase plane analysis first

rigorously Aiscussed by Gel'fand (2.
For arbitrary lLewis numher L ,
to prove the exis.ence nf solution to

egtablish the applicability of Schaud

Also, see (5].
the Schauder fixedpoint theorem is used
(12)-(15). The main estimate needed to

er fixed point theorem is tc estimate the

total ent=alpy H in terms of L ; the latter is only constant when L = 1 .

VI. oLb BOUNDARY DIFFICULTY AND OTHEP REMARKS. The determination of

the jgqnition temperature T is somewha! arbitrary. Strictly speaking, the

1

gas 18 not in stable - hemical equilib

always 1n a "metastable”™ state even a

rium even if T, < T{ - The gas is

t low temperature. However, without the

j
i

R g .




assumption that 'I‘i > 0 , the problem (12)-(15) would not be well-posed. This

“cold boundary difficulty” is well-discussed in [6].
In the mondel (7)-{(10), the cold boundary difficulty can be Adiscussed as

follows. Assuming that Tg = 0 in (12), one can establish

Proposition: If the unburned state in (12) is fixed, then

1 T =V
lim V{( i)

T +0 [¢] -
1

exists.
Thus, no matter how small the ignition temperature is, the gas can always
support a flame front with a definite speed. It seems that the assumption
Ty > 0 is immaterial.
However, if we don't assume the existence of an ignition temperature,

j.e. instead of (6), we assume

E
A(T) = exp( < RT ] for all T ,
then one can show
Theorem 2: Fix the unburned state in (12) with Tg = 0 ; then there

exists Vg such that (7)=-(12) have a solution iff v > vy

0
Thus, without the assumption of an ignition temperature, the observed flame
front tends to be unstable. Its speed tends to fluctuate. The cold boundary
difficulty actually occurs.

Mathematically, the cold boundary difficulty is due to the extremely
singular behavior of the function exp(— g; ) around T = 0 . This fact also
leads to difficulty in computing the flame speed for certain gas mixture.

VI. CONCLUSION. The model equations discussed in this report take care

of the combined effects of gas expansion due to the temperature increase after

combustion and the transport prccesses. We show that the flame fronts exist

in this model, and we discussed some of their properties.

4.




This model is exclu;ively used to discuss flame propagation
(deflagrations); the model system (7)-{(10) i$ not approp.iate for a discussion
of detonation waves. We shall show in a future paper that it leads to a
discussion of flame propagation for the full set of equations (1)-(5) where

all tt2 effects of gas dynamics are incorporated.

NOMENCLATURE

[¢] Gas density

u Gas velocity

o Gas pressure

e specific internal energy

T Gas Temperature

€ mass fraction of the reactant

Y coefficient of shear viscosity

A coefficient of heat conduction

8 coefficient of chemical species diffusion
T typical reaction time of the chemical reaction
Q heat content of the chemical reaction

cv specific heat at constant volume

cp specific heat at constant pressure

R universal gas constant

E activation energy of the chemical reaction.
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DEVELOPMENT OF DEFLAGRATION CON INITIALLY COLD COMBUSTIBLES

A. K. Kapilla
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT Deflagration waves may be generated in com-
bustible materials in severzl different wayvs, which incl.de
self-heating, application of external tnermal stimulus or
increasing the Damkohler number above the critical. The
corresponding transients are compared, with special emphasis
on the third mode of combustion i1nitiation.

I. Introduction Burning can be iritiated in a variety
of ways in materials *that combust as a result of thermally
accelerated exothermic reactions. Self-induced burring
(mode I) can occur if chemical heating overcomes heat loss
to the environs. Otherwise, an external stimuius, such as
heat f£lux at the surface, can be applied (mode II). Alter-
natively, the reaction rate can be erhanced by lncreasing
the Damkohler number above the critical (mode III), by
raising the pressure, for exampie.

-

Recently, Zor modes I and II, Kapila ([1l] ancd (2]} has
described the transients that lead to the estatlishment oI
combustion waves in nondelormable matcerials. For moce I the
evolutionary process consists oI a mildly reactive induction
stage which ends in thermal runaway, Zolicwed by a brief ex-

1 b ﬁ

plosion period in which a rapidly interSL:ying not spot
develops. Upon maturity, tie hot spot is transiormed into a
propagating wave. The situation is essentially the sime Ior

mode II, except that there .s an i1initial period oI inert
heating and the weax reaction resnonsible Zor thermal runawav
occurs in a thin surface laver. In this paper we <ciscuss now
thermal runaway occurs :n mode III; events subsegquent to run-
away fcllow the same course as in moces I and II. only a
brief description is given here, since detalls can be Zound
in [3].

II. Formulat"“ Let 3 combustible be cvonfined to the
region between thc Dianes x = + L. Let the boundaries of
the region be maintained at constant levels of temperature
and reactant concentration {i.e. heat, IZresh mixture and com-
bustion products are allowed to cross the boundaries) Taking
unit Lewis number and invoxlng sommetry about x = 0, the

mathematical zroblem to oo Zonsiderced is
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z = (1+8-y) /5, (1)
Y. = v, t [D/(EY)] (1+E-y) exp(y-vy/y), O<x< 1, (2)
YX(O,T) = OI Y(llT) =1, (3)

with appropriate initial conditions. This dimensionless
system describes a single, one-step Arrhenius reaction.
Here y is the temperature, z the reactant mass fraction,
g the chemical heat release, y the activation energy and
D the Damkohler number.

The relevant static problem has been studied by Kapila
and Matkowsky [4] in the limit y—+=. The steady-state re-
sponse diagram, i.e. a plot of y at x=0 against D, is seen
to be the S-shaped curve of Fig. 1. The upper and lower
branches are found to be asymptotically stable and the
middle branch unstable, the exchange of stabilities occuring
precisely at the turnaround points of the S. An analytical
description of the entire response is given in [4] where it
is shown, in particular, that on the lower branch AC, the
appropriate expansions for y and D are

2 -1

y = l+y—lyl+ o(y %y, D= Dl+O(Y ) . (4)

Furthermore, the solution Yq is given by

Yl(x) = H(X;Dl) (5)

where H has the parametric representation

H = 2 2n [cosh @ sech (ax)], Dl = 2a2sech2@ (6)

and the parameter u« increases from %=0 at A to u=uc at C,
where

« tanh ao =1 (¢ =~ 1.2)
Cc c c

and correspondingly,

1

D =~ 0.88, Yy (0) =~ 1.187.
C C

The analysis in [4] also shows that at the point F (vertically
above C) on the upper branch in Fig. 1,
YF(O) = 1+5 - est (7)

where est stands for exponentially small terms in the limit
Y—)m.
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Before proceeding further we observe that the exchange
of stabilities at C occurs due to the passage of the largest
eigenvalue through zero. The corresponding eigenfunction of
the linearized problem, given to leading order by

E(x) = l-acx tanh(ucx), (8)

plays an important role in the sequel.

IITI. The Dynamic Response

Of interest is the dynamic behavior of y as D varies
slowly through Dc' This slow variation can be characterized

explicitly by introducing a slow time t, where
t = &1, §<<l,
thereby transforming (2) into

éiyt =y, *t DO/ (BY)] (1+B-y) exp(y-v/y) . (9)

At an initial time tB let the system be at the state corres-
ponding to the point B in Fig. 1. Following (4, we let

D(t) = D (t) + 0(yh (10)

and assume that Dl(t) is a smooth, monotonically increasing

function which has the power series representation

D,(t) =D [1+t40 (%) ] as t-0. (11)

1
c

This specifies t=0 to be the point at which the critical
point C is reached. The goal is to obtain an asymptotic
solution to (9) and (3), with the initial condit.on specified
above, in the_ limit §+0, y+~. We shall concentrate on the
limit § »>»> y“l. Several different regimes need to be dis-

tinguished.

III.A Precritical Solution

Expecting y to stay close to unity prior to criticality,
we let

y =1+ Y_lz(x,t) (12)

whence (9) and (3) reduce to

_ z -1
6zt =z .t Die” +o0(y V), zx(O,t) = z(1,t) =0. (13)
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The expansion

2z = zl + 622 + o(8)

(14)
then leads, to leading order, to the pseudo-steady csolution

z. = H(x; D, (t)). (15)

In view of (11l), it can be shown that

20 =2, () - 5— (-£)1/2 E(x) + O(t) as t+0",  (16)
c c
where
z. (x) = 2 &n{cosh o  sech (a x)].
lC c c

and E(x) has been introduced in (8).

The asymptotic behavior (16) indicates that the expansion
(14) is not valid beyond t=0. It can be shown that z, has
the asymptotic behavior
2, = 2 60" B + or(-0)/?] as t207,
3a

N
(o1 \°]

which merely confirms the breakdown of (14).

III.B Transition Solution

Further development of the solution occurs on a new time
scale s defined by the stretching

t = 52/3 p71g (17)

where the 0(l) constant b will be chosen later in a way that
simplifies algyebra. The transition expansion is taken to be

2=z (x)#+ 61/3V1(X'S) + 62/3V2(x,s) + cvylx,s) + o(d).
< (18)
We find that vl satisfies the homogeneous problem
L(vl) =V, (D, exp z, ) v, = 0, 4 (0,s) = Vl(l,s)z 0
h c c x (19)

while the vi (132) satisfy the nonhomogeneous problems
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L(v-l)==wi_l,vi (0,s) = vi(l,s) = 0, (20)
X

with wi linear in vi and depending, in addition, upen x,s
s

and vy (1<j<i). The problem (19) has a nontrivial solution

vl = fl(s) E(x) (21)

where the "amplitude function" f_(s) is determined by re~

1
quiring that the problem (20) have a solution for i=2. The
requisite orthogonality condition provides the Riccati
differential equation
bf' (s) = 3b™Lg - 2 o2
4 ¢

2
1 fl(S), <,

for which the initial condition

£ - 2 b—l/2 S1/2 b2 S—l as sow
c 30tc

1

is the result of matching with (14). The choice b= (9a2/4)l/3

leads to the solution

2/3

£.(s) = 3(9a§/4)_ Ai(s) /Ai(s), (22)

where Ai(s) is the Airy function. Thus, vy is determined com-
pletely. The higher-order v, can be computed in an analogous

way. Since fl(s) has a pole at So' where so = = 2.3381 is the

first zero of Ai(s), the solution (21), and therefore the ex-
pansion (18), is valid only for s>sO

III.C Post-critical Solution

The breakdown of (18) suggests the stretching

s =5 - 271/3 41/3

o (p=0_) (23)

where the new time scale ,,, is of the same order as the fast
time 1T and the shift For assumed to be 0(6'1/3), 1is to be
determined. We now let z have the expansion

z = wl(X,p) + o(l) (24)

where w, can be shown to satisfy
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w, = z, (x) - —-QT-E(X) + o(. 7) as ; -==,

The initial condition in (25) comes from matching with the
transition expansion (18). (In order to determine the shift
s and to fix the origin of ; in (25), higher-order matching

with (18) is needed.)

We note that w which evolves at a constant value D

1’ 1
c
of Dl’ measures the departure of y from unity on the O(Y_l)
scale (see (12) and (24)). Thus, w, i< entirely analogous
to the induction-period solution fof thne self-induced com-
bustion case (mode 1), discussed in [1]. In fact, the numer-

ical solution of (25) leads to a graph much like that in Fig.
3 of [1). 1In other words, the solution develops slowly in
the initial stage, but there W, begins to rise rapidly near

x=0 while variations continue to be leisurely elsewhere.
Eventually, at a definite ¢ = cor wl(O,;) becomes unbounded,

signalling thermal runaway and the birth of a hot spot.

Further development occurs precisely as in [lj. The
hot spot intensifies, reaches maturity when the temperature
in it has reached the value 1l+&, detaches from x=0 and pro-
pagates into the domain. Eventually, the combustion wave
comes to rest near x=1 to accommodate the boundary condition
there, thereby completing the jump from C to F in Fig. 1.
Further movemcent along the upper branch will again be governed
by the slow variable t, much in the manner of the precritical
solution.

IV Concluding Remarks

The asymptotic analysis has concentrated on the case
when combustion is initiated by the slow passage of the
Damkohler number through the critical. Details oI *he tran-
sient upto thermal runaway are given, and it is pointed out
that subsequent evolution of the combustion wave 1s analogous
to the case of self-induced burning.
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MATHEMATICAL QUESTIONS FROM COMBUSTION THEORY

G.S.S. Ludford and D.S. Stewart
Cornell University, Ithaca NY 14853
ABSTRACT. Residual mathematical questions from combustion theory are
presented, in particular those relating to a problem discussed by Linan
(1974). After illustrating the main ideas by mecans of an exactly integra-
ble model, known results about Linan's problem are summarized, with indi-
cations of how they are obtained by numerical and asvmptotic methods. The

hope is to stimulate further, purely mathematical, work on these questions.

I. TINTRODUCTION.

With the advent of activation-energy asymptotics as an effective analy-
tical tool in combustion theory, a host of residual mathematical questions
have appeared. These questions are typically concerned with a differential
problem governing the behavior of a thin reaction-diffusion zone. Existence
of solutions and the determination of various parameters associated with
the differential problem are critical questions in the overall analysis
of the combustion phenomenon.

In such diverse combustion questions as the burning of monopropellant
drops, detonations, fast deflagration waves and counterflow diffusion flames
the structure of the reaction-diffusion zone is governed bv Lin.n's problem

(1974), i.e. the differential equation

(la) 2v" = v oexp(ax-y)

*This work was supported bv the U.S. Army Research Office under Contract
No. DAAG29-79-C-0121.
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subject to the boundary conditons

(1b) -1 + 0(l) as x » ==
(1c¢) o(1) as X > 4w

where o 1is a real constant. In general, the solution must be computed
numerically by taking X large and negative, and varying Yo in the in-

itial conditons
' = - = -
(2a,b) y (xo) =-1 , y(xo) X + v,

until the condition (lc) is satisfied for some large x. The corresponding

Y, approximates the constant

(3 lim  (y+x) - y_ (2)

X > =
which is thereby found. The numerics indicate that there is a unique solu-

tion for o > =1/2 but none for smaller values of ~. Moreover, the constant

(4) lim v = v, (a)

X > x

oo

thereby approximated has the properties

0 for «

| v
[

( > owooas a o> =1/2

Existence, uniqueness and properties such as those mentiomed above have
been established numerically and in some instances by asvmptotic analvsis,

While the combination of these two approaches is adequate in the context
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importance o justite deerer mattemat bl treatment s thae sresent parer
weo sterdl o summartec Erown resalts gbout this particular proboom in the hope

cf e onraving furtier woerk,  We o <holi alao sive additional exanples of

residual problems tros combust o thecrs thoat are worthy ot tarther maiveis=,

1. A MODEL PROBLEM,

Hoere we oxamioe the linear ;‘rublrm
(b h,o) s e e (ex)y T s = toow =0, vt = o1y as x e

to il lustrate the ideas behind Linan's.  Under the transformation

(7)

—~
il

G2y exp /2

(") beromes the modificed Bessel's cquation

17y 1 dy :
8) Sy - v =0 J
( 2t de }
dt |
from which we find the wnique solution l

V2K ()
(9] _
- 57— tor o 0
-

K (v2/v)

(9) y = for =0,

for v < 0

of the problem (6).
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In contrast to Linan's problem there is no limitation on . On the
other hand the constants v, = v(0) and Vo © y(>~) play the role that

v_ and Y o plav in Linan's problem, being determined by the solution.

We find
VIR (V210
- *7—£“’- - for > O
K_(2/4)
s}
(10) v, = /2 for x=0
V21 (V7/x)
O ~
- — ——— for « < 0
I (v2/.)
o
and
ﬂ 0 for x>0
(11) v, = 0 for ~a=20 |,

A
—v’i/lo(ﬁ/"() for < 0 .,

For future reference we cite the asvmptotic behavier of v, —as « ~ 0

L5704 1/2

(12) Ve e

T e G a0
a4

Thus the model problem has features similar to linan's. The given
boundaryv conditions are sufficient to determine the solution completely and
hence the constants Yo and v, @as functions of n~. The constant v__,
as in Linan's problem, vanishes for > 0 and is non-zero for ~ < Q,
being controlled by the behaviors of the corresponding Bessel functions for

large  x.



II1T. PROPERTIES FOR . > 0, ESPECTALLY  » 4=,

In the following a unique solution (s assumed to cxist. Of most inter-
est is the determination of the two constants y,'(w) for a given  a.
Unless otherwise stated the analysis in the following scctions is essential-
lv due to Linan (1974).

For &« > 0 and ..~ =, (1) is effectively replaced by
(13) 2v" = v exp(ax) .

Again using the transformation (7) we reach the modified Besscl's equation
(8). The only bounded solutions for t -» »  are proportional to Ko(t)

s0 we conclude that
(14) lim v = v =0 for >0

The result is otherwise obvious by ingpection of the problem itself., The

boundary conditions require the solut.:on to tend to a constant as  x > ©,

and that constant must be zero If the differential equation is to be satisfied.
1f we consider the limit - v, and in particular focus on the behav-

ior of v for x large and negative, then (13) still governs the bhehavior

of v. The solution to (13) is again a multiple of Ko(t) and in partic-

ular as  x » =», i,e. t = 0, v is appreximated by
2 2
(15) Alisn(u/2)y + v G+Ht7/4+000) + t74 + L0

where v is the Euler constant. The boundarv condition (1b) then shows

that A = 2/4. Hence

(16) v o= (Z/w)!\'o(t)

o w2
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In fact the perturbation satisfies

(22a,b,c) 2y, = expCy )y vy =y )],y = 0(1) as x>+,

a problem which, for large positive x, reduces to

" o G [
23) 2yl =y, + xe(b x)/V2 »oYy T o(l) as x > +=»

1 _ N

- Sy
Vl—(1+u)e—u

The general solution of (23) is

where B=y_t IS[

(24) P + X)e(ﬁ-x)//5+ a2 xIV2

o=
~
517

One would expect that, by choosing y](—m) appropriately, the increasing
exponential could be suppressed, so as to satisfy the boundarv condition

as x » =, However, for general v__ this apparently is not the case, the
only exception being v__ = 1.344.

Since y+m(q) is identically zero for o > 0 1its asymptotic expan-
sion for « > 0 has all zero terms. This behavior is completely analogous
to the model problem given in Sec. 2 [cf. equation (12)] where Y, Was
shown to be exponentially small. Nevertheless, the exponential behavior
of y+m(m) as « - 0 in Linan's problem can be determined by matching.
The result is due to Joulin (1979), although he does not give a-~tails.

For sufficiently large values of x, the term ax 1in equatioun (1)
is not a perturbation, as was supposed above. Accordingly we introduce

the new variable
(25) y = oax - ZTnIHi for ~ < 0

(the constant being needed for balance) and the expansion
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(26) y = gy _(x) + ..

Here g = o(l) 1is a gauge function which is to be determined. The differ-

ential equation (1) then yields
(27 242y Jdy® = Y exp(y)
o' X o *PIX
and, since y > -» as X = o, we must have

(28) Y= 10(/§exp(x/2))

when the constant factor is agbsorbed into g. Thus

(29) y = g(a)IO(t) + .
where
(30) t = V2Zexp(x/2)

is the analog of the variable (7).
Now we match to determine g(a). 1If the first term of the expansion
(29) is written in terms of the variable x and expanded for o + 0, the

leading term is

(31) exp(V2/ v D exp (—x/v2)

glal "

2
23/4“1/h
Likewise, if Yy [given implicitly by the result (21)] is writtern in terms

of x and expanded for o -~ 0, the leading term is
(32) exp(F-x)/V2

(when written in terms of x  again). These expressions are identical if
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'y .
eﬁ/ﬁ 23/4771/2

B B -2
(33) gla) =y = '1/2 eXp(T;T)

oo la

V. PROPERTIES FOR o < O.

Linan found numerically that no solution exists for o < -1/2 but
did not give a proof. Ludford, Yannitell & Buckmaster (1976) were appar-
ently the first to supply one, at least for a > -1; the argument goes
as follows.

Let o lie in the range (-1,0) and supporse that a solution exists.
Then multiplving (la) by « - y' and integrating by parts twice, using

the boundary conditions, gives

(34) 20 + 1= (yrD)e® YT 7 o Yy

which, under the hypothesis and boundarv conditions,becomes
(35) 2a + 1 = ~af ™ Vax

For o < -1/2 there is a contradiction (in sign for ~ < -1/2) and hence
the assumption that a solution exists cannot be correct.
We mav expect singular behavior of v for [2a+1] = ¢ << 1 and

e

Linan has given the analvsis., TFirst assume that >> 1 (it will turn

1 (
V4!

-1
out to be 0(¢ 1)), and consider the shift of origin
(36) x = x+Flv, ),
where F  is to be determined. The expansion
YA v=y, + v, + o(1)

then leads to the balanced equation
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2 2
(38) 2d%v /dy" = exp(-x/2-y )

if we make the choice

. C "
(39) F 20y, ,nv+m)
Setting 7 = v, ¥ x/2 now gives the differential equation
2
(40) 2d7a/dy = (,‘Xp(‘-ﬂ,)

subject to the boundary conditions

(41a,b) do/dy = =1/2 + o(1) as x » =« , do/dyx = 1/2 + o(1) as y » +=
The solution is

(42) q = ZQn[Zcosh(:;—xoy/Q)]

Expanding for « > -» shows that v behaves like

(43) v, ty =-x+y

+oo o 4 F+o() ,

so that matching with the boundarv condition (1b) requires

4 =
(44) y Yy + ZRny+m + 0(1)

-—C B Al

Expanding for , = « shows that

(45) v - v, + 001

Fquation (42) le~ds to a uniformlv valid approximation for v(x).

To complete the analvsis we need onlv determine Vi, 9sa function

of . This is done simply from the formula (35) by using the approxima-

tion in the integral; we find Vel T 1/,




VI. OIHER PROBLEMS.

One of the first (and few) questions treated analr:ically before the
advent of activation-energy asvmptotics was the diffusion flame of Burke
& Schumann (1928). While it is unnecessary to discuss the structure of
the flame sheet to obtain the main results, there is alwavs the possibil-
ity that one may not exist (which would vitiate the whole disucssion),

The differential c¢quation is
(<6) g =X -y
and the boundary conditions are
(47 y = ‘x + o(l) as x - =

One would expect the weaker boundary conditions

(48) v' = 1 + o(1l) as x + +=

to be sufficient to determined the solution, supposing it exists. 1f so,
does that solution satisfy the stronger conditions? Again one would expoect
so: the only linear functions that satisfyv the differential equation are
y = *%x. We are left with the questions of existence and uniqueness.

Numerics leave little doubt about existence. The computation is start-

n

ed at x = X where X is large, with v = X, T and v’ 1. The

small positive number + is then adjusted until y' = -1 at x

"

+x .
O
Moreover, linearization of the differential equation makes plausible that
there is a family of solutions having the asvmptote Vv = x; presumably

one of them (at least) satisfies the right boundary condition. Uniqueness

is in doubt, however; since the Conference, Professor Alexander has appar-

eatlv found a second numerical solution.




Another problem concerns the response of a steadv combustion process,
which is often the only feature of interest. One parameter (e.g. burning
rate) is determined as a function of another (e.g. pressure). Such a re-
sponse can sometimes be multivalued and, to decide which of the possibil-
ities occurs in practice, the stability of the steady states is «ften in-
voked.

One of the first analytical discussions of such stabilityv has recent-
ly been made by Matalon & Ludford (1980), in the context of a chambered
diffusion flame. The steady states yg(x) near the so-called ignition
point are solutions of the differential problem

" Y y
(49a,b,c) SR S Qe_x(l-e_x)e S-0 yS(O) = ys(m) =0 .
Here Q 1is a positive parameter and the problem is found (numerically)
to have two solutions for O le¢ss than some value QO, one for 0O = Qu
and none for 0O > QO.

While a proof of these results is of interest in itself (and would
be a necessary preliminary) the more important question concerns the dif-

ferential problem

_ Y.
e ®1

(50a,b,c) v+ v+ [+ Qe F(l-e v=0 . v (0) =y (=) =0

governing the stability., For each Q <« QO and each of the two steadv states

vg(x) associated with that @, we wish to know whether there is a nega-
tive eigenvalue ) (implying instability). Using a Galerkin method is
open to question because the spectrum is known to be complex; and a major

step was to show that the portion of the spectrum with negative real part

was in fact real, so validating the method. Numericallv it was found that




one of the steadv states, for ecac™ O < Q0 , is stable while tne other is
Q

unstable.

The roblem obtained on replacing the boundary condition (50c) by
2
52 “(x TS
) Y (x)dx

has been investigated mathematically (Coddington & Levinson, 1955), although
the tvpe of information we scek does not seem to be available. The +igen-
value problem (51) has apparentlv not been treated; and ones of similar

form wili undoubtedlv arise as the stability of combustion processes 1is

pursued further. [Cf. Taliaferro, Buckmaster & Nachman (1981) ]
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POSTECRTVT,

Professor Lih4rn has roecently zent us follow. .. analy~iral determin-
ation of the constant ¥ in Jec. TV.
-—00

The equation

1 1 1 " ] t 1
(vov \ = (ynyl\ + _v:ym‘/h

is easily seen to be a consequsnre of eaunations (10) and {22a); the bounnary

conditions (1b,c) and (0%b,c) tnerefore imr

[

[P xyy =10,

- YOV O

a rectricotion <n v Sor there to Lo a solution of the vroblem (02).  Tow
0
v Aepewis on wv_ o, oo that this restrietion is actually san eauation o

To obtain its coluticn canmliioitly, Lo Tinc
v L 3 - ' 1
x @ x
-0 QY C v -0 —on o] )
N Vo, '
= - =Y + - f (" +1 ) iv
R 0o o
(cans:1lins *armc have boen adéed o rnoure finitenosc).  Hers e eXPOLOY -

tial smallness ¢f the integral in the colution (1) a* % = -~ ani o7 v

toodif at x = +»  have becon uced.  Jetting the last exrres: oy eaual

LW

v_o= [T - STy ey YAy

Jmerical quadrature shows that the irterral o 1,30 in aercoment with
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NOTE ON THE STABILITY OF STOCHASTIC
*
REACTION-DIFFUSION EQUATIONS

P. L. Chow
Department of Mathematics, Wayne State University
Detroit, Michigan 48202

ABSTRACT. We consider a class of initial-boundary value problews for
reaction-diffusion equations, subject to random: parametric excitations.
1f the unperturbed system is assumed to be stable in the sense of
Liapunov, the effects of random perturbation on the stability of such
systew 1s examined. By the theory of random evolution equations, the
stochastic stability of equilibrium solution will be discusscd. The
stability criteria are based on the construction o appropriate Liapunov

functionals. The theory will be applied to several concrete examples.

I. INTRODUCTION, In a recent paper [1], we introduced a Liapunov method
for studving the stability of nonlinear stochastic evolution equations.
It was pointed out that the method is applicable to reaction-diffusion
systems under random perturbation. Here we shall briefly review the
general stability theory for stochastic cquations, and then apply it to

several randemly perturbed reaction-dififusion equations arising .rom

21

chemical reaction and biological system, taken from our papers [1] and [2).

L no. )
Let D be a domain in R for n=2 or 3, with a smooth boundary

3D . Dbenote the concentration of i-th chemical or biological species at

H

the instant t and the position x € D, by ui(t,x) , 1=1,2,...,

*
The work was supported by the ARO Grant DAAG-78-G-0042.
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Consider the specific reaction-diffusion system with a random drift

velocity as follows

du cu

i ; } oYy
S T vy By T NGuupeeu) - ZE (W= dn D
. j=1 J
ui(O,x) = fi(x) , (1)
BUi
a. S;— + biuil =0
i 3D

where v.'s are the diffusion coefficients; Ni's the reaction functions;
i

€.'s the random (turbulent) velocity components, and fi's are given
functions.
We shall try to answer the following question: Suppose that ui=;3 (%)

is a stable equilibrium solution of the system (1) when §j = 0 . What is

the effect of the random perturbation gj on the stability of U, 2
i

11. LIAPUNOV's STABILITY CRITERIA, Let the unperturbed system have a

solution belonging to a subspace X of the Hilbert space H of square-integral,
m-vector valued functions on D . Suppose that #(u) is a smooth functional

on H with locally bounded (Frechet) derivatives &'(u), &“(u) among, other
properties (see [1]). If g = (gl,gz,...,ﬁn) is a H-valued white noise

Q(t,x) with a covariance operator Q on H , then we defing, for v € X
VoY 4 L " *
26 (v) = (AW, (V) + 5 Trace{d" (MB(MVIB (V) (2)

= 4 di T
where A(V) - H‘dlag(vlvlr"-’vmvm) + (NI(V),-.-,Nm(V)) >

av (3)
_ -imXn
B(V) - (ax ) »
3
: *
and (.,+) means the pairing between X and its dual X . A functional
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b4 on H is said to be a Liapunov runctional for the system (1) if L(v)

is positive-definite and
£ é(v) <0, for all v in X . (&)

The following stability criteria will be useful, and the proof ca.. be

found in {1]:

Stability Theorem: Suppose that u % 0 is an cquilibrium solution of the

reaction-diffusion system (l)., (i) 1f there exists a Liapunov functional
b satisfying the property (4), the null solution is (almost surely) a.s.

stable, that is, for every initial state wu(o,x) in H ,

prob.{sup lu(t,.) <=} =1
t>0

(ii) 1f, in addition, & satisfies lim &(u) = ® and
Hy' o
b ,

2 $(v) s k é(v) for 2ll v 1in X and some k > 0

>

then the null solution of (1) is a.s. asymptolically stable,

.>rob.‘::,up 'U L, R U‘; =]
' £>0 ( o ’
Here . denotes the H-norm:
- L2 N 2
v(x) = ‘v(x)\ dx . (5)
D

III. STABTLITY OF REACIION-DIFFUSION EQUATIONS, We shall apply the stability

theorem stated above to threec specitic problems as illustrative examples,

though they are ot independent interest,
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(Example 1), Consider the scalar random diffusion problem arising from

population biology (2] in R3:

3u(t,x) _ _ u - . t,x)éai , X in D,
ot viau @ 1+‘9i jéa gJ( cxj
u(o,x) = u_(x) , (6)

u(t,x)‘ =0 .
3

D
In this case, we have A(V) = v AV - @ , and B(V) = (éﬁl, £§L1 j?L ..
1+ v] 1 ¥ 9%
= Hyn2
Let $(v) = l|vii” . Then by (2),
2 v2 X
£ dw) = =2 {vlove ] +
D +|v(x) |
L3 )
-2 Y q. L (x,%) av () Qliil]dx ,
2 21 i X 3xX,
s ]
where qij(x,y) are the kernel for the covariance operator Q of the
random functions gi(t,x) . Let qij be bounded continuous for x,y in D ,
with
q_ = sup q. . (x,¥)] . (8)
° Isi,j<3 | 1] |
x,yY€D
Then, from (7), we have
2 2 .
£ &(v) < —ZI {(v - qo/Z)]Vv(x)\ + v (x))dx
D
(9
£ 2200 (v - 9 /D) +al $(v)
where
V]m';lz
A, = \1}{& TT . (10)

Thus, by the stability thcorem (ii), we have
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lim f 1u<L,x);2dx =0
- D

with probability one, if )\O(v -q0/2) +ao >0 .

(Example 2). 1In this case, we assume that the system (1) is lincar, that
is, the reaction function N(u) = u , where T 1is a constant mXxm= matrix:

]mxm (11)

r,.

13
. . . 2 .

Let X  be the solution space in L7(D) with

ot = 7 {]v(x)\z + lvV(x)]z}dx . (12)
X “b

Again the obvious choice for the Liapunov functional is @(v) = Hv“ . It is

not difficult to compute

I 2 3]
_ _o7 :.\;1 - ) _ b
2 b(v) = oA 1L vilev ool IR ACOMIS
. g‘ éé Bvi(x) v (x)
I q, (X, x)——— - Tdx
24,51 ka1 % (13)

< =2{x (v - /2y -~ r v

Ay vg = a,/2) =1 1 4w,

where 3, q, are defined as before, v = min .} , and is the largest
o 0 1<ism °

cigenvalue of 7 . according to the Stubility Theorem (i1), the null solution

of the linearized equation (1) is asymptotically stable almost surely,

provided that

lo(vo -qo/z) = ro

(Example 3). The following reaction-diffusion system occurs in the problen

of two coupeting species (6]:




=t =V A uy - (l-!-ul)u2 - (E-V)u1 ,

du

St = v, A u, + (1_+u2)u1 - (E-v)u2 , in D, (14)
aui

—= =0, i=1,2

3n IBD

Without the random drift, the unperturbed system was treated in {3}. Note

that

E(VI’VZ) = (vl-+v2) - zn(lﬁ-vl)(lﬁ-vz) (15)

is a first integral for the reduced ordinary different equation for (l4)

with v, =v,=0 and £=0 . Introduce the functional é defined by

b(u) =

T Efu(t,x)]dx (16)
D

where u(t,x) 1is a solution of the system (14). By a direct compu‘.:.ion,

invoking (15) and the divergence theorem, we have

£ #(u) = -fD{ ;él ji% vi<§;%)2(ljﬁi)2
-3 iil k’%zl G %) :Ui z_:f (l+lui)(1+1uj)}dx (11
Then  d(u) becomes a Liapunov functional if
waere v T min(vl,ui) . Thus, in view of the Stability Theorem (i), the

wabl owedution of the system (14) is stable almest surely it (173 holde, but
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need not be asymptotically stable.

(Example 4). As a last example, we consider the stability of the nonlincvar

diftusion equations:

3u

duy ‘ i e

ST oY Aup - oau + bf(u,) -9y,

au2

<o T vy bu, teu - df(u) - (Er9)u, . in D, (18)
du;

~..I = 0 R

dn aD

where a,b,c,d are positive constants, and f 2 0 with £(0) = 0 and
Ji'(s)! €M for =< s <=
The associated ordinary differential equations form a Lure's system

{4] in the feed-back control theory. A Liapunov function for such a system is

1 22 . .
E(v) = STV + }(vz) (19)
v I TR
with F( ) = | 2 f(s)ds and 1 = :‘ﬂ——‘gid b | ad > be
2 ‘o
Let
¢(u) = f Efu(t,»x)]dx . (20)
D
Then
2 2 1 2
£ bu) = -VD (o e 15 4 v 0 )y Lo, |
3 Aau, 2u du,_ 2u
1 s 211 ' 2 _ 2 .
T2 k,%:l G 02015 X 0%, R 1}ax (21)
N 1 2 2
£ -0 (v, -5 air lvull + Mlvu2l Jdx .




[a—y f‘_’_'-—.v-,-q-..—- -

—~ emae—— ar 7

‘.
!

Thus we have an almost surely stable null solution if v > %

o q, » by the

Stability Theorem (i). For details, see {2].
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DIFFFRFNTTATION OF TABULAR DATA

éeslovas Masaitis and George C. Franczis
Ballistic Modeling Division
US Army Ballistic Research laboratory/APRADCOM
Aberdeen Proving Ground, MD 21N05

ARSTRACT. A method based on an autoregressive model is derived for
estimating the derivative of a function from its values at discrere
points. The method Is applied to svnthetic data and compares favorably
with moving polvnomial arc, Rutterworth filter, and B-spline smoothing.

I. TINTRODU'CTION. Various methods for numerical differentiation
have been considered. Some of these simply differentiate polynomial
interpolation formulasl, while others use least squares fits of the
data hy trigonometric2 or algebraic3 polvnomials. Still others use
polvnomial splines.é This last method imposes certain smoothness
conditions on the fitted functions. Similar conditions are introduced
by applying Tikhonov s> regularization procedure.

Since a derivative, i.e., the limit of & ratio cannot be obtained
from a finite set of tabular data, the data must bhe supplemented hy
suftable assumptions. The most common assumption {s that tabular data
are approximate values of a certain function which can he identified by
the data and subsequently differentiated. For instance, the moving
polvnomial arc method assumes that data can bhe adequatelv represented hyv
a polwnomial, at least locallv. Spline smoothing and Tikhonov’s
regularization procedure suppose that data are numerical values of an
element in a Sobolev space. This paper assumes that tabular data are
measured values of a function whose derivative can be represcented bv a
linear comhination of successive functional values, i.e., v’ (t) is an
{inner product (a(P),Y) of a constant vector a(P) dependent on
an fnteger p and the vector T = (v{t+p2), v{(t+(p+1D2),..., v(t+(p+k) ),
for several choices of the inteper p and a positive integer k dependent
on the case at hand. As is shown helow this assumption implies that the
underlying function {s an element of the algehra A generated hy
algebratic, trigonometric, and exponential nolynomials of a real variable.
An appropriate element fs selected hv ohservineg that viA satisfies a
certain familv of linear difference equations with constant coefficients

dependent on sten size. Thus, an apnroximatine function is citained by
an autorepressive

constructing an appropriate difference equation, i.e.,
model. A certain crst functional of an approximating element is acfined.
Minimization of this functional vields the order of the autoregressive
model, the optimal multiple nf the data spacing as a step size, and an
estimate of the variance of the measuring error. This estimate {s
obtained by assuming that measurine error is white noise with zero mean.




‘

The coefficients of the autoregressive model determine the analytic
structure of the approximating function, and this in turn determines

(p)

weighting coefficients a in the representation of the derivative:

(1.1) v (o) = @P) Ly,

I1I. FUNCTIONS WITH DERIVATIVES AS LINEAR COMBINATIONS OF
FUNCTIONAL VALUES. The basic assumption of this paper is that the
derivative of a tabular function is a linear combination of the func-
tional values. A procedure for identifying such a function aprropriate
to the tabular data is obtained by observing ihat the function satisfies
a certain difference equation. This follows from the following two
propositions.

Proposition 1. Let X be the set of functions differentiable on the
inverval I = [0,T] such that for every integer p satisfying

-t+kASpAST-t+A  there exists a constant vector a(p) of dimension k
dependent on y (t) and the relation

2.1 y'(© = Py
is satisfied for every t ¢ I. Here Y = (y(t+(p-1)a), y{t+(p-2)&),...,
y(t+(p-k)4)). Let A be the algebra generated by algebraic, trigonometric,
and exponential polynomials on I. Then A = X .

Proof. First we show that A C A. Let the components of a(p) be
ai(p), i=1,2,...,k. Let p = k+s+1, j = k+s+1-i, and

. _ (k+s+1) , ]
a(j,s) = a_j+k+s+1 . Then (2.1) can be written as follows:
k:s
(2.2) y'(e) = ,  a(i,s) y(e+ja).
j=s+1

With s = -1 (2.2) Dbecones:

(2.3) y'(t) =

where b§l) = a(j-1, -1).

With the aid of (72.2) and (2.3) it can be shown by induction that

3

2.4) v Doy =

nme~i1x

b§‘“ y{t+(G~1)a]

i=1
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(q)'

and some constants b3

for q <k

q-th row (b£Q), bsq),...,Héq/). If B is non-singul .r then (2.4) implies
<

(2.5) y(t) =

We-1x

[

cjy(j)(t),

(S

where the cas are elements of B"l

then there exist constants dl’d2"

@
7 dab,Y =0, j=1,2,...,k.
1 4

(2.6)

it [~1x°
[»9)
~
0
~

q

i.e., y(t)ax satisfies either (2.5) or (2.6) and hence X C A.

A
The inverse inclusion, A C A foliows from a formal substitution of

y(t)eA, i.e., of

n,
m J
(2.7) y() = . T c..tt
j=1 i=0 J?
with
m
(2.8) 7 (04l =k
=1

into (2.2).
equations is obtained:

(2.9) Lb = .A.,
1-i

(log Kj), L= (1

where AT =

) i s+1 i s+2
Soos (s ST (st
1} ¢ ) J ) ]

i=1,2,...,m, and bT =

inclusion A C A is established by showing that there exists a constant
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1

,...,(s+k).l \?

(a(s+l,s), a(s+2,s),..

Hence it follows from (2.4)

+k

.ya(s+k,s)).

that

), 1=0,1,2,...

Let B be the kxk matrix witn the

If the rank of B is less thar k,

"’dk’ not all zero, such that

By equating the coefficients of the similar terms on both
sides of (2.2) after substitution of (2.7) the following system of

Thus,




vector b satisfying (2.9). This 1is implied by the fact that

(2.10) det L # 0.

The relation (2.10) follows from

n (s+1)(n,+1) m m 1,
(2.11) det L= T 1, S TR xjj .
=1 i=1 §=1
m  j-1 (ni+l)(nj+1)
it n (Xj-ki)
j=2 1=1

o n
Here n!! = i1;.._]-’ and n: = 7 i. The identity (2.11) can be established
- i=]

with the aid of the operator T(m) defined as follows, Let

2

(0) = () =11 £¢,
phg 0 T O =0, T £6y) =Ty L(Ji)!ui, \

J ’

o 2y (1-m,_;-1)
(n;+1); then T(m) = 1 1 1, 3 O

i
1 j=1 1=mj_l—l
s+1 s+2 s+K

Let L* be the x x k determinant with the i-th row (ui s My wesesby Y.

and m, =

3 i )

1

3

Then
k k u=-1
+
(2.12) L= 1 ow,® L1 (=) -
i=1 u=2 v=1

It can be shown by induction on m that application of the operator T(m)
to both sides of (2.12) vields (2.11). This completes the descripticn
of a method for proving the proposition.

An algorithm for determining the structure of an approxima*ing
function can be derived from

Proposition 2. Let y(ticA, i.e., y(t) is given by (2.7). Let
+1

m n,
A > 0, PA O = 1 (k—A?) J and BA be the operator defined by
j=1

B,y(t) = y(t-4). Then v(t) satistfies the difference equation




(2.13) P,(B,) v(c) = 0.
Proof. The relation (2.7) can be written in the form
o, . t
m c o
(2.14) v(t) = | . C'.i = o) ,
j=1 i=0 It~ J
where C}i = Cji =t Now (2..3) tollows from the properties of linear

difference equations with constant coefficients.

I1I1I. STRUCTURE OF AN APPROXTMATING FUNCTION. The preceding results
show that a function with derivative expressible =5 a linear combination
of functional values satisfies the differen.¢ equation (2.13). Thus, it
is representable vy an .utoregressive model. Parameters o: such a model

can be determined by a procedure developed for time series analysis6,
provided that the time series or its differences of order, say, d are
stationary. This assumption need not nold for tabular data that must

be differentiated. For instance, if the underlving function is exponential,
the differences of anv order are also exponential and hence non-stationary.

An example of this tvpe of Jdata being differentia(ed7 is pharmacokinetic
dat1 representing the concentration of an injected drug as a function o:
time after injection. In view of this, instead of attempting to deter-
mine the order of differences that may produce stationarv series and at
the same time considering possible periodicity ("seasonal' variation) a
direct method for estimating “he coerfivients of the autoregressive
model is adopted as described below.

Let x(n), n=1,2,...,N bhe the tabular data and let x(a,p,q) = x(;-+qn)

where q is a positive integer and p=0,1,2,..., gq-1, n=1,2,...,Np. Here
Np = [(N-p)/q)}. Let v(t)eA be an approximating function of the data,

i.e.,

(3-1) X(n,Poq) = y(l‘..l‘) + :I"

where r = p+qn and . is an observation error assumed to be weakly

stationary white noise with zero mean and variance .  The uanction
y(t) satisfies (2.13) for a suitable polvnomial P, say, otf degree k
since y(t)<A. We write this cquation as follows

K
(3.2) y(r2) = U a, v[(r-ig)al,
j=1

where the aj's remain to be determined. By substituting (3.1) in (3.2)
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we get:

N~

(3.3) x(n,p,q) -¢_ =

a, [x(n-j,p,q)-- __.1-
]

. i

By transposing the terms in (3.3) and squaring both sides we get:

k 2
(3.4) x(n,p,q) - } a, x(n-j,p,q)}] =
2y 3
]
k
53 + 7 a? ei_ + Pr s

where Pr is a linear combination of products €,€u with u # v. Since by
assumption €, is white noise, we have E(Pr) = 0. Thus, by taking

expected values of both sides of (3.4) we get:

Wr~1&"

2 k )
aj x(n-j,p,q) = o242 B aj.

(3'5) E [X(U,P,Q) -
3

1

1]
—

bl

We replace the expected value of the left hand side by its estimate
(average) and get:

1 q;l Np k 2 k "
(3.6) T 1 1 x(n,p,q)~ * a; x(a-3,p,0)| = 02402 T at,
N p=0 n=k+l j=1 j=1 3
a7l
where N = ) (N -k).
p=0 P

Thus, we get from (3.6):

1 q;l P k 2
-y x(n,p,q) - ) a, x(n-j,p,q)
N p=0 n=k+l j=1 3
(3.7) o? =
kKo
1+ Z ay
j=1

If M is the matrix of the normal equations of the overdetermined system
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(3.8)

k

1

ﬂj X(n—j»P,q) = X(“’P»Q),

n=k+1,...,Np, p+0,1,...,q-1. and X is the right-hand side of these
normal equations, then the cocfficients aj that minimize c¢- in (3.6)

satisfy the following:
(3.9) M -N=% 1) a=X,

T
where a = (al,az,...,ak)-

1)
) j
with initial value - =0 in (3.9).

Thus, estimates of the a,'s are obtained by iterating (3.7) and (3.9)

In order to conmpute aj's by this procedure we have to choose k and

q in (3.7) and (3.8). Obviously, a larger number of model parameters,
i.e., larger k, vields a model better matching the data. A smaller
value of q describes the Jata structure in a greater detail. However,
increasing k as well as reducing q makes the system (3.9) ill-conditioned.
Hence the value of k and the data spacing q) must be chosen to minimize
2 in (3.7) and at the same time to prevent the matrix in (3.9) from
becoming nearlv singular. Thus, we have two conflicting criteria for
selecting* the optimal pair (k,q). As usual a measure of optimalitv
must be chosen heuristically. Our choice is an index
. Vi

(3.10) Jk,q) = > (k,q)/[Dk,q)]
where D(k,q) is the absolute value of the determinant of the last
iteration of (3.9) corresponding to the chvice of k and q. Thus, we
compute the aj's and J(k,q) for k=l,2....,ko and q=1,2,...,qo and

select the pair (k,q) and the corresponding a,'s that ainimize J(k,q).

-

We impose an additional constraint on (k,q) in order to prevent a choice
of a model for which the data are inadequate, i.e., a model ‘hat contains
terms of higher frequency than can be determined by the frequency of the

data points. Thus, if Yo is the maximum frequencv of the selected model

0

This is similar ro the solution of the numerical differentiation problem
bv regularization where increasing the regularization parameter reduces
ill-conditioning of the problem and decreasing the parameter vields a
better fit of the data.
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then we must at least have

~
1

(3.11) q PR

L"y

=]

Suppose further that for some q the coefficients, ai's, in (3.2) yield

a real negative eigenvalue, say, kj < 0. Then *he term Cjo in (2.7)

N .on . . X
is equal to Cjo Aj: cos n = for every n. The frequency of thi: term is

m radians per q& sec or 7/q) radians per sec, i.e., we have we = =/ql,

contrary to requirement (3,11).

If for some k and q the equation (3.2 has an eigenvalue with a
negative real part, say, Xj = -a + ib (a > 0), then the corresponding

term c.ox“ in (2.1) is expressible as cjo exp (:n+iun) where

cos w = -a/va’+ b2, i.e., w > % if expressed in radians per unit time
equal qA sec. Therefore this choice of q vields a spacing q. with less
than four data points per period of the corresponding term in (Z.7).
Although theoretically two points per period may be adequate to deter-
mine the real and imaginary parts of the corresponding eigenvalue, even
three points per period are inadequate when the data contain measuring
errors., Furthermore, a negative real part only implies thal the corre-
sponding frequencv is greater than /2 per unit time. It may also be
greater than ' and less than 3-/2, in which case the spacing q& provides
less than two points per period. This is the reason whv the pairs
(k,q) leading to complex roots with negative rcal part are rejectad.

In summary, the models (3.2) are determined for q=l,l,...,qo,
k=l,2,...,ko and among those with eigenvalues having non-negative reai
components that one which vields minimum J(k,q) in (3.10) is selected.

