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FOREWORD

.,omumber 1979, Colonel B. Devereaux, Jr., Cormander and Director of the

11,,y Cold Regions Research and Engineering Laboratory (CREEL) sent the
i"? ..... ing letter to Dr. Jagdtsh Chandra, Chairman of the Army Mathematics

:.ig Committee (AMSC).

I. "We would like to extend an invitation that the 26th Conference
of Army Mathematicians be hosted by the U. S. Army Cold Regions
Research and Engineering Laboratory on 10-12 June 1980.

2. Mr. Benjamin S. Yamashita, Public Affairs Officer, will serve
as CRREL's point of contact for administrative arrangements for
the Conference.

3. We look forward to having the group meet here."

Or. Chandra was pleased to accept this invitation on behalf of the AMSC. This
.1 the second time that CRREL has served as host for one of those meetings.
The Twelfth Conference of Army Mathematicians was held at CRREL, Hanover,
New Hampshire on 22-23 June 1966. For that meeting, Dr. Shunsuke Takagi
"layed much the same role as he did for the 1980 conference, namely he
-was responsible for scientific details regarding various phases of the program.
M'- tSC, the sponsors of these meetings, would like to take this occasion to
aank Messrs. Takagi and Yamashita as well as all other members of CREEL for

--kirs this a very successful conference.

The theme of the 26th Conference was "Wave Propagation in Solids and Nondestructive
Evaluation Techniques." In addition to the five invited speakers, there were
ore than thirty contributed papers presented at this meeting. While most

mf these papers were given by Army scientists, still there were a surprising
,,umber of papers, namely eight, that were delivered by university professors.
-.,c iivited speakers and their topics are noted below.

Speaker and Affiliation Title of Address

Professor Jan Achenbach DIRECT AND INVERSE METHODS FOR SCATTERING BY
Northwestern University CRACKS IN THE HIGH-FREQUENCY RANGE

Professor Constantine Dafermos CAN DISSIPATION PREVENT THE BREAKING OF WAVES?
Brown University

Professor Y. H. Pao THEORY OF ACOISJ1LCJXEISSION
Cornell UniversityI

ii ' , r

<, . z



Professor James Tasi SHOCK WAVES AND LATTICE DYNAMICS
State University of New York
at Stony Brook

Professor T. C. T. Ting WAVE PROPAGATION IN PERIODICALLY LAYERED
University of Illinois- MEDIA
Chicago Circle

The members of the AMSC would like to express their thanks to the speakers
and research workers who participated in this meeting, and to all the attendees
for supporting it with their many stimulating questions. The AMSC is pleased
to be able to publish in these transactions many of the conference papers
and thus to make available to the scientific community some of the research
results presented at this meeting.

iv
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DIRECT AND INVERSE METHODS FOR SCATTERING

BY CRACKS IN THE HIGH FREQUENCY RANC;E

Jan D. Achenbach
Department of Civil Engineering

Northwestern University

Evanston, IL. 60201

ABSTRACT. An important method in quantitative non-destructive evaluation
,11 materials (QNDF) is based on scattering of ultra-;onic waves by cracks. The
presence of a flaw is relatively easy to detect. The determination of its
ize, shape and orientation from the scattered field poses a challenging
inverse scattering problem. In recent years several analytical methods have
)een developed to investigate scattering of elastic waves by interior cracks
and surface-breaking cracks, in both the high- and the low-frequency domains.
The appeal of the high-frequency approach is that the probing wavelength is

of the same order of magnitude as the length-dimensions of the crack. This
gives rise to interferenc phenomena which can easily be detected. In this

paper we discuss approximate methods for the solution of the direct scattering
problem in the high-frequency domain, which show good agreement with experi-
mental results. The simple analytical solutions to the direct problem suggest

the application of Fourier-type integrals to solve the inverse problem. The
application of two kinds of inversion integrals to far-field high-frequency

scattering data from flat cracks has been discussed~briefly.

I. INTRODUCTION. Reliable methods of quantitative non-destructive

evaluation (QNDE), that can be used not only to detect the presence and the
approximate location of a flaw, but also to determine its size, shape and
orientation are important cornerstones of a damage-tolerant design philosophy.

Among the most useful QNDE methods are those based on the scattering of

elastic (ultrasonic) waves by flaws in solids. In the scattered field
approach it is attempted to infer :he geometrical configuration cf a flaw

from either the angular dependence of its far-field scattering amplitude at
fixed frequency, or from the frequency dependence of its far-field scattering
amplitude x fixed angles. In this paper analytical investigations for the

scattered field approach to detection of crack-like flaws are Qfscussed.
Scattering by interior cracks, surface-breaking cracks and cracks near a
boundary will be considered.

In experimental work on quantitative flaw definition by the ultrasonic
pulse method either the pulse-echo method with one transducer or the pitch-

catch method with two transducers is used. The transducer(s) may be either
in direct contact with the specimen, or transducer(s) and specimen may be
immersed in a water bath. Most experimental setups include instrumentation
to gate out the relevant pulses in the scattered field on the basis of
arrival times. The application of a Fast Fourier Transform to these pulses

subsequently yields frequency spectra. In the frequency domain the raw
scattering data can conveniently be corrected for transducer transfer functions
and other characteristics of the system, which have been obtained on the basis



of appropriate calibrations. The corrected experrnental data can then be
compared with theoretical results that have been obtained by harmonic wave
analysis.

For short pulses the frequency spectra of the diffracted signals are

centered in the high-frequency (short wavelength) range. High-frequency
incident waves give rise to interference processes which can easily bL
interpreted, and which can provide the basis for an inversion procedure.
Particularly the first arriving signals, which are related to the longi-
tudinal waves in the solid, produce a very simple structure in the frequency

domain.

Elastodynamic ray theory provides a powerful tool for the computation of
fields generated by scattering of time-harmonic waves by cracks, when the
wavelength of the incident wave is of the same order of magnitude as characteris-

tic length parameters of the crack. Ray theory has the advantage of simplicity
and intuitive appeal. The rules that govern reflection, refraction and edge
diffraction of rays are well established, and it is generdlly not difficult
to trace rays from the source via the scatterer to an observer.

Considerable progress has been achieved in recent years in the application
of elastodynamic ray theory to scattering by cracks. For cracks in unbounded
solids theoretical results have been given by Achenbach et al [11-[3]. For
two-dimensional problems ray theory results have been compared with exact

results in Ref.[4]-[5], and with experimental results in Ref.[6].

The basic concepts of elastodynamic ray theory have been presented by

Karal and Keller [7]. For time-harmonic wave motion, ray theory provides a
method to trace the amplitude of a disturbance as it propagates along a ray.

In a homogeneous, isotropic, linearly elastic solid the rays are straight
lines, which are normal to the wavefronts. An unbounded solid can support
rays of longitudinal and transverse wave motion. These rays are denoted as

L-rays and T-rays, respectively. The free surface of a solid can, in

addition, support rays of surface-wave motion, whichn are denoted as R-rays.

When a disturbance is applied to the surface of a body, generally a ray
of longitudinal motion as well as a ray of transverse motion are generated.
Upon striking an interface, rays produce reflected and refracted -ays. Such
reflection and refraction problems are well understood. In principle, elasto-
dynamic ray theory can be used to construct scattered fields generated by

cylinders, spheres and other curved surfaces of simple geometrical shapes.
These fields can be constructed by computing the fields on reflected rays
according to well-established rules. The result is called the geometrical

elastodynamics (GE) field. The GE field does, of course, not describe the
diffracted field which penetrates into the shadow region. Another short-

coming of tb'e GE field is that it shows discontinuities at shadow boundaries

and at boundaries of zones of reflected waves. Additional considerations are

2



required to include the diffracted field. For the high-frequency case
these considerations have resulted in the formulation of the geometrical

theory of diffraction (GTD) which was formulated by Keller j8 ].

It should be noted that for sufficiently large frequency the geometrical
L elastodynamics field may require no correction, i.e., the scattering pheno-

menon may be entirely dominated by geometrical elastodynamics. This is the
case for backscatter from smoothly curved surfaces with radii of curvature very

large as compared to the wavelength. On the other hand, when the scattering
obstacle has a sharp edge, the effect of edge diffraction may be quite pro-
nounced. Edge diffraction is particularly relevant for cracks when the

geometrical elastodynamics approximation only gives a shadow zone and two
bundles of reflected rays.

Diffraction by smooth obstacles in elastic solids has been investigated
by Resende [91, who also considered diffracted by an edge in a solid, at
least for the two-dimensional case.

y P~r

so x

w

Fig. 1: Wave of anti-plane strain incident on a
semi-infinite crack.

II. DIFFRACTION OF ELASTIC WAVES BY CRACKS. It is instructive to start
a discussion of the interaction of elastic waves with cracks with a brief
revitew of the simplest problem of that type, which is concerned with incidence

if waves of anti-plane strain on a semi-infinite crack. With reference to the
coordinate system shown in Fig. 1, waves of anti-plane strain are defined by
isplacements in the z-direction which depend only on x and y. These dis-
lacement components, w(x,y), satisfy the wave equation

3



V2w + k2w = 0 (2.1)
T

where 72 is the two-dimensional Laplacian and k= w2 /c, where w is the
circular frequency and c is the velocity of transverse waves (c = I/p).
Here it is implied that The waves are time harmonic, but the term exp(-iwt)
has been omitted, as it will be in the sequel. An incident wave of anti-plane

strain is defined by

wi(x,y) A exp[ikTrcos(O-OT)] (2.2)

where (cose Tsine T) defines the propagation direction, and (r,e) are polar
coordinates as shown in Fig. 1. The conditions o-, the faces of the crack are

w9W = 0 x > 0, y = 0 (2.3)

It should be noted that the problems defined by (2.1)-(2.3) is completely
analogous to incidence of an acoustic wave on a rigid screen, or of a umagneti-
cally polarized wave on a perfectly conducting screen. The solution is due to
Sommerfeld , and it can be found in several places.

A detailed derivation of the solution will not be given. It can be checked
that the solution stated below satisfies the conditions (2.1)-(2.3). The
solution is expressed in terms of the function F(z) defined by

F(z) = exp(-iz2 ) 1 exp(it2 ) dt (2.4)
Jz

This function has the following property

F(-z) = exp(-iz 2 + -- 7ri) - F(z) (2.5)

For the problem at hand z is real-valued. Integration by parts yields

F(z) =-fz + O(z 3 ) for z > 0 (2.6)

Equations (2.5) and (2.6) imply that

1 iF(-z) = Trexp(-iz2 + 7ri) - -z + O(z-3) (2.7)

To investigate F(z) for small z we rewrite Eq.(2.4) as

~z

F(z) = exp(-iz2 ) { f exp(it 2 )dt - f exp(it 2 )dt} (2.8)

0 0

4



It then follows easily that for IzI < < 1

1 z = (29

F(z) -= Tr - exp( 1 i) - z + O(z
2) (2.9)

The solution to the problem defined by (2.1)-(2.3) is

wt(x,y) = AT 2exp(ikTr- 1 i){F[(2k r) 12 sin

+ F[(2kTr) 2sin 1(8 +0) (2.10)

where the superscript t indicates that this is the total solution, i.e., the
incident field is included. Let us investigate some aspects of this solution.

In the limit as r , Eq.(2.10) yields

t A{exp[ik r cos(O-0T) + explikTr cos(+OT)]}

for 27-T < 0 < 2ir (2.11)T

t
w = A exp[ik Tr cos(O-6T)] for BT < e < 2T-6 r  (2.12)

tw =0 for 0 < 6 < 0T  (2.13)

where (2.6) and (2.7) have been used. Equation (2.11) shows the existence of

a zone of reflected waves where the incident wave haF been reflected as if
the crack where infinite in extent. Equation (2.11) shows a zone of incident
waves only, and (2.12) shows that there is no wave motion in the shadow zone

as r -'. In analogy with geometrical optics, the e>pressions given by
(2.11)-(2.13 are called the geometrical clastodynamics solution (henceforth

denoted by w ). The geometrical elastodynamics solution is disco.-tinuous at
the boundaries of tie shadow zone and the zone of reflected waves. The
diffracted field, w , which is defined by

w = +wd (2.14)

secure; a smooth transition across these boundaries.

When kTr - 1 the diffracted field follows from (2.6) and (2.7) as

d . -3/

w d A (k Tr)-DTH(0T,) exp(ikTr) + O[(k Tr) - 3 / 2  (2.15)

5



whe re
1 1

Cos - sin -3,
D (e ;H) 2) ! 2 2 f iT/4DT~T0 ) =(-) os - s T e (2.16)

TH T' 7 cosfl -COS
6

is called the diffraction coefficient. Clearly Eq.(2.15) is not valid when
0 = 6T or 0 = 27-0_, i.e., near the shadow boundary and the boundary of the
zone of reflected waves. Exactly on these boundaries the fields follow from
(2.10) and (2.9) as

t 1 -w = 2 A exp(ikTr) + 0[(kTr) (2.17)

In the immediate vicinities of 5 = 0T and 0 = 2- T the full solutions (2.10)
must be used.

The results given by (2.1l)-(2.16) can conveniently he interpreted within
the context of elastodvnamic ray theory. The incident wave consists of an
infinite number of rays. The rays that strike the crack are reflected
according to the usual rules of plane-wave reflection, and they give the
geometrical elastodvnamics solution as given by (2.1l)-(2.13). The one ray
that strikes the crack tip generates a source at the crack tip with an
amplitude factor which depends on the angle of observation, and whose
radiated field is given by (2.15). It was recognized by Keller [8] that
these elementary observations can be generalized to three-dimensionq to
screens (cracks) with curved edges and to other than plane incident waves.

III. GEOMETRIC THEORY OF DIFFRACTION FOR SCALAR WAVES. A more
general "canonical" problem than discussed in the previous section is the one
of general oblique incidence, when the propagation vector of the incident
plane wave makes an angle with the edge of the semi-infinite screen. For
scalar waves this problem has been solved. Far away from the edge, the
solution shows the interesting property that the diffracted field behaves
locally as a plane wave whose propagation vector emanates from a point on the
edge, and makes an angle with the edge. In terms of ray theory, the inter-
pretation is that an incident ray which strikes the edge at point 0 under an
angle 6, generates a cone of diffracted rays with semi-angle €, Uhose apex
is on the edge at the point of diffraction 0, and whose axis is along the
edge. The fields on the diffracted rays (the generators of the cone) only
vary along a ray in the distance to the point of diffraction. If ¢ = 7/2
the cone degenerates into a fan of rays, and the solution to the canonical
problem is the one given in the previous section.

The geometric theory of diffraction (GTD) generalizes the results of the
canonical problem to curves edges and incident waves with curves wavefronts.
The Ansatz is that the rays behave in the same way even if the crack edge is
curved, i.e., a cone of diffracted rays is generated whose axis is the tangent

6



to the edge of the screen. The fields on the diffracteG rays are in terms
of diffraction coefficients (which follow from the canonical problem of plane
wave incidence on a semi-infinite screen with a straight edge), the distance

travelled alon , a diffracted ray, and the incident field at the point of

diffraction, and certain geometrical correction factors which involve the

curvature of the edge and the curvature of tHe incident wavefront.

IV. GEOMETRIC THEORY OF DI FF'RACTION FoR WAVES IN ELASTIC SOLIjS. The
),.,icral ideas outlined in the previous !,et ion can be extended to elasto-

dynamic theory. A general groundwork for a tlre-dincnsional geometric tht-ory
of diffraction by cracks in elastic solids was yive-n by Achenbach and Gautesen

11] and Gautesen, Achenbach and McMaken 121. The main difference between the
scalar and elastic wave problems lis in the apl,-arance of both longitudinal
and transverse waves in elastic solids, which are coupled by conditions on the

boundaries.

For plane longitudinal and transverse waves, which are under arbitrary

angles of incidence with a traction-free semi-infinite crack, the fields on

the diffracted rays can bc, obtained by asymptotic considerations for

wr/c > 1. This was ;hown in detail in Ref.[l]. The results of Ref.[1] pro-
vide the canonical solut ions for a geometric theory of diffraction of elastic

waves. Basic to such a tl:,,orv is the result that two cones of diffracted
rays are generated wi,,n a ray carrying a high-frequency body-wave strikes the

edge of a crack. The surfaces of the inner and outer cones consist of L-rays

(lon-i tudinal) and T-ravs (transvrse), respectively. The half-angles of the

cones are related by Snell's law. In addition there are 2 rays of surface
waw,,.. (R-rays) on the faces of the crack; one on each crack face.

b

, ed ge

Fig. 2: Incident ray and cones of diffracted rays
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Figure 2 shows the cones generated by an incident lungitudinal ray. [or
this case the diffracted longitudinal rays make the same angle ; with the
tangent to the edge as the incident ray, and the diffracted ras .of transvwrse
motion are under an angle 0- with the edge, where c cos T = cos . " Tile
rays of surface wave motion are not indicated in Fig. 2.

Let us define primary diffracted rays as rays that have interact d once
with the edge of the crack. Secondary diffracted rays have interacted :a'icL
with the crack edge, and nth multiple diffracted rays hav, interacted n t:-. ,s
with the edge of the crack. The total fields at a point of observation arc
now not just comprised of the fields on the primary diffracted body wave rav. .
At the edge of the crack rays of crack-face motion are generated, which inter-
sect the crack edges again and generate additionri diffracted body wave rays.
Some of these secondary diffracted rays will pass through the point of obser-
vation. On the faces of the crack, important contributions to the diffracted
fields are coming from rays of surface waves because in the first approximat ion
the diffraction coefficients for the body wave motions vanish on the crack
faces, except for diffracted horizontally polarized transverse wave motions.
In addition, surface wave motions suffer less geometrical decay than body

wave motions.

When a R-ray intersects the edge of a crack, a ray o: reflecte-d surfac,
wave motion is generatcd, as well as cones of diffracted ray's o: lonjitudinal
and transverse motions. The reflection coefficients have be-en discussed in
Ref.[21. The cones of diffracted L- and T-rays have also been analyzed,
and the associated diffraction coefficients have been obtained. With the
aid of these results the contributions to the diffracted fields ot waves wilici
travel via the crack faces can be computed. Thus the total diffracted field
consists of primary diffractions and a system of higher order diffractions.
Pertinent results have been summarized in Ref.141.

l'ith GE and GTI the total displacement field is of the form

Ut g + d

This result is still not valid at the boundaries of the shadow zone and thL
zone(s) of reflected waves. ln a further refinement which i> called ur iform
asymptot ic theory (UA'T), the fields at these boundaries are corr- ,ed.

For incident waves with curved wavefronts and for curved di ffract 7! .ees,
the cones of diffracted rays have envelopes, at which the rays coale-sce And te
fields become singular. The envelopes are called caustics, and GTD breaks
down at caustics.

Within the cotext of CTI) theory of Refs.[1] and 1,1, the diffracted fiel d

at a point of ofbservation Q i ; comprisd of contributions correspondin, to
"primary" diffractd body-wave rav:;, whiici are directlv, Geeratd b% incidlent
body-wave rays, and contributions correspodin, to secon(dary' ,l iftract., I hod-

wave rays. The latter art, generated by ' r;l's trave.llin.' Viia the- rhCk fates.
Thus, the diffracted displaceint-nt field u It Q! can he rprel ,;nt ,d by

8



U (4.2)

wI u-lri- uI and ui rep reLSen-It t lhe p r i la rv and s;econdary d i f f ract ions, re spec-

Vit. 1% n 11U the syTMo L ck'it-lie the inc-ident ray, i.e., a 1 . or

IWh i I L' d1 ' tine,-; ti, di Iffracted av, r 1, I or T. In u tht

-'iVihio1 , dlet l uts tilt- crack-face rav, i . .,v =- RS (s-urface-synet r ic),
*= RA (ufe-ni mmtric)or :- TI (hior izontallyv polarized transvorse,).

Il;':rnhol I dt-fine, Lith od\--wave rays pi-enerated bh- i ffract ion of a crack-

SI-A r*. tOISs -1 1. or 'I . If ede theC sirnrations in Eq. (/4 2) are

carr ied oult over Il rays. o f a part i cul ar type paissi ng through (). Tiie
niaie r oif re I evant rays can he detertminedl on the basis of arrival times in
th' tinc dom7ainl.

Reo its ht ai ned onl thle ha- is Of Eq. (4. 2) have been presento-l in Re fs.

1- Iand theyv have beenl compaired wi thrsut obtained by numnerical
L-oilti 00; o)f aI iovtriii, J;no,,iiar .nti-gral equation.

inl Ref . [41 and iij .i hybrIIid .1ILthiod has hoen explored. Inl this, method
ti-c-ackopn ig- s~la-eli-lt(C0)1)) is, computedl on the 6as is of ela.~to-

dlviaiu ic ray t Lioorv , andtiell di rat-ed F i I d is stibsequen t l ohbta ined b%
tie uise- of a relreseon tat ion thleoremn. The advantage of t li approach is

t hat Htil t rouible withi ray thleo rx a, shadow boundaries and houndariCs of Izonet

of peua reflect ion I-s eliminated, and -aist ics only need to he- dealt with

onl to)- face-, ot the crack.

F.IXPFRI IM EKNlAL -RI I ",- . xpe-r imi-nt a res ,iilt in thle lighi- freq lieroc,
rangeo that are suitable tor comia r i.son wit h t heore ti cal r-suits have been
rcpilrtlil inl Ref.[1 6 1. Flile samp)le was' aI circular dis;k (2.5 x 10 cm) of
titan i iim a I I o wi ii cou a-il,; i ned aI pe-nny-shaped (-rack ot rad i us 2 WC0i. para II c I

to 0t ]IIat faces, anId locate'd at tilt cen'Tter of tilt disLk. The disk was
im. i- r,;,-d in water. A trans;mitte-r latincllt-t a lorigitudinai I wave to the watt-r-

i t iu n inItevrface tinde-r normalI i n- i di-uct . A hi is wave was tranlsmitL ted i nto tfic,

,(IiI , dii fract -d liv t lit- crick , alit! t h, d it! I ract-d waves wi-re transmitted back
into i t- f I ouid, whe re tI i1.v wkrt rit- ci i %,d ., -t; s-in t ranisdu.-i-r. iflecX1" ex i

m -n-aIst -utpl and thit p r(l-iss i up) o t h. hlit a1 ar- - ics-dinl soj..' io ta ilI in1

ii-hv L h i r arrival timnets. Since tile I i rst arriving signals are, re latetd
ti lIuitudlinal wavi-; in the s;olid, it is possible to gate out andI separate

I'- i-port lv lone itutdiiiail diiffract-d sinals from SUb)St-qient signals. Bv

ati-rqritiprilt-in lo of- tilt- experimental data, as ciis-cussed in Ref.ti * the

.tlflhiti it let rum is, obt.Lifnd for the longituidinal di ffracted waves only.
hii; f or I lie ptir-it ilimlari-son of analvt h-al and experimental results we nc-td

11 Cliiidii.r iI)T' ti prima rv dilf f raeted hodv-wavt- rax-s 1 n our ana lvtiralI work.
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Here w is the circular frequency, a is the crack radius, S = AB, U 0

represents the incident wave at point 0, and cL and cF are the velocities

of longitudinal waves in solid and fluid respectively. The geometrical

quantities are indicated in Fig. 3. In Eq.(5.3) T(-) is the transmission

cocfficient at the solid fluid interface, and D L(-;.) is the diffraction
L

coefficient. For details of the derivation of Eqs.(5.1)-(5.3) we refer to
Ref.6. It should be noted that one of the terms H. is imaginary, since theJ

ray has crossed a caustic. Of particular interest is the absolute magnitude
of F,

[F] = {1H 1 12 + IH2 12+ 2lH1 H1H2lsin 2(wa/cL)(cos6-sin6 )} (5.4)

Hcre we have taken into account that either H or H2 is imaginary.

SCATTERING

ANCLE = 55

- - THEORETICAL

a~ 0 0O EXPERIMENTAL

Jo 7 0 /

0"// / / 00 0
0/

2.00 4.00 6. OF 8.00 o.oo 12, 14.00
FREDUENCY (HZ)

Fig. 4: Comparison of Eq.(5.4) with experimented results.

Theoretical results obtained from Eq.(5.4) have been plotted Logether
with experimental data in Fig. 4. The frequency varies from 2 MHz to about

14 MHz. The angle in the solid i, 0'(=-/2 -0) = 550 . The amplitudes of the

first few cycles agree well. At higher frequencies (above 6 MHz) the experi-
mental results are lower than predicted by theory. Onebpossible explanation

is the effect of attenuation which is not accounted for in the theory. In

all cases the positions of maxima and minima of the spectra agree well. The

locations of the maxima are significant for the inversion process. Additional

comparisons with experimental data have been reported in Ref. 6.
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VI. ELEMENTARY CONSIDERATIONS FOR THE INVERSE PROBLEM. The theoretical
expression for the amplitude spectrum given by Eq.(5.4) implies that the

amplitude of the primary diffracted field is modulated with respect to W/cL
with period

P = f/a IcosO - sinO0 (5.5)

It is of interest to apply Eq.(5.5) to the experimental measurements. Since

we know that 0 = O,each amplitude spectrum will give a number for a
from the periodicity of the modulation, We have

cL

a = (5.6)
2 sin(O-) Af

L ave

where 0 = t-0 and Af is the average frequency spacing between two
L 2 L ave

consecutive maxima.

The results of the size determination are given in Table 1. The agreement
between actual crack radius (a - 2 500vi) and the predicted values is excell-

ent.

L = 7/2 - 0L Afave computed a in '

350 2.18 2530

40 1.87 2630

45 1.83 2450

50 1.68 2460

55 1.60 2410

60 1.47 2500

65 1.39 2510

Table 1: Crack radius a computed from Eq.(5.6) for a penny-shaped crack in

titanium (cL = 6330 m/s)
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VI. SURFACE-BREAKING CRACKS. A surface-breaking crack is one of the
most harmful crack configurations. It is, therefore, not ;urprising that

considerable efforts have been devoted to their detection. In this section
we review two-dimensional solutions to the direct scattering problem for
incident surface waves. The geometry is shown in Fig. 5.

Ir-d

Fig. 5: Surface-breaking crack.

The easiest problem for the geometry shown in Fig. 5 is concerned with

scattering of incident body waves of anti-plane strain. The problem has been
considered as a specific and separate problem by some authors. This is,
however, completely unnecessary. Reerring to Fig. 5, the solution can be
obtained from the results lor a crack of Icenth 2d (x 0,-d __ y < d) in an

unbounded medium by taking a svstm of two incident wave.s which are
symmetric with respect to the plane v = 0.

Unfortunately, the simple symmerry considerations that hold for the case
of anti-plane strain are not valid for the in-plane case. Symmetry considerations
do not work because of mode coupling of longitudinal and transverse waves at a
traction-free plane. Thus, it is not possible to construct a system of incident
waves in an infinite solid with an interior crack, so that the cond'tions for a
surface-breaking crack are automatically satisfied. Hence the problem of
scattering by a surface-breaking crack must be considered as a completely
separate problem.

Fxact solutions for the two-dimensional geometry of a crack of depth d in
an ela.ntic half-plane were given in Refs.[ (I] and [11 ]. In Ref. I11 I the
scattered displacement fields due to either a time-harmonic surface wave or a
plane time-harmonic longitudinal or transverse body wave incident upon the
crack from infinity are investigated. The total field in the half-plane is
taken as the superposition of the specified incident field in the uncracked
half-plane and the scattered field in the cracked half-plane generated by
suitable surface tractions on the crack faces. These tractions are equal and

13



opposite to the tractions generated by the incident wave in the uncracked

half-plane when evaluated in the plane of the crack. By decomposing the

scattered field into symmetric and anti-symmetric fields with respect to

the plane of the crack, a pair of boundary value problems for the quarter-

plane is obtained. These two boundary value problems are reduced by integral

transform techniques to two uncoupled singular int(gral equations, which are

solved numerically using a collocation scheme. The derivation of the s)nmetric

equation has been presented in Ref.[1P ], and the derivation of the anti-symmetric

integral equation is presented in Ref.[1l]. The cracr-opening displacements are

then easily calculated from the solutions of the singular integral equations.
The exact representatioihs of the diffracted di!;placemncii fields are subse-

quently obtained in the form of finite integrals over the crack length, which
are evaluated numerically.

ju ftl I,

x

x 

4

0.00 6.0!

k Rd

Fig. 6: The total field ahead of the crack (forward transmitted

field).

Figure 6 shows the forward transmitted field, and the back-scattered field is

shown in Fig. 7. Apparently most of the incident wave is backscattered.
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%Ill. INV;ERSION INTE(;RALS. We will consider a first approach to the

inverse problem for a crack in an unbounded solid. In this approach it is
assumed that the scattered field can be adequately represented by ray theory.
Thus, the field at a point of observation Q is assumed to consist of the
summation of the contributions from each of the rays passing through Q. The

nature of these rays depends on the location of Q relative to the crack and

relative to the source point S. There can be direct rays, reflected L- and
T- rays and diffracted I.- and T-rays. If Q is in the shadow zone, only
diffracted rays can pass thropgh Q. The magnitudes of the signals carried by
diffracted rays is O[(wa/c,)-:] as compared to the signals of the diroct and
reflected rays, where a is"a characteristic dimension of the crack.

In practical evamples we can include primary diffracted rays which are
generated by the incident rays, and secondary diffracted rays generated by
rays travelling via the crack faces. In this discussion we will just consider
the primary diffracted rays, which correspond to the first arriving diffracted
signals. For a flat crack with a smooth edge there are generally two primary
diffracted rays. The points of diffraction on the crack edge are called the
"flash" points. The locations of the flash points are determined by relatively

simple geometrical considerations, based on the rule that the point Q must lie
on a cone of diffracted rays.
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For an incident ray of longitudinal motion the displa~cment f" ', on a
diffracted ray of longitudinal motion is of the general form

L L DL( '/]L' L;0) UI exp(ikLS() (7.1)
=UL [kLSQ(I+SQIPL) dL

Here kL = w/cL  SQ is the distance from the point of diffraction 1 alo-ig the

diffracted ray, p, is the distance along the ray frona the point of diffraction
t I.

to the caustic, defines the direction of displacement, and D(',6 6) i 'causic, ~I L'

the diffraction coefficient. The angles I,- and -L def"ne the direction of the

incident ray relative to a coordinate system at tin point of- diffraction, 6
defines the point of observation, and ;L d.fj. t v incident ray at the point
of diffraction:

UL = A SD1 exp(ikLSD) (7.2)

where SD is the distance from the source point to thc point of diffraction.

It is now assumed that we know a point 0 in the vicinitv of the crack,
while the source point S and the point of observation Q are far from the crack.
Let xs XQ and xD denote the position vectors of S, Q and the flash point D

relative to 0. Let x = ISI, XQ = IXQ and x) = I xl , then xs, XQ xD

Defining the unit vectors Q = xQ /xQ and xS = Xs /x , we can write

SQ o- (XQ. X) (7.3)

S - x - (7.3)

X S - xD- (7.4)

Equation (7.1) may then be expressed in the form

L
% = F dL k exp( (7.5)

GL (XS)GL(Q )

where the bisector vector q is defined as

'j = xS + XQ , (7.6)

and

G1 (x) (4rx)- 1 xxp(ik X) (7.7)
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The function F follows from (7.1).