When the data is very noisy this selection of § mayv ilecad to a
rather large step-size q' and, thus, mav eliminate high i{r.-quency terms
present in the data even if the original spacing % is adeg.ate Lo

r
present this high frequency. This mav happen when the amplitudes o1
high frequency terms are too small relative to the measuring ervor

o-

.
to be determined by the data taken at any spacing . The precedure
described above is intended to determine only the terms of (2.7) for
which both the spacing and also the accuracy of the data are adequate,
and the selected index J(k,q) is satisfactorv in applications.



IV. WELGHTING FACTORS FOR DIRIV:
coefficients determined as described ubove the weighting fuctors b, in

With the autorvaression

(2.3) for the first derivative can be obrained by .olving the equaticon
(2.9). Similar svstems of equations define che wel, iting ractors for
higher order derivatives as in (2.4). The system :2.9) and its equiva-
lent for higher derivatives are completely defined bv the eigenvalues,
xjs, of the autoregressive model.

It is very seldom that an autoregressive model obtained Ir m

experimental data vields multiple eigenvalues. Thus, the case o: simyle
eigenvalues is of special interest. In this case the equations de’ining
Al

weighting factors can be solved in a closed form by applyinyg Cramer's
rule since the corresponding determinants can be expressed in ratner
simple form. Indeced, when the roots are simple the determinant of L is
proportional to the Vandermondian orf the eipcnvalues

. \
* "o n Ay e
N 1.‘ 2’ y k

. : . () o . .
The numerator in an expression for, say, b,  "(s), the j~th weighting

factor for the r-th derivative, is the k x k determinant Bj 'ith the

. s+l s+l Csti-1 r . L st+i+l L s+k
i-th row equal (Ai s A] Theens Ay 77, log FERR seeeaty ).

It can be shown that the minor of the (n+l) x (n+l) Vandermondian

of X., X,,..., X corresponding to the (i+1)-th element of the first
0 1 n t ’

row is equal to Sn .V, where Sn ; is the svmmetric f{uncticn oI x,,

~j - 1

b SN xn of order n-j and V is the Vandermondian of the same variables.

Therefore expanding Bj with respect to its j-th column vields

P, T. 5+1 0 -s-1 . (p) (p)
- 1 T .\ . S ‘ 7 .
(-1)"1og % P k-3+s Vim1

4.1) B, = (-1)378
: b

[}

Wi -1x

S(p)

where kej+s is the symmetric function of order x-,+s of the variables

R ("M
) \ ‘ ‘
Y g Aplye Mgt MV

is the Vandermooundian of the samc

variables.

The symmetric runctions in (4.1) can he c¢xpressed in terms of the
coefficients of the characteristic cquation of the sgutorecressive model.
After this, dividing each term ot (4.1) by det L and cancelling comnmon
(p)

factors (i.e., \k—l

and others) the following cvxpression for the

weighting factor b?r)(s) is obtained:




4

b;r)(s) = - =

This together
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The methods used are listed at the top of 7
polvnomial arc corresponds to a cubic poluvnomizl
17 data points as indicated. The derivatives were oraliaated at the
midpoint of this span. Thus, derivatives at a few points at tne beg
ning and the end of the data sequence are not available.

2 o ~ ERD
o HeTe mnving

.o : v Y
Ol Thiel g

-

The Butterworth filter applied here cor-esponds to the transfer

. 8 3,,. 2 2 3 - -
function /(s +27s +2-"s+n"). This method does not provide first

derivatives at 65 data points at the end of the data sequence . un

4 = .01 and at 163 data points when & = .004. Additional points uire
lost when higher derivatives are calculated.

The method of this report provides derivatives at everw data po
with appropriate values of s in (2.2) and in the correspondine expre
sions for higher derivatives. The bulk of (he derivatives are comou

K1

at the midpoint of the span or formula (2.2), i.e., 7or s = - { -
Table 2 lists the RMSE of the first and sccond derivatives ' a
x"" expressed in percentaze of the RMS of the derivatives ohcained 5v
the analvtic method. The errors correspond to the dita described in
Table 1 as indicated by the case numbers in column o o7 Table 2. A-
seen the current method {s much more accua
the Bessel function wivre Butterworth tilter vields beétter results.

rate in all these ~ases exds
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§ COMPUTER AIDED ANALYSIS Of MECHARICAL SYSTEMS
WITH INTERMITTENT MOTION:=

Edward J. Haug and Roger A. Wehage
Materials Division
College of Engineering
The University of Jowa
Iowa City, lowa 52242

ABSTRACT. A general method is presented for dynamic analysis of
systems with impulusive forces, impact, discontinuous constraints, and
discontinuous velocities. This class of systems includes discontinuous
kinematic and geometric constraints that _haracterize backlash and impact
within systems. A method of computer generation of the equations of
motion and impulse-momentum relations that define jump discontinuities
in system velocity for large scale systems is presented. An event
predictor working in conjunction with a new numerical integration al-
gorithm efficiently controls its progress and allows for automatic
equation reformulation. A weapon mechanism and a trip plow are simu-
lated using the method to illustrate its capabilities.

1. INTRODUCTION. Dynamic analysis of mechanisms and machines
that undergo impulsive loading, impact, and cammed locking of parts is
a field that has seen only moderate development. In spite of the
technical difficulty of analysis of such systems and their inherently
discontinuous behavior, such systems are commonly encountered in manu-
facturing equipment and in weapon mechanisms and must be carefully
analyzed during the design process. The purpose of this paper is to
present a computer aided analysis method that is capable of analyzing
complex mechanisms and machines that undergo intermittent motion.

s

Previcusly used methods of intermittent motion analysis have gen-
erally used pieced interval analysis, in which the analysist writes
the equations of motion between times at which discontinuous events
occur [1]. Momemtum balance equations must be written to account for
velocity discontinuities that may occur in a specific system configura-
tion. Numerical integration is halted at the point of discontinuity,
new initial conditions on velocity are formulated and in*egration is
continued. A basic limitation of this method of analysis is the effort
required to write systel equations that are valid in intervals between
events whose ordering s not generally known before the analysis is
begqun. Thus, the analyst is required to write equations and computer
code for all ordering of logical events that may conceivably occur.

One method that has been used to alleviate the foregoing diffi-
culty is to use Heaviside step functions that define logic associated

*Research supported by U.S. Army Research Office, Project No.
DAAG29-79-C-0221.
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with the events occurring during intermittent moti.n. These disconti-
nuous functions may then be smoothed to provide a set of governing
differential equations of motion [2]. This procedure can be justified
on the basis of distribution theory [3,4] and has been successfully
employed in weapon mechanism dynamics [5]. The distribution theoretic
method has been used in conjunction with a computer code that auto-
matically generates the system equations of motion [6] by defining
“logical spring-dampers" that account for certain aspects of inter-
mittent motion [7]. In this paper, the method of computer generated
equations of motion is employed with the pieced interval analysis method
to treat dynamics of quite general planar systems that undergo inter-
mittent motion.

IT. EQUATIONS OF CONSTRAINED PLANAR MOTION. For planar mechanical
systems treated here, constraints between elements are taken as friction
free (workless) translational and rotational joints. Extensions to
include constraints such as cams and prescribed functional relations
are possible by incorporating provisions for nonstandard elements that
are supplied by the user. In addition to standard constraints, standard
spring-damper-actuator combinations connecting any pair of points on
different bodies of the system are included in the model. Allowance is
also made for arbitrary user supplied external forcing functions.

In order to determine the configuration or state of a planar
mechanical system, it is first necessary to define generalized coor-
dinates that specify the location of each body. As shown in Fig. 1,
let the x-y coordinate system be a fixed inertial reference frame.
Define a centroidal body-fixed coordinate system £; - n; embedded in a
typical body i. The location of body i is specified by the global coor-
dinates (xj,y;) of the origin or vector R; and the angle ¢ of rotation
of the body fixed coordinate system relative to the global coordinates.
In terms of these generalized coordinates, the kinetic energy of the

body is
i 1 2

1 <2 4
T = E'mi(xi + yi) +5 0. (1)

where m; is the mass of the jth body and J; is its centroidal polar
moment of inertia.

Figure 1 further depicts an adjacent body j, with body-fixea
coordinate system located by the vector R;. Let arb1trary points Pij
on body i and p;; on body j be located by vectors r1 and v jis respec-
tively. These p01nts are in turn connected by a vector r s

ﬁ + r - ﬁ J1 (2)

Ihe v%ctor condition for a rotational joint at points Pij and p;; is
yielding the following pair of scalar constraint equatigns
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Figure 1. Body Coordinate and Revolute Joint Definition.

91




X3 + iij cos ¢; - ") sin ¢1

- xj - gji cos ¢j + 05 sin ¢j =0 (3)
¥i * gij sin ¢; + "ij cos ¢,

- Y. ~ £,; sin éj - n.; COS ¢j =0

J J1 ji

For a translational joint shown in F1g 2, let points pjj and p: 2
on body i, and points Pj1 and p:, on body j 11e on some line parallel
to the path of relat1ve mot1on ggtween the two bodies, such that Si and

. are of nonzero magnitude. Since Sj and 3. are parallel, xS; = 0,
with zero z component yielding the scalar equation

[(512 - 511) cos ¢1 - (niz = ni]) sin ¢i]
iy = & i .+ cp = M .
[(e5p = £57) sin o5 * (njp - njy) cos o]

-[le., - ¢, . = (N.p = n. i
[‘532 '31) cos ¢, (ng nJ]) sin ¢J]

[(512 - €i1) sin ¢i + (niz ni]) cos ¢iJ =0 (4)

Likewise, Fj; and S; are parallel so = 0 yields a zero z

component and the second scalar equat18n

L+ £, . = . i .= X, - E. .+ . in ¢.]
[x] £41 €08 o5 - nyp Sin 6p - X 57 €OS 9y + nyq sin ¢l

N i .+ cn = M. .
[(£32 QJ]) sin ¢J (nJZ nJ]) cos QJ]

- [yi +Egy ST op #ngy €OS ¢y - g - G5y ST op - nyy cos o: ]

31 J1 J
[(gjz - £47) cos $5 " (n

j 39 = nJ") sin QJ-] =0 (5)

J
The parameters (7j1,n41) and (¢ 12,n12) locate points piy and p;
body i coordinate system, and (E 1,037 ) and (EJZ,ng) Tocate po? nts

31 and p, 52 in body j coordinate sys%em

Since springs, dampers, and actuators generally appear together,
as shown in Fig. 3, they are incorporated into a single set of force
equations. If any are absent, their effect is eliminated by setting
the corresponding terms to zero. The equation for spring-damper force
is
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Figure 2. Translational Joint Definition.
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Figure 3. Spring-Damper-Actuator Definition.
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i ) ; Oy
Fiy * {kij(‘%‘j fo, )t Cyy Byt FoijJ T Rs.. (6)

where ?ij is the resultant force vector [F_ ,F ]T in the spring-damper,
ij ij
. . T .
ﬁsij is the vector [zij COS u, Zij sin o] between points Sij and sji of
a spring-damper connection, kij is an elastic spring coefficient that
may depend on generalized coordinates and time, Cij is a damping

coefficient that may depend on generalized coordinates and time, 24
1]
is the undeformed spring length, Zij is the deformed spring length,
is the time derivative of L5355 and FO is an actuator force applied
1j
along the spring and may depend upon generalized coordinates and time.

R'ij

The virtual work of externally applied forces and spring-damper
forces acting on body i can now be written as

W, = Qxi(q,q,t)sxi + Qyi(q,q,t)Sy,- + Q¢i(q’q’t)6¢i (7)

T T T .
where q = [q] , q2 ,...,qn ]T and q' = [xi,yi,%]T are the total system
and body i generalized coordinate vectors, respectively, and q = %% .
The vector Q; = [Qx ,Qy ,Qﬁ ]T of generalized forces on body i is

i Ji i
vy T

thus defined and Q = [Q ,Q" ,...,G ] 1is the vector of system gener-
alized forces, depending on q and §.

Let the m-vector equation of all kinematic constraints be denoted
simply as

co
~—

¢(q,t) = 0 (

A virtual displacement ¢q of the system is then consistent with
constraints if

6q = 0 (9
¢q q )

3
where ¢ = [~—~] is the Jacobian matrix of the vector constraint function.
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If the constraints are workless, the variatioral torm of Lagrange's
equations of motion is [8]

.
d T _
{EF (Tgd - Tg- @ J 8q = 0 (10)

for all 6q satisfying Eq. 9. By Farkas Lemma [9], there exists a vector
A ¢ R™ of multipliers such that

T

T T -
). Tq -Q+ ¢ ) 0 (11)

d

_d—i- (Ta
which with the constraint equations of Eq. 8 form the constrained equa-
tions of motion of the system. For planar systems treated in this paper,

T

the kinetic enerqgy is T = % q'Ma, where M is a constant diagonal matrix.

Thus Eq. 11 becomes simply

MG - Q + cquA =0 (12)

Initial conditions for system motion are given as

q(0) = q0 A
. .0 (13)
q(0) = q

where q0 an éo are consistent with constraints. That is, q0 satisfies
Eq. 8 and §" satisfies the equation obtained by taking the time
derivative of Eq. 8,

.0 -
Qqq + oy 0 (14)
To define the intermittent nature of the motion of a mechanical
system, a set of event times tj, i =1, ..., k at which some disconti-
nuity in system behavior occurs is defined by equations
2'(t,q(t)) = 0 (15) ;

The ordering of event times is defined by the dynamical system and
forcing functions. The equations of motion are integrated forward in
time and the values of @' are monitored until one of them becomes zero,
defining ty. The process is continued until a second function @l
becomes zero, defining t,. The process continues until the simulation
is completed.

The constraints may be modified at the event times, so the vector
+(q,t) of Eq. 8 may be modified as the motion of the system progresses.
For example, one of the events may be an impact and subsequent locking




together of two of the bodies in the system. Tlus, arter the event
occurs additional constraints are added and the equations of motion

and constraint are modified, with additional components of the multiplier
A introduced.

The foregoing equations of motion and constraints are computer
generated using a computer code, Dynamic Analysis and Design System, DADS
[6] that constructs all of the matrices needed in the simula:zion. This
computer generation of equations is crucial, since the form of equations
between event times is variable and depends on ordering of the event
times. The remaining task in generation of the complete system of
equations is formulation of velocity jump conditions that must hold at
event times involving impulsive loading and impact between bodies in
the system.

3. Reduced Equatiorns of Motion and Momentum-Impulse Relations.
In order to obtain momentum-impulse relations needed for modelling
intermittent motion, it is helpful to eliminate the multiplier x» from
the equations of motion of Eq. 12. To do this, a partitioning of the
generalized coordinates is introduced that defines dependent generalized
coordinates in terms of independent coordinates, through the constraint
equations.

Beginning with the initial value qO of Eq. 13, a Gauss-Jordon

- ob.
reduction of the Jacobian matrix @q z %§-= [aq1 , With double pivoting,
defines a partitioning of q = [uT,vT]T such that ¢, is nonsingular. By
the implicit function theorem [10], the constraint equations of Eq. 8
guarantee existence of a twice continuously differentiable function
f{v,t) such that

u = flv,t) (16)
satisfies

»(flv,t),v,t) = 0 (17)
and

oyt L) (18)

W u v

where the matrix D(v,t) is continuously differentiable.

The matrix v, is numerically decomposed into lTower and upper tri-
angular matrices L and U such that

o= Lo« Ul
u
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Forward elimination and back substitution steps rej.ace tre less
efficient matrix inversion process. For example Eq. 18 is written as

LeUeD ==

which is solved in two steps
LA = - 2y

and
U-D =A

for the matrix D.

Given a numerical value of v and a time t, u can be found by Newton
iteration, with the increment in u defined by

a o= -0 0 (19)

Differentiating Eq. 8 with respect to time and partitioning gives

@ud + @V& +4, =0 (20)
Thus, by Eq. 18,

. . -1

u=0v ~ o, % (21)

Similarly, taking the time derivative of Eq. 20 yields

RN Viv,v,t) = 0 (22)

where

Viv,v,t) = (Quu)uu + (ovv)uu + (¢uu)vv + (:Vv)vv

+ 24, U+ 20,V +G
u tv

t tt

which can be evaluated explicitly in terms of v, using Eq. 21.

The equations of motion of Eq. 12 can now be partitioned in the
form
T

u.- u
Mu - @ + ®u A

i
o
—
~No
=y
~—

- Q"+ g -

1
S

—~—~
[AS]
[Sal

~




e

where Mu, MV, Qu, and Qv are partitions of M and Q consistent with
the partitioning of q. Solving for A from Eq. 24, substituting into
Eq. 25, and noting that

yields

MY + DT = ¥ + D' (26)
Substituting from Eq. 22 yields an explicit differential equation in
the independent variables

T -1

[+ 00 - 0'hYs TMv(v,i,t) = ¥+ DT (27)

Let t; be a point in time at which a "violent event" occurs, which
is to be approximated by a discontinuity. In reality, the event occurs
over a time interval 77 < t; < 15, as shown in Fig. 4, and behavior is
smooth except possibly at t;. Integrate Eq. 27 to obtain

T 2 2
L% oY+ THYp]idt - | DTM“ou’]th -1 Y + p'qQUydt (28)

. J
9 9 R

. T . . . . . X
Since D' 1is differentiable, integration by parts and using the mean value
theorem gives

T T
L A R (DTMUD{]v spTMe “Ty(v,v,t)tdt
. JT1 " ldt u (
1
T2 -2
0T ae e 0T [T gMat (29)
jT] jT1

where D is a matrix whose elements are those of D evaluated in (r1,T2).

! ti 13

Figure 4, Event Interval
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Treating Q as impulsive at ti’ the integrais of ge.eralized focrce are

T T
"generalized impulse", pY = J 2 det and PY = f 2 Qudt. Taking the
T'l JT]
Timit in Eq. 29 as T ti and iy ti’ noting that DTMu¢u']V(v,9,t)

is bounded, yields the "impulse-momentum" equation at ti as

MY+ DTMUD][\?(ti+) - (e )] =Y plpY (30)

This prescribes the velocity jump in v due to impulsively applied loads.

It is important to note that Eq. 30 involves impulse and momentgm
of all elements of the mechanical system. This is crucial, since t
bodies making up the system interact through constraints, so an impu§se-
momentum balance relation involving only the bodies on which the
impulsive force acts is impossible. Deriving the revation of Eq. 3&
by manual calculation would be extremely difficult and time consuming.
One of the strongest points of the method presented here is the auto-
matic assembly of the coefficient matrices of Eq. 30.

;
body 1 f(t)
f(t

body j

J
Figure 5 Impacting Bodies

For impact of bodies i and j, as shown in Figure 5, a coefficient
of restitution e provides the relative velocity relation in direction n
as

(@ - D) T (g ) (31)

3n

T TIT
or with N « R N = [&u s NY J , Eq. 3) may be written

T
vV

VT’ UT° uT.
N Vi 4yt N u(ti+) = -e|N V(ti') + N u(ti')
i

or using Eq. 21, this is
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q

T T T T
[NV + N [):] V(t+) = -e [NV + N DJ v(t-) (32)

The generalized impulse of the force f(t) in Fig. 5 is

ti+€

p = f f(t)Ndt = pN (33)
t.-¢
1

where

ti+€

b= J £(t)dt (38)
t.-¢

1

Defining the partitioning pY = pNv and PY = pNu, Eq. 30 gives
V(t.+) - V(te-) = p [MV + DTMUD] '1[NV + DTNf] (35)

T T
Premultiplying by N+ N4 D and using Eq. 32, p is determined from
the scalar equation

vT LI vT uT
-(1 +e){N" +N'D V(ti') =p [N +N D
-{MV + DTMUD]-] [NV + DTNU] (36)
With p known, v(ti+) is given by Eq. 35. Equations 35 and 36
thus define jump discontinuities in velocity due to given impulsive
loading and impact between bodies.
The above equations are put into matrix form for automatic

solution by the DADS computer program. Subtract Eq. 32 from the
identity

T T, T T,
N+ N D V(t-) = NN D] vi(t.-)

1

and define
avy = v(ti+) - v(ti-) (37)

The matrix equation thus becomes
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7
MY + 0'M¥p) (Y + DTNY) o
JoT
SV & Y p) 0 p
-
0
- T T (38)
(e+1) (NV + £ D) v(t;-)

whose solution yields the desired change in velocity and impulse
magnitude p.

A numerical integration algorithm for automatic formulation and
efficient solution of the reduced system of differential equations of
motion is presented in Ref. 6. The algorithm is breifly reviewed here
and extensions to include pieced interval analysis and momentum balance
are discussed in the following steps.

Step 1. An approximate (from initial estimate or prediction) or
exact {from static equilibrium analysis) system configuration is known.
Evaluate ¢q and perform L-U factorization to determine o, ¢y, D, and

the partitioning of g into u and v. If any constraint equations, Eq. 3,
are not satisfied iterate to determine u using Eq. 19. Independent
variables v remain fixed at the values provided by the integration
algorithm.

tep 2. Evaluate q and factor as in Step 1. Evaluate u by Eq. 21,
where independent velocities v remain fixed at the values provided by
the integration algorithm.

Step 3. Compute independent accelerations v from £q. 27 and
evaluate dependent accelerations u from Eq. 26 if desired.

Step 4. Before advancing the solution ahead in time check Eq. 15
for any ' = 0 in the time interval. This is done by introc.cing
. . . i A
variables ¢ = ' and formulating L ?a q + %ﬁ?
equations are integrated along with the system equations of motion. The
variables 2! are first predicted to the next point in time and if one
or more change sign the corresponding @' are zero in the time interval.
A new time step is then calculated corresponding to the point in time
where the first ¢1 becomes zero and control then passes to Step 5. If
no ¢! changes sign, control passes directly to Step 5. (The algorithm
also checks for the possibility that a given &' passes through zero
twice in a given step in which case the first root is selected.)

These differential
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Step 5. Using the explicit Adams PECE al-orithm, advance the
solution to the next time step. The algorithm requires execution of
Steps 1 to 3 each time evaluation of the reduced system of differential
equations is called for. Go to Step 6.

Step 6. If no event is detected return to Step 4. Otherwise
determine the appropriate action to be taken such as momentum balance
using Eq. 38. Then return to Step 4 to continue the simulation. A
more detailed description of the procedures involved in Steps 4 and 6
is presented in the numerical examples of Section 4. The procedure
for solving Eq. 38 for AV and p is basically the same as for solving
Eq. 27 for v.

4. NUMERICAL EXAMPLES. Two nunierical examples are presented
here to illustrate the analysis method. The first example is a 75 mm
automatic cannon with three moving masses. Although the system is
composed mainly of translating bodies, it does have a number of sig-
nificant logical events that include discontinuous velocities due to
impulsive loading, body impact, mass capture and release, and dis-
continuous accelerations due to contact with and separation from
buffers. The second example is a more complicated trip-plow mechanism.
It consists of seven rigid bodies, five of which undergo lar e angular
displacements. These bodies experience multiple impac%s as
mechanism progresses through a reset cycle.

4.1. The 75 mm Cannon System. The 75 mm automatic weapon mechanism
shown in Fig. © consists of three main masses: the barrel assembly B,
the sleeve S, and the sear SR. A camming action is used to move the
sleeve over a telescoped cartridge, so that the cartridge can be safely
fired during each cycle of system operation. The B-cam path is fixed
in the barrel assembly B, while the R-cam path is fixed in the receiver
R, which is rigidly attached to ground. The sleeve S is connected
by a rigid bar PQ to a pin at point P that slides without friction along
the R and B cam paths.

Two forces, Fg and Fp, drive the barrel during its forward
(counter recoil) and rearward (recoil) motion, respectively. A front
buffer B¢ and a rear buffer By slow the barrel assembly during extreme
displacement. Both front and rear buffers are designed .n produce
constant retarding forces.

Logical times t; at which impact or other irregularities of inter-
mittent motion occur are introduced as an integral element of the dynamic
model. Between these times, the motion and acceleration of the system
is continuous. At these times, discontinuities in velocities and
acceleration, changes in system constraints, and mass capture or release
can occur. These Togical times are functions of the system state and
are determined as the simulation progresses. Logical times will now be
defined for the firing from run-out mode of weapon operation:
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(1) tg=0: The barrel assembly B, in aut.matic fire, passes
; the sear position with velocity xp = 40 in/sec. (Initial
starting point, not considered as a logical event). A
forward driving force F¢ = 1600 1bf acts on the barrel.

(2) ty: The barrel B contacts the front buffer, Bf = -6900 1bf
becomes active (restart integration because of discontinuous
acceleration).

i

% (3) ty: The charge is ignited. An impulse of -880 1bf-sec acts
on the barrel B, (perform momentum balance to obtain new

velocities. F¢ is deactivated and drive force Fp = 2000 1bf

js activated. gestart integration.)

(4) t3: The barrel B breaks contact with the front buffer,
Bf = 0 1bf (restart integration).

(5) tg: The barrel B impacts and captures the sear SR which was
Tocked to the receiver. The rear buffer B, = 12100 1bf acts
against the sear (release constraint between sear and receiver,
perform momentum balance with coefficient of restitution
e = 0, activate constraint between barrel B and sear SR, and
restart integration with new velocities.)

(6) tg: The barrel B and sear SR come to rest. The barrel drive
force Fp is deactivated, the drive force Ff is activated, and
the rear buffer force B,. is deactivated (restart integration).

(7) te: If automatic fire is to terminate, the barrel B and sear
SR return to the initial sear position. The sear impacts
the receiver,and the sear and barrel are captured by the
receiver. (Perform momentum balance with coefficient of
restitution e = 0, activate constraint between sear and
receiver.) The cycle is complete with sear and barrel locked
to receiver.

(7') t¢: If automatic fire is to continue, the barrel B and sear
Sﬁ return to the initial sear position. The sear impacts the
receiver and is captured by the receiver, while .he barrel .
is released from the sear, (release the constraint hetween
sear and barrel, perform momentum balance with coefficient
of restitution e = 0, activate constraint between sear SR
and receiver, and restart integration with new velocities).
The cycle is complete and barrel is in the runout configura-
tion for another round.

Logical times ty to tg depend upon the state of the system; the
relative horizontal displacements and relative velocities between bodies
of the system. Since the horizontal position, velocity, and acceleration




of body centers-of-mass are state variables, logic.i times are
expressed as functions of these variables.

The logical events are defined as follows:
1

(1) ty: xp -34.26 = ¢' = 0
(2) tp: xp -36.75 = ¢ = 0
(3) ty: x, -38.26 = i =0
(4) tg: xp - x5 <16 = 2% = 0
(5) tg: %y =" =0

(6) te: Xy = Xg -16=23=0

The si¥ events ty to tg are thus defined by the four logical
variables 2! to 2. }n order to incorporate these event predictors
into the numerical integration algorithm, the derivatives of the above
equations, with appropriate initial conditions, are formulated and
integrated along with the system equations of motion. Thus

Vo %, (o) = -18.26

X2
P2 - % 22(0) = -20.75
.3 . . 3 )
27Xy - Xy & (0) =¢
i - 5,5 20(0) = 40

The procedure for determining the complete system state_precisely
at Togical times t1 to tg, identified by logical variables .' to 4,
is as follows. An appropriate time step is determined by the numerical
integration algorithm based on the previous system state, polynomial
predictor order, and error tolerance. Each logical variable in
succession is predicted ahead in time, using this time step. If no
Togical variable is found to have passed through zero, the L-ogram
advances the solution by the desired time step and the process is
repeated. If one or more logical variables have passed through zero,
the precise times at which the corresponding logical variables are
zero are calculated by interpolation, using the polynomial predictor.
A solution is then forced at the earliest logical time, indicating
occurance of the first event. Control is then returned to user
supplied subroutines so that actions can be taken according to the
intent of the active logical variable.
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Most discontinuous events can be categorized a.cording tc the
order of increasing difficulty as follows:

(1) Those requiring restart of the integration process only,
such as when discontinuous forces act on or within the
system. These forces are not considered to be impulsive in
nature, thus only discontinuous accelerations result.

(2) Those requiring momentum balance due to impulsive external
loads (impact between bodies and mass capture or release is
excluded) with no supplemental restitution equations or
constraint equation modification.

(3) Those requiring momentum balance due to impact between bodies
and mass capture or release. Supplemental coefficient of
restitution equations are appended to the momentum balance
equations to achieve the desired velocity changes. Constraints
are added or deleted, as needed to facilitate mass capture or
release.

The six events ty to tg fall into the following three categories:

(1) t7, t3, tg - These events define discontinuous forces of
1 3s 15
relatively small magnitude, therefore only a restart of the
integration procedure is required.

(2) to - This event defines an externally applied impulsive load
requiring a momentum balance and restart of the integration
procedure.

(3) t »tg - These events define impulsive loading, due to impact
between bodies of the system, and mass capture and release.
Suppliemental equations are required for momentum balance and
a restart of the integration procedure is required.

The effects of the varicus events at iogical times ty to tg on
the position,velocity,and acceleration of the barrel are shown in Fig. 7.
The DADS computer program required 14 seconds on an Itel ASE computer
to execute one cycle of tre weapon System.

4.2. The Spring-Reset Trip-Plow Mecnanism. A soring-reset plow-
share mechanisin model is shown in Fig. &, in its initial configuration,
just prior to impact between the plow-share tip and a rock buried in
the ground. The model consists of six moveable rigid bodies, identi-
fied as follows: body 1 - plow-share and standard, body 2 - lower link,
body 3 - rear toggle link, body 4 - front toggle link, body 5 - u-bolt,
and body 6 - combined plow-frame and tractor mass. The bodies are
connected by various rotational joints, as illustrated in Fig. 8 and
the entire tractor-plow system is initially moving to the right at
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2 meters per second, along a horizontal translatio.al joint between
tractor and ground. A spring-damper-actuator combination is connected
between the u-bolt and rear toggle link, to simulate the spring reset
device. In addition, five potential contact points, where impact
between adjacent bodies will occur, are identified by the letters A-E,
as follows: A - contact between the u-bolt and main frame, B - contact
between the shank and lower 1ink, C - contact between the lower 1ink
and main frame, D - contact between the front and rear toggle links,
and £ - contact between the plow-share tip and rock embedded in the
ground.

Contacts are simulated by attaching markers at some distance from
the point of contact on adjacent bodies, such that the nonzero vector
connecting the two points passes through the point of impact and defines
a normal to the surface at that point. These markers are simply
modified spring-damper-actuator combinations, in which provisions are
made to control spring rates, damping coefficients, and actuator forces
as needed. The elements can play various roles in the simulation.
Logical variables oK defining logical event times t, of impact are
formulated in terms of spring-damper deformed and undeformed lengths as

k = 0 - 0

)?. - x._ij lo_ij
The constant 401 is selected so that impact occurs at 5 ® 101j,hence
zk = 0. As noted earlier, to facilitate event prediction, the

differential equation

L oK

i 0) = 2,.(0)

1340 7 *oij

is formulated and solved for Rk. The system stat: and event times are

thus determined precisely when ¢* = 0 or gij =3

At this point one has several options in continuing the simulation:

0ij’

(1) Define spring and damper coefficients or actuator forces in
the element to represent contact characteristjcs «nd restart
the integration. (They remain active until ." becomes zero
again, indicating separation, at which time they are sot to
zero.)

(2) Define a coefficient of restitution e; the normal impulse
direction and location is determined by the element's direc-
tion and location. Perform momentum balance to determine
jump discontinuities in velocity and restart integration.
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(3) If the coefficient of restitution is zero, and the bodies
are to be locked together, a cunstraint equation of the form

2 = nij - QOij =0

is introduced and appended to other existing constraints.

The impacts encountered in this simulation usually occur between
bodies driven together (and then held together for some time) by large
forces. Relative displacement between the impacting bodies after
impact is usually negligible. Assuming a coefficient of restitution
of zero prevents multiple impacts and simplifies the computer logic.
The procedure for most impacts in the abuve simulation is then to set
e = 0 in the second option above and perform momentum balance to get
new velocities. Then set spring and damper coefficients as in option
1 to represent physical contact between bodies and restart the
integration.

Logical variables L] to 15 are formulated for the five contact
points A to E. Llogical times are defined for the spring-reset plow
model (not necessarily in the order of occurrence) as follows:

(M tg = 0: The tip of the plow contacts the rock ( 25 = 0,
perform momentun balance with coefficient of restitution
e = 0.5; restart integration}.

(2) ty: The tip of the plow makes second contact with the rock
(£2 = 0; repeat above.)

(3) tp: The u-bolt contacts plow frame (9] = 0; perform
momentum balance with coefficient of restitution, e = 0;
activate spring and damping coefficients; restart integra-
tion).

(4) t3: The lower link contacts plow frame (L3 = 0; perform
momentum balance with coefficient of restitution, e = 0;

activate spring and damping coefficients; restart integration}.

(5) tg: The lower 1ink and standard separate (:2 = 0; set spring
and damping coefficient to zero and continue).

(6) tg: Impact between toggle Tinks (£4 = 0; perform momentum
balance with coefficients of restitution, e = 0; activate
spring and damping coefficients; restart integration}.

(7) tg: Lower link breaks contact with plow frame (g3 = 0; set
spring and damping coefficient to zero and continue).

(8) ty: wu-bolt breaks contact with plow frame (c1 = 0); set
spring and damping coefficient to zero and continue).
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2
(9) tg: Impact between lower link and stand..c (. = 0; perform
momentum balance with coefficient of restitution ¢ = J;

activate spring and damping coefficients; restart integration).

The predicted motion of the plow-share mechanism is shown in Fig. 9 as
follows: The tip of the plow makes contact with the rock at time = 0.0
seconds. The plow tip fails to clear the rock and impacts it azain at
0.33 seconds. The impacts impart angular velocity to the plow-:nare,
causing it to move rearward and upward. This motion drives the toggle
1inks upward, bringing spring 1 into tensier. The u-bolt and lower
Tink come into contact with the plow frame (contact points A and C} at
0.12 and 0.40 seconds, respectively. Contact at B between the standard
and lower link is broken at C.33 seconds.

Contact at C between the lower link and frame stops upward movement
of the plow-share and the reset cycle begins. Stored energy in the
spring rapidly collapses the toggle links. This action causes a rapid
change in angular displacement of the plow-share, with only a small
effect on its vertical displacement. At 0.55 seconds, the toggle links
have reset (contact at D).

The lower Tink and u-bolt break contact with the frame at 0.57
and 0.70 seconds, respectively. It is interesting to note that the
toggle action results in the plow-share being brought to within 20° of
horizontal, while its center of mass is stili C./5 meters above ground.
The plow-share therefore re-enters the ground at a shallow angle, pre-
venting the mechanism from being tripped again. Finally, at about
0.86 seconds, contact occurs at stop B and the mechanism regains its
approximate initial configuration. The DADS computer program required
38 seconds on an Itel AS6 computer to execute one cycle of the trip-
plow mechanism.
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APPLICATIONS OF DELAY FEEDBACK IN CONTROL SYSTEMS DESIGN

N. P. Coleman, E. Carroll, D. Lee and K. Lee
US ARRADCOM
Dover, NJ 07801

ABSTRACT: Necessary and sufficient conditions for exact state recon-
struction using delays are discussed together with an example in which the
technique is implemented in real time using an 8080/8085 microprocessor.
Also, a frequency domain technique for synthesiring certain feedback control
laws with delays is developed and several examples discussed.

I. INTRODUCTION: In designing a control system using optimal control
theory or classical frequency domain techniques, one often encounters sit-
uations in which certain required signals or states of the system are
unavailable by direct measurement. In modern control design this problem is
usually handled by implementinyg some form of reduced order or full order
observer which provides an asymtotic estimate of the unmeasured state. In
thls paper a technique is developed for exact state reconstruction of unmeasured
system states using values of the measured variables, their delayed values
and the control variables on the maximum delay interval. Several examples
are discussed which demonstrate the application of this technique on a
laboratory servo system using an 8080 microprocessor.

A second application of delay feedback for frequency domain compensation
P is also discussed. A frequency domain technique is developed for selecting
¢ appropriate gain and delay parameters for synthesizing a feedback controller
i using delays in the output and several applications as discussed.

oF II. REAL TIME STATE RECONSTRUCTION USING DELAYS: In this section a
% technique is presented for exact state reconstruction using delay feedback
of measured states of a control system and the values of the control input
over the delay interval. A real time application of this technique in a
servo control system using an 3080 microprocessor is also discussed. For
simplicity, consider the linear time invariant system:

x(t) = Ax(t) + Bu(t) (1)

where x is an nxl state vector, u is an rxl control vector, A is an nxn
constant matrix, and B is an 0xr constant matrix. Let the c¢hservation vector
y(t) be given by:

y(t) = Hx(t)

where y is a mxl vector, and H is an mxn constant matrix. Let o3 hj< hy<'*'<h <a
be time delavs. *

The problem is to reconstruct the state x{(t) from the measurements v(t),
y(t=h), ---, Y(t-hL) and the measuyreable control vector u(s), t-h 2s3t
X

The following arvument due to D. H. Chyung, Reference (1 ) provides the
basis for a real time state reconstruction alporithm discussed in the examples.
This argument makes use of the well known variation of parnmeter expression
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L
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x(t) = cA(l“hi)x(L-hi) +j ¢ pu(s)ds (2)
L-Ili
0
= eAhix(t-hi) +J e ASpy(t+s)ds
-hy i=1,2,""",¢
Multiplying both sides of egquation (2) by He ™MNi results in the eqution:
o
He APix(t) = Hx(t-hy) + He N1 [e'ASBu(n+s)ds
-h;
o
-Ahg (3)
= y(t-hy) + He i je'ASBu(t+s)ds
_hi 1._:1’2,...’;;
in which the right hand side is completely known, Letting C denote the matrix
given by:
HL,'_Ahl
a -
c = | He™Ah2 (4)
He ADy

we can now write equation (3) in the form

cx(t) = z(t) (4)*
where; —— o '—\
y{t-h[) + He AN e_ASBu(L+s)ds
A4
ro
z(t) = y{t~hp) + He_Ahz je_“SBu(L+s)ds
—hz
he 2 .-A
y(t-hg) + He AL ! e ASpy(t+s)ds
iy
—— £

1s a known m&x1l vector and C is an mg>n constant matrix depending on the
parameters hl’ hy, "',hl- If the matrix C has rank n, then equation (4)*
can be written as:

-1
x(t) = [CTC] cTz () (5)

where CT denotes matrix transpose.
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-1
Equation (5) has several important implications; First, if the matrix[ETé] '
exists, then the state x(t) can be exactly reconstructed from the measurement
y(t), its delayed values and the input signal u(t), o=t3h 5 secondly, the
C matrix depends only on the delays hy, -+- h_ so the siglit hand matrix cal-
culation can be performed completely off line. This leaves oniy the relatively
straight forward calculation of x(t) and a matrix multipl.cation for on-line
microprocessor computation. This latter comment is of particular importance
in real time control applications in which relatively low speed microprocessors
are utilized for control law implementation. The following result establishes
the condition under which the matrix C has rank n. '

Result: There exists a set of n delays o ;h1< ho +++ <hp s a, for any aso
such that the matrix C has rank n, if and only if rank (Q) = n, where
H
Q =1 HA
HAR- 1

Proof: Let a »o0 and assume rank (Q) = n. Then the row vectors of the matrices

He‘Ath[E,a contains n independernt vectors since, if not, there exists b&RD

such that He Ahb=0 for all he ;%,a . Repeated differenta‘ion with respect to }
h Eives He~Ahp=pa~Ahp=pan-le ~MMp<,  This implies that the non zero vector

e~Ahp is in the null space of the matrix Q and hence rank (Q)< n.

Conversely, assume rank C = n, then rank (Q) = n since, if not, there exists
b # oe R™ such that Hb = HAb = .-+ = HAR-lp = o, This implies Be~Ahp = o for
all h and hence rank C<n, a contradiction.

Example: Evaluation of the state reconstruction technique given by equation (5)
was carried out on an 8080 microprocessor development system which was in turn
interfaced with a laboratory servo system as shown in Figure l!. 1In this example
the system state vector is given by X3 where x; is the motor shaft output
position and x, is the motor shaft velocity. The measured signal is x| and xp 1is
reconstructed using equation (5). Once the software was developed and debugged i
the program was down-loaded to a single board 8085 microprocessor shown in |
Figure 2, for faster execution.* The block diagram of the servo system without

tack feedback is shown in Figure 3.

w i} 2406 x 2 1 — }———
S+4 S { !
2 :
Figure 3 j

* The 8035 ronfiguration shown in Fisure 3 is currentlv being used to evaluate

digital control concepts for the XMY7 turret system,
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The state spoace equation {s piven bhy:

ff.l ] 1 ) 0
= + u (6)
X5 -2406 -4 %, 2406
y = X =[},q1 Xy
X2

The state transition matrlx for tnls systen iS rea Jil) CO\IPULed to be
C 549t +—s1 ~‘9t ”‘-9—'3 [d
¢} n >1n 9t
9 7 1

At _

”
-49.1s1in49¢ cosb9r - Zg—sin;gc

with the associated C matrix of equation (4) being given by:

(8)

o]

1 0
) o) -Ozh i
He ‘e“h(cos~’¢9‘n - Z_g_ siné‘)h) 49 Siﬂ‘o‘gh

(@]
]
n

with hy = 0 and h2 = h.

For values of h # 2uT, the matrix C is ncna singular and we may compute (CTC)-1

49
¢! directly as —
1 0
(9
¢l =
49cot (49h) ~ 2 -49¢~%hcgcaon

——

Using equation (5) one obtains the required state reconstruction equation for
xz(t) in terms of the measurements x.(t), x)(t-h) and u(s), k~h=s =t.

xz(t) = !Ebcot(49h) - E} xl(t) - (596—2hcsc49h)x1(t—h)

(10)
+ 2406 c2hcos&9h - 2e2hgin49h jgezs(sin49s)u(t+s)ds
49 49
o -h
+ 2406 -eZhsipA9§}r(e25cos&9s + ZCZSsinA9s)u(t+s)ds
Jh

The implementation of this state reconstruction algorithm was carried out on an

8080 microprocessor with a delayv value h = .0l sec. The posirion output state
was sampled at2.2 miliisecond intervals and the accuracy of the A/D and D/A
converters was 12 binary bits.
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Flgure 4a conmpares the oo taal tuch outnat sional redresentine the ¥

-

] b;.]{(‘
with the microprocessar output sivnal wololb atfemdts Looreconst: ool = (1) wia
cquiation (107 usin: oniy the tdrst Two Torms po i o mesnio . wetor In
this vase equal weighings aust be used tor Xty and ® 0 i-n). Thoe crtedts
UoIn the tiymre. Fivore «b arain

of measurement noise e readily appare
compares measuyred favh output with thiv microprocessor o oot sicnal, however,
in this case the all state reoonstroction equation €09 is opicrented. Tnis
implementation is seen to yive a4 very wccurate stdate reconstro. @ fon whfch 1s
less sensitive to measurvment noise.

I1l. FREQUENCY DOMAIN CONTROL SYNTHESIS
papers, {(see Refervnce « ) anu g 0 uive
which address the problem of fecunack control is delaua,

develops several feedbacx control laws using deiavs in tne
of the state which are shown to drive the tall store v tn
and keep it there. The constructions, however, hove lirdoey
control applications since thev assume [irst tihc: the - ontrog
same dimensticn as the state and all states of the svster
on-line measurement.

In this section we consider a restricted class oo
shown in Figure 5. This contisuration has oroved qnd
servo control applications in wni. it O(s) represents the open (oop transier
function between the .oooiand tonut and toe position ogidut.  Ghe twe Jdesisn
parameters introduced bw felas
and T, the feedback time Joelsr.  The reason Zor chosine the tw feedbacs sdins
in the form K and t-1 difrering by unity in tne ceaeral casc, wiii be madde Jivar
below. The equivalent feedbacxk transfer function, His), for rhe $vstem in
Figure 5 1is:

S eesbadcK P sven Lo obe K, e Yeedback rala,

H(s) = K - (K-1)e™-% il
We may represent the e Ts tern by its equivaient Tavior series form as:

e~Ts =

The frequency band of primarv interest from o stability and transient responsc
3 i ! s '

point of view in E: lG(s)H(sM = g or [:: v

gain crossover frequency of the compensated open loop svstem.  Settins & = fw

- J 13 L) r .

and assumming le‘</ l, we may gapproximate 742 by the [irst tw  terms of it

s=w.| where w denotes tia

Taylor series expansion or; )

e TS = | - 75 = | - juT il :
Substituting (12) into equation (il} yeilds;

H(s) = K - (K-D)(l-jwT) = | + i(K-D)Tw SN

Since K> 1 will be required, this corresponds to i phase lead network (on a
first order anproximition basis) in the controller roedba ko path.s 0
lead term is properiv positioned in tfrequency, it will produace @ stabidiciae
effect upon the conrrol svsters anit Step or impuisce respense

As will be seen in the e sples, the tire detay or fecdback cals oo be adiasted

this phise

Al teristics,
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to provide any desired danping in the system response. The procedure for-intro-
ducing a lead network effect around w = w. using delayed feedbacs can now he
developed.

1
First, choose w. such that 'G(jwc)l = -
V2

Second, select the feedback time delav, 7, such that Tw.< <l. The choice or
Twe = .1 is reasonable and is used in the examples. For this choice. the firstc
term disregarded in the series expunsion has magnitude .005 at w, and rapidly
becomes smaller for higher frequencies. Third, select the feedback pain para-
meter, K, such that the lead time constant becomes eifective at or near w = w.

“
i.e. (K-1)T = 1 . Note under this condition using step | and equation (&}, that;

We

= !

Glwe)

| 1w

\G(WC)H(Wc)

/2
¥ /:

Y

= ] and K = 11

The delaved feedback desiun procedure thus is seen to be straight forward in
concept. The effect of the particular delaved reedback confipguration discussed
here is to replace the more standard tach feedback stabilization loop. When

the delay time and wain parameters are proverly chosen, system response charact-
eristics may be improved substantially.

Example:

Wwe consider first 1 simpice laboratery servo system whose open loop transter
function, G(s), is given by;
G(s) = 000
s{1+3) (14)
A

The -3db crossover fregquency, w., of the open loop transfer funation G(s) is

v

56 rad/sec and the delay tire, T, is computed from step 3 and satisrfies 10T = 1

or T = .0017 sec. The zain N is :ixed and satisties the reiation; 36
K-1=1 =1 =10
Tw, a
Due to limitations of the 300 —micreprocessor, the above Jdesicn usine a delav of
1.7 ms could not be implemeniea.  The Jelav which couia so i nlemented
with the 30530 was 2.2 =s. The periorsance of this cesian tor o step input command

is shown in Figure ob. Fioare 6 il ustrates that the eftective dampine intro-
duced by the feedback delav can he “arther increased by increasing the delav
parameter T. The desired lampinz can also be acnleved by adjusting the gain
parameter K.

To evaluate the effects o gelav parancters which were too smail for imple-
nentaticn on oan 3080 micronrocessor, Simalaticas woere ran Yor vaciues ot 7= 08
msec, .7 msec, 2.2 msec, el maen, 208 maer and PTon sace, ising the servo
transter Canction €la). These rewnits are sihhawen In Do s T - 100 Deticiencies
in thee Siaeoar todedl o the serso Svsbor ire roaaiay spperent siave the sirulations

indicate more Jdamping than i< evidear in the test resuits o Ficare b oand Fioure

12




indicates an instability with the 17.6 msec delay in constrant to the over )
damped response in the hardware test shown in Figure 6e. :

Example: :

In this example we illustrate the application of the Jdelay feedback control
synthesis technique to the design of a controller for an XMY7 helicopter turret
control system shown in Figure 13. The transfer function block diagram of this
system is shown in Figure l4. The -3db crossover frequency for the open loop
system (tach loop open) was computed to be 20 rad/sec resulting in = feedback
time delay of .005 sec. The step response of the original XM97 des.:n is
shown in Figure 15 and that of the delay feedback design in Figure 16. The
latter design exhibits a dramatic improvement with respect to cvershoot and
settling time. This improvement can be explained partially by the fact that the
original system uses motor tachometer feedback for ctabilization while the delayv
feedback design effectively uses actual turret pcsition and rate for feedbacx
stabilization. Figures 17 -~ 20 also show the eifects of increasinyg and cecrcasing
the delay feedback parameter. Saturation, columb friction and deadband non- ;
linearities are included in the simulation.

IV. CONCLUSION: Applications of delay feedback for state construction
and feedback control are presented together with simulation results and examples
of actual implementations using Intel 38030 and 5085 microprocessors. These
examples demonstrate the practicality of the ideas and suggest that these teoh-
niques may provide a useful adjunct to the more standard frequency domain and I
state variable techniques for ¢stimation and control applications. 5
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AN ADAPTIVE LEAD PREDICTION ALGORTTIEM FON MANEUVER™ [0 TAROET ENCAGEMENT
Pak T. Yip & Norman P. Coleman N
USA ARRADCOM
Dover, NJ 07801

ABSTRACT. An algorithm concept which processes turcet bhearing
and range input data and provides "optimal" estimates of taract cosition,
velocity and acceleration a time-of-flight in the future Is dis: ssed.
Since the algorithm concept involves certain important statistic.l assumin-
tions about target acceleration dynamic models, these assumptions wiil
discussed in detail along with several important methods uscd in the ol
identification process. Secondly, the filter alzorithm itselt wil! he Jd.--
cussed. This algorithm involves the parallel processing of tarzet range o
bearing data by several extended Kalman Filtors corresponding to distincs
maneuver characteristics of anticipated target vehicles. At time of Iire
the filter with the largest computed likelihood function is selected for
lead prediction. Finally, results of simulation studies in which actu.i!
target path data is used to generate filter input data for hit probab
evaluation is discussed. Comparisons are made between the adaptive al-
gorithm and non-adaptive first order algorithms.

1. INTRODUCTION. This paper describes a multiple model adaptive
Kalman Filter approach to the problem of estimating and predicting the
position, velocitv and acceleration states of tank targets of varving
maneuverabi. tv. The estimation and prediction problem presupposes that the
range and angle DATA (measuremants corrupted bv Gaussian white noise) is
available. The target dvnamics is described bv a4 sgvstem equation. Our
solution to this problem is an adaptive algorithm implementable in real tinme
with a microprocessor to compute target position a projectile time of fliant
in the future. This studv bepins with the selection of the Antirank Miss-
ile Test (ATMT) Phase IT data) to identifv the filter acceleration medels.
It consists of three dimensional (x,v,z) position data recorded at approx-
imatelv 10 samples per second. Maximum likelihood identification methed is
applied to this data to identifv a rinite set of Markev Acceleration Models
which are representative of a broad spectrum of vehicle maneuvers consider-
ed likelv to occur in actual engagements. These models provide the requir-
ed state variable description of the target dvnamics used in the formulation
of the muitiple model exrended Kalman Filter Algorithm rfor lead prediction.
The extended Kalman Filter is required in this appiication as a result
of nonlinearitivs induced by target coordinate transformations and non-
linear measurement equation.

The adaptive lead prediction concept is based on the simultaneous
(parallel) processing of the discrete extended Kalman Filters corresponding
to the distinct target mode - identified from the ATMT data. The likeli-
hood function associited with ecach filter is computed up to the time of
fir.. of the weapon, and the filter having the greatest likelihood is
automaticallv selected for lead prediction.
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In the present studv, onlv the azimuth and range informat:ca of the rar-
get is processed in the rilter with the target elevation considered con-
stant. The perfermance of this design Is examined .1tn a *onte Carlo
simulation and the sensitivity of the icad e timate. to messurement noise,
level of target maneuver, range sampling rate, and Zime of Ilight of pro-
jectile are analyzed to determine the feasibilitv of using this algorithm
for fire control lead predictisn against variocus maneuvering targets.

II. DATA ANALYSIS. The ATMT data consists of six tracks pro-
duced by a M60Al tank, a scout Vehicle and a Twister Vehicle undurgoing
evasive maneuvers. The MfOALl rtank is capable ol speeds of 10 to is miles
per hour and with a maximum acceleration of =pproximately .3g. The Scout
is an armored reconnassiance vehicle capable of moving at a speed of
15 to 25 miles per hour and a maximum acceleraticn of approximately .5g3.
Since our only interest is in modeling the acceleration, the position 2ata
is sampled at a frequencv of 2 cps and twice differentiated to obtain the
acceleration estimates which are then resolved into along-track and cross-
track ccmponents. The power spectral density of this data is conputed by
the maximum entropy methody which assumes the data is generated by an auto-
regressive process. The power spectral desity S(f) is given hv

2

(38}

-
"

S(£) = 7 9
1 -,Z, 2 exp(-j2-r1i
i51 Y p(-3 1
where @ is the standard deviation of a Gaussian noise process; a, is the i-th

coefficient of the autoregressive process; M is the number of coefficients,
and the coefficients;i are estimated recursivelv .

The number of the autoregressive coefficients is usuallyv larger than 3
which is not desirable for Kalman Filtering. PFewever, the power density
spectrum affords enough information for estimating essential poies and
zeros of a simplier model structure. Later the maximum likelinhood identif-
ication program is used to fine tune the pole and zero estimates.

The simplified model determined from the spectral analvsis has the rollow-
ing form:

A(s) L q(s)

.-
(2]

where q(s) is the Gaussian noise process; A(c) is the svstem acceleration;
Y,8, Aand g, are parameters to be identified for the chosen tracks and
each of the along~track and cross-track formulations.

IIT. DISCRETE ENTENDED KALMAN FILTER. The svstem and the measurement

equations are readilv defined as foliows:

Ek i(ik—l , dt) + g(s)

= hix) *+ X

A_N
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e —

gy - =
04,

SRS v T R

where x, 1s the systc. state vector at the discrete time kdt in the Cartesian
coordinate system, ¢ the system function containing all information about the
system dynamics, g the plant nolse vector, % the measurement vector, het,)
a vector contalning the true range aad azimufh angle of the target position
at the time kdt, r the measurement noise vector, and dt the time between

twe samples,

The necess2ry statistics and conditions are

= Qs
cov(_g_i s gj) Qi

1]
coviz; » L) = RO,
cov(gi , 5) = 0, Y¥i,]
E(x) =X
cov(ﬁo) = P

where 6i is the Kronecker Delta.

3

Given the above, the discrete Extended Kalman Filter equations can be
written as follows: The predicted state estimate vector is given by

é1<+1|k = (&, do)
and the state error a priori covariance matrix by

T
where
3p(x, dr)
s = — !
2
==
= X : % )2/
k3 "-(1<+‘v—‘kdt+1k(d)'2
. dx
x = X
& dt
. 93X
- - —K
5 T &Gk

The updated state estimate vector can be written as follows:

P a X ) + Kz
Tk+1 “ktl |k ~k+1

where
T hékﬂ]k)
) T T -1
K= Pandt Wt + Rgy)
3h(x)
Ho= - B
X 2 5%+ k
1/2 -1
v 2 2 .
E!‘R+l|k) ([(xl) + (xz) ] , tan (xl/xz)}
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x& , gg represent x, y position state estimates respectively in fixed Cartesian
ceordifiates. Thc state error a posteriori covariance matrix is given by

P = P KHP

k+1 k+1 |k k+1 (K
and

t
k T
= [ (. - P - 1
Qk tk—l ( k ©) Qs (tk ydt

where the continuous case plant noise covariance matrix, Q , is known.
s

The continuous time system dynamic equations used in deriving the discrete
time equations are given by

X = X X = X

1 3° 2 4

X = A+ AV
3 (x4, XA

X = X A - x A)/V
xa ¢ 4 a 3 c
X = -8B X - 5 X X = x

5 al’s a2’e ’ 6 5
X = -8 X_ - £ X X = x

7 cl 7 c2 8 8 7

s + v
Aa N 2 qa
s s s -
+ “al ﬁa2
S + 'Yﬁ

A = = G

c 2 3 N

P
- . /0
O
&

3

where X_ and X, are the corresponding X and Y components of the velocity vector;
A is tge targét acceleration along the velocity vector; A is the target acceleration
perpendicular to the velocity vector. N

With this filter, tarwxet range and angle measurements mav be processed to
generate target state estimite recursively., 3efore defining an adaptive filter
procedure, the parameters -1 the Markov model need to be identiiied.

IV. LIKELIHOOD FUNCUIUN & MAXIMUM LIRELIHOOD IDENTIFICATION OF PARAMETERS.

Given a parameter vector i , the probabilitv of occurence of the measurement
vector sequence z can be repregented by a multivariate Gaussian dist.‘bution.

K CoxR=1 1
p(z 5 ) = plz, 'z b e, ey IR )
e o—l=~
k-l exp(-[l/l]zks_ z, )
P, 2T 0 s e
(2x) h(detsk) h
T
= hP i
< k- R
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P(2; a) = the likeihood function

n = number of elements in the measurement vecror z .
%

In order to identify the best parameter vector x to give a maximum P(Zk 1),

we can equivalently minimize the negative log 1% ikelihood funcrion:

k k P By
Mz 3 x) = . ((1/2)z]s77z  + (1/2)an(det S.)}
-~ = i=1 PO § 1
,o\n/2 . .
Since the term (2-7) in the likelikood function dose not cogtribute any
interesting information it has benn elininated in forming Mg

¢ i 2). the
auss-Newton method is used in the minimization procedure.

v = o - 073
25+ =5 - EEY

where > = 1 for this method, and D, the expected Hessian

M(z%5 20
ENIEY

The test for convergence is given by

N Sy - . )
(2j+l ij) D(ij+l x,) < 10 .

-

V. PARALLEL FILTERS & ADAPTIVE ESTIMATION. Target state prediction
for maneuvering ground targets have never been a simple task to undertake.
The major uncertainty comes ‘rom the :argzet driver's (stochastic) decision
to maneuver. However, it appears there exists a maximum level of maneuver
that the ground vehicles studi=d can attain. This maximum level provides a
non-trivial range of dynamic motion that can be quantized to a {inite number
of maneuver levels. In this study, five filters are incorporated into the
multiple model filter. Model M1 (Filter 1) is a simple & states constant
velocity filter. The remaining 4 filters are identiried with various maneuver

levels.

The adaptive estimation is a straight forward decision maxing process.
Measurement in range and azimuth ancle are processed throush the »ne-allel
filters. The filter having the luar.gest likelihood function is automatically
chosen to provide the hest estimate Tor lead preciction and gun orders. Two
concepts of adaptive predicrion are ecxamined. In -~oncept A the lixelihood
functions account for the entire measurement historv up to the time of fire.
Thus this adaptive prediction concent is good against targets with constant
maneuver level. In concept B, onlv che last ten samples prior to the firing
time are used to compute the iikelihood funcrions. This adaptive filiter
concept tends to be more sensitive to chanuwes in tarcet maneuver levels.

VI, SIMULATION. A Monte Cario simacation of 10D runs was setoup
to process a nnv}IT-T:F T ceeanpoceeopts oan the ATYT Gara renresenting
various maneuver level:s ror poe Mo wiator an Soeat Vet pes, These
segments ot Jata are dUotervent T e el Do D paramoter tienatification

tasks discussed earlier
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For evaluating the svstem performance, the perpendicundr miss disrance of

the predicted line of sizht from the real toreet sosition s Lelined as tn

for cach

K

prediction error Ep in meters. The riring time polats e “iv. 4
segment under process. The performance indicator ph at  a-h firin time

point is defined 4s the ratio of the number of times th:t ~he prediction

error Ep is less than 1.15 meters to the total number »: run.. Actually, they
are hit probabilities considering the prediction errors alone.
Q

Assuming engagement range oi approsimately 2000 meters, 459 cross range

(across the range vector), ¢ range measurvment error ot . meters, .o
azimuth tracking crror of 0.3 aiis, 4 proiectile speed of 1500 meters per
second and using the adaptive prediction concept A, the hit probability re-

sults are illustrated in Figure i ond summarized :» the following table:

W————

Target Number of Cases, Mean ph

Type 7?7 Firing Points |Const. Uelocity | Adaptive
per Case Prediction Predaictuior
MeoAL 13 .41 .49
Scout 19 .27 .38
Twister 8 .29 .26

For an engagement ranve of approximately 11538, 60 cross range, ls
range measurement error o! 3 meters, la azimuth trackine error of 0.3 mils,
sy the adaprive prediction

a projectile speed of ilid meters per second and usi
concept B, the hit vrobability results are summarized in the rollowing tabie:

Target Number of Cases, Mean ph
Type 7?7 Firing Points |Const. Velocity |Adaptive
per Case Prediciion Prediztion

MBOA1L 6 .51 .56

Twister 6 .34 .37
With the latter -onditions, the seasitivities of the svstem are obscrved
for a particular maneuvering sesment as shown in Ficure 2. Fioure >
illustrates the system range (hence the time of Tlight of projectiie) sen-
sitivity. Figure 4 illustrates the system sensitivity o anailar measurement
noise. Figure 5 illustrates the system sensitivity 0 range medsuroment
noise. Figure 6 illustrates the svstem sensitivity o range sampline rate.

This studv has dermoastrated that

VII. DISCUSSION & FUIURE
maneuvering target acceleration mav
set of stationary Markov processes whose parameters can be ldentitici ofy
line. Parallel discrete extended Ralmen tilters have been ased to syl tess-

.

ae

be adequatelv medeled s a0 oo arete

fully process range and anyle measurements.  The adptive sciection of
most appropriate filier st cach tinme step, nased on its Lareest likeiihood

function, has been aceomplished on line.  Representatives maneuver patterns
and levels used In thiis study were taken from the ATMT Jdata base.  The

results from the Monte Carlo simalations indicate that the performance of

1

the mualtiple model adaptive filter desion is cenerally comparable tooa
frlter which s tuned to the tarcet Gdvnamics of that artieniar (racking
interval,  In partiecnlar, the resuits show that the b tre prediveion
consistently performed better than fa constant ver o dey prc diction with an
{mproverent in prediction rancdas tron T o ) e ot

Since the range data Qs carrentls ot s oaaitores Do cessah e measurenent

the ranve sampline rate has boen Sined a5 oan area o of ancertainty
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together with range, angular measurement noise, and range measurement noise.

The results indicate that the system performance for the azimuth channel is
heavily dependent of angular measurement noise and projecrile time of
flight in terms of range, and is not very sensitive t., range measurement
noise and range sampling rate., The results also indicate that higher
probability of hit can be obtained in the cross range geometry than in

the down range (coming down along the range vector) geometry.

Implementation of this filter algorithm in real time with a state of
the art microprocessor is in the planning stage. We have noticed that
Bierman's UD factorization,for the state error covariance propagation is a
desirable feature considering computation accuracy and stability. Several
variations of the existing filter algorithm are also under consideration.
Finally, a complete real time simulation of the fire control system with
the auto-tracker or human operator in the loop and filter modifications
to improve maneuver detection will be subjects of our future work.
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ON VOLTERRA INTEGRAL EQUATIONS OrF PULSE-CONVTLJTICN TYPE

Edward W. Ross, Jr.
Staff Matnematician

US Army Natick R&D Commana
Natick, MA 01760

ABSTRACT. This paper presents a discussion of methods for solving
Volterra Integral Equations of first kind and pulse-convolution type.
The present context of the problem is the response of dyes to laser
excitation in the picosecond pulse range. Datz on the excitation and
response pulses are given, and 1t is desired to find estimates of the
system function. The characteristic difficilties with this procedure
are discussed, and a method is described and illustrated that appears to
be optimal in the worst-case limit.

I. INTRODUCTION. The paper is about methods for solving certain
Volterra Integral Equations of the first kind. The general form of
such equations is

t
r Kit,s) x(s) ds = f(t), a<tghb. (1)
a

It is assumed that the kernal K(t,s) is known in the triangular region

and the function f(t) is known in a < t < b. We want to find the function
x(t),a <t <b.

The physical problem that concerns us is that of estimating the
response of various dyes to irradiation by puises of laser light in the
pico-second range of pulse widths. A model which is commoriy used in the
study of such systems can be written

h(t-s)E(s)ds = f{t), Dgt< » (2)

O -t

where E(s) is the excitation pulse of laser intensity, f(t) is the
fluorescence pulse of the light from the dye in solution, and h{t-s) is
the system function, which describes the effect of the dye on the
excitation pulse. It is assumed that the excitation begins at or after
t=0 and that the system function is causal, i.e.

E(U) = 0, h(u) =0, U<O (3)

We want to find the system function h (U).
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; Lncer thewe Conditiont the inteygral egqualicn can be writion in
the alternate forms

and it is these forms that we shall study. The functions E(t) and f(t)
are given at discrete, uneverly spaced points, and not, in general, at
the same points, i.e. we know

fio= ) d=h,..., M

E. = E(U. j=1,..., N

; (J) J

and M>N. The values f; and £j are read from photographs of oscilloscope
traces. Because of instrumental difficulties associated with these
extremely short pulses, there is some fuzziness in the photographs and
some uncertainty as to the baseline values.

We want to choose & practical method that enables us to find as much
as we can about the function h {t) from data of this type. Equation (&)
is clearly a special case of (1), in which

a=90,b=00, K(t,s) = E(t-5), X(s} = h(s). (6)
The main features of this special case, which set it apart from (1), are

(i) The kernel, £, is of convolution type.
(i1) The functions E(U) and f(t) are both pulse-Tlike; in particular

K{o,0) = K(t,t)} = E(t-t) = E(0) =0 (7)

(ii1) Except for scale factors, the functions E(U) and f(U) are
quite similar in shape, though perhaps uniform’v shifted
in time.

I1. BACKGROUND. The books of Delves and Walsh, Reference [1], and
Baker, [2], contain recent accounts of more-or-less practical methoas
for numerical solution of integral equations. Generally, it is much
easier to solve equations of second kind, typically

b
[ K(t,s) x (s)ds + x(t) = f(t),
a

than those of the first kind,

b
!
a

K(t,s) x (s)ds = f(t),




whether the equations are of Yolterra type (b=t) or F

re
In our case we see from (&) and (5) that there i, > r2e) distincnion se-
th

¢noln type 5 Fixed:.

tween equations of Fredholm and Volterra type, but 30

re iffected by tne
ailments that are 2ndemic to integral equations of tne fir

St wkind.

These difficuities are well-described in [11. If we regard (1) as
an operator equation,

the difficulties boil down to the fact that the range ¢f the opera-or K

is too small and hence its nullspace is too large. That 15, solutions
exist only for certain functions. f, and more than one solution exists
when f does have the required form. When numerical methods are used, tnis
behavior usually manifests itself as near-rinx-deficiency or lack of
uniqueness in some system of algebraic equations.

The methoas commonly given for solving these prociems are as foliows:
«1) Quadrature methods, i.e. replacing the ‘integra’ by 3 “irite sum

and solving the resuiting linear aigebraic system either exactly or G-y
least squares.

(ii) Integral Trans®orm Mathods, i.e. fincing trins¥orms of the functions,

solving for the transform of x(t) and inverting.

{1i1) Parawetric or Basis Function proceduras, i.e. assuming a general
form of x(t), containing unspecified parameters, then sciving for these
parameters, e.g. by least squares.

Frequently when these methods are used on equations of the firs*t «ind,
they do not work well. Various procedures. loosely descrioed as regulariza-
tion, have been advanced for avoiding tnese difficulties. T“he methods oF
Tykhonov and ?hillios, Singuiar-Value Analysis and Cross-Vaiidaticn are 7
tnis general type wnen appliea to tne Quadrature or Parametric schemes,
and smoothing cf the integral transform accompiisnes something similar for
orocedures of class (ii).

For many probiems, any of these methods may be empioved. However,
it s easy to see that all come to some xind of grief in cu- -ase.
Principally, this is because we are forced to deal with the situiation where

E(t) and f(t) are nearly identical, apart from a shift and a muit.piicative
constant. [t is obvious from (5) that in tne limit wnen

f(t)=cE(t-p)

tne meaningful solution of the integral equation 1s

h(t) = ci(t-b)




Thus when f(t) and E£{t; are only sligntly di-<ervnt, wo muct wxsect %G

find the h is a rapidly changing function of t. An- neires ie.q. Guadrature;
that relies on smoothness will ancounter substantia c¢ifficu 1325 in tnis
case.

If we attempt to take Fourier Transforms, we get from (5) and the
convolution property

(W) :wh(w) =

where :f(w) is the Fourier Transform of f(t), ¢tc. We may solve “or ¢r,

o
~ -

but this gets into troubie because é-(w) will vanish at some points. dence
we can expect problems with this method as well.

Parametric Methods can probably be made to work, if we are skillful
at guessing the basis functions,but are objectionable because we may be
inadvertently constraining the form of the solution to pe incorrect if
our guesses are poor. Moreover, this method usuaily will invalve a
{possibly) non-linear, iterative least-squares solution to the probiem of
minimizing the errors at the data points ¢.. The computationa, costs of
this are unpleasant. !

IIT1. THE CUMULANT METHOD. To this writer, it aspears that the essence
of the problem with these methods is that the data :{t;, anc I{u;, cont:'r
less and less information about h{t) as the functions £(t} and (t} Seccome
more nearly similar. In the limit where

-
—
o
~—
(R
g]
m
—~
[nd
o
—

the only information about h{t) that the integral equations can possibiy
furnish is the two numbers c ard b. On the other hanc wnen f(t) and £(t;
are sufficiently dissimilar, at least one of the standara me*hods will
usually find stable estimates of the entire shape of n(t).

This suggests that the most suitable method for the case where E and f
are generally similar is one which concentrates on finding only a sma’.
number of resultants. The obvious choice is the low-order moments (or
something equivalent). By focussing all the information in the data on
the estimation of a few, low-order moments, we shall find these quantities
with all the precision that the information can provide. If, on the other
hand, we attempt to find the entire shape of the function, n{t), we are
diffusing the comparatively small amount of information across a large number
of ordinates, none of which can then be found with much accuracy.
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It 1% converient to carry out these notions in terms of the
cunulants, rathor than the moments, of the functions &, f and h, These
are deriyable as follows: let

vo(w)

: In ¢E(w) - In @E(o)

cumulant generating function of E.

and similarly define w{(w) and vh(w). Then from (8)
and the fact that

vefo) = ~®E(0):h(o)
we obtain
wh(W) = yelw) - wE(W) (9)

The cumulants, y (E), are defined in terms of the coefficients in the
Taylor expansion " of yp about w=o, i.e.

(e . n
vlw) = 1y (g) L
£ - n r
n=1 :
or .
. ap G plW)
vo(E) = i rall
n dw "W=0

The cumulant generating function is thus the logarithm of the Fourier
Transform of a function having unit area, i.e. a probabiility density
function. For such a function it is well-known that

wl(E) = M_ = mean of E
wz(E) = JE = variance of E (

- o3 10
v (E) =Y (E)c )

w4(E) = YZ(E)UE
where vy.(E) and y_(E) are the skewness and kurtosis of E, and similarly
for f and h. Combining (9) and (10), we have

" T e MEz 1/2
0 = (0% - oE) (M)

- ! 3 o3
Y](h)—{Yi(f)cf Y (E)og Yoy
= i i L
Yz(h)-{Yz(f)of -YZ(E)OE b

Thus, we have only to find the resultants M,Y, oand y_ for f and E and
use the above formulas to find the analogous resu]tantg for h.
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Phe moct setistactory methoo for finding the resuitants M, - Y,s &N
Yy fer f and £ 45 to it cubic spiines to the data and integrate the
splines. We define
as

s (E) = 7 SkE(s)ds k=0,1,...4

-0

and similarly for f(t). For each k,a cublic spline is fitted to the
integrand and the spline is integrated exactly to obtain Uk' Then, e.g.

oé = u_(E) _ 2
U%TET E (12)
3 (E) 2 5
i (E) = 7o E ME (ME +3E)}/E
w,(E a2
Z(E) - _ﬂ_(E) _QME —u—%(E) +3 ME (ME + 20: ) /CE
o) uo(37

and similarly for 1.
This spline procedure has scveral desirable features.

{1) 1t can handle unevenly speced data.
(ii) It makes only very modcut assumptions about the shape of the fitted
curve.
(iii) It is conveniently executed by available software.

The second of these features is very important. [t means that the method
does not impose any constraint on the solutions except the rather mild one
of 2nd derivative continuity. Tnis imparts a substantiel advantage to this
scheme, as compared with the parametric, or basis-function procedure, in
which implicit, prior assumptions about the shape of the solution are
unavoidable.

It is scarcely necessary to remark that considerzble caution is
necessary in using this spline method. Each of the guantities #nw,o , v.(h)
and Yp(h) is found by subtracting other quantities that may differh !
only slightly, which means that accuracy will be a problem. As E and f
become more similar, the quantities y.,(h) and y,{h) will behave more
erratically. Eventually, eveno 2 win beéome so small that we cannot
conclude anything about it except that it is nearly zero. At that
point, the function h is so narrow and sharply peaked that our method and data
cannot distinguish it from a &-function.

IV. SOFTWARE.

A small set of FORTRAN programs was written in order to carry out
and test this method. The main program, MAIN, reads the data, contaminates
it with Gaussian, uniform noise, calls the subroutine MOMTS and calculates




M» Op> Y](h), wz(h) from the moments of £ and f, MOMTS calculates

the moments of £ and f from the data..

In addition to these, a program was written for test purposes
which generates Gaussian pulses tinged with noise and makes two calcu-
lations.

(i) It finds M O Yy (h) and Yz(h) exactly as MAIN does.

(ii) It calculates the ordinates of the function h(t) by the
quadrature method, using the singular-value decomposition and discarding
singular vectors of small singular values.

This program permits us to compare these two methods of finding h(t).

The spline method for estimating cumulants invokes the IMSL
subroutines ICSSCU and DCSQDU for fitting cubic splines and integrating
them. The first of these allows smoothing of the data, but it was
found that smoothing had very little effect on the accuracy of moment
estimates (as one would expect).

The quadrature method (see [1]) replaces the integral equation

t.
f. = 1V E{t.-s)h(s)ds i=1,..,N
1 0 1

by the trapezoidal formula

i
fi = ZeW E. b= TAL N

k=0 k=0

where A is the mesh spacing in the integration

Ei_ “E (ia-ka)

W =T for Tgkgi-1
=1/2, for k=0, Kk = i

h, = h(ka).

Ajs ANkEi_k.

This ieads us to a linear algebraic system with NxN matrix A = [AikJ'

A is a Tower triangular matrix that is nearly of Toeplitz form. The
matrix equation

Ah = f
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is solved using rank-sciection bascd on the sirguier-vaiuc H
| decomposition. The programs MINFIT andg MINSGL from thz IMSL ROSEPACK }
[ collection are used for this purpose.
|
b

V. EXAMPLES,

We present two examples ir which the cumulant and quacdrature
methods are compared on two different problems, loosely specking an
easy problem and a hard one. In all cases the exact pulses E, f and
h are Gaussian with

2 2
x-M
_ ? — x-M
, eV ( e ) feem1/2 (T
’ f
_Mh 2
h = Ch h
;12
with M =M - M, 9 = ("¢ 0g ), C = . f
’ “E’h
The deta points are at t. = 1,i=0,:+-+,24 and - . = .0005.
i noise
Easy example: M_ = 8.0, ' = 1.6
t
M =14.0, . =2
¢ P 2

and the exact solution has

= 6.0, =t =1.5100, vy;(h) =y, (h) =0

Figure 1 shows the exact forms of the pulses E, f and n, together
with the points obtained from the quadrature methcd with rank-selection
based on the singular values. Five different trials, using different
random number seeds for noise generation, gave the results shown in Table 1.
The results for the five trials are not distinguishable on ihe scale of
Figure 1.

These results show that both methods were satisfactory. The
quadrature method with rank selection based on singular values gave
accurate and stable estimates of the function values. The cumulants up
to y](h) are also found with reasonable precision, but yz(h) is unstable.

Probably we would regard the quadrature method as the better one because
it provides somewhat more complete information about h. The matrix A has
N=25 and rank that ranges from 11 to 14, so A is very rank-deficient even
in this easy case. The rank was found so that the solution for h agreed
better with the exact solution (in the L, sense) than for any other rank.
Naturally, this method cannot be used whgn the exact solution is unknown,
as will usually be so in practice. The results show that, while the rank
may vary substantially, the solution values are pretty stable.
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Figure 2 and Tabie 2 show like results for ire hardg example:

Me = 8.0 e T 1.6

Mf =13.0 0 1.7

f
which has as exact solution the narrower, sharper pulse witpn

Mh = 5.0, T 57446, y](h) = vy (h) =0

Both methods had a difficult time with this example. However, the
quadrature method gave almost no accurate information beyond the fact
that the h-pulse was located near t=5. The pulse is depicted consistently
as somewhat Tower and lesssharp than it really is, undoubtedly because
of the severe smoothing that has been done in the rank-selection process.
This consistency is unfortunate because it implies that, in a situation
where we did not know the true solution, ‘inconsistency in the estimates
might not occur to warn us of impending trouble.

Although the cumulant method also did poorly, its results were
better than the quadrature method on two counts. First, it provides good
estimates of the area and location of the h-pulse, and acceptable estimates
of 5 as well. Second, although the estimates of skewness and kurtosis are
bad,htheir inconsistency is @ clear warning not to trust them. It appears
therefore that the cumulant method gives us more useful information than
the quadrature method in this case.

VI. DISCUSSION AND CONCLUSIONS. The examples support the intuitive
notion that, when E{t) and f(t) are similar, the best procedure is %o
estimate a few, low-order cumulants of h{t). The calculations using
splines are simpler than those involved in the other procedures and focus
on the only quantities that can be predicted with any accuracy and stability
in this worst-case limit. The method does not require evenly-spaced data
and makes the mildest possible hypotheses about the solution.

Even if the functions E(t) and £(t) are not much alike, it may be
worthwhile to use this cumuient procedure as a preliminary or adjunct to

" a more complete analysis. In particular, if the basis func:ion method is

employed, it may be very helpful to have at hand the information that the
cumulants provide about the general shape of the function.

Obviously further work is needed to clarify both theoretical and
practical aspects of these methods.
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Exact
1.375
6.0

1.5100

. 0505
L1510
.2917
.3633
L2917
L1511
.0505

TABLE 1: Easy Example Results

Trials
1 2 3 4
.375 1.374 1.374 1.375
.006 6.005 6.00¢ 5.998
.519 1.520 1.513 1.477
L1133 .0824 . 2560 -.3178
.2529 1.029 1.751 -4.319
14 12 13 12
.00151 .00196 .00177 .00229
.59451 .59438 .5935 .5941
.0487 .0537 .0473 .0485
. 1450 . 1492 L1527 .1547
.2973 .2882 .2946 .2927
.3628 .3642 .3605 L3585
. 2884 .2957 .2887 L2933
. 1540 .1495 .1533 L
.0489 .0473 .0533 L0465
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TABLE 2: Hard Example Results

Trials
Exact 1 2 3 4 5
- (h) 1.0625 1.063 1.064 1.062 1.063 1.062
3}
A 5.000 5.003 5.004 4.992 5.005 5.003
Curuiant
n .57446 .5529 6222 .5804 5354 .6037 Spline
Method
v (h) 0 .4039 4.543 -3.468 -.2004 2.784
1
v () 0 -62.77 71.45 -6.227 -82.32 44 .69
rank - 15 14 17 13 15 }
Herr . - .00093 .00163 .00140 .00140 .00 33(
hl - .7206 .7202 7246 .7153 .7305
h(3) .0017 -.0558 -.0726 .0081 -.0617 -.0300 % Juadrature
h(4) 1622 .2642 .2790 .2166 . 2805 .2349 | Method
|
h(s) .7379 .5947 .5933 6293 .5844 .6275 ;
h(6) 1622 .2872 .2762 .2610 .2825 2667 |
h(7) .0017 -.0646 -.0518 -.0469 -.0537 -.0787
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as the product o an appropriate weigsht tunction and a cubac
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cquations, which detemine the approximate values ot tne function
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Cubic Splines anc \pneoxioate Soint,en

of Singular integral raguation-

Prica den ard B srivaston

1. Introduction: ‘v boundars value probloms i ohvsics oo

Lol alsiogs)+ LS e Rit,so(tadt = s, -i s .

IMe sincular intezral 15 to he toaxen in the sense of the Cauchy
principat value.  The factions a, b, N, ana §oare known:s and o s the
anknown function.  bquations o this tvpe have been studicd extensivel
in the classical theories of clasticity and hvdrodvnarites. These
cailations o 1so arise in the mathematical treatment of such diverse

1

Slelds as radiative transtor, noutvon transport, and particle phvsics.

In such contexts, the Gmetion o usually represents cither w patential
teLs., temperature, Jdisnincoment, velocity notentiall or oo fhin-tvpe
quantity fe.e. heat Clux, stress, charee density

e theoretical tfoundat tons For the stady of sineular ante il
cquations were laid by Hilhero's work an analviic tunction thoory i
Polncard’ s investication ot the coneral tneorc of tides. important
centributions wore snbsequent Ivosade by Soethier in her work on the

soccabled Tindex theorors ™ amd by Carlenim in hisderinvationos an

caplicit <olution for the hasic cquation. e clas=sie theerens of

[ 6
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Fredholm served as a model for the development of ihe anadvtical
approach now known as the Carleman-Vekua regularization of svstoms
ol singular integral equations. ‘The theory of singular integral
equations ot one variable is fairly well-understood, due to these
carly results and to the contributions of Muskhelishviliy {1], Gakhov {27,
and Privalov [3].

The attention to direct methods of solution i~ of comparatively
recent origin.  In 1969, F. Lrdogan [5] pronosced a technique which

1

cxniicttly bullds the "correct' singular hehavior of the solution in
the approximating scquence of functions. ‘The index theory provides the
weieht function, and the Jacobi polvnomials orthocsonal with respect to

this weight are used to represent the approximate =olution by the

relation
S git) = sitwit),

where wit) 15 the weight and (t) 1= a linear combination ¢f the Jacohi

polvnondals of degree . Subsequently, Prdogan and Gapta [o] doveioped

;
1S Chebyshev tvpe formala for nunerical evaluation ol sincular
intorrals, An excellent exposition of the brdocan-Gupta procedure 1s
ctven in [ T]L 0 Theocaris and Toakimidis (831 have proposed a variant of
this nethad, hased on the lobatto-Chebyvshev formula, which el ates
the need for the extrapoliation to determime the value of the function

st the endpoints of the interval.  Both methods roly on g Grscretization
o the cpmtion which nvolves the values of the finction at the ceros

of cortain polvaorials. Dow and FlTiot [0 also sueeest the nse of the

irtheconal poelvaerial- to <olve the <invalar antegral cquation. A proof




of the convergence of their algorithm 1s glven, wicr tne assunption
that the approximating sequence of polynomials ‘{n' converges to foan
the tiblder norm. It is to be noted that J(nl 1s o sequence ov inter-
polatory polynomials, and its convergence in the Holder norm is not
entirely obvious.

in the evaluation of non-singular integrais whose intearands cre
of only low-order differentiability, the Gaussian integration formulac
are nearly as accurate as the trapezoidal or Simpson's rule {{1(],

n. 187).  In the evaluation using a product integration rule cf singular
integrals, however, the accuracy of these formulac has not been established.
“oreover, the methods hased on Gaussian integration formulac suifer from
the previously menticned requirement that the collocation peoints coincide
with the zeros of certain polvnomials. tlence, if cither the right hand
side ol (1.1) or the kernel K {luctuates over a small interval, the

methods are effective only if - large number of points is usced.  Thus

there appears to be a need for further development oir low-cost, low-
accuracy methods.

One possible approach Jdue to Gerasoulis and srivastav [11] uses
piccewise linear functions to determine tne function {t) in i.2)
This procedure permits the analvtical cvaluation ot the integral
expressions, and vields satisfactory results for certain test proplems
with known solutions. CGerasoulis [12] obtained an improvement in
accuracy by usine quadriatic interpolation.  These earlier results
motivated the development of a cubic spline approximation method, In

addition to providing hivher accuracy, the spline nethol can also be

cxpected to be applicable to the numerical solution of singular




integro-differential equations.

Spline methods have been used successfully for the solution of non-

singular integral equations (see Ahlberg, Nilson, and Walsh [13],
Netravali and Figueiredo {141). In fact, Cabdulhaev [15] found that
under certain conditions, the spline method with equally snaced knots is
optimal among all collocation methods for the numerical solution of

Frednolm integral equations of the second kind.

The organization of the rest of the paper is as follows: Section 2
describes a procedure for the solution of (1.1) with a(s) = 0 and b(s) = 1;
section 3 is devoted to error analysis; and section 4 contains comparisons
of the numerical results obtained from spline approximation and other

methods.

2. Reduction to a nincar Algebrailc Syvstem:  The general strategy of

direct niethods for rhe solution of integral cquations is to discretize

the original equation by considering it only at a finite set of points in
the domain, and to usc some numerical integration formula to obtain a

syvstom of algebraic cquations for the values assumed by the unknown function
at these points. The accuracy of the solution is affected by bovh the
choice of collocation points and the quadrature {formula usead.

Consider the case where acs) = 0 and b(s) =1 in (1.1, and the
solution is known to possess square root singularities at ‘1. (The method
described below is applicable in general, although in some cases it may he
necessary to cvaluate certain integral expressions munericallv.)  Set

1

>

(2.1) att) = )Lty
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In most applications, it 1s possible to explolt the sywmietry properties of
the problem, and to work with either odd or even functions. Thercfore,

assume the number of node points to be (2n+l), and let -1 =t < t, <...<t, =1.

0 1 2n
Replace the unknown function ¢(t) by splines S(t) = Sj(t), (j = 1,2,...,2n)
on the interval [tj—l’tj]' It is computationally convenicnt to use the
form [13]
M s, Y 3,75 g
700 2 - g _ -~ _ . oo . _ N
o $;(t) oh; (t;- 1) +6hj (t-t; ) hy 76 ety
rh. o, M. h.
™i-1%5-17)
- Pt -t), =1,2, , 2N
he = t.-t. A= a(t.y, and M. o= SU(t.) = SV (t.). {( ol the
where hJ tJ tj-]’ ; (tj), and IJ SJ(tJ) J'l(tj) {Although the

above expressions for Sj(t) involve the moments, or second derivatives, of
splines, it is possible to use instcad their first derivatives.)
The function K(t,sk) is approximated bv Kj(t,sk) using a cubic interpolation

formula in cach of the intervals [ti_ t.}. In this way, the original

1°7]

cquation is replaced by a discrete analoguc

on L. ~ ot Q (ke N
n S.(t)de n S, (U)K (1,3, Jdt
L S A 10 T G
i=1/ VIt (t-s. = ) VTt K
] ltj_1 -t (t-s5,) =l %J-l 1t
k=1,2,...,.n
where the collocation points are chosen so that Yoot e ALt

quantitics in (2.4) can be evaluated analytically to yield In linear equations

‘.],‘

1""";n’:0’:1""’;2n' An additional (.-l

for the bhvl)lﬂwnomu:)%,M
euumtions dare furnished by the continuity ot the derivatives of splines;
namely,

AL+h, v h e, R
: | TP A2 S Ik VIR A S S S S R
(2.1) A{iA1+ hMji hj ; + l]i 4j+l hoo N o
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ITwo equations relating the values of the moments at tihc cndpoints are

needed. These equations are usually chosen to be of the fom

(2.5) aghly * By = ¢ M + o M C

0°  2nln-1 a2 T oo
Finally, a single cquation is obtuined from the corpatibility condition
2n (Y os.(

£ bj (t)dt

A =k, K constant.

(2-()) !
1k, . I
j-1

J

1~

Thus a total of (4n+2) equations in as many variinles is obtained. The

cocfficient matrix for the system of equations is of the form

1 . . - e R
witere \7 1s the 2n -~ (4n+2) submatrix of coefficients obtained from the
integral cquation evaluated at the 2n collocation points:
AT is the 1 < (4n+2) submatrix of coefficients obtained irom the

compatibility condition;

o7

and N is the (2n+1) x (4n+2) submatrix of coefficients obtalned from
the moments conditions and the continuity relations for splines.
In order to display the clements of the coefficient matrix in

convenient form, some operator notation is needed. Define operotors

Ik’ Jk by . )
Ay .t
(O =, ' jl;%—”?::—) ,Jpf = th U]f—it%tf
k-1 - k-1
Note that for polvnomial fuictions {, the expressions f{or (ka](s) and ka
can be expressed analytically. In particular,
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———" R ’ e —— - - T
o e C— .- e

t Ty, N T
Ik p-1 SN n-2 a1k e
Lty = B dees IS P L dar
k t /1¢7 kT h I
k-1 k-1" k-1
p 3 L
+S (Ikl)(S)’ p = 1,‘4)'
and ([16], p. 147)
Fo— S kel i
'+-1+v1-s" + s tan tafk————+ s - (vl 57+ 1) tan-=-!
1 i T 7
(1,1 (s) = Ln~ 5 5
V/1-s7 ‘ o k) 'k
|

{-1-v1-s +<Um——tm%——+\—L lVIb)th‘

| 2]

where 7 = arcsint, .
k k

Then the clements of the submatrix Al are given for j = 1,2,...,2n by

1 ( hy ) ,
SR [(m (t;-0)" - x -t i (,\J.)
3 } -
+ J. [6}1 (t (tv 'Fkt -t)K. i,] t)J
g [ L (1t )3- Lt )J\(c )
{ i-1l6h, e i el ST )]
- h
1 3, 1-1 ;
+ Jl_l{(ﬁ_‘l(t‘tl_:) }\l l,J(t) —6—(‘ tl‘ )}\]_1’] t)J
1= 1,2,...,2n+1
_ A
= (Iilq(rl—t) s ”‘\i,j‘t“
. (I [,hl,(t_t )1|‘(\‘ ) +J [(t-t. ,)K (t)]
{"1i-1 hi-l 1-2700 570 71 i-2 1,j 7
1= In+2, In+5,...,4n+2

where (ka)(s) and ka are taken to be zero for k = 0, 2n+].

2
the clements of A® are given by
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rol .3 hj g

1 3 0h ,
Ji[aﬁz*ti") ] ?T(ti"t)J*‘J1-1L6hi_l(t'ti~2) G

= o
-
—

i=1,2,...,2n+1

Ji[ﬁz(ti'tﬂ * Ji—l[ﬁfi]

1

(t-ti_7ﬂ , 1=2n+2, 2n+3,...,4n+2

where again ka = () for k = 0,2n+l.

The elements of A” are given by

Al,i = QO 1 =1
= 80 i=2
=0 otherwise
= 1 = 2
ops,i "% 1T
= uZn 1 = 2n+l
=0 otherwise
and for j = 2,3, ,2n by
Aj 1° 1 1=j-1
) 7{}]'”}}-1\ )
hj o
= 7 1 = J+l
j-1
= h.}?. 1 = 2n+j
“ji-1
o e L !
Ji-1 J
= ng i = 2n+j+2
J

=0 otherwise




From the above, it can be seen that the coefficient matrix A has the

structure

full

R

L

o
<

L}) 0

Note that when solving the system by Gaussian elirination using only
partial pivoting, it may be advisable to rearrange the matrix so that the
;i's are computed first, thus reducing the effect of round-off error

propagation.

- . . . . . €
3. Error Analysis: Define the functions %, ;7 as follows:

(i) 4* is the Type II cubic spline on the true values

¢‘(t.l), i=0,1,...,2n, with ¢*"(t ) = o"(t ), *”(t ) = On(th);

(i) ¢e is the spline on the computed values for ¢(ti), i=0,1,...,2n.

Let
S G PR (D PP S TN I C NIRRT S
X* = [0R(g) 4R ) **"(th),w*(to) o*ul),... * ()]
e e (o I D O AL IEM (N IS PP W)
and

f= [f(sl),f(sz),...,f(s ),k,C 0, ...,0,C 7.

2n
Tt will be assumed below that the splines used are the natural splines, so
Cy = CZn = 0. The system of cquations which is being solved can therefore
be represented as
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LS.].) AXT = f.

The vector x of truc values satisfies

(3.2) Ax = f
where f = f+6, and & is the vector of errors in the numerical integiation

due to the use of splines. Hence

RIS

(3.3) IxE-x)) 7 opatt

The above inequality can be used to obtain an error estimate for the spline
method. The j-th component of ¢ is given by

1 4 A (K%K )dt
{ (o*-¢)dt e j=1,2,...,2n
-1(

(3.4) §. = ]
t—sj)/l-t* -1 V1-t7

1

where Ke is the piccewise cubic approximant to K,

G

dt.

(3.5) 8, o1 T,
T

Sonez = 2 (Ey)

St

94n+2 Zn)

and 9j = 0 for other values of j. Let
(3.6) e(t) = ¢*-9 , e'(t) = ¢*'-0".

Then i1t has been shown (see [17], p. 107) that

5 [’i (l\/’) {(}\4

(3.7) €1 < =27 (iv) 3

‘e“ _l._.‘
) YA il
e

where h = max h. .,
j J

The second term in (3.4) is easily shown to be less than or equal to
r{  max ;1*}-maxLK€~Kf + max|e|-max|K }
-1st<1
which is o(hhy.
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Consider now the first term in (3.4). Supposc the mesh is uniform; i.ce. h.=n

for all j. The results below are not significantly aftected if this assumption

does not hold. Furthermore, assume that the collocation points Sj arc chosen

This estimate is not sharp, but appears adequate. for s, € (t

to be the midpoints of the intervais (:ti_l,t].). For s, € HO’tl)'
1 (p*-¢)dt | ot [e(t)-e(s;))dt! . 4 dt
|f e R tlels)ist, —— =
Ly s ey (s /T Sty (t-s))1T7
Zn Tk
v _eydt —

1\2& (s VT

T n-1 1
T P EUPE R eV ‘ Mo =2 T
(3.9) LA Q\_ﬁ* WE My e M, g, KT
where
2-h-
N | S - S NS
! 'jt@ (t—sl)w'l'-'t‘“[ Vh Vi-h - 7h,
4-h
= 0(h™ 9
tk t;
M, = max: ~~d—t—A 2 rdt = cos (-1+
T ko YTt e Tt
k#1
1
= 0(h?)
and
Iy -
an : 7}\-1_1 = O(h?)’ >0
k=1 ~
Thercfore
1 ‘ T
r (b"( ¢)dt = [)U]:_O), IS 0.
J 1(t-s;)v T-t

t. ) the
n n-17 2

same estimate holds.  Next consider Sj € (t ) with j#1,2n. In this case,

.
1-177]
1

’r L(‘)* ('L)dt
Jl (t- x}) At
‘ PR >
i)(t}‘ [e(ti- (.”V;-)Jdtd Lis.) e : dt h“n i k __edndr
! N Y - T
t.l {t- .)1 &j_l(t sjivlt i#ly /tkl(t\lvlt
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oy

, . /h o a
. ) el e e L
: s 5 AR LR
where
t ¢ 2. =t 2. - t e Tz
.\1_—}“ ot e TR s Tae *Q_J_(g
P > - Tt 1) e P - \
tj_lttswl t T tes, )tJ_l i
-t .
o) T{t)dt s
= ‘—i‘k '_37’;7 , t]-l < (t) -t
e g a7 ‘
= 8 R h(l-h)
T YA - 5 3/
1.5/ -2
- 2
; =om 4
ﬁf and
3 My o= max’ - = O0(h'/7)
' I\’Tk_l Vl-t
N
h Therefore
" (0% -, RN
% __bﬁigﬂfgfﬁA = 0(he™y, 2o 0.
el (t«si)vl-ti"
%, Note that the estimate (3.3 should be used with caution since the quantity
', 4 ”\_l‘, depends on h.  The appendix lists values of “A~1§‘ and \_1',- - to be

used in estimating the error involved in solving a particular cquation. i

practice, it has been found that for problems with known solutions, the spline

éﬁ method produces results of accuracy considerably better than would be expected
ig from (3.3), thus indicating that the error bounds ubove could provably be
- significantly improved.
. ¢
i

4. Numerical Results: The spline method has been used to solve a number

of singular integral equations, including the following:

bxample 1.
l-l At I(l

(1.1) PRt e L sin(t-s)lt)dt =
A t-s |

.
»
Y
»
[

1(J)cos s+ ], -1 ow ]
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where Jl is the Bessel tunction of the first kind of order 1. “ne solution

g(t) is required to satis{y the compatibility conditior
1

;

g(t)dt = v.

Moreover, g(t) 1s assumed to possess square-root singularities at -1, and

3

hence to be expressible in the form
A o . 2.-1/2
(4.2) g(t) = o(t)(1-t7) .
Then it can be seen that the true solution s given hy (4.2) with 2(t) = t.

The table below displavs the maximum crror € in the values for o (t) computed

using the spline method.

n* €.