The form the diffracted field given by (7.5) suggests simple Fourier-type

inversions integrals to recover the size, shape and orientation of a crack
from the far-field data. The following inversion integrals have been inves-

tigated in some detail in Ref.[13].

(i) f () = exp(ikL'g. ) f(k) dkL (7.8)

where A defines a test point in the mediums.

Suppose we now take the experimentally obtained amplitude spectrum of

the early-arriving longitudinal diffracted signal, and divide it by GL(xS)

and C (x ). It may then be assumed that the result is of the general form
L1 Q

given bv the right-hand-side of (7.5). We then apply the inversion integral

given by (7.9) to this result. Bv virtue of the relation

rexp(ikLP) ,k l_ = 6() (7.10)

we obtain a Dirac delta function whe n

q.(0- xD) 0 (7.11)

Thus, the application of (7.9) to the right-hand side of (7.5) will give a

delta-function behavior when the test point X is located in a plane through

the flash point normal to the known bisector vector q. For convenience

A can be taken along q. By taking many points of observation Q, the crack

edge can, in principle, be constructed. For further discussions we refer to

Ref. i13].

It should of course be realized that the scattered field is generally only

known over a finite frequency range. In that case the applicationi of the

inversion integral yields a function of the form sin(k x)/x rather than a Dirac

delta function, and the position of the plane corresponds to the principal peak.
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SOLITARY IVA\'):S AND SHOCK PROFILES IN
TlE TItREE-DI MENSIONAL LATTICE

John D. Powell and Jad 1. Batteh*

Applied Physics Branch
Ballistic Modeling Division
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Aberdeen Proving (;round, Ni) 21005

ABSTRACT. The propagation and interaction of aolitary waves in a
three-dimensional, monatomic, face-centered-cubic lattice are investi-
gated. The atoms which constitute the lattice are assumed to interact
through a Morse-type interatomic potential. A sequence of solitary
waves is generated by subjecting the lattice to shock compression at a
steady rate and, from the numerical solution of the atomic equations of
motion, the stability of the solitary waves is studied. It is pointed
out that in general the pulses are not so stable as in similar one-
dimensional models and, in particular, are rather unstable when encount-
ering oscillations transverse to their propagation direction. It is
also observed that under some conditions coupled longitudinal and trans-
verse solitary waves can propagate in phase at the same velocity through
the lattice. The long-wavelength, continuum limit of the equations of
motion is then derived and it is demonstrated analytically that these
equations also predict the existence of the coupled-wave profiles ob-
served numerically. The way in which solitary waves may affect the
shock profile and conventional assumptions regarding it in solids is
also discussed.

I. INTRODUCTION. In some recent calculations we have investigated
the propagation of shock waves in both one-dimensional [1,2] and three-
dimensional [3] discrete, crystal lattices. Our efforts have been moti-
vated to some extent by the early computer-molecular-dynamic calculations
of Tsai and coworkers [4] which revealed a number of anomalous effects
in the shock profile. Our work has tended to substantiate these findings
and has suggested that the existence in the lattice of solitary waves,
or rather well-defined, fairly stable pulses, could account for the un-
expected results. It has, therefore, been of some interest to us to
study the properties of a solitary waves, particularly in three dimen-
sions, since this problem has received relatively little attention in
the literature.

In this paper we will discuss the results of our investigation of
the properties of solitary waves in a three-dimensional lattice. After
defining the model, we begin by demonstrating how solitary waves can be

*Present address: Science Applications, Inc., Atlanta, GA 30339
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generated in the lattice and how their stability can be investigated

using a computer-molecular-dynamic technique. The contiriu% limit of

the equations of motion will then be taken and it will bo shown that
these equations are capable of predicting analytically many of the same

effects revealed in the numerical study. Finally, we discuss briefly
the anomalous effects in the shock-wave calculations, and suggest how
the properties of the solitary waves account for these effects. The
discussion in this paper is intended to be more abbreviated and quali-
tative than that presented elsewhere. For greater detail, the reader
is referred to the literature [3,5].

II. MODEL AND EQUATIONS OF MOTION. The three-dimensional model
which we have employed in the calculations is shown schematically in
Figure 1. It consists of a face-centered-cubic lattice which is made
as long as necessary in the z direction to complete the calculation
and which is periodic in the x and y directions. A typical cross
section of the lattice is shown on the left-hand side of the figure
and contains eight unique atoms; we have, however, in many calculations
employed as many as 32 atoms in the cross section. Planes of atoms
normal to the z axis are numbered consecutively, beginning with the
first located at z=O, and atoms within a given plane can be numbered

any convenient manner.

The atoms within the lattice are assumed to interact through a

Morse-type interatomic potential. Thus, the equation of motion satis-
fied by the ath atom in the ith plane can be written

2-r [ -2R(Ao1i -4., j-1) -R(A r -1)]2=2 RA C,0 e -e 0 jB

dT
2

r. -r.

1,0 j,Bl

All quantities have been made dimensionless: r. represents the posi-

tion vector to ath atom in the ith plane, and is normalized by the lat-
tice constant; A is the lattice constant, normalized by the separation

of an isolated atom pair at minimum potential; T represents the time,

normalized by (m/D) ao, where m is the atomic mass, D the dissociation

energy, and a the lattice constant; and R is a parameter indicating
0

the degree of nonlinearity in the Morse potential. The sums over j and
B in Eq. (1) go over all atoms in the vicinity of the (i,a)th for
which an appreciable interaction occurs. Equation (1) just represents
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Ne.wton'-s second law for t he at ori n the lat tice iid wt: are ac t'rneed

with solving this equation numerically for each atom ani, .'roTr: the solu-

tion, inferring the response of the lattice to any exc. ation. 1 or the
calculations discussed, the equations were solved under the assu-mption

that R was given by 6.29, a value which is appropriate for z, lattice of

nickel atoms [6].

III. GENERATION OF SOLITARY WAV\S VNI) NUMERICAL STUDY OF IiHFIR

STA II, ITY. A sequence of solitary waves can be generated in the la'tice
by having each atom initially at rest in its equilibrium position aid

subjecting the lattice to shock compression. To do so we drive the
end-most plane of atoms, located at z=0, along the positive z axis at a

constant compression velocity. The formation of the solitary waves can
be seen most easily by looking at a series of velocity-time trajectories
of various planes of atoms in the lattice subsecaent to their being ex-

cited by the shock front. A typical set of such trajectories is shown
in Figure 2. Each plot is begun at time T which corresponds to the

time at which the plane in question is first encountered by the shock,
and v. denotes the (common) velocity of atoms in the ith plane, nor-

1

malized by rD-/m.

We see that the shock front introduces an oscillatory wave profile

at the second plane which is very similar to that of a harmonic, one-
dimensional chain. As the shock propagates farther, however, and the
atoms become farther displaced from their equilibrium positions, non-
linear effects become increasingly important. These effects tend to
steepen the profile as can be seen in the trajectory of the 20th plane.

Furthermore, it is found that the higher-amplitude pulses propagate at
a higher velocity and, consequently, the pulses tend to spread apart as
they form. The spreading effect can be seen by comparing the separation
of peaks at the 20th and 40th plane. Asymptotically, which for practical
purposes occurs by about the 40th plane, the pulses approach the same

height and the spreading ceases to occur. At this point a sequence of

solitary waves has formed in the vicinity of the front and they will
propagate indefinitely into the lattice without changing their shapes.
Physically, they represent a balance between the dispersion in the

lattice, which tends to spread the pulses out, and the nonlinearity in
the lattice which tends to steepen them. In the event that the solitary
waves are stable to various types of perturbations, they are ca'led

solitons.

A single solitary wave can b, i olatCd from the keqiuence near the
shock front and it, ir(,pertIs st1idC. Ihc first question that might
be investigated is to ask the extent to which the solitary waves are

stable to mutual coll i;ions in three dimensions. To investigate this
problem we launched two solitary waves, having equal but oppositely

directed velocities at opposite ends of a lattice that was 48 planes
long. Shown at the top of Figure 3 is the rightward-moving solitary
wave as it encounters the 13th plane in the lattice. '1h leftward-
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Figure 2. Evolution of solitary waves near the shock front.
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tice. Second, we restricted ourselves to only planar oscillations in

the longitudinal (z) direction and one transverse (y) dircction. There-

fore, each atom in a particular plane normal to the z axis had, at any

time, a velocity identical to every other atom in the plane. The other

transverse direction could have been included also, but doing so greatly

complicates the algebra without really clarifying any essential physics

of the problem. Third, we assumed that each atom in the lattice interacts

with only its nearest neighbors, of which there are 12 in a face-centered-

cubic lattice. Finally, since the solitary waves represent steady,

travelling-wave solutions to the equations of motion, we assumed solutions

for the y and z components of the planar velocities of the form

v Y V y(Z-C) = v (C)

(2)

v v (z-CT) v ( )
z z z

The unknown parameter C represents the propagation speed of the solitary

waves. Identical arguments were chosen for the two functions since the

coupled pulses were found to propagate in phase.

The assumed forms of the solutions indicated in Eq. (2) were then
substituted into the continuum equations derived in the manner discussed

above (see Ref. 5 for details) and two coupled, nonlinear, second-order

differential equations were obtained for the planar velocities:

v y = av - 4vy v (3a)
y y y

/" = Yv z- 6v z - v V(3b)Vz z y

The primes represent differentiation with respect to $ and the parameters

c, , y, and 6 ar's given by

a = 12(C / C{ - 1)
t

P = 3(3R-1)/C (4)

2 2
y =12(C2/ Cz - 1)

6 = 18(R-l)/C.

Here C9 = 2_2 R is the long-wavelength longitudinal sound speed in the

crystal, and Ct=2R is the corresponding transverse speed. The solution
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of kqs. (3) should predict the profiles uf the coupled solitary waves
in the continuMN limit. Of course, for the case v =0, the solution of

the equation for v corresponds to the profile of an isolated longi-

tudinal solitary wave.

Unfortunately Eqs. (3) are still too difficult to solve analyti-
cally, but are obviously easier to solve numerically than is Eq. (1)
Their numerical solution can be effected by assuming an amplitude vZo
for the longitudinal pulse and deriving from Eqs. (3) the correspoAding
amplitude, v of the transverse pulse. One finds [5]

Vyo , ::o / ] (5)

The equations are then integrated numerically assuming that their maxi-
mum values are attained at =O. It is found that solutions which remain
fin te at infinity are obtained only if the appropriate value of C,
found by trial and error, is used in the numerical solution.

For the limiting case in which vyo << v o, however, it is possible

to obtain an approximate analytic solution to Eqs. (3). The solution
may be viewed as the first step in an iterative procedure. We proceed
by noting that since v is small, we can, as a first approximation, set

it equal to zero in Eq. (3b). The resulting equation can then be re-
duced to a quadrature and integrated to yield,

-- sech4 (2 ) (6)

We now substitute Eq. (6) into Eq. (3a), reducing it to a second-order,
linear differential equation which is identical in form to the time-
independent Schroedinger equation. 'he equation can be solved by series
solution [5] and, for the case R=6.29, we obtain

C 1.6 C (7)

anld
v V

/  sech' 3."  (2.3K). (8)

v represents the amplitude of the transverse solitary wave in thisyo
approximation. Using the value of C represented by Eq. (7), vo obtain
from Eq. (6)

v 9.8 sech (2.3 ). (9)
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Wte should IIcilpIa" i'e that lq . (6) and (9) Icprc:;cnt o!;l a very
approximate solut ion to Eqs. (31. l1c solution predicts, for instance,
that the amplitude of the longitudinal solitary wave i . the coupled-
wave profile is identical to that for an isolated longitudinal solitary
wave having the same value of C; actually, the amplitude of the longi-
tudinal pulse is reduced in the coupled configuration and the amount of
reduction depends on the amplitude of the transverse pulse. Furthermore,

the value of v/ is not predicted by the analytic solution in lowest
yo

order and, if one wishes to compare analytic and numerical solution:
this parameter must be fit to the nmcrical result:-. Finally, the
lowest-order approximation yields; onlY one acceptable eigenvalue and
therefore only one solution to the equations. OtIler solutions do exist,
however, a rd these are no doubt predicted by the hi..,her-order terms.

Despite these limitations, the solutions represented by Eqs. (8)
and (9) do predict the solitary-wave profiles quite well in the limit
v << v . To demonstrate this agreement explicitly, we have solved

Eqs. (3) numerically for a longitudinal solitary wave having an ampli-
tude of about 10.2. The solution was found to diverge at infinity

t ess C was given by the value, C = 1.68CC Irom Eq. (5), then, the

amplitude of the transverse wave is about 1.5. The results of the
nmierical calcuilation are shown by the sol id-line curves in Figure 5,
in which velocity profi les are plotted as a function of r/C. Since
it is ,ilpa rent that v .: v in this case, the analytic solutionsy 7

reprcscented by Fqs. (8) and (9) should approximate the profiles reason-
ably well. A graph of the analytic solution for the longitudinal wave
[Eq. (9)] is shown by the dashed curve at the top of Figure 5. Further-

more, when we set v1 = 1.5 in Eq. (8) and attempted to plot the trans-
yo

verse p' se on the lower graph in Figure 5, the analytic result was
found to he coincident with the numerical result to within the accuracy
with which we could plot the data. Obviously the agreement is quite

good.

As a final point, we should indicate that we have observed coupled
solitary waves in our numerical studies of the discrete-lattice equations
only for rather large-ampliitude long itudinal solitary waves. Further-
lnorC, We hay, ben Unab le to obtain1 ColVergent nume17crical solutions to
F-qe . (3 whTnever e assumed an amplitude for tile longitudinal 111lse
that was -smallcr than that predicted by the analytic solution, namely,
9.8. Apparent ly, then, a threshold amplitude exists for the lon)i-
tudinal solitary wave, below which it cannot support the propagation
of a transverse wave coupled to it. Furthermore, in the continuum
limit, that ampl itude is predicted by the analytic solution in lowest
order.
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the dashed line the analytic solution.

30



1. 1i L(IS 1)1: Stl1AY WA i UN (). LC So;A~ L- N
pe i i Ivour inlterest in the stt'd."O 01 s I tarY I~ 'Or.. 1rM

attempts tO expIainl anolous (11 effet %,h ch occur in t. comp)Iute-
1101OCUIA-Ll-dVllnmiC S 1UI uat Iouns ot shoc), I)ropagat ionl in I .c ret e crY.t alI
lattices. Thus' cal IculIat ions wcrc :Li rri ed out us ingp tht s.mc modelI
d isce liere and the shock wavx w~- a gain initiated and sustained by
Jr i vi n the end -lost p Ilne Of atC)mn ;it aconstant compression velocity.
11s na I I V , bo)Wee e , we all 1owed for some initial thermal mot ion in the
1,1 t iv, 11'10r to Con1pre-,json in order to simulate an initial amhiei.t

~n~r~it iit.5evert he] es s , we s;t II observed sol itary wav'es, both
ande ii~ coiupl ed, propagat ing amid and interacting with the thermal

bac~oindinl tile lattice. The existence of the solitary waves in the
1_tt ice -,in account for some rather unexpected results which occur in

eh L' hock-iivc calclationls.

lirst, because the pulses which are growing into solitary waves
])r~)]a-atc at speeds which increase with increasing amplitude, they tend
to -,pread apart as they form. This spreading effect gives rise, at
least at early times, and for low ambient temperatures, to a nonsteady
shock profile. Thus, the transition region between the two equilibrated
parts of the lattice becomes loafecr as the shock save propagates farther
into the cryvstal. This effect was first noted by Tsai and coworkers [4]
inl earlier shock-wave calculations.

1 olbecause of' the fair degre-e of' s-tMabi t\ )f tie sol itar v
saes hie approach to thermal e'uiI liriti benilnd the sbhCk front isz

rat her s lw. It is c lear that it! tiee I oi tarev wave sWere Completely,
stalble ( solitons) , no mechanism sould exi'st 'for destroying this orderly
progressiOn of' energy aind ther--]i ellul 1ibr inn couldl never be attained.
Becausec the )01ses 110 dcci v soruesliat ;is thee are -,;h i ected to various
pert urba tions, however, there is a t endenic ' v Or tile 1 at tice to equil1i -

brate , but only at distances far- behind the front.

I inalIly, one of the more initerest ing allAuLialOU' effcts wbhich
occur'; inl shock-wave si mu lot ions is the exist ence 01' an, overshoot in
the thermal1- ene rgy dens it y d i rec tlIy behin d thle front . In part icul ar,

it one( defines a "tempeirature'' as sc iat ed with e ach Cartes ian d irect ion,
it is found that each temperature oversiioots its final equilibrated
valu Ibhinad the front for strong shocks. The cit ect is shownI inl Figure

>5 t5, where each of' the three temperatures is p~lot ted as a funct i ' of
pos it ion hehi ind the shock whenl the front is at the 320th plane. T'he
overshoots ill the three Cart es ian direct ions can be accounted for b.- the
existrice of- high-amplitude, coupled solitary waves behind the front.
For wecik ,hock waves, it was observed that the overshoots in the trans-

vere di rc ios di-appeared . I n that case, cv ident 1y, teapiue

of the lorigi tudinal solitary- waves lie below the threshold for which
coup led soltionrs call exist.

All three of these effects are clearly in contradiction to the
iusuail assulmpt ions and/or results of continium-mechanical treatments.
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Those calculations predict that the shock wave is steady, that the
shock-front thickness is quite small, and that the ternerture rises
montonically from its ambient value ahead of the shocx to its final
value behind the shock. In future calculations it would be of interest
to make the model more realistic in an effort to determine whether any
of these effects is likely to occur in real solids.
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TRAVELING WAVE SOLUTIONS OF A MODEL SYSTEM

FOR FLAME PROPAGATION

SHAO-SHIUNG LIN

Mathematics Research Center, University of Wisconsin

ABSTRACT

A simplified model for flame propagation is derived from the lowest order

terms of the asymptotic expansion (in terms of a suitable length scale) of the

full set of nonlinear equations for gaseous combustion in an open infinite

tube. It is shown the simplified model system supports unique traveling wave

solutions determined by the unburned gas state. The problem of the "cold

boundary difficulty" is analyzed.

1. INTRODUCTION. It is well-known that the flame fronts in a combustible

gas mixture are generated as a balance of the energy release from chemcial

reactions and transport processes such as heat conduction or chemical species

diffusion. A model for the flame propagation based on the assumption that the

density of the gas be constant during the combustion process has been studied

in detail (51, [2]. In this paper, we intend to improve the model by taking

account of the fact that the gas expands after the combustion, and hence

induces motion of the gas. We will discuss the existence, uniqueness, and

properties of the flame fronts. We will, in particular, take note of the

"cold boundary difficulty".

The model under study is derived from the lowest order terms of an

asymptotic expansion of the complete set of equations governing the dynamics

of gaseous combustion. The asymptotic expansion is done with respect to a

Sponsored by the United States Army under Contract No. DAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS78-09525 A01.
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typical length scale of the reaction zone. Thus, the pressure across the

flame front necessarily remains constant. If we also assume that the density

is constant, our model reduces to the reaction-diffusion model studied in (5].

II. THE GOVERNING EQUARIONS. Gaseous combustion obeys the conservation

laws of mass, momentum, energy and chemical species. In one space dimension

(- < x < 0) and time t > 0 the corresponding set of nonlinear pde is:

Pt + (Pu)x = 0 (1)

(Pu) + (pu2 + P)x = V u (2)
t x xx

0/ 2 PU 2 + Pe) + (u(1/2 pu 2 + pe) + u p) (3)
t x
(IT ) + V(u u ) + Q ----

XX Xx

(PC) + (pu) = 6(px ) (T,e) (4)
t + (x T

p - p(T,p) , e = e(T). (5)

For the notation in these equations, see the nomenclature at the end of the

paper. The identities in (5) are the equations of states. In particular, for

a polytropic ideal gas,

Rp =RTp , e =-T
y-i

where y : cp/cV is the specific heat ratio of the gas, and is assumed to be

constant.

The chemical reaction in the combustion process is assumed to be of the

form

reactant + product,

and exothermic with a heat release of quantity Q per reaction. Since E is

the mass fraction of the reactant, the law of mass action demands that the

reaction term in (3) and (4) be of the form

O(T,C) - z CA(T)
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where the reaction rate A(T) is assumed to be of Arrhenius type with an

ignition temperature Ti :

A(T) E , if 0 < T 4 T1  (6)
exp(- if T > Ti

In general, Ti  is obtained from actual experiment.

The gas mixture is also assumed to be in exact stoichiometric ratio so

that, when the chemical reaction has completed, only the products remain.

A discussion of these model equations and other ommitted mechanisms can

be found in [6].

III. THE SIMPLIFIED MODEL EQUATIONS FOR FLAME PROPAGATION. It is well-

known thtt a flame front in a typical (hydrocarbon) gas mixture propagates

into che quiet unburned gas with a speed having order of magnitude 100

cm/sec. This speed of propagation is highly subsonic. This fact is

consistent with an analysis of weak deflagrations in the ZND model [2]. It is

also well-known that, in order to predict correct flame speed, it is necessary

to take account of the internal mechanisms of the reaction zone. That is, the

effects of heat conduction or chemical species diffusion are essential to the

formation of the flame fronts. Therefore, to obtain a simplified model for

flame propagation from (1)-(5), we shall assume that

(a) the gas is non-viscous (v - 0 in (2), (3)),

(b) the gas is incompressible, and

(c) the typical length scale for the reaction zone L0 = (6T) is much

smaller than a typical length scale of the environment.

Then, if we introduce the dimensionless time and length scale

t x x
L0  /
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and form an asymptotic expansion with respect to the inner scale L0 , the

equations (M)-(4) become

P. + (pu) = 0

t x

p= 0

x

PC T, + puc T- T.. + Q .p(C,T)
p p x

pc + puc. = (pC.). -(,T).

t x xx

Thus, within the reaction zone, the pressure p remains constant.

In this report, we will study this simplified system. We will from now

on write x for x and t for t , and will rewrite the simplified

equations in the form:

Pt + (Pu) = 0 (7)

PCT +pucT T + Q P(C,T) (8)
pt p x x x

PC + Pue = (pex ) - P(C,T). (9)
t x x x

As for the equations of state in (5), the assumption (6) implies that the gas

can expand only due to temperature increase. Thus

p = p(T) , p'(T) < 0 (10)

IV. TRAVELING WAVE SOLUTIONS INTERPRETED AS FLAME FRONTS. -.he flame

fronts travel through the gas mixture with a definite speed and burn the

unburned gas to a definite burned gas state. Therefore we shall interpret the

flame fronts as traveling wave solutions of (7) - (10). Thus we look for

solutions of the form
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T (x,t) = T x, = x + Vt , (11)

satisfying the boundary conditions

T -= 
= 

T O  , () T1 To < T, < T,

1 0

(12)

V in (11) is an unknown quantity which represents the speed of the flame.

That e = 1 and To < Ti in (12) shows that the gas is unburned at

= - Similarly, the gas is completely burned at Thus we may take

V > 0 . The main result is:

Theorem 1: Assume that I(T) is bounded. Then, given any unburned gas

state at = - , there is a unique V > 0 and a correspondinq unique burned

gas state at 0 = such that equations (7)-(10) have a unique traveling wave

solution of the form (11), (12).

Furthermore, TI = TO + and there exists a uniaue number m > 0
P

such that

m - p(T(&))(u() + V) for all &

Thus, the burned gas state is specified by the relations
mm

0 -U 0  U1-(T

The uniqueness in the theorem depends very much on the assumption that

Ti > 0 . See the remarks in Section VI.

The flame profile obtained in this theorem represents the internal

structure of the reaction zone. Outside the reaction zone, the flame

structure is mainly gas dynamical. This fact can be used to prove the
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The pr.,of of t n i tht,I : . wI~l b.. . - . : I.. , , u .

However, w. will illn?, ratP the mII ! r ,.

n umbe r I n 1-( 0) '!v I.. n,, t C, 1"

L - -

In thi ' Ctc , we t I a , i. 
- t!.At t r .

assumption will lead to the ronser.atinn rf the 'al r.1 al;..

Substitutxnq (11) into (7)-(9), wt! obtain that

p(T( ))(u([,) + V) m in constrit 13A

CPT " ' - ( )' Q ,Ii,T) .+4)p

m t. (, )' ,

where T' = ) ' etc. A)p'cto o a x i c t, a, (I

implies that, if (13)-(15) and (12)havp a i'.r., ten

' (C) < 0 , T' ) > 0

and E(F), T( ) are boun(led. Thus,

Now, from (14) and (15),

M(c ps + Q* ) T ~ + ) . 17Pk To
p

Integratinq (17) fron ( =~ -F to ceneral E yie1,s

m(c T + Qc) = ( T' + Qo -') + m(c T + Q). (p 6p 0

Similarly, integrating (17) from - to qeneral I qv es

m~c T+ QC) T' + Qpc&) + m c T
T+ p.(19)

Thus if (12)-(15) have a solution, a comparison of (18) and (19) gives

cpT 0 + Q - CT I  (20)

T, is uniquely detrmined by To ; (20) is true no matter whether L -1 or

not. Note that we have used (16) in the derivation of (17) and (18).



Suppose that L I , i.e.

6 pP

then the quantity

H c 'T +P

will satisfy

mH = pH' + mH(--)

This fo,1ws from (IS) anl (,20). Jviously,

HU,) = H(-) for all . (21)

Thus ii,%) is conservel iur.nq the >-')mbusto)n process. The quantity H is

the togtal e-nt hap cf V''- 1

Usinq (21), '14) ani (I) can be combined into a simple nonlinear

eiqevalu. :rc-t hem
C

c T (,' Y)' * -" (T - T),T',
P 0P

T(- TO  Tf- )  =T

where m a.-'earr as -hfe eiqenvalue. That this problem has a unique

solut -,n ,r and T ,) follows from a well-known phase plane analysis first

rigorously *-srussed by -el'fand "'1. Also, see ([5.

For arbitrary Lewis number L , the Schauder fixedpoint theorem is used

to pr-v;e the exisnence of snlution to (12)-(15). The main estimate needed to

establish the applicability of Schauder fixed point theorem is tc estimate the

total entl alf[y H in terms of L ; the latter is only constant when L = 1

VI. er([ B3!'WIAPiY :lI JAtCITLTY AN) OTHFP REMARKS. The determination of

the iun:tion temperature TI is sofewhat arbitrary. Strictly speaking, the

gas is not in stable :nemlcal equilibrium even if Tn < T i . The gas is

always in a "metastable" state even at low temperature. However, without the



assumption that Ti > 0 , the problem (12)-(15) would not be well-posed. This

"cold boundary difficulty" is well-discussed in [6).

In the model (7)-(10), the cold boundary difficulty can be aiscussed as

follows. Assuming that T0 
= 0 in (12), one can establish

Proposition: If the unburned state in (12) is fixed, then

lim V(T) = V0T.+0

exists.

Thus, no matter how small the ignition temperature is, the gas can always

support a flame front with a definite speed. It seems that the assumption

Ti > 0 is immaterial.

However, if we don't assume the existence of an ignition temperature,

i.e, instead of (6), we assume

A(T) = exp( - T for all T

then one can show

Theorem 2: Fix the unburned state in (12) with To = 0 ; then there

exists V0  such that (7)-(12) have a solution iff v > V0 •

Thus, without the assumption of an ignition temperature, the observed flame

front tends to be unstable. Its speed tends to fluctuate. The cold boundary

difficulty actually occurs.

Mathematically, the cold boundary difficulty is due to the extremely

singular behavior of the function exp(- E- around T = 0 . This fact also
RT

leads to difficulty in computing the flame speed for certain gas mixture.

VI. CONCLUSION. The model equations discussed in this report take care

of the combined effects of gas expansion due to the temperature increase after

combustion and the transport processes. We show that the flame fronts exist

in this model, and we discussed some of their properties.

42



This model is exclusively used to discuss flame propagation

(deflagrations); the model system (7)-(10) ig not approp-iate for a discussion

of detonation waves. We shall show in a future paper that it leads to a

discussion of flame propagation for the full set of equations (1)-(S) where

all t a effects of gas dynamics are incorporated.

NOMENCLATURE

P Gas density

u Gas velocity

p Gas pressure

e specific internal energy

T Gas Temperature

Cmass fraction of the reactant

V coefficient of shear viscosity

coefficient of heat conduction

6 coefficient of chemical species diffusion

Ttypical reaction time of the chemical reaction

Q heat content of the chemical reaction

c specific heat at constant volume

c specific heat at constant pressure

R universal gas constant

E activation energy of the chemical reaction.
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DEVELOPMENT OF DEFLAGRATION ON INITIALLY COLD COIhBUSTIBLEl

A. K. Kanila
Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12181

ABSTRACT Deflagration waves may be generated in com-
bustible materials in several different ways, which incl'de
self-heating, application of external thermal stimulus or
increasing the Damkohler number above the critical. The
corresponding transients are compared, with special emphasis
on the third mode of combustion initiation

I. Introduction Burning can be initiated in a variety
of ways in materials that combust as a result of the-ally
accelerated exothermic reactions. Self-induced burning
(mode I) can occur if chemical heating overcomes heat loss
to the environs. Otherwise, an external stimulus, such as
heat flux at the surface, can be applied (mode 1i). Alter-
natively, the reaction rate can be enhanced by increasing
the Damkohler number above the critical (mode !I!), by
raising the pressure, for example.

Recently, for modes 1 and IT, Kapila [11] and '2] has
described the transients that lead to the establishment of
combustion waves in nondefor-mable matriais. For mode i the
evolutionarv process consists of a 'reactie induction
stage which enos 7n thermal runaway, followed by a brief ex-
plosion period in ".-hich a ranolv intensifying not spot
develops. Upon maturity, the hot soot is transformed into a
propagating wave. The situation is essenit'allv the sime for
mode II, except that there _s an initial period of inert
heating and the weak reaction resnonsible for thermal runaway
occurs in a thin surface laver. :n this caper we discuss how
thermal runaway occurs in mode :ii; events subsequent to run-
away follow the same course as in modes i and -T. -nly a
brief description is given here, since details can be found
in [3].

II. Formulation Let a combustible be aonfined to the
region between the rianes x = -. Let the bouncaries o:
the region be maintainec az constant levels of temperature
and reactant concentratron {i.e. heat, fresh mixture and com-
bustion oroducts are allowed to cross the boundaries). Taking
unit Lewis number and snv.n symmetry about x : 0, the
mathematical troblem tL 00 cons uaereo is
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Iz
Y Yxx + [D/( y)] (i+ -y) exp(y-y/y), O<x< 1, (2)

Yx(0,T) = 0, y(lT) = , (3)

with appropriate initial conditions. This dimensionless
system describes a single, one-step Arrhenius reaction.
Here y is the temperature, z the reactant mass fraction,
: the chemical heat release, y the activation energy and
D the Damkohler number.