2 0.00004]
3 0.000003
4 0000001

*n 1s the number of nodes taken in the interval [0,1]. For n=", the comjated
solution was accurate to the limits of single-precision computation (8§ digits..

ixample 2.

l»’l t‘[t) =
= :det - "AJ ait)dt = Py -1oos < 1
o -1
subject to the compatibility condition
-1

g(t)ydt = 0.

-1
The above cquation arises in the plane elasticity problem for a plate bhonded
to an clastic half-plane. 'The solution gt} is again assumed to be of the form

b ‘]/ 3

plt) = 2+ (t)(l-t7) o,
lhe table below displays some values of [ {t) chtalned by the spline method
for » = 1/3, Py = 1 compared with those given by Lrdegan-tupta |o].
In this case, natural splines were used; i.¢. it was assumed that

b=t ) o= 0,

0 n’
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t Lrdogan- Gupta (n=-+{) Spiine (n=iu;

0.11753 0.08016 0.Co17
0.27144 0.18064 0. 15005
0.31860 0.29205 0. 20207
0.55557 0.39542 0.39544
(.67880 0.495.22 (45322
0.78531 U.58935 0.55u54
0.87249 0.67482 LT
0.93819 0.74762 S
0.98078 0.80240 SPESETS
0.99923 0.83172 CLslTh
1.00000 0.8331" 0.82867

‘obtained through extrapolation
“obtained directly
{1t should be noted that the spline method used cgually spaced nodes.  PFor
purposcs of comparison, the values of ;{t) at the LErdogan-CGupta node points
were obtained usin: spline interpolation. It is to be expected that the
spline method would be more accurate at its own nodes than at intormediate
points.)

As can be « oo from the table above, the results for the twoe methods
are in close agreement for |t < J.78.  fhe Jiscrepancy near the endpoint
+1 would seem to indicate that natural splines were an inappropriate cholce.
when "not-a-knot' conditions 18] were used instead, the value obtawmned ifor

1) was 00,8335,

Lyqqﬂg‘S.

1 b2
voosWhe e D METS L = s
"1‘1 t“ﬁ ‘Ll(t”*ﬂ\”—)"
subject to the compatibility condition
.
' cit)dt = 0,
1
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The above equation arises in the probilen of o Crw o Crucs inodl
infinite isotropic elastic medium under constant load  along its four
branches,  As before, the function g(t) is ossumed to be ot the fom

RS 2l
() = ser)(l-t7) 1/“.

the table below provides a comparison of res~uits obtained irom the
Erdogan-Gupta method [8] (Col. I): its Lobatto-Chebyshev variant [8] ol
Iy and the spline method (Col, 171). XNote the corrvect value for @71y fus

been calculated by Rooke and Sneddon [19] to be 0.50306,

n trdogan-Cupta Lobatto-Chebyshev Spiine
3 0.8504 U854 L5840
4 (0.8288 0.5639 1, 8041
3 0.5029 0.8045 L8050
O 0.8058 h.56d4d P SeRT
- U.8653 ,8642 L8650
N 0,862 0. 8041 i1, 8030
0 UL S050 0.8640 L0020
10) 0,808 U.5038 v 8030
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APPENDIX

The error estimates (3.8) and (3.Y9) can be written using (3.7) as

(A.1) ¢(i‘”l’{ + f[ L Aeni“\/j“ L zn‘_]—lg——l \1}
24/7R a5 | 7w R ke L
Th
= ¢, ey
and
4(1V) { 1-h T 1
(A.2) i _-_, ¢
1 4/7‘r' 8072z by L

iv)
¢( V)n-
From (3.3), the error in solving the equation
1rl g(t)dt
= f(s), -l <s <1

'('}1

1s therefore given by

A L emaxc,,C) e e Y
1°C;
The table below lists values of jA_l}lm and max(C;,C,) for selected values of n.
n L max(C,,C.) Al emax(c,,C.)
i e : 1°>2 i o 1’72
1 6.5 x 107 9.3 x 1072 5.9 x 1072
2 3.8 x 100 8.3 x 107° 3.2 %x 1071
4 1.9 x 10° 7.9 x 1074 1.5 x 1071
\ 2 -5 -2
8 7.8 x 10 7.7 x 10 6.0 x 10
10 2.0 x 107 7.5 x 1079 2.2 x 1072
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CAN DISSIPATION PREVENT THE BREAKING OF WAVES?

Constantine M. Dafermos
Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

J Brown University
! Providence, R. I. 02912

ABSTRACT. We show that dissipative mechanisms induced by friction,
viscosity or thermal diffusion prevent the breaking of relatively weak
waves but are Ineffective against waves of large amplitude.

I. INTRODUCTION. Compressible weak waves that can be modeled as
solutions to quasilinear hyperbelic systems of conservation laws are
generally amplified, as they propagate, and eventually break, due to the
formation of shock waves. It is interesting to consider the situation
where this destabilizing mechanism coexists and thus competes with
dissipation. Damping induced by viscosity of the rate type is so power-
ful that it dominates and prevents the breaking of any wave. Far more
interesting is the situation where damping is induced by “"friction",
thermal diffusion or viscosity of the Boltzmann type. In these cases the
dissipation mechanism is subtler so it may prevent the breaking of
relatively weak waves but is ineffective against waves of large amplitude.

e cata

o

In Section II we exhibit results of this type in the context of a
simple model in which complete proofs can be displayed in short space.
In Section III we survey related results for more complicated systems of
physical interest in which the analysis, too elaborate to be presented
here in detail, is based upon the same principles as the analysis of the
model case of Section 1I so that the reader will have already gotten a
taste of its flavor!

II. A MODEL CASE. We consider wave phenomena governed by the ‘
Hopf equation )

u, + uu = 0. (I1.1)

Expansion waves are spreading out and get weaker while compression waves
are amplified and eventually break. Specifically,

PROPOSITION II.l. The Cauchy problem for (J1.1) with initial

conditions u(Q,x) = u(x) € Cl(—M.w), with bounded derivative, has a
global Cl—smooth solution {f and only {f Jx(x) 2 0, -w ¢« x < », When

Ex(x) takes negative values, a local Cl—smooth solution exists which
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breaks down at t = [~inf G;]-l.

PROOF. The characteristic equations read

ﬂ:
ac Y
(11.2)
du _
dt 0

so that characteristics are straight lines along which u remains con-
stant. Thus, when U(x) is nondecreasing on (-»,»), the fan of charac-
teristics diverges and a global Cl-smooth solution exists. On the other
hand, when ﬁ*(x) takes negative values, characteristics collide and

shock waves develop,
In order to determine the exact time the first wave breaks, we
follow the evolution of u along characteristics. We set v(t,x) =

ux(t,x) and take the derivative of (II.1l) with respect to x, thus

obtaining
2 _ ]
v, + uv, +v =0 (I11.3)
or
dv 2 _
v + v7 = 0. (I1.4)

Thus inf v(t,x) will be bounded for t < [-iInf _Jx(x)]~1 but will tend
X _ - -
to -~ as t » [-inf ux(x)] l. As a matter of fact, when ux(x) attains

a minimum on (-»,») at a point ;,v along the characteristic issuing at

)

will tend to =-=, as t =+ [;Gx(;)]-l so that the wave emanating from
— = -1
will break at t = [-u (x)] . @

Let us now investigate the effect of the presence of frictional
damping,

u +uu +pu =0, u~>0, (11.5)
t X

We will show that even compression waves do not break so long as their
amplitude is not large.
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PROPOSITION II.2. The Cauchy problem for (I1.5) with initial

— 1
conditions u(0,x) = u(x) € C (-»,»), with bounded derivative, has a

global Cl-smooth solution if and only if E;(x) > ~p, —© < X < », and
the amplitude of waves emanating from points x with 5?(;) > =

decays to zero exponentially, as t + . When u (x) takes values less
than -y, a local Cl—smooth solution exists whic: breaks down as

t -+ u-llog[m/(m+u)], where m = inf H;(x).

PROOF. In the place of (11.2) we now have characteristic
equations

ax _
dt
(11.6)

du _

dc - THu-
Setting, as before, v(t,x) = ux(t,x) and taking the derivative of
(I1.5) with respect to x we obtain, in the place of (IL.4),

dv + v2 + uyv = 0. (11.7)
1t Is now clear that If ﬁx(x) >, W < X < e, ux(t,x) will be bounded

and a global Cl-smooth solution will exist. Furthermore, v along any
characteristic issuing from a point % with ﬁg(i) > -u decays to zero

exponentially, as t » «». On the other hand, when G#(x) takes values
less than -y, igf ux(t,x) wiii be bounded for t < U'llog[m/£w+u)]

but will tend to -» as t -+ y “log{m/(mtpy)], where m = inf ux(x).

In fact, if ux(x) attains 1ts_ﬁinimum m < -y at a point fiv along
the characteristic issuing at x will tend to -» as t = y log{m/(m+n)]

so that the wave emanating from X will break at t = ucllog[m/(m+u)]. )

As seen from the above proof, the advantage of the method of
characteristics lies In that 1t ylclds explicitly the threshold amplitude
beyond which waves break as well as the time the first wave breaks. On
the other hand, the method 18 very special and it may be expected to work
only when the equations are very simple. We now gtatce another result in
the same spirit which 1s less precise but whose proof is more versatile
and thus amenable to far reaching generalizatioms:
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PROPOSITION II.3. Consider the Cauchy problem for (II.5) under

initial conditions u{0,x) = u(x) with G;(x),ﬁ;x(x) in LZ(—w,m).

Then, 1f

— —_ 2].12

(11.8)

there exists a global Cl—smuoth solution u(t,x) such that u (t,.),
2 2 *
ux‘((t,') are In L7(~>,«) and theirv I, norms decay to zero

exponentially, as t -+ o,

PROOF. We first give the idea of the proof. Assuming that a
sufficiently smooth solution u(t,x) exists on [0,T) x (-»,=), we
differentiate (II.5) with respect to x, we multiply by 2ux, we integrate

over [0,s) x (-=,®), 0 < s < T, and integrate by parts, using the
identity 2(uu ) u = (uu)z()x + ui, thus arriving at

J_mui(s,x)dx + J

s o ) >
I_m(2u+ux)uxdxdt = J mux(x)dx, (11.9)

0

from which we could get an L2 bound on u_, uniform in time, if we had
|ux(t,x)| < 2u. This appears, of course, uSeless since pointwise bounds

are locally stronger than L2 bounds so one would have to assume more
to get less. One may,attempt to obtain pointwise bounds on u by
establishing first L~ bounds on u__. To this end, we diffefentiate
(I1.5) twice with respect to x, we ﬁéltiply by 2uxx’ we integrate

over [0,s) x (~»,») and integrate by parts to derive the analog of
(11.9) for second derivatives. The anticipated difficulty is that, we now
may have to assume pointwise bounds on Uy in order to obtain L

bounds on uxx' This danger, however, does not materialize! The derived

estimate, upon using in the Integration by parts the identity
2 2
2(ua ) u = (uu ) + 5uu , reads
XXX XX XX’ x X XX

o s poo . o
J -uix(s,x)dx + J()J'-m(Z]H ')ux)nix(lxdt = J_mlfix(X)dx' (11.10)

The miracle is that only a pointwise bound 5|ux(t,x)| < 2y on ux is

needed in order to get a uniform L2 bound on uxx! This is not a

coincidence but rather a consequence of the algebraic structure of the
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operator of differentiatlon. Consequently, as it will become evident
in what follows, this methodology has wide applicability.

It is now easy to synthesize our proof. Let {0,T), T <=, be

the maximal interval with the property that there is a Cl-smooth solution
u(t,x) on [0,T) x (~=,») such that ux(t,-),uxx(t,~) are in

L]0 (10,1517 (=2,%))  ana ,
i!ux(t.")H 2Huxx(t,-)H , < 2;5 , 0<t<T. (II.11)
L L

The existence of such a T follows from a straightforward local existence
theorem and assumptlon (71.8). TFor s € [0,T) we have estimates (T1.9)
and (11.10); (the given derivation of (I1.10) is only formal, within the
present function class, but the estimate can be casily established
rigorously either through difference approximations or via a densiry
argument) . ‘

By account of (I1.11) and

2 x o2 ,
ux(t,x) = J—w(ux)xdx 5'21|ux(t,')“ Lzl‘uxx(t.')u LZ, (11.12)
we get
qu(t,x)l < Z%~, ~ < x <o <t <T, (11.13)

which, in conjunction with (1T 9)and (T1.10), implies that |lux(s,-)” 2

and  Jlu__(s,")]| are nonincreasing on [0,T). Thus, if T < =, whi
XX L2

may extend u(t,x) up to t =T and (I1.11) will now hold for t = T.

But then, by the local existence theorem, u(t,x) can be extended onto

a small interval beyond T, still satisfying (II.11), and this is a

contradiction since [0,T) was assumed maximal. Therefore, T = = and
the solution is global.

Exponential decay of }]ux(t.-)” LZ and ‘!uxx(t,-)” ]2 follows

easily from (11.9) and (11.10) upon observing that 2p + ux(t,x) and %
2u + 5ux(t,x) are uniformly positive on ([0,©) x (~w,~), @&

Let us now equip (II.l) with a dissipative mechanism induced by
vigcosity of the Boltzmann type:

t
u_ + uu_ + j a'(t-t)uu d¢ = 0O, (I1.14)
t x 0 x

where a(t) 1is a smooth relaxation function with properties to be
specified below.
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The casual obscerver does not discern any slmilarity between (11.5)
and (I1.14): Damping 1s Instantancous In (11.5) but distributed over the
entire history of the solution in (T1.14).Ncevertheless,the lollowing argument
(compare with MacCamy [7]) reveals a close similarity between these two
equations.

Let k(t) be the resolvent kernel associated with a'(t);
that is k(t) is the solution to the linear Volterra integral equation:

t
k(t) + J a'(t-k(r)dr = -a'(t). (I1.15)
0

Taking the convolution of (I1T1.14) with k(t) and after a simple calcula-
tion we arrive at

t

u, + uu + k(Q)u + J k'(t-1)udt = k(t)u (I1.16)
0

where u(x) = u(0,x). We thus observe that when -a'(0) = k(0) > 0,

(11.16) contains the frictional daemping term k(Q)u. 1In fact, when

a(t) = e—t, then k(t) - 1 so that (1I.16) esscntially reduces to (II.5)
(the forcing term U on the right-hand side of (Il.16) can be handled
easily. )

It is not easy to establish the existence of global smooth
solutions to (I1.16) by the method of characteristics since the
integration in (I1.16) is nlong lines x = const. rather than along
characteristics. 1In contrast, it is straightforward to adapt the energy
method employed in the proof of Proposition II.3, provided that

k(t) € L2(O,w) (in order to handle the forcing term k(t)u) and that
there is p > 0 with the property

s d t S 2
J v(ut)= J k(t-t)v(r)drdt > ;.J vo(t)dt, (11.17)
0 de Jy 0

9
for any s € (0,~) and every v(t) € L"lOC(O,m). For assumptions on

a(t) that would guarantee the above properties of  k(t), we refer the
reader to [7]1.  Under these condftlons, we obtaln castly, in the placoe of
(11.9) and (11.10),

Lt e] S o
J uz(s,x)dx + J J (2u+u )uzdxdt (I1.18)
o X o) —m x7 %
00 —2 S o _
< J u (x)dx + ZJ k(t)J u u dxdt,
- X X X
-0 0 -0
-, q pon 5
J u (s,x)dx + J J (2p+5u Yu dxdt (11.19) #
—00 XX g’ - X XX

8

k(t)J u_u__dxdt,
0 ey XX XX

J Eix(x)dx + 2J

tA




respectively. On the strength of the above estimates, following closely
the pattern of the proof of Proposition T1.3,we establish

PROPOSITION II.4. Assume that the relaxation function a(t)

induces, through (IT1.15), a resolvent kernel k(t) € Lz(O,m) which
satisfies (II.17). Consider the Cauchy problem for (IT.14) (or,
equivalently, for (II.16)) with initial conditions u{0,x) = G(x) where

u and ;?x are in Lz(-w.m). [f l(ﬁ;” IZ,IIGXXH L2 are sufficiently

small, then there exists a global Cl—smooth solution u(t,x) and

w (6,9, u (6,) are in L7(10,9);L (o) 1 L7 (10,2)1% (-, ).

ITT. SURVEY OF KNOWN RESULTS. Consider the second order quasi-
linear wave equation in one space variable,

- = LAY LN
Voo o(wx)x 0, o 0, o 0, (111.1)

which is equivalent (upon setting u = Wes Vo= wt) to the genuinely

nonlinear system of hyperbolic conservation laws

(111.2)
t ve - cr(u)x =0 .

The characteristic speeds of (IIT1.2) are i/o'(\S— generating a family

of forward and a family of backward characteristics.
The principal Riemann Invarlants are defined by
u e t1 . .
r=v+ J Vo T(£) de, § = v - J Yot (7)dr. (1Lr.3)
0 0

For Cl—smooth solutions, r remains constant along forward characteris-
tics and s remains constant along backward characteristices.
By monitoring the evolution of rx(sx) along forward (backward)

characteristics, Lax [6] has established the following analog to
Proposition TI.1:

PROPOSITION ITT1.1. The Cauchy preblem for (117.1) (or, equivalent-

1y, for (T11.2)) under initial conditions wx(O,x) - u(0,x) = u(x) € CL(—",").

”c(O’X) = v(0,x) = v(x) € C](~m,m) has a ylobal CI-SmnoLh solution 11 and
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only 1f rlu(x),v(x)) <0, s(u(x),v(x)) <0, == < x < = Uhen
r(ﬁ(x),;Kx))x and/or s(G(x),V(x))x take positive values, there is a
local Cl—smooth solution which breaks down .at t = T given
asymptotically (for small initial data) by

T min{[g;%g%~ sup r(ﬁ(x),G(x))X]-l, [g;%%%~sup s(ﬁ(x),Q(x))X]-l}.

(111.4)
We now equip (TI1.1) with a frictional damping mechanism, viz.,

W - 9w ) ke =0 o0, (tit.n)
tt X X t

or, in system {orm,

< (111.6)
L v = 0(u) + Hy =0,
t he

Nishida [10] estimates the growth of rx(sx) along forward (backward)

characteristics and deduces the following theorem, analogous to
Proposition IT.2:

PROPOSITION 111.2. The Cauchy problem for (111.95) (or, equiva-
lently, for (II1.6)) under initial conditions wX(O,x) = u(0,x) =

) € ¢l @y, ¥ (0,30 = v(0,0 = V(0 € ¢l (~2,2) has a global ot

smooth solut ion provided that hx(x), J‘(x) are bounded and
]r(u(x).V(x))X], ]s(u(x),V(x))xl are sulficiently small
On the otner hand, Rosinski [5] and Slemrod [11] have shown that

when r(ﬁ(x),V(x))X and/or s(i;(x),v(x))X take large values, waves

generally break and no global smooth solution exists.

The problem of existence of global solutions to (ITI.5) (as well
as to the multidimensional analog of (I71.5)) was also studied by
Matsumura [9] via energy cestimates akin to those used in the proof ot
Proposition 11.3. This approach yiclds the following:

EROPOSITIQN I!};};, Assume that o 1is Cj—smooth and o '(0) > 0.

Consider the Cauchy problem for (I1T1.5) under initial conditions

o e 7

WLV LV in L™ (=)
XX X* T xx

lVH I,;“ HV\” |) and Hv'_‘XH l'*) are

wx(o’x) = u(x), Yt(O‘x) = v(x), with G,Hxﬂi
when [la| y,llan ?.|IHKKH o
I I o I

sulticlently small, there exists a global C7=smooth solution with
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derivatives of first, second and third order in  L7([0,.0); L2(~m,x)).
Furthermore, as t + », gecond order derivatives decav to zero,
uniformly as well as in Lz(—m,m),

We now turn to damping mechanisms of the memory type. Our first
example is

t
W= Joa(t—\')o(wx)xdr (111.7)

which is a model of the heat {low equation In a wmaterlal with memory
{3] (w 1is temperaturc). Here ¢ 1is a smooth functlon with g'(0) > 0
and a(t) 1is a relaxation function normalized so that a(0) = 1 and
having properties to be speclified below.

Upon differentiating (iII.7) with respect to t we obtain
t
- - ot -4 )y ) e o
th o(wx)x Jﬂd (t ))(wx/xd 0 (1it.2)

which bears to (IIL.5) the same relationship that (I1.14) bears to (11.5).
In particular, as in Section [T, we may employ the resolvent kernel

k(t) of a'(t) {(cf. (I1.19)) to rewrite (ITT.8) into the equivalent
form

t

 etw ) (
w ((wx)x + k(()wt + j

e co= () 4 .9
e k'(tc )w[d 0, (111.9)

0

analogous to (11.16). Expleiting the similarity bhetween (11T1.9) and
(I11.5), MacCamy [7] establishes the existence of global C2-smooth
solutions to (I11.9) (and thereby to (I11.7)) by adapting the afore-~
mentioned methodology of Nishida for (117.5), namely, by estimating the
growth of ry and sy along characteristics; he imposcs assumptions on
a(t) guaranteeing that k(t) satisfies (11.17) and that k'(t), kK"(t)
decay sufficiently fast, as t - «. A necessary condition for (I1.17)

is that a(«) = 0, an assumption compatible with the physical interpreta-
tion of (III.7). Subsequently, Dafermos and Nohel [1] established
existence of global CZ-smooth solutions to (I1T.9) by means of cnergy
estimates thus arriving at a theorem analogous to Proposition TT1.4.
Finally, Staffans [13] proved existence by ecuploying encrgy estlmates
derived directly for (111.7). Here is a representative result from [13]:

PROPOSITION 1T1.4. Assume that o L5 Go-smooth with o' (0) > 0,
and that _a(t) is a strongly positive definite kernel with a'(t),
a"(t) € L'(0,»). Conslder the Cauchy problem for (177.7) under the

: . 2
fnftlal conditlion w(0,x) = w(x) wherc w‘, are in LT (e e

S I CA PP G PR AN

3

w
KX
are sufficiently small, there

W
XX

20
L
exists a global C -smooth solution with derivatives of first, second and
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third order in L ([0,%); L.°(=~,*)). VFYurthermore, as t > =», second

order derivatives decay to zero uniformly as well as in Lz(d“,w).

As another, related, example, consider

t
Wep T c(wx)x - Joa'(t—r)¢(wx)xdr =0 (111.10)

which is a model for the cquation of motion of a nonlinear viscoelastic
material. We normalize ¢ and a so that ¢'(0) = ¢'(0) and a(0) = 1.
Here w 1is displacement, 0 is the instantaneous elastic stress and

o, =0 - {1-a(=)}¢ is the equilibrium stress. The physically natural

assumptions are o'(0) = $'(0) > 0 and 0;(0) = a(«)¢'(0) > 0.

When o ¢ a, (111.10) veduces to (1HT.8) and wav therctore be
rewrftten n the form (110.9).  However, here a(») - 0 5o that the
kernel k(t) cannot satisfy (11.17). Nevertheless, MacCamy (8] devised
an alternative line of estimates, compatible with the physically reason-
able assumptions, and established a global existence theorem which hinges
upon pointwise bounds on e and S along characteristics. Subsequent-

ly, Dafermos and Nohel [1] and Staffans [13) considered the same problem
by means of energy estimates. In [1] the estimates are derived for ’
Equation (III.9) while in [13] the estimates are established directly for

Equation (III.8). 1In fact, Proposition III1.4 also covers the present

situation in the special case wt(O,x) = 0, 4

The general case (I11.10), with ¢ different from o, 1is studied
by Dafermos and Nohel {2] through cnergy estimates. They assume that
a(t) is a strongly positive definite kernel and a(t) = a(«) + A(t),

where a(«x) > 0, A(t),A'(t),A"(t) in Ll(O,m), and establish an
existence theorem analogous to Proposition III.4.

We should emphasize that the aforementioned methods of Dafermos
and Nohel {1,2] and Staffans [13] apply also to the mixed initial-
boundary value problem for Equations (111.8) and (117.10) as well as to 1
the corresponding problems for the two-and three-space dimensional
versions of these equations.

As our last example we consider the conservation equations of one-
dimensional nonlinear thermoelasticity:

_ 0 -
J Yiu U(WX' )x 0

i 0 =
l on(w ,0) a0y =0

(111.11)

where w is the motion, 0 is the temperature, o is the stress, n
is the entropy and q is the heat flux. Equation (III.ll)1 expresses
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conservation of linear momentum and (T11.11)., cxpresscs conservation
e

of energy. It is important that
0g(u,8) +n (u,06) = 0. (T11.12)

Physically natural assumptions are °, > 0, g - 0 and q' - 0. Dis-

sipation 1s here induced by thermal diifusion which manifests itself
through the presenee of the term q(OX)‘. The question 1s whether the

coupling between the two equations in (111.11) is sufficiently effective
so that the '"parabolic" (III.ll)2 may prevent the breaking of waves by

the "hyperbolic" (IIl.ll)l. It turns out that the effectiveness of the
coupling is indeed ensured by (II11.12).

Slemrod {[12] considers the mixed initial-boundary value problem
for (IIT.11) on (0,1) x (0,<) with initial conditions w (0,x) = u(x),
w, (0,x)
wx(t,l) =0 and 6(t,0) = 8(t,1) = 0. By means of energy estimates he

[}

v(x), 6(0,x) = 0(x) and boundary conditivus wx(t,O) =

establishes the existence of a global smooth solution under the assumption

that a, u_, V, V.,V ., V., 5}5;,6

u ? ’
X XX X' XX XXX XX

y ) and 6 are in
5 XXX
17(0,1) and their L -norms are sufficiently small.

XXXX

In contrast to the examples discussed butore, the proof of the
above result depends crucially upon the one-dimeasionality of the bodv
and 1t 1is not known whether thermal dissipation may prevent the breaking
of waves in two- and three-dimensional thermoelasticicty.

Another dissipation mechanism that may prevent the breaking ot
waves 1s induced by attenuation due to spreading of a wiave of fixed eneryv
into a large portion of space. Tt 1s clear that the effectivencess ot this
mechanism will {increase with the dimensfon ot space and the results ob-
tained so far require dimensionality higher than the dimension of physical
space. For relevant information the reader may consult the interesting
article by Klainerman [4].

This research was supported in part by the United States Army Research
Office under contract #ARO-DAAG29-79-C-0161, and in part by the National
Science TFoundation under contract #MCS 7905774,
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STRACT. We hawve ievelcored muoninery thys
the deflection 37 a floati & tale exvesool
r any boundury o nditicns. ""ve tonndary-vaiue rro bl -
late are stadicd.  We heve foune e the ool notonina
fcr the nonunigueness is that uncontrcolls telle N S TSP
side of a part that the plate covers in *:ne e nlane., The
cndition that muct be impesed to rroduce a o w1 ere
ing 3 region other than the entire infinite Tl=ne - -
flecticn is zero everywhere outside the region that ~he - 0. scouries,
INTROIMICTIC
The terie 2f this parer is some boundary-vialue rrotiers o0 the 1oerens

al eyuetiocn

VitwoF owo= 0 Pr{xex Yé(y-y ), i
[&] N
which esverns: the deflection w of a floatins elastic plaute ruct 3 Zoncen-
trated load P at a reint (xc, Yo ))where 74 is the Laplacian cperator and 37 )
e

the dela function. we use the nendimensional coordinates in (1)

“he solution of ‘1) for a plate covering the 2ntire infinite tlarne

T is
P - R an
w(x,y) = - —*»ke1VQx—x 2 o+ (y-y ) . 2.
’ 27 fs) Q
Tnin selution was lerived by Wyman (lh}. vut his derivation ia mat complete oo
cause he 211 not show that the substitution ~f (2) ineto fhe Tefs=iand 2% e oF
1)} yields rie zinealarity on the r‘fht-huni

Mmooy Colve Lhe i rTerentind

Livesley /) used the double Fourier-trancicr
ide ~f 17 with L iistrituted

a
equation obtained by revlacing the right-hand =

lond olz,v).  He Tound the uticn, however, ~nly < r *he .simple-edge bhoundary
coriition with regard *o the semi-infinite plate by uwse o s r ectio

principl Kerr (£ extended the arplication »7 the rerfl 1

many chapes of in ates of simple-edse bLoundarr oc n G

s
s5lution {27 as an

Wi ~ne unstated but implicit otjective of finding g break thoush “ne 18-
Srauley of zolving 10 faw she deflection of floatins elartic rlatec of warioos
chares and va*lous roundary conditions, ¥errs [7) Scl'ed come simple “cx“va*'-
value problems of '1) with twe ji0ferent methods and ob wed ~hat | everal
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reletionchivys invelving Bezcel functicons must hold true. Taresi (11,120 anelyti-
cnlly Troved all the reletionchize chown by ferr {7). Thus, a double-Icurier-
crarafern frrslng,
S N 1 16 (x=x )+in(y-y )
. : 2 £(x-x )+in(y-y
xexV(x-x )<+ (y-y ) = - — 5 e o 0 dedn 3
o o 2 (57+r)‘)2+l tdn 3)
—o )
. . R . . . [
zev tc the develorment In this verer, where 1 = (-1, was Tound.
We can now show that (2) setisfies /1) exactly. On substizuting the right-
rani side of ‘3), the left-hend side of (1) becomes
P [" (7 (x=x ) (
1€ (x~x + in(y-y )
Z;T'J J e o y o"dfdn ,
-t £
wrioh transforms 2o the richt-and side ¢ "1} wren tia exrressi-n
o iC
x .
J e "7dr = 2mé(x) (4)
—D
o7 the delta function as the Fourier trensfzrm of unitvy [(ref, 3,0) ic ured.
Jse of tne key fermula (3), analrsis in Takagi (11,12%,reccgriticn that tre
solution w cof e (') is a generslized functicrn (Arpendix I}, end use cf e

N 1—-
Tcurier transform of the ceneralized functions (3 b.S,S) have enabled us %o
institute an anelytical machinery, called virtuel reascticn method, which we have
extected to be effective for solving (1) for the deflection of floating elastic
plates of various shapes and various boundary conditions, rroblems which have
nitherto teen impossible to solve.

In the follcowing, first we show the derivation cf (3) 2nd scme thecrers
tasic to the operation of the virtual reaction method. Second, for solving the
deflection of & semi~infinite plate, we introduce a set of virtual reacticns
that may include the erfects of the reflection princinle. Third, we sclve the
voundery-value problems of the semi-infinite rlate by use of the virtual reacio
method. It is found that the reflection rrinciple vields a solution only for
the sirmle-edge tioundery condition, but not for other boundary conditicns with
or without the effect of reflection rrinciple, the virtual reaction method con-
sistently yields a solution “or every boundary condition. All the solutions,
hewever, ere not unique. The reason for the ncnuniqueness is discevered and
the condition that we cxpect will produce the unijue solution is precsented.

JASIC TEECRY
we prove (2) by wey of the followinz four proncesitions.

‘roposi‘ion 1. The TFourier reciprocal relationship holds between the Hankel

vy

function of zeroth order and the extonential function in the followinr:
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T oAl Luate cenverceace of the fnteyra] P S R TIPSR
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a —C+mi,2 IS
I = - - PG s | e (1+2°) dy . (d)

-

na)Zs (" faxn

-c-=i

Tc evaluate the internal sinsle intesral in (3)

cy the contour integral reinod, we first ncote vthat <he criginzl rance <7 x Tie.
@ < ¥ < ™) may te restrinted *c 0 < x, r # O, terauce T is an even Sur-cticn of
r, as the right-hend side 2¢ (v shows The condition © 4 2 i3 added to raxke
the fcllowins contour integration feacible. “rconsider the centour in Figsure )
“hat 3%arts =2t crisin D, gces alcong

<he pesitive real axis to A (i.e,

2 = =), takes 1 3~ *turn along the

infiniteilyr large circle to reach

Hle, o= lw) comes down alons

the imacinary axis to O ‘i.e. z =

s
i), makes a 2009 turn =iong an
infinitely small circle clockwise
around C, goes upward along the
‘macinury axis to rescn I (i.e,
= i=), takes a 90° turn alone
the infinitely large circle to reach
, and finally reaches
crisin ), thus ccrmpleting a circuit.
o sinsularity of the integrand '
+ ]
c

=)

t
o
[t4
N
[}

22)S exists inside

ontour. Among the

interrals aiong the path mention- Figure 1. Transformation of integral ¥
ed abowve, the integrals along AB and on the z-plane.

o vanish, provided 2> > C. The

intesral around 7 also vanishes. Ther«tore, .n tne condition that x > 7, and
x > 0O, we have

Cl D laxz 8
M = - (J + J e T (1427 ) dz
B C.
2
where 7, and Ty are the initial and terminal r:ints of <he infinitely small
sirele 2rouné C. Le*ting 2z = it, where ¢ is5 real, ‘! reduc <




M o= 1(1 - e 2718 J e ¥t (1-t?) 3¢
1

We now let s be
8 = - % + 1p

i.e., let ¢ in (a) be 1/2, where p is a real number, in order to integrate M by
use of the formula

-— V w— -
Kv(z) . I(1/2)(=/2) e Zt(tz-l)v 1/2dt , (e)
1

T (v+1/2)

which is valid when Re(v+ 1/2) > 0 and |arg(z)| < n/2 (Watson 13, p. 172). When we
let v-1/2 = s and z = ax to integrate M, these two conditions are satisfied.
Thus letting

1
(1-t2)% = "Peron®

M {ntegrates to

I'(s+l) K

M = -2sgin(ns) (ax)
/?(ax/2)5+1/2 s+1/2

In this way, (d) transforms to a single integral:

- = 4 o]
a 2 Ba,2s . I (s+l)
I = -Y-J r2(-s) (=9 sin(ns) ———=f__— K (ax)ds
m _l_ o 2 /;(ax/2)s+l/2 s+1/2

Changing the Gamma function of the negative argument to the positive argument
by the reflection formula

-7
I'(=s) [(1+s)sin(rs) °
[ becomes
N '%*‘”1 n X2 s2as
[ a V2a/r3x J . ) ds
1 iﬂin(ns) T (s+l) 2x
2
Taking the residues, I integrates to
I = -i/8a/7x & ﬁ:&lz(ﬁfﬂgﬂK (ax)
n=0 n! 2x n+l/2 )

Replacing Kn+l/2(ax) with

203




@

o Loz 27y -v-1
KV(Z) = 3 (2) [0 exp (-t Ac)t dt
(Watson 13, p. 183, 1 becomes
a o (-D% (T a2g2? 2,2
C . -2 i (n}) J A Mep (e 22 e
" g /o3

The order of the summation and integration may be exchanged, and we get

e 02 (ylpp?
;o= - i8 exp (-t- iw-(*1(":':2—‘)-) 951
O 4t /e

Leting t = ¢ | this becomes

(™ _ 2 2402
I = - g%% J exp (¢ 2 _ E_i_%_té_l 52)d€ . (f)

[¥]

To integrate (f), we introduce a lemma:

0

]

) -2

I R _ /

e M 3 S e e 2u ¥m
2u

if arg(u) is in the range
n ( +'ﬂ
- < < ’ -
nmn A arg(u) N i R
where n is an integer. When u is in the above range, the integral is convergent.
To prove the lemma, we first note that the Integral

w 5 -2
_AF‘ _;
L = ( e v o > df
Jo
transiorms to
24
L = e N , (g)
where
el
N = e F . (h)
o
-1
letting 5, = L/(un) and changing the resulting contour 0 voow Lo 0~ oW, we

get




Addizicn of (m) and (i} yie=lds

- -1
N = ij e”(He78 Dy é—y)di, .
(0]

Letting

the ranie of interration to the range from -» 1o +=, N intecrates tg
A} ~ : ) . . - .
7. 3Substituting this value into 'z), the lemma ic croved.

Letting u be

|

Ya2+g?2

Y =

~N

in the lemma, (£) is integrated, because . above is obvicusly in +the range Tre-

scrivei tefore. Thus, under the cenditions x # 0 and 1 F 2, Termula 750 i

proved. Aprlying the analvti:al continuation, the conaition 2 # C i3 extended :
to the condition @2 + B2 # 0. Recause the intesrsl s 2onverrent at & = O,

<ve tondition & # 0 may be removed. The rnroof i3 thus ccomresteld. E

Jeapezition 2.0 The Jurmula

T ~vly|
z+y € Y € (6) 3

+
19

i3 true for any rezl number y, where y ic a complex nurter such tha %

. Then *tke interration cf e-yS/ig-+y<: 3

Trocf: TFirst let us assume that ¥ > 0 :
witr rezard “o o alone the upper senicircle €A of infTinitely large radius !
fzee Tizure 2) is equal to zern. Therefsre, the integrnl con ~le left-? il |
<0 EY waqy tpancfarm s 4o contour intecral racains threen the ren’ S k
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znd the infinitely larce semicirele RCA.
Secause of (7) there is only one pole

2 = vy inside the contour. Applying the
residue theoren, the lemmea is proved for
the case of y > 0.

IT y < 0, we take the lover semi-
circle ZDA. Inside the contour that
rasses thrcugh the real axis ACP and the
infinitely large semicircle EBDA, there
is only one pole z = -vy7, where use is
rmade of (7). Applying the residue theorem
the lerma is proved for the case of y < Q.
. 10y =0, (6) is still true es may
be troved by the straightforward inte-
graticn. The nroof is thus completed.

“rovosition 3. The single Fourier-
PR \ .

transferms ‘n (5) are equivalent to the
following double Fourier-transforms,

Figure 2 Contour integration for proving (€)

TO7 ), (nif2) S T3y JAExHn -41
H B [ S 2 y =
J_w [_m o (Be X7 yTe dxdy £Z 2467

(8)

w @ 1 -ixf-iyn 1 i/2
J_m J-m eZenTes? © atan = n21w (D g T L2

Sroof: Avnlication of the double Fourier-transform chanses (8)1 or (8). *o

25)2 or (8)1 resnestively.

-~
[

e show that application of z single Fourier-transform on (8)2 vields (5)

B
i.e., we calculate

® 1
1= j Hi )(Ee(ﬂilz) JQEI;})eiaxdx

-

Which, vy ’5)2,becomes
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J e-ixg+laxdx
9

- 1 ” ® 1 -iyn
Pt J_w J_w ZenZeg? © 0 R

Applying the Fourier transform (4) of unity on the internal single integral, 1
becomes

T N G SRR S
! J_w J_m gZ4nZege & 8(a-b)didn

Using the sampling property, eq (51), of the delta function, 1 becomes

- z_f“’ 1 iy
B 31 e £2+(a2+82) "

Use of the integration formula (6) yields

=21 —]y'/a2+82

—_—— e

Ya2+5?

which is the right-hand of (5)l expressed with the current notation.

We show that application of a single Fourier-transform on (5),, yields (8)1.
Letting x, £,and a in (5)l be ¢, x, and {yf. one may use (5)2 to ifitegrate T

;- I e-inydyr H(S])(Be(vri/Z)/X—z:;})eigxdx .

Thus we have

J =

-2i Jm e-iny—|y|/52+82d
/e2482 oo ¢

Dividing the range of integration into positive and negative semi-infinite
parts, J integrates to

-21 1 I S

’ _ B I
2462 /2482 + in fi2a? - in

which reduces to the righ-hand side of (8)..
The equivalence of the two equations }n (5) to the two equations in (8) is
thus proved.
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We prove in the next proposition a formula that is equivalent to (3).

Propesition 4.

Lo +] o

1 1 -ixf-1
k i 2+ 2 = - = yn
e 2n J_w j_ (€242 + 1 © dtdn . (9)
Proof: we first note that kerx and keixr are the real and imaginary parts of

the right-~hand side of the equation

ker(x) + fkel(x) = %l H(l)(xe(’”l/4>) . (n)
The conjugate complex of (a) is
k - ikei - m () (rni/4)
erG) - dkeli() = ZH (e ) )

as is proved below.

A form of the conjugate complex of the right-haznd side of (a) is found *o

3L (@) (<3774
Q

> )y

(c)

when use is made of the formula

1) _ 2) —
HO (z) = HO (z) ’
which is a speciul cnse of the formula 7-1-40 in Olver [(4), where a bar indi-
cates the conjugate cemplex of the underlying symbol and noa complex number.
"he expression {c) transforms to the right-hand side of (b) by use of the
formula

(2), -
TR NS

H

which i3 a srecial case of the formula 9-1-39 in Olwver (k).

Colvineg ‘a) and (b)) simultaneously for keixr, we find

, T, (3mi/4) (1), (mif4

k = —{H i/4)

el = H (e ) - H e T @)
Thangziaz the arzument T in (4} o V:§+g2, and applying (8)5 to the first and
second terms with 8 = exp(ni/L) and 8 = exp(-ni/k}, recpectively, we find
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forgz . L {0 (7 ixe=tyn 1 1
kelvx™y® = lmiI J ¢ e i oy S (e)

which transforms to (9).

Ncne of the formulas developed in the above 1s considercd to be entirely new,
because the formuls

o e S22
J K (8/xZrg2)cos(ag)df = —o—— ¢ XOTHET
° 2/a%+82

o

which may be derived from (5),, is listed in Erdelyi [2). Come more propcsi-
tions are derived in the following for the operatisn of the virtual reaction
method that we develor below.

Proposition 5.

*® -~ - / 2+' - / 2_.

keiv’x2+y2 = —zl,—;J e ixg{_l“fe (y' §o4d - —*—%——e IYI & 1}cl(;, (10)
~ YE2H1 rel-1

wvhere y is either positive, negative, or zero.

Proof: The double integral on the right-hand sid~ of (e) atove may be rewritten
to the following repeated integrals,

Vx2+y2 = 1 = -ixE -1iyn 1 1
kel/x%ty 4l J_me dEJime STEED T aE D an

Applying (6) to the integration with regard to n, we find {10).

Proposition 6. For y # O,

n

E—H kei/x2+y?

3y

® _ - ? - - 2_ -
(e2ey D2 =1y 7et oy 1) /2 Sy /R

1 n 2
a ~—(-8gn g i
- -sg)" G

-0

(1)

where n is a nonnegative integer and
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sgn(y) = 1 fer y > 0

= -1 for y <0 .

For y = 0,

n -1)
(ﬁ——-keilx2+y2) = - (
n y=o0 27

o0 (2] n
j e ix&dg I ————ﬂ—————-dn . (12)
3y -0

e (E7#n2) 241

Proof: Because, when y # O, either of the following functions (1/J£+%)exn(-|yldg2s7)

is a good function of £ in the sense of Lighthill (1958),the differentiaticn of (19}
with regard to y meov be carried out inside the integral sien on the right-hand side
{see theorem 7.23 at p. 206 of Jones (1966)). Thus, for ¥ # 0, the n-time differ-
entiaticn of (10) with regard to y yields (11).

Tor v = 0, using {9) for kei\x2+y2, one finds (12), where part iii of theoren
7.1k at p. 198 of Jones (19€6) is used to justify the exchance of the order c¢f
operating integrations and operating differentiation.

As (11) shows, the first derivative and all the even-order derivatives are
continuous at y = 0, Especially

33
(5‘;3- kei¢x2+y2)y___+o = -né(x) ,

33
(5;? kei/x2+y2)y=_o = 7m6(x)

At iy = 0, as (12) shows, for uny rositive odd integers » = 2k+1,
2k+1
$ o2
( 2k+1 ket/x + )vzo 0
3y :
where X 2 7. 1In the thenry - generalized “unctions, the richt-hand side of (12)
can be estimated even fcir M 2 4, tecause one may use the formula
© n -ix§ n dné(x)
J £e dg = 2ni n (13)
- dx

to nvaliunte the divereent part arising from the 1 ternal sinrle intesral in (12).
. (12) 1a proved by anceeastve differentintion of the Fourier transform (h)

B

At anity (G fand and Chilov (3), p. 38).
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pProposition 7.

w

J e"“kexxiiia)? + (y-b)“dx

-0

1 dias 1 e—,y—b)/sz-f-i 1 e-jy-b]/52-1}

= T7e | (14)
21 VSZ+1 /35-—1
Proof. Using (10), we get
J e} et/ (x-a)2 + (y-b)2dx
|y~ 241 “ly~p |- -
1 a1 ly-blve2+t 1 -ly-»|/t L et s=x

41

I i -

Use of the Fourier transform (4) of unity and the sampling property, (51), of
the delta function reduce the right-hand side of the above equation to that of (14).

Proposition 8.

o n
J eisx(i—; kei/?;-a)z + (y-b)z)dx

) 7 [0%))
. B - 2 -1 “b) e~ i
= % 125 (g24q) D/2 O b)/s2+1 (s2.0) ATV )
- - 24 _ ) —
- %I (_l)neias{(sz+i)(n 1)/2€(b y)/s+i (82_1)(n 1)/2e(b v)V/s i‘

for v-b,

where n 18 a nonnegative integer, b and y are unequal real numbers, and a is
a real number.

Proof. The case n = 0 is proved by (14). Because the theory of generalized functions
allows the exchange of the order of integration and operating differentiation in (14)
for y # b (see Theorem, 7.23 at p, 206 Of Jones (5)), n~times differentiation of (14)
with regard to y yields (15).

THE VIRTUAL REACTION METHOD

Let us consider a semi-infinite plate whose sole boundary is the x-axis.
In this analysis, the values of w(x,y) and lts derivatives on the x-axis are not
the values at y = 0, but are chosen to be the limits as the positive y tends to
y = 0. We impose three kinds of boundary conditions:
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the simple-edge condition,

w(x,+0) = 0 ,
32y, (x,40 = 0 (16)
ay? - ?
the fixed-edge condition,
w(x,+0) = 0
17
aw (x,+0) (17)
ad ekt 200 S 0 :
dy
and the tree-edge condition,
02 2
;yw(x,+0)+vgxw§x!+0) =0 ,
(18)
3 3
9°w(x,+0) + (2-v) 3°w(x,+0) -0
ay 9x<ay

+5
9 stands for 2im af '’ w(x,y)/axpayq, in which p and ¢ are

Y0
nonnegative integers, and v the Poisson ratio.

+ D
where 3" qw(:,+0)/3x‘3y

We assume that a concentrated load P is sustained at a point A( =z = J,
y = yo), where y 2 0. The sinpularity at A causes a singularity at B{( z = 2,
¥ = -y ), where, in consideration of the reflection principle, we place another
concen%rated load aP(i.e., a virtual reaction) in which a is an arbitrary real
number. We place on the r-axis two unknown virtual reactions — an unknown
vertical line load p(x) and an unknown line couple m{x). These loads cause the

deflection

wxy) = - cketAZ + 3oy )2 - ket + (yry )2+
’ 27 o 27 o

19)

- 3

+ 1 j p(t)kei (x-t)2 + yzdt + %;—Jm m(t)(%;—kei/(x—y)z + yz)dt .

2n

-c0




" - ' e e e I Ty

The limits as positive y tends to y = O must be employed, because the third and
higher odd-order derivatives of wlxy) in (19) with regard to y are discontinuous
ety =0 [in more detail, the values of the third and higher odd-order derivatives
at y = +0, 0, and -0 are definite in jng sggsg of generalized functions but, due
to the existence of the integrand keiy(x-t)%+ y“, are not equal with each other,
as explained following Proposition 6]. Our task is to determine p(x) and m(z) to
satisfy the boundary conditions stated above.

The Fourier transforms of (19) and its derivatives are facilitated by use
of the differentiation formula (15) and

n o
isx f (x n isx
JQ e n ; dx = (~is) J e f(x,y)dx , (20)
—o ax —oo
where f(x,y)is ageneralized function that vanishes at |x| = =, Eq. (20) is

derived by repeating partial integrations on the lett-hand side.

We now set the restriction

y >y > 0, (21)
o
which is the range of y we must operate on to find the limits involved in *he
boundary conditions. Once the limits are found, ve relax the condition to
Y, > Y 2 0 by redefining the value y = 0 to be the limit at y = +0.