The relevant static problem has been studied by Kapila
and Matkowsky [4] in the limit y--. The steady-state re-
sponse diagram, i.e. a plot of y at x=0 against D, is seen
to be the S-shaped curve of Fig. 1. The upper and lower
branches are found to be asymptotically stable and the
middle branch unstable, the exchange of stabilities occuring
precisely at the turnaround points of the S. An analytical
description of the entire response is given in [4] where it
is shown, in particular, that on the lower branch AC, the
appropriate expansions for y and D are

y = 1 yl + Oy - ) , D = D +O(y ). (4)

Furthermore, the solution y1 is given by

Yl(x) = H(x;D I) (5)

where H has the parametric representation

H = 2 Zn [cosh : sech (ax)], D 1 = 2a 2sech 2, (6)

and the parameter a increases from , =0 at A to -c=& at C,
where c

C4 tanh a = 1 (c c 1.2)'1c c c

and correspondingly,

D1  0.88, y1  (0) 1.187.
c c

The analysis in [4] also shows that at the point F (vertically
above C) on the upper branch in Fig. 1,

YF(0) = I+v; - est (7)

where est stands for exponentially small terms in the limit
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Before proceeding further we observe that the exchange
of stabilities at C occurs due to the passage of the largest
eigenvalue through zero. The corresponding eigenfunction of
the linearized problem, given to leading order by

E(x) = 1-a x tanh(oc x), (8)

plays an important role in the sequel.

III. The Dynamic Response

Of interest is the dynamic behavior of y as D varies
slowly through D . This slow variation can be characterizedc
explicitly by introducing a slow time t, where

t = 6T, 6<<1,

thereby transforming (2) into

OYt = Yxx + [D(t)/(%y)] (l+P-y) exp(y-y/y) (9)

At an initial time t let the system be at the state corres-B
ponding to the point B in Fig. 1. Following (4; we let

D(t) = D (t) + Oh( -l (10)

and assume that D (t) is a smooth, monotonically increasing

function which has the power series representation

D1 (t) = D1  [l+t-oO(t 2)] as t-T0. (11)
c

This specifies t=0 to be the point at which the critical
point C is reached. The goal is to obtain an asymptotic
solution to (9) and (3), with the initial conditLon specified
above, in the limit 6-0, y--. We shall concentrate on the
limit 6 >> y-l. Several different regimes need to be dis-
tinguished.

III.A Precritical Solution

Expecting y to stay close to unity prior to criticality,
we let

y = 1 + y-1 z(x,t) (12)

whence (9) and (3) reduce to

6z t = Zxx + D 1 ez + O(Y'-1), zx (0,t) = z(l,t) =0. (13)
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The expansion

z = z + 6z 2 + o(6) (14)

then leads, to leading order, to the pseudo-6teady solution

zI  = H(x; Dl(t)). (15)

In view of (11), it can be shown that

z I = z (x) - 2 (-t) /2 E(x) + O(t) as t-O-, (16)
1a

c c

where

z (x) = 2 £n[cosh ac sech (c x)].

and E(x) has been introduced in (8).

The asymptotic behavior (16) indicates that the expansion
(14) is not valid beyond t=O. It can be shown that z2 has
the asymptotic behavior

1 (t)-1 E(x) + O[(-t)1 / 2 ] as t-O-,z2 =- 3 2
3cl

c

which merely confirms the breakdown of (14).

III.B Transition Solution

Further development of the solution occurs on a new time
scale s defined by the stretching

=2/3 b1s (17)

where the O(1) constant b will be chosen later in a way that
simplifies algebra. The transition expansion is taken to be

Z = ZI (x) + S1/ 3v1 (XS) + 52/3v2(x's ) + v3(x's) + o(5).
c (18)

We find that v satisfies the homogeneous problem

L(Vl) 1 v 1 + (D1 exp z ) v I = 0, v 1  (0,s) = v (l,s)= 0
xx c c x (19)

while the v. (i 2) satisfy the nonhomogeneous problems
1
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L(V i ) =WilV. (0,s) = v (l,s) = 0, (20)1 1
x

with w. linear in v. and depending, in addition, upon x,s1 2.
Sand vj (l<j<i). The problem (19) has a nontrivial solution

v1 = f1 (s) E(x) (21)

where the "amplitude function" f1 (s) is determined by re-

quiring that the problem (20) have a solution for i=2. The
requisite orthogonality condition provides the Riccati
differential equation

bfj (s) 3b 1
5 - 3'A f(s) ,

for which the initial condition

fl 2 b-/ 2 1/2 b -1

32- as S *c 3 CL

is the result of matching with (14). The choice b= (9 a2/4) 1/3
c

leads to the solution

fl ( s ) = 3(9a2/4) - 2 / 3 Ai(s)/Ai(s), (22)

where Ai(s) is the Airy function. Thus, v, is determined com-
pletely. The higher-order v. can be computed in an analogous

1

way. Since f (s) has a pole at s , where s = - 2.3381 is the1o o
first zero of Ai(s), the solution (21), and therefore the ex-
pansion (18), is valid only for s>s

0

III.C Post-critical Solution

The breakdown of (18) suggests the stretching

S = s - 2-1/3 61 /3 (p-p ) (23)

where the new time scale ), is of the same order as the fast

time T and the shift o'0O assumed to be o(6-1/3), is to be

determined. We now let z have the expansion

z = W1 (X,p) + o(l) (24)

where WI can be shown to satisfy
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w I  w1  + D exp w o.x<l,
p xx c

wI  (0,p) = wl(l")) = 0 (25)
x = z (x) - -i a

w lc W E(x) + o(,-) as
c

The initial condition in (25) comes from matching with the
transition expansion (18). (In order to determine the shift
P0 and to fix the origin of - in (25), higher-order matching

with (18) is needed.)

We note that wl, which evolves at a constant value D1

of DI, measures the departure of y from unity on the O(y

scale (see (12) and (24)). Thus, w i' entirely analogous
to the induction-period solution fo the self-induced com-
bustion case (mode I) , discussed in [1]. In fact, the numer-
ical solution of (25) leads to a graph much like that in Fig.
3 of [1]. In other words, the solution develops slowly in
the initial stage, but there w1 begins to rise rapidly near

x=O while variations continue to be leisurely elsewhere.
Eventually, at a definite p = -_, wi (0,:) becomes unbounded,

signalling thermal runaway and the birth of a hot spot.

Further development occurs precisely as in [1j. The
hot spot intensifies, reaches maturity when the temperature
in it has reached the value I+Z, detaches from x=O and pro-
pagates into the domain. Eventually, the combustion wave
comes to rest near x=l to accommodate the boundary condition
there, thereby completing the jump from C to F in Fig. 1.
Further movement along the upper branch will again be governed
by the slow variable t, much in the manner of the precritical
solution.

IV Concluding Remarks

The asymptotic analysis has concentrated on the case
when combustion is initiated by the slow passage of the
Damkohler number through the critical. Details of the tran-
sient upto thermal runaway are given, and it is pointed out
that subsequent evolution of the combustion wave is analogous
to the case of self-induced burning.
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MATHEMATICAL QUESTIONS FROM COMBUSTION THEORY

G.S.S. Ludford and D.S. Stewart
Cornell University, Ithaca NY 14853

ABSTRACT. Residual mathematical questions from combustion theory are

presented, in particular those relating to a problem discussed by Li n

(1974). After illustrating the main ideas by moans of an exactly integra-

ble model, known results about Linn's problem are summarized, with indi-

cations of how they are obtained by numerical and asymptotic methods. The

hope is to stimulate further, purely mathematical, work on these questions.

I. INTRODUCTION.

With the advent of actiition-energy asymptotics as an effective analy-

tical tool in combustion theory, a host of residual mathematical questions

have appeared. These questions are typically concerned with a differential

problem governing the behavior of a thin reaction-diffusion zone. Existence

of solutions and the determination of various parameters associated with

the differential problem are critical questions in the overall analysis

of the combustion phenomenon.

In such diverse combustion questions as the burning of monopropellant

drops, detonations, fast deflagration waves and counterflow diffusion flames

the structure of the reaction-diffusion zone is governed by Linn's problem

(1974), i.e. the differential equation

(la) 2v" v exp( ix-y)

*This work was supported by the U.S. Army Research Office under Contract

No. DAAG29-79-C-0121.
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subject to the boundary conditons

(ib) ?-1 + o(i) as x ..

(ic) o(1) as x +-

where a is a real constant. In general, the solution must be comput~io

numerically by taking x large and negative, and varying y in nhc in-

itial conditons

(2a,b) y'(x 0 ) -i , y(x o ) = -Xo + yo

until the condition (1c) is satisfied for some large x. The correspoiding

v approximates the constant

(3) lim (y+x)-y_ (a)

which is thereby found. The numerics indicate that there is a unique snli,-

tion for a > -I/2 but none for smaller values of i. Moreover, the constant

(4) lim y = y+V n

x - o',

thereby approximated has the properties

= 0 for a > 0

(5) y ( ) 0 for 0 - -

Las ' , -1/2

Existenct,, tiniqueness and propert ies such as those mentioned above ),i'o

been established numericallv and in some instances by asyImptotic analysis.

While tlie comb i nat i on of these two approaches is adequate in the context
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In contrast to Linan's problem tiere is no limitation on t. On the

other hand the constants v = V(0) and v = y(-) play the role that

y_ and vY play in Linan's problem, being determined by the solution.

WO find

/i.K (/2/I,)
to0 _- for > 0

K 0,0,
K

00

(0) y =-- for > 0-o

0 for 0

and

-- 0 for i > 0 ,

(1l) Yv = ) 0 for = 0,

-/1 (21/-4) for ' 0

For future referenc we cite the asvmptotic behavior of y-as - 0

2514, 112
(12) v+,-r -- - ex(h )l as 0v 2i_ 1 / ex ' ')(- v / !' ) as- x 0

112

Thus the model problem has features similar to Linan's. The given

boundary conditions are sufficient to determine the solution completelv and

hence the constants v and v, as functions of i. The constant v+"

as in Linan's problem, vanishcs for , 0 and is non-zero for " < 0,

being controlled bv the behaviors of the corresponding Bessel functions for

large x.
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1l1. PROPERTIES FOR 0, ESPECIALLY -.

In the following a unique solution is assumed to ,:xist. Of most inte.r-

est is the determination of the two constants y, ,(L) for a given ca.

UnI ess otherwise stated the analysis in the fol lowing sect ions is essent ial -

lv due to Linan (1974).

For ax > 0 and , (1) is effectLvely replaced by

(13) 2v" = v exp(-tx)

Again using the transformation (7) we reach the modified Bessel's equation

(8). The only bounded solutions for t .. are proportional to K (t)
0

so we conclude that

(14) lim v = v = 0 for > 0

The resul t is otherwise obvious bv inspection of the problem itself. The

boundarv conditions require the solut on to tend to a constant as x +  ,

and that constant mu'st be zero if the differential equation is to be satisfied.

If we consider the limit - - ', and in particular focu.s in the behav-

ior of v for x large and negative, then (13) still governs the behavior

o f v. The solut ion to (13) is aga in a multi pe1 of K (t) and in partic-
0

un ar as+ x ..... , i.e. t - 0 0, .' is approximated bv

(15) A[2,n(t/2) + Y +7+tK/+...) + t%, +

where, is the Euler constant. The boundary condit ion (1h) then shows

that A = 2/t. Hence

(16) v = (2! )K (t)
0
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In fact the perturbation satisfies

(22a,b,c) 2y, = exp(-y0)[y1+y(x-y)] yl = o() as x +

a problem which, for large positive x, reduces to

(23) 2yI = yl + xe , y= o(l) as x -+

where 6 + y L I - u du
1-(l+u) e-u

The general solution of (23) is

Sx 2  (,-x)/V + A-V//2 x r2(24) Yl - 4 -xe A B

One would expect that, by choosing y 1 (-o) appropriately, the increasing

exponential could be suppressed, so as to satisfy the boundarv condition

as x . However, for general v this apparently is not the case, the

only exception being y = 1.344.

Since y,, (a) is identically zero for a > 0 its asymptotic expan-

sion for i - 0 has all zero terms. This behavior is completely analogous

to the model problem given in Sec. 2 [cf. equation (12)] where y was

shown to be exponentially small. Nevertheless, the exponential behavior

of y, (a) as a - 0 in Linan's problem can be determined by matching.

The result is due to Joulin (1979), although he does not give a -tails.

For sufficiently large values of x, the term ax in equatiou (1)

is not a perturbation, as was supposed above. Accordingly we introduce

the new variable

(25) rix - 2 ',nL-t < for 0

(the con s L nt being, needed for balance) and the cxpan sion
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(26) y = g(a)Yo() +

Here g = o(1) is a gauge function which is to be determined. The differ-

ential equation (1) then yields

2 2
(27) 2d Y /dX = Y exp(X)o o

and, since X - -- as x - -, we must have

(28) Yo = I (V7exp(x/2))

when the constant factor is absorbed into g. Thus

/ (29) y = g(a)I (t) +
0

where

(30) t = /L2exp(X/2)

is the analog of the variable (7).

Now we match to determine g(a). If the first term of the expansion

(29) is written in terms of the variable x and expanded for 0 0, the

leading term is

1/2
(31) 3/4 /2 exp(r2/ u,)exp(-x//2)

2 3

Likewise, if v [given implicitly by the result (21)] is writtel, in termsV
of X and expanded for o - 0 0, the leading term is

S(312) expG(¢-x) /72

(when written in terms of x again). These expressions are identical if

;
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3/4. --11_21

(33) g()= YCA eI' 2 T1/2e

I 11/2 TT

V. PROPERTIES FOR a < 0.

Linan found numerically that no solution exists for a < -1/2 but

did not give a proof. Ludford, Yannitell & Buckmaster (1976) were appar-

ently the first to supply one, at least for a > -1; the argument goes

as follows.

Let a lie in the range (-1,0) and supporse that a solution exists.

Then multiplying (la) by a - y' and integrating by parts twice, using

the boundary conditions, gives

(34) 2 a + 1 . (y+l)e"X-YI+ e d- - _Fer dx

which, under the hypothesis and boundary conditions,becomes

(35) 2a + 1 -af e d

For -i < -1/2 there is a contradiction (in sign for - -1/2) and hence

the assumption that a solution exists cannot be correct.

We mav expect singular behavior of v+_ for j2rx+lj c << I and

Lin has given the analysis. First assumc that iy > I (it will turn

-1)
out to be 0(r ) , and consider the shift of origin

(36) - x + F(y,) ,

where F is to be det t,rmin ed . The expansion

(37) v Y +_ + Yo + o(I)

then leads to the balanced equation
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(8) 2d 2)/dXj exp(-X/2-y o )

if we make the choice

(39) F = 2(y - nv + )

Setting oi = v + X/2 now gives the differential equation

) "-)

(40) 2d 'f/d-,- 2 xp(-')

subject to the boundary conditions

(4la,b) do/d\ = -1/2 + o(1) Is , d /dX =  1/2 + o(l) as

The so0l t i On is

(42) 7 = 2n[2cosh( x-( /4)]

Expatnding for y - , shows that v behnves I ike

(43) Y- + Yo = -x + Y4 ,, - F + 0(1) ,

so that matching with the boundary condition (lb) requires

(44) y_= -V + 22.nv+,, + 0(l)

Exp;nding for shows that

(45) V y + 0(1)

Eq'iat ion (42) 1 e-ds to a uni formlv val id approximat ion for v(x),

To complete the analysis we need only determine v is a function

of P. This is done simply from the formula (35) by using the approxima-

tion in the integral; we firki v+11 =  I/I-.
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VI. OTHER PROBLEMS.

One of the first (and few) questions treated ana1 :zioallv before the

advent of activation-energy asvmptotics was the diffusion flame of Burke

& Schumann (1928). While it is unnecessary to discuss the structure of

the flame sheet to obtain the main results, there is alwavs the possibil-

ity that one may not exist (which would vitiate the whole disucssic.).

The differential equation is

? 2
(6) y" = x - y

and the boundary conditions are

(47) V = Ix + o(1) as x

One would expect the weaker boundary conditions

(48) y' = ±I + o(l) as x - -

to be sufficient to determined the solution, supposing it exiets. If so,

does that solution satisfy the stronger conditions? Acain one, would e-1,<', t

so: the only linear functions that satisfy the differential equation aire

y = x. We are left with the questions of existence and unique ness.

Numerics leave little doubt about existence. The computation is start-

ed at x = -x , where x is large, with v = -x - and v' = I. Th,.O 0 0

small positive number : is then adjusted until y' -1 at x - +x .0

Moreover, linearization of the differential equation makes plausible that

there is a family of solutions having the asymptote v = x; presumably

one of them (at least) satisfies the right boundary condition. Uniqueness

is in doubt, however; since the Conference, Professor Alexander has appar-

ently found a second numerical solution.
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Another problem concerns the response of a steady combustion process,

which is often the only feature of interest. One parameter (e.g. burning

rate) is determined as a function of another (e.g. pressure). Such a re-

sponse can sometimes be multivalued and, to decide which of the possibil-

ities occurs in practice, the stability of the steady states is ,ften in-

voked.

One of the first analytical discussions of such stability has recent-

ly been made by Matalon & Ludford (1980), in the context of a chambered

diffusion flame. The steady states v (x) near the so-called ignition

point are solutions of the differential problem

I, I V

(49a,b,c) v + v + Qe X(l-e X)e s = 0 v (0) = v ( = 0~s ~s

Here Q is a positive parameter and the problem is found (numerically)

to have two solutions for 0 less than some value 0 , one for ) 0"t) 0

and none for 0 > 0
0

While a proof of these results is of interest in itself (and would

be a necessary preliminary) the more important question concerns the dif-

ferential problem

(50a,b,c) y" + v' + [N + Qe- (l-e-)e sly = 0 , y (0) =v ( o) = 0

governing the stability. For each Q < Q and each of the tLo steady states

V (x) associated with that Q, we wish to know whether there is a nega-

tive eigenvaiu A (implying instability). Using a Galerkin method is

open to question because the spectrum is known to le complex; and a major

step was to show that the portion of the spectrum with negntive real part

was in fact real, so validating the method. Numerically it was found that
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01n0 Of the -steadv ftt otr c;ic' 0 <0. is -table whilc r.ne other is

't, crob 1em obt a ined onl replacri ng the boundary coiid it ion (50c ) b,,

has been invest i ,,tead mathema1t i ally (Coddington & Levinson , 1955) , althoughi

the type of information we seek does not seem to be avalable. The ,ige-

value problem (51) has apparentLy not been treated; and ones of similar

form will undoubtedly arise as the stability of combustion processes is

pursued further. [Cf. Tailiaiferro, Buckmaster & Nachman (1981).)
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Profe ssor Li nan has ruar--n-clo nt, lit: dc-flowotermi-

ation of the connotant vir !n'o V.

"'h- equationi

yy)=(y y1 ) + xvy

is easily seen to) be a eonseciuano'e ol' enualit i ons (!(-) a,,, (7J) :

conditions (ib,c) end (?PIb~c) t'merefore irn.x

r rac on : or r_ , r a0 1 i s o I ri ion r, atut h v on r c s, t o

ioobon r s :-oicic:. :11 intc-ratf- by vow'sc fn

--2  + -r +I +'

(oas' ~mo' ershave oc;adsc n:un 1' 11' Ll ': i: i 4oic

t~~smallniess of che i.ntoirral rl h u l' i o(" ' x= ani c

1
-' at x = "have been n,,-d 'tln', tOn la:st eXr2',S' era.o -,ro-

v = t /-(y +)x-p(-y I

.- M r Ic ruardrature shows t hOt '-, i ct e, rl w."'r-vn
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NOTE ON THE STABILITY OF STOCHASTIC

REACTION-DIFFUSION EQUATIGS

P. L. Chow

Department of Mathematics, Wayne State University

Detroit, Michigan 48202

ABSTRACT. We consider a class of initial-boundary value proble.s for

reaction-diffusion equations, subject to randon, parametric excitations.

If the unperturbed system is assumed to be stable in the sense of

Liapunov, the effects of random perturbation on the stability of such

systeti; is examined. By the theory of random evolution equations, the

stochastic stability of equilibrium solution will be diuUsed. The

stability criteria are baied On t'ic ceO ,tru t i n o appropriate L apunov

functionals. The theory will be applied to several concrete exam. ples.

1. INTRODUCTION. In a recent paper [1], -e introduced a Liapunov method

for studying the stability of nonlinear stochastic evolution equations.

It weis pointed out that the mcethod is applicable to reaction-diffusion

systems under random perturbation. Here we shall briefly review the

general stability theory for stochastic equations, and t.en apply it to

scvera l randomly perturbed reaction-di :i usion equations arisin. rom

chem,-ical rtaction and biological s,ystem, taken Irl:: Ou1- p lpers [1] and [2].
n

Let D be a domain in R n or n = 2 or 3, with a smooth boundary

:41 . Denote the concentration of i-th chemical or biological species at

the instant t and the position x g D , by u (t,x) , i 1,2....,.. .

The w,,ork was supported by the ARO Grant DAA(;-78-G-0042.
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Consider the specific reaction-diffusion system with a rando::, drift

velocity as follows

ui Gui
S A ui + Nf(ulU 2 ..... --Lj(t xw) - in D

ui(O,x) = fi(x) , (1)

1 u 1

ai + buil 6D

where v's are the diffusion coefficients; N's the reaction functions;1 1

j's the random (turbulent) velocity components, and f.'s are given

functions.

We shall try to answer the following question: Suppose that u i 
= .i x)

is a stable equilibrium solution of the system (1) when F -0 . What is
-.3

the effect of the random perturbation j on the stability of u' ?

II. LIAPUNOV's STABILITY CRITERIA. Let the unperturbed system have a

solution belonging to a subspace X of the Hilbert space H of square-integral,

m-vector valued functions on D . Suppose that (u) is a smooth functional

on H with locally bounded (Freclet) derivatives 4' (u), 4'(u) anong other

properties (see [11 ). If =  ( i',2 ..... ) is a H-valued white noise

W(t,x) with a covariance operator Q on H , then we def i,, for v - X

1 
*r c

(v) = (A(v), '(v)) + 1 Trace( '(v)B(v)QB*(v) (2)

= . )T
where A(V) ='I diag(v 1vl,... ,VmVm) + (N1 (v),...,N M(V))

Yi m(3)

B(v) = - ( -) X n

xj

and (.,.) means the pairing between X and its dual X A functional
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4 on H is said to be a Liapunov lunctional for the syster (1) if $(v)

is positive-definite and

2 (v) < 0 , for all v in X (4)

The following stability criteria will be useful, and the proof ca., be

found in [1]:

Stability Theorem: Suppose that u - 0 is an uquilibriumn solution of the

reaction-diffusion system (1). (i) If there exists a Liapunov functional

$ satisfying the property (4), the null solution is (almost surely) a.s.

stable, that is, for every initial state u(o,x) in H

prob.,sup <u(t,') =  1
t>O

(ii) if, in addition, $ satisfies lim k(u) and

J(v) < k 4(v' for all v in X and some k > 0

then the null solution of (I) is a.s. asy7-ptoricaily stable,

t>O

Here . denotes the ti-nor::

v(X) 2 V(X')Jx (5)
.D

Ill. _T I'Y OF RFACIlON-DIFFUSION QUATIONS. We shall apply the stability

theorem stated above to three specitic problems as illustrative examples,

thotwh they are of independent inttrest.



(Example 1). Consider the scalar random diffusion prKl arising Iron.

population biology [2] in R3

3u(t,x) U au

= Au - i +'uji - J= t,x)>- , x in D

u(o,x) u (x) , (6)0

u(t,x)j D = 0

In this case, we have A(v) v l (OX, ( =,2 V CV)

Let (v) = v 2  Then by (2),

2

2 4(v) = -2 {vv(x)l2 +"D l+ v ( )l

3 ((7)
-- 1 q. x) v--)3 dx" 2 i =j qi ' x. x. '

2 , i i ax

where q ij(x,y) are the kernel for the covariance operator Q of the

random functions Fi(t,x) Let qij be bounded continuous for x,y in D

with

qo = sup Iq (. Y))
l1i,ji3 i
x,y:D

Then, from (7), we have

= #(v) -21 (j - q/2) v(x) 12 + CV2x)dx

D
(9)

-2[X (v - qo/ 2 ) + ct] a (v)

whe re

inf %-- (10)
0 vrX V 2

Thus, by the stability theorcm (ii), we have
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Ir m ju(t,X)12dx 0
t-4- D

with probability one, if Xo (v - q02) + c > 0

(Example 2). In this case, we asume that the system (1) is linear, that

is, the reaction function N(u) -u , where 7 is a constant Xrn -. atrix:

[r. rx m (11)

Let X be the solution space in L 2(D) with

= lv(x)2 2 + v(>)12 Idx (12)x D

Again the obvious choice for the Liapunov functional is i(v) it is

not difficult to compute

2
S(v) = -2' 3 v.Vv(x) - V.(X ()

i~ i ,j=l Xi )

m 3 3v.(x) 3v()

1- , qk( (x, x) kn=- -- dxkk C K Ox (13)

~ 2[Xo(v ° - qo/'2) - ro] 4(v),
0 (v0 q0 r

where )1 , I q are defined as before, v m in ,ad r Ie

e.igenvalue of 7 According to the Stability Th-orem (ii), LI null solution

of the linearized equation (1) is asy mptotically stable alm ost surel

provided that

)0 (\o - q0/ 2 ) 
> r

(Exampl e 3). The following reaction-diffusion system occurs in th,

of two, co;.peting speci si [6]:



3uI

S= V + U- (+U)U 2 - ( )Ul

6u2
V2 Au 2 + (lu2)uI - (.7)u 2 , in D , (14)

au.
- 0 , i =1,2

6n I3D

Without the random drift, the unperturbed system was treated in [31. Note

that

E(vlv 2 ) = (v+V 2 ) n(l+vI)(l+v 2 ) (15)

is a first integral for the reduced ordinary different equation for (14)

with .1 =v 2 
= 0 and ' a0 . Introduce the functional + defined by

ku) E[u(t,x)]dx (16)
D

where u(t,x) is a solution of the system (14). By a direct comput.:.ion,

invoking (15) and the divergence theorem, we have

3 (U. 2 1 2
D j= i x. 1+u.

j 3

q 3.Xi X dx (17)-2 , k,;=l qkf( x 1+. 1+

2 i 2 32 23

-/ 1 o 7[- In(1+ui]

Then $(u) becomes a Liapunov functional if

>

ur- " = min(,,, I 1 ) Thus, in viu of the Stability Theorem (i) the

j I ]ut L.,jn (f the sys(AT (14) is stle i1m , t ;urely i.t 17 held -  but
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need not be asymptotically stable.

(Exainple 4). As a last example, we consider th, stability of the nonlinuar

diffusion equations:

SV1 u au 1 + bf(u 2 ) -

au2 V 2 A u2 + cu I - df(u 2) - ( .?)u 2 , in D , (18)

6u.

aD

where a,b,c,d are positive constants, and f 2 0 with f(0) = 0 and

s M for -= < s <

The associated ordinary differential equations form a Lure's system

[4] in the feed-back control theory. A Liapunov function for such a system is

1 22E(v) =  r v 1 + F(v 2 ) (19)

V2  Iad -t-d c
with F(2) = f(s)ds and r - b , ad > bc

0

Let

(u) E[u(t,x)]dx . (20)

Then

u(u) -D [Vlr 2 '-1 2 + V2 f'(u 2 )Vu 2 i 2

D

1 2 U IU u Iau 2 au2
2 q q~(x,x)[r -X -X +klU) -jdk,i=l x k  x 2 x k( 1

-2 1 2 2
- -5 qor + m1u 2 L ldx
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1
Thus we have an almost surely stable null solution if v > q by the

Stability Theorem (i). For details, see [2].
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DIPFFRFNTTATTlN OF TABULAR DATA

Ceslovas "lasaltis and George C. Fran-is
Ballistic 5Indelfnf, Division

ITS Army Ballistic Research 7,aboratory/APRADCnM

Aberdeen Proving Ground, MD 2____

ABSTRACT. A method based on an autoregressIve model is derived for
estimating the derivative of a function from its values at discrete
points. The method is applied to synthetic data and compares favorably
with moving polynomial arc, Rutterworth filter, and B-spline smoothing.

T. TN'TROD?'CTION. Various methods for numerical differentiation
have been considered. Some of these simply differentiate polynomial
interpolation formulas1, while others use lea-t squares fits of the
data by trigonometric 2 or algebralc 3 polynomials. Still others use

polynomial splines.4  This last method imposes certain smoothness

conditions on the fitted functions. Similar conditions are introduced

by applying Tikhonov's5 regularization procedure.

Since a derivative, i.e., the limit of a ratio cannot be obtained
from a finite set of tabular data, the data must be supplemented by

suitable assumptions. The most common assumption Is that tabular data
are approximate values of a certain function which can be identified by
the data and subsequently differentiated. For instance, the moving
polvnomial arc method assumes that data can be adenuatelv represented by
a polynomial, at least locally. qpline smoothino and Tikhonov's
regularization procedure suppose that data are numerical values of an

element in a Sobolev space. This Paper assumes that tabular data are
measured values of a function whose derivative can be represented bv a

linear combination of successive functional values, i.e., v'(t) is an
inner product (a(P),Y) of A constant vector a(p ) dependent on
an integer p and the vector Y = (y(t+pI), y(t+(p+I)L),o.., y(t-(+k);)),

for several choices of the integer p and a positive integer k dependent

on the case at hand. As is shown below this assumption implies that the
underlying function is an element of the algebra A generated hy
alp.ebraic, trigonometric, and exponential nolynomials of a real variable.
An appropriate element is selected by observing that vtA satisfies a

certain family of linear difference equations with constant coefficients
dependent on sten size. Thus, in apnroximatinp function is rriained bv
constructing an appropriate difference equation, i.e., an autore'ressive
model. A certain eri functional of in approximating element is io-fined.
M4inimization of this functional violds the order of the autoregressive
model, the ontimal multiple of the data spacing as a step size, and an
estimate of the variance of the measuring error. This estimate is

obtained by assuming that measurinp error is white noise with zero mean.
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The coefficients of the autoregressive model determine the analytic
structure of the approximating function, and this in turn determines

weighting coefficients a (p ) in the representation of the derivative:

(1.1) y'(t) = (a(P),Y).

II. FUNCTIONS WITH DERIVATIVES AS LINEAR COMBINATIONS OF
FUNCTIONAL VALUES. The basic assumption of this paper is that the

derivative of a tabular function is a linear combination of the func-

tional values. A procedure for identifying such a function appropriate
to the tabular data is obtained by observing hat the function satisfies
a certain difference equation. This follows from the following two

propositions.

Proposition 1. Let A be the set of functions differentiable on the
inverval I = [0,T] such that for every integer p satisfying

-t+kApA<T-t+A there exists a constant vector a (p ) of dimension k

dependent on y (t) and the relation

(2.1) y'(t) = (a(P ,Y)

is satisfied for every t t I. Here Y = (y(t+(p-i)j), y(t+(p-2)g),...,
y(t+(p-k)A)). Let A be the algebra generated by algebraic, trigonometric,

and exponential polynomials on I. Then A = A

Proof. First we show that A C A. Let the components of a be
ai(p), i = 1,2,... ,k. Let p = k+s+l, j = k+s+l-i, and

a(j,s) = a (k+s+l) Then (2.1) can be written as follows:
-j +k+s+l

k+s
(2.2) y'(t) = L a(j,s) y(t+jA).

j=s+l

With s = -1 (2.2) becomes:

k
(2.3) y'(t) 7 b! I )  ylt+(j-l) ],

j=l 
J

(1)
where b. = a(j-I, -I).