Use of {(15) and (20) under the condition (21) yields the Fourier transform
of (19)

- 2
P { 1 e(y yo)ls +H o 1

2T /s2-i
P 1 —<y+yo)/s2+i 1 ‘,_—(y+y0)»/a=,2—1}+

e(Y‘Yo)'SZ'i} -

J eisxw(x,y)dx

- Ty ——e

41

2]
N
1

—

5244 (22)

- v/s241 ;
R R I R S L

—— e } -
41 Ys241 /;2-1

-y/s2-1
e )

~ ~ 2
- %T m(s){ V"5 +Ho_

where we have introduced the notation ?75) to denote the Fourier transforn of
a function flzx),

213




o

1sx
Fe) J ¢ ax (2%)

Using (20) for the m-time differentiation by x and performing the n-time
differentistion with regard to y directly on (22), we find

is any+n
jw e s* 2. w(klx)dx
..o n

- oX 9dy

. m o
= -P Qliil—{(s2+i)("‘1)/2e(y-yo)/§2+i o (s2-1)T1)/2 (y-y )P4,

. m n vt /
'U’l’(:}'il)‘i"g:’l‘l“{(52‘*1)(“—1)/29_()\*)'(’) s<+1 _ (52-1)(n_1)/29-(y+y0) S?‘i

} o+
(24)
-is) -1 - oy y(n=1)/2 —y/s?4q . AN
- ,.1‘..1.4(,), p(s){ (s741) (071272 -y/s _ (s2-1) (P12 mys 7t
[§1] - -—
i) -1t -yv/s7+i , n/2 -y/s?-4
o m(s){ (s741)" - (st
Zn the region (21), the opereticn of integraticn with regard tc & and the opera-
tion of differentiations are interchangeable. Letting y = 0 in (2k), £ind
the formula
L) mn
I eisx 9 wix, +0) dx
m n
—o ax dy
(n-1)72 -yo/s2+ (n-1)/2 -yo’s2-1
- -0 e ‘5) ((s241) D2 VOIS 2y e 7O ) +
-1 n-1)/2 -
L ")__.(____)_ p(s){( 2+i)( ) _ (S?-i)(n l)/z} _
41 (25)

m n
e L G I LT

b

Jtiech facilitates the transformetion of the boundary conditions (1€), (17),
{18). The Fourier trensforms of the exvressions contained in the boundary con-
ditions (16), (17), (18) are written out by use of (25), and shown in Appendix
1I. 1In the final forms of the transformation of the boundary conditions, the
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expressions shown on the left-hand sides of the following formulas are replaced
with the respective right-hand sides,

/s241 - Jeloi = 21(Vs2+1 + \/sz-i]‘—1
/2 /2

— -]
(32+1)3 - (52-1)3 - 21(28° + /s4+1) (/6241 + /s?-1] , (26)

because the right-hand sides show clearly the asymptotic forms when lsl increases
indefinitely.

To replace p(t) and n(t) in (19) with p(s) and A(38), recpectively, we sub-
stitute the formulas

o0

1 ~ -ist
p(t) = EI_@?(S)e ds ,
(27)
1 ® - -ist
m(t) = > J m(s)e ds ,
-
into (19). Thus we find
wix,y) = -~ L keivx? + (y-y )2 - P reiva? + 2
' 2n Yo 2n ¥ (y—yo) M
81 - s -
! ~ 5241 /s2-i
(28)

-]
1 ~ -1 -y/s2 —y/52-
j @(s)e xs{e yV/s+1 e yvYsc-1

T 8rni

~-00

where use is made of (15), for n = 0 and 1 with the substitution of z = -t, a =

-z, and b = 0_to transform the integrands. Eq (28) is convenient for the sub-

stitution of p(8) and m(8) that will be found as & solution in the following.
THE BOUNDARY-VALUE PROBLEMS

Solution for the sirmle edge.

Simultanecusly solving the Fourier transforms (56) and (58) {in Appendix
I1) of the boundary conditions in (16), we find

215




[}

p(s) = -P ;—:— or1 (Ja2t1 + Jarogy(—L Yo 1 e‘Yo’Sz‘i}
1‘52+i Jsz—i

(29)
L
N + S AV - 2_
m(s) = =P %1—9 (fe2+1 + Js2-1)(e Yols L _ -y, I8 S
3
Substituting the equations in the above into (28), we find the solution for the
simple~edge condition:
_ 1 2 _ 2 . a /.2 2
wix,y) = -P > kelvx® + (y-y,) P 5= keivx< + (y+y°) +
o
-1 ~y/s2+1 -y/s2-1
+ P ‘%+QI e " /eht1 (/o241 + Ja2o1){——— e V0 e R
m 21 2
oo sc+i s“-1
1 -y Vs2+1 1 —yo¥s?~1
x { e 0 - —— e ’0 }ds -
Vsl+1 V82-1
(30)
e A AR
- p R Ty T (Y
- / 2 —v J/s2-
x {e YoVs +i _ o Yo¥s i}ds .
The formulas
/x2+4i + IS = V2 ATHL 4+ x2
(31)

/241 - Mx4-1 = V21 /AR - x? N

where x is a real number, are convenient for the conversion. if necessary. of the
2omplex form of the right-hand side of (30) (and the similar formulas that eppear
later) to a real form. Equations in (31) are proved ty sauaring them.
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If we let a = -1 in (30), the effects of the virtual reactions r{(x) and
m{x) disappear, and we find Kerr's (6) solutiocn obtained by applying the reflec-
tion principle on the concentrated load P that is situated in the semi-infinite
plane. This solution by Kerr's (6), however, is rnot sufficiently general because
it does not give a solution for y, = 0. A solution for y, = 0 is given by (30)
if a # -1 but arbitrary. (We note that the condition y, > 0 assumed initially for
finding a solution need not be observed at this stage.? The solution, therefore,
is not unique. Moreover, pushing this line of inference further, we find that
other kinds of virtual ractions, such as higher-order derivatives with regard to
y, or more generally, any point-, line-, or area-singularities distributed ipn the
lower half plane, 0 2y - -= , may be adopted instead of pl(x) and m{x) with
proper change of the formulations to represent the effect of the assumed virtual
reactions. This conclusion applies, es may be seen telow, to all the sclutions
of any other boundary conditions. The nonuniqueness reveals the defect of the
virtual reaction method. The remedy is presented later.

Solution for the fixed edze.

Simultaneously solving the Fourier transforms (57) and (57) (in Appendix
IT) of the boundary conditions in (17), we find (29)1 and

m(s) = -P %ig(/sz+i + Vs2-1){e Yo sZ+1 _ e"yo'sz'i}

’ (32)

Comparison of (32) with (29), shows that the solution fcr the fived edre is found
by changing -{1+a) in the second intergral on the right-hand side of (20) to 1 - a.
In this case it is impossible to eliminate all the effects of the virtual reacticns
plx) and m(z) by giving o an appropriate number. In other words, the reflection
principle fails to yleld a solution for the fixed-edge boundary condition.

Solution for the free-edge.

Use of the appropriate Fourler transforms of the derivatives of wiz,y) in
Appendix II transforms the boundary conditions in (18) to the simultaneous equa-
tions for p(e) and m(s),

P(s){(vs2 + V6%4+1)/(/fs2+1 + /s2-1)} - m(s)/s%+1 = A/s%+1

(33)

p(s) - m(s){(vs? + /a"+1)/(/s2+1 + /e2-1)}) = B ,

“here
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A P(l+a) [ -E_ e-y0-92+i - ._ji._e'yo'sz'i]
24 Vs +i /s2-4
- - - 2 v Js?-
B = P(l-a) IE e yorsc+l E e Yo's 1] ,
21
(34)
E = (1-v)s? +1i ,
E = (1-v)s? - i
The solution of the simultaneous equations on the above is expressed here in the
following intermediate form,
p(s) = M/{a(/sé+1 + J/s2-1)}
(35)
f(s) = N/{6(/s241 + Vs2-1)} ,
where the numerators M and N are
M = -A/TH1(vs? + /s"¥1) + BYs"+1(/s2+1 + /s2-1)
(36)
N = -Als;+l( 5241 + V/s2-1) + B(vs? + Vs“+1) ,
and A 1is
$2 YAl .
p o= Setpl - (Lt sl N2

/s°+1 + /;5:1 h

(37) ﬂ

- (/5441 - vs?)[V/s“+1 + (2-v)s?]
(/s2+1 + /s2-1)2
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Trunsforming the numerators M and N further, as shown below, we find the
final solution in the following form:

. P s2+1 + Vs2-1 ~yols?+1 = -y /s?-1
p(s) = '5.'1‘ [Ue - Ue “O 1,
[/s%4+1 - vs2][/s%+1 + (2-v)s?]
(38)
. P Vs2+1 + Vs2-4 -y /5241 — -y /521
fi(s) = 57 —[-Ve 7o + Ve 70 1
[/8%+1 - vs?)[/s"+1 + (2-v)s?)

where

u = VeZ-i ({(1-v)s¥{€l-a) -~ v(l+a)] ~ 2ive? + (1-u)) - 2/s"+1{u(1-v)s?+i}] ,

(39)

Vo= {(1-v)s*[(1+a) - v(l-a)) + 2ivs? + (1+a)} + 2/s%+1{a(1~-v)s? + i}

and E and G the conjugate complexes of U and V, respectively.
On substitution of A and B from (34), the numerator M becomes
R A — -y /g2~

M = % {Ue YoVs +1 - Ue yo S i] , ([00)
where

U = —(1+<1)(vs2 + /s*+1)EV/s%-1 + (L-a)/s"+1( s2+1i + Jsz-i)E . (41)

Substitution of M from (40) and A from (37), into the intermediate form (35)l yields
the final form (38)1. We transform U in (41) to

U = v82-1{R + Q/s"+1} , (42)

where

R = =(l+a)vs?E + (1-a)(82+1)E ,

- (43)
Q = -(14a)E + (l-a)E .,
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Substitution of E from (34), and E from {3k}, yields

R = (1-v)s"[(1-a) -~ v(l+a)] -~ 2ivs2 + (1-a)
(44)

Q = -2[a(1-v)s? + 1] ,
Substitution of R and Q from {LL) into the expression of U in (L42) yields the
expression of U in (39)1.

On substitution of A and B from (34), the numerator N becomes
P _yomYorsi+t - - 2_
71 [~Ve 7o Ve Yo¥s 1] ,
(45)
where
- 2 2 g

Vom0t + PRS2 - (1-a) (vs? 4 fMH1E . (46)
fubstitution of N from (45) and A from (37), into the intermediate form (35)2
vields the final form (38).. We transform v in (46) to

Vos T - Qs (47)
where

T = (1+a)E(s?-1) ~ (l-a)Evs? . (48)
Substitution of E from (3&)3 and E from (Bh)h into T in (L&) yields

= oYl
T (1-v)s"[(14a) -~ v(1~a)] + 2ivs2 + (1+a) . (49)

Substituting T from (49) and ¢ from (hh)2 into the expression of V in (Lk7) yields
the expression of V in (39),.

Substitution of pls) and m(s) from (38) into (28) yields the solution for
the free-edge condition. It is impossitle also in this case to eliminate all
the effects of the virtual reactions p(z) and m(x) by giving a an approrriate
number.  n »ther words, the reflection principle fails *o yleld a solution for
the free~eize boundary condition.

Condition *nit must be assisned in the outside region.

Jse of the Fourier transfor of generalized functions means dealing with
the entire infinite plane. On the infinite plane that we are currently dealing
with, however, a definite condition is given only in a part, say A, of our
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interest and, except if any at infinity, no definite condition is given in the
outside region, say B. The nonuniqueness enmerges because use of the viritual
reaction method, and the reflection principle as well, produces in fact uncon-
trolled deflection in the outside region B through the use of Wyman's solution
(2), a solution with regard to the infinite plane. If the conditions are definite
throughout the entire infinite plane, the solution must coviously be unique.

In physical terms, it is reasonable to assume that, even if a load ic sur-
ported by a floating plate occupying a region A, the level of the water in the
outside region B is invariable. On the other hand, even though a plate of our
interest covers only a part of the entire infinite plane, use of Wyman's sciution
in the refiection principle and in the virtual reaction method reveals that ther=s
exists intrinsically an assumed plate covering the entire infinite plane. Taking
this situation into consideration, we may interpret tha*t the conditicn

w = 0 (50}

in the outside region B of the assumed infinite plate replaces the cendition ]
that the level of water is constant in the region 3 of the physical infinite
plane. The condition (50) implies that no virtual reactions must be imposed in
the region B of the assumed Infinite plate. Therefore, once we adcpt the new
condition, i.e., (50), we must disuse both the reflection principle and the
virtual reaction method.

SUMMARY AND CONCLUSION

The deflection of a floating elastic plate has so far been analytically
solved only for the entire infinite plane. With regard to the plates other than
the infinite, solutions presumedly valid for the sirmle-edge boundary condition
have been produced by the application of the reflection principle in which the
above-mentioned analytical solution is used as an influence function.

We have introduced unknown virtual reactions that we can determine %o
satisfy given boundary conditions by using the soluticn with regard tc the
infinite pleane as the influence function, and developed an analytical machinery
that enables us to compute the deflection of a flcating elastic plate expectedly
valid to any shape under any boundary conditions. The mathematical method
essentially consists in the use of the Fourier transform of generalized func-
ticns. The key t new development is the discovery of the double Fourier
transform of keiJ x§+y7.

The boundary-value problems of the semi-infinite plate are studied with -~he
virtual reaction method. It is found that the refliection princirle yields =
solution presumedly valid only for the simple-edge boundary condition. The
virtual reaction method consistently ylelds a solution presumedly valid for every
boundary condition. The alleged solutions, however, are not unique.

“e have found the reason for the nonuniqueness: The influence functi-n pro-
duces uncontrolled deflection in the outside of the semi-infinite plate, i.e.,
in the remainder of the entire infinite plane, which the Fourier %*ransfzrm of
generalized functions necessarily includes in its range of application. The zon-
dition that must be imposed to produce a unique solution feor a plate occupring




& region other than the entire intinite plane is that the deflection is zero
everywhere outside the region that the plate occupies. Use of the influence
function to obtain a sclution in a region other than the entire infinite plane
must be abarndoned.

APPENDIX I
A BPIZF INTRODUCTION TO TRE THECRY 2F GENERALIZED FTCTICNS

For the study of quantum mechanics, P.A.M. Dirac introduced in 1926 the
delta function, 8(x). Fe defined the delta function to be equal to zero at
x # 0, to be infinite at x = 0, and to satisfy

j §(x)dx = 1 .

Ye also shcwed zhat, for any finite function ¢(z), the relation

%)

J $(08(x)dx = $(0) (51)

nclds +rue — the relaticn usually referred to (Foskins (L), ». 35) as the
sampling property of the delta function. The delta function has been rroved to
be a convenient mathematical tocl but nevertheless had not been accepted by
mathematicians as a valid mathematical concept until L. Schwartz clarified in
1945 the mathematical foundation underlying the delca function concept. SZince
Schwartz's work, the delta function is accepted by mathematicians as a straight-

forward mathematical concept.

To define the delta function in modern terms, it is the commcnly accerted
roach t» start with the concept of functional. A functional is an operaticn
through whizh a number is determined for a function. For instance, given a

resular function F{x), the integral

w

J ¢ (x)f(x)dx

-0

may letermine a finite number <or any function ¢(x) if this integral is intergrable.
Therefore the integral is a functional. It may be observed that a desire to rive

1 functional an expression of integral implicitly prevails in the theory of gen-
eralized functicns.

The mcdern concept of delta function is constructed not on Dirac's initial
definition, which is a difficult mathematical concept, but on the sampling promerty
(51), i.e., on the identification of the delta function with a functional that
vields a number ¢(0) for a function ¢{x). This functional, however, cannot be
expressed as an integral (in other words, (51, is deceptive) in the classical sense,
because %(zx} in (51) is not an ordinary function. The modern apnroach overcores
*his difficulty by taking the advantage of the following cobservation,




It is found that there are several sezu
limits exhibit the sampling property (see Gel
For instance, Fourier's single integral 7T

ltg J( zﬂ‘l)((v—") £(x)dx = 7£(0)

shows that an expression of the delta function is

1 sin(vx) (52)
n

S(x) = %ig

tion 1is, therefore, enlarged in the modern concert
i s of the sequences ¢f reguiar functions. The en-
s ralled the generalized functions. The delta Func<icn

The classical concep
tc the inc*us on of
larged function con
is a generalized °

The algebraic process used in the above for defining generalized fun
is the same as the one used for defining real nurmbers as the limizts of t
querces of rational numbers. {Birkoff (1) is verr readable on this sutle
In the sarme way as the real number is useful for computaticn, the general
function is useful for analrsis. For instance, consider a sequence fl’ ‘5
fv, ... of ceneralized functions of variatles Tis ey Tis uny :n, which™
verses to a generalized function F. Then, the theo"y of ceneraliced functi:
(5el'fand and Shilov (3), p. 29) asuerts that the gcquen~ﬂ of derivartives
,V/1x converges to J‘/Ex — a praperty that does not necesnsarily hold true
in the' cnue of ordinary tuhctions.

0
]
S0 -
()
nl
t

The expression (4) of the delta function as the Fourier transform of unizy
is derived when (52) is rewritten to

Y

1 1Ex
s(x) = E;.%ig J_ve a¢

which is equivalent to (L).

Use of the Fourier transform (4) of unity and the sampling property (Sl
of the delta function is the essence of the Fcurier reciprccal relaticnship.
Tn demonstrate this, let us assume the relationship
s o3
it
J f(t)e de = g() . (53)
-

Multiplying this by exp(-fng), integrating with regnrd to £, and exchanring
the order of integraticns, the above becomes
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J f(t)dcj ettt J g(ye Mear (54)

The o
e integral exists in the sense of seneralized fTunctions.) Using the Zormuls
¢ the delta function, the left-hend side of (5h) reduces to

"

der of integraotions may be exchanged, “ecause we may assume that the

o

ZnJ f(t)é(t-n)de ,

—w

whish tecomes 277(n) bty use of the formula (51) of the samriing vrcrerty of the
4el+a function. Eq (5L4) thus reduces to

w

f gye Mar - anreny (55)

-

whizh is the inverse of (53).

The trief introduction to generaliced functions in this appendix is suffi-
cient for a cesual reading for comprehending the outline of this paver. For
underztanding the details of the theory of generalized functions, which is
needed for a further development of the methematics in this paper, it shculd te
noted that currently three different approaches to the theory of generali:ed
Sunctions are available to applied mathematiciens.

The most widely accepted approach is Gel'fand and Shilov's (3), which is
based, however, on the modern concept of functionsl) space and contains the mate-
rials that are actually more than we need. The easiest approach is presented
by Hoskins (L), but it deals with only the case of a single independent vari-
able, and ends up eventually in the functional space approach and in the use of
theory of integrations. The brief introduction in this aprpendix is a digest of
en essentizl part of the approach initiated by G. Temprle in 1955, formalized by
Lighthill (8),and extended by Jones (5). Although not widely recognized, this
appronch seems to be a natural one to the theory of generalized functions.

APPEUDIX 1T
FOURIZR TRANSFORMS ON THE BOUNDARIES OF THE SEMI-INFINITE PLATE
For the convenience of calculating the Fourier transforms of the boundary

~onditions (16), (17), (18), the Fourier transforms of the expressions contained
in them are written out by use of (25), as shown telow:

224




Lo

) eisxw(x,+0)dx

-~

_ U RUr 1 eyofstHl 1 e-yo/s2-i} N 1 OO N
41 5241 /s2-1 2/s*41(Vs2+i + /s -1)
(56)
J eisx aw(x +0)dx
- 3y
_ p(l-a){e-yo»’sZH R e-yo/sz—i} . f(s) _ ., (57)
41 (2/s7+i + /s -1)
* isx azw(x,+0)d
e FI x
_ PR /34 o Yo shri /s2-1 e Y0 s?‘i} + (58)
41
p(s) 1.
+ = m(s) ,
2(/s2+1 + /s2-1) 2
' isx 32w (x,+0)
d
[ o gl
_ P(l+u){ s? e~ Yo s2+1 _ _ii.‘ e~yols§~i} +
Ai /52"’1 i’Sz"'i
(59)
P 2
+ p(s)s ,

2/6441 (78241 + ¥82-1)
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fe3]

- 3
( oisx Z:yw(x,+0)dx

-0

-yoVSZ‘i}

‘yo“sz+i

= - ES%%E){(SZ+1)G - (s?—i)e -
(60)
o1 5(s) + m(s)[2s? + /s"+1] ,
2 2(/6%+1 + Vs7-1)
Y isx 33w(x,+0)
e 52253;———»dx
(61)

/sZ+i o Yo s2-i} a(s)s?

+ P(I_G)SZ{e‘yo - N

b1 2(/s%41 + Vs2-1)

“he fractiong in these formulas are expressed in the forms Siven on tie risht-

tand cide nf (20,
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CYCLIC STRESS-STRAIN BEHAVIOR NEAR A NARROW ELLIPTICAL FLAW
Dennis M. Tracey and Colin E. Freesc
Mcchanics and Engineering Laboratory
Army Materials and Mcchanics Rescarch Center
Watertown, Massachusetts

ABSTRACT. The elastic-plastic, plane strain conditions at the ends of a
narrow, elliptical flaw arc examined for the case of a zero-tension,
cyelic loading. The flaw considerced has an aspect ratio of Y1000 which
corresponds to a length to tip radius ratio of 2000. Hence, the flaw
serves as a model for a crack. A specialized numerical formulation was
developed for solution of this problem. It involves aspects of both the
finite element and mapping-boundary collocation methods. Attention is
restricted to loadings which maintuain the zone of plastic deformation
close to the flaw ends. Numerical results demonstrate the forms taken hy
the stress and strain distributions within the plastic region, during a

cvclic load pattern.

INTRODUCTION. We focus here on the analytical problem of determining the
elastic-plastic, stress-strain states that develop ahcuad of a blunt-tipped
flaw during cyclic loading. This is a basic protlem which is encountered

in studies aimed at developing improved predictive criteria for macrocrack
frowth in structural materials. For certain limited conditions, lincar
elastic fracture mechanics provides a satisfactory basis for crack growth
prediction. Using results of crack growth in a material specimen, a crack
growth '"law"” is established which predicts the growth rate da/dn in terms

of the variation aK of the clastic, crack tip, stress singularity amplitude.
When this linear elastic approach fails to give satisfactory predictions, the

elastic-plastic analytical problems arise. Such is true, for instance, in
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studies attempting to cxplain the phenomenon of crack growth retardation

and the general crack behavior in variable amplitude load cycling. It is
cxpected that plasticity effects, identified through analyses such as that
presented here, will provide a framework for devising improved growth
criteria. Of course, the nonlinear character of the elastic-plastic problem
makes the task of identifying generally mcaningful '"plasticity effects" a
very complex one, indeed. The work reported here hopefully represents a
step toward resolution of this broad problem.

We limit attention here to load conditions which produce localized
plasticity, i.c., a plastic zone which extends no further than a few tip
radii from the flaw ends. Such is the case when the applied tension is
restricted to small magnitudes relative to the material's yield stress.

Our treatment of an elliptical flaw contrasts with the usual choice of a
sharp crack model in fracture analysis. The large value 2000 for the length
to tip radius ratio 2a/, appears to offer a suitable simulation of a natural
macrocrack. Although the elliptical shape was chosen for reasons of analy-
tical convenience, it has the blunt tip characteristic that we wished to
include in this study. It is clear that sharp and blunt crack solutions
will display major differences under conditions of localized yielding. We
arc interested in quantifying these differences and have conducted some

work along thesc¢ lines, although we reserve this particular subject for a
subsequent report.  We limit ourselves herce to the discussion of the
elliptical flaw analysis,

The flaw is considered to be isolated within an infinite domain.

Remote uniaxial tension is imposed in a direction perpendicular to the

flaw's length and plane strain constraint is specified. The continuum is
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modeled as a non-hardening Prandtl-Reuss material. Hence, the Mises viceld

criterion applies and plastic flow occurs under o constant value of cquiva-
lent stress equal to the yield stress Y. ‘The stress-strain relationships
have a rate form, so an incremental analysis following the cyclic load path
is necessary.

The numerical formulation was designed specitfically for this problenm,
from aspects of the finite clement and stress function boundary collocation
methods. The problem is doubly symmetric, o that we consider one quadrant
of the gcometry. In a region surrounding the fluw end, where plastic de-
formation is anticipated, finite element approximations are made for the
incremental displacement field. This region extends a distance of 4: ahead
of the flaw, as illustrated in Figure (1). Only the mesh of the first
quadrant is in fact used. The contour T defines the interface with the
elastic region which is represented by o complex variable power series,
stress lfunction approximation.  Conformal mupping was used to transtorm
the flaw onto a unit circle, and this allowed utilization of analytic
centinuation principles for satisfaction of the traction free flaw boundary
condition. In the transformation, T maps to a circular arc centered at the
end of the flaw. A form of boundary collocation along T is employved, in-
volving the unknown coefficients of the power series. Conditions of equili-
brium and compatibility are enforced across T, and these provide equations

relating nodal displacement changes to the change in applied tension,

This hybrid type of formulation was chosen both tor reasons of mathematical

accuracy and efficiency of analysis. It is well established that the mapping-

stress function collocation approach is an effective way to solve elasticity
problems, especially for infinite domains, Bowic [1]. Likewise, the suit-
ability of the elastic-plastic finite element formulation has heen amply

demonstrated, Tracey and Freese [2].
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The elastic solution to our problem is known, and it suggests that

the flaw tip stress oy, cxcceds the remote tension T by a factor of 64.2,
ite., 1+ 2 Ya/o. In the tip vicinity, the stress gradient is severe:

Oy falls by a factor of 5 from the flaw surface to the interface T'. The
mesh shown in the figure has element edges with lengths of the order of ¢/10.
This level of spatial discretization was found to be suitable, based upon
the numerical elastic solution. We found the Tyy distribution to be well
within one percent of exact, when element midpoint data was considered.
Before discussing the numerical solution, we next outline the equations

employed in the analysis.

FORMULATION.  We refer the reader to Bowie [1] and lracey and Freese (2]
for complete descriptions of the mapping-collocation and finite element
formulations which formed the basis of this work. Here, we begin our dis-
cussion with the equations which govern in the elastic region beyond the
interface. The point of departure is the expression for the Airy stress
function W(x,y) in terms of thc two analytic functions of the complex

viariable z = x + iy, ¢(=) and y(z):
W=1Re (z ¢+ /v dz) (1)

The field quantities are expressible in terms of ¢ and ¢. For instance,
the stress increment Ac,,, displacement increment Au, and the x,y compo-

nents of the force resultant acting on the generic arc AB are given by

Koyy = Re (-2 ¢" + 2¢' - ') (2)

puy, = Im ((14v) Z ¢' - (3-v) ¢ + (1+v) ¢)/F (3)
' - .t

Y R S e B A AR A (4)
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In equation (3), E and v are the elastic muter:al constant:,

the bracket notation indicates the change
barred quantities represent complex conju
differentiation.

The mapping function transforms the
lel o«

onto the unit circle

2= (ath) /2« (a-b)y/(20) Wi

where a and b are the semi-axes of the t1]

problem in the ¢ plane is illustrated in
interface T appears as a circular arc cen
grid was designed in this plane where a1t
centered at the origin.

The boundary conditions that mnst be

as follows:

In cquiation
in going from position A to B,

gates, and the primes indicate

elliptical flaw the ¢

'n -plane

1 in an auxiliary . -plane, according to

(SJ

aw. The peoretric detail of our

i

Figure (2 canohe seeny, the

tered at o= Y The finite elenoem

tale . a unitore yolar Jharacter,

satistied can he summarized

[ lﬁyy + 4T
Logy * O as T *r «
L Xy -+ 0
11 flaw surface i+ triaction tree
111 tu, = ﬁ'\) =0 along {t
Uy Loy ™ 0 along v = 0
v Iuy, Auy, L xo ijy' l"yy CONtinuous acroess

The most significant advantage of mapping the flaw onto the unit

circle is that the traction free flaw con
of analytic continuation.

defined in the interior of the flaw, |l

It follows from equation (4) that

dition can be met by the method

1s

it ¢

« 1, according to

r.

e

.




S et T/ T - L (6}
or equivalently, in 7' I 1, if ¢ is given in terrs of ¢ by

L) oE -_Tl__) - _Tlﬁ—T SN RV O (7)
then the traction tree conditions are jmplicitly satisfied. With the

Jetinition (7), the problem resorts to finding the single analvtic func-
tion : which satisfies conditions [, Il, and IV.

The remote stress conditions I and symmetry conditions 1[Il require that

N

- LT (a+bh)o/8 as g - o« (8)

n
o

Re 3 =0 along x
(9)
Im ¢ = 0 along v = 0

Fhese conditions are satistied, of course, by the exact stress runction

for the elastic problen:

(C1ASTIC g [(asbis - (3a+b)/cr]/8 (10)

The representation chosen for the elastic-plastic problem consists of a
finite term power series added to the elastic function:
1

. = eclastic o £/ (g2-1)" (11)
n=1

w

The plastic deformation within T will locally perturb the solution (10).
For this reason, the scries was chosen to have negative powers of (7%-17.
The cocefficients a, are real to satisfy the conditions of symmetry. These
unhnowns are determined in conjunction with the finite element unknowns,
as discussed next.

Bilinear, isoparametric finite elements were used. There were a

total of 314 nodes, 27 of which were positioned on TI'.  The nodal displace-
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ment ancrements fuy, Suy for the interface nodes are represented by the

vector array éyf, while the remaining unknowns interior to | oare denoted

ig“. The flaw surface and x-axis houndary conditions were treated routinely.
The interface was considered as a surface with a variable traction
distribution; variable in the sense that it is cxpressed in terms of the

)

unhnowns a using equations such as (&) alenp with 1111, The standard

n’
consistent load procedure was emploved to define nodal loads from the tiu. -
tion distribution. This involves a numerical integration (2 point Gauss
rule) over each clement edge that lies on the interface. 1f we dienote the
vector array of the load components for nodes on [ as 2P and if the conf-

ficients are arranged in the vector array a, then

Pl ca v 2T d (12,

where ¢ i1s a rectangular urrav and d is a vector array of constants.  For

our problem, there were 53 nodal unknowns along |, so that ¢ was of order

The principle of virtual work provides the relationships hetween the

nodal unknowns and éﬂr. Using standard notation, the equaiions tuke the

KE7 syt 0
. = (i3]
K i al

The continuity condition across I' is satisficd by cquating the cormponent

form

iR
=

of AU' to the expressions involving AT and ) suppested by the <treas func-
tion and the equations for the displacement increment, cqudation (3).  1has

results in a matrix cquation of the form

il = ga+ T h (1)
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whoere poas redtanguaar and hoas 4 vectoer drrday.

We arrive a4t o syeten o cquations for u by eliminating LU from
conntion (I3 and uornp cgustions (12) and (1}1,.  she resultant syste:n

vabes the torm
R R B S S (Y (15)

nartial

The ratrin b7 oe square and 1t 1s numerically established by a j

Caussian climination slporithm.  Formally, it is given by

T ORT (16)

Pquation 13, represents a system of 53 equations in the 15 coefficients

A least nocare snrocedure was ured to solve this system. hith the <o

@]

~

v,
|

Yt

o

Ticients dotor aned, tie nodeal displacement dncrerents, straln incrernern

—
n

Sinaliy stress ancrements are computed.  We refer the reader 1o our earliler
terert |2 which describes the adaptive load incrementation algorithm whicn

was utilized. it scolects the magnitude of 2T at each step of the load rath

cecording to a prescribed allowable, yield surface, deviatoric stress change.

SMPRICAL RESULTS.  We considered a load spectrum which had the rermote

tension varvine between values of 0 and 0.089 Y. The naximum value of

t
o
]

029 Y corresponds to the point in the initial monotonic loading when

; lustic zone had extended to within eone element of T The spectrum was

tolloved for 1 1/2 (ycles, requiring a total of 68 load steps with the

aduptive incrementation algorithm restricting the yield surface stress
change at each step to 0(Y/20).

The naturc of the stress variations which occur ahead of the flaw

can be explained in terms of the elastic-plastic boundary movement. In

L)
o
(=]




Fryare (3, clastae plastre boundarsers are dreawn for bey positrons an the

Toad spectrum.  The spectrum is represented by the loading scgment OAR,
unloading segment BCD and reloading segwent DEFG. States A, €, and E oare
approximately at one-hualt peak load. Therce is the eapected graudual expan-
sion cf the plastic rone during loading, as indicated by the contours for
states A and B. Upon load reversal, there is an interval of purely clastic
response, corresponding to elastic unloading at all plastically deformed
points, and this is followed by reverse yviciding (O 0) and an expansion
of the plastic zone until the load minimam s veached.  This behavior is
indicated by the boundaries labeled € and i With load 1acrease from the
zero load state D, elastic unleoading ocecurs Lhdyy +0), followed by an
expanding zone ot renewed forward plastic flow, as indicated by the boundarics
labeled E, F, and 6. There are two intriguing aspects of these results.
First, the solution has a periodic character: the boundaries for peak load
states B and G are nearly identical, and the same is true tor the boundaries
of states € and E. Sccondly, a dramatic chaage in the plastic zone ocourred
during the last load step FG (47 had the small valuce of 0.0022 Y), as
indicated by the outer two boundaries in the figure. buring FG, the stress
states of all elements beyond the middle boundary reached the yield surface -
but no significant plastic flow occurred. FPlastic straining was limited to
the zorne within the boundary labeled D=F==A, and thus this defines the
cyelic plastic rone of our problem. A« sugpested by the labeling, there

were minor differences in the clastic-plastic boundaries tor states DB ooand
Ao Rice's [3] plastic superposition analysis predicts that the cvelic
plastic cone should correspond to the plastic zone at the intermediate lcad
state A.  That analysis also predicts the jeriodic solution behavior that

we observed. Noteworthy, however, is the fuct that while the superposition




analyveis is bascd upon assumptions of proportional plastic flow throughout
the load history, we found what appears to constitute signiticunt non-
proportionality. 1 course, these results and conpari: ms can serve to
detine just what is signitficant in this regard.

The stress distribution (rvv/so vs. Xx/¢) is given in Figure (4) at the

load positions A - G. The vertical divisions on the plot mark off the
locations of the cyclic plastic boundary, the monotonic plastic boundary
and the modeling interface 7. As a first observation, curves A and b

demonstrate the fact that the maximum stress value increases and the

location at which the maximum occurs changes as the load level 1s increasscd.

Curve € illustrates the compressive stress state that develops upon load
reversal. There 13 a single element experiencing plastic flow at load
vosition C. o The reverse vield cone spreads and the hydrostatic comprescion
increases as the load decrceases, as shown by curve U. Upon reloading, the
material at the flaw surface regains a tensile stress state and a Zone or
rorward vield is developed, while the compressive stress rield is overcome.
Carve B oillustrates how the form of the stress distribution {inflection
points) is defined by the current, cyclic and menotonic plustic zones.
The dip in the curve F shows the last evidence of the compressive hydro-
static history. C(onsistent with the elastic-plastic boundary resulis of
Figure (31, we see that the oy Stress distribution at ¢ wvery cioscly
agrees with that found at load state B. There are small diffe. "ces
between curves B and G that are apparent within the cyclic plastic zone.
The variation of the stress-strain state (ny' fyyW during the load
cyeling i< displayed in Figure (5) for six locations ahecad of the flaw.
The ctress and strain values are normalized by the vicld strews and yield

“train, respectively. The spatial positions (x-a)/; = 00587, «+ 1.750
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correspond to the centers of elements 1, 3, 5, 7, 9, and 11, Only the

first three of this group of elements are in the cyclic plastic zone, as
evidenced by the open loops between load states B, D, and G. 1t can be

seen that there are significant differences, froyw point to point, in stress
range, strain range, mean stress, and mean strain. Interestingly, the

mean stress throughout the cyclic zone is essentially zero. From the plot,
we see that rach stress-strain history, normalized as it is by the yicld
values, starts with a slope close to unity, and then at a stress lcvel

above yield - the level increasing with distance from the flaw surface -

the slope drops drastically with a resultant large increase in strain with
further loading to peak load B. Upon load reversal, the stress and strain
decrease according to the point's initial elastic slope, until reverse

vield in the casc of the first three points or attainment of the load free
state in the case of the other points. Although the strain decrcases Juring
the unloading and therc is a region that experiences compressive stress, the
strain remdains tensile. Consistent with the behavior neted in Figure (45,
we see that the stress-strain state, after reloading to peak load, very
nearly coincides with that of state B. As we have mentioned, this type of
periodic stress-strain bchavior is predictable using the assumption of
proportional plastic flow. The lack of proportionality in the solution can

be seen from Figure (6) which is a r-plane plot of the { L)

Z

(YJAX) ‘N,\v'\'l
stress hiistory of a point within clement 1. Proportional flow would
require that the stress point not venture from a diagmeter of the vield

[

surface, vet there is a 327 variation on ecach side of the circle. Nonethe-
less, we see that states B, D, and G very nearly fall on a diameter. These

stress states are approximately those ot fullyv plastic, biaxial, plane

strain extension, where Oyy =20 =1%2Y/3. The development of these
s
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tully plastic stutes at the flaw surface s perhuaps the key to the realiza-

.

tion ot periodicity of the solution ahead of the flaw.

CULCTUSTONS o We commented carlier on the generic rclevance of this elastic-
plestic solution to crack growth criteria studies. There is little in the
Fiterature on the issue that was our primary concern here: numely, the very
carly stages of crack tip deformation when ela-tic strains are signit.cunt
and plastic cone extent is very small in comparisun to crack length. This
lack ol information 1s true not just for cyclic loadings, but for monotonic
toadings as well. Of course, research needs are hardly limited to this
carly stage of clastic-plastic deformation and to the particular load cyiiv
considered. Future work will consider the near tip field, as predicted {ron
the blunt and sharp crack models, which develops at higher load levels

and variable amplitude cyveling.
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ELASTIC-PLASTIC ANALYSLS OF SCREW THREADS

G. P. O'Hara
U.S. Army Armament Research and Development Command
Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12139

ABSTRACT. An elastic~plastic analysis method is suggested for screw
thread teeth. In this method a single tooth is analyzed using boundary
conditions to simulate a long chain of identical teeth. A set of five
different loads are suggested to simulate pressure and shear on each flank
along with a general stress field in the component. An example is worked
out for a British Standard Buttress thread form. Data is presented from
the example to show that friction is a very important parameter.

I. INTRODUCTION. The problem of stress concentrations in screw
t hreads has long been obscured by the larger number of parameters involved
and the lack of a systematic approach which could help to explain the
variation that is in any experimental program. The object of this work is
to try to cut through those problems and try to present a useful, organ-
ized approach which can encourage more work in this general area.

An example of the large number of parameters is the geometry descrip-
tion shown in Figure 1. While these dimensions may be of use to the
designer to insure that the component will fit together, the stress ana-
lyst needs only a few of them. The major geometry parameters are the pri-
mary flank angle (a), secondary flank angle (B), and root radius (R). The
primary loading parameters are the applied load (W), its angle (Yy), and
position (b). These last three parameters follow the convention of
Heywood [1). A further simplification is to nondimensionalize all linear
dtmensions to the pitch (P).

The very high performance requirements of military hardware have in
the past produced a new thread form [2,3] for use on cannon breech compo-
nents. During the development of the Watervliet Buttress thread, the
Heywood equation [1] was used to choose geometry parameters for testing
with good success. The Heywood stresses, however, were never correlated
with test results., The reason for this was pointed out by this author [4]
and it 1s simply that Heywood isolated his teeth so that only effects due
to the load on the tooth would be present. In most experiments, the
stress in the fillet of a thread i1s the result of load on the thread plus
a stress concentration of the general stress field in the component.

i




In a recent paper (5] this author offered an elastic stress concen-
tration approach to screw threads. In this work the overall loading on a
thread is resolved into two forces parallel and normal tL tie pitch line.
These are divided by the area on the pitch surface to p.oduce two average
stresses, radial stress and shear transfer rate. Of these, shear transfer
rate is used to normalize all stresses, and the radial stress is used in a
plot with the maximum fillet stress to produce a curve which is a char-
acteristic of a particular thread form. This curve i{s usually generated
as the coefficient of friction is varied from -1.0 to 1.0. where the sign
denotes the direction of the friction vector, positive being away from the
fillet. This sign convention gives the radial stress the same sign con-
vention as all other stresses with tension positive. With this method an
axial body stress in terms of a uniform remote tension can be easily added
to produce a family of characteristic curves.

The above work is all elastic and certainly only looks at less than
half of the overall problem. Elastic-plastic analysis adds a new set of
problems to the analysis. First is that it is possible to identify five
different plastic zones in a single tooth (Fig. 2), the axial stress zone,
t he Heywood zone, the secondary flank zone, the shear failure zone, and
the bearing failure zone. It is difficult to imagine a problem in which
only one of these is present and the usual case is where plasticity
involves three or more of those zones working together with each starting
at its own load.

The major factor that complicates elastic plastic analysis is that it
is directly linked with the material stress—strain curve, and a general
solution can be found only for materials with similarly shaped curves.

For this report the assumed material will be 7075-T6 aluminum (Fig. 3) [6)
with a proportional limit of 65 Ksi and 0.2 percent offset yielded of 72
Ksi. This is an engineering stress-strain curve defined out to 6% strain.

I1. ELASTIC PLASTIC METHOD. The NASTRAN Rigid Format 6, Piecewise
Linear Analysis is covered in the Theoretical Manual [7] and uses the tri-
angular ring element (CTRIARG) which was implemented in a parallel program
with the trapezoidal element reported by Chen [8]. In this method the
number and size of the linear steps is selected by the user before the
run. It is the duty of the user to select steps which produce adequate
results within the limitations of the available computer time. The pro-
gram then selects the slope off the stress-strain curve by extrapolating
the change In effective strain for the current load step out to *“he end of
t he next load step and using an estimated elastic modulus (E)

By = =—=—====-- (1)
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Where 044, and ey, are estimated values. This will be equal to the slope
of one of the liner segments of the input stress-strain curve only when
both points fall withi{n the same liner segment of the curve. In the case
of a zero modulus the element is assumed to have no increase in stiffness
and a zero element stiffness matrix is generated.

The use of the stepped constraint input {s not normally allowed
because of the ambiguity that would exist 1if both forces and constraints
were stepped together. This can be overcome using a small DIAP alter
package in the executive control deck when only constraint input is to be
used. Under these conditions it would seen that superior results could be
expected because the extrapolation is done on the basis of strain,

The solutions in this report have been set up on the basis of 13 load
steps, however, in one casc the solution was truncated when a portion of
the structure exceeded the defined stress strain curve and entered the
zero slope region. When this has happened to al' elements connecting anv
grid point a singular body stiffness results and the solution is stopped.
This results when the modulus (E) 1s zero and the element stiffness matrix
becomes zero.

II1. BOUNDARY CONDITIONS. In this work a small tinite element grid
(Fig. 4) will be used to similate the behavior of a lon: chain ot identi=-
cal threads. This requires boundary conditions for the three surfaces
where the model 1is cut out of the larger problem as well as applied loads.
These surfaces are the two radial planes and an axial cylinder. These
surfaces will be treated differently for axial load and the Hevwnod loads
on the thread bearing surfaces.

The grid points on the axial cylinder must be constrafned to replace
the bulk of the body material. For the axlal stress input these points
are free In the axial direction and are constrained to a fixed displace-
ment in the radial direction. This radial displacement accounts for
Poisson contraction in the body. The grid points in the radial planes are
generated at the same radial locations to allow them to be constrained in
pairs, one in each radial plane. The radial displacement of each point of
a palr i{s equal and the relative axial displacement of all pairs {s the
same. This forces the radial plane to conform to the same deformed shape
while being free to distort out of the planes. In the elastic-plastic
solution for axlal stresses the constraint values for Poisson's constraint
and relative elongation are stepped together to produce a plecewise con-
straint input condition.

In the solution for Hevwood loads the object is to react the load out
in shear, therefore the grid points on the axlal ecylinder are given a zero
displacement in the axial direction. Thls zero displacement is also given
to the radtal displacements to similate a stitf structure. The two radial
planes retailn the same constraints as for the axial loads, however, the
relative axlal displacement 1s set to zero. In this case forces on the
bear{ng surface are stepped to produce the plecewise loads.
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Flpoure S shows the forces on a particular thread toothe Toere iw g

sricary and a secondary bearing flank with a pressure and o shear load on
eacte  Sne primary flank is the one which i {atended o for o transier.
Thne secondary rlank becomes loaded under reverse loadin, or when displace-
ment resoves the radial clearance. In this paper only nnirfarm loads on
the primary flank will be used. In this case the pressure and shear loads
are added into an overall load W which is then resolved into a radial load
(L) and axtal load (L ). These are the loads which are averaged over the
area at the pitch line to produce the radial stress (o,) and the shear
transfer rate (1g).

[V, EXAMPLES OF FELASTIC-PLASTIC ANALYSIS. In this paper four exa=n-
ples ot elast i—r-vplﬁz{‘;rii»c 7a-nfavl_y_s;i' ¢ will be shown for the thread form used,
tin hritish Standard Buttress. This forw appears as a high strength
thiread in several Army structures such as the 68 cannon breech and some
Finetic energy armor plercing projectiles where ¢ scems to have been
selected because ot the low radial load coaponent. The loadings are all
urniform applicd loads and include one axial stress load and three Hevwood
tvpe toads.  Tne finite element grid is shown in Fijure 5> with the element
shrunwe 5 te expose ecach side. Tnis jrid has a pitch diameter of 10.0
time s tne plteh lTensth,

tirst load is an axial stress ia the body of the component with a
Dede ot 69 Ksie  This is done by constraining the relative axial displace-
menal ot the radial planes to a fixed valuce and stepping that value in the
picvewise solution.  The axial cvlinder is stepped in a similur way to
produce the Poisson contraction. Figure 6 shows a shrunken element plot
of thowe elements which have become nonlinear. 1In this plot all the ele-
ment s shown are above the proportional limit stress of 65 Ksi. The ele-
ment s shown doubled are above the conventional yield stress at the 2%

of fset point.

The three Heywood loads use three different values of {riction cocei-
ficients -.5, 0.0, and +.5 where the sign on friction denctes the direc-—
tion of the friction vector. Figures 7, 8, and 9 show the plots of non-
lincar elements. It should be noted that the shear transfer rate for Fig-
ure 9 is lower than the other two. This is because that solution excecded
the 6% strain maximum of the stress—strain definition and the solution was
stopped at that point. The arrows In these plots point out the element
where the maximum stress occurs which is different in each of these solu-
tions and the axial stress plot.

These plots of nonlinear element show one part of tne overal. pic-
ture. The next thing to look at {s the maximun stress in the fillet.
Figure 10 {s the curve of fillet stress vs axlal stress for the axial
load. This solutinn was stopped at this point because the constraint in-
put leaves some question about the nominal input stress when the bulk
stress exceeds the yleld point.  The maximum fillet stresses for all three
Heywood 1loads are plotted against shear transfer rate in Figure 1l. The
very high values for the stresses are the result of the multi-axial stress
state in the fillet and other than that the plot speaks {or {tself.




NASTRAN uses the displacement method and displacements are often more
usceful in evaluating a problem than stresses so an example ot displacement
seems In order. Figure 12 shows the Z or axial displuacement of grid point
number 155 which {s at the mid point of the primary bearing surface (on
the pitch line) for Heywood loads. In this plot the displacements have
been connected to reference the bottom of the fillet as the zero point.
The difference here {s well defined although not is marked as 1s the
fillet stress case, probably because fillet stress {s a much more local-

{zed effect than this displacement.

V. CONCLUSION. In concluslon this paper has attempted to define a
method of elastic-plastic analysis of individual thread teeth. The prob-
lem of how to define reasonable loading condition for a specific practical
problem has not been defined. EBEven with this limitat{ion, an example has
shown the relative magnitude of several loading offect, I'tie- reader
should pay particular attention to the very definite c¢ffect of friction on
the behavior of the thread.
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GENERALIZED PLANE-STRAIN PROBLEMS IN AN ELASTIC-PLASTIC
THICK-WALLED CYLINDER

P. C. T. Chen
U.S. Army Armament Research and Development Command
Benet Weapons Laboratory, LCWSL
Watervliet Arsenal, Watervliet, NY 12139

ABSTRACT. A unew finlte-difference approach has been developed tor
solving the generallzed plane-strain problems of partilalliy-plastic thick-
walled cylinders made of straln hardening or ideally-plastic materials.
The tube is assumed to obey the von Mises' criterion, the Prandtl-Reuss
fiow theory and the isotropic-hardening rule. The forces include internal
pressure, external pressure, and end force. An incremental approach is
used and no iteration is needed for each increment. The approach is sim-
pler than others yet quite general and accurate. The desired accuracy can
be achieved by reducing the grid sizes and load increments. Some numeri-
cal results for the stresses and displacements in partially-plastic thick-
walled cylinders with either open-end or closed-end conditions are
presented.