With the aid of (2.2) and (2.3) it can be shown by induction that

k

(2.4) y)(t) = b. v(t+(j-l)AI
J=1
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for q < k an! some constants 1 )  Let B be the kxk matrix witn the

q-th row (b (q ) , b q )  , (q )) .  If B is non-singulr :hen (2.4) implies

k

(2.5) y(t) c y (t),
j=l

where the cs are elements of B- . If the rank of B is less thar k,
j

then there exist constants dl'd2,...,dk' not all zero, such that

d q ) = 0, j=1, 2 ,....k. Hence it follows from (2.4) that
q~l q 

k
(2.6) d qY 0,

q=l

i.e., y(t)cA satisfies either (2.5) or (2.6) and hence AC A.

The inverse inclusion, A C A foliows from a formal substitution of

y(t)cA, i.e., of

n.
m n

(2.7) y(t) = c..t X.

j=l i= 2 2

with

m
(2.8) 7 (n.+l) = k

j=l J

into (2.2). By equating the coefficients of the similar terms on both
sides of (2.2) after substitution of (2.7) the following system of

equations is obtained:

(2.9) Lb = A,

T 1 -i' T
where A = (log - ) L 0 ( ' . . , 10 1'n 'm n

' 0'"ii .. .in 20'A21 ' " "" n '" "
m

T s+1 i s+2 i s+k,1Tj = ((s+l j, l (s+2) i  j . ,(s+k) j ), i=0,1,2 ,
. . . ,n j ,

j=l,2,...,m, and b (a(s+l,s), a(s+2,s),...,a(s+k,s)). Thus, the

inclusion A C A is establied by showing, that there exists a constant
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vector b satisfying (2.9). This is implied by the fact that

(2.10) det L 0 0.

The relation (2.10) follows from

n (s+l)(n +l) m m nj:

(2.11) det L = x 1j l n!! ni-ii1 J~
i-i jai

m J-i (ni+i)(n +1)
11 (XJ- Xi )

J-2 i-i J

n
Here n!! = j and n: = i. The identity (2.11) can be established

with the aid of the operator T(m) defined as follows. Let

Ti i t T O ) (  f() f(X T ( q ) (  f( G q i ' i .

m m (i-r. 1)
and m. i (ni+1); then T(m) = 11 Ti (1)(XJJ- i/m J1-I

s+l s+2 s+k
Let L* be the k x k determinant with the i-th row (,, , ,''.,

Then
k k u-is+l

(2.12) L* = a (uv
i-l u-2 v-1

It can be shown by induction on m that application of the operator T(m)

to both sides of (2.12) yields (2.11). This completes the description
of a method for proving the proposition.

An algorithm for determining the structure of an approximair.g
function can be derived from

Proposition '. Let y(tg:A, i.e., y(t) is given by (2.7). Let

m n +l
A > 0, P (x) =  7 (-,\ )j and B be the operator defined by

A j- A

B,y(t) = y(t-,). Then v(t) satisfies the difference equation
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(2.13) P(S,) y(t) 0.

Proof. The relation (2.7) can be written in the form

n tm ] -

cl (t(2.14) y(t) = c. (t) (W)j~l i=0 r - 3

where c'. c.. . Now (2.13) follows from the properties of linear

difference equations with constant coefficients.

III. STRUCTURE OF AN APPROXI>\ATING FUNCTION. The preceding results
show that a function with derivative expressible -s a linear combination

of functional values sat-sfiea the difference equation (2.13). Thus, it

is representable Dy an .utoregressive model. Parameters of such a model

6
can be determined by a procedure developed for time series analysis,

provided that the time series or its differences of order, say, d are
stationary. This assumption need not hold for tabular data that must
be differentiated. For instance, if the underlying function is exponential,
the differences of any order are also exponential and hence non-stationary.

An example of this tvpe ,f , . i ha ing differentiated 7 is pharmacokinetic

dati representing thL, ranceur ration of an injected drug as a function o

time after injection. in view of this, instead of attempting to deter-
mine the order of differences t*Iat may produce stationary series and at

the same time considering, ;osuiible periodicity ("seasonal" variation) a
direct method for !stimarin-; t:h coefficients of the autoregressive
model is adopted as described below.

Let x(n), n=l,2,...,N 'e the tabular data and let x(n,p,q) = x(7+qn)

where q is a positive integer and =0,,. q-l, n=l,2,... ,N Here

PPNp = [ (N-p)/q) . Let y(t)iA be an approximatin.g function of' the data,

i.e.,

(3.1) x(n,p,q) = v(r) + r'

where r = p+qn and -_ is an observatton error assumed to be weakly
r

stationary white noise with zero mean ane variance ,i_ , inction

y(t) itisfies (2. 1 3) for a sitable polynomial P, ss.i, of dgre k
since y(t)cA. We wrie thi.quation as follows

k
(3.2) y(r.) = a y[(r-aq)A.,

where the a.'s remain to be determined. By substituting (3.1) in (3.2)
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we get:

k
(3.3) x(n,p,q) -r a [x(n-jpq)- .

rJ r-~jj=l

By transposing the terms in (3.3) and squaring both sides we get:

(3.4) x(n,p,q) - j a x(n-j,p,q) =

2k
2 + a22 +P
r l 3 r-j rj=1

where P is a linear combination of prolucts c E with u i v. Since byr v u

assumption c is white noise, we have E(Pr ) = 0. Thus, by taking
r r

expected values of both sides of (3.4) we get:

(3.5) E (n,p,q) - a. x(n-j,p,q = U2-0 2  a..

L j=l j jl 2a j

We replace the expected value of the left hand side by its estimate

(average) and get:

q- N+ p  k ]2 k- x(n,p,q)- j a x(n-j,p,q 02+7 ? a.

N p=O n=k+L jgl j =l

Sq-1
where N =q (N -k).

p=O 0

Thus, we get from (3.6):

N

1q-1l p Fx ) k 2-- 7 x(n,p,q) - a. x(n-j,p,q)
p=O n=k+1l a~i ~J P j

(3.7) 02 
k
k 2

1 + i
1=1

If M is the matrix of the normal equations of the overdetermined system
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k

(3.8) a. x(n-.,p,q) = ×(n,p,,,)
j=l j

n=k+l,...,N p, p+O, 1,... ,q-i. and X is the right-hand side of these

normal equations, then the coefficients a. that minimize c- in (3.6)

satisfy the following:

(3.9) (M - N :2 I) a = X,

where a = (al,a2 , ...

Thus, estimates of the a.'s are obtained by iterating (3.7) and (3.9)

with initial value 7 = 0 in (3.9).

In order to compute a. s by this procedure we have to choose k and

q in (3.7) and (3.8). Obviously, a larger number of model parameters,

i.e., larger k, yields a model better matching the data. A smaller
value of q describes the data structure in a greater detail. However,
increasing k as well as reducing q makes the system (3.9) ill-conditioned.

Hence the value of k and the data spacing q., must be chosen to minimize

-2 in (3.7) and at the same time to prevent the matrix in (3.9) from
becoming nearly sinh4ul ar. Thus, we have two conflicting criteria for

selecting* the optimal pair (kq). As usual a measure of optimalitv
must be chosen heuristically. Our choice is an index

(3.10) .(k,q) (k,q)/[D(k,q)]

where D)(k,q) is the absolute value of the determinant of the last

iteration of (3.9) corresponding to the cioice of k and q. Thus, we
compute the a. j's and J(k,q) for k-1,2 .... ko and q=l,2, .... q and

select the pair (k,q) and the corre-pondin4 a. 's tnat minimize J(k,q)

We impose an additionil constraint on (k,q) in order to prevent a choic,

of a model for which the data are inadequate, i. e. , a model -hat contains
terms of higher frequency than can be determined by the frequency of the
data pa)ints. Thus, if , is the maximum frequency of the selecte. model

m

TFhis is similir r t e solar ion of- tho numerica-,l differentiation problem
bv regil,ari;'at ion where jucreasiuc the regul;irizat ion parameter reduces
ill-conditin in,, ,I i he prob Iem an(d lecreasin g tie parameter yields a
better tit of the dita.
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then we must 1. l t.'-.t hav -

(3.11) q -

m

Suppose further that for some q the coefficients, afs, in (3.2) yield

n .
a real negative eigenvalue, say, K. < 0. Then the term c. in :7.7)

3 Jo

is equal to c cos n 7 for every n. The frequency of thi' term isis eq a t jo j ;

radians per qI sec or 7/qI radians per sec, i.e., we have wm

contrary to requirement (3.11).

If for some k and q the equation (3.2' has an eigenvalue with a
negative real part, say, X. = -a + ib (a > 0), then the correspondingJ

term c. X n in (2.1) is expressible as c. exp (;2n+in) where
"T

cos w = -a//a2+ b2 , i.e., > f if expressed in radians per unit tinme

equal qA sec. Therefore this choice of q yields a spacing q- with less
than four data points per period of the corresponding term in (2.7).
Although theoretically two points per period may be adequate to deter-
mine the real and imaginary parts of the corresponding eigenvalue, even
three points per period are inadequate when the data contain measurinz
errors. Furthermore, a negative real part only implies tha the corre-
sponding frequency is greater than -/2 per unit time. it may also be

greater than ! and less than 3/2, in which case the spacing q- provi4,es
less than two points per period. This is the reason why the pairs
(k,q) leading to complex roots with negative rcal part are rejectd.

In summary, the models (3.2) are determined for q=l, .... 'qo

k=1,2,.. . ,k and among those with eigenvalues having non-necative rea

components that one which yields minimum J(k,q) in (3.10 )is selected.

When the data is very noisy this selection of may lad to a

rather large step-size q.'. and, thus, may eliminate high ,i quencv ter-s
present in the data even if the original spacing ', is adc"--te to re-
present this high frequency. This may' happen when the am-rr itudles of
high frequency terms are too small relative to the measurin- error

to be determined bv the data taken at any spacing. . The prccedur<
described above is intended to determine only the terms oa (2.7) for
which both the spacing and also the accuracy of the iata are adequate,

and Lhe selected index J(k,q) is satisfactorv in applications.

82



IV. WEIGHTIN(; FACTORS FOR D[ISV'A'.FES. Rith the autor ,rL':.

coefficients determined at aescribec Daove the weigIting fcLor' a. in

(2. 3) for the first derivative can be obtained by lving thte equation

(2.9). Similar systems of equations define the weihiting factors for

higher order derivatives as in (2.4). The system ,2.9) and ics equiva-

lent for higher derivatives are completely defined by the eigenvalues,

X's, of the autoregressive model.
3

It is very seldom that an autoregressive model obtained fr'm

experimental data yields multiple eigenvalues. Thus, the case c sim:
eigenvalues is of special interest. In this case the equations definn

weighting factors can be solvd in a closed form by applyin.g Crar-r's

rule since the corresponding determinants can be expressed in rather

simple form. indeed, when the roots are simple the determinant of L is
proportional to the Vandernondian of the eip-,ovaiues , ',.',

The numerator in an expression for, say, b. (s), the j-th weighting

factor for the r-th derivative, is the k x k determinant B. with the

ie s+l s+2 s+j-I r s+j+l , s+k
i-th row equal ("i 'i .. 'i , log i i ..'* i )"

It can be shown that the minor of the (n+1) x (n--i) Vandermondian

of x0, xI . .. Xn corresponding to the (j+l)-th element of the first

row is equal to S V, where S is the synmmetric functicn c: x,
n-j n

X?,... , x of order n-j and V is the Vandermandian of the same variables.- n
Therefore expanding B with respect to its j-th coIumn yieds

k

(4.1) B. - - 7 )~ (- 1 )P 1 0 gr,. Ss-" -l P. p

s(+Ps
p=l p. ~ k+~~

where S(iP) is th~e syrmmetric ClinL t onr of arier - softevariables
k-j+s

AI +] ' and V (p )  is the Vin. rmoiih i of he Sam,

variables.

The symmetric functions in (Z-1) cin be cxpres.ceh in t*vros of the

coefficients of the charact e r aii " at ion of the ,itorecrevssiv moode.

After this, dividing each term o! (-1) hv det L ,'ancel Linc common

factors (i.e. V (P) and others) the following fxpression ror the' k-i

weighting factor b (r) (S) i Obtained:
J

8 3



16 r

b. (s = -~v>~p k-v

v= 1

This together with (0.4' yields the -- lue of thie r-th derivac-Lye v

V. EA'L FS C) FA S C1)b> I ue s Cr be s t he s -r.
data used be! )w Lo I lloscri~c t..o , nnoc o- rh -s paper a toc-

it with mewin' r ol'.nonni-il -c, .;:CW r i- er, a--

procedures. iereco x 1 L~~ .112 cas :or I to 6 for -orx'en

of reference. The corepodi. iftil J i in co,

The last: cao;t here is re3csste! :unczion i!frs
The values o*, the func--ionc were , )m ti<: S Ir, he
listed in col inn 4, and colurmn 3 snows the ste. size or e
points in thc respective ioer l. cudornr.um w,-iL, gas-L
with zero -.e&. .0 and sta n-ard -OItrf 51iie 14- c iLufl was

to each value, and theni varjouc -n-etiocs for nu:.erical i
were applied -o the noisy data.

Tible I1. Synthietic Data

Cas -K(t) 1l

.0 C ,s .02

~, sin 2 7t+.Sinl1- c ~ :)~ 0
6 t .1 ,



The methods uscd are listed a: tlle top of Table 2. r .'i,
polynomial arc corrcospond-: to Cu<i c.,.nL:i! title. t iti.r 11
17 data points as indicated. Tne derivativesv rj Ci. ,sc at tIC
midpoint of this span. Thus, derivatives :it a few oints at tne beg
ning and the end of the data sequence are not ,vaili")1e.

The Butterworth filter applied here cor-espounds to the transfer
8 3 ' o 3

function 8 ,/(s +2TTs2-S+3 ). This method does not provide first

derivatives at 65 data points at the end of the data sequence a

.01 and at 163 data points whun I = .004. Additional point.. dre
lost when higher derivatives are calculated.

The method of this report provides derivatives at ever-:- data no
with appropriate values of s in (2.2) and in t,e correspond-:,, z. i-c,
sions for higher derivatives. The hulk of e derivatives ar Co'ou

at the midpoint of the span or formula (2.2), i.e., or s - I
Table 2 lists the R2MSE of the first and second deratives

x" expressed in nercentafe of the RMS of the deriva , vo
the analytic i. ethoc. Thie errors correspondo the est2 rdcre in

Table i as indicated by the case numbers in colmn f Table 2.
seen the current mt'hod is much mor-e accarate In 1 nies,: - s C,,
the Bessel functi, w.e2re Butterwortih filter yieIds .,.tter rscits.
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Table 2. Percentage Error

Method - C -

A.. 0-

Case --
C 

L  
c u c. -

, 25 14 P, 6 1.3

X" 2759 98 48 1.4

X2 62 33 88 15 3.4
2i

X" 688 248 98 120 3.5

X, .46 .25 3.4 .010 .004

3 1_
X"C 13 4.7 6.9 2.2 .004

X, 9 5 16 2.1 .23

4

X" 259 Q3 30 45 .80

X, 55 30 91 13 8

5 _ _ _ _

X" 89 255 99 46 1P

X- 57 31 5.8 13 7.8

X" 2341 83P4 8.4 403 33
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COMPUTER AIDED ANALYSIS OF MECHANICAL SYSTEMS

WITH INTERMITTENT MOTION;.

Edward J. Haug and Roger A. Wehage
Materials Division

College of Engineering
The University of Iowa
Iowa City, Iowa 52242

ABSTRACT. A general method is presented for dynamic analysis of
systems with impulusive forces, impact, discontinuous constraints, and
discontinuous velocities. This class of systems includes discontinuous
kinematic and geometric constraints that zharacterize backlash and impact
within systems. A method of computer generation of the equations of
motion and impulse-momentum relations that define jump discontinuities
in system velocity for large scale systems is presented. An event
predictor working in conjunction with a new numerical integration al-
gorithm efficiently controls its progress and allows for automatic
equation reformulation. A weapon mechanism and a trip plow are simu-
lated using the method to illustrate its capabilities.

I. INTRODUCTION. Dynamic analysis of mechanisms and machines
that undergo impulsive loading, impact, and cammed locking of parts is
a field that has seen only moderate development. In spite of the
technical difficulty of analysis of such systems and their inherently
discontinuous behavior, such systems are commonly encountered in manu-
facturing equipment and in weapon mechanisms and must be carefully
analyzed during the design process. The purpose of this paper is to
present a computer aided analysis method that is capable of analyzing
complex mechanisms and machines that undergo intermittent motion.

Previously used methods of intermittent motion analysis have gen-
erally used pieced interval analysis, in which the analysist writes
the equations of motion between times at which discontinuous events
occur [1]. Momemtum balance equations must be written to account for
velocity discontinuities that may occur in a specific system configura-
tion. Numerical integration is halted at the point of discontinuity,
new initial conditions on velocity are formulated and in*egration is
continued. A basic limitation of this method of analysis is the effort
required to write syste equations that are valid in intervals between
events whose ordering is not generally known before the analysis is
begun. Thus, the analyst is required to write equations and computer
code for all ordering of logical events that may conceivably occur.

One method that has been used to alleviate the foregoing diffi-

culty is to use Heaviside step functions that define logic associated

*Research supported by U.S. Army Research Office, Project No.

DAAG29-79-C-0221.
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with the events occurring during intermittent moti~n. These disconti-
nuous functions may then be smoothed to provide a set of governing
differential equations of motion [2]. This procedure can be justified
on the basis of distribution theory [3,4] and has been successfully
employed in weapon mechanism dynamics [5]. The distribution theoretic
method has been used in conjunction with a computer code that auto-
matically generates the system equations of motion [6] by defining
"logical spring-dampers" that account for certain aspects of inter-
mittent motion [7]. In this paper, the method of computer generated
equations of motion is employed with the pieced interval analysis method
to treat dynamics of quite general planar systems that undergo inter-
mittent motion.

II. EQUATIONS OF CONSTRAINED PLANAR MOTION. For planar mechanical
systems treated here, constraints between elements are taken as friction
free (workless) translational and rotational joints. Extensions to
include constraints such as cams and prescribed functional relations
are possible by incorporating provisions for nonstandard elements that
are supplied by the user. In addition to standard constraints, standard
spring-damper-actuator combinations connecting any pair of points on
different bodies of the system are included in the model. Allowance is
also made for arbitrary user supplied external forcing functions.

In order to determine the configuration or state of a planar
mechanical system, it is first necessary to define generalized coor-
dinates that specify the location of each body. As shown in Fig. 1,
let the x-y coordinate system be a fixed inertial reference frame.
Define a centroidal body-fixed coordinate system &i - ni embedded in a
typical body i. The location of body i is specified by the global coor-
dinates (xi,y i) of the origin or vector 4i and the angle i of rotat;on
of the body fixed coordinate system relative to the global coordinates.
In terms of these generalized coordinates, the kinetic energy of the
ith body is

Ti = 1 .2 .2 + .22mi i i 2 i 1

where mi is the mass of the ith body and Ji is its centroidal polar
moment of inertia.

Figure 1 further depicts an adjacent body j, with body-fixeo
coordinate system located by the vector 4. Let arbitrary points pij
on body i and Pji on body j be located by vectors ri and r,ji, respec-
tively. These points are in turn connected by a vecor rp,

The vector condition for a rotational joint at points Pij and Pgi is
rp = 0, yielding the following pair of scalar constraint equati6ns:
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xi + Cij Cos . - rij sin 4i

- x. - ji Cos 4j + nji sin 0 (3)

Yi + ij sin 4i + rij COS 4i

- yj -ji sin cj - nji Cos j =0

For a translational joint shown in Fig. 2, let points Pil and P:2
on body i, and points pjl and p. on body j lie on some line parallel
to the path of relative motion 9tween the two bodies, such that i and
j are of nonzero magnitude. Since i and S- are parallel, i xij

with zero z component yielding the scalar equation

[(Ei2 - il)  cos i  - (ni2  - nil) sin 4i]

[(cj2 - jl ) sin j + (nj 2 - njl) cos 0j]

C'j2 jl cos 0 - (nj2 - njl) sin oj]

[( i2 - Cil ) sin i + (ni2 - nil) cos 0i] = 0 (4)

Likewise, *ji and j are parallel so ri ×  = yields a zero z
component and the second scalar equatign

[xi + il cos i - nil sin i - xj - ,j, cos ,) + njl sin ]

[( j2 - "jl ) sin j + (nj2 - njl) cos jl

- [y. + il sin i + nil cos y -j l sin j - nil cos j]

[(rj2 - rjl ) Cos j - (nj 2 - njl) sin 4j] = 0 (5)

The parameters (.il,nil) and ( J2,ni2) locate points Pil and PiZ in
body i coordinate system, and ( 3jl,nil) and (ij2 ,nj2) locate pu ,nts
Pj, and Pj2 in body j coordinate system.

Since springs, dampers, and actuators generally appear together,
as shown in Fig. 3, they are incorporated into a single set of force
equations. If any are absent, their effect is eliminated by setting
the corresponding terms to zero. The equation for spring-damper force
is
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)+c. 9~.F j (6)
iJ = [kij(UiJ 0 0" ) + c" " + FO i -- i j 0 ij] Zij (6)j

where i is the resultant force vector [F ,F IT in the spring-damper,Ij~i x ij

si is the vector [kij cos a, Zij sin a]T between points S.. and S.. of
s ij 13 13 13 31

a spring-damper connection, k is an elastic spring coefficient that

may depend on generalized coordinates and time, cij is a damping

coefficient that may depend on generalized coordinates and time, k 0ij

is the undeformed spring length, zij is the deformed spring length,

iij is the time derivative of zi, and F0* is an actuator force applied

along the spring and may depend upon generalized coordinates and time.

The virtual work of externally applied forces and spring-damper
forces acting on body i can now be written as

6Wi : Qx(q'q't)6xi + Q Yi(q,,t)6yi + Q (q, ,t)6 i (7)

1T 2 T  n T]TT

where q = [ql, q ... Tq and q TxiYi, iT are the total system

and body i generalized coordinate vectors, respectively, 
and q = dq

T dt"
The vector Qi = [Q xiQ Yi]Qi 

of generalized forces on body i is

thus defined and Q = [QIT , 2T nT is the vector of system gener-
alized forces, depending on q and .

Let the m-vector equation of all kinematic constraints be denoted

simply as

P(q,t) = 0 (3)

A virtual displacement 6q of the system is then consistent with
constraints if

4q 6q 0 (9)

where Dq 3 .- is the Jacobian matrix of the vector constraint function.
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If the constraints are workless, the variatio-.al Torm of Lagrange's
equations of motion is [8]

(T) - Tq QT1 6q (0)

[it- I
for all 6q satisfying Eq. 9. By Farkas Lemma [9], there exists a vector
x Rm of multipliers such that

d (T)T TqT Q + : 0 (DT)
t q - + q

which with the constraint equations of Eq. 8 form the constrained equa-
tions of motion of the system. For planar systems treated in this paper,

the kinetic energy is T = I qMq, where M is a constant diagonal matrix.

Thus Eq. 11 becomes simply

MN - Q + q TX = 0 (12)q

Initial conditions for system motion are given as

0
q(O) = q

(13)

where qO an8 0 are consistent with constraints. That is, qO satisfies
Eq. 8 and satisfies the equation obtained by taking the time
derivative of Eq. 8,

q p + Pt = 0 (14)

To define the intermittent nature of the motion of a mechanical
system, a set of event times ti , i = 1, ..... k at which some disconti-
nuity in system behavior occurs is defined by equations

i (t,q(t)) = 0 (15)

The ordering of event times is defined by the dynamical system and
forcing functions. The equations of motion are integrated forward in
time and the values of Q1 are monitored until one of them become* zero,
defining tl. The process is continued until a second function Q1
becomes zero, defining t2 . The process continues until the simulation
is completed.

The constraints may be modified at the event times, so the vector
1,(q,t) of Eq. 8 may be modified as the motion of the system progresses.
For example, one of the events may be an impact and subsequent locking
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together of two of the bodies in the system. T!.us, after the event
occurs additional constraints are added And the equations of motion
and constraint are modified, with additional components of the multiplier
A introduced.

The foregoing equations of motion and constraints are computer
generated using a computer code, Dynamic Analysis and Design System, DADS
[6] that constructs all of the matrices needed in the simula ion. This
computer generation of equations is crucial, since the form of equations
between event times is variable and depends on ordering of the event
times. The remaining task in generation of the complete system of
equations is formulation of velocity jump conditions that must hold at
event times involving impulsive loading and impact between bodies in
the system.

3. Reduced Equations of Motion and Momentum-Impulse Relations.
In order to obtain momentum-impulse relations needed for modelling
intermittent motion, it is helpful to eliminate the multiplier x from
the equations of motion of Eq. 12. To do this, a partitioning of the
generalized coordinates is introduced that defines dependent generalized
coordinates in terms of independent coordinates, through the constraint
equations.

Beginning with the initial value qO of Eq. 13, a Gauss-Jordon

reduction of the Jacobian matrix iq = [_q , with double pivoting,

T qT T qjIdefines a partitioning of q = [uT,vT] T such that ,u is nonsingular. By

the implicit function theorem [10], the constraint equations of Eq. 8
guarantee existence of a twice continuously differentiable function
f(v,t) such that

u = f(v,t) (16)

satisfies

v,(f(v't),v't) : 0 (17)

and

.. . . .u - D(v,t) (18)
N u v

where the matrix D(v,t) is continuously differentiable.

The matrix u is numerically decomposed into lower and upper tri-
angular matrices L and U such that

=L U.
u
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Forward elimination and back substitution steps re ,ace tre less
efficient matrix inversion process. For exa'iple Eq. 18 is written as

L.U.D= - v

which is solved in two steps

L.A v

and

U.D =A

for the matrix D.

Given a numerical value of v and a time t, u can be found by Newton
iteration, with the increment in u defined by

u = - u -I (19)

Differentiating Eq. 8 with respect to time and partitioning gives

uu + v + It = 0 (20)

Thus, by Eq. 18,

= uD t (21)

Similarly, taking the time derivative of Eq. 20 yields

u u + ¢ v + V(v,v,t) = 0 (22)

where

v(v,,t) ( ) + ( +v u + + v

+ 2%u + 2,%tv + %t (23)*tuu  tv tt

which can be evaluated explicitly in terms of v, using Eq. 21.

The equations of motion of Eq. 12 can now be partitioned in the
form

f o m M u - QU + T A = 0 
(24 )

Mv% - Qv + T A = 0 (25)
v
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where Mu, Mv, QU, and QV are partitions of M an Q consistent with
the partitioning of q. Solving for x from Eq. 24, substituting into
Eq. 25, and noting that

T .-T T
v u

yields

M +T .. v T u (6
Mv% + DTMU6 = QV + DTQU (26)

Substituting from Eq. 22 yields an explicit differential equation in
the independent variables

[Mv + DT M uD]i - DT M u- V(v,v,t) = Qv + DTQu (27)

Let ti be a point in time at which a "violent event" occurs, which
is to be approximated by a discontinuity. In reality, the event occurs
over a time interval T 1 < ti < T2 , as shown in Fig. 4, and behavior is
smooth except possibly at ti. Integrate Eq. 27 to obtain

T u-2 T 712TI2[v + DTUD]d -2DTU ' id = [, 2u

v [QV dt + D QU]dt (28)

Since DT is differentiable, integration by parts and using the mean value
theorem gives

[MV + 0 T M uD] T 2 - 2 K. d (DT Mu D) v +D TM% V(v, 't) dt
T LUd u

T 2T

Q dt + D Qudt (29)

where D is a matrix whose elements are those of D evaluated in (TI' 2)"

4i 2
TI ti r2

Figure 4, Event Interval
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Treating Q as impulsive at t., the integrals of geeralized force are

"generalized impulse", PV 2 QVdt and p = fT2 QUdt. Taking theTI ]TI

limit in Eq. 29 as T, -* ti and 2 - ti, noting that DTMU D -V(vvt)

is bounded, yields the "impulse-momentum" equation at t. as

[Mv + DTMUD][ (t.+) - (t)] pV + Dp (30)

This prescribes the velocity jump in v due to impulsively applied loads.

It is important to note that Eq. 30 involves impulse and momen m
of all elements of the mechanical system. This is crucial, since tIE
bodies making up the system interact through constraints, so an impu se-
momentum balance relation involving only the bodies on which the
impulsive force acts is impossible. Deriving the relation of Eq. 3
by manual calculation would be extremely difficult and time consuming.
One of the strongest points of the method presented here is the auto-
matic assembly of the coefficient matrices of Eq. 30.

i
body i f(t)

body j

n

Figure 5 Impacting Bodies

For impact of bodies i and j, as shown in Figure 5, a coefficient
of restitution e provides the relative velocity relation in direction r
as

n T ( i (ti+) - J (ti+) -en T( i(ti _  -qJ(t i_)) (31)

orwihN 3n, N /T NvT T

or with N R 3n, N = IMu, Nv], Eq. 31 may be written

Nv T(ti+) + N 6(ti+) = -e [Nv v(ti-) + Nuu(ti-)]

or using Eq. 21, this is
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1 FT 1
v+ NuT D (ti+): -e LNv + Nu Dj v(ti-) (32)

The generalized impulse of the force f(t) in Fig. 5 is

P = f(t)Ndt = pN (33)

1

where

p = f(t)dt (34)
01 ft

Defining the partitioning P V = pNv and PU = pNu, Eq. 30 gives

( + (t .-) =p [M V + DTMU D] -lFNv + DT NUl (35)

Premultiplying by Nv + NuD and using Eq. 32, p is determined from
the scalar equation

-(l + e)[Nv T+ Nu T (ti-) = p [Nv + NuD]

* [MV + D TMuD]-l [N V + D TN uI (36)

With p known, v(ti+) is given by Eq. 35. Equations 35 and 36
thus define jump discontinuities in velocity due to given impulsive
loading and impact between bodies.

The above equations are put into matrix form for automatic
solution by the DADS computer program. Subtract Eq. 32 from the
identity

[NvT + N uD] (ti-) = [N v + N uD] (t~-

and define

Avi = (ti+) - (ti-) (37)
1i1

The matrix equation thus becomes

101i-



(mv DT,uD) (Nv +DTNuJ E71
( N v + N D0p

01

e+l) (Nv + T j (38)

whose solution yields the desired change in velocity and impulse
magnitude p.

A numerical integration algorithm for automatic formulation and
efficient solution of the reduced system of differential equations of
motion is presented in Ref. 6. The algorithm is breifly reviewed here
and extensions to include pieced interval analysis and momentum balance
are discussed in the following steps.

Ste 1. An approximate (from initial estimate or prediction) or
exact from static equilibrium analysis) system configuration is known.
Evaluate (D q and perform L-U factorization to determine Du' (v, D, and

the partitioning of q into u and v. If any constraint equations, Eq. 8,
are not satisfied iterate to determine u using Eq. 19. Independent
vari3bles v remain fixed at the values provided by the integration
algorithm.

'tep 2. Evaluate Qq and factor as in Step 1. Evaluate 6 by Lq. 21,
where independent velocities v remain fixed at the values provided by
the integration algorithm.

Step 3. Compute independent "accelerations v from Eq. 27 and
evaluate dependent accelerations u from Eq. 26 if desired.

Step.4. Before advancing the solution ahead in time check Eq. 15
for any = 0 in the time interval. This is done by introc.,cing

variables i and formulating q. i + i These diffe.-entia

equations ate integrated along with the system equations of motion. The
variables z) are first predicted to the.next point in time and if one
or more change sign the corresponding Q1 are zero in the time interval.
A new time step is then calculated corresponding to the point in time
where the first 9i becomes zero and control then passes to Step 5. If
no 9, changes sign, control passes directly to.Step 5. (The algorithm
also checks for the possibility that a given ) passes through zero
twice in a given step in which case the first root is selected.)
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Step 5. Using the explicit Adams PECE alorithm, advance the
solution to the next time step. The algorithm requires execution of
Steps I to 3 each time evaluation of the reduced system of differential
equations is called for. Go to Step 6.

Step 6. If no event is detected return to Step 4. Otherwise
determine the appropriate action to be taken such as momentum balance
using Eq. 38. Then return to Step 4 to continue the simulation. A
more detailed description of the procedures involved in Steps 4 and 6
is presented in the numerical examples of Section 4. The procedure
for solving Eq. 38 for Av. and p is basically the same as for solving
Eq. 27 for v.

4. NUMERICAL EXAMPLES. Two numerical examples are presented
here to illustrate the analysis method. The first example is a 75 mm

automatic cannon with three moving masses. Although the system is
composed mainly of translating bodies, it does have a number of sig-
nificant logical events that include discontinuous velocities due to
impulsive loading, body impact, mass capture and release, and dis-
continuous accelerations due to contact with and separation from
buffers. The second example is a more complicated trip-plow mechanism.
It consists of seven rigid bodies, five of which undergo large angular
displacements. These bodies experience multiple impacts as the
mechanism progresses through a reset cycle.

4.1. The 75 mm Cannon System. The 75 mm automatic weapon mechanism
shown in Fig. 6 consists of three main masses: the barrel assembly B,
the sleeve S, and the sear SR. A camming action is used to move the
sleeve over a telescoped cartridge, so that the cartridge can be safely
fired during each cycle of system operation. The B-cam path is fixed
in the barrel assembly B, while the R-cam path is fixed in the receiver
R, which is rigidly attached to ground. The sleeve S is connected
by a rigid bar PQ to a pin at point P that slides without friction along
the R and B cam paths.

Two forces, Ff and Fb, drive the barrel during its forward
(counter recoil) and rearward (recoil) motion, respectively. A front
buffer Bf and a rear buffer Br slow the barrel assembly during extreme
displacement. Both front and rear buffers are designed i produce
constant retarding forces.

Logical times ti at which impact or other irregularities of inter-
mittent motion occur are introduced as an integral element of the dynamic
model. Between these times, the motion and acceleration of the system
is continuous. At these times, discontinuities in velocities and
acceleration, changes in system constraints, and mass capture or release
can occur. These logical times are functions of the system state and
are determined as the simulation progresses. Logical times will now be
defined for the firing from run-out mode of weapon operation:
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(1) t o  0: The barrel assembly B, in aut.,atic fire, passes
the sear position with velocity x2 = 40 in/sec. (Initial
starting point, not considered as a logical event). A
forward driving force Ff = 1600 lbf acts on the barrel.

(2) tl: The barrel B contacts the front buffer, Bf = -6900 lbf
becomes active (restart integration because of discontinuous
acceleration).

(3) t2 : The charge is ignited. An impulse of -880 lbf-sec acts
on the barrel B, (perform momentum balance to obtain new
velocities. F is deactivated and drive force Fb = 2000 lbf
is activated. Restart integration.)

(4) t3 : The barrel B breaks contact with the front buffer,
Bf = 0 lbf (restart integration).

(5) t4 : The barrel B impacts and captures the sear SR which was
locked to the receiver. The rear buffer Br = 12100 lbf acts
against the sear (release constraint between sear and receiver,
perform momentum balance with coefficient of restitution
e = 0, activate constraint between barrel B and sear SR, and
restart integration with new velocities.)

(6) t5 : The barrel B and sear SR come to rest. The barrel drive
force Fb is deactivated, the drive force Ff is activated, and
the rear buffer force Br is deactivated (restart integration).

(7) t6 : If automatic fire is to terminate, the barrel B and sear
SR return to the initial sear position. The sear impacts
the receiver, and the sear and barrel are captured by the
receiver. (Perform momentum balance with coefficient of
restitution e = 0, activate constraint between sear and
receiver.) The cycle is complete with sear and barrel locked
to receiver.

(7') t : If automatic fire is to continue, the barrel B and sear
Sireturn to the initial sear position. The sear impacts the
receiver and is captured by the receiver, while The barrel
is released from the sear, (release the constraint between
sear and barrel, perform momentum balance with coefficient
of restitution e = 0, activate constraint between sear SR
and receiver, and restart integration with new velocities).
The cycle is complete and barrel is in the runout configura-
tion for another round.

Logical times tI to t6 depend upon the state of the system; the
relative horizontal displacements and relative velocities between bodies
of the system. Since the horizontal position, velocity, and acceleration
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of body centers-of-mass are state variables, logic,,! times are

expressed as functions of these variables.

The logical events are defined as follows:

(1) tI: x2 -34.26 = k = 0

(2) t2: x2 -36.75 = 2 = 0

1(3) t3: x2 -34.26 = z = 0

(4) t4 : x2 - x3 -16 = z3 = 0

4(5) t5: x2 = 0

(6) t6 : x2 - x3 -16 = z3 = 0

The si even s tI to t6 are thus defined by the four logical
variables 9. to 9.. In order to incorporate these event predictors
into the numerical integration algorithm, the derivatives of the above
equations, with appropriate initial conditions, are formulated and
integrated along with the system equations of motion. Thus

= , 1 (0) = -18.26

= x2 ' (0) = -20.75

2 -3 (0) : 0

z =2 , (0) = 40

The procedure for determining the complete system state precisely
at logical times tI to t6 , identified by logical variables .1 to .4,
is as follows. An appropriate time step is determined by the numerical
integration algorithm based on the previous system state, polynomial
predictor order, and error tolerance. Each logical variable in
succession is predicted ahead in time, using this time step. If no
logical variable is found to have passed through zero, the pogram
advances the solution by the desired time step and the process is
repeated. If one or more logical variables have passed through zero,
the precise times at which the corresponding logical variables are
zero are calculated by interpolation, using the polynomial predictor.
A solution is then forced at the earliest logical time, indicating
occurance of the first event. Control is then returned to user
supplied subroutines so that actions can be taken according to the
intent of the active logical variable.
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Most discontinuous events can be categorized a-cording to the
order of increasing difficulty as follows:

(1) Those requiring restart of the integration process only,
such as when discontinuous forces act on or within the
system. These forces are not considered to be impulsive in
nature, thus only discontinuous accelerations result.

(2) Those requiring momentum balance due to impulsive external
loads (impact between bodies and mass dapture or release is
excluded) with no supplemental restitution equations or
constraint equation modification.

(3) Those requiring momentum balance due to impact between bodies
and mass capture or release. Supplemental coefficient of
restitution equations are appended to the momentum balance
equations to achieve the desired velocity changes. Constraints
are added or deleted, as needed to facilitate mass capture or
release.

The six events t, to t6 fall into the following three categories:

(1) tI , t3 , t5 - These events define discontinuous forces of
relatively small magnitide, therefore only a restart of the
integration procedure is required.

(2) t2 - This event defines an externally applied impulsive load
requiring a momentum balance and restart of the integration
procedure.

(3) t4 ,t6 - These events define impulsive loading, due to impact
between bodies of the system, and mass capture and release.
Supplemental equations are required for momentum balance and
a restart of the irtegration procedure is required.

The effects of the various events at logical times tI to t6 on
the position,velocity,and acceleration of the barrel are shown in Fig. 7.
The DADS computer program required 14 seconds on an Itel AS6 computer
to execute one cycle of t!,e weapon system.

4.2. The pJrin!JReset Trip-Plow Mecnanism. A spring-reset plow-
share mechanisn model is shown in Fig. 8, in its initial configuration,
just prior to impact between the plow-share tip and a rock buried in
the ground. The model consists of six moveable rigid bodies, identi-
fied as follows: body 1 - plow-share and standard, body 2 - lower link,
body 3 - rear toggle link, body 4 - front toggle link, body 5 - u-bolt,
and body 6 - combined plow-frame and tractor mass. The bodies are
connected by various rotational joints, as illustrated in Fig. 8 and
the entire tractor-plow system is initially moving to the right at
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2 meters per second, along a horizontal translatioal joint between
tractor and ground. A spring-damper-actuator combination is connected
between the u-bolt and rear toggle link, to simulate the spring reset
device. In addition, five potential contact points, where impact
between adjacent bodies will occur, are identified by the letters A-E,
as follows: A - contact between the u-bolt and main frame, B - contact
between the shank and lower link, C - contact between the lower link
and main frame, D - contact between the front and rear toggle links,
and E - contact between the plow-share tip and rock embedded in the
ground.

Contacts are simulated by attaching markers at some distance from
the point of contact on adjacent bodies, such that the nonzero vector
connecting the two points passes through the point of impact and defines
a normal to the surface at that point. These markers are simply
modified spring-damper-actuator combinations, in which provisions are
made to control spring rates, damping coefficients, and actuator forces
as needed. The elements can play various roles in the simulation.
Logical variables zk defining logical event times tm of impact are
formulated in terms of spring-damper deformed and undeformed lengths as

k = -k ij - Oij

The constant zOij is selected so that impact occurs at Zij = Oij hence
k
Z= 0. As noted earlier, to facilitate event prediction, the
differential equation

*k • ko)= .(0
z= j ijk (0) (j - Oij

is formulated and solved for 9k. The system stat. and event times are

thus determined precisely when zk = 0 or 2,ij 
= Oij"

At this point one has several options in continuing the simulation:

(1) Define spring and damper coefficients or actuator forces in
the element to represent contact characteristics Lnd restart
the integration. (They remain active until z becomes zero
again, indicating separation, at which time they are set to
zero.)

(2) Define a coefficient of restitution e; the normal impulse
direction and location is determined by the element's direc-
tion and location. Perform momentum balance to determine
jump discontinuities in velocity and restart integration.
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(3) If the coefficient of restitution is :ero, and the bodies
are to be locked together, a cunstraint equation of the form

13 ij =

is introduced and appended to other existing constraints.

The impacts encountered in this simulation usually occur between
bodies driven together (and then held tooether for some time) by large
forces. Relative displacement between the impacting bodies after
impact is usually negligible. Assuming a coefficient of restitution
of zero prevents multiple impacts and simplifies the computer logic.
The procedure for most impacts in the abive simulation is then to set
e = 0 in the second option above and perform momentum balance to get
new velocities. Then set spring and damper coefficients as in option
1 to represent physical contact between bodies and restart the
integration.

Logical variables ;I to 5 are formulated for the five contact
points A to E. Logical times are defined for the spring-reset plow
model (not necessarily in the order of occurrence) as follows:

(1) to = 0: The tip of the plow contacts the rock ( 5 = 0;
perform momentum balance with coefficient of restitution
e = 0.5; restart integration).

(2) tl: The tip of the plow makes second contact with the rock
(Z5 = 0; repeat above.)

(3) t2 : The u-bolt contacts plow frame ( 1 0; perform
momentum balance with coefficient of restitution, e = 0;
activate spring and damping coefficients; restart integra-
tion).

3
(4) t3 : The lower link contacts plow frame 0 = ; perform

momentum balance with coefficient of restitution, e = 0;
activate spring and damping coefficients; restart integration).

(5) t4 : The lower link and standard separate (z 2 = 0; set spring
and damping coefficient to zero and continue).

4(6) t5 : Impact between toggle links (z = 0; perform momentum
balance with coefficients of restitution, e = 0; activate
spring and damping coefficients; restart integration).

3(7) t6 : Lower link breaks contact with plow frame ( 3 = 0; set
spring and damping coefficient to zero and continue).

(8) t7 : u-bolt breaks contact with plow frame ( l = 0); set
spring and damping coefficient to zero and continue).
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(9) t8 : Impact between lower link and stand,-c = ; perform
momentum balance with coefficient of restitution e , D;
activate spring and damping coefficients; restart integration).

The predicted motion of the plow-share mechanism is shown in Fig. 9 as
follows: The tip of the plow makes contact with the rock at time = 0.0
seconds. The plow tip fails to clear the rock and impacts it asain at
0.33 seconds. The impacts impart angular ve'iocity to the plow-,'-are,
causing it to move rearward and upward. This motion drives the toggle
links upward, bringing spring 1 into tensirr. The u-bolt and lower
link come into contact with the plow frame (contact points A and C, at
0.12 and 0.40 seconds, respectively. Contact at B between the standard
and lower link is broken at C.33 seconds.

Contact at C between the lower link and frame stops upward movement
of the plow-share and the reset cycle begins. Stored energy in the
spring rapidly collapses the toggle links. This action causes a rapid
change in angular displacement of the plow-share, with only a small
effect on its vertical displacement. At 0.55 seconds, the toggle links
have reset (contact at D).

The lower link and u-bolt break contact with the frame at 0.57
and 0.70 seconds, respectively. It is interesting to note that the
toggle action results in the plow-share being broight to within 20' of
horizontal, while its center of mass is stil i C./5 meters above ground.
The plow-share therefore re-enters the ground at a shallow angle, pre-
venting the mechanism from being tripped again. Finally, at about
0.86 seconds, contact occurs at stop B and the mechanism regains its
approximate initial configuration. The DADS computer program required
38 seconds on an Itel AS6 computer to execute one cycle of the trip-
plow mechanism.
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APPLICATIONS OF DELAY FEEDBACK IN CONTROL SYSTEMS DESIGN

N. P. Coleman, E. Carroll, D. Lee an( K. Lee
US ARRADCOM

Dover, NJ 07801

ABSTRACT: Necessary and sufficient conditions for exact state recon-
struction using delays are discussed together with an example in which the
technique is implemented in real time using an 8080/8085 microprocessor.

Also, a frequency domain technique for synthesizing certain feedback control

laws with delays is developed and several examples discussed.

I. INTRODUCTION: In designing a control system using optimal control
theory or classical frequency domain techniques, one often encounters sit-

uations in which certain required signals or states of the system are

unavailable by direct measurement. In modern control design this problem is
usually handled by implementing some form of reduced order or full order
observer which provides an asymtotic estimate of the unmeasured state. In
this paper a technique is developed for exact state reconstruction of unmeasured

system states using values of the measured variables, their delayed values

and the control variables on the maximum delay interval. Several examples
are discussed which demonstrate the application of this technique on a

laboratory servo system using an 8080 microprocessor.

A second application of delay feedback for frequency domain compensation
is also discussed. A frequency domain technique is developed for selecting
appropriate gain and delay parameters for synthesizing a feedback controller
using delays in the output and several applications as discussed.

II. REAL TIME STATE RECONSTRUCTION USING DELAYS: In this section a
technique is presented for exact state reconstruction using delay feedback

of measured states of a control system and the values of the control input

over the delay interval. A real time application of this technique in a

servo control system using an 3080 microprocessor is also discussed. For
simplicity, consider the linear time invariant system:

x(t) = Ax(t) + Bu(t) (1)

where x is an nxl state vector, u is an rxl control vector, A is an nxn

constant matrix, and B is an nxr constant matrix. Let the o~servation vector

y(t) be given by:

y(t) = Hx(t)

where y is a mx[ vector, and H is an mxn constant matrix. Let o- hj< h2 <' .<h <a

be time delays.

The problem is to reconstruct the state x(t) from the measurements v(t),
y(t-h), "'', y(t-h ) and the measureable control vector u(s), t-h ,st.

The following argument due to D. H. Chyung, Reference ( I ) provides the

basis for a real time state reconstruction algorithm discussed in the examples.
This argument m.ikes use oi tht well known variation of para-meter expression
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x(t) + A 6 -hi)x(L ii) * .A( -(2)

t -hi

r

eAhix(t-hi) +f e-ASBu(t+s)ds

-hi 1,2

Multiplying both sides of cqutiun (2) by ile-Ahi results in the equ;tlon:

0

lie&Ahix(t) = lix(t-hi) -T He-Ahi fe-ASBu(t+s)ds

eHe-Ahtlx~t)
-hi

o h (3)
y(t-hi) + lie-hi ) e-ASBu(t+s)dis

in which the right hand side is completely known. Letting C denote the matrix
given by:

HU-Ah-~

C He 2(4)

LHe-Ahk

we can now write equation (3) in the form

Cx(t) = z(t) (4)*

where; 0

y(t-hI) + He-Ah1, e-ABSu(t+s)ds

-h 1

-,h ro _
z(t) y(t-h 2 ) + lie-Ah2 e Bu(L+s ) s

-h2

y(t-h) + He-Ahbi e-ASBu(t+s)ds

-h k-- £

is a known m2 xl vector and C is an m£>n constant matrix depending on the

parameters h1 , h2, -9.h . If the matrix C has rank n, then equation (4)*
can be written as:

x(t) TC] CTz(t) (5)

where CT denotes matrix transpose.
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Equation (5) has several important implications; First, if the matrix [TC-

exists, then the state x(t) can be exactly reconstructed from the measurement
y(t), its delayed values and the input signal u(t), o't<h ; secondly, the

C matrix depends only on the delays hi, - hZ so the :igfit nand matrix cal-

culation can be performed completely off line. This leaves oniy the relatively

straight forward calculation of x(t) and a matrix multiplication for on-line

microprocessor computation. This latter comment is of particular importance

in real time control applications in which relatively low speed microprocessors

are utilized for control law implementation. The following result establishes

the condition under which the matrix C has rank n.

Result: There exists a set of n delays o hl< h, '- <hn I a, for any a > o

such that the matrix C has rank n, if and only if rank (Q) = n, where

Q HA

[ n-]

Proof: Let a >o and assume rank (Q) = n. Then the row vectors of the matrices

He-AhhEE,a] contains n independer.t vectors since, if not, there exists baRn

such that He-Ahb=O for all hC &j . Repeated differentalion with respect to
h $ives He-Ahb=HA-Ahb=HAn-le -t'b=O. This implies that the non zero vector

e-hb is in the null space of the matrix Q and hence rank (Q)< n.

Conversely, assume rank C = n, then rank (Q) = n since, if not, there exists

b # o e Rn such that Hb = HAb .... = HAn-lb = o. This implies He-Ahb = o for

all h and hence rank C< n, a contradiction.

Example: Evaluation of the state reconstruction technique given by equation (5)

was carried out on an 8080 microprocessor development system which was in turn

interfaced with a laboratory servo system as shown in Figure 1. In this example
the system state vector is given by x "ixl where xj is the motor shaft output

position and x, is the motor shaft velocity. The measured signal is xj and x2 is

reconstructed using equation (5). Once the software was developed and debugged
the program was down-loaded to a single board 8085 microprocessor shown in

Figure 2, for faster execution.* The block diagram of the servo system without

tack feedback is shown in Figure 3.

'2406 2 i

S+4

Figure 3

* The 8085 ,-onfigur;ition shown in FiAurc 3 is currentlv being used to evaluate

digital control concepts for the XM97 turret system.
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Th(" :r AL a i,,-, , q;a i~ ~ v,Ti 1i I ti•
Li=L 0 J i+ L] u (6)

The state transition matrix for this system is readily computed to be

cos49t +- in49t 4- in49 t

-49.Isin49t cos49t - -si n4 (

with the associated C matrix of equation (4) being given by:

(8)
1 0

e (cos-49h sin49h) s__

with hl = 0 and h2 = h.

For values of h # 2r_, the -matrix C is ncn singular and we may compite (CTC)-C =

49

C- 1 directly as

1 0
c- t 1 (9)

49cot(49h) - 2 -49e- 2hcsc49h

Using equation (5) one obtains the required state reconstruction equation for

x2 (t) in terms of the measurements x,(t), x1 (t-h) and u(s), k-h _s.t.

X2(t) = L9cot(49h) - 32 xleL) - (49e-2hcsc49h)xl(t-h)

+ 2406 E2hcos49h -2e2hsin49h -ie2S(sin49s)u(t+s)ds

o -h

+ 2406 ~ n49 (e2Scos49s + 2e " sin49s)u(ts)ds

-h

The implementation of this state reconstruction algorithm was carried out on an

8080 microprocessor with a delay value h = .01 sec. The position output state

was sampled at 2 .2 millisecond intervals and the accuracy of the A/D and D/A

converters was 12 binary bits.
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Fig ure 4a compaires t ht-,e ;11 .f out'.t ,,i jn t. r ,,,c,:t I I I' te a V x.t

with the mi c rop roceso r oupUt S 17.1>2 I' ri L 1:)t~ r~ ':It L X_ via

equ.iti n mu lo, usioi, :i L i Ir I r o -, , r :w, :, U. 1 n
th is case equalIWt I' kl1 )U-1 'ense 1_ ~t j aUU , -ii ) .Ai ,<: :-ctLS

of meitsurmerut noise i I- rtli i V% ipni t in t: : liIIr . Fi :- t2 _t) a,,.iin

compares measured -Lt~h otpiit with thte :-i,,ropr, vssor it n no ow evetr,
in this :is e the r~ ~iI -;t . t, rte s riict i ITI e lIn.I , '), j emnt- t--. .nhi s

implIementit iol i s -secn to ',ite t %, Ir v kir-At t s tat e rt -, tr. io-n wt~ich is

less sensitive to !iesasremcn t no i c -

Ill I. FREQUr7NCf IDoMAIN [OT".hNT! 'nJN! C Di FlA~ iiF _);A AC F -v tra I
papers, (see Reier,.nct* in_ pp. v.e i- i a 1 - u-
which add ress the 1)rob 1 m of ie~ . Ut ro ,!I 171 :i re' 1

develops several f eedbhi, ', ant rol jAWS Ji m." JkIC. ti 11 1 11 1o 1.l aVe_

of the state which are shown to drive tit- fIl ; I-t !* - i c;k I t, 'raL

and keep it there. The -cns t ruc ti )ns, howeve r, Ii-:I- I in 7. I iv in s,.

cont rol appIi ca t ions s i nc thle v as sime a rs It L'n 01 h Ih:
same dimenstion as the state and iii states ot tn, 3 vsu e
on-line measurement.

In this section wt, onsi.ler a rostr Cled ''~:i at ntr .rS

shown in Figure 5. This on ti ,i ril',- [hI . 1I qit I .'i "c nol

servo control appi icati usin ni. it is) represents taN t'-.--> r

function between tl , ,;7.i, 1>1 I Ut,, pasik ' tl0 l U1 110 .' . :1 ii ,,~

parameters introdu, eo N.- be U, are:-cIt
and T, the fedbasck timte .a rasoii for .nnnir. t W' K~ - -I

in the form K and -I di f~ u nit,,- in ttio ;ter.i:-I a;

below. The equiva~ent feedback trainsfer tant ion, :1,; ( or t~ asY.,te: in

Figure 5 is:

H(s) = K -( ~

We may represent tlhe e-~ term, by its equivalecnt Tv or SeCSta

eT = I -Ts + T 2 s' i~s~

The f requency hand of prinnarv init rest irom I stabi lit'; ln,: r~nle ,nt rsis

point of view in 1: 0GsIs 1'o =wJ we~w >n~e

gain crossover frequency of the' onpenS.'Ired opeLn op vstn:.'- L tn:..

and assumming 1WT1<- I, we M..,' approxinate ov U ti"' t 7st S~ te1 :ts

Taylor series expansion or;

e-Ts = I -Ts=lI- jwT

Substituting (12) into equation (1i) yeilds;

H(s) =K - (K-I)(I-jwT) =I + ;IK-l)7w

Since K > I will he required, this corresponds to ai c 0:1 Uct work on)i i

first order approxii.atiln balSi.-) in the' Io)t rIL hr ,oi~ k o:his; has

lead term is properlv posi t aniLd in Tlreq1jiicnt'' V t Dw I I 1e :.tii Cm

As will he setn in) *the exn, 'pl a* til.' tli' i v r o s c n i e i
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to provide any desired damping in the system response. ThC procezdure for-intro-

ducing a lead network effect around w = wc using delayed fdbo K I :in now n.
developed.

l I

First, choose wc such that IG(jwc)I -

Second, select the feedback time deLav, T, such that Twc< <I. The choice of

Twc = .1 is reasonable and is use-d in the examples. For this choic:e, the first

term disregarded in the series expaInsion has magnitude .005 at w- an.i rapid>'/

becomes smaller for higher frequencies. Third, select the feedback gain para-
meter, K, such that the lead time constant becomes effective at or near w,
i.e. (K-I)T = I Note under this condition using step I and equation (3), that;

wc

G(wc)H(wc)i 1G(wc) H(wcj

1 and K = 11

The delayed feedback design procedure thus is see% to be straight forwarc in
concept. The effect of the particular de Layed feedback configuration discussed
here is to replace the more standard tach feedback stabilization loop. Ihen
the delay time and coin parameters are properly chosen, system response charact-
eristics may he improved schstantiailv.

Examp Le:

We co nsider first i si i. I.horat'ry servo system whose open loop transfer

function, G(s), is 4iven ay;

G(s) =
s(l+s) (14)

4

The -3db crossover freqwr'v, , f the open loop transfer function C(s) is

56 rad/sec and the dela'v tiT , I, is ,omputed from step 3 and satisfies lOT =

or 1 .00(17 sec . The -a I is i -ed inc sot isi es the relotion:

K - i = I Ii)

Dut to limitations of the ".) inrr .essor, thC,_ ... v hm1O :,iinc d ,v f- -

1.7 ms could not be rmp .: ' ,: . s ii ,-td v l hij h , u t: t
with the 8080 wis . ,i S n ','Ih I SIp- in:pIt ,:-n,.lo
is shown in Fi <,ire nn. 1 i r I. i I us t r c t;It the L d,oipin intro-
dived by the feedback lelv , n :,t, ';irther i ncrcnist',i by in reising the delay
parameter T. flit desired !it in ,llso be acIieved bv liustinc the gain

piarameter K.

To evaluate the effects V ,..,yvira:,t r u ii wcre to,, smaIl tr mple-

ment~iti.' 1 ''n in ,)080 mlr v, -,4 , 01". , t l:a n %r iin V icts of S :

Mose 7. -msec 2.2 ins, , . -- . . i : d 1- . , . i: the st r Vo

J ti I "l , ii i t. I t -, ' r -,tU i- i. I n V4 - 11 i, 0 th, s niL, it 'I

inIic a. ,, ,r e dmpin , thin i i t Ivi ;It in VI ttst r tsii ,n } l rc n and I- I 12
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indicates an instability with the 17.6 msec delay in constrant to the over

damped response in the hardware test shown in Figure 6e.

Example:

In this example we illustrate the application of the delay feedback control

synthesis technique to the design of a controller for an C497 helicopter turret
control system shown in Figure 13. The transfer function block diagram of this
system is shown in Figure 14. The -3db crossover frequency for the open loop
system (tach loop open) was computed to be 20 rad/sec resulting in : feedback
time delay of .005 sec. The step response of the original )C497 desi.mn is
shown in Figure 15 and -hat of the delay feedback design in Figure 16. The
latter design exhibits a dramatic improvement with respect to overshoot and
settling time. This improvement can be explained partially by the fact that the
original system uses motor tachometer feedback for ftibilization while the ceiav
feedback design effectively uses actual turret position and rate for feedbacK

stabilization. Figures 17 - 20 also show the effects of increasing and cecreasing
the delay feedback parameter. Saturation, columb friction and deadband non-
linearities are included in the simulation.

IV. CONCLUSION: Applications of delay feedback for state construction
and feedback control are presented together with simulation results and examples
of actual implementations using Intel 8080 and a065 microprocessors. These
examples demonstrate the practicality of the ideas and su gest that these ten-
niques may provide a useful adjunct to the more standard frequency domain nd
state variable techniques for estimation and control applications.
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AIN ADAPTIVE LEAD PREDICTION ALGORITI:, F61\ MANEi.. TARGET ErA(, EY F-T
Pak T. Yip & Norman P. Columan

USA ARRADCOM

Dover, NJ 07801

ABSTRACT. An algorithm concept which processes tarn.-t bearlno
and range input data and provides "optimal" estimates of tari ,.t t
velocity and acceleration a time-of-flight in the future is dis.-sec.
Since the algorithm concept involves certain important statistic-.,ssn:,-

tions about target acceleration dynamic models, these assumptionsi ,
discussed in detail along with several important methods used in.
identification process. Secondly, the filter algorithm itsel: viii e0
cussed. This algorithm involves the parallel prccessing ur tarc,.t r
bearing data by several extended Kalman Filt-,rs corresponding to dst
maneuver characteristics of anticipated target vehicles. At tize o,, ftr,
the filter with the largest computed likelihood function is selected f ,r
lead prediction. Finally, results of simulation studies in which actui.

target path data is used to generate filter input data for hit proba- :
evaluation is discussed. Comparisons are made between the adaptive al-

gorithm and non-adaptive first order algorithms.

1. INTRODUCTION. This paper describes a multiple model adaptive,
Kalman Filter approach to the problem of estimating an] predictin4 the
position, velocity and acceleration states of tank targets of varvina
maneuverabi. tv. The estimation and prediction problem presupposes that the
range and angle DATA (measurements corrupted by Gaussian white noise) is

available. The target dynamics is described by a system equation. Our

solution to this problem is an adaptive algorithm implementahle in real tlie
with a microprocessor to compute target position a proiectile time of flioht
in the future. This study begins with the selection of the Antitank "i _-
ile Test (AT*) Phase II data, to identify the filter acceleration models.

It consists of three dimensional (x,v,z) position data recorded at aoprox-
imatelv 10 samples per second. MIaximum likelihood identification method is
applied to this data to identifv a finite set of Markov Acceleration Models
which are representa t i ve 1r a rroad spectrum of vehicle maneuvers consider-
ed likely to occur in actual engagements. These models provide the requir-
ed state variable description of the target dvinamics used in the formulation
of the multiple model extended Kalman Filter Algorithm for lead prediction.
The extended Ka~man Filter is required in this application Ou a result
of nonlinearities indu :ed by target coordinate transformations and non-

linear measurement equation.

The adaptive lead prediction concept is based on the simultaneous
(parallel) processing of the discrete extended Kalman Filters corresponding
to the distinct target modc identified from the ATMT data. The likeli-
hood function associated with each filter is computed up to the time of

f ir of the weapon, and the filter having the greatest likelihood is
automatically selected for lead prediction.
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In the present stud'', _nl t i-muh and range informt:w.a f the tar-

get is processed in the f .'t with *nt target elv,.t:ion cnsidereo con-
stant. The performance of this de iqn is examined itn a .1onte Cirlo
simulation and the sensitivity o the lad e, tinitc: to neasirent noise,
level of target maneuver, ranige sampling rate, and time of flight of pro-
jectile are analyzed to determine the feasibiiitv of using this algorithm
for fire control lead prediction against various maneuvering targets.