I. INTRODUCTION, In 1 recent paper [l], a new fianite-differeunce
approach was developed for solving the axisymmetric plane-strain problems
subjected to internal or external pressure beyond the elastic limit., The
material was assumed to obey the von !tlses' yleld critertion, the Prandtl-
Reuss flow theory and the {sotropic hardening rule. The ideally-plastic
materlal was treated as a speclal case., The new formulation was also used
to determine the resldual stresses {n hollow cylinders due to quenching
{2]. Since the plane-strain end condition was introduced only for sim-
rlicity, it is desirable to extend the approach to consider practical
problems with either open-end or closed-end conditions.

In the present paper, the finite-difference approach is developed tfor
solving the generalized plane-strain problens of thick-walled cvlinders
subjected to internal pressure, external pressure or end force bevond the
elastic limit, The explicit equations between the incremental-stresses
and {ncremental strains are used. The present approach is valid for
ideally-plastic [3] as well as strain-hardening materials {4]. The
approach is simpler than others [3,4] vet quite general and accurate. The
desired accuracy can be achieved bv reducing the grid size and load incre-
mentg., No itaration is needed i{n each incremental loading step.
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I1. BASIC EQUATIONS. Assuming small strain and no body forces in
the axisymmetric state of generalized plane strain, the radiul and tan-
gential stresses, Op and 0g, must satisfy the equilibrium ecuation,

r(30,/3r) = 0g - op ; (1)

and the corresponding strains, £, and €g, are given in terms of the radial
displacement, u, by

€r = du/ér , €g =ulr (2)
1t follows that the strains must satisfy the equation of compatibility
r(3eg/3r) = €, - €5 . (3)
Whereas the differential equations (1), (2), and {3) hold throughout the
tube regardless of the material properties, the constitution equations
assume various forms according to the adopted form of yield function,
hardening rule, total or incremental theory of plasticity. In the present
paper, the material is assumed to be elastic-plastic, obeying the Mises'
yield criterion, the Prandtl-Reuss flow theory and the 1sotropic hardening
law. The complete stress-strain relations are {5]:
deg' = doy'/2G + (3/2)oy'do/(oR") (4)
do 20 for i =r,08,z
degy = E-1(1-2v)doy, (5)
where E, v Young's modulus, Polsson's respectively,
2G = E/(14v)

™
1
]
m
1
o

m = (egtegre,)/3 , ey

1

]

op = (optogto,)/3 , oy oy ~ O, ,
o = QWD (op=0g)2 + (040,02 + (0,022 5 o (6)

and ¢, is the yleld stress in simple tension or compression. For a
strain-hardening material, H' is the slope of the effective stress/plastic
strain curve

o = H(fde®) . (7




For an ideally-plastic materfal (H' = 0), the quantity (3/2)do/(oH') is
replaced by dx, a positive factor of proportionality. When o <o, or do
0, the state of stress {s elastic and the second term in equation (4) dis-
appears, Following Yamada et al [6], equations (4) and (5) can be rewrlt-
ten in an incremental form

doy = di_jdej for t,3 = r,8,z
and
dLJ/ZG = \)/(l"z\)) + 51:} - Oi'Oj'/S ,
where
2 1
s=3—(1 +3-H‘/G)02 , H'/E = a/(1~a) , (%)

ak {s the slope of the effective stress~strain curve, and 51j is the
Kronecker delta.

This torm was used i{n the finite-element formulation for solving
elagtic-plastic thick-walled tube problems [7). In the following sectinn,
the {ncremental stress-—-straln matrix will be used in the finite difference
formulation.

LrI, FINITE-DIFFERENCE FORMULATION. Consider an open-end or closed-
ead thick~walled cvlinder of {nner radius a and external radius b. The
tube {3 subjected to inner pressure p, external pressure q, and end force
f. The elastic solution for this problem 1s well-known and the pressure
p*, q*, or f* requlred to cause initial ylelding can be determined by
using the Mises' yield criterion. For loading beyond the elastic limit,
an incremental approach of the finite-difference formulat{on {s used., The
analysis starts with the applied pressure p, q, or £ and the loading path
is divided into m increments with

bp = (p=p*)/m , b8q = (4=q*)/m , Aof = (£-f*)/m . (m
The cross section of the tute {8 divided into n rings with
12,00, 00s,TK=0, 000, T 4] (L1

where p is the radins of the elastic-plastic {nterface. At the beginning
nf each increment of LInading, the distribution of displacements, strains
and stresses is assumed to be known and we want to determine du, Arg, S,
Ae,, Aop, Log, Y3, at all arid polats. Since the lacremental stresses are
related 2o the increnent ) strains hy the facrementil form (Eq. (8)) and
Au = rAe,y, there extsts iy theee ankaowns at o cach station that have
he deteralaed for »aon te o reaent of loadiag. Accounting for the fact that
the axial stratn £, . tadependent of r, the unknown variables {a the

preseat formalition are (heg)y, (Av )y, for U = 1,2, oun,n+l, and Ag,.
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The equation of equilibrium (1) 1nd the equation of compatibility (3)
are valid for both the elastic and the plastic regions ¢ a thick—-wailed
tube. The tinite-difference forms of these two equations at i = 1,...,n

;

are given in [4] by
(rie1=2r)(00) ;) = (rjp1-ri)(A0g)y + ri(80) 4
= (ri+1_ri)(dv_0r)i - fi[(or)ifl - (Or)i} (12)
for the equation of equilibrium, and
(rjpp=2r)(leg)y = (rgerid(eepdy £ oriliey)igy
= (rypmrp)Cepmegdy = ril(es)ie = (eg)i) (13)

for the equation of compatibilitv, witn the aid of the incremental
stress-straia relatioas (Eq. (3)), equation (12) can be rewritten as

((ri+1=2ri)dyo)g + (mryqptr)(dpp) ] (aes)y
+ [((riy-2r){dy )y + (mripprr(dop) il aep)i
oA Gy Forgldp) e (880D 4y
+ [(rije1720000d3); + (mryp1rria(doy)y + ri(dy3) {41125,
= (rgppmrp)(oym9)y = eillopd ey - (o)) - (14)
The pboundary conditions for the problen are
Lo (a,t) = =Ap , Aop(b,t) = -4 ,

T lrido)y + rLfl(Ajz)i*ll<ri+l_ri\ = uretlin o+ A (13

where 4 1s ) tor open-end tubes and i, for closed-end tubes. Jsing the
{ncremental relations (£]. (2)), we rewrite equatinn (13) as

(dll)l(:ﬂ‘))l + (\ill)l(:tr)‘ + (\11 ‘)l‘:.& = "ll;p , (lO)
(JIB)J+1(““m)n+l + (dll)n+l(;Lr)n+l + (413)n+;35z = -3 , (17)
YK

4 e sRYE L

—

T SBEE 1 Pasdd e v e A T




and

n
L (rgepmrp{rg((dpy)g(aeg)y + (d13)((Aep) ] + i [ (o) e (Beg) e
{=1

n
+ (A1 Bed g ]+ o (eprpmrp leg(dyyg + rppg(d3gd ey )ae g
L=1
= padp + Af/n . (18)

Now we can form a system of 2n+3 equations for solving 2n+) unknowns,
(beg)y, (Aep)y, at L = 1,2,...,n,u+]l and Ae,. FEgquations (l6), (17), and
(18) are taken as the first and last two equations, respectively, and the
other 2n equations are set up at i = 1,2,...,n using (13) and (l4). The
final system 1s an unsymmetric matrix of arruw tvpe with Lhe nonzer» terms
appearing in the last row and column and others clustered about the main
diagonal, two below and one above.

In the computer program which was developed, the dimensionless guanti-
ties r/a, Ee /oy, Eeglo,, Ee,/o,, op/0,, ggla,, 9,/04, plo,, qlo,,
f/(nazoo) were used in the formulation and the Gaussian elimination meth-
od was used to solve these equations. All calculations were carrled out
on [BM 360/Model 44 with double precision to reduce round=otf errors,

IV, NUMERICAL RESULTS AND DISCUSSIONS. The generalized plane-strain
problems of thick-walled cvlinders subjeczza to internal pressure p beyond
the elastic limit were solved. The elastic-perfectlv-plastic as well as
strain-hardening materials were considered for open-end or closed-end con-
ditfons. The aumerical result were based on the tollowiny parameters:
b/a = 2, v = 0.3, a = 0,05 u =0 or l. Various values of m and n were
used to tes: the converpence of the nunerical results. The incremental
loadings were ipplied until the fully plastic state was reached., The val-
ue for p corresponding to this tinal stiate was denoted by p**, It was
found that the results of these vilues for all four cases converge by

increasing m and/or n.  For no= 100, Lp/o, = 300004, we have pX¥/o g o=
D.7802 (a = 0, u = 0 as case 1)y O848 (ax =0, u = 1 as case 2); 0.8222
(0= 005, wo= 0 as case )y 03013 G aa0h, o« 1 oas cane 4), \ddi-
tlonal resalty are gahown (o Filaures T oto 5. Flgute 1 oshows the bore radl-
al Jdisplacementy as tunctions ot [ntevoa!l pressure tor cases b, 2, and G,

Figure 2 shows the relations berween Internal pressure and elastic-plastic

boundary for cases 1, 2, and 4. The ertects of end conditioas and straln
hardening cin also be secn in these two fiiures, The distributions of ra-
dial and tangential strosses Tor o/a o= Lun, 1.2, 1., Loh, ad 1.8 are
shown in Figure 3 tor case | and {4 Figare 4 tor case I. Finallv the Jdis-
tributions of rxial stress t
5 for cases | anl 2. The effect or end coaditions and elastic-plastic

is

boundary on the axiil stress quite significant.

Srops 0 o= e, Hady and Lo are snown 1o Figure

JH9
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mental loadings whereas ia {4], many iterations were needed because i val-

The present approach determines Ae, directly for each step of iIncre-

ue of 4e, was assumed. In addition, the computer storaj;e reeled in this
approach was only 35%Z of that in (4], and much larger © can be used to
yield better results. The present approach is simpler vet more general
than the other finite-difference approaches because both ideallv-plastic
[3] and strain-hardening materials [4] can be considered in a unified
manner., Furthermore, very accurate numerical results can be obtained and
used to verify the accuracy of [7,8] the finite-element programs.
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QUADRATIC AND CUBIC TRANSITION ELEMFNTS

M. A, Hussain, J. D. Vasilakis, and S. L. Pu
] U.S. Army Armament Research and Development Command
Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. Based on the investigations of Barsoum [1], Henshell and
3 Shaw [2], quarter-point quadratic elements have been successfully used as
- crack tip elements in fracture mechanics, This concept of singular ele-
' ment was extended to cubic isoparametric elements [3]. Recently 1t was
discovered by Lynn and Ingraffea [4] that under special configuration,
transitional elements improve the accuracy of stress intensity factor
computations. These transitional elements are located in the immediate
vicinity of the singular elements with the mid-;ide nodes so adjusted as
to reflect or extrapolate the square root singularity on the stresses and
strains at the tip of the crack.

In this paper, we have obtained the locations of mid-side nodes of
these transitional elements for the quadratic as well as cubic elements,
Explicit computations for a typical element are symbolically carried out
using MACSYMA* [5]. These computations reveal that in addition to the
desired square root singularities, the crack tip senses a stronger

. singularity, i.e., of order one. Further, the strength of this singu-

i larity cannot be controlled, as was possible for the cubic and quadratic
b collapsed elements, where, by tying the collapsed nodes together, we
v could easily annihilate this strong singularity,

These cubic elements also have Hibbit~type [6] singularities. The
locations of mid-side nodes for these singularities have also been deter-~
mined.

The cubic transitional elements were used for double~edge crack prob-
=3 lem, and it was found that there was improvement in accuracy for a config-
¥ ] uration which consisted only of singular and transitional elements. How-
ever, for a well-lald out grid, the improvement was only marginal. MACSYMA
has proved to be an indispensible tool for the present investigation.

=

*MACSYMA 18 a large program for symbolic manipulation at MIT.
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SECTION I. Consider a quadratic quadrilateral 1isoparametric ele-

ment Y
8 &
x = 121 L 121 LA (1)
8 8
u = 121 NU . ovs 121 NV, (2)

where Ny are the shape function of 'Serendipity' family [6], and are given
by,

CORNER 1
; = - - -F‘- i~ ’ .

NoDES 1 (1-£) (1-n) (=£-n-1) etc (3)

MID-SIDE IR

NODES ) NS ) (1-£%)(1-n) , etc. (4)

Without loss of generality consider the sectorial element, together with
the mapped unit element in the transformed plane, shown in Figure 1. For
simplicity, considering the one dimensional case along line 1-2 in Fig-
ure 1 ({i.e., n = -1) we have from (1)

x =2 e(-1) + 2 £Q+L + A-€D)BL ()

The condition for the coalescence of roots of (5) at x = 0, together with
the condition that BL > 1 gives

This is the result, in a slightly different form, obtained by Lvnn and
Ingraffes {4)]. With this location of mid-side nodes, the mapping of the
general element of Figure 1 becomes, from (1) and (2),

x = _é_ {(m1) cos a + (1-m) HE(GI-1) + (VI+1)}? (7
y = % (n+1) {£(/T-1) + (VL+1)}? sin a (8)
The Jacobian of the transformation (1) and (2) is then given by

3=30uY) - LAy (e(/i-1) + (B+D)? sin o (9)
3L, 16
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As can be seen from (7), (B), and (9) that the Jacobian has a third order
zero while x and y have second zeroes at

_ V/iAl (10)
YL-1

Using the inverse of the Jacobilan matrix, the strain component can be
written as

9u 1 3udy 3udy
x {BE dn ~ an dE} an
Substituting the various derivatives and collecting terms we get
A A,
2u 1 5t o + Aq (12)
OX  (£(/T-1) + VDA (E(/D-1) + VT

where Ay, A,, and Aj are glven in the Appendi..

Comparing (12) with (7) and (8) 1t is seen that the strailn component
not only has singularity of order one half but also of order cne. Simi-
larly we have

du ; (o vax  dudx Ay . As
El 8 dn T Bn dET T (p(/I-1) 4 VIHD?  (E(GE-D) + I+
where AA’ AS’ A6 are given in the Appendix.

+ A6 (13)

SECTION II. Consider now the cubic, 12 node, quadrilater=zl
isoparametric element,

12
x = 1 ONX Z N Y, (14)
i=1 11
and displacements
3? E?
u = N, U s V= N,V (1%)
{=1 i1 {e1 11

where the shape functions are given by

CORNER |
NODES

1
Ny = 55 (1-£) (1-n) {9(£2+n?)~10]) , etc. (16)




MID-SIDE 9

309 (1-£2) (1- o
NODES Ny = 5y (=30 A-E5)UA-n) , ete. (17)

The general transitional element together with its map in £-r plane is
given in Figure 2., For simplicity consider the one dimensional case
along line 1-2-3-4 (i.e., n = -1),

£3 (~9+278L-278,L+9L) + £%(9-98,1-98,L+9L)
x = L (18)
16 [+ (1-278,14278,L-1) + (-1+92,L+98,L-L)

The requirement that (18) be quadratic in &, together with the condi-
tion of coalescence of roots gives the following, physically possible
solution for locations of mid-side nodes for all L,

BIL - L+A;E+a ’
(19)
o
8,L = LLAGVTAH] .
9

With the above values the general mapping of the element shown in Figure
2 then becomes

X = % ((r+l)cos a - (N=)YE(V/I-1) + (VI+1))? (20)
y = % (D) {£(/T-1) + (VI+1)}? sin a (21)

and the Jacoblan of the transformation becomes

3=2059) 1 (T (0 (/-1 + (F+1))? sin a (22)
3E,7) 16

These expressions are the same as for quadratic elements (compare eqs. (7),
(8), and (9)), and hence the Jacobian has third order zerces and x,v have
second order zeroes, at

i+l (23)

R RY
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Following the procedure outlined before, the strain components can be
obtained from the following,

B B
—gg = l + - 2 + B 'Y (24)
X (EGI-1) + VIH)? (E(I-D) + Vi) 3
B B
%% ] S A (25)

N ] .
(E(/T-1) + VI+D) 6

where By - By are given in the Appendix. Similar expression hold for
derivatives of v. Equation (24) and (25) again reveal the same kinds of
singularities as (12) and (13).

SECTION III. In the cubic elements there is an additional set
of locations of mid-side nodes which give Hibbit-Tvpe [6] singularity,.
e This 1s obtained from the condition that all the three roots of (18)
coalesce. The location of nodes 1is given by

1/3 3
Bl = (LI H 2
(26)
1/3 3
SZL = (gl;.._;t%l)
3
ta and the transformations become
x = 2o Lnthcos o - (-pdEa!Pan + 1t e
27
i y = i%-{(n+l)sin ad (st 321y + 113y
3 and the Jacobian becomes
;f ] = 3(x,v) . 3sin(a) (Ll/j—l){E(Ll/a—l) + Ll/3+1}5 (28)
F 3 ,n) 128
bﬂ
% Following the procedure outlined before it can be shown that
du O 2 .
p | T el w3y gal/3on 4 1342
. o
& + ¢, (29)

w31 + LY 340

é
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The above equation Indicates that 1n this case the singularities are of
order 1, 2/2, and 1/3. This combination is of no Iirme-diare Intercet in
linear fracture in homogeneous media,

SECTION IV. The sanple problem of a double-edge-cracked plate
of [4] 1s selected for numerical assessment of transition elements when
they are used with 12-node collapsed singular elements. Figure 3 is an
idealization we usually take for such a mode 1 crack problem., The dis-
tance 0 between the crack tip and the nearest node in a collapsed . lement
is often taken in the range of 0.5%7 to 3% of the crack length a. T.e
ratios a/b and b/c are usually in the range of 7 to 10. Stre:s intensity
factors for several values of p, b/c, and a/b with and without the use of
transition elements are tabulated in Table I. Comparing to the reference
value, Ky = ov/raF(a/2a), where F(1/2) = 1.184 (7], the percentage errors
AZ are also shown in the table. The result with the use of transition
elements is better only when a very large ratio of b/c (=20) is used.

TABLE I. STRESS INTENSITY FACTOR AND PERCENTAGE IRROR FOR A DOUBLE-EDGE-
CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELEMENTS WITH
AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT IDEALIZATION
OF FIGURE 3,

Without Transition With Transition

Llements Flements
o b/c a/b SIF A SIF
0.005 4 10 2.8808 2.31 2.8736 2,06
10 4 2.8376 0.78 2.7831 -1.16
20 2 2.9863 6.06 2.7851 -1.0¢
0.01 4 5 2.7986 -0.61 2.7926 -0,
10 2 2.8334 0.63 2.7813 -1

TABLE II. STRESS INTENSITY FACTOR AND PERCENTAGE ERROR FOR A DIUVILE-EDNCF
CRACKED PLATE USING 2-NODE COLLAPSED SINGULAR ELIMENTS WITH
AND WITHOUT TRANSITION ELEMENTS., FINITE ELEMENT IDEALIZATION
OF FIGURE 4,

Without Transition With Trunsition
Elements Flement:

I alc SIF Y SIF
0.005 40 3.325 18.09 2.7658 -1.77
0.01 20 2.963 5.23 2.7654 -1.7¢
0,02 10 2.8115 ~ 0.15 2.7650 -1.8¢0C
0.04 5 2.7632 ~ 1.86 2,655 -5.7]
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Another idealization, Figure 4, similar to the one used by Lynn and
Ingraffea [4] is used to rccompute stress intensity factors for various
values of a/c to see whether the transition elements in cubic isoparamet-~
ric elements can give as good improvement in accuracy as reported in [4)
in the quadratic isoparametric case. These results are tabulated in
Table I1. It shows again the result obtained from the use of transition
elements is better only when a very large ratio of a/c 1is used.

In this paper the stress intensity factors are calculated from the
normal component of displacement of the node on the crack surface and
nearest to the crack tip. It usually gives better results than the aver-
age value computed from nodal displacements along the rays from the crack
tip at various angles (8].

For elastic crack problems, the correct order of singularity at the
crack tip is taken care by the collapsed singular elements. The use of
transition elements does not practically improve the accuracy.

CONCLUSIONS. 1In this paper we have been able to obtain explicit
expressions for singularities the crack tip senses from a transitional
element. The application of these elements for a few practical problems
of fracture mechanics as well as stress concentration factors has been
partially successful, It is believed that this is due to the fact that
the crack tip senses not only the square root singularity but also a
stronger singularity. The strength of this singularity cannot be con-
trolled as was possible for collapsed singular elements, where the strong
singularity was essentially eliminated by tying the nodes together.
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APPENDIX

In this appendix we give the explicit expressions for the coefficients
of the various terms in the strain components given in the text.

R = /L

A, = 2(tl) {4n(R~1) [Ru

] + 4R[u
1 (R"l)z 6

g! 77us]

+ (2nR+R-2n+1)[u2-RuA] + (an-R-zn-l)[u3-Ru1]}

A=——i—uwﬁmmmmmww+ummmmw

2 2(R-1)2

4(m#3) (R ug + (R(3n+7n+4) - 3n(mH))y,

+ (3RN(Hl) - (3n’+7n+4))uy + (R(3n*+5n+s) - (3n*4n-8))u,

(R(3n*4n-8) - (3n’+5m+4))u, }

A =~ 2{n*Dcos a - (n-1)) {4Rn(R-1)ug + 4R(u,-ug) - 4n(R-1)ug
4 (R-1)2sin o 75

- (R(2m+1) - (2n-1) (Ry -u,) + (R(2n-1) - (2n+1))(u3-Ru1)}

A, = ——— L {2(R-1) [cos a(3n?+4m+l) - (3n2-an+1)](u8-u6)

2(R-1)%sin a

+ 4(R+1) (cos a(n+l) - (n—3))u7 - 4(R+1) (cos a(n+3) - (n-l))u5

(cos a[R(3n?+7n+4) = 3n(ntl)] - [R(3n?-n-8) - (3n*-5m+4) Dy,

+ (cos a[3Rn(n+l) - (3n*47m+4)] - [R(3n?-5m+s) - (3n*-1-8)1)u,

+ (cos a[R(3n?+5n+4) - (3n*+n-8)] + [-3Rn(n-1) + (3n-7n+4)Du,

- (cos a[R(3n*+n=8) - (3n*+5m+4)] + [-R(3n*-7n+4) + In(n-1)Du,}
2

Ag = = ?;:I;;;I;T; {cos a(-2u5+u2+u1) + (2u7—u4—u3)}
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ot ot

—mH_ (L (r?(2702-18n-1) - R(54n-36n-38) + 27n?~18n-1](Ru-u,)
(R-1)3

+ 9R(2R+l)(u9-u2) + 9R(R+2) (u, -u_)

3 8

9 2 2 9 2 2
+ 2 (R- -2 ~R -2 (r- +2n-" -R
0 (R-1)°(9n“-2n 3)(u5 u12) P’ (R-1)°(9n“+2n 3)(u6 ull)

+ % [RZ(27n%+18n~1) - R(54n%+36n-38) + 27n2+18n-1](u7-Ru10)}

= 1)3 {- f%'[xz(45“3+27”2'“+105) - R(90n’+54n2-146n-222)

+ 45n3+27n2—37n—3]u1 + % (2R2+6R+1)[(n+3)u2 - (n+1)u9]

9 (n2 -
-3 (R +6R+2)[(n+3)u3 (n+1)u8] +

+ i% [RZ (451°+27n2~37n=3) = R(90n+54n7-146n-222) +

+ 45ﬂ3+27n2—n+105]u4

- 2 ®R-DI(mH) [(1502=T)ug + (15n246n-5)u, ]
16
9 e1y2 24p 2
* 7y (R-1) 2 (r+1) [(15n*+6n-5)u, + (15n Nuy,]
- j% (1) [R2(45n2436n~1) ~ 2R(45n%+36n-37) + 45n7+36n+35]u7

+

Qﬁ% [R2 (45n2+36n+35) - 2R(45n7+361,-37) + 45n7+36 -1]u, )}

L ((2r+1)uy - (SREu, + (ARHBIug - (R¥D)ug)

2 (R-1)

o

{(p)cos a - n + 1) {% [R?(27n2-18n-1) - R(54n2-36n-38) +
sin a(R-1)3

+ 27n’-18n-1](—Ru1+u1‘) + 9R(2R+1) (u,-ug) +
+ 9R(R#2) (-ugtug) + 3 (R-1)?(9n?-2n-3) (-ug+Ru) )

+ % (R-1)% (9n*+2n-3) (u ~Ru ) +

11
+ % [R2(27n%+18n-1) - R(54n?+36n-38) + 27n2+18n-1](-u7+au10))
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B L o 7

sin a(R-1)?

+

+

sin a(R-1)2

R W e T

1 {f% [RZ(45n3 (cos a-1) + 27n?(cos a+3) ~ n(cos a+71)

35(3 cos o+1)) + R(90n’(-cos a+l) - 54n?(cos a+l) +
2n(73 cos a-1) + 74(3 cos o+l)) + 45n(cos a-1) +
27n2(cos a+3) - n(37 cosa +35) - 3 cos u—l]ul

2 ((m3)cos a-m1) [(R%+6R+1)u, = (R¥+6R+2)u,]

i% [R2(45n° (cos a-1) + 27n?(cos a+3) - n(37 cos a-35)

(3 cos a+l)) + R(90n3(-cos o+1) - 54n?(cos a+3)

2n(73 cos a-1) + 74(3 cos u+l)) + 45n%(cos a-1) +
27n%(cos a+3) - n{cos a+71) + 35(3 cos a+l) Ju,

f% (R-1)2(15n° (cos a-1) + 3n2(5 cos a+7) - n(7 cos a+l)
7 cos a-5)ug - f% (1513 (cos a-1) + 3n2(7 cos a+5)

n(cos a+7) - 5 cos a-7)(R-1)2u6 +

f% [R2(45n%(cos a-1) + 27n%(3 cos a+l) + n(35 cos a+37)
(cos a+3)) + R(90n>(-cos a+l) - 54n2(3 cos a+l)

2n(cos a~73) + 74(cos a+3)) + 45n3(cos a-1) +

27n%(3 cos a+l) + n(71 cos a+l) + 35(cos a+3)]u7

% ((n+l)cos a-n+3)[-(R2+6R+2)u8 + (2R2+6R+1)u9] -

i% [R2 (4513 (cos a-1) + 27n2(3 cos a+l) + (71 cos o+l) +
35(cos a+3))+ R(90n3(-cos a+l) - 54n%(3 cos a+l)

2n(cos a-73) + 74(cos a+3)) + 45n?(cos a-1) +

212(3 cos a+l) + n(35 cos o+37) - (cos (x+3)]u10 +
9

16 (R-1)2{15n%(cos a-1) + 3n2(7 cos a+5) + n(cos a+7)
(5 cos a+7)]u11 -
f% (R-1)%[15n% (cos a-1) + 3n?(5 cos a+7) - n(7 cos a+l)

(7 cos a+5)]u12

2 {(2R+1) [-cos auy + ulO] + (SR+4) [cos au, - u9]

(4R+5) [cos auy - ug) + (R+2)[cos au, - u7])
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TRANSITION ELEMENT
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FIGURE 1. QUADRATIC QUADRILATERAL ISOPARAMETRIC
ELEMENT AS TRANSITION ELEMENT
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FIGURE 3. AN IDEALIZATION FOR A QUARTER
OF A DOUBLE-EDGE-CRACKED PLATE
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FIGURE 4. A SIMILAR IDEALIZATION USED IN [4] FOR A
QUARTER OF A DOUBLE-EDGE-CRACKED PLATE
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PERTURBATION AND BIFURCATION
IN A FREE BOUNDARY PROBLEM

*

Roger K. Alexander and Bernard A. Fleishman+
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York 12181

Abstract. We study the equation with a discontinuous non-
linearity:

-Au = AH(u-1)

(H is Heaviside's unit function) in plane domains with various
boundary conditions. We expect to find a curve dividing the
harmonic (Au = 0) region from the superharmonic (Au = -1) region,
defined by the equation

ui(x,y) = 1.

This curve is called the free boundary since its location is
determined by the solution to the problem.

We use the implicit function theorem to study the effect
of perturbation of the boundary conditions on known families of
solutions. This justifies rigorously a formal scheme derived
previously. Our method also discovers bifurcations from prev-
iously known solution families. Finally, numerical methods for
this problem are discussed.

1. Introduction Let { be the unit square [{(x,y)]|0 < x,y < 1)

in the x,y-plane, s its left edge {(0,y)|0 <y <1 and r, = an\ro
the rest of the boundary. Let H denote the Heaviside unit function
0 t <0,
H{t) =
1 t > 0.

*Supported by National Science Foundation.

+Supported by U. S. Army Resecarch Office.




i

Fleishman and Mahar [FM] have posed a boundary value problem
with discontinuous nonlinearity almost equivalent to the
following:

[ -Au = AH(u-1) in &,
(1) u[r = h(y) .
- 0 3
Bu‘ ’
-— = 0,
on Fl

where A is a real parameter, and h is a given function. (When
in the second equation h(y) is replaced by Ah(y), problem (1)
is equivalent to that in [FM]; see the remarks in Section 3
following the proof of Proposition 2.)

Equations resembling the PDE in (1) have been proposed for
models in plasma physics and thermal conduction problems [K].
Further references to work on differential equations with dis-
continuous nonlinearities may be found in [Ch]. ﬂ

ity i

Our problem is a free boundary problem: a typical solu- 3
tion u may be expected to define by the equation u(x,y) = 1 a '
curve (across which u and its first derivatives are continuous)
which separates the region where u < 1 (and Au = 0) from the
region where u > 1 (and Au = ~\). The location of this separa-
ting curve, however, is not known beforehand; it is determined

by the solution itself.

In the next section we shall specify precisely what we mean
by a solution of (l1). For the moment, we proceed informally.
To begin, we specialize to the boundary condition h = 0, and
record the results of [FM], which motivated the present work.

The problem (1) with h = 0 is called the reduced problem.
It always has the trivial solution u = 0. When X > 4 positive
solutions appear which depend on x only: for X @ solution of
the gquadratic equation

-1

xo(l—xo) = A




+ / ~1.
(that is xo = xa(l) = % t % 1-4X l) we have either one (A = 4)

or two (A >4) solutions of the form

A(l—xo)x, 0 < x < x
+
(2) uo(x) = uy(x) = L 2 2
A[x—f(x +x0)] Xg < x < 1,
whose graphs are shown in Figure 1. Note that US(X) > uz(x)
for 0 < x < 1. Thus ua (resp. ug) corresponds to points on the

upper (resp. lower) branch of the A,u-curve in Figqure 2.

The line x = xo 0 = 1. The

solution and its gradient are continuous in the whole square,
and the differential equation is satisfied in the classical
sense in the regions where u, < 1 or uO > 1. It is not asserted

is the free boundary where u

that these are the only solutions.

We turn now to problem (1) with h(y) ¥ 0, which will be
called the perturbed problem. In this case no closed-form
solution is known. Under the assumption that solutions exist,
a formal scheme was developed in [FM] to calculate first-order
approximations to the solution (and associated free boundary)
0°
ence of the solution, and the range of validity of the pertur-
bation scheme, were left open.

close to a given reduced solution u The questions of exist-

In attempting to answer these questions, we have establish-
ed the following theorem, to the proof of which the remainder of
this paper is devoted.




THEOREM 1: For A > 4, consider the solution u. of the reduced

0
problem (1) corresponding to Xg = xa(k), that is, on the "upper

branch" of the curve in Figure 2. For all boundary data h(y)
suff1c1ently close to zero in an appropriate function space,
there is a unique solutlon u of (1) which depends contlnuouslz
on h; this solution determines through the equatlon u(x,y) =

a uniquc curve whose equation may be written x = 0 + b(y).

The perturbation b(y} of the free boundary denends continuously
(Fréchet-) differentiably on the function h, and is given to
first order by the perturbation scheme of [FMJ.

For the "lower branch" x

hold, provided that x

0o = X;(K), all of the above assertions

does not belong to a certain sequence of

0

exceptional values having x, = 1 as their only limit point. For

0
each n = 1,2,... there is an exeptional value of x

0 X at which
the reduced problem has a bifurcation: there are solutions of the

reduced problem having free boundaries of the form x = X

a cos nny + o(a) for all o in some neighborhood of zero.

In the next section we specify the class of admissible boundary
values h(y); Section 3 gives the sequence of exceptional values of

Xq for which bifurcation occurs in the lower branch of solutions of

the reduced problem.

The theorem asserts that, aside from the bifurcations, which
surprised us, the perturbed problem has solutions which may be
approximated by the scheme proposed in [FM]. 1In a way, the asser-
tion is actually stronger: the admissible boundary value functions
h(y) have uniformly convergent Fourier cosine series, and it will
follow from the proof of the theorem that the perturbation of the
free boundary may be computed (to first order) term by term.

Note that continuously differentiable dependence on h is estab-
lished for the free boundary, not for the solution u. This is
because our method of proof is to reformulate problem (1) as a non-
linear integral equation for b(y), the perturbation of the free
boundary. While using the Green's function (see Section 2) to
transform (1) into an integral equation for u leads formally to the
same results, we have not been able to establish the estimates need-
ed for a proof by this route.

In Section 2 of this paper we formulate a nonlinear integral
equation for b(y) and prove that by solving it we can solve problem
(1). 1In Section 3 we use the implicit function theorem to solve
our nonlinear intcecgral equation, and show that bifurcation occurs
when the implicit function theorem fails. To apply the implicit




function theorem we need to know that certain linearized expressions
are Fréchet derivatives; the justifying estimates are provided in
Section 4. Section 5 concludes with a discussion of current work

on numerical methods for this problem, other geometries, and open
questions.

2. Reformulation of Problem (1) as a Nonlinear Integral Equa-
tion. For reasons that will emerge below, we restrict our attention

to boundary data h in Cl'a([o,ll) which satisfy h'(0) = h'(1) = 0.
By a solution u of problem (1), for such an h, we mean a function

ue Cl(Q)F\CZ(Q\{(x,y)lu(x,y)=l}).

satisfying the boundary conditions in (1). (If one is content with
a less regular solution, a milder assumption can be made on the data,
e.g., that h be merely continuous.)

Let us suppose now thal u is a solution of (1) but we have for-
gotten everything about u except the location of the free boundary.
We ought to be able to recover u by replacing the Heaviside function
in (1) by X times the characteristic function of the region to the
right of the free boundary, then solving the resulting linear Poisson
problem. With a few technical assumptions this idea works, as we
show presently.

It also suggests an appropriate space for the boundaryv data h.
The source term in the Poisson equation belongs to every LP space,
so we choose any p > 2 and seek a solution in Wz’p(Q). Such a

function has a trace on the left boundary TI'j which is in wz_ﬁ’p(ro)

(see [A]), so we reguire that h belong to this space.

To show that h is continuously differentiable, let

o =1 - é.
The norm of h (see [A])is
P 1 1 lh'(X)"h'( )ip 1/p
in]| + /07 b4 dx dy < ©,
1:Prr0 0 'X—YI1+GP

1 ,
Hence W2 p'P © Wl’p, and it may be shown that h is absolutely con-
tinuous. Since 1 + op = p the integrand in the double integral is

[(h'(x)-h'(y))/(x—y)lp, and a result of A. Garsia [Ga) shows that




h' satisfies a uniform H6lder condition with exponent 1 - 2/p.

The only difficulty in solving the Poisson problem to recover

u <w2'p is that singularities can appear in its derivatives at the
corner of the square unless certain conditions are satisfied by
the data. The method of [M] may be used to show that the compati-
bility condition in this case is

h'(0) = h'(1) = 0,
which makes sense because h' satisfies a uniform HSlder condition.
Finally, we do not want to "pull the free boundary around the
corner”, so we suppose that h < 1. We can now state conditions

under which a solution of (1) can be recovered from knowledge of
the free boundary only.

Let
2.1
A=1{hew p'p<ro)]h <1 and h'(0) = h'(1) = 0},
(3)
B={(A,b)¢C R x C(0,1)|x > 4 and 0 < x, + b(y) <1

0
for 0 < y < 1},

where XO may be either xg(k) or xa(k) but fixed.

PROPOSITION 1: For hc¢ A and (A,b)¢ B the problem

_Au=)\X{(x’y)| X > x + b(y)}

0
(4)

- du =
T = hs Banl 0

has a unique solution u«¢ w2,p(Q)C:Cl,a(§)’ a =1 - % (see [A]). More-

over, if h and b are small enough and

u(x0+b(y), y) =1

then u is a solution of (1) and actually b (Cl'a.
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PROOF: The existence, uniqueness and regularity of the solution
of (4) follow from the conditions on the data, by the theory of

the Poisson equation in a rectangle (see [Gr, M]). Thus we have
only to show that if u = 1 on the putative free boundary, then u
1,0

is actually a solution of (1) and beC .

Suppose u(x0+b(y), y) = 1. To establish u as a solution of
the free boundary problem (1), it is enough to show that

X < xg t b(y) (resp. x > x, + b(y)) implies u < 1 (resp. u > 1).

0
First consider the region x < Xg + b(y) to the left of the curve.

Since u is a harmonic function there, its maximum must occur on
the boundary; it cannot occur in the interior because u is not
identically constant. (Recall that u(0,y) = h(y)< l,u(x0+-b(yhy0=lJ

Obviously the maximum does not occur on the left edge of the square,
nor on the top (y=1) or bottom (y=0), because 3du/3dn = 0 there;
hence the maximum is 1 and is taken on only at the free boundary.

We use a similar argument for the part of the sgquare lying to
the right of the curve x = Xg *t b(y}; there u is a superharmonic

function, and it may be seen that its minimum occurs only on the
free boundary curve. The previous argument applies except at the
corners (1,0) and (1,1). For these points we note that if h and b

are small enough, u will be close in w2,p (hence in Cl’a) to the
solution of the problem (4) with h = 0 and b = 0, and it follows
that u(l,0) > 1, u(l,1l) > 1.

Finally, the solution of the reduced problem has du/3x bounded
away from 0 near the free boundary. Hence if h and b are small
enough, the solution of (4) has the same property. Since b satis-
fies u(xo+b(y),y) = 1, it follows from the classical implicit

function theorem that b ¢ Cl’u.

Let us pursue further the observation with which we began this
section. Given h¢ A and A > 4, Proposition 1 shows that a solution
of (1) may be obtained by finding b ¢ C(0,1) such that (X,b) € B and
the solution u of (4) satisfies

u(x0+b(y),y) =1, 0 <y<1.

We now use Green's representation formula for u to obtain a nonlinear
integral equation for the free boundary b.
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To obtain the Green's function,

problem
Au = Au in @,
i ul = o' §_u_l =: 0,
TO an Fl
has eigenvalues
Ao = s lmen? 4 a%1, mn > 0,
with corresponding eigenfunctions
2% sin (m+%0nx, m > 0,
u —
it 1
2 sin (m+7)nx cos nny, m > 0,

conditions is given by the bilinear formula

w sin(m+%0ﬂx sin(m+%)n£

|v

we note first that the linear

0,

1.

The Green's function for the Laplacian with these boundary

tion formula

_ 3G _ Ju
u(x,y) = /J (uﬁ Gﬁ)ds+§IGAud£ dn,

an
where n is the outward unit normal. Since 3/9n =
boundary PO of the square and Au = 0 to the left of ¢

the solution of problem (4) may be written

- - flGE(x,y,O,n)h(n)dn

0
rl6(x,y, £y de an,
0 x0+b(n)

U(XIY)

(6)
oY

takes the form
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0

so that our constraint on the free boundary, u(x0+b(y),y)-1

2
G(x,y,&/,n) = - - z 12
T m=0 (m+§)
(5)
_ 4 ; sin(m+%)nx cos nmy sin(m+%)ﬂ€ cos nmn
2
i m>0 1,2 2
nil (m+7) + n
Now we write the solution of (4) with the aid of Green's representa-

- 3/3t on the left
x

+ b(n),

= 0'




1 11
- G,(x0+b(y).y,0,n)h(n)dn - xS f G(x0+h(y),y.ﬁ.n)d£ dan -1 = 0,
o S

0 x0+b(n)
(7) 0 <y <1.

If b(y) is a solution of this nonlinearintegralequationthen:<=:%+b(y)

is a free boundary for a solution of (l). In the next section we
use the implicit function theorem to solve this equation for b(y).

3. Solutions of the Equation for the Frce Boundary. Denote
the left side of (7) by F(h,A,b). We regard F as an operator from
AxB, defined in (3), into C(0,1), and we seek solutions b(y) of
the operator equation

(7)° F(h,x,b) = 0,
for each )\, in the neighborhood of the known sclution bl(y) 0 of
F(O,Ap) = 0, oo 4.

The results are described in the following theorem, from which
Theorem 1 follows immediately.

THEORFM 2. For X > 4, let x, = x,()) be_the free boundary for the

"upper solution" of the reduced problem. Then there is an open
neighborhood U of (0,1) in AxRand a unique continuously differen-

tiable mapping g: U - C(0,1) such that g(0,%) = 0 and F(h,x,g(h,\)) =0
for (h,X) ¢ U. The partial derivative D,g matches the expression given

by the perturbation scheme of [FM].

If x, ne!
all the above results hold provided Xq is not a solution of one of

the eqguations

1 sinh nnxo cosh nn(l—xo)

(8.n) 1 - Xg = nm “osh (n

Each of the equations (8.n) has a unique svlution x, in the

open interval (%:1). The solutions to these cquations form a mono-

tone sequence tending to 1, and at each such point Xg @ bifurcation
occurs. -

To be specific, fix n > 1 and let x, be the solution of equa-

tion (8.n) 12 (%.1). Let Xn = 1/x0(1—x0), and let 2 be any complement

of the linear span of cos nny in C(0,1). Then we find
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i) an interval I = (=68, + §)},

ii) continuous functions é: I -+ IR and y: I + Z with
$(0) = Xn, v {(0) = 0, and

1ii) a neighborhood V 2{ (An,O) in R x C(0,1),

such that for all t in I the following pairs are solutions of
F{0,3,b) = 0 in V:

a) (A,b) :(Xn+t,0) (corresponding to symmetric solutions uo(x)

of the reduced problem),

b) (+,bB)Y  (+(t), t cos nn(.) + ty(t)) (the bifurcated
solutions) ;

and every solution in V has one of these forms.

We give the proof as a sequence of lemmas; the proof of the
perturbation result comes first, followed by the bifurcation proof.

For the perturbation result we use the impl.cit function
theorem, which requires the existence, continuity and invertibility

of D3F’ the partial (Fréchet-~) derivative of F with respect to its

third argument. The information needed is established in the next
three lemmas.

LFMMA 1. For h¢ A and (A,b) ¢ B, let u be the corresponding solution
of (4) given by (6). Then DBF(h,x,b) is the linear operator in

C(0,1) given by
(9) DJF(h,A,b)-F(y) - a (X FB(Y) L y) tE (y)

. 1
boo é Gx +b(y) ,y, xy+b (1) ,n)x (. )dn

PROOF: We show here only that the expression given by (9) defines a
bounded linear operator in C(0,1). The estimates necessary to show
that it is the (Fréchet-) derivative are given in Section 4. Inci-
dentally, the same argument shows that D2F is continuous in AxB as
well.

For each fixed (h,),b), the operator (9) is a multiplication
operator by a bounded continuous function, plus an integral operator.
The multiplication part is evidently a bounded operator. The
integral operator is even compact, as we now show. Call the kernel
of the integral operator k(y,n) . It is of the form
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1 1

k{y,n) = 33 log  + analytic function.

2
[(b(y)-b(n)) 2+ (y-n) 2]
If we also denote the integral operator by k we have

kB (y") - kB(y)|

il

| Yty ' on) - k(y.n) 18 (n)dn|
0

il Hxeyt o - k(y,n) lan
0

‘A

A

LB, wiy'-y),

where w(x) -+ 0 as x + 0. Thus k takes bounded sequences into
uniformly bounded and equicontinuous sequences.

LEMMA 2. D3F is a continuous mapping of A x B into the space of
bounded linear operators in C{(0,1) = C .

PROOF: The continuous dependence of D3P(h,k,b) on its arguments

jointly is easily seen as follows. First, the solution u of (4)

depends continuously in the norm of Cl'a on the data h,\,b. Next,
the mapping
(u,),b) ¢ Cl’(l x R x C0 — %% (xo(A) + b(y),y) ¢ C0

is evidently continuous, proving the continuity of the multiplication

part of D3F. For the continuity of the integral operator, we observe

that the norm of the difference of the integral operators in
DBF(h,x,b) and D3F(h',x',b') is dominated by

1 ] ] 1] ]
m;x é |G(x0+b(y),y,x0+b(n),n)-G(xO+b (Y),y,x,+b (n),n)]dn,

]
where Xq

its arguments outside an arbitrarily small ne.~hborhood of n = vy,
over which the integral is as small as we ple-~ie because the singu-
larity is only logarithmic. This proves contiluous dependence.

L
= xo(l ). The integrand is continuous as a function of all

LEMMA 3. D3F(0,A,0) = M (1-x,)I-K], where K is_the compact integral
operator in C(0,1) with kernel

0_ ceos nny cos nmn,
1 N

o~ 8

K(y,n) = o, + 2
0 n
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The eigenvalues o are given by

% = *o
. 1 sinh nnxo cosh nn(l—xo) 1o
n nm cosh nm ’ reesc e

PROOF: When h = 0 and b = 0 we find from (2) and (9) that

D3F(0,A,0) = A[(l—xo)I-K],

where K is the integral operator with kernel

K(y,n) = - G(xo,y.xo,n).

By substituting into the Green's function (5) we find that the
eigenfunctions are {cos nmy: n > 0} and that the eigenvalues are
given by

@ sinz(m+5)wx

g, = 2 z 0 - X
0" 22 o (mth) 2 0
2 o sinz(m+5)ﬂx
o= 3 1 —
n T m=0 (m+%) “+n
1 sinh nTX g cosh nn(l-xo) )
= = , n > 1.
nm cosh nmn -

Interchange of the order of summation in this calculation is justi-
fied by the fact that outside any neighborhood of (x,y) = (f,n) the
series for the Green's function converges uniformly; the resulting
series for K(y,n) converges uniformly away from y = n.

In order to compute the linear approximation of the¢ pe.turbed
free boundary and compare it with the calculation of [FM], we also

Dn cOs nmy c¢Os nmn,

need DlF'
LEMMA 4. DlF(O,A,O) is the integral operator from
1
x = (hcw?p’P(r)|h'(0) = h'(1) = 0} into C(0,1) with the kernel
1+ I

n=1

3n2




where

Py = cosh nn(l-xo)/cosh nm, n=1,2,....

PROOF: The operator F depends affinely on h, so DlF is the integral
operator from X into C(0,1) given by

D,F(h,1,b)*h(y) = - /16, (xo+b(y),y,0,m)h(n)dn.
0

Since x0+b(y) > 0 the kernel is analytic, so D,F is compact. The

1
computation of the eigenvalues proceeds exactly as for D3F.

The results up to now have established that F is a continuously
differentiable mapping of AxB into C(0,1). We now wish to apply the
implicit function theorem to solve the eguation

F(h,A,b) =0

for b as a function of h and A, say gt(h,)), such that g(0,x) = 0.
This can be done if D3F(0,k,0) is invertible. From Lemma 3 it

follows that this is the case whenever 1 - x, is not egual to any

0
of the O eigenvalues of K. Now it is easy to see that

On < %, n=1,2,...; hence if we take X = xa(k), corresponding to
the upper solution (see Fig. 2), 1 - X0 >%>°n and D3F(0,k,0) is

always invertible. This proves the perturbation result for the
upper solutions.

. o+ 1, _ 1

For the lower solutions Xq = xo(A) > 3 8o 1 Xg < 3

and 1 - x,. can coincide with an cigenvalue of K. In fact this

0
happens just once for each n, as we now show.
PROPOSITION 2. For each n =10,1,2,... there is a Xn > 4 such
that
1-x0=0n,

X5 being taken with the "+" sign. The An form an increasing

sequence with no finite point of accumulation.