II. DATA ANALYSTS. Tle- AT"d.T data consists of six track- pro-

duced by a M6OAI tank, a iout Vehicle and a Twister Vehicle und,.rgoing
evasive maneuvers. The MiSA\ tank is capable Jf speeds of 10 to i6 miles
per hour and with a maximvun acceleration of ,.proxLmately .3g. The Scout
is an armored reconnassiance vehicle capable of moving at a speed of
15 to 25 miles per hour and a maximum acceleratin of approxLatelv .5g.

Since our only interest is in modeling the acceleration, the position data

is sampled at a frequency of 2 cps and twice differentiated to obtain the
acceleration estimates which are then resolved into along-track and cross-
track components. The Dower spectral density of this data is computed by

the maximum entropy method3 which assumes the data is generated by an auto-

regressive process. The power spectral desity S(f) is 2iven v

SWt) 
q

1 -i exp(-j27fi)

where _ is the standard deviation of a Gaussian noise process; 3i is the i-th

coeffil:ent of the autoregressive process; M is the number of coefficients,
and the coefficients-. are estimated recursively

The number of the autoregressive coefficients is usually larger than 3
which is not desirable for Kalman Filtering. However, the power densitv
spectrum affords enough information for estimating essential poles and

Leros of a simplier model structure. Later the maximum likelihood identif-
ication program is used to fine tune the pole and zero estimates.

The simplified model determined from the spectral analysis has the follow-

ing form:

A(s) = s + q(s)

s2 + s + 32

where q(s) is the Gaussian noise process; A(c) is the system acceleration;

'I 01ano d2 are parameters to be identified for the chosen tracks and
each of the aiong-track and cross-track formulations.

III. DISCRETE_ K::TK-::D KAI.MAN FVI.TER. The svstem and the measurement
equations are read i lv dt ted as f iojws:

X J,(-k-1 , dt) + J(s'
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where x. is the sy .. tate vector at the discrete time kdt in the Cartesian
coordinate system, I the system Junction containing all information about the
system dynamics, q the plant noise vector, z the measurement vector, h(k)
a vector containing the truu range and azimut angle of the target position
at the time kdt, r the measurement noise vector, and dt the time between

two samples.

The necesspry statistics and conditions are

cov(i , j) = Q i

cov( i , rj) = R5i ij
cov(qr , r) 0,

cov) --
--0 x

where 6ij is the Kronecker Delta.

Given the above, the discrete Extended Kalman Filter equations can be
written as follows: The predicted state estimate vector is given by

k -i[k =  
(% ' t)

and the state error a priori covariance matrix by

P p: + Qp~
k+ljk k + k

where

_ .(x, dt)

xk + dt + Xk (dt)2 /2

--k
-1 dt

ax kx

The updated state estimate vector can be written as follows:

X, + K2
k+l k+l ik --k+ I

where

-k+l -k+i - h[ k+lk
K~ ~ : P + k T( k+ H T  + + )- I

H = X kix +k

h-- "(I k  [(xI  + X ) , tan-l1(xl/x2 ) }

14 3



x , x represent x, y position state estimates respectively in fixed Cartesian
cordiates. The state error a posteriori covariance matrix is given by

Pk l k= l k- KHP
k+l k+lk k+l k

and

tand = t k '$ (t - T ) Qs ( - )dT
Qk t k_1 k s kk-i

where the continuous case plant noise covariance matrix, Q , is know-n.

The continuous time system dynamic equations used in deriving the discrete
time equations are given by

= X x
1 3' 2 4

3 3(XAa + x4Ac)/V

4 (xA - x A )/V4 a 3 c

x - - X X K
5 al5 a2X6 6 D

x7 = - X 7x -'c x X = x 7

S + ya
A = q

c Cis + Zc c

3 4~
V = (x + x4)

I /

where x and x, are the correspondin4 x and y components Of the velocity vector;
A is te target accelerati-,n aL n the velocity vector; A is the target accelerationa c
perpendicular to the velocity vectcr.

With this filter, target range and angle measurements may be processed to
generate target state estim-t, recursivelv. Be-,re defining an adaptive filter
procedure, the parameters ,tie :ov mnocel need to be identified.

IV. LIKELIHOOD FUNCT"Io' & MAXIMUL7"1 LIKELIiOOD IDENT ILCAYD" ' OF PAR-FXETERS.

Given a parameter vector t , the probability of ,ccurence o! the measurement
vector sequence z can be reprcsented by a nultivariate Gaussian dist 'bution.

k k-I I
p _ ... N)= P i ; . ~ ,z -') (1. ; -'

k-I exp(-[l/2] Siz ')
P( z ; ') n/2 1

(20r) (detik)

I. lI iiT  +- R
k kk-,
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where P(2 k. A) tole likeihood function

n = number of elements in the measurement vector z
-- k

In order to identify the best parameter vectorc to give a maximum 2(2 ; L),

we can equivalently minimize the negative log likelihood finr .ion:

M(z k) (/2):TS-I z + (1/2)Zn(det S.))-- - i.l i i i i

Since the term (27) n / 2 in the likelihood function dose not contribute any
interesting information it has benn eliaimatod in forming M(z ; =). the
Gauss-Newton method is used in the minimization procedure.

-1 M ; a.)
a"o - ,cD -i

---

where = I for this method, and D, the expected Hussian

32M(i k ; i )

-3-

-J

The test for convergence is given by

T -3.)- .)D(a - '.) < 10

V. PARALLEL FILTERS 4 ADAPTIVE ESTIMATION. Target state prediction

for maneuvering ground targets have never been a simple task to undertake.

The major uncertainty comes from the :arget driver's (stochastic) decision

to maneuver. However, it appears there exists a maximum level of maneuver
that the ground vehicles studied can attain. This maximum level provides a

non-trivial range of dynamic motion that can be quantized to a finite number

of maneuver levels. In this study, five filters are incorporated into the

multiple model filter. Model M1 (Filter 1) is a simpie 4 states constant
velocity filter. The remaining 4 filters are identified with various maneuver

levels.

The adaptive estimation is a straight forward decision making process.
Measurement in range ana izimuth inIe are processed throu the - I

filters. The filter hiving the !r;est 1l hood function is automatically

chosen to provide the best estmiratfor eid prediction an gun orders. Two
concepts of adaptive nre,:i, tion ir- o,:i ':Ioa. ,-ncept % rhe likelihood

functions account for the entire measurement history up to the time of fire.

Thus this adaptive pred iction -on'co Dt is zood aainst tarcets with constant

maneuver 1,.o 1. In .oncept ., o:?v he 'st ten samples pri or to the firing
time are uised to compute the ikeliiiod funotfons. This iiiptive -ilter

concept tends to be more sensitive to clanais in tnir tetc.l'it\er levels.

V1. SVP'L,'FN. .\ Mont > ' sic artin of I0' runs wI%; sot

to process a, J lrbr r of P ,,-, < vt . T. A, ' . .it r,''roq nt
various-: ifleu'.'-r lveL. or-to...'......... . . K .t '.i ,
seoi,.nts ,,. Iot. arc a:: rn : 'I. ... . .,., r 'tr r.:cn il icat i.'

tasks discussed erlier.
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For evaluating the system perhraac2, t prpeidiLir .ss i :

the predicted line of si.rohr fro m t-, rt,a i t,r!'et i n i; .; e. S
prediction error E in meters. Tht firing tire point, ,. i, r cah

segment under process. The performance indicator phi at .1h firi:, time
point is defined as the ratio of the number of times thtt -he Drediction

error Ep is Less than 1.15 meters to the trtal number -; run:_. Actually, they
are hit probabilities considering; the prediction err-,rs .'cne.

Assuming engagement ranoe ol .ipprox.imatelv 2000 mCts, 4A cross range

(across the range vector) , I , r an,(., measurmt-r'11 er!tr r Ut ' meters, "

azimuth tracking error of 0. ::iias, a pro ectiie s)ee of 1500 meters per

second and using tht adaptive ,redi tion concept A, the hit probabiliLy re-

suits are illustrattd in Figure i ond summarized the following table:

Target Number of Cases, Mean ph
Type 7 Firing Points Con3t. Uelocity Adaptive

pr CPredictio r' cton
M6OA1 13 .41 4

Scout 10 .27 .38
Twister 8 .20 .26

For an engagement ran'eu of aipproximatelv 1158, 60° cross range, 1,

range measurement error - mtr, 1s azimuth trackin, error at 0.3 mils,
a projectile speed of il 1 -ret rs .,,r second and isi :;g the id,ipriv, prediction

concept B, the hit .robab I i rtv resi.its are so-.aritcd in tie fo, I-,win, table:

Target Number of Cases, Mean ph
Type 7 Firing Points Cont. Uelocity I daptive

per Case Pr c tin Predition
M6oA .I .6
Twister 6 .31 .37

With the latter conditions, the sesitivities ot the s'stem are ot)czcved

for a particular maneuvering segment as shown in Fi:ure 2. Ficure

illustrates the system range (hence the time of:light of projectile) sen-

sitivity. Figure 4 illustrates the svstem sensitivity to n, measurement

noise. Figure 5 illustrates the2 system s.nsitivit o range mecisc' ment

noise. Figure 6 illustrates the system sensitivity to rio ,i. a 1: ra te.

VII. DISCUSSION a FU;iKE h... This study nas d.--eastco that
maneuvering target acceleration v oe .icquitelv i Ied is . rt. e
set of stationary Mark o p ro_ ( spses s ose parnietero ,,in idean 0 tt:it of:
Line. Parall el discrete exteni,, KI: i : L fters hve be-n isei to su, s-
fully process ran:e and ,1nie t'isi-rmeut . The ,Li,.o ,- o. t :e

most appropriate filter ,it 0ac h ti e step, )aSCU on its ', st klikn ,iiood

function, has bee-n accompl ished on line. Representa1tivcs maneuver patterns
and I vels used in tis study weure t.,kcn lro i,, AI11 .it., base. Ihe

re uts fr, :t the MIonte Carlo simnultions indicate Ihi t tho port ornmance or

the mltipi "del at tivo fiLe.r 1 1 1, is n,.or...' , ,. .ble to a

1 t('r wh ih i tI1,.! t, 0 1,' t rt. F 1.,' .:2 . I.S 01 1 t m : Ir ,, ,.tr tr-.kil,

i t r . I n pi rt ,L . I t o . 01,,' 1.1t ' : t I0 ir 1 1r. .r .. t1 n

c o ll ; i- t l t ' .p ' -fIr'e vt ;i ' L l : ,1 , - - i:- , . , , p r , i it i ,:': .1i t h .10

m 1p 1 1o -.: ,, i TI 11 r, :11 i : :I I ,77 , , . -.
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together with range, angular measurement noise, and range measurement noise.

The results indicate that the system performance for the azimuth channel is

heavily dependent of angular measurement noise and projtc-ile time of
flight in terms of range, and is not very sensitive t) range measurement
noise and range sampling rate. The results also indicate that higher
probability of hit can be obtained iii the cross range g.ometry than in

the down range (coming down along the range vector) geometry.

Implementation of this filter algorithm in real time with a state of
the art microprocessor is in the planning stage. We have noticed that

Bierman's UD factorization~for the state error covariance propagation is a
desirable feature considering computation accuracy and stability. Several

variations of the existing filter algorithm are also under consideration.
Finally, a complete real time simulation of the fire control system with

the auto-tracker or human operator in the loop and filter modifications

to improve maneuver detection will be subjects of our future work.
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ON VOLTERRA INTEGRAL EQUATIONS OF PULSE-CONV-LJT:ON TYPE

Edward W. Ross, Jr.
Staff Matnematician

US Army Natick R&D Connand
Natick, MA 01760

ABSTRACT. This paper presents a discus.on of methods fcr solving
Volterra Integral Equations of first kind and pulse-convolution type.
The present context of the problem is the response of dyes to laser
excitation in the picosecond pulse range. Date on the excitation and
response pulses are given, and it is desired to find estimates of toe
system function. The characteristic diffic:jlties with this procedure
are discussed, and a method is described and illustrated that appears to
be optimal in the worst-case limit.

I. INTRODUCTION. The paper is about methods for solving certain
Volterra Integral Equations of the first kind. The general form of
such equations is

t
f K(t,s) x(s) ds = f(t), a L t _b. (1)
a

It is assumed that the kernal K(t,s) is known in the triangular region

a :s <t

a t <b,

and the function f(t) is known in a < t ! b. We want to find tne function
x(t),a L t b.

The physical problem that concerns us is that of estniating tne
response of various dyes to irradiation by pulses of laser liht in the
pico-second range of pulse widths. A model which is commorly used in the
study of such systems can be written

t
1 h(t-s)E(s)ds = f(t), 0 g' t < (2)
0

where E(s) is the excitation pulse of laser intensity, f(t) is the
fluorescence pulse of the liqht from the dye in solution, and h(t-s) is
the system function, which describes the effect of the dye on the
excitation pulse. It is assumed that the excitation begins at or after
t=O and that the system function is causal, i.e.

E(U) 0 0, h(U) = 0, U -. 0 (3)

We want to find the system function h (U).
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i;C.dr t tru.e Con(it J.Z tj,! intejral equati ofn can b-e wr7 t-n n
the alternate for711

t
-(t-s)h(s)ds = I t), t . (4)

s=O

iE (t-s)h(s)ds ft,, 0 t (5)
S --

and it is these forms that we shall study. The functions E(t) and f(t)
are given at discrete, unevenly spaced points, and not, in general, at
the same points, i.e. we know

fi = f(ti) i ,..., M

E. = E(U.) j=l,..., N

and M>N. The values fi and Ej are read from photographs of oscilloscope
traces. Because of instrumental difficulties associated with these
extremely short pulses, there is some fuzziness in the photographs and
some uncertainty as to the baseline values.

We want to choosc, ., practical method that enables us to find as much
as we can about the function h (t) from data of this type. Equation (4)
is clearly a special case of (1), in which

a = 0, b =oo , K(t,s) = E(t-s), X(s) = h(s). (6)

The main features of this special case, which set it apart from (I',are

(i) The kernel, E, is of convolution type.
(ii) The functions E(U) and f(t) are both pulse-like; in particular

K(o,o) = K(t,t) = E(t-t) = E(O) = 0 (7)

(iii) Except for scale factors, the functions E(U) and f(U) are
quite similar in shape, though perhaps uniforslv shifted
in time.

I. BACKGROUND. The books of Delves and Walsh, Reference [1], and
Baker, 2], contain recent accounts of more-or-less practical methoas
for numerical solution of integral equations. Generally, it is much
easier to solve equations of second kind, typically

b
f K(t,s) x (s)ds + x(t) = f(t),
a

than those of the first kind,

b
f K(t,s) x (s)ds f(t),
a
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whether the equations are of Volterra type (b~t) or Frecno'm type , xed:.
In our case we see from (4! and (5) that tnere i ' r l ist'r.con :e-
tween equations of Fredholm and Volterra type, but ooth are -fFected by the
ailments that are endemic to integral equations of :re f rst Kind.

These difficulties are well-described in [1]. if we regard (1) as
an operator equation,

K x=f,

the difficulties boil down to the fact that the range of the operaor K
is too small and hence its nullspace is too large. That is, solutions
exist only for certain functions. f, and more than one solution exists
when f does have the required form. When numprical methods are usec, tnis
behavior usually manifests itself as near-rlu'-deficiency or lack of
uniqueness in some system of algebraic equations.

The methocs commonly given for solving these proolems are as follows:
'i) Quadrature methods, 4.e. replacing tne nteara ! a -irite ;um

and solving the resulting linear algebraic system either exactly or by
least squares.

(ii) Integral Trars~orm Methods, i.e. rincinq -r3nsforms of tne tU nctions,
solving for the transform of x(t) ano inverting.

(iii) Paraietric or Basis Function procedures, i.e. assuming a general
form of x(t), containing unspecified parameters, tnen solving for these
parameters, e.g. by least squares.

7requently when these methods are used on equations of the first lind,
they do not work well. Variojs procedures. loosely described as regulariza-
tion, have been advanced for 3voiding tnese difficulties. -The metnocs :
Tyknonov and Phillios, Singular-Valwe Analysis and Cross-Validaticn are '

tnis general type wren acoliei to the Quadrature or Parametric schemes,
and smoothing of the integral transform accomplisnes sometning simiar -or
procedures of class (ii).

For many problems, any of these methods may be empioyed. However,
it is easy to see that all come to some kind of grief in o:r. :ase.
Principally, this is because !e are forced to deal with the s;tuation where
E(t) and f(t) are nearly identical, apart from a shift and a mult,plcative
constant. It is obvious from (5) that in tne limit wnen

f(t)=cE(t-o)

toe meaningful solution of the integral equation is

h~t) : < I t-b



Thus when f(t) and E(t', are only sligntly ti'er:nt, w mu: LXect to

find the h is a rapidly changing function of t. r, x:ivc e.g. acrature
that relies on smoothness will encounter substantia dif icu>-os in this
case.

Tf we attempt to take Fourier Transforms, we g-et from (5) ano the

convolution property

h(w) = f(w),

where :f(w) is the Fourier Transform of f(t), etc. We may solve -or

Sh(w) ( (w),

but this gets into trouble because (FE(w) will vanish at some points. :ence
we can expect problems with this method as well.

Parametric Methods can probably be made to work, if we are skillful

at guessing the basis functionsbut are objectionable because we may be
inadvertently constraining the form of the solution to De incorrect if

our guesses are poor. 'ioreover, this method usually will involve a

(possibly) non-linear, iterative least-squares solution to tne problem of"
minimizing the errors at the data points t. . The computational costs of
this are unpleasant. l

III. THE CUMULAT iEI;OD. To this writer, it aopears that the essence
of the problem with these methods is that the data 7, t anc " co';: t;
less and less information about h(t) as the functions E(t) and t (t, tcom-e
more nearly similar. in the limit where

f(t) = cE(t-b)
h(t) = c6(t-b),

the only information about h(t) that the integral equations can possibly
furnish is the two numbers c and b. On the other hand when f(t) and Ekt)
are sufficiently dissimilar, at least one of the standarc met hods wil
usually find stable estimates of the entire shape of n(t).

This suggests that the most suitable method for the case where E and f

are generally similar is one which concentrates on finding only a sma2.
number of resultants. The obvious choice is the low-order moments (or
something equivalent). By focussing all the information in the data on
the estimation of a few, low-order moments, we shall find these quantities
with all the precision that the information can provide. If, on the other
hand, we attempt to find the entire shape of the function, n(t), we are

diffusing the comparatively small amount of information across a large number
of ordinates, none of which can then be found with much accuracy.



It is, conv( .i unt to carry out these notins in terms of tne
cuimlulants, rath(r than the nonments, of the functions F, f and h, These
are derivable as follows: let

(w) = In ¢E (w) - In ¢,E()

EEE
= cumulant generating function of E.

and siMilarly define , (w) and h (w Then from (8)h
and the fact that

f (0) E ,(0): h (O)

we obtain
Uh(w) qlf(w) - (w) (9)

The cumulants, ( E), are defined in terms of the coefficients in the
Taylor expansion of E about wzo, i.e.

1 (w) 
q, (E)Lw n

nl n

or

(E) C n d -n - -,W
n dwn  w-o

The cumulant generating function is thus the logarithm of the Fourier
Transform of a function having unit area, i.e. a probability density
function. For such a function it is well-known that

(E) = M = mean of E
IE

(E) = = variance of E
2 E

I3(E) =Y (E)EI

3IP4 ( E ) 2 2 ( E ) , , E

where yI(E) and y 2(E) are the skewness and kurtosis of E, and similarly

for f and h. Combining (9) and (10), we have

Mh M Er.- M 1

(C5 - ) ))

Y2 (h)={Y (f)of -Yl(E), }/o

Y2(h)={y (f)01 1/04E) E P

Thus, we have only to find the resultants M,Y 1D and y for f and E and
use the above formulas to find the analogous resultant? for h.

1-57



, r' t~ t, ct:ry r;, ud r f r fint i s, the re .u ars , , ,, a
Y2 for f and E is to fit Cubic sp ire' to the data and integrate the
splines, We define

'-k(E) Ek (s)cs

arid similarly for f(t). For each k ,a cublic spline is fitted to the
inteoran~d and the spline is intesrated exactly to obtain W k . Then, e.g.

t4 =u (E)/' (E)
L 1 o

E (E) _ M2

PoE E (12)

( 3 (E) ME (ME2(M + 3o )} l
(E )  

E E

E 4 (E) V W3 (E ) +3 ME 2(M + 2a
E  T (E) E E

0
and similarly for f.

This spline procedure has stveral desirable features.

(i) It can handle unevenly ;pdccd data.
(ii) It makes only very mnode.t assumptions about the shape of the fitted

curve.
(iii) It is conveniently executed by available software.

The second of these features is very important. 't means that the method
does not impose any constraint on the solutions except toe rather mild one
of 2nd derivative continuity. This imparts a substantial advantage to this
scheme, as compared with the parametric, or basis-function procedure, in
which implicit, prior assumptions about the shape of the solution are
unavoidable.

It is scarcely necessary to remark that considerable caution is
necessary in using this spline method. Each of the quantities r.h,c , y,(h)
and Y2 (h) is found by subtracting other quantities that may diff

L -h

only slightly, which means that accuracy will be a problem. As E and f
become more similar, the quantities y2 (h) and y,(h) will behave more
erratically. Eventually, even ah will beome so small that we cannot
conclude anything about it except that it is nearly zero. At that
point, the function h is so narrow and sharply peaked that our method and data
cannot distinguish it from a 6-function.

IV. SOFTWARE.

A small set of FORTRAN programs was written in order to carry out
and test this method. The main program, MAIN, reads the data, contaminates
it with Gaussian, uniform noise, calls the subroutine MOMTS and calculates
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Mh 0h' 1l(h) "2 (h) from the moments of E and f, MOMTS calculates

the moments of E and f from the data..

In addition to these, a program was written for test purposes
which generates Gaussian pulses tinged with noise and makes two calcu-
lations.

(i) It finds Mh, G, y1 (h) and Y2(h) exactly as MAIN dots.

(ii) It calculates the ordinates of the function h(t) by the
quadrature method, using the singular-value decomposition and discarding
singular vectors of small singular values.

This program permits us to compare these two methods of finding h(t).

The spline method for estimating cumulants invokes the IMSL
subroutines ICSSCU and DCSQDU for fitting cubic splines and integrating
them. The first of these allows smoothing of the data, but it was
found that smoothing had very little effect on the accuracy of moment
estimates (as one would expect).

The quadrature method (see [1]) replaces the integral equation

t.
f. fI E(ti-s)h(s)ds i=l,.. ,N

1 0

by the trapezoidal formula
i i

fi = ZWk Ei-k hk = Aikh k
k=o k=o

where A is the mesh spacing in the integration

Ei-k =E (il-kA)

W k=, for lk<i-I

=1/2, for k=o, k = i

hk = h(kA).

ik= k i-k

This leads us to a linear algebraic system with NxN matrix A : [A ik].

A is a lower triangular matrix that is nearly of Toeplitz form. The
matrix equation

Ah = f
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is solved using rdnk-ielec:ion based on -.,e cr-,.' Uu
decomposition. The programs M....T Lind MNSOL frorr R OSEPACK
collection are used for this purpose.

V. E XAMPLES.

We present two examples ir which the cumulant and quadrature
methods are compared on two different problems, loosely speaking an
easy problem and a hard one. In all cases the exact pulses E, f and
h are Gaussian with

-I 22(XM) 2 -Mr) 2

E =e j E f=e-1/ (x _

f

x-'M 
2

xh

-I/2(i/2
h = f e u hfJ ) c

with M = M - M f h -f- _-__I/h f --' hE = cf hE

E 'h

The data points are at t. = i,i=0,. ,24 and - oi05se

Easy example: M. = 8.0 .= .6

M =14.0, ; = 2.2

and the exact solution has

Mh = 6.0, T h = 1.5100, Yl(h) = ¥2(h) = 0

Figure 1 shows the exact forms of the pulses E, f ana n, together
with the points obtained from the quadrature method with rank-selection
based on the singular values. Five different trials, using different
random number seeds for noise generation, gave the results shown in Table 1.
The results for the five trials are not distinguishable on -iIe scale of
Figure 1.

These results show that both methods were satisfactory. The
quadrature method with rank selection based on singular values gave
accurate and stable estimates of the function values. The cumulants up
to Yl(h) are also found with reasonable precision, but Y 2(h) is unstable.

Probably we would regard the quadrature method as the better one because
it provides somewhat more complete information about h. The matrix A has
N=25 and rank that ranges from 11 to 14, so A is very rank-deficient even
in this easy case. The rank was found so that the solution for h agreed
better with the exact solution (in the L sense) than for any other rank.
Naturally, this method cannot be used when the exact solution is unknown,
as will usually be so in practice. The results show that, while the rank
may vary substantially, the solution values are pretty stable.
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Figure 2 and Table 2 show like results for :r- hurd example:

ME = 8.0 = 1.6

Mf =13.0 Of 1.7

which has as exact solution the narrower, sharper pulse with

Mh  5.0, h .57446, Y1 (h) y2 (h) = 0

Both methods had a difficult time with this example. However, the
quadrature method gave almost no accurate information beyond the fact
that the h-pulse was located near t=5. The pulse is depicted consistently
as somewhat lower and lesssharp than it really is, undoubtedly because
of the severe smoothing that has been done in the rank-selection process.
This consistency is unfortunate because it implies that, in a situation
where we did not know the true solution, inconsistency in the estimates
might not occur to warn us of impending trouble.

Although the cumulant method also did poorly, its results were
better than the quadrature method on two counts. First, it provides good
estimates of the area and location of the h-pulse, and acceptable estimates
of as well. Second, although the estimates of skewness and urtosis are
bad, htheir inconsistency is a clear warning not to trust them. It appears
therefore that the cumulant method gives us more useful information than
the quadrature method in this case.

VI. DISCUSSION AND CONCLUSIONS. The examples support the intuitive
notion that, when E(t) and f(t) are similar, the best procedure is to
estimate a few, low-order cumuldnts of h(t). The calculations using
splines are simpler than those involved in the other procedures and focus
on the only quantities that can be predicted with any accuracy and stability
in this worst-case limit. The method does not require evenly-spaced data
and makes the mildest possible hypotheses about the solution.

Even if the functions E(t) and f(t) are not much alike, it may be
worthwhile to use this cumulant procedure as a preliminary or adjunct to
a more complete analysis. In particular, if the basis func:ion method is
employed, it may be very helpful to have at hand the information that the
cumulants provide about the general shape of the function.

Obviously further work is needed to clarify both theoretical and
practical aspects of these methods.
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TABLE 1: Easy Example Results

Trials

Exact 1 2 3 4 5

(h) 1 375 1 .375 1.374 1.374 1 .375 1.3740""

M 6.0 6.006 6.005 6.006 5.998 6.004
CumuIant-

Uh 1.5100 1.519 1.520 1.513 1.477 1.505 Spline
Method

y (h) 0 .1133 .0824 .2560 -.3178 .1726

y (h) 0 -.2529 1.029 1.751 -4.319 .1269
2 w

rank 14 12 73 12 11

Ilerrij - .00151 .00196 .00177 .00229 .00185
2

IlhIl - .59451 .59438 .5935 .5941 .5941
2

h(3) .0505 .0487 .0537 .0473 .0485 .0500

h(4) .1511 .1450 ,1492 .1527 .1547 .1516
Quadrature

h(5) .2917 .2973 .2882 .2946 .2927 .2922 Method

h(6) .3633 .3628 .3642 .3605 .355 .3624

h(7) .2917 .2884 .2957 .2887 .2933 .2923

h(8) .1511 .1540 .1495 .1533 .0 i5 2

h(9) .0505 .0489 .0473 .0533 .0465 .0492j
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TABLE 2: Hard Example Results

Trials

Exact 1 2 3 4 5

(h) 1.0625 1.063 1.064 1.062 1.063 1.0627

4h  5.000 5.003 5.004 4.992 5.005 5.003 Cumulant

.57446 .5529 .6222 .5804 .5354 .60371 Spline
Method

y (h) 0 .4039 4.543 -3.468 -.2004 2.784]

y (h) 0 -b2.77 71.43 -6.227 -82.12 44.69

rank - 15 14 17 13 15

err - .00093 .00163 .00140 .00140 .00233

h: - .7206 .7202 .7246 .7153 .7305

h(3) .0017 -.3558 -.0726 .0081 -.0617 -.0300 Quadrature

h(4) .1622 .2642 .2790 .2166 .2805 .2349 Method

h(5) .7379 .5947 .5939 .6293 .5844 .6275

h(6) .1622 .2872 .2762 .2610 .2825 .2667

h(7) .0017 -.0646 -.0518 -.0469 -.0537 -.0787
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ca'l iIV resulI tS Lllnd to t ile COnlt I-i Nit ion oi- )f \luskhel 1 shy ii I[ I > khov

andI Pr i vaiov

[lie attention to d irect methods; o f so lilt ioni of copaa I yo

reetori14in. Inl 1909, 1I. Irdor. an JS proose(. ai technique k'ilch

exlcitIv bulsthe ''Correct" SIil,1 a r behavior_ O the sol ut m aI

thle aopiox iimatin4 seqjlericu Ol - unc t ions . ile inadox thea rv nyroicids the

C ei 0 i t tiLoC t ion, and the Jacob i FnlI\'flom i a1s orthonaill I. vth resnpec:L to

talis we i~ht alre Ilsed to renresenit thle a!pprox jmite so jt ion by the

lel at [00 I %

FC I t C 1 1 t I 'tan ti )s a lIinear1 comhiat lonlC tilt,11 ac obi)

I.o iniiat1 cec subsecuen lo!roanad QA 0 cco

v s e v t pc Fo ITil a I ta If(,r I 0E1101 I i I C i I I It I I1 C T) I i Il

1)' 1 11 \I] ece 11 cult uxJpt's i tI in ()f thle Ir1do"all- I~~ procedaire

i eIIin Ileoc Ii rI, and IonAhuindis hi vaxo Om ia a int oF

I II 1 is1- cta b s ()on th !-(, obah t t()o-( "-bsIIO\ 1o n. t I!,, c iIiJ CI ('1 1 Ie >

tO rI". o t he \t r; I p]: it Ionl to LIctcIll tO 11(w \:I I 1 olw i. I'm

('!, 11}1 1tc ' j~t tc' K 11 1 iit(T\ :I koth 11Inctllods' r 1 I\ v 0 (I I Isc I ,t it ion

1w ie f if 1)1 a) i ch i\o I\L the \[iliic- of the ti'lict toll at the' re.ros

of I u n po I yiai i -I I. Iliixs and I I Ii ut aI ' iY1' I thc 1150 -f the

o; I;i I I Y i r ~i jal I a, j 1 ir t 1. I Iv I :Ir in 11 I 1 T01 i - 1) rioo f
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of the convergence 01 thei r iiigor ithn is ,i von, t r t(c as <ipt inn

that the approximati~ng sequence of polynooijali 11 ctveo tf in

the lid Ider nonn. It is to be noted that jf is. : sequencc w inter-

pa latorY polynomials, and its convergence in the Iilder norml is nlot

ont irel V obvious.