N - - - = 1 =
PROOF: Since o, = xo, we have co =1 x. when Xq 30 Ao 4.

0 0

This corresponds to the appearance of the nontrivial solution,




followed by its splitting, for A > 4, into an upper and a lower
solution. For n > 1, we use the formula

= 1 sinh nm (sinh nw + sinh nﬂ(2x0-l))

o ———
n nt sinh2nmw

to see that as X increases from % to 1, o, increases from
1 1 . - 1
T tanh nm to I~ tanh nn, while 1 XO decrzases from 5 to 0.
Hence there is a unique solution of the eguation 1 - Xg = 0Op-
The inequality Xy > 1—#? for the solution of this equation shows

that XO + 1, therefore Xn tends to infinity, as n » =,

We may now verify that the scheme of [FM] gives b correctly
to first order in h, for those points (X, ug ), A > 4, on the graph

of Figure 2 for which D F(O A,0) is 1nvert1ble, namely, for the
entire upper branch and for all points (A,u ) on the lower branch
except the ones covered by Proposition 2. Slnce
F(h:krg(hr)\)) =0
it follows that
-1

Dlg = - (D3F) DlF.

Now any h ¢ A has a uniformly convergent Fourier cosine series

a_ cos nmy.
n Yy

™8

a
h(y) = — +

n=1

Hence the linear approximation to b = g(h,A) is

a ® )
- — -— 0 — ————n
Dlg(O,A) h = jTT:fiaT nil l_xé_gn a_  cos nmy

This matches the calculation in [FM] when h is replaced by Ah; see
the remark following equation (1).

Now we return to the situation when l—-x0 = on for some

n=1,2,... We do not attempt to describe what happens at Xg = %.

To show that bifurcation occurs, and thus establish the second
part of Theorem 2, we apply a bifurcation theorem of Crandall and
Rabinowitz [CR]. The hypotheses of that theorem are established in

304




the three lemmas which follow.

LEMMA 5. Let Xq satisfy the equation l-—x0 =0 for some n and

let An = l/xo(l-xo) Then D3F(0,An,0) has a one-dimensional null

space, spanned by cos nny, while its range has codimension one,
coinciding with the null space of the continuocus linear functional

d (f) = fl f(y) cos nmy dy.
n 0

PROOF: From the form of K(y,n) (see Lemma 3) D3F(0,An,0) annihi-
lates cos nrvy when l—xO = cn; and since the cn's are distinct,

cos mny is not in the null space for m # n. From the Schauder 4
theory for compact operators the range has codimension one. For

the characterization of the range, observe that

on(D3F(O,An,O)°B) = 0 for any 8 € C(0,1); since the range of

D3F(O,Xn,0) is a hyperplane it coincides with the null space of ¢n.

LEMMA 6. D,D,F exists and is continuous in a neighborhood of

Ty,

(O,Xn,O). (We give the proof of this lemma in Section 4.}

LEMMA 7. DZD3F(O,Xn,0)‘cos nm(.) does not belong to the range of
D3F(0,An,0).

PROOF: The proof of Lemma 6 shows that cos nn(*) is an eigenfunction
of DZD3F(0,Xn,0). The eigenvalue is

0
dx cosh n7n (2x,-1)
= |- 0 ‘A

d (A (l-xy=0_)) e Teaam
ax 0 "n’ A=A A% T dxg A=

0
ax (1+ cosh nm

This completes the proof of Lemma 7, and of Theorem 2,

4. Estimates for the Derivative Calculations. 1In this section

we prove estimates to show that D3F and DZD3F have the analytic forms

given in Lemma 1 and Lemma 6, respectively.

We begin with D3F. Let (h,\,b)¢ AxB and let B € C(0,1) such that

({h,X,b+B) ¢ AxB. Denoting by L the operator on the right side of (9),
and using (6) to express du/dx, -we have
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[F(h,Xx,b+8) - F(h,x,b) - LBl (y) =

1 1 1

~/ GE(XO"'b(Y)‘FB (y),y.0,n)h(n)an - A/ G(x,tb(y)+B (y) ,¥,E,n)dEdn

0 0 7 xytb(n)+B8(n)
1 1 1 1
+~/r Gy (xg+b(y) 1y, 0,m)n(n)an + {/r./r G(x +b(y) ,y,E,n)dEdn |
0 0 “x,tb(n) ?
1 1 1 ]
+ / Cug (Xp*tP(¥)y,0,n)h(n)dn + k_/ / G, (xytb(y) ,y,E,n)dEdn | -B(y) )
0 0 “xy+b(y) ‘
1

- AJ[ Gy *b (¥) ,¥sxg*+b(n) 1) B (n)dn.
0

We need to show that the norm in C(0,1) of this difference,
divided by IISIIm, may be made arbitrarily small by choosing
IBIIm sufficiently small. Rearranging terms, as in the usual
proof of the Leibnitz Rule, we find that the above expression is
equal to
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5 n(m) an [ - 6 Gt (148 (Y),y,0,m) + Gg (xg+b(¥) 1y, 0,m)
0 ¢ £

+ B()’) GXE(x0+b(y) :Yroin)]

+a shan soaE -Gl (1) +B(v) Y, E.n) + Glxgtb(y) ,y,E,m)

0 xo+b(n)
+BY) G, (xg+b(¥),y, €]
%o +b (1) +8 (n)
+ A fl dn J/‘ G(x0+b(y)+8(yLy,gm)d£ - B{n) G(x0+b(y),y,x0+b(n),n)}
0 xo*b (n)

Each of the first two integrals is of the form
f(xy+tb () +B(y) ,y) - flxytb(y),y) - B(y) f (x,+b(y).y)

for a Cl'a function f, and from Taylor's Theorem it follows that for

any £ > 0 there is a 6§ > 0 so small that

max  |£(xg+b(y)+B(y),y) - £(xy+b(y),y)
0 <y<1

- B(y) £ (xp+b(y).y) | <ellBll,

provided I]BIIu° < 6.

For the last integral we add and subtract a term to obtain

1 x0+b(n)+8(n) 1
(10) A é dn [ G(x0+b(y),y,€,n)d£ - B(n)G(xO+b(y),y,x0+b(n),n)J
x0+b(n) !
xo+b(n)+8(n)
+ A fl dﬂ dE [G(xo"'b(Y)*B (Y),}’,Epﬂ) - G(x0+b(Y) rY,C,T‘I)].
0

x0+b(n)
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The first of these may be written

x0+b(n)+8(n)
A fl dan dg [G(x0+b(y),y,i,n) - G(xo+b(y),y,x0+b(n).n)]'

0 X +b (1)

0

Let € > 0 be given. We show that the integral above is bounded in
maximum norm (considered as a function of ), by a constant times
€ times the maximum norm of B. We choose ||B8||_ so small that

1811274 < e, ana 1811172 109 (/11811 < ¢,

and let vy = |]g]]3/%.

For each fixed y, 0

< 1, let D(y) denote the disk of
radius y about the point (& =

<
ny (x0+b(y),y). Letting $ denote
the region of integration and I(£,n) the integrand we have

Y

ff I(t,n) dgan = Jf 1 aran = JJ 1 agan
S SOD(y) S\D(y)

There are constants C and C' independent of y such that

| /7 1 dtan| < c' il log (1/r) rdr < C Y2 log (1/Y),

SND 0
2 2 2 )

where we have taken r° = [§ - (x0+b(y)] + (n-y)~. Outside D(y)
we estimate the integrand by the mean value theorem to obtain,
with constants C; and Ci. independent of vy,

|75 T agan | < c' sf (/o) |8l dcan < ca/yv) |18]12
S\D(y) 5\0
from the fact that f/f 1 < |[B8||_. Combining these estimates with

S

(11) we obtain the desired estimate for the integral.

The second integral in (10) is estimated the same way. This
completes the proof of Lemma 1.

Finally we turn to the proof of Lemma 6. Let us write the
Green's function in the form

1 1

ZTF lOg ; + Q (XIYIEIU),
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where r = [x-E)2 + (y-n)2]1 , and Q0 has no singularities in the
square. Then D3F may be put in the form

D3F(h,k,b) =M+ ALl,

where M is the operator of multiplication by the function

Ju
(12) 3% (Xgtb (¥) ,y)
and Ll is the 1integral operator with kernel

1
V(b (y)=b(n)) %+ (y-n)

L. (y,n) = 5 lo
1Yy 77 109 =+ N(xg+b(y) ¥, xg+b(n) ,n),

where N is analytic.

The dependence on A is only through x Thus the singularity

does not depend on A, and B(ALI)/BX may beocomputed by differentia-
ting the kernel. The operator a(xLl)/ax depends continuously on
and b. To see that D2D3F exists and is continuous, it remains to
be shown that the function (12) may be differentiated with respect

to A. (Recall that X, is determined by A.) Since
34 (% +b(y),y) = - S¥ G, (x.+b(y),y,0,n)h(n)dn
Ix 0 ! XE'T0 rreEe

o

- st j} G, (X, +b(y) ,¥,E,n)dEan,
0 X, *D (n)

the only problem is the differentiated logarithm in the second
integral. This term is

€e=1
j} } Ix 199 ¢ | ~ dedy = - fl log % [ B dn
0 Xo"'b(rl) (x,y) = (X0+b(Y):Y) 0 £ = x0+b(n)

= - st 1og< — 2><fm v log< T >dn
0 Jixg#b (y) -1) 2+ (y-n) Vb (y) b (n)) 2+ (y-n)

showing that differentiation by Xy may be performed under the inteqgral
sign.
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5. Further Work and Open Problems. The obvious iteration
scheme for numerical solution of our problem (1) is probably

- Au = AH(un—l).

n+1

But a simple analysis of the one-dimensional problem

T Uy T AH(u-1), u(0) = h, u'(l) =0
shows that this scheme converges only to the upper solutions.
This suggests that to find the lower solutions of the two-dimension-
al problem, some other scheme must be tried. A further problem is
that the solution u is necessarily not globally smooth. This implies
that some kind of adaptive scheme must be used to refine the mesh
near the free boundary. Our work on this approach is continuing.

Our method may also be applied to the following problem, con-
sidered in [FM2]. In polar coordinates (r,8),

- Au = AH(u-l) in D, the unit disk in the plane,
u(l,8) = h(6), 0 <8 < 2w,

with h > 0 and small. Classical solutions are constructed in [FM2]
by means of a monotone iteration scheme. When the method of the
present work is used, the assumption h > 0 may be dropped; it turns
out further that there are no bifurcations from the family of
radially symmetric solutions of the reduced problem, h = 0. Details
of these results will appear elsewhere.

We turn to some questions left unanswered by our present
approach. First, the smoothness of perturbed or bifurcated free
boundaries is of interest. Our method yields a free boundary of
class CZ—C. We conjecture that it is analytic. A second problem
is the effect of perturbation at the bifurcation points: 1if the
boundary values h(y) are nonzero, what happens to the LI furcated
solutions? Some of the ideas of {S}, in particular a coordinate
transformation to "straighten out the free boundary," may lead to
answers to both of these problems.
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variation of a system parameter often leads 1o an exonanje n the
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forms of the ejuations that we are canable of treatin
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where

x(s) = (v(s), u(s)) (7)

and

Fiv(s), a(s)) |

N(v(s), u(s), s)

P(x(s}, s) = {
B
It is convenient to choose the normalization Nlv, ., s) so that s

approximates the arc length of the soclution branch for some parameter
a = (0, 1)

" v

N(v, we ) = aiv(s) - visg) -+ (1 - ) wls) - lsg) 7 = (s - sp)7 (&)

When the Euler-Newton technique is applied to (6), computational difficulties
near singularities are eliminated since the Jacobian matrix remains non-
singular near such points.

These techniques and an algorithm for their implementation are
presented in detail by Keller [1] and have previously teen applied to
laminar flame problems [7-10] and catalysts problems [11] which exhibit
multiple steady states. Therefore, we forego a discussion of the exact
computational procedure.

1V. HOPF BIFURCATION FORMALISM. We use the term formalism here since
the presentation will pe stripped or the technical mathematical assumptions.
A proper mathenatical framework can be found in the work of Crandall and
Rabinowitz [3] and the references therein. Our work follows closely the
presentation of Icoss and Joseph [4], though rodified somewnat to account
for the nonzero sieady state problem and the form of the model equations
{2). Since this bifurcation theory is most effectively used in a study

of the dynamics associated with an exchange of stabiiity, we begin with a
brief discussion of steady state stability.

The stability of time-independent solutions can in principle be
resolved by examining the eicenvalues of the linearized houndary vaiue
problem. [f the eigenvalues all have negative real parts, the steady
state is stable; whereas, if an eigenvalue nas a positive ~¢2l part, the
solution is unstable. Exceptions to this principle occur wnen the linearized
problem has a zero eigenvalue or a nair of comnlex conjugate, purely irmaginery
eigenvalues. In the current rcactor problen, a zero eigenvalue aives rise
to a limit point bifurcation (a point of vertical tangency) on the response
curves. The bifurcation of a periodic solution (Hoof bifurcaticn) occurs
when a pair of complex conjugate eigenvalues ~{u) and (. ) become purely
imaginary. ‘e assurie that this crossing of the imaginary axis occurs at
up so that =(..) = +i. with . positive. [t is also assusnd that
Re o,(uq) # 0 where 5, = dy/d.:. This ensures a strict crossing of the
axis and is nearly always satisfied in these problems.
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point, but if the orbit T anstabne, Uhe Lol oo w0 00 o e

large amplitude, stabie 05CITTallon Gr o to anGt a0 e tes s it
Examination of the ortidc stability roar cne coct oo 0 g
systematic procedure for ITocating tne otatde o ciibosioe ar o

To present the Hopf bifurcation foraulan, we lineartze a0 gr e,
value problem and write it as

Luw = G, Gv(v . W, = 0 /
where
Ji g .
w=F (v, v w) = F c v, -
LU V( ’ ; vy (V v J 3
and
I8 Y - il T . i
Gv(v s W) SSG(V W “)i<>0' A

The essential reauirements for Hopf bifurcation without their toowrios?
assumptions may be summarized as follows. Assume 1. are si e 2iten-
values of L., » that ni.- is not an eigenvalue forn = 3, 2, 3, ..., an?

that the real part of - (..) is nonzery. Then one can construc: a
bifurcating periodic solution of (1) with frequenc, (.. via a :2rt.r-

bational expansion which can be shown to take the Torm [4]
. 2 "o o
"o : is S v 215 _— ,
u(x, t) = v ~ + 2 Re:;oe CE sy _dz_‘* 2 Re;wge ol o,
2
¢ .2 N
BT gt ahg Yoo ) {105
.2 2
w(e) = ot st ol-7) (i
t= (e )s (12

where = is5anauxiliary parametor reprecenting the an
to the Hoof point. The vecter function - 15 the cidersve tor e G it
to the eigenvalue +i. ; w and w are solutions uf certain Vinoar nor e -
geneous boundary value neoblos disgucesed in the next coclion. e oo

that the sian of . vyields wne odagn ot o - L for  odb icientiy srall e
therefore determines tne direct:on of nifurcation. Sialardy, . deer-ines
the change in the frequency of tre Hifurcating <olution. The porturbacinald
expansion (9) provides a yood avproximation to the perindic solution for
computational purposes.

The stability of *he bifurcat ing acciilation can b S3ced onoa otody
of the Floguet exponents as discuscea by Jonss ant Joceph [L70 The
essential recsult is that the periodic <olution w1 e dTocally robie near
the bSfurcation pnint if tho eicenv luna of R A A AU
nejative reii parts and it .- Re - {. ) is poiitive
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A sequencs 2f three Tincar nonhe ojenenus houniarys ve w00
must next be solved. These are




(20)

Gv(v”, coiv.) = =G (v L,

)

The derivatives F”v and va appearing in the above problews are conputed
by the rule ’

With these computations complete, we now compute - (,.¢)s .., and .. from

—~
N
o
o

1 ' dV. b i *
V0, L T R e ), o

”u(uo) - KFVV T d.. V..

and

P (v, W) T (25)
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The boundary and initial conditions are:

3 - Pe{ly - 1) ats=0,1>0
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" (26)

P Peh(o -1) ats=0,:>0

_Ql: _2:)_= 5 = o {

Z=2t=0 at s =1, >0 (27)
Y=y, 97 etcc0. (28)

In writing these equations, we have drvinad the following dimension-
less quantities:

'y = c/cg b= T/ T

s = x/L T = tv/L

Pom = vL/D, Pe, = prVL/ke
B = f«HCQ/n’CpTJ R UPL/GV,Cp
D= Ae fL/v v = E/RT;.

The above model describes an exotnermic A - B reaction occurring in a
homogeneous tube under tne assumptions that the velocity provile is fiat
with constant velocity v; the variables y and : denend only on one space
dimension and time; the diffusion of reactant A is governed by Fick's
Law with an effective diffusivity, D.i heat conduction is descriped by
Fourier's Law witn an effective theral conductivity, ke; the heat loss
at any point is pronortional to (- -.); and the reaction rate is
describable by an Arrhenius expressicn. The dimensional predecessors

of the above cquations and tno aphiicaniiitys o7 this formulation are
discussed in cetail in two review articlces (12, 13].

VII. RESULTS. We now illustrate the utility of our numerical
procedures by apnlying the above tethods to ine tubular rooctor model
(24-28) for a couple of narameter comhinations. A nore extersive
treatment will be jiven elscuners [15,. e trace the steacv s.ite
solution branches, deterine <rei=~ siability, and isolate tre Difur-
cation points. The kopf bifurcation comnutations dare tnen pertormed

to determine the direction of bifircation, the stabiilitv of the oscilla-
tion close to the biturcation point. and the asynprotic solutions for
the orbits. These asymptotis 0l tions (3] are tnen usad o start the
time-depondent cooutations using 205000, & poneral code based on the
method of lines and o-spiines (1% ). The stacie periocic solutions are
computed and taen traced as tne Dikinler numbor is varied.

If one think, «f Hrerating tae chenivel reactor by varying the
Toareohler g orae st oboedtive bl Lo oeerate atoa nigh teriperature so
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that a more complete conversion of the cheanicel A into T 49 &l
Thus one tries to operate the reactor at one of tne higner steady states
in Figures 1 and 2. These hiqghor steady states are . cnieved, however,
not by starting the reactor out at the nigh stibie steady state, but by
varying a physical parameter such as the flow veiocivy, fecd temperature,
or the Damkohler, which is used here.

The first example is 111ustra ted in Fiqure 1 which corresponds to the
parameter values Pep = Py = 5, B = 0.5, v = 25, f = 3.5 and - = 1. There
is a unique steady state for all va]ues of the Davkohler D with cea-hange
in the stability at D = 0.262 and D = 0.295. At D = 1.262 the bifurzation
is to the left and unstable. At the vaeiue D = 0.29% tre bifurcation s

|99
also <o the left but is not vciable. Dy wkwn, ron oL tle ster.u osciilatic
was traced from O = 0.285 down t0 about D = C.206 vne the stable oscilla-

tions cease to exist and the tine-dependent >on;'1ur' a0 to the stat.e
steady state directly bolow. (We conjecture ihat the stable branch of
periodic solutions connent with the unstable brancn cianatin: froo

D= 0.262.)

The response curve dynanics a,s0ciated witn TR e aner
number D can now be ecxnlained Tor the case doeniot P T For T
close L0 zero, the reactor beqgins operating In & Stablo Lul Lo "o Dfra-
ture and thus low corversion ¢ tne cnesical A anto L. A Lod amee L
the steady state renairg stable and the steady ata‘te muwber s o,

LT

to rise. As D passes inrounn D < .62, @ jump occurs in g
and concentratinn protiles into tne sr;ole pscillacion divecr e o v
which does not cerase until D recches U = 0.295 a

operates in a stable steady state condition.

fror wnion
TO exinGul
the Damkohler is now decreasad. At D = P .2G5 a4 small <ta
in the temperature and concentratior profiles tp ins Lo arnog
oscillations continue to yrow onut cease throudn 2 VRIS
stable steadv state at 3 = 0.26. 5oth of these juons mav
as ignition and extinction processes, respectivelv.

The second exarmple represernted in Figure 2 corresnonds 7o the
parcmeter values Pey = Pe = &, B = .2, = 250 . = 2.5 and
This rase denonstrites a1 - 3 -1 -5 -1 (111)‘1‘1‘« DAtTorn in
steady states. The first stability c«cnmince 1< “ound 30 onc Touer Dimie
and all intermedizce steady Stat. . roodn o unLtanio ount o, o oot piturca-
tion point is encountered 1t D Boloh. A @tab1n Deriodic ortit Savurca-
tes to the left at this value of the oaskonioer

If D starts out cliose to zero end 1S increated, She Lo Loratyrs
increases and reviaine in a stanls steafyv csate il e loes Timgs
point 15 encountered at whicn paoint “ne terperdature 05 inta tro ouch
higher stable o:cillatinn., This stuhle oscillation oraws <foagily gnti?

n

a jump to an even higdver stable neciliytion at avaut O - D Tho
amplitude of the temprorature: cociliasion contingos o wvon, Deass cut,

and thern ranidiy ooy pack o e oty gt D TN T et e
the reaction the Dambtohicr nurher can now be dacrced. Tro oranid arowan

the amplitude of a periodic orbit heqins at 0 - 0,165 which Peaks out,
decays. jumps down, continuas o Jdecay. and thon dicannnye, a she s
dependont solutions decay o thne staplo Steoy e L S S
lower turning point,
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one to determine the possinle steady states ard bifurcating stable and
unstable oscillations. Thus systematic numerical methoas are established
for investigating the response curve cynariizs, inciuding juiip phenomena,
and the oscillatory dynamics for a broaa array of models found in chemical
reactor theory, combustion thecry, and even inatnematical biology.

VIIT. CONCLUSIONS. The bifurcation techniauec nressntaec cran’
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NOTATION

cross-sectional area of the reactor, m¢
frequency factor, s-!

dimensionless heat of reaction, ~Hcg/sCpTy
concentration, mol/m3

inlet concentration, mol/m’

specific heat, J/mol°K

Damkohler number, Ae” 'L/v

effective diffusivity, m%/s

activation energy, J/mol

heat of reaction, J/mol

effective thermal conductivity J/s ni°K
reactor length, m

reactor perimeter, m

Peclet number for mass transfer vL/De
Peclet number for heat transfer ;vaL/ke
universal gas constant

time, s

temperature, °K

inlet temperature, “K

dimensionless axial distance, x/L

heat transfer coefficient, J/m< s°K
velocity, m/s

axial distance, m

dimensionless concentration, c/cg

Greek symbols

8
Y
gl

dimensionless heat transfer coefficient, UPL/av;.Cp
dimensionless activation energy, E/RTy,
dimensioniess temperature, T/Ty

density, kg/m’

dimensionless time, tv/L
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THERMOELASTIC WAVE PROPAGATION
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ABSTRACT. The coupled dynamic thermoelastic problem was formulated
as a fourth-order partial differential equation in temperature (or stress).
The fourth order Laplace-transformed operator was decomposed into a "wave
T1ike" and a "diffusion 1ike" operator. Boggio's theorem was extended vis-a-
vis this decomposition. As a result of this extension two functions were
defined, one satisfies a "wave like" equation, the other a "diffusion like"
equation. The boundary value problem for the fourth order PDE in temperature
was formulated in a finite mecium and a method of solution was obtained
through Boggio's theorem and a perturbation techniuge.

1. INTRODUCTION. The dynamic thermoelasticity problem has been
studied quite extensively since its beginning in 1838 when Duhamel derived
equations for the strain field in an elastic medium containing temperature
gradient. A comprehensive review of the literature up to 1960 was given
by Chadwick [1]. A more recent treatise on the subject was the 1975
edition of the book "Dynamic Problem of Thermoelasticity" by Nowacki [2].
Other articles which have close relevance to the subject matter of thermo-
elastic wave propagation are listed in references [3-18]. Since the
Titerature on the subject is so vast, the reference 1ist contains only those
which the authors have some faimilarity with.

To understand the nature of thermoelastic wave, it is instructive to
Took into the characteristics of the uncoupled waves. For a hypothetical
medium with the thermal expansion coefficient o« = 0 the pair of equations of
thermoelasticity are uncoupled to give the one-dimensional wave and heat
equation respectively. On inserting the plane wave solution of the form

(o,Te = 19,791 exp (1 (kx-ut)} ()

into each of the following uncoupled equations

FRECEDI NG tadg BLAWK =, 0T FlisdD




and

one obtains two relations between . and k,

W= gl 4
and
Ty 5

For waves of assigned frequency by ietting . b2 a rea: constant, ine
solutions obtained are:
3\

‘qu exp {_]’Lﬂ(t-_é')} + uc_) exp 1']u)(t+()§/ ,

e
f1

T =1 exp i-x A2 - du(t-Xo)3
! 2x V2 ku

—
(o]
——

+ TO exp tX/éi - dw(t + "x*~)},
- " -~
2w
which represent progressive waves travelling along the x-axis. The thermal
wave is subject to dispersion as the phase velocity VZ.w is a function o1
the frequency.
On the other hand, if one assigns k to be a real constant, waves of

assigned length are represented by
. 0 . . 0 . ,
o = o, exp {ir(x-ct): + u_ exp {ix(x+ct);,

10 axp (-vk%t + ikx1. (

—
H
~i
-

The elastic waves have the same character as before whereas the
temperature is a standing wave, the amplitude decaying exponentially with
time.

For the propagation of the coupled plane harmonic waves one assumes the
same wave form as represented by equation (1) and substitutes the solutions
in the pair of coupled equations such as equations (18) and (19) of reference

17. One can either study waves of assigned frequency or waves of assigned
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lenqth. Chadwick [1] discussed these solutions in great lengti in his

article. In essence, the purely elastic and thermal waves which are the
solutions of the completely uncoupled equatiuns are modified. Chadwick

calls these modified waves quasi-elastic and quasi-thermal waves. For

waves of assigned frequency, a thermoelastic wave of displacement or temperature
consist of a quasi-elastic and a quasi-thermal mode. This phenomenon

represents a coupling -f elastic and thermal effects, the strength of which
depends on the frequency and the coupling constant ¢. The guasi-elastic

mode, in contradiction to purely elastic wave, is subject to damping and
dispersion. On the other hand, both the purely thermal and its modification,
the quasi-thermal mode, exhibit damping and dispersion.

Waves of assigned length, as would be expected, display properties of
modification and coupling just as waves of assigned frequency. The quasi-
thermal mode is also a standing wave, like its counterpart in the urncoupled
wave. A comprehensive discussion of the modified waves as outlined here
can be found in Chadwick's article [1].

The subject of this paper is on waves in a bounded medium. Some discussion
of the boundary value problem in one dimension can be found in [16] and
{17]. A different approach will be adopted in this paper. This approach
is based on the idea contained in Ignaczak's paper £15] in which he showed
how the solutions to the coupied problem can be approached via Boggio's
theorem [19]. Boggio's theorem indicates that the displacement solution,
as well as the temperature solution to the coupnled problem can be
constructed by superimposing two solutions, each satisfying a "wave like"
and a "diffusion like" equation respectively. This fact that the solutions
to the coupled partial differential equations can be decomposed mathematically
into two solutions as described above will be demonstrated in the followinn
sections throuah the tanlace transform method. In the next section the

fundamental equations will be displayed.

IT. MATHEMATICAL MODEL. Since the following discussion will be
restricted to one-dimensional wave propagation, all the equations will be
given in one-dimensional form. Let the bounded region R be given by
0 - x <9. The eguation of motion is

(8)

r!x = pu

tt
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where p 1S the density, 5 is the stress and u is the displacement of a

field point at x. Equation (8) can be expresseda ian %he strain e as i

Oux - pett (9) ‘
The coupled energy equation is
Sl s e (10)
XX L et

where « is the diffusivity (k = pc/K), n = yTO/pck and v = (3x+2.)/u, «
being the coefficient of thermal expansion.

The Duhamel-Newnann constitutive equatica is
o = Ee-yT (1)

where £ is the Young's modulus of the materials.
The boundary conditions are as follows:

X = O, o(O,t) = f(t)

Tx(O,t) - ,-]T(O.t) = g(t) (12)
x =145, ofle,t) = ¢
TX(:‘,t) + i"rZT("’t) =0 (1-3)
h h,
where Bl = s iy T f(t) = -p(t), qf{t) = yITq(t), h] and h, are heat

transfer coefficients at the inner and outer surfaces respectively.
DIMENSIONLESS VARIABLES. We define dimensionless variables x, t, T, «,

by the barred quantities as follows:

C2t
- _x = _ = _ 1 - _ -
x =, t S, 1= T 0T N \ITQ (]4)

5
¢ 3

= ra, ro= 2o 2 - F (15)

Inserting equations (13) and (14) in equations {9) and (10) with the
additional equation {11) to reduce the PDE's to dimensionless form in the

variables T and ~, we have
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= azcot (]6)

(17)

where ay = (3A+2u)2/TopC(A+2u)r2

(3X+2u)/pCT0r

(3a+2u)/ (A+2u)r.

The boundary conditions in dimensionless form are:

T, - BT = g(t) (18)

where f(t) = f(t)/E, By = 8,2, g = g{t)¢/T.

where 82 = 822.

FOURTH-ORDER PDE's. The pair of second-order PDE's can be reduced to a
single fourth-order PDE either in T or in o. By simple algebraic manipula-

tions we obtain

2

T T

(r = alsz (20)

Txx— tt)xx - (Txx_ tt)t

and

2 - L 2.
(r qxx-att)xx - (oxx_ott)t = aye . (21)
It is noted that equations (20) and (21) can be put in a more compact form
by introducing two operators as follows:

2

5 = 2%/ax8, D%+ s2/atl. (22)

Thus we can write

[62(r262—02) - D(rzéz-Dz)]T = a152r262DT

or
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[1T. DECOMPOSTTION THEM A fonacsar 1o v e the thieares 1

to Reggio [19] to the thervoelasticrey prable: N T T R R A
accomplished tor the POF eqguation 1700 In tras sapec a decoympos rtion
“heorem witl be proven tor tne faplace franstoone ! Paoowntn over oot L
The proof o1 the theorem will De qgiven 1n two STenun, 11rst tor tre niha e !

and then for the coupled ecuations.

e
UHCOUPLED EQUATIONG.  Letting O oan equatt o (73 we obtan
5 ERRE o
O 00 A P S (24,
Ancuaming noco:eneas It tal confition. on o, I}, :Lt and Tttt’ we will
Show that there exiot fwo “unc’ions oix,t) and vi«,t) such that
> f L i
(ro C-0 00 g, et sl Doand T 0+ . (25
1
)
Laplace transtorming ogaation (250 yielids :
3 ) 3 IS
. 4 o ~ N e \ ; - : \
(r' - "-s" a0, sy DL Uty 226
where 5 is the transform variable, u, v and 7 are transformed functions
for shortness equation (26 15 rewritten in symbolic rorms, the symbols
heing used 10 repiace the operators on u and v.  Thus,
au u, nwv -0 el
!

and equation (23} at o beina Laplace transtormed becores
HaT 0. e

The decomposition theorer: states that it gu - 0, K(S)u = HT where

] .
F{S) - s%-s, then Hv - Dand T = u + v.

PROOF. Define vix,») such that v = T-u, since :+ [+ 5 -5, we have

Hv = HT-Hu  HT - gu-(s‘-<}u

hut by hypothesis pgu =~ 0. thus

3




H\) = HT - (SL—S)L' = o (Shu-{s"-5u oy

hence Hv = 0 if and only if ¥(s) = 52—3 which 1% given in the rypothesis.
It is noted that this theorem can be stated for the system of 'IL‘s

in equation {24) and (25) vy simply applying “nversion to the above. Also,

a parallel theorem can be stated by interchangina the roles played by «

and v. That is, if Hy = 0, (D—Uz)v =07, then Qu - 0 and 7 = u + v,

CCUPLED EQUATIONS. Takina the Laplace trans-orm of equation {24) and

writing the resulting equation in symbolic form
LT =0 (31)

where

nD
L ‘r A‘—sz)(r?ﬁz—s) - a1r2LLs‘“

We shall attenpt to decompose L as follows. Let

-q) (32)

where p and q are functions of s to be determined. Expanding equation (32}
and equating coefficients of like powers of m2 with that from equation {(31),

we get
2 3

”
P*+tq=s” +s+apsandpq st (33)

Therefore p and q are the roots of the followina quadratics

22 - (52+s+a]\

2 3

stz +s° = 0. (34)
Now we can write equation (31) in the form

L]sz -0 (35)

where L] = r2&2-p. L2 = r2»2-q.

The decomposition theorem states that civer equation (31), Lyu

"
o

and k{s)u = L2T where k(s) = p-q, then sz =0, T~ u+v.

PROOF. Define v = T-u. Since Ly = L, + p-q we have
L2v = sz - Lyu = LZT - L]u - (p-q)u = [ZT - {p-q)u = 0.




[t is notes tnat ~he wneorvr can be stated in a similar way Ly

TLLer-

changing the roles played by u and v.

Iv.
The boundary value problem ot the fourth order PDT in equation (33) can

stated, for example, in T{x,t) as

LT Jd,. G » 1, ot 0 4
a0 2] &l o ) YD .
where | (r S B R A R a r anet tne 1ss0ciated boungary
conditions
x -0, | -,‘,t]T(U‘,t) - ()
3 7y t
r . PURRY hl ’ -, \
[ -0+ 7300700, e
X 1, *7,]T(1.t) 0
Lo 00700, t) W

The second conditions in eauation {37) anc {4, are -tress boundars

conditions. They are expressed, throuan the use Ot the Duhamel-tewnan

equation (11} and the enerqy eauation (107 ana o, sivsle calculatior, 10
terms of the temperature.

To solve the boundary vaiue probiem we <hal. *ir.t use _a0 gt
transforrm in all tne equation (+ ), () anc ([ ;. 7Tre syuter o the
transformed eaquation are as follows:

LT - 0,
b ¥ 1N ] hl
! v o Al
where L i -5 Yy Shl s ay .
x 0, (- ]TT(J, ) NN
L0
r % N ')\ b -
L=l s TN s) 5 f(s)
v 1, [ 1T sy 0
AT N
Lo T a7 L) 0.
According to the decomposition theorem proven betore, in terpe o6 o

BOUNDARY VALUE PROELM AND ITS SOLUTION LY A PFRTUREATICH Tiirhi.
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functions u and v, we have

[r°¢“-p(s)u(x,s) = 0

. (42)
[r252-q(s)]v(x,s) = 0.

After u and v are solved as solutions of the ODE, the solution to the
fourth order ODE, equation (32), can be obtained as the sum of tnese two
functions. However, the boundary conditions in equation (40) and (41) are
applied to a linear combination of these furctions. A perturbation

technique is proposed.

PERTURBATION TECHNIQUE. Let

T(x,s.c) = § T.(x,s)<
j=0
- -, ) J
u(x,5,0) = j‘io Lylxs)s (43)
VX5, ) = 0 vi(x,s)ed
j=0

where Tj, Uj and Vj are trne expansion coefficients of the respective
‘w,»r\CI.iOhS. ‘ .

The boundary value problems for the expansion coefficients are obtained
by inserting equation (43} ana in equations (°%}, (40) and {(41). Thus we

have the 0ODE

-4
1
1o
h
»
wn
—
N
IS
-

T - o ton =0
X i - [y ' ! )
. T n e On d., n -0 (45)
el b ] n =
AT ) S S . = L0 '
'J‘H(t"’ InSf(S) v n—Z(O‘S\ n J, others

(46)




We also need to expand p{s) and q(s) into in‘inite series of even

powers in . Thus,

Inserting equations (43) and (47) into equation (42) yields

(r2622p Vi, (x,s) = 5 b, i (x,s)
POtz Vel 7 Lo Paaai it
(46)
2
(r262-q v, (xss) = v, (%)
=gV e (Lo T2k

The ODE's in equation {(48) represent a set o recursion relationsnips
amongst the expansion coefficients “j and Vj respecﬁive]y. Even though
p(s) and q(s) have expansions in even powers of ., u(x,s,c) and v(x,s, ,
must be expanded in both odd and even powers of . because the boundary
conditions depend on : as well as {2

The boundary conditions for uj and Qj are coupled and are given by

the following system

x =0, sug - fqu ot SV- S xonq(s)
n . n .
N N / \
) piu .t g _so=Su_ - SV_o- Su (49)
jeg I yzg 90l n-2
TSV T \1n3{(5)
The * usage has been explained in equation (45).
X 1, n+'2LJn+Avn+ ;Zvn*O
n n R . .
bopu o+ Y Qv o= su_ - Sy (50)
jzg 3 n=d L dned n n
- SU 5 TSV o T 0
Uncoupled case, . = 0. In this casc the system of equations becomes n = 0

by letting




\
.l
|
,

262~p0)u0(x,s) =0, pg s

(r
(51)

ug(0,s) = 0, &0(1,5) -0

and

(rs?-qq)vy(x,5) = O (52)

[8-8y1vg(0ss) = gls),  [e+eqdvg(l,s) = 0 .

This shows that uO(x,t) is identically zero, signifying the fact that |
in the fundamental temperature response there is no contribution from the
stress input. On the other hand, Qo(x,t) is the uncoupled temnerature
distribution in the bounded region 0 < x - 1 with the given thermal boundary
conditions.

First order in ¢. The first order expansion coefficient G](x,s) satisfies
the following transformed boundary value problem

(r262-52)u](x,s) =0 (53)

x =0, (5—1)01(0,5) = f(s), x =1, (s—])&l(x,s) = 0.

Here Uy is by choice made to represent the solution of the pure stress
proolem with the impact stress at x = 0. Observing from the first boundary
condition in equation (51) it can be said that u1(0,t) = f(t)et which is
unstable. This suggests that this perturbation method holds only for
small time.

The first order expansior coefficient Q](x,s) is the solution to the
following boundary value problem:

(r225)v, (x,5) = 0
x = 0, [&‘;]]V](O,S) = - w-G]]u](C,s) (54)
x =1, [*+52]V](],0) = -Lotis Jup (0,50,

Equation (54) shows that the toundary conditions arve coupled. V](x.t)

is the solution of the unsteady Fourier heat equation with boundary conditions

that depend on u](x,t)‘ so that v](x,t) is not purely thermal but depends




on the stress throuaqh the bouniary conditions.

Second order in .. The second ord:r expansion coef. icient o (r ., 1, tre

solution to the following tran<foraed boundary value orobiem

(r?fL—Sz)ug(x.s> -0

=
1

0, u,{0,s; o VA{X,S)
2 (3-1)2 0

x =1, uz(],s) =

Thus, uz(x,t) is a contribution to the temperature distribution in tne
form of a mechanical wave due to the zero-order temperature field.
The second order expansion coefficient v2(x,s) is the solution to toe

following transformed boundary value problem

2 5

(s —S)Vz(x,s) = q2v0(x,s;, SPEREE

x = 0, [é-r]]ﬁz(o,s) E —[*—ﬁ13u2(0,s) (26)
X = ]7 [‘+]]V2(175) - ‘[:{»:'2](12(]55}

It is noted that vz(x,t) is a response to the nonhomonenccus unsteacy

heat equation with a source term due to vO(x.t).
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SOLUTION TO THE RIEMANN PRODLEM FOR THE EQUATICNS OF GAS DYNAMICS

IN A TUBE WITH VARYING CROSS SECTION
Reza Malek~Madani and Shao-Shiung Lirn
Mathematics Research Center, University of Wisconsin
ABSTRACT
The equations of gas dynamics in a tube with varying cross section are an

example of a nonhomogeneous system of conservation laws. In this work we study the
Riemann problem for this system by viewing it as a perturbation of the classical
equations of gas dynamics in a uniform tube. Also, we study the Riemann prob.em and
the formation of singularities for a related, but simpler, problem of nonhomogeneous

Berger's equation.

1. Introduction. The equations of gas dynamics in a uniform tube have been studied

quite extensively in recent years. It is well known that, as a hyperbolic
conservation law, these egquat:ons exhibit discontinuous solutions, while the initial
value problem is not mathematically well posed in the class of weak solutions {1].
It is not difficult to envisage the mathematical reason for the nonsmoothness of
solutions., These equations enjoy a full set of real characteristics and, if the
initial values are chosen properly, the information carried by the characteristics
will overlap and shocks develop. The problem under study in this paper has one
additional property, namely the variation in the tube's cross section, that will
persunably contribute even further to the shock producing mechanism.,

Section 2 concerns with the derivation of the equations studied in :his work.
The argquments of Huqghes (2] have been followed and, as it will become apparent, the
system under consideration is an example of nonhomogenecus hyperbolic conservation
laws. In Section 3 a simpler but related problem is discussed for the purpose of
unders+anding the shock pradu~ing mechanisms that do ant exist in the hcmogeneous

problem.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Section 4 concerns the solution of the Riemann probler. It is well known [3},

(4] that the solution of the Riemann problem played an essential role in developing
a numerical scheme in order to solve the initial value problem for the equations of
gas dynamics in a tube with uniform cross section. Motivated by this fact T. P. Lui

[s] applied a modified Riemann problem for the general nt?  order nonhomogeneous

conservation laws and developed an iterative scheme which converges to the weak
solution of the initial value problem. Although the above scheme is quite
successful theoretically it is rather difficult to implement it. Since we have in
mind a concrete example from the equations of gas dynamics it is our contention to
propose a simpler Riemann problem and hope that it would give rise to more

manageable computations. We are presently studying this problem.
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2. Derivation of the model caguation. Consider an inviscid 1sentropac gas flow

through a two dimensional duct [ = {(x,y)iA1(x) <y < A2(x), -® ¢ x ¢ ®}., The
motion of the gas is governed by the equations of conservation of macs and linear
momentum
p.+ (pu) + (pv) =10,
t X Yy
o
(pu), + (pu® + P) + (puv) = 0 , (2.1)
t x y
(pv),_ + ( Y.+ v2 + P} =0
pV) L puv) I Yy o=
with P = f(p}), where p = p(x,y,t) 1is the density, P = P(x,y,t) is the pressure

and u = (u,v) 1is the velocity vector, together with the Neumann boundary

conditiong
u(x,Ai(x),t)A{(x) = v(x,Ai(x),t), i=1,2
and the initial conditions
p(x,y,0) = OO(X,Y) ’
u(x,y,0) = uo(x,y) ,
v(x,y,0) = vo(x,y) .
In the remainder of this section we will outline briefly the procedure

care e

discussed in [3] which approximates (2.1) by a one-dimensional nonhomogeneous cystem
in the variables p and u. For a physical quantity q(x,y,t) defined in the

region [ we define the average (g’ of q 1in the y-direction

A
. 2(x)
= . f
(q) Ax) qlx,y,t)dy
A (x)
1
where A(x) = Az(x) - A1(x). Averaging each equation in (2.1) and using the

boundary conditions yield

_ A'(x)
<o>t+<ou)x— AR (puj),
2 _ _A'(x) 2
<pu)t + {pu )x + (P)x = Ol (pu™), (2.2)
_ A'(x)
(DV>t + (puv)x + (Py> = X {puv) ,

(P) = (f(p)) .
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In order to further simplify (2.2) we make the following assurptions:

(A) the total variations of Ay(x) and Az(x) are small,
(B) the quantity |X| << 1, i.e., the flow is predominantiy in the x~direction,
u

(CY ((g) = f({p)) for some f .

Then it is reasonable to assume that

{pu) (p)<u) ,
(D)

2
(pu ) = (p)(u)2

A4

etc. An asymptotic analysis with respect to | adds more plausibility to the
u

equations (2.3). Thus (2.2) becores

A’ (x)
+ = e —— ]
Py (ou)x A ) pu
2 A'(x) 2
(pu)t + (pu + P)x = AT pu” {(2.3)
P = f(p)

where we have made the following identifications
(p) ~ plx,t), (u) ~ ulx,t)
etc.

System (2.3) is the one-dimensional approximation of (2.1}. It should te
pointei out that as far as the authors know there has not been a rigorous analynis
of how reasonable the assumptions (A-D) are. Nevertheless, the system (2.3) is a
mathematically tractible model of (2.1). It is believed that the study of (2.3)
will shed some light to the structure of the soluticons of the more difficult, but

exact, equa*tions of gas flow in a duct with variable cross section.
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3. Formation of sinqularities for the emiation u, + f(u)x = Alx)u. Before

proceeding with the solution to the Fiemann problem for the system (2.3) it is
instructive to study how the spatial dependence of (2.3) c¢nters as an important
feature in producing shocks. Consider the nonhomogeneous Bergjer's equation

up + oo = alx)u . (3.1)
The following proposition is in the same spirit as the ideas proposed in (¢].

Proposition 3.1. If a(x) > 0 and a’'(x) < 0 for all x, then the solution %o

u_ + uu_ = a{x)u
t
x (3.2)

ui(x,0) = uo

will form a shock at finite tire for every positive initial value uges

D4

The proof of the above proposition follows immediately from the following lemma
and corollary.

Lemma 3.1. Consider t%e :n:+:al value rroblem (3.2). Let x(§,t) be the

characteristics dAnfined by

dx
— ’ 0 =
3t u x(0) g
(3.3)
du
Fre a{xju , u(0) = uy
Then
’t
X(E,t) = s U(i:s)ds + E ’
¢]
{(3.4)
Jx(&,0)
ulg,t) = a(s)ds + u_ ,
‘ 0
£
-1 t
xg(6.8) = G (A,0)(1 - af) [ G(g,s)ds] , (3.5)
where




G{i,t) = expl(- alx{/,u))ds)
0

ug(ﬁ,t) = X{(ﬂ,t)a(xfﬁ,:)) - all) . (3.€¢)
Proof. (3.4a) and (3.4b) follow from (3.3) by inteqrating with reapect to t and
x. (3.%5) follows from (3.4) by observing that Xg satisfies
X X .
£t ’ g
(3.4a) follows by integrating (3.3a) in the time interval ({0,t}. Sirce
g—%= a(x) (3.7)
(3.4b) is then easily obtained by integrating (3.7) :n the x~direct:on. (3.5 and

(3.6) are subsequently derived from (3.4).

Corollary 3.1'. Assume that wu, 1is positive.
R S SE AT R At

(1) If a(x) €0 for all x then (3.2) has a aleobal smooth solution.

(2) If a(x) >0 and a'(x) > 0 then

oo

atg) [ G(E,s)ds < 1 (3.8)
0

and (3.2) has global smooth solutions.

(3) I1If a(x) > 0 for all x and a'(x) < 0 for all x then

[45Y
atg) [ G(g,s)ds > 1 . (3.9)
0
Hence, there exists £ such that
xg(grt) =0 .

If conditions of part 3 of Corollary 3.1 hold, then the solution forms a shock at
least beginninyg from t.
Proof. The proof of this corollary relies essentially on (3.5). This equation

provides us with a means of measuring at what rate characteristics starting at two
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points &1 and {2 on the x-axis will approach each other. (1) Follcws
immediately from (3.95) since if a{x) € 0 then xg 1s always positive and the
characteristics will be expanding. The proof of (2) is essentially the same. Since
a(x) > 0 a simple phase plane analysis shows that x(§,t) > £ for t > 0.

Since a 1s increasing we have

a(x{(£,t)) > a(f)y

which, in turn, implies that
t
- [ a(x(g,s))ds < -ta(g) . (3.10)
0

Exponentiating (3,10) and recalling the definition of G(§,t) vyields

t
[ G(E,sras « - — oTtaté) 1
0

a(g) a(g)

. (3.11)

(3.8) then follows by letting t approach infinity. Thus, a global smooth solution
to (3.2) exists since, as can be seen from {(3.5), (3.8) forces the characteristics
to expand. On the other hand, if a is decreasing, the inequality (3.8) is

reversed and thus there exists ¢t such that

t
a(¢) [ P(g,s)ds = 1,
0
or equivalently,
X (E,£) =0 . (3.12)

This completes the proof of Corollary 3.1.

Proof of Proposition 3.1. We note that %= E(E). Now, we claim that there exists

£ and £, such that

1

x(£1,E(£)) = x(sz,ag)) =X . (3.13)

oy g




By way of contradicticen, assume for ali T1 and 12, 1,08

¢ 1 2

X(T, (L)) F x(1,,E(L)) . (3.14
Let f(1) = x(T,Z(E)). Then (3.14) implies that £ 18 a monotone function anda,
therefore, f'(1) = xg(r,z(i)) #+ 0 for all 1 wnich contradicts (3.12). Hence,

9 there are two characteristics starting at 51 and 52 which meet at (;,;). LT

the other hand, by the standard uniqueness theorem in ordinary dfferential
equations, the above characteristics viewed in the (x,u) plane reach the line

Xx = x at two different values of u. Therefore, a smooth solution cannnt »xict in

a neighborhocd of (x,£). This completes the proof of Propos.tion 3.1.

Next, we turn to the question of the Riemann problem for the related saaticon

ug + £(u)y = glx,u) . (3.15)

We assume that f is genuinely nonlinear, i.e., f£" > 0. Consider (3.15) witn <ne

Riemann initial condition

u{x,0) = (3.1¢)
uz , x < 0 .

We will give a brief outline of how the local solution to (3.15)-(3.16) is

constructed. Our claim is that the initial discontinuity (3.16) is immediately
resolved by the corresponding conservation law

u + flu), =0, (3.17)
Then the tevm g(x,u) governs the evolution of the resolved waves. Hence, to solve
(3.15)-(3.16) we divide the problem into two cases:

Case A: The solution te (3.16)~(3.17) is a rarefaction. Let

b ug if § < EE
K.
uo(g) = h(gY if f, < E < £ (3.18)
2 r
>
ur if & Er

be this solution, where
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5 f'(a ),

L e
Consider

dx ~

== f'(u),

dt )

du ~

a;' L](X:U)o

,

Let tuls o), x(L,t3)Y  he the solut.

{3.19)

~
=
[
1
[«
g
~
ol
»
r'al
yr
oS
Faal
.

nof (3.19) on ¢ € f < Er. It is not

S c 3
difficult to shew that  x.(5,t) # 0 fo éi S < ir. “hus
u(x,t) - uli(x,t),t)

1s a solution of (3.17)-(3.18) within the reqion x, {t) € x & xr(t), with

x {(t) = x(§5. ,t), 1 =1r,8%.
i i

2

Case B: The soluticn to (3.16)-(3.17) 1s a shock. Let

be that solution with

(ui if £ > s

(3.20)

Then, in a similar manner to Case A we construct the solution to (3.15)-(3.16),

namely,

ulx,t) =

where

P

fu e t) i x < (L)

- (3.21)
ur(x,t) if x > x(t)
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and

~

dt

flu (%,t)) = fu. (x,t))
r .

ur(x,t) - ui(x,f)

(3.22)

(3.23)




4. Solution to the Ricmann problem for she eomataorns {(2.%), In {7] Glimm proposed

an iterative scheme in order to obtain the solution to the initial value problem for
the general! conservation law
Uy + flu)y, = 0, ulx,0) = uglx) (4.1)
n n . . oo
where f : R =+ R 1s smooth and genuinely nonlinear. The building block of this

iterative scheme is the soluticn to the associated Riemann problems

"'Uz, x < ¢

The set of step functi~ns in (4.2) is chosen as a pointwise approximation of the
initial value. The new feature in the system {(2.3) is the nonhomogeneity which is
due to the geometry of the duct. In this section we discuss the solution to the
Riemann problem for (2.3) which arises from the discretization of the initial
condition and the boundary of the duct. First we note that (2.3) can be written in

the form

(Ap),_ + (Apu)_ =0 ,
£ , x (4.3)
(Apu), + (Apu + AP) = =A'P
t x
where 2(x) has the form
1, x <0
Alx) = (4.4)
1 - ¢, x >0
and
(p_,u_), x <0
u (x) = (4.5)
0 ( ) x>0
p+lu+ .

As in [%]), we assume that hroth the 1nitial condition and the boundary of the duct

1




1
have small bounded variations., When © = 0 (4.3)~(4.9%) reduces 1o the ciassicnl
Riemann problem for the equations of gas dyramics in a uniform tube (7. For +he
case € positive we apply the same ideas as in Section 3, nameyy, the solution to
(4.3)-(4.5) can be viewecd as a small perturbation of the solution to the ]
corresponding problem when € = 0. The implicit function theorem is thn main tool
in obtaining tre exact solution of (4.3)-(4.5). To illustrate the method we choose
a particular solution of the € = 0 case and carry out the necessary
calculations. Let
X
{o_,u_), 0 <L <s
x 1/2
(p(x,t),ulx,t)) =< (p _,u ), s < =< (P'"(p_))
! m m t m
x 1/2 x 1/2
= P' <= < (p!
g(t), ( (Dm)) T (F (D+))
be the physically admissible solution to (4.3)-(4.5) with € = 0, i.e., the
solution to the Ri«.ann problem consists of a backward shock (g ,u ; ¢ ,u ; s) and
- - mom
a forward rarefaction wave connecting (pm,u ) to (Q+,u+) {(cf. [7}). Then the
soluation to (4.3)-04.5) with ¢ positive consists of a backward shock
p_su_; Dl(ﬁ),u1(€); s{£)), a discontinuity (p‘(e),u1(€); pz(c),uq(q); 0) which
is due tn the geometry of the duct, and a forward rarefaction connecting )
(DP(E),uz(E)) to (p*,u+). The five formulae relatinag s(c¢}, 91(5;, U1(g), y
p_(&) and vu_(g) are
2 ‘
s{p, - P ) = pyu -0 u_,
( ) 2 + vy 2 P(
- = Ve T [ 1 = .
s(p,u, o_u_ Py, Py, Lu_ o) ‘
- == ."'
(1 )02\12 pyuy (4.7)
1 - ¢ + P = u, + P{ + - €P ~ = eP(
( ){pzu (pz)} o py) (p,) ePln,)
P2 s
F'(p)
u, = ou o+ f —_—dy .
2 + o}
o,
|
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After eliminating s and u, from (4.7) we can forrulate the above problem in the
form
i (o,,pz,uz,ﬂ) =0 (4.8)
s = (F_,F i
where - ( 1 2,F3) is .
e 11/2
’ ’ £ = 1 - - + l— -
Fz(o1 p2 u, ) { e)pzu2 c1u_ 5 (P(01) P(o_))(o1 Ry B
2
- f \
. €)= - - i3, .9
Fz(p1 OZ,UZ ) u2 U+ J > v (4 }
Py
{ 2 N \ 22
= V=€ + P - - ) - - =
D’(- €) Py, (DZ)I (1-¢ bou, Q1P(O1) EO1P(D1)
) .
is chosen so that the usual

2' 2
1 2

F P, P
(4-8)‘(4-9) is now set up for applyinc the

+

{11.
The probliem is solved if we can uniquely determine
A rather tedious calculation leads to the

We point out that the sign of the square root in (4.9)

entropy condition is satisfied

te, = »_I
w2 - P'p )t 0.
m m
the determinant in (4.10) is nonzero and we can uniquely solve for

implicit function theorem.
Pyr P, and u, in terms of €.
1 2
Jacobian of (4.9):
3(F,,F,,F.)
17273 2 1/2
det =2p (u_ =~ P'(p ¥M[P'(p )] / . (4.10)
3(9 P, eu) m m m m
1772772
e=0
Thus, if tre initial step (p_,u_: of,u+) is such that
u2 -P'"(p ) # 0 (4.11)
ES 1
i.e., the original flow of the gas is either subsonic or supersonic, we see that the
implies that
(4.12)

small variation in
This completes the solution to the Riemann

Therefore,
and u, in terms of €.

p1l 02'
problem (4.3)-(4.5).

o
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There are still two 1nteresting problems in connection with (4.3) whore aniwer:
would be valuuable bhoth to the theory and tie application.  The first guestion o
whether the above scherme actually converqges to the wea¥ solution of the initial
value problem. The second guestion in how easily this scheme can be implemented

numerically. We are presently studyirg these questions.
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Watervliet, NY 12139

ABSTRACT. A solution formulation and numerical results are presented
here for the time-dependent problem of beam deflections under a moving
Inad which can be neither a force or a mass. The basis of this approacn
is the variational finite element discretization consistent in spatial and
time coordinates. The moving load cftfect results in equivianet stifrocess
matrix and force vector which are evalusted along the line of Jdiscontin:-
ity in a time-lenuth plane. Numerical results for several problems hive
been obtained. Some of which are compared with solution obtained by
rourier series expinsions,

I. INTRODUCTION. A solution formalation and sonie numerical resuiis
are presented for bean motions subjected to moviag loads.  Most of the
work on this problem has been related to rail and bridge design (see, for
exanple, reference 1) and many papers cited there from 1910 to 1971).
However, the application of the analvsis can obviously be extended to
triacks for rocket firing and to yun dvaamics {2].

In Section 11 of this paper, 4 variational formulation for a moving
force problem is described. Also given are the procedures which lead to
finite element matrix equation. A detailed description of the treatment
nf a concentrated moving force is piven in Section III. The variational
problem associated with a pun tube dvnamics {s preseated in Section IV,
Tois pun-tube problem contairs the movin mass problemn as a special case,
Finite element solution can be derived from this formalation, but the
details of this more complicnated problem is omitted from the present

£ the nuacrical resalts obtained for a moving force problen
are reported in the last section and are compared with results obtained

PAPLT.  Some o

from series solutions.

[Te  SOLETION FORMULATION FOR A TIOVING FORCE PROYB In this
section, the solnt ton tormulation will be described in det.ils for .
aoving force problea. The woviag mass problen will be incluced as a
special case of a more generil problem ot gun motions analysis iven in a
Later section.

Consider 4 vertical force P moving on an Ruler-Bernoulli beam. Tov
ditterential equation is piven by

Ely"" + pAy = PO(x-x) o)

4



shere y(R,t) denotes the bean dor e oo ae 0 tanc . N
'

coordinate x and time v. ¥, I,
of inertia. area and material Jdosaite oo tioelos A i T U

denoted by &, x = x(t) is the location o b, v oo L e e
difterentiation with respect to x and ¢ dor (o0, ST tere s s at oo Wit
respect to t.
Introducing nondimensianal quantities
y o= oyv/e, X = %k, tos ot oL,
where £ is the length of the beer and T a4 vanite time, Wit 0 AN

T, the problem is of iaterest, Eq. (1) can be written ae

The hats () have been omitted in Fq. (3) oo

with

Boundary conditions associated with Eqs. (1) or (3) will now be introduced
in conjunction of a variational problem. Consider

61 = 0 (%a)
with
1 .. - -
L=y J)[Y"Y*" - YAyv* - QO (x=x)]dxdt
) (
A ‘
i, de{kypv(0,8) 7% (0,0) + Ky (J,t)y*' (0,t);
( 2
Z'l
+ ¥ JO drpkyv(x,M) ~ YOO ) y*(x,1); {"b)

where y*(x,t) is the adjoint variable of y(x,t). If one takes the first
variation of [ considering y(x,t) to be fixed:

(6Dgyan = 0 (52
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and constder $v* to be conpletely arbitrary, it 1o easy Lo see Lhat g,
(5) is cquivalent to the didferential cquation (3) anl the tollowing
boundary and initial conditions,

y O,0) +okpv(0,r) =0

¥ (0,8) = kav'(D,0) = 0
U<t & ] (ba)
v, - kyy(l,e) = 0
.V“(l)l-) + }\QV‘(I)() =0
y(x,0) =0
and [ R N ()

MENRTE ko[v(x,0) - Y(x)] = 0

Taking appropriate values for k;, ky, kg3, and k,, problems with a wide
range of boundary conditions can be realized. The initial conditions in
F.qs. (6b) are that the beam has zero initial velocity, and, if one takes
ks to be « (or laryger auuber compared with unitv),

y{x,0) = Y(x) (nh')
The neaning for cases where kg is not so need not bhe our concern here.

To derive tne finite element natrix equations, one bepins with £q.
(5a') and write

(Gl)gy=q = 0 (7a)

1o e e - -
vo dh [y"8yx" - yéysy* - Q6(x-x)6y™]dxdt

I

1
+ ) delkgv(0,)0y*(0,t) + koy' (0,t)8v*(0,t)
0

+ kv (1,08 y*(1,t) + kay' (1,0)8y*" (1,t))

B
+ ;j dx[¥4key(x,0) = Y(x)]$y*(x,1) (75)
(

357




Introduciae element locel variables

(1)
= Fa-itl
(i) ‘
r T = Lt-j+]
or
<= - (F+i-1)

]
t o= - ("+i-1)
L

where K is the nunber of divisions in x anid L, in t. (A tvpical 4rid
schene 1s shown in Figure 1). Equation (7b) can now be written as

(8.4)

(nn)

K L ‘.l 1K3 N o 151‘ . o
.L .L, J’) )!} ]_ v (11)0)' (1]) - }— »’(l])«,»/ (l.])‘k‘
1:1 ]_—_l v . .
L 1 Ky o ‘ . T ' o '
+A“1 I dn [z— Y(i ) GHaEyr gy (0, + k) oY (1 hmev®t G
1= .
Kooodg
+ ) );— {Y‘Ks(Y(ij)(i.U)CY*(ij)(ﬁ,1))]
i=] K

= S s byr 5y (5, mdEdn
2 o oo SRS
K Yék) 1
+ . Joode Y (8)8yx 51 y(6,1)]
i=1 k9

The shape function vector is now introduced. iwe:

vy Eem = aTE vy,

PG (e = Al Yy = T )aem)

(9)

(19)



1
F/y.y =
Fap =1,

fditorial remark: For derinition ot

cquation (18a).

A
J
{

quat ton {9) Ui I
[N i ) )
t\" [ - '.\ - T N .
A] 0 N V) . . . - I
L rl y')"»‘
' va T ‘el u . :
oL Sy o Y
i=1 7 Lo~ - )
L. kj "‘._,}“
. 7 T . 4_ b —_—— i ¥ .
+ - @}* (K9) by + y B 2(11)
,K BN
+ ‘) ST T R TG
Q-
oL 3 K .
- PvT RS vkl o
= . \}* (i) ] }(ij) + B Gy* (i) - SER (S
il - i- oo
SIS TR U S S b Ll e by, Uit
Lo - o
R I L LA L
1o . i
" = )“ )\) ‘J,T[ -.i I3 tiggiﬂ
. . 1 , .
By o= - f("”)f (J,mydn By = i, f,ﬂ(”'”)f‘,ﬁ("”)d“
1.9
11 T 1 T
kj} - }() Ll<l'n)f (1,n)dn ’ ':' = f(_) ‘3’{_(1;"-)‘3 ,f,().">d71
! T
Bo = [ a(g,1)a’(g,0)ds,
P () ~ -
ind

- - o
)i(i),r\)é(ij)({a'ﬁ)df,dﬂ , t,(l) = J() ii(f,,l)\'(i)(;s)uif,

G

sec top of page containing

3
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Sow Vs O can be avseabled iaow o slobal o satris cguation

I3 (14

cirtue of the tact that 4Y*% is not suabjected to any canstrained

conditions, one has

winie s can be solved routinelve hamerical resualts of o several problens ia

Giv o class will be presented in a later scect ion,

Lile  FoROD VECTOR et L wer stell
decribe hoere procedures | Lo arrive gt tne force vector

coatrihated by oa movin concentrated 1ood. T tree vector has appeared

Lo (L) as

S - -

: R - (5 o_ e 1T

Foin s ;1(., )‘U:)\ Y (i5)

Deecshipe tunction a0 ) ws oo vertor ot e dn G nensron, I the present

crmalation we tuve chosen the foro:

agle ) = vCGabir) (16)

Ly 3 by 5y
Uie relations hetween & and §, ) are given ia Table 1. These o are the

consequences of the cholee of the shape Tunction suct that Yeg:y, t he
. . \ A v
ceneralized coordinates of the (Tith eleaent, represent tihe displacencent,

Slope, velocity, and angular velocity at the local nodal points,.  Thus
-~ + - !)_l
DR = byt (7
P=1
e oviaiues of b are siven ia Tabie 1.

1p
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vow, et . doer (. J‘/:' e By tunet Lo rienyeooeeals Ul
Dot Uhe ira delta twation S(emwoan Che (R0 th elenent, 0t the
e ot travel v L0t daes ot ot rongsh Uhe eeemwent (1, 1), ‘A’(iﬁ,)("_‘)
[ te it P [:Il“lll}'.?l thel element R T P
C(ij)(ivg) soa{x=x) KE UL =5 (154)
PN I

o= o (n) (1rn)

Tiee tunction A(n) iw derived trom x = x(t). For exaaple, ir the force

Aves with g constant velocity, one has

W o= ;(L)

= vt

it v oliows from dgs. (8) that
- - vk
Eo=5m) = -1+l v —

—

With s, (o), (17, (13), and (19},

i

F(’ij)ri = “:J” - -"k(f;,”)
i o - - p-1
Foink =K bpPig b

(19a)

(n+ji-1) (190
one writes (19) as
S (4-5)ds (2a)

q‘l_ -
n §(&=-5)d4dn (2 by

Squat ion (29) can then he evaluated easily once the exact Torn of £ iv
written. For example, if 4 =n, Zq. (20) reduces to

BN
I~

Feipk = & LooHbiy biq oy & d4

AN
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section, the solution “oraulat{on o o s Cdie o ta b wblo: ond :
spevial case to the vun tabe aotion probien. The drtterential oeagnation o8

this problem ¢

Tne notations
Seen defined.
ate.  The new

P(x,t) =

R{<) =

})(l) =

Px,t) =

H(x) =
x = ;(t>
My =
4 =
i =

With wimilar n
Section s ounid

vt o he writtaen

an be o writien as [3]:

i

(Ely™)" + [P,y ]+ oAy
= - ;(x,t)y"(x,L)H(;—x)

mp[x:y" + 2xy' + y]&(x-x)

+ (mp 5 ocos wa)d(x-x) + ¢A g cos a

are the same as in the previous scection i1 thev have already

The "wun tube” is replacing the "beam™ wienoever appropr
notations are defined here:

ﬂR‘(x)p(t) = axial Torce in the tube due to internal
pressure alone

ianer radius ot tube

internil pressare

oK
J o osrAdx
- e )
[=P(,t) + o(sin a) ;  padx]
o J{' L ¥ Adx
o

recoil foree including tube inertia in axial direction.
deaviside step function

= position of the projectile

miss of projectile

aravitational aceeleration

anvle of elevation

ondimensionalization as betore and assunin 0 it Che Croee

v

torm, ballistic pressure is not time dv peadeats FHouatioo

fa dimeasionless form




S S R S SRR N bt R A 3 ij

= o= P H (ke x)

_/ e . \
- v fap (kv e Zevt ox vl (xex)
tong wlcos aYi(x~x) + g(cos u) (24
Qe re, cow, evervtiiins is o dinensionless aod
[ ' Lv:‘\k(.
PO — = — —— L
e T Hl

Cods also clear that if one drops the second tern on the lert hand side
3 the first and the 1ot terms on the ricght hand side a0 the anove

it ion, the equation becomes that {or a moving mass problem.

A variational problewm associated with the divierential equation oz
“a. (24) can be obtained through integpration-by-parts.

-
-

NI "/~‘A‘I)y = (Qll-),. - (g =0 (2ha)

Wil

1 .1 ) - Lol

I = ;ovUy*Tdxdt ;0 1, = (P-g osina), ;) y'vEd'dxde
{) ) - 0 i)

L -1 .1 -
1y = —rZJ ;) yyRdxde ;0 I, = P, Sy (x-x)dxdt
5000 0 0

e

-1 1 - - },l A - -
[« = —ij oyt (x-x)dede 0 1y = —m.a‘)-Y‘j\I jOLZY'Y*‘é(X—X)dde

1 -~ 1 - -
T = —me<y? JotvivERT O (x-xadxdt ;0 Lz o= Inny JoLorytyre(xex)dxdt

DI S
Ig = —mYZJ_ Jowvka (w=x)dade Ly = —ay=] , yy*&(x-x)dxdc

kay (L, tdy*(1,0) + kv (1,0)y*" (1,0) 1 dt

A
I[‘) s K7 ;"(X)”)_\Y‘*(Xvi)dx (2oh)
) V)




ind

A
I, = K7,q Y(x)v*(x, 1) 1x (260

Jiee ovariational problem also produces the following initial and »oundary
3 valae conditions in addition to tne difrerential cequation:

:,'(x’(/)) = 1)

. -1
vix, )1 + mé(: p-xd)] o+ k7[v(x,0) = Y(x), = u (274
1t
L) = kv (0,0 = o
v, uy kv (L,e) =0
— - 1
VIO, L) 4 ok v,0) F (FPEy cos a)v T (0,t) + Py (0,0 (= prd)
2
+ r:~,;.‘.‘»"(w,t)a(; pté) = 0
b

ARG IS SR SO IS S I A AN G TR A Sé=1) F omaey' (1,08 (= Brd-1) = 0

Po e

Ouher than the fact thet the proesent probien 1T wach more conplicated tion
Che one associated with a moving toree, tin badc coacept ol solutinn uscd

of solution tor=

previesty does not clange and we shall omit Che detaid

-

anlation here.
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wall noevine force Wwitio g4 constant velacity

X

As T varvies from ® to 1), the velocity varies trom ) to «,

It will be helpfal to compare v with some veference velocity whicn is
vochiracteristic of the given beam, it is kaown that for a0 simpl -

supported beam, the first mode of vibration hat o frequency (see, tor
n'?-'.‘t“..;“.‘", [-0])
w i e
Il = - = = (py\-ll'\‘ per sveounds)
or n 2C
Lt poeriod,
T
PR
T
R A TS S SRS U SR O T Thew travel oat oa speed
A
o= ety s —
[
dence , the relative veloclity
- v by
vy il 21
T
el s e ror the moviags torce problease Thus, by o= oo
Poo s ey o= andnn mee s and -
- |
Vo
i




concent rated

denotes the point when tlhe

Goanother,

el e

AN .

Solutions by Fourier series |
eiven in these tables (numbers in parentheses) for close compari.-ons.
that for T 1)

detlection,
100, as indicated by the deflection curve at ¢t

beam is nearly the

indiscernible.
pronounced as indicated by Table
results compared reasonably
is extremely

TS

are also

seC, vo=

eeoeidspan ol the beas

obtiined and

1/300 or more

than 390 times the natural {requency T the deflections as P moves across
{ b, 1»

The dvnamic eftfect of the load

3.33, the dvnamic effect

and V. The
weell with

series solution

well in case
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WAVE PROPAGATION IN PERIODICALLY LAYERED MEDIA

T. C. T. Ting
Department ot Materials Engineering
University of Illinois at Chicago Circle
Chicago, Illinois, 60680

ABSTRACT. Wave propagation normal to the liavering of a
periodically layered mediuwm 1s studied. The 'ayercd medium can be
finite or semi-infinite in extent. Each period comsists of twwo
lavers of linear elastic or viscoelastic materials. The medium 1s
initially at rest and at time t=0 a transient wave 1is generated
by the prescribed boundary conditions. The stress response at a
finite x 1is obtained by the analogy between the exact solution
at the centers of odd layers in the layvered medium and the sclution
in a homogeneous viscoelastic medium. In the case of a semi-
infinite layered medium, the stress response at a large X
obtained by an asymptotic analysis. For the value of x which is
not very large, higher order asymprotic solutions are given.
Numerical examp.es uare presented for an elastic composite subjected
to a unit step stress in time applied at x=40.

LS

[. INTRODUCTION. Most orf the upproximuate theories ror wave
propagation 1in a lavered medium rocus on the determination of the
dispersion relation or the rroquency equation due to a harmonic
oscillation [l-4], although some or tihe theeries are able to pre-
dict the late-time asymptotic solution In a seml-intinite lavered
medium due to a step load applied at the bdoundary. For the latser,
exact theoriex may be used to find the asymptotic solution und the
wave front solution [5-7j.

To predict the transient responsce a4t points not necessarily
far away trom the impact end {where the asyvmptotic solution dJdoes
not apply) and to points not necessarily near the wave rront, o
new theory based on the analogy between tne dynamic response of
semi-intfinite lavered medium and a semi-infinite homogeneous
viscoelastic medium has been proposed recently by Ting and ukunok:
{8]. The fundamental idea is to characterize the lavered med.um by
an "equivalent'" homogencous viscoelastic wmediwn such that the
dynamiv response of the latter i: identical to that of the lavered
medium at the centers orf the alternate lavers. Although the idea
vt modeling a composite by a viscoelastic medium 1s not new [9,10]
the "theory of viscoelastic analogy' introduced 1n [8] succeeds in
correlating precisely the analogy between g lavered medium and a
homogeneous viscoelastic medium.  Since wave propazation in a

homogeneous linedar viscoeildstic medium can e solved eaxily by manv
Known numerical schemes rsee {117, for exampic,

, one c¢an obtain the




e

waves 1 the Mogu

The thecry of \1>Luulxxt Doandiogn presented
semi-iarinite medium. (0
theory which applies to a4 rinrte laiered mediam.

Y ,»‘\.;‘»(_‘Z" weo DreYent o u

Consider a periodic lurered medium as
cach period  Jw  consists of two iayers of
Ilnear elastic or viscoelastic materials.  The two
materials 1n the lavers will be designate. das mater

Q

respectively. Thus materizl o occup

i

‘rs 1,

-

(SO

shown 1n Fig
nunogeneous,

individuu:

(&
material 2 occupies lavers 2,1,6,... The thi kn?xxes or
t

lavers are denoted by Ih; 11=1,2 where

5

hoosubseripts

refer to material 1 and 2, respectively. We will assume
lavered medium 1s initially gt rest and o -oupies the

Jw x4, We chouse the cerntral surface of laver |1
other boundarv, x=2¢, 15 assumed to pe ut the ce
laver N where N can be an even or odd integer.

L= (N-LDw

We will censider plane wave propagation in the direction
which the only non-vanishing component of the displaceme

x direction. we <hercfore have a one-diszensional

problem in which tne equation of moticon ard the Lvntinu;L\

displacement are given bv

3C.
1 .

= = v, 1= 1,2

$X i !

2\

—te P2

e = 1= -

X .o L .
shere d dot <tand. for difreronTtiation waith vosred:
and <y, £ Vi, oo LT ., 20 oare tne normal stress,

! I Ju .
particle velocity and mass density, respecrived
sp(t) be the relaxation functions ot the watorial

materials,  *;.t, and 5.t are wnderendent of
fied as Lamé constants,  The streoss-strain relation

the form of Stieit es convolut:on

i




where we have dassuwned tnat

Jit;x,O_) = v x,0) = e (X, 07) =0 Y

[[. GENERAL SOLUTION. The general solution to kgs. (2-0) cun
be obtained by the method ot Laplace transform und by the use or the
Fioquet theorv. We define the Laplace transform, f(p), of a func-
tion f(t) by

3 <. -PT -
tpr = . t(t)eI dt L)
0
Arcer applying the Laplace transrorm to Eus. (2-61, the general
solution for the stress and the velocity in lavers 1 and 2 can be
written as

5l(x,;>) = .-'\l cosh Q\lxj + E§l sinh (‘k1x4> (B
v : A h (¢} B IN
v (x,p) = =— A sinh (k. x) =B, cosh (k,x) (8b)
l(‘ m{l\ Lr\lJ lhb(l')} Lo
1
Co(x,p) = A, cosh (Kyx -K.ow) + B, sinh (K,x -~ K,w) (8¢
- 1 T . = \ .
v,(x,p) = o A, sinh (kK x - k) + B, cosh (k,x - k) (8d;
where

S = hy +h

1 2
N oy 9,
1 v 1“51 {
m. o= 2.p/K. = VI opg.
my i sy

A{ and By (1=1,2Y are determined by the contlnulty condition at

X = hl
5,
_ (hlrl‘) = - (hl,;?. L
v v,

and the quasi-periodicity property of the solution together with the
continulty condition at x= 2w -hy

R Ny
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reo- CiTHe Cnaracter. L.l oUaTs LU ... Supstltution ofr
. CSoaato Bgs. ildy ana n Leads Toorour nohwgenoouds ropeatiuns
tor A, and By The requmirement Turoa nor-trivial solut.on results
cnothe following eyuart.on ror the cnarvacter:istlc waponent v
.
cosh (Jur. = sc¢osh [lx. oo Sk
n - -
- - 2k ,hy Jony
L] L ‘-
2= o — s - 2
) .r.l i
Moreover, A, and B are related by
1 1
N 5 -
= pMe , = -pRnLC ,
i
= —"“l , = = -I)L‘ )
anere
| = moap, = RNy
1 i - 2
) M kIlC, N, COSh W]
pif = A= = == -
m, <0 mLe. Gy +m, 5,5
: N 12
! i P 2
Jic
SR -
c,o-
i
L Sotiow that 17 we RTINS L I, the oxpre )
;. cor OR remains < < AU Lecwemes oML TRL o Therer
] CAanoontarn the Sl.oooties 10NV oM T SRS Y LnTOrCNAn N
» - . N . . Y T N
S cne subscripts Loand 2 oon The oapressnon cor 0Mooand uyr . g the
. Laplace rnverse transtorm,
¥ With Ly, (), the generar <o LD T L S
canressed by Eg.o 08 AN DO De CedLded Cor oL nT LT IS
Jiiyoone coeffictent, =a AL The ~oduton nooon Soar
citained by the quasi-periodicrty relation:
’ l ” - - »T‘\-
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[

]
¥

where N LIs an thteger.  Moresver, we sSeo roon i, ol2c tnat ur
1s 4 characteristic exponent, -~ .+ - Thererore, ianoadaotion o
the general solution with A a3 the woe filtent, we ob7.”

second general solution by changing the sign or - fhe v

: I N . . e .
of this second solution will b2 denoted b AL Consdequentiy,
general solution ror the stress and velooity at amy puint X oo the

luyvered medium can be written i3, using bys. (8,14,16;,

- 3 L - , { -l
(2 + D)o MORN X1 - oL, sinhon X, 0
Tplenw XL \z{“ LT 1N
o f , - o A 2ne< -
' NPT . .
E osh (K. X, +nl, sinhin, X, v e 17y
TOALYEOSIUR X DLy BERRA Xy .
: N
voidnw e x, ,pio= = sinh{x, X, ) - pi,\a<n\k X, L menen
i 10t m 171 i 171}

paT
b -

, 2nw< R
COsShiR.N, p e i17h:

1 Y

+

{Sth(x,xl) +pl

3

1

2 - 1

v
- . 3 Y Ly R = PR LRI B UPRVILN
SNt u e x g o= A pM{C)san“xw;—:)Lﬂ>xnns&7ij}e "

=) o . - L A4 (Cn+l, K -
+ ;\,'pf\I{gosn'\r\‘xj) =L, 51:m\._‘f<1x”}c‘ T,
L - - - -

- - - ) 1 -iinely.x
ViolSnw e X0y = o pH{;th(kﬁxﬁ‘- pLﬁcosnpk,xﬁjlc

m 2 202
1 -~
’\v £ ey oY -
IS Y ‘ . b il (=it W v~
+ - pM\SLnggh.x,) + oL,y cosnyn.x,ire Ll
1IN -2 2 202
where
-h, < x. < n, o, o= 1,2 18

1 1 L

When proper values tor n and xp (oY x») are chosen, Bg<. (170 can

hbe used to determine solution a1t any point 1n the lavered medium.  The
two coefficients A; and A} are determuned from the boundary condi -
tions at x=0 and x= <.

In the next section we wili show the analoygy between the soilution
at the centers of the layers and the solution in a homogencous visco-
elastic medium.

[IT.  WVISCOELASTIC ANALOGY.  The stress and velocity at the
centers of the layers have specially swmple tforms. By letting
Xy =x>=0 in Eqs. (17). we have




-4

c,(2nw+w,pi = RRIRNE

: -~ . g .

- 2 a1t -lin+ljux g Lan+L K

Vo {2nw +w.p) = p.\i(—f\ et T rAle >
2 ., 1 1 ,

We now consider a homogeneous, 1sotrceple, linear viscoelastic

,
medium which occupies 0< x= 4 and which is at rest at t=u and 1%
subjected to certain prescribed boundary conditions at x =0 and

&3 x=4. Let %, » and \ be the normal stress, normal 3truain ana

particle velocity, respectively. Also, let L and G be the "eguivi-
lent" mass density and the "equivalent' relaxation runction of this
homogeneous viscoelastic material. The equation of motion, the
continulty condition, the stress-strain relation and the initlal
conditions are

PIs) -
2 v

— = 3
X
5V
Ix :
t 20

.

e

-+

it

ct

[o%

o3

o

rt

~

———

By applying the Laplace transtorm to Egs. (lu . the g
for the stress und velocity will contain the exponential toern

In view ot the cxponential terms 1n Egs. (191, we will define Jhwe
"equivalent” relaxation runction Goth by the relation

—_———

~ =D 2

We will also detine the "ecuivalent” mass density 0 by the average
mass density in the javeved medium {4,837

) ~

o2l

2= (p h, +05h )/(h1 +h

11 2 2




with Bqg. (223, the generu; =oiution to ha. 120, can be written ds
p H . - X y X PN
sx,pi = ac -a'e f23a
- < - =X -, WX .
Vi, py o= ;—-(-a e rate ) 124b)
<P
where a and &' are arbitrary functions of p.

There are several ways to identify the analogy between Eys. 14
and (24). If the stress in material 1 1s of main lnterest, we may
set

;l =4, Ai = a' 125,
we then have
3 x,plo = 2(x,p) )
tor x = lnw 1260,
VLKX,PJ = le\(x,p) s
and
JAX,p) = pMRILX, p)
ror x = (2n+ljw (26b:
‘ VX, ) = p)lth,Ygx,p)§
where
cpl.
- 1 . o \ -
Ji = o , (1= 1,2, [
1
It should be pointed out that while 3 and U as given nHyv igs. .21
are detfined for all x, igs. (Zoa; and (26h: apply only to  x= 2nu
and  x= {2n+l)w, respectively. By using the identity,
J d. = a2 o= ol s, L.y (oS
{ "7 2 ! B T h
the last of Lkg. (-obj can be written as
Sy o 1 SIR% ] A .
violx,ps o= = 4pd Vi) X o= 2n+l)w Y
2 pi 1
J With Eq. (20), we rewrite Eus. (26: 1n the rfolloawing form:
! Tonw,t, = oRiInw.t f30a
i ! ‘
vli:n:,tl = VY e, ) 130
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( T+ (1/3)z° - 6az” v ggn’ - L.
o(2nw,t) = ’;i } % ¢ ° dz (33)
Br
where
¢ <
T = <f—-t -ZAX/?nBI)l/J
¢, = 3,/(ng))"° (34)
_ 4/3
Ty = 8/ (n8,)

Co 1is the group velocity of the elastic layered medium and 8;,32,85
are constants depending on the geometry and material constants of the
layered medium [15].

The solution which ignores the g and £z terms is called the
one-term asymptotic solution and can be expressed in terms of an
integral of am Airy function [6,7]. If we retain the (g, term but
ignore the g3 term, we have the two-term asymptotic solution.
Finally, if both ¢, and g3 terms are retained, we have the three-
term asymptotic solution.

In [15], a particular Bromwich contour was selected and Eq. (33)
was integrated numerically. A numerical example of the asymptotic
solution for n=5 1is given in Fig. 6 for the elastic layered medium
considered in Figs. 2-4. Comparison with the exact solution by the
ray theory shows that the three-term asymptotic solution is satisfac-
tory for this small value of n=5.

A detailed discussion of when one-term, two-term and three-term
asymptotic solutions may be considered a good approximation can be
found in [15].

Although the layered medium is assumed to be elastic in this
section, the analyses can be extended to viscoelastic layered medium.
It is shown in [16] that when the layered medium is viscoelastic,
the distance traveled by the wave should appear in the asvmptotic
analysis to provide a meaningful interpretation of the interaction
between the dissipation and dispersion of the viscoelastic .ayered
medium.
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THEORY OF ACOQUSTIC EMIOSTION

Tih-Hsing Pao
Department of Theoretical and Applied Mechanics
Cornell University
Tthaca, New York 14853

ABSTRACT

Acoustic emission is the sudden release of mechanical energy which propa-
gates in the form of elastic waves from a localized region in a material.
The technology of locating and characterizing the source of emission for the
purpose of detecting failure of the material is also called acoustic emission.
The underlying theory of mechanical radiation and dispersion of elastic waves
pertaining to the technology of acoustic emission is discussed in this re-
port.

INTRODUCTION

The term of acoustic emission is currently used to describe a physical phenom-
eron as well as a technology. As a phenomenon, it describes the propagation of
transient elastic waves which are radiated from localized regions in a material
or structure due to rapid release of strain energy in these regions. By recording
ard analyzing the transient waves, it is possible to locate the sources of radiation
and, in some cases, even to characterize the nature of the sources. The technology
that has been developed over the past decade to locate and to characterize the sources
is also called acoustic emission [1].

When a material is plastically deformed, micro-cracks and voids are develovped.
The dynamic processes that generate elastic waves are verv complex and a reneral
theory within the framework of materials science is still lacking. Forthe vurncse of
detecting the zones of microplastic deformation, the sources of emission may be repre-
sented by nuclei of strains of the dynamic theory of elasticity {2]. The emission
of waves by these macroscopic sources and the propagation of radiated signals in
a wave guide can then be analyzed and compared with experimental observations.
This constitutes the solution of the "direct problems" of acoustic emission.

To accomplish the objective of acoustic emission, it requires a solution fer
the "inverse problem", that is, to determine the locations and characteristics of
the assumed macroscopic sources from the signals recorded at various stations in
the wave guide. We are, however, still far from accomplising this objective, both
in theory and in practice. The difficulties that one encounters can be illustrated
by the following example.
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Chown i Tie, 0 Y0 the time record of a simulated acoustic emission in
plate of tiickness W = 0.9925 cm. The signul is renerated by a wide-band
clectric transducer placel vertically at the surface of *he plate and the

of the
trancd

T

acrting

at oi

U

wWoonre

i

nput.

(=%
input sienal is shown at the lower rirht corner of the firure. A ¢ir
ucer ic placed at a distance 0O h  from the sourcs, and it records the
rrnsil as shown in the figcure.

beoretically, the aourcee of cemicvion can be repreaonted Ty oo vertienl foree
wtothe surface of the p;u:v. Fvero for such an ideallzed syctem, Lowever,
2111 rot able to calculate completely the ou'.put cirfnals from th

CoLven
The reuson is that the surfuce response of the pl.ate ic evpressed rotho-
maticaily in terrms of o double infinite integral which 1 difficult to evalunte.

On the other hand, when one <ries to compare the th-oretical resulits, 17 cb-
tained, with the experimental data, he will encounter th2 difficulty of not ¥now-
inr what the piezoelectric transducer does measure. A isplacement, velocity, o
stress?  For the same reason, the exact nature of the inyut by the transducer s
not certain. Althourh progress has been made recently in the cali i St

dacers [3], precise measurements of the input and ousput sipfna’.

In this report, we present briefly the theoreti :al tacsis of =zoous

nol been wiiely reported.

baced on the dynamic theory of Oli ticity. We discuss first a WukheuathQL reyrre-

sentation of the sourccs -8 eriocisn and then the Airpersion of *he endtied "
a plate wave gu1d0. Finally, we show how the result, of the anaiveis of
cien can be arplied to locate the cource of emission.

i

MA

CEACCOVIC COURCE FUNCTICHND

T
1nAd

he displacement firld, ulx,t), of elastic waver at the cratial cocordinate
time t ia poverned bty the Navier-Cauchy equition [E,L]
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(A+u)Vven + Wu = pu = —pflu,t) (17

where ¢ is the mass density and X, u  wure the Lame eonstanto o the mediur

The bodr force f 7per unit mass is o source that penerates *he wave. The corre-
pondin:~ stress field, o(x,t), =2 sccond rank tensor,is riven b

g = AlVeu + 11(Vu+uV) o)

. . \
wrone T is the ldemfactor (isotropi~ tenusor;.

When three  mubuslly perpendicular voly forces acting at the point »_, the

. .- N . . . . N . P
Loviacerent fields are deserived by o4 dyadic funcetion ”}():—:A:O,f oowhieh oot laTles
“he followines dyadic eaustion, R
(A+p)VV0 + w0 6 = pl = —p168(x yo(t) o)
where £{t) is an arvil Snetion in tiwe. B ”

is called Green's

Sound by GU0. Dtokes il
in an infinite medium.

From the Green's dvadic, one can Jderive the disvlacement Ticld rencra
of ztrains in the theory of

other tvnes of point sources, known s
Let a, bt andl ¢ be theee nuatunlly rorpendiconlar anit vectors and ¢ = o
ani fx,n) be the disriacement fiel: due to a concentrated force in the

o The displacements due Yo variour nuclel of straina

tion of

~

1
A at

strensth are then derivatle from  G:

Sincle force alony -~ ulw,n) = e

Double force alony ¢
Center of dilatation™

o

three Jdouble Torces

Zingle couple =bout ¢ i)
Center of rotation whout ¢ IS TR H G Y
Deable couple without moment ya) + aevu(z,r)

ning of 4 tensite crack and the ol idines of shear eraeck resvoetiveir. T
coptor of dilatation ean te used Lo reprecent, the cercation or collapse of @ ovol i,
The wave fields renerated by various point sources are depicted, not in zen oy

in Fig. 2, where the colid lines indiecate the  DPeowave front {(Pressure, Lonecituni
nel we oy dashed Tines the Uewave front (f‘yhv".;‘, emeeerenl wave ) the crvsgs

indicatine the direction of Jdisvlacenent,
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Toarocar S o o
ment dyadic 00 ve [ oThhy

The retresentation theoror otates than [H 00, 39]

Dvnamic Nueled

(i)

(<)

where T = neg  ig the Lraeticon across the surface, So with cuter normael no.

surrcund a curface of diccontinuity A,
continuous, or vanishes, acrosre A, The above

where [ iuil denotes the Jump of disnlacement u

The a2bove inte;ral can further bo reduced to

— t n 3
ui(f,h) = fodroffAMpqanjp(¥-¥o,h to)i“

o

wWicre
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u{x,t) = f dto [Af‘u(xo,ro) ]-“D.E(H_xo’

: nt the treaerlon
integral then reduces 4o

and arsos

t-t )io ()

across the surface A,

I )
[5,p.52]




m = An : ,:(S + u +YA[U1:;\ &
q 1 Lo ] a u{np[ q'] LN (&)

and

3 = 3/ax_ .

q q
The mpo is called the moment density tensor and it is releted to the strength
and orientation of & crack.

2. DICFERSION IN A WAVE GUIDE

Once a wave is generated by a source in a bounded medium such as & plete or
a cylindrical shell, the wave is then multiply reflected by the bounding surfaces
which form a wave guide. As a result of interference of the reflected waves, the
dirturbance observed ut some distance from the source is guite different from that
orifinated from the source. This is known as the geometric disrercicn ¢f waves
ir & wave-guide.

We note that the Green's functions and gpeneral solutions discussed in the
previous section are for a source in an infinite elastic solid. To anzlyrze wavers
in a bounded medium, new Green's functions, one for cach type of wave guide, rmust
be found. This amounts to the solving ©f a new boundary value problem ¢f elactody-
narics. So far, only wave guides with simple geometry like a plate, a circy
cy>inder, and & sphere have been analyzed in detail [u].

Consider an axially symmetric point source in a plate which is bounded ty
twe purallel surfaces 2 = * h/2. The normal displacement of & proparating
pulse in the plate is given by [b,p.h6E)

ul,t) = [ Tl (x,0)e ™ aw
(9)
o N(f,z,0)
U z, = cle,x ? J
(r,z,w) f_m "?o) "Eqétjyr o(&r)di
In these integrals, w is the circular frequency ané¢ & is the radial wave num-

ber, JO is the Bessel function of zeroth order. The source function at X

is reparated into a temporal part and spatiul part. The Fourier transform ¢f the
terparal part is f{w), and the spatial part is represented by the functien S

in terms of the radial wave nunber. The N and D wure complicated transcendental
functions of £z and £h. When the source is a crack, additional integraztion over
the surface of crack is required and the s(£) furnction should be replaced by

the moment density tensor of Eq. (8). Other parts of the integrand should alco

be modified to reflect the angular dependence and tensorial proverty.




The zeros of the denominator, o the roots of the quation

tanBh/2 —“qﬁ{: 11 i )
D(g,w) = === - |- 1" = (10)
tanah/C (f?—BLY
2 e o D oo o

o = wL/C; -& , R =uw /e - £

ie the characteristic equations of free waves in an elastic plate. . is krown
ac the Rayleigh-Lamb equation, and has been a subjiect of extencive stuuy (€ .
By finding the roots of this equation, one can determine the phace and orour ve-

locities and modal shapes of varicus modes of wnves uroparating in the plate.

Despite its simple appearance, evaluation ¢ the double interral of Eq. [7)
i not easy. Two methods of evaluation arce availatle. One lIs
mode, the other is the method of generalized ruy. In the method of normal mode,
the integral in § for U 1is5 evaluated by the caleculus of residues, the polec
being the roots of the Rayleigh-Lamb equation, and each term of the residual seriec
is the contribution from one normal mode. The interral in =» rust then be svalu-
ated numerically. Details of the analysis are discussed in Ref. L,

In the method »f ;-eneralized ray, the interrand of U in Fa. {Q) is exrand-
ec into a series, vach teom of the series represents the wave proparatine alone a
generalized ray path. The double interral, one in w and one in £, of each
term of the series is then evaluated tv applying the Capinard method [7 7. Ilumer-
ical results for various types of point sources listed in the previous section
are shown in a new article soon to appear [ 5].

From these preliminary calculaticns, we can coriclude that the method of norm-
al mode is effective for waves at far field over a long time (r > 10 %) ard the
method of generalized ray is for near field and short duration (r < 12 h). With-
out going into details of these results, we can say that the wave nattern at the
surface of a plate is very sensitive to the location of the receiver, relative
tce the source, and to the temporal function of the assumed roint source in 2 nlate.

3. LOCATING AND CHARACTHRIZINZ SOURCI®

The analysis as described in the orevious section provides “nformation *het
can be used to locate the source of eriszion in a plate. Tn a iispercive wave
puide, a wave packet with strong magnitude propagates with the eroup veloeity
{¢.) which is, in general, different from the speed of P-wave (oh), Cewrve

(hs) or Rayleigh surface wave (cp . Let the stronpg wave packet be radiateil from
tle source at (xo,yo) in a two dimensional space and at the “ime b ¢ the same

wrve packet is detected by threec or more transducers at stations (xn,y ),n = 1.7,73,

n
thie distance traveled by the wave fron the unknown scurce to each station is then
given by

rl’l = [(xn—x())p * (y“—“{o)ll/;v

no= 1,0.3, (11)
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Sinee the travel time for the same wave racketn whien provacates with syeed o

is t -t , we have the following thres equations for three unknowns, =« N

~ o= (-t = 1,0, o
r ( " O)o{_ (n 1,:0,73) 10

By solviug this system of equatiorns, we can determine the location o o o Gree,
This is known as the metnod of triangulation.

It should be noted that to apply the method of triangaluticon, we need ' zZnow

fiy
the ¢ of the dominant signal that is detrctuble by w@il threc recelvers, Tor

H

waves in a plate, Lq. (10) shows that the raxime. crourn veioecity of the low.-
antisymmetric mode (the flexural mode) is equal to e = 1.01 c_ . The arriv..

£ 5
time for this group of waves in 2 rlass rlate is marked in Fir, 1 by an arr-w uni
(v  Ymuw under a very strong signal. Additional analysis of Eg. «9) revesloi shuat

1

the rarnitude of this group of waves was indeed the strongest of the wrrivel
zroups 4t far field. Hence by identifying the aurrival times o ~“hiz ¢ T
ous recaiving stavions, we should be able to locate the source vy solving tirec

equations of {12).

e el
o Vari-

For wave field near the source, the wave packet has not yet teen fully aevei-
oped. The sclutions of generalized ray are then used to determine the iravelline

speed of a predominanat sienal.

In the current practice of non-destructive testine of materials, once n cource
of "weakness" is located by the acoustic emission, other means of testing are =m0t
to inspect closely the cource repion. Tventurlly, one hopes net only to locithe the
sou.c2 but also to find out what type of source oricrion it is. Matlhematicsliy,
this is cauivalent to the determ’nution »f both flw' and (&) 1in Fa. (9 when
u(x,t) is given. Jome progress hac been made to solve this inverse probler when
either flw) or (&) iz known ‘see ¥ol, 7 of Ref. 7). The Trosress, Lowover,
has not yet reached the stape of apniication to acourtic emission.
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