In the evaluation of non-singular i nteglrail sxhosc intog,,randIS r

of cmlv low-order di fferent jabil1itv, the Gas dnInteograt ion foinilac

arc nearly as accurate as the trapezoidal or rilso m]e (,i I ,

1). 1 87 In thoeovaluzit ion using, a prodluct, integrat ion rule of- sincuIlar

ntog ra is, however, the accuracy of these formulae has not been estanlishce..

'Ioreover, the method< based on Gaussian integration form,.ulae suffer fro:-

the previous ly mont ioned requirement that the col locat ion points coinci uo

w it tile zeOros of cort amci povnmii als . Heonce, if oither the right handJ

ide of (1 .1 ) or the Kernel K fluctuates over a sal interval, the

methods are, effect iveo niv if large numiber of p omt- S isCse. Ia

there ;lppeari- to be a nieed I-cr uLrt her deveIoplit a io !- cost , l ow -

aiccuracy nethoeds.

One possible approac:h due to GorascuLllis and Siatv I]ue

piCewise lner fUnet inns to determine thec function tin a i . 2)

Tb lis procedure permits the analyt ical eva luat ion of the intec-'a

express ions , aindl vicld sat is factory resuits; for -certain test r>ls

%,ithI known soluations . Gerisoul is [121 oh to ino I a im'proavent In

aiccu racy bhusv qiiadr~it ic interpolation. These eairl ier rosa Its

nult i vated the lee e lpnnt (1' l ctllic spl i1W ilpproxhlt miol i n ctlnod! In

.(IJ it ion to po ipm higher accuraIc\, the sa l inc :icoI cn ii so b~e

exiek'cto hce alpp ic"Ible to the numericail so~at ion ofninua
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integro-differential equations.

Spline methods have been used successfully for the > (ution of non-

singular integral equations (see Ahlberg, Nilson, and Walsh [13],

Netravali and Figueiredo [14]). In fact, (Gabdulhaev (15] found that

under certain conditions, the spline method with eqCCllY spaced knots vs

optinal among all collocation Methods for the ntlurical solution of

Fredholm integral eqtuations of tie second kind.

'iThe organization of the rest of the paper is as follows: Section 2

describes a procedure for the solution of (1.1) with a(s) = 0 and b(s) = 1;

Section 3 is devoted1 to error analysis; and section 4 contains comparisons

of the ntumerical results obtained from spline approximation and other

methods.

2. Reduction to a im.inear ..\lg;braic System: The general strategy of

direct methods for 1he solution of integral equations is to discretize

the ori!inat equati,)n by considering it only at a finite set of points in

the domain, and to use some numnerical integration fonmula to obtain a

svsten of algebraic equat ions for the values assumed hy tile unkno n function

at these points. The accuracy of the solution is ai-ected by bo-"h the

choice of collocation points and the quadrature formula used.

Consider thie case where ais) = 0 and h(s) = I in (1.1j, aaid the

solition is knolwn to possess square root singularities at 1. (The method

described below is applicable in genral, although in some cases it may be

nece:ssary to evaltuate certain intcgral expressions nrinericalI .) Set

(2.1) (t) (t 1-t 2
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In most applications, it is possible to cxpiit the ;yinctrv properties o

the problem, and to work with either odd or even functions. Therefore,

asstmwe the number of node points to be (2n+l), and let -1 = t o < t <... < t~n= 1.

Replace the unknown function ,(t) by splines S(t) = S.(t), j 1,2,. .. ,2n)

on the interval [t. l,tj]. It is computationally convenient to use the

fon [13]

(2.2) S.(t) = (t t) + - (t t ! - - (t -t
• 6h (t-- thj 66t t 1

3 ) 1
jft76  t tJ , j 1,, ... ,2 n

where h. t t = (t , and I = S'(t.) = S (t (Although the
3 3 --l3 J 9-

above expressions for S. (t) involve the moments, or second derivatives, of3

splines, it is possible to use instead their first derivatives.)

'The function K(t,sk) is approximated bY K lt,sk) using a cubic interpolation

formula in each of the intervals [tj Pt]. In this way, the original

equation is replaced by a discrete analogue

n ft S.(t)dt 2n S(t)K(t,sk)Ut
, + flsi,

k 1 . .. ,

kherc the collocation points ;1rC choseni so that t ,' A1 1 t :c

quatities in (2 .4) can be evaluated analyt ica lv to yield 2n i incear equit iors

!or the (41n+2) unknoW11s I0 I , ... .1n al itional ( 1-

eouIit i onis ;Ire I1r1 ir <cdby the cont inuity of the der i vat i ves of sp Ilines'

namje I y,

"h1 11 h J+ ! +1 1 11 + I h

1 , . ... ,21 1 .
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Iwo equations relating the values of the moments at the CnIoinlts l-lc.

needed. 'llese equations are usually chosen to he of tlhe foni

Ia0' + + NI = C0 , 2 + -2M = (2n0 0 1 1 0 "~n ZIn- 1 n -1 n =cn'

Finally, a single equation is obtained from the compatibility condi'ion

2n tj Sj(t)dt
(2.())- k, k constant.

j=1 t j 1 -T FV

Thus a total of (4n+2) equations in as many vari-wles is obtained. The

coefficient matrix for the system of equations is of thw forn

.\i

\ "

here ~11 is the 2n (4n+2) subinatrix of coefficients obtained from the

integral equation evaluated at the 2n collocation points;

A- is the 1 , (4n+2) submatrix of coefficients ontained from the

comatibi I ity condit ion;

and V) is the (211+]) - (4n+2) submatrix of coefficients obtained from

the moments conditions amd the continuity relat iois for splir.cs.

In order to display the elements of the coefficient mtrix In

convenient form, some operator notation is needed,. Define opcrtors

f (s) = , f(t)dt j f f(t )dt

jk-I (t -s) k tk-1

Note that for polynomial fmctions f, the expressions for (If) (s) and J f

can he expressed aumalytically. In particular,
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ItP(s tk tP-1 'tk t p-2 "tk
(Ik- --(S dt s -st js - _t__k- -1 -t i t

+ s( )(s), p = 1,,...

and ([16], p. 147)

v'k'4-1- 'v--2 + s tan- i-  - (- tanI ta--tn-- 3 - -

where a arcsin tk -k

Then the elements of the submatrix A 1 are given for j = 1,2,... ,2n by

A.' = 1 j[1 (t t )  - ( t  -  sj

+ Ji[ 6 1I(t-t) 3K. (t, - (ti-I )K ,j(t) j

Li-1l (t-t.2 6 -ti2I

4+ .Ji-1 _.- t-ti1-2 K i-l,j(t) 6 -- -('-t i-2)K. -1, (t)l

(A.

+ F(tt) K + t h1
i = 1,2,... ,2n*1

+ -K 1 1 .;+ -~ 'I t -i2)] ) i-l [ -i-2 i ()]( i-i

i 2n+2, ', 2n+3,....

where (Ifs) and Jkf are taken to be zero for k = 0, 2n+].

Ihe elements of A 2 are given by
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i[ I ~-(ti-t)3 - i-(tit)j+ Jilh F3 t hi I -, 
-hi 

( -2ht-

I 1 i 6 A 6-

i = 1,2,...,2n+1

i[4t-t)]+ iJ~ 1L--t-ti-2)1 2n2,n3..4+
1 i-i

where again Jk
f = (1 for k = 0,2n+l.

The elements of A
3 are given by

Ali 0 i = I

B0  i=2

= 0 otherwise

A2n+l,i = 2n 2n

= 2n i 2=n+l

0 otherwise

and for j = 2,3,...,2n by

A =1 i= j-1

2 h. +h) ,

"I 
i j+l

'Uj- 16
h h hj 1 

i = 2n+j

6
h hh - = 2n+j+1

6 i = 2n+j+2

= 0 otherwise

175

Al



From the above, it can be seen that the coefficient matrix A has the

structure

full

0 0'
LJ

Note that when solving the system by Gaussian elimination using only

partial pivoting, it may be advisable to rearrange the matrix so that the

's are computed first, thus reducing the effect of round-off error

propagation.

3. Error Analysis: Define the functions ,, as follows:

(i.) is the Type II cubic spline on the true values

¢(t), i = 0,1,...,2n, with ,*"(t = o"(t 0 ), *(t 2 ) = (t

(ii) is the spline on the computed values for (t) i 0,1,...,2n.

Let

x =  ["(t 0) , "(t I ) ,. . "(t2n (t 0) ,+1(tl) ,... -', (t_2n) ]

x* =[W"(t 0), *"( I )  , 2n) , ¢ * ( t
o ) , * ( t l ) , .  (t 1n)

xe = ,(t 0), ,(tl).., ,(t 2n),¢e(t0)¢et).. ~~)

and

f= [fs l),f(s2),...,f(S2nt),k,C,0....,O,C 2n).

It will be assumed below that the splines used are the natural splines, so

C = C 2n= 0. The system of equations which is being solved can therefore

be represented as
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(3.1) Ax6 = f.

h'e vector x of tre values satisfies

(3.2) -V = f

where f f+O, and 6 is the vector of errors in the numerical integw- tion

due to the use of splines. Hence

(3.3) JIX6 -xl

The above inequality can be used to obtain ui error estimate for the spline

method. The j-th component of C is given by

I ~ rl (K e *-K.,)dt

(3.4) a i1 1  (¢*-)dt + j 1,2,...,2n

where K6 is the piecewise cubic approximant to K,

(3.S) e 2n+1 =  d ,T .

C2n+2 (

"(t3
4n+2 2n

and e. 0 for other values of j. Let3

(3.()) 6(t) = - ,' t) = ¢ -, .

'Then it has been shown (see [17], p. 107) that

(5.7) (iv). ', < I , (iv) .3

where h = max h.
j j

The second term in (3.4) is easily shown to be less than or equal to

T{ max ,,*irmax K E-K + maxIe -maxK3

which is O(h
4
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Consider now the first term in (3.4). Suppose the mesh is unifon; i.e. h =n

for all j. The results below are not significantly aff,, cted if this assumption

does not hold. Furthermore, asstme that the collocation points s. are chosenJ

to he the midpoints of the intervals (t l,t.) . For s e (to,tI).

Ir d ,"t")]A 
dt

2n -tk

-. S ) -,N _F

k= 2 k_ 1 (t 5> vlt7 -'

(3.8) "- .1 __," _ ,T h " '..+ r;!" 1 --~q hk ___2k-

____+ :. 2 h_ 2k-i

where

S-2-hri dt- TT2

Jt (t-s 1 vii-if "I /4--h I _ 2-h

= O(h 2)

tk dt dt -1
= max -___= cos (-l+h)

l ' J k - l

_nd = 0(h 2)

and

2n-l
k 2k - 1 - h , > 0.

lTherefore

[: ' I'I L'*-o)dt ' ,.
t .'t = O(h , > .

J~'-I £t-s 1 )/F-t{

Th1 is estimate is not sharp, but appears adequate. For s E , t _t the

same estimate holds. Next consider s. 6 ti-.,t ) wth j 1,2n. In this

:i ri Qp*.tdt_"

(t-s + t . 2n".It (tldt

t t t- 'I ' -k '( S (t-s.,v'--t' k=1 kt (t-s,l-t
-- j
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4 13 *4 h k= k-i

where
71 2 -) ti '

)t dt j)/f I_ C-t 2 t-s J]d I l5U

ttt t ' (t) t

I=c' t d0( 12h

k-I

fihere Fore

''I(t-S JvQ

Note that the est maute 3 shoul be ulsed with Caut ion s nce tile uwAi ty

A l dependCs On h . tile appendILix lis;ts ValueS of A -1 and A1 to be1

used in estimating the error involved in solvin3 a particular equaition. ill

practice, it has been found that for prohlems; with known solutions,, tile spl .nc

method produces results; oi- acculracy cons -i derabi v bet ter thanl wouldi he expec tea

from .3.3),thus i od icait imn that th1C error01 b)ounds above cou 13 p roNb 1>

s ig ni ficantic improved.

4. Nmer ical Reslt1s: Yhe spl ine methodl hias beenI used to solve ai TILUaberC

ol' singhul ar integral equations , inc lud jinc thle 1ollou inw

1.) (~f~+ )co-; = + S, -
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where J is the Bessel function of the first kind of order 1. In solution

g(t) is required to satisfy tiie conipatibility conditior

g(t~dt = O.

Moreover, g(t) is assmed to possess square-root singularities at -1, and

hence to be expressible in the' form

(4.2) g(t = Wtl I-t- )- 1'/ I

Then it can be seen that the true solution is given he t4.2) with c(t) = t.

Mhe table below displays the maximz error E in the values for (t.) computw.

using the spline method.

2 td.U'0004]

3 ). 0003

'n is the nunber of nodes taken in the IotervalI [ 0,1 For n the col1,utec
solution was accurate to the I im ts of single-precision computation .8 d i 1tS.

ixan'le 2.

1 gttJdt - f,(tjdt = ,- s< 1
- t-s J-I , U

subject to the compatibility condition
-1

,(t)dt = 0.

The above equation arises in the plane elasticity problien for a plate bond,:j

to an elastic half-plane. The solution t is again ass-aneI tc ,1 o f the lcr.-
;( t = (t ~-t -

Ow table below displays soic valunes of it) obtai ned m thec sp] inlc' ;etlod

for-, / T/, PI = 1 compared with those g iiven hY 1.rdo,:an-t upta I 1.

In this case, natural sp lines ,wre used; i.e. it ias assiLmed that

•'"(t( ) : :"(tn = O.

180



Erdocan- Gua - nctn I

u~l1753 (0.08010 . 1

0. 27144 0. 18D611.1)

.4 186* 0. 2920S ) 31

.5SSS7 .9 54 (.54

b.788() .92 .92

0.78531 j . 5 8 9 3. SS S4

0.87249 0.6-4821

0.93819 07

99Q1923 .83172-

1.00000 o.8331)] 18 28K

1obtained through extrapolation
2obtained directly

(it should be noted that the spi inc method used equallv spacec nlote ~o

p)urposeS of comparison, theic values of ~tjat thwLdoa-Vi and po-Ints

were obtained us in, splinea interp~olation, It is to )e empectec that the

spl ine method would1 he more accurate at its Own node0S thanl at intermed i ate

poinlts

;k,, ,1,aov tlcan he ,s' .;' fromi the tab) hiabv, he sult> for the t""', me'thods

aru il close ag~reemeInt 1 or , t, ... e dI SCIrVan11cY oea1 r'the enupoini

I w'ould seem. to i adi cau that niitura i i esxver an imippropr izitec V

MiCTe ''not a-knot'' ':nios 16! were se isedthevi c lanc a

1) 3tj1 ~+ V t(t--j- 1) =,

>tib ('Vt to the coni)at ibi Iitv :ond it ionl



The above equation ari se§, In thev poli 1? a: a !- cm c:l I:j1;:al

in I i tC iSOtrop)ic elastic Ied iIMI Under constant lfo its fouir

b ranches. V-be hore, the f unct ion ( t i, ;-a U]:cd to bw Cil tl Im- fi-11

!lIe table below provides a comparisonc of rch it, obane ront -L',

:oa-Gupta method [8S] (Col ) its Lobatto-chcbxD\ valn ant [8s ciOl

II arlI tbe spl imPc method (Col II J Note thm corre-ct value or :-

men'l Icallated bY Rooke and Snedu~j []1 ] to b[)c

11 i rdo (ai -(up ta lobat to - ci) bsev Gaine

4 b.18 .ob.b1

a U. ~uU 0. 60l24i o

0 s. 8o38 (. o44 i.

8o3 28o42 0

8 KK8ot (1p4 .Soo3
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APPENDIX

The error estimates (3.8) and (3.9) can be wTitten using (3.7) as

7 1 + V T n -I 7
+h S hk=l" 1 tn 41(A.1) ~, h + 49--h--j 1-- =

= c " ii (iv) I

and
7/ 2( I-h .I V

(A.2) h7/ * i ) [,427 384((2_)3 2 -- = kl2 -j

= c 2 .i; (iv)

From (3.3), the error in solving the equation

1 rl g(t)dt = f(s) -i < s < 1
TJ_1  t-s

is therefore given by

hA-1 .max(C1,c2). (iv)

The table below lists values of 'A-1 ' and max(C ,C2) for selected values of n.

ni.- I l max( lc 1 mII.r,ax(C 1 ,C2 )

1 6.3 x 100 9.3 x 10 - 2  5.9 x 10-1

2 3.S x 101 8.3 x 10 -  3.2 x 10 -

4 1.9 x 102 7.9 x 10 - 4  1.5 x 10-1

8 7.8 x 102 7.7 x 10 -  6.0 x 10 -2

10 2.9 x 103 7.5 x 10 6 2.2 x 10-2

183



References

[1] Muskhelishvili, N. I. Singular Integral Equations, P. Noordhoff Ltd.,

Gronigen, Holland, 1953.

[2] Gakhov, F. D. Boundary Value Problems, Pergamon Press, New York, 1966.

[31 Privalov, I. Boundary Properties of Analytic Functions (in Russian),

Moscow-Leningrad, 2nd edition, 1950.

[4] Ivanov, V. V. The Theory of Approximate Methods and Their Application

to the Numerical Solution of Singular Integral Equations, Noordhoff

International Publishing, Leyden, 1976.

[5] Erdogan, F. "Approximate solutions of system- of singular integral

equations," SIAM J. Appl. Math. 17, 1041-1060 (1969).

[6] Erdogan, F. and Supta, G. D. "On the numerical solution of singular inte-

gral equations," Q. Appl. Math. 30, 525-534 (1972).

[7] Erlogan, F., Gupta, G. D., and Cook, T. S. "Numerical solution of

singular integral equations," Mechanics of Fracture, Volume 1: Methods

of analysis and solutions of crack problems, Noordhoff International

Publishing, Leyden, 1973.

[8] Theocaris, P. S. and Ioakimidis, N. I. ",Numerical integral methods

for the solution of singular integral equations," Q. Appl. Math. 35,

173-183 (1977).

[9] Dow, M. L. and Elliot, D. "The numerical solution of singular integral

equations over (-1,1)," SIAM J. Num. Anal. 16, 115-134 (1979).

[10] Stroud, A. H. Numerical Quadrature and Solution of Ordinary Differential

Equations, Springer-Verlag, New York, 1974.

[11] Gerasoulis, A. and Srivastav, R. P. "A method for the numerical solution

of singular integral equations with a principal value integra," (to appear).

184



[12] Gerasoulis, A. "Product integration methods for the solution of

singular integral equations of Cauchy type," Rutgers University

Dept. of Computer Science Report No. DCS-TR-86, New Brunswick, 1979.

[13] Ahlberg, J. H., Nilson, E. H., and Walsh, J. L. The Theory of

Splines and Their Applications, Academic Press, New York, 1967.

[14J Netravali, A. N. and Figueiredo, R. J. P. "Spline approximation to

the solution of the linear Fredholm integral equation of the second

kind," SLAM J. Nun. Anal. I, 538-549 (1974).

[15] Gabdulhaev, B. G., "Optimization of collocation methods," Soviet

Math. Dokl. 20, 823-827 (1979).

[16] Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series, and Products,

Academic Press, New York, 1965.

[17] Hall, C. A. and Meyer, W. W. "Optimal error bounds for cubic spline

interpolation," J. Approximation Theory 16, 105-122 (1976).

[18] De Boor, C. A Practical Guide to Splines, Springer-Verlag, New York,

1978.

[191 Rooke, D. P. and Sneddon, I. N. "The crack energy and stress intensity

factor for a cruciform crack deformed by internal pressure," Int. J.

Lngng. Science 7, 1079-1089 (1969).

185

A



CAN DISSIPATION PREVENT THE BREAKING OF WAVES?

Constantine M. Dafermos
Lefschetz Center for Dynamical Systems

Division of Applied Mathematics

Brown University

Providence, R. I. 02912

ABSTRACT. We show that dissipative mechanisms induced by friction,

viscosity or thermal diffusion prevent the breaking of relatively weak

waves but are ineffective against waves of large amplitude.

I. INTRODUCTION. Compressible weak waves that can be modeled as
solutions to quasilinear hyperbolic systems of conservation laws are
generally amplified, as they propagate, and eventually break, due to the
formation of shock waves. It is interesting to consider the situation
where this destabilizing mechanism coexists and thus competes with
dissipation. Damping induced by viscosity of the rate type is so power-
ful that it dominates and prevents the breaking of any wave. Far more
interesting is the situation where damping is induced by "friction",
thermal diffusion or viscosity of the Boltzmann type. In these cases the
dissipation mechanism is subtler so it may prevent the breaking of
relatively weak waves but is ineffective against waves of large amplitude.

In Section II we exhibit results of this type in the context of a
simple model in which complete proofs can be displayed in short space.
In Section III we survey related results for more complicated systems of
physical interest in which the analysis, too elaborate to be presented
here in detail, is based upon the same principles as the analysis of the
model case of Section II so that the reader will have already gotten a
taste of its flavor!

II. A MODEL CASE. We consider wave phenomena governed by the
Hopf equation

u + uu 0. (11.1)t x

Expansion waves are spreading out and get weaker while compression waves
are amplified and eventually break. Specifically,

PROPOSITION 11.1. The Cauchy problem for (11.1) with initial

conditions u(O,x) - u(x) E C l with bounded derivative, has a

global C-smooth solution If and only if u X(x) 0, -' x < w. When

(x) takes negative values, a local C -smooth solution exists which
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breaks down at t = [-inf iXi

PROOF. The characteristic equations read

-- = u

(11.2)
du 0

so that characteristics are straight lines along which u remains con-
stant. Thus, when U(x) is nondecreasing on (-,*), the fan of charac-

teristics diverges and a global Cl-smooth solution exists. On the other
hand, when Ux (x) takes negative values, characteristics collide and

shock waves develop.

In order to determine the exact time the first wave breaks, we

follow the evolution of u along characteristics. We set v(t,x)

u (t,x) and take the derivative of (II.1) with respect to x, thus
x

obtaining

2
+uv+ v =0 (11.3)

or

dv + 2 =0. (11.4)
dt

Thus inf v(t,x) will be bounded for t < [-inf u (x)]-  but will tendxx - ]-i.
to -- as t - [-inf u x(x)] As a matter of fact, when u (x) attains

a minimum on (-oO) at a point x,v along the characteristic issuing at

X will tend to -- , as t - [-u (x)] - I so that the wave emanating fromx

-1
x will break at t = [-u (x)] -

.x

Let us now investigate the effect of the presence of frictional
damping,

ut + uu + 1ju = 0, p > 0. (11.5)

We will show that even compression waves do not break so long as their

amplitude is not large.
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PROPOSITION 11.2. The Cauchy problem for (11.5) with initial

conditions u(O,x) = u(x) E CI(-,), with bounded derivative, has a

1
global C-smooth solution if and only if u (x) > -P, - < x < w, andX

the amplitude of waves emanating from points x with u (x) >
X

decays to zero exponentially, as t + =. When u (x) takes values less
1- x

than -B, a local C -smooth solution exists which breaks down as
-llo

t -+ P log[m/(mi)], where m = inf u (x).X

PROOF. in the place of (I.2) we now have characteristic
equations

dx

4 (11.6)

du

Setting, as before, v(t,x) = u (t,x) and taking the derivative of

(11.5) with respect to x we obtain, in the place of (11.4),

dv 2
d + +v = O. (I.7)

It is now clear that If u (x) > -j<, x < a., u (t,x) will be bounded

and a global C -smooth solution will exist. Furthermore, v along any
characteristic issuing from a point i with U (x--) > -p decays to zeroX

exponentially, as t - . On the other hand, when u (x) takes values

less than -p, inf u (t,x) will be bounded for t < p- log[m/(m+P)]x x -llo~/mp

but will tend to - as t logm/(mn+p], where m = inf u (x).x

In fact, if u (x) attains its minimum m < -p at a point x,v alongx -

the characteristic issuing at x will tend to -- as t -+ log(m/(m+11)]
-1

so that the wave emanating from x will break at t - log[m/(m+ui ].

As seen from the above proof, the advantage of the method of
characteristics lies In that It yields explicitly the threshold amplitude
beyond which waves break as well as the time the first wave breaks. On
the other hand, the method is very special and it may be expected to work
only when the equations are very simple. We now state onother result In
the same spirit which is less precise but whose proof Is more versatile
and thus amenable to far reaching generalizations:

189



PROPOSITION 11.3. Consider the Cauchy problem for (11.5) under
2

initial conditions u(O,x) = u(x) with ux(x),uxx(x) in L2(- ,").

Then, if

2lu 2 12 <2 (I1.8)
x L 2  25

there exists a global Cl-smooth solution u(t,x) such that u (t,.),
.2 ( ..." 'x

u (t,') are it . 2 and thel,- . norm. s decay to zero

exponentially, as t - -.

PROOF. We first give the idea of the proof. Assuming that a
sufficiently snooth solution u(t,x) exists on [0,T) x ( we
differentiate (11.5) with respect to x, we multiply by 2ux, we integrate

over [O,s) x (-'o, ), 0 < s T, and integrate by parts, using the
identity 2(uu ) ux= (uu2 ) + u3, thus arriving at

2-
fwui (s,x)dx + fof(2p+U x)u2 dxdt = x~d, ( 9

from which we could get an 12 bound on u , uniform in time, if we had

I x(t,x) i < 2o. This appears, of course, useless since pointwise bounds

are locally stronger than L2  bounds so one would have to assume more
to get less. One may 2attempt to obtain pointwise bounds on u by
establishing first L bounds on u xx. To this end, we differentiate(11.5) twice with respect to x, we multiply by 2u we integrate

over [O,s) x (_=,) and integrate by parts to derive the analog of
(11.9) for second derivatives. The anticipated difficulty is that 2we now
may have to assume pointwise bounds on u in order to obtain L

bounds on uxx. This danger, however, does not materialize! The derived

estimate, upon using in tht, Lntegration by parts the ident ity
2 2

2l(uu ) u (uu 2) + 5u u , reads
x xx xx xxx x xx

u2(s,x)dx + i (210'm iXdt = . 2 (x)dx. (11.10)-- 0 -o X --o L XX

The miracle is that only a pointwise bound 51ux(t,x)I < 2P on u is

needed in order to get a uniform L2 bound on u .' This is not axx

coincidence but rather a consequence of the algebraic structure of the
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operator of differentiation. Consequently, as It will become evident
in what follows, this methodology has wide applicability.

It is now easy to synthesize our proof. Let [0,T), T < -, be

the maximal interval with the property that there is a C 1-smooth solution
u(t,x) on [0,T) x (.o,)such that u X(t,.),ux (t,-) are in

L 00([0,T);L 2(-~,-)) and

11uxt, L 2 1u t L 2'2

The existence of such a T follows from a straightforward local existence
theorem and issumptilon (T1.8). For s E 10,T) we have estimates (TI.9)
and (11.10); (the given derivation of (11.10) is only formal, within the
present function class, but the estimate can be casftly established
rigorously either through difference approximations or via a density
argument).

By account of (11.11) and

u 2(t,x) J(u 2) dx < 21Itu (t,.)IIL h~ (.)IL (11.12)

we get

11 u(t,x)l < , ~ < X < -', 0 < t < T, (11.13)

which, in con junct Lon with ( 1t .9) and (f 1. 10) , implies that H~u (s,.)1I 12
and I11 ux(s,)Il are nonincreasing on [0jT). Thus, if T < , we

may extend u(t,x) up to t =T and (11.11) will now hold for t =T.
But then, by the local existence theorem, u(t,x) can be extended onto
a small interval beyond T, still satisfying (11.11), and this is a
contradiction since [0,T) was assumed maximal. Therefore, T and
the solution is global.

Exponential decay of IPu (t..)II L2 and 11.1u(t.)11 1 2 follows

easily from (11.9) aod (1E.10) uposi observing that 2P + u x(t,x) and
2 pi + 5u x(t,x) are uniformly positive oil (0,-) x J#~

Let us now equip (11.1) with a dissipative mechanism induced by
viscosity of the Boltzmann type:

U+ uu + fJoa' (t-T)uu Xd - 0, (11.14)

where a(t) is a smooth relaxation function with properties to be
specified below.
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The casual observer does not dis-ern any similarity between (I1.5)
and (11.14): Damping Is instantaneous In (11.5) but distributed over the
entire history of the solution in (TI.14).Neverlieless,the following argument
(compare with MacCamy [7]) reveals a close similarity between these two
equations.

Let k(t) be the resolvent kernel associated with a'(t);
that is k(t) is the solution to the linear Volterra integral equation:

k(t) + Ja'(t-T)k(r)d-r = -a'(t). (11.15)

Taking the convolution of (I1.14) with k(t) and after a simple calcula-
tion we arrive at

ut + uux + k(O)u + J k'(t-r)udT = k(t)u (11.i6)

where u(x) = u(0,x). We thus observ(, that when -a'(0) = k(O) > 0,

(11.1b) contains the frictional damping term k(O)u. In fajct, when
-t

a(t) = e , then k(t) I so that (11.16) essentially reduces to (11.5)
(the forcing term - on the right-hand side of (11.16) can be handled
easily. )

It is not easy to establish the existence of global smooth
solutions to (11.16) by the method of characteristics since the
integration in (11.16) Is along lines x = const. rather than along

characteristics. In contrast, it is straightforward to adapt the energy
method employed in the proof of Proposition 11.3, provided that

2
k(t) E L (0,-) (in order to handle the forcing term k(t)u) and that
there is P > 0 with the property

fV(L) d k(t-r)v(T)d-Cdt > 1 vJ2(t)dt, (11.17))

for any s E (0,-) and every v(t) t (.ioc(O,-). For assumptions on

a(t) that would guarantee the above pro)erties of k(t), we refer the
reader to [71. inder thc!;v, (ondit Ions, we obtiIn cio;lly, in the place of

( 1 ) and (11. 1 0),

(2 LI2ju~ 2
u (s,x)dx + (21j+ux) dxdt .18)

0 -

< u (x)dx + 2k(t) u udxdt,

Jt,
2 (.,x)dx + (2J+)u 2 (I. 19)

f _ (x)dx + 2 k(t) -Uix dxdt
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respectively. On the strength of the above estimates, following closely
the pattern of the proof of Proposition If.3,we e ;tab ish

PROPOSITION 11.4. Assume that the relaxation function a(t)

induces, through (11.15), a resolvent kernel k(t) E I, (2,) which
satisfies (11.17). Consider the Cauchy problem for (I.14) (or,
equivalently, for (11.16)) with initial conditions u(O,x) = d(x) where

ux and U are in 1 2 2' U are sufficiently
I Lx

small, then there exists a global C -smooth solution u(t,x) and

u x(t,), uxx t,.) are in L-([O,);L2 n L2([0,-);L2

III. SURVEY OF KNOWN RESULTS. Consider the second order quasi-
linear wave equation in one space variable,

wtt - a(Wx ) x = 0, 17, 0, (]I .1)

which is equivalent (upon setting ii = w., v = w t ) to the genuinely

nonlinear system of hyperbolic conservation laws

Su t  vx = 0 (111.2)

v- G(u) 0 .

The characteristic speeds of (II1.2) are i o'(u) generating a family

of forward and a family of backward characteristics.

The principal RlNemann Inv;irlant,; are deofIned hv

r = V 4 J/(t -d., r, v - {/a'()d.. (Il. 3)
0 0}

For C -smooth solutions, r remains constant along forward characteris-
tics and s remains constant along backward characteristics.

By monitoring the evolution of rx (s x ) along forward (backward)

characteristics, Lax (6] has established the following analog to

Proposition I1.i:

PROPOSITION II.1. The Cauchy problem for (111.1) (or, equivalent-

ly, for (II.2)) under initial conditlions w (O,x) - u(O,x) = u(x) C(-)

wt(Ox) v(Ox) v(x) C CI(..) has a 1;iba C -smooth solution if and
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only if r(U(x),v(x)) 0, s(,u(x),v(x)) < 0, - ' x < o. When

r(u(x),v(x)) and/or s(u(x),v(x))x  take positive values, there is a
I

local C -smooth solution which breaks dow .at t = T given
asymptotically (for small initial data) by

T 'I, min{[01(o) sup r(u(x),v(x)) ]-l, [(0 sp (x)xx
(111.4)

We now equip (111.1) with a frictional damping mechanism, viz.,

w - (w ) f llw 0 (. (!f .5)

Su v= 0
)( xUt-< (111.6)

Sv () + i'v = 0

Nishida [10] estimates the growth of r (s ) along forward (backward)

characteristics and deducos the following theorem, analogous to
Proposition T1.2:

PROPOSITION 111.2. The Cauchy problem for (111.5) (or, equiva-
lently, for (III.6)) under initial conditions w x(O,X) = u(O,x) =

u(x) E C1 (-;, w t(0O,x) v(O x) = v(x) E C1(- ,-o) has a global Cl-
:;mnooth sol it ion provLded that ii (x), v X (x) ,,re bounded and

X X

1r(,,(X),v(x)) , (u(X (x) ) ir ,- l Il i itt l v sita,,ll.

On the ot okW1r hand , )Ws inski I , mid S, lenrod 11] haie sho-An that

when r(u(x),v(x)) and/or s(ui(x),v(x)) take large values, waves

generally break and no global smooth solution exists.

The problem of existence of global solutions to (II.5) (as well
as to the multidimensional analog of (I11.5)) was also studied by
Matsuimiira [91 via energy estimates, akin to those used in the proof ol
Proposition 11.3. This approach yields the following:

PROPOSITION 111.3. Assume that ) is C 3-smooth and o'(0) 0.

Consider the Cauchy problem for (111.5) tinder initial conditions

w X(Ox) = u(x), wt (O,x) = v(x). with utuxUtxx vvxV xx in L_(- .,)

l , ilt H. .11 ' I 11 VII lvj II 2 nd I I .'X1 . t
I "I " ... I. " , " I. ",

:; lI iclentl v smal I , here exist ;i global C -sMtotlit sOlut ion withi
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derivatives of first, second and thlird order In L -( 1 .2 ,)

Furthermore, as t c o, second order derivvt es dic;i\ to zero,
uniformly as well as in ,2(-_,w).

We now turn to damping mechanisms of the memory type. Our first
example is

t

wt = Joa(t-r)o(w )xd (111.7)

which is a model of the heat flow equation In ;a material with memory
[3] (w is temperature). Here o is a smooth function with 3'(0) > 0
and a(t) is a relaxation function normalized so th3t a(O) 1 and
having properties to be specified below.

Upon differentiating (,11.7) with respect to t we obtain

- n(w) - l {'(t-),(w)d (I. )
wtt Xx i

which bears to (Ill.5) the same relationsiip that (11.14) bears to (11.5).
In particular, as in Section IT, we may employ the resolvent kernel
k(t) of a'(t) (cf. (II.15)) to rewrite (TTT.8) into the equivalent

form
t

wtt - (wx)x + k(O)wt + f k'(t- :)w d , = 0, (111.9)

analogous to (11.16). Exploiting the similaritV betweLen (I 11.9) and
(111.5), MacCamy [71 establishes the existence ot global C2 -smooth
solutions to ( 11.9) (and thereby to (I1l.7)) by adapt ing the afore-
mentioned methodology of Nishida for (]L.5), namely, by estimating thk
growth of r. and s. along characteristics; h hnposes assumptions on
a(t) guaranteeing that k(t) satisfies (11.17) and that k'(t), k"(t)
decay sufficiently fast, as t -- ".. A necessary condition for (11.17)
is that a(-) = 0, an assumption compatible with the physical interpreta-
tion of (111.7). Subsequently, Dafermos and Nohel [1] established
existence of global C2 -smooth solutions to (IT.9) by means of energy
estimates thus arriving at a theorem analogous to Propooltion 11.4.
Finally, Staffans [131 proved existi,ne by employing energy est Im:lt e!
derived directly for (111.7). licre [s a represent at L.v, result from I1 ]:

PROPOSITION 111.4. A:;sume thit o Ls C3 -ornoot i with C (0) >),
and that a(t) is a strongl,; positive definite kernel with a'(t),
a"(t) C 1, (O,-). Consider the C(auchy problem for (I1.7) under the

mint Inl coldit Ion w(),x) = w(x) where Wx, w lin ,1,w 1

When wX1 2 W i 2 i J! ire sid lic ient I -iai I there

exists a global C2 -smooth sol ut ion with dlerivatives of first, second an



third order Ill L ( [0,,"); ,2(...')). Furthermore, as t ec, secnid

order derivatives decay to zero tniformly as well as il L (

As another, related, example, consider

wtt - O(W )x - 0 a'(t-r)O(Wx)xdT = 0

which is a model for the equation of motion of a nonlinear viscoelastic
material. We normalize and a so that 4'(0) = o'(0) and a(O) = 1.
Here w is displacement, a is the instantaneous elastic stress and
o e= - [l-a(-)] is the equilibrium stress. The physically naturale

asumptions are o'(0) = ,'(O) , 0 and o'(0) = a-Q')'(0) .- .

When (, (11 ..10) r ,,:; e (1I1.8) ind inav tliwretori, 1w
r('writtein [I ti i orm (IIL.9). Ilow vever, hIere, .1(-) - ( :;4 that tilke
kernel k(t) cannot satisfy (ll.t7). Nevertlieless, MacCainy [8] devIsed
an alternative I ine of est Imates, compat ihle with the physically reason-
able assumptions, and established a global existence theorem which hinges
upon pointwise bounds on r and s along characteristics. Subsequent-

ly, Dafermos and Nohel [1] and Staffans [13] considered the same problem
by means of energy estimates. In [1] the estimates are derived for
Equation (111.9) while in [13] the estimates are established directly for
Equation (111.8). In fact, Proposition I11.4 also covers the present
situation in the special case w (O,x) = 0.

t

The general case (11.10), with different from o, is studied
by Dafermos and Nohel 12] through energy estimates. Tliey assume that
a(t) is a strongly positive definite kernel and a(t) = a(-) + A(t),

where a(-) > 0, A(t),A'(t),A"(t) in L (0,-), and establish an
existence theorem analogous to Proposition 111.4.

We should emphasize that the aforementioned methods of Dafermos
and Nohel 11,2] and Staffans [13] apply also to the mixed initial-
boundary value problem for Equations (111.8) and (II.10) as well as to
the corresponding problems for the two-annd three-space dimensional
versions of these equations.

As our last example we consider the conservation equations of one-
dimensional nonlinear thermoelasticity:

wt- (w 0) -(.1) 0x x ( 1 . 1

Or(w ,t)) + (10 ) (1

where w is the motion, o is the temperature, o is the stress, 11
is the entropy and q is the heat flux. Equation (111.ll)l expresses
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conservation of linear momentum and (T11.I), expresses conservation

of energy. It is important that

a0 (u,O) + n (u,G) = 0. (111.12)

Physically natural assumptions are au > 0, rn0 : 0 and q' 0 0. Dis-

sipation is here induced by thermal dilfusion which manifests itself
through the presence of the term q(0x ) X . The question is whether the

coupling between the two equations in (111.11) is sufficiently effective

so that the "parabolic" (111.11)2 may prevent the breaking of waves by

the "hyperbolic" (Il.11) I. It turns out that the efIectiveness of the

coupling is indeed ensured by (111.12).

Slemrod [12] considers the mixed in Ltial-bouudary value problemn

for (II.11) on (0,1) x (0,,-) with initial conditiuns: w(O,x) = U(x),

w t(O,x) = v(x), 6(O,x) = -(x) and boundary conditiolas wx(t,O) =

w (t,l) = 0 and 6(t,0) -
0 (t,l) = 0. By means of energy estimates he

establishes the existence of a global smooth solution under the assumption

that a, u, u, V, vdv, v ,aX, , -- 0 .. and 6 are in2x Ux' 2 xV'Vx''x0x'xxx xxxx

L 2(0,1) and their L -norms are sufficiently mal Il.

In contrast to the examples d iscussed bh:Ir,, the proof of the
above result depends crucially upon the one-dimeoLslona lltv of the. body
and it is not known whether thermal dis. Ipatton may lrevent the breakin);
of waves in two- and three-dimensional thermoelasticity.

Another dissipation mechanism that may prevent the breaking of
waves is induced by attenuation due to spreading of a wave of fixed ener,'
into a large portion of space. It I; clear that the effectiveness ot thi:,

mechanism will increase with the dimension of space and the result!; ob-
tained so far require dimensionality higher than the dimension of phy's ic,1
space. For relevant information the reader may consult the interesting

article by Klainerman [4].
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We can now show that (2) satisfies t!) exactly. Cn substituting the right-

hani side of '3), the left-hand side of (1) becomes

P f i x u) + n(Y-Yo)d d ,P ~ ii (x-x ) + inyy)0dd

47,

.r.sch transfor:ts to the rioht-hand side cf' ') when , errtss

e&Xd - 276(x) (4)

of the Ielta function as the Fourier trOnnfsrm of un itv (ref. ,.) is ;ed.

Use of the key formula (3), analysis in Takmai (l1,!2', rccniticn that the
solution w of eq (1) is a reneralized functicn (Arnendix I), and use cf the

Fourier transform of the Leneralized functions (3,L,5,9) have enabled us to
institute an analytical -rachinery, called vlrtual renction method, which we have

expected to be effective for solvinc (1) for the deflection of floatinF elastic
plates of various shapes and various boundary conditions, rroblems which have
hitherto been impossible to solve.

In the following, first we show the derivation of (3) and some theorems
basic to the operation of the virtual reaction method. Second, for solvinw the
deflection of a semi-infinite plate, we introduce a set of virtual reactions
that may include the effects of the reflection principle. Third, we solve the
boundary-value problems of the semi-infinite rlate by use of the virtual reaction
7ethod. It is found that the reflection rrincinle yields a solution only for
the sirmle-edge boundar- condition, but not for other boundary conditions. '.ith
or without the effect of reflection rrinciple, the virtual reaction method con-
nistently yields a solution for every boundary condition. All the solutions,
hre 'ever, are not unique. The reason for the nrnuniqueness is discovered and
the condition that we expect will produce the unique solution is pre;ented.

P, ASI C THF" RY

We nrove (3) by way of the followinz four prcositions.

-rooosition 1. 7he Fourier reciprocal relationship holds between the Earkel

function of zeroth order and the exponential function in the followinr:
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-- er .-.- tI r-, r3r

n.ate ,n-hl -rx.- - -ar <

[I~~ Ft r-a , -

IC,

= -a t L in.7 -:' .-. pr Ta ag nr* . 77

r C. , s' :7 e: r : r r r r-i ': n: ~ '
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a , ( .,-a 2s ax t . s
2 ds e (l*:,) dr (d)

To evaluate the internal sinhle intecral in (d)

M = e iaxz(l+z2)ad,

ry the contour integral me .nrd, we *'irst note 'hat the Cri;inal ranize xf . i.e.
-< .X < -) may te restriCte-I t 0 < X, X 0, be4'-ce 2 ir an even f-.r-ticn o

:, as the rizht-hand side of t, show. "he c.ndition X 2 is acded t-; maKe
the fclcvwn c,)ntour inteoraticn feaable..cnsi er the ccntour in _-are 1
that starts at Crizir , n ces all-ng
the ccsitiv'e real axis to A (i.e.
z= takes - )Cc turn along th- D B

infiniteiy large c:rcle to reach
.e. = " or ; lrwfn alon.;

trt ima,::,ry axis t C "i.e. z j 4
i,, makes a 3; -. turn ailsni Pn

infinitely small circle clockwisc
around C, goes upward along the C2
"ra~i:Lry axis to reac& 7 (i.e.
z takes a 90 turn along C
the infinitely large circle to reach
E (i.e. z = -- ), and finally reaches E A
:ri:in 0, thus ccmpleting a circuit. 0
'1o sin T.%.rity of the integrand
exT(i.-zz)(l + Z2)s exists inside
this closed contour. Among the

inte~r!s aong the path mention- Figure 1. Transformation of integral m
ed above, the integrals along AB and on the z-plane.

DE "ianish, prcvided Ix > 0. Th e
integral aroumnd C also vanishes. Ther.tore, *on the condition that : >, and
x > 0, we have

M (J+ }eaXz (l+z2),4az
B C 2

where .' and C2 are the initial and terminal 7r ints of the infinitely small

:ir le around C. Letting z = it, where t is real, *I reducer to
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M ( - e 2 is) eaXt(lt)Sdt

We now let s be
1

s -+ ip
2

i.e., let c in (a) be 1/2, where p is a real number, in order to integrate M by
use of the formula

K (Z) = r(1/2)(z/2)' e-at t2-l)v-l/2 dt(e)
Vr(v+i/2) J1d

which is valid when Re(v+ 1/2) > 0 and larg(z)l < T/2 (Watson 13, p. 172). When we
let v-1/2 = s and z - ax to integrate M, these two conditions are satisfied.
Thus letting

(1L2)' - e (t-L)s

M integrates to

M - -2sin(iis) F (s+l) K (ax)
/- (ax/2) s+l/

2  s+1/2

In this way, (d) transforms to a single integral:

aa - 2 K+  a

- F2(_s)()) sin(7s) + (ax)ds
-7_ -(ax/2)s+112 

Ks+12

Changing the Gamma function of the negative argument to the positive argument
by the reflection formula

- ITr(-s) = -7

f(i+s) sin (fs)

I becomes

1
= / x -K (ax) 2

- f Nin(is) F(8+I) 2x

2

Taking the residues, I integrates to

-) = -i/8a/irx ?K (ax)
n 0 n! 2x n+1/2

Replacing K n+/2(ax) with
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K (z) - (2)i exp(-t- -)t-v-ldt
V2 2Jo 4 t

(Watson 13, p. 183, 1 becomes

ia v? (-i) 
n  

- .a2 2.n . a2x' dt_
" n=o n! 0 t)- exp(-t- t- /J

The order ot the summation and integration may be exchanged, and we get

ia 2.x+2I exp(-t- I2 xa+$2 )) 4t t

-2
Leting t = , this becomes

2ai e( -2 a
2
( x

2+ 2 )
I = - --- p-- 2 2)dC f

4

To integrate (f), we introduce a lemma:

° ;> .: r-2

e "d = e -2 Ie2 w

if arg(w) is in the range

n - -4 arg(w) iri + -
4 4

where n is an integer. When w is in the above range, the integral is convergent.

To prove the lemma, we first note that the Integral

L = '

transforms to

L v e-2 N , (g)

wnere

N = e-(U )'d (h)

- (h)

Lett ing I. w /(.ri) and :hangIng thi, resuIt Lng c ontou1 0 to 0 - , we

get
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N f 1. e r

C)

A,4d i ion of (h) and Ci yields

2N e ~ ~ v-4 -- d

1,etting

- = t

d L

Chan . : -, th' rrunwc of inteArutiDn to ',he r-ins' from -. to +,' t~r~

N /(2w)j. Substituting this value into 1g), the lerma is rc.ed

Lettinx w be

2
_the lerma, (f) is integrated, because . abov-,e is obviously in the ran_ e 7re-
cril'eci tefore. Thus, under the ccndit-Ions x# 0 aol 0 Formula '>is

prov-d. A-prlying the analyt -al continuat,Dn, the cor': 0o iz
to tb e condition a~ 2 + 2 4 'D. necauze the inte,-r-!i :-: '.'rvrrent %~t x0

Ic ondition #0 may be re-7.ved. T.h rrc-.f* i3 thu:7 -c-X-t:te1.

* iln 2. lie :'smila

f z 2-+y2 e 7dz =_ (6)

true for any real number :w , where y is a comrlex number sucl that

Re~y) > 0 .(7)

-oo:First let us assume that :4 > 0. -hen the intec-ration o~f e2zz 1

*t- r-e.-oard -ro :- alonz the 'irner semioircle (1-1 4fi~intl ar~ze rc
*~ ~ '; ur:s ecu-al to zero. There',re, ei:tei7r".l cnm le -a.-i
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and the infinitely large semicircle BCA.
5ecause of (7) there is only one pole
z = yi inside the contour. Applying the
residue theorem, the le.ma is proved for
the case of y > 0.

if z 4< 0, we take the lower semi-

circle FDA. Inside the contour that
.asses through the real axis ACP and the
infi'nitely large semcircle EDA, there A
is only one pole o =-yj, where use is
made of (7). Applying the residue theorem
the ler.=a is proved for the case of y e 0.

:" yJ = 0, (6) is still true as may
be 7ruved by the straightforard inte-
gration. The proof is thus completed.

D

Proi.osition 3. The single Fourier-
transfcr-ns in (5) are equiv-alent to the
rollowing double Fourier-transforms,

Figure 2 Contour integration for proving (6)

fm ( 1 ) ( 7fi / 2 )  T?- y)i ~ndd -41

(Be i'x~iryd2+d2+y2

(8)

721-- e- ix&-iYq d = 721H(1) (ae ( i/2) x+y

L L 0

roof: Arrlication of the double Fourier-transform chan-es (8) or (8) to
7--or (8) resn~ctively.
2 1 1

Te show that aonlication of a single Fourier-transform on 28) 'rields (
i.e., we calculate

f (1) P'(ii/2) /r ax

I K~etx 2(+y2 ) dx

:,y 12)06ecomes
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1 ( ( 1 -iyr di e- ixC-siax dj T J T$ze d~d,,j e d

Applying the Fourier transform (4) of unity on the internal single integral, I
becomes

2 f1 -ir
I T J e d6(a-Oddr

Using the sampling property, eq (51), of the delta function, I becomes

2 J 1 e'-dri71- i -& 2+(a2+a2)e-Yd

Use of the integration formula (6) yields

-2i - jyj 4 2
I e

which is the right-hand of (5)1 exprssed with the current notation.

We show that application of a single Fourier-transform on (5)1 , yields (8)1.
Letting x, E,and a in (5) 1 be ,, x, and jyj, one may use (5) 2 to integrate

3 ~~ ille~ y f (1)(B(711/ 2)/x2)i~

Thus we have

J - 2-2i e- iny- I 2+2dy

Dividing the range of integration into positive and negative semi-infinite
parts, J integrates to

-21 1 1
j , _ { -- + ..... .. . . n- ,

which reduces to the righ-hand side of (8) •
The equivalence of the two equations In (5) to the two equations in (8) is

thus proved.
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We prove in the next proposition a formula that is equivalent to (3).

Proposition 4.

kei 4&i2y2 I eddr 9

2 J (42+ 2 )2 + I e-ixC-iynddn (9)-;T - +n

Proof: We first note that kerx and keix are the real and imaginary parts of
the rirht-hand side of the equation

-- J- (1I) (J i l 4ker(x) + lket(x) - I 1i (Xe / )

2 o1

The conjugate complex of (a) is

ker(x) - ikei(x) = H (xe (si/4)
2 (xe ) , (b)

as is proved below.

A form of the conjugate complex of the right-hand side of (a) is found to
be

T1i H(2) (xe (-37Ti/4))
2 C)) I C2 o '(c)

when use is made of the formula

H( 1 ) (z) = H (2 (z)o o

wiich is a speci:al case of the formula 9.1-4O in liver (4), "where a bar mni-
:at, tne cunjugate ccmplex of the underlying, symbol and ." a complex number.

The expression (c) transfcrms to the right-hand side of (b) by use of the
formula

H(2) - i H(1) (ZH (ze .) -H (z
o 0

which is a 3recial case of the formula 9"1-39 in Over (h).

:2oving 'a) and b) simultaneously for keix, we find

kei(x) TH (1) ( x e (3i/4) (1) (i/4)
4 o ) - H (xe ) (d)

Ta-,a.~n, t-e a-u,ent -i in 'd) to -I-, + , rand I p lyinl (3] to the f..t n.
second terms with g = exp(iTy/h) and 8 = exp(-ri/4), re pectiveiy, we find
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I I
kei/x2+Y2 4 .... e-iX -iYq 2 2+q2.idd , (e)

which transforms to (9).

None of the formulas developed in the above is considered to be entirely new,
because the formula

K (B/x+ 2 )cos(e)d

which may be derived from (5)1 i is listed in Erdelyi '2). Some more propcs4-

tions are derived in the following for the operatikn of the virtual reaction

method that we develop below.

Proposition 5.

kei x 2 +y2  
- ]= e-X 1 e1 eyl2i}dC,

where iz either positive, negative, or zero.

Proof: The double integral on the right-hand side of (e) above may be rewritten
to the following repeated integrals.

kei/x2+y2 I f e-Xd -Y ( _e_ f+( -)}d

Applying (6) to the integration with regard to n, we find (10).

Pronosition r. For u # 0,

n ._ keifx2_+y

ny

-(-Sgny) ((2+i) e - (t-i) e 1e- ixd : ,
41

where n is a nonnegative integer and
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sgn(y) = I for y > 0

= -1 for y < 0

For y = 0,

0 n kei x2+y=) (-i)n ixn dT. (12)
y -2 7+ L+ dn .(12)

Proof: Because, when y 0, either of the following functions (I/±)ex-(-I4 )
is a good function of & in the sense of Lighthill (1958),the differentiation of (10,
with regard to y mov be carried out inside the integral sigzn on the ri~zht-hand side

(see theorem 7.23 at D. 206 of Jones (1966)). Thus, for 0 # , the n-time differ-
entiaticn of (10) with regard to y yields (ii).

For y = 0, using (9) for kei - 2 , one finds (12), where part iii of theorem

7.!L at p. 198 of Jones (1966) is used to justif'y the exchange of the order of
operating integrations and operating differentiation.

As (11) shows, the first derivative and all the even-order derivatives are

continuous at : = 0. Especially

( kei )y=+, . -n6(x)

(T-7 kei i/x2+y2)y= °  = s 6(x)

At 0 0, na; (12) shews, ror :%ny .rositive old integers n 2k'1]

62k+1

where k 2 0. In the the,':ry wc:;eralized functions, the right-hand side of (12)
can be estimated even for n - , because one may use the formula

e d , = 2Ti n (13)
J--o dx

to -va!';rte the div-rw--nt nart ar:s-ing from tho i terna! sing-le intewral in (12).
(1 ) p rov"d by :1,'c,.;,1 v" cii ftf r,.ntoit.1,n )I' t.1je ",iri¢rr traro;?'orn )

' t i ;,] 'fand and hllov ( ), p. ,8).
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Proposition 7.

•ki/(x-a)2 + (y-b)Tdx

ias 1 - y-b /-++ 1 -Jy-bJ/s2-i

2 { e_ e (14)

Proof. Using (10), we get

( isX - 2+j e keif(x-a) + (y-b) 2 dx

1 T , 1 - -h I I7 e -l-hl'/l,.

Use of the Fourier transform (4) of unity and the sampling property, (51), of

the delta function reduce the right-hand side of the above equation to that of (14).

Proposition 8.

ei-S n kel/(x-a)2  2( --- n (x ,) + (y-b)2)dx

(15)

ias n a 2+ ) (n- ) / 2 (b-)! 2+i (n-l)/2 (y-b) f 'v

= (-e {(S+i) e - (2 .) efo -v
21

)nelS {  (-l)/2 (b-y)/S-2+i (-l)12 (b-y)/4s:-

for y-b,

where n is a nonnegative integer, b and y are unequal real numbers, and a is

a real number.

Proof. The case n = 0 is proved by (14). Because the theory of generalized functions

allows the exchange of the order of integration and operating differentiation in (14)

for y 0 b (see Theorem, 7.23 at p, 206 Of Jones (5)), n-times differentiation of (14)

with regard to y yields (15).

THE VIRTUAL REACTION METHOD

Let us consider a semi-infinite plate whose sole boundary is the x-axis.

In this analysis, the values of w(x,y) and its derivatives on the x-axis are not

the values at y = 0, but are chosen to be the limits as the positive y tends to

y = 0. We impose three kinds of boundary conditions:
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the simple-edge condition,

w(x,+O) = 0

(16)a2 w(x+O) = 0

8y2

the fixed-edge condition,

w(x,+O) = 0
(17)

aw(x,+O) 
= 0

3 y

and the :ree-edge condition,
2w(x'+O) + 2w + 0

+ V _ WXIO
(18)

33w(x +0) ( 3w x,+0)

where 3PIw(x,+O)/32ry q stand- for Zir 3P w(xy)/3xPy q , in which p and a are

nonnegative integers, and v the Poisson ratio.

We assume that a concentrated load P is sustained at a point A( x 0,
y= yo ) , where yo - 0. The singularity at A causes a singularity at B( x = 0,
:= -y ), where, in consideration of the reflection principle, we place another
concentrated load cxP(i.e., a virtual reaction) in which a is an arbitrary real
number. We place on the x-axis two unknown virtual retctions - an unknown
vertical line load p(x) and an unknown line couple m(x). These loads cause the

deflection

w(x,y) - -kelVx2 + (Y-Y )2 - !-P kel/x 2 + (yt-y )2 +
21T o 2 i o (19)

+ 1 f p(t)ke t2 +-y2dt + -- re(t)a kei/(x-y) 2 + y 2 )dt
2 -Ti 2 -2 31y
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The limits as positive y tends to y = 0 must be employed, because the third and

higher odd-order derivatives of axy) in (19) with regard to y are discontinuous
at y = 0 (in more detail, the values of the third and higher odd-order derivatives
at y = +0, 0, and -0 are definite in the sense of generalized functions but, due
to the existence of the integrand keip(x-t)2+ y2', are not equal with each other,
as explained following Proposition 6]. Our task is to determine p(x) and m(x) to
satisfy the boundary conditions stated above.

The Fourier transforms of (19) and its derivatives are facilitated by use
of the differentiation formula (15) and

e anfnX'X) dx = (-is)n  isX f(x,y)dx (20)
- a x

where f(x,y)is ageneralized function that vanishes at Ix = . q. (20) ds
derived by repeating partial integrations on the left-hand side.

We now set the restriction

Yo > Y > 0 , (21)

which is the range of y we must operate on to find the limits involved in +.he
boundary conditions. Once the limits are found, we relax the condition to
Yo > y a 0 by redefining the value y = 0 to be the limit at y = +0.

Use of (15) and (20) under the condition (21) yields the Fourier transform
of (19)

isx P 1 (y-yo)/s2+i 1 (y-y
e w(x,y)dx 1- 2-- -- S e e o

aPi -(y+y.)/2+i i -(y+yo)s2-i

4P1 2(___
_2__ (22)

I - - 1 y
+ 41. /. _

LI~B){Y4Ti ~/s i

4j - e ) ,

where we have introduced thp notation f(s) to denote the Fourier transform of
a function f(x),
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(U) f (x)dx (23)

Us:ing (20) for the m-tirne difftrentiation by x and performfing the n-time

differentiation with regard to y directly on (22), we find

e s ,rnx-bVdx

;My n

_P (-is) {(s2+i) (n-i)/2 e(y-yo)/S_-+i - (s2.i)(n-l)/2e(Y)/s--) -

-up(-is)m --n (j s2+i) (n-i) /2e- (Y+Y ) /sT- ( n-ssi2- 441 e-

--4i 2--+-,0)/-s7 - (62_i) ( l)/2 e-(Y+Yo)
(24)

+ -s)- e - (s2-1121) )e)/I } -

(irs) -/2 yn/2 y/S2-j

41 'nM(s) (u; 2,41) e -( i

-n the :egion (21), the oreraticn of integraticn with regard to X and the onera-
ion of differentiations are interchangeable. Letting y 0 in (2k), we find

the fo r7..u! a

isx am+nw(x,4O)
e - n_
- a x y

,(-is) , enl / YO /+2

= -[I+(-i) al -- 41- ((s2+ I) C y e) +

+ _- t p(s)f(,2+i)(n
-l )/2 (n-l )/2}

41 (25)

_51i(IlE (s){( 2+1 /2),)/
41 _ n/2M (s jn1

.Aich facilitates the transformation of the boundary conditions (16), (17), and
(IP). The Fourier transforms of the expressions contained in the boundary con-
ditions (6), (17), (18) are written out by use of (25), and shown in Appendix
II. in the final forms of the transformation of the boundary conditions, the
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expressions shown on the left-hand sides of the following formulas are renlaced
with the respective right-hand sides,

) -21 - i 21[Vs2+i + /T~
(. 2 +i13/2 - ( 1).2- 3/2 - 2i(2s 2  + -+ / + (6T)1 ,(6

because the right-hand sides show clearly the asymptotic forms when IsI increases
indefinitely.

To replace p(t) and n(t) in (19) with p(s) and ?(s), respectively, we sub-
stitute the formulas

P~t) I p(s)e-idtd ,

(27)

1 - -1st
M(t) -i (s)e ds

into (19). Thus we find

P
w(x,y) = - 27 kei/x2 + (y yo)2 - _P kei/x2 + (y-y )2 +

+ xsy/S2+i 1 Y y/, 27
+ i s)e e- e i)ds -

pTrifc e /S 2+ 12

(28)fm I (s) e-ixsf{e-Y/' -ye s2-
-y 8 m--21 - e dis ,

where use is made of (15) 2 for n = 0 and 1 with the substitution of x = -t, a =-x, and b - 0 to transfor2 the integrands. Eq (28) is convenient for the sub-

stitution of (8) and 'n(a) that will be found as a solution In the following.

THE BOUNDAOY-VALUE PROBLU4S

Solution for the sirmle edge.

Simultaneously solving the Fourier transforms (56) and (58) (in Appendix
II) of the boundary conditions in (16), we find
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21__ 1 e-y 1 2-
+2.. e(29)

lra s)s _t) {e-Yo 4 ~ s+ _yo }u .
M(S) = -e z-- (/92+ + _2M -ov

f 22i vsLY

Substituting the equations in the above into (28), we find the solution for the
simple-edge condition:

wkx,y) = _p 1 kei/ 2 + (y-yo)2 p a_-_ kei/x 2 + (y+y)2 +

+ a + i s +1(s2+i + /s 2_)_ _ e-Y/s2+i e- s 2 - i

x 1 e-Yo s -+ 1 e-Yo s- ids -

(30)

,+. e isx(/eoi + s2--i){e I y

x + e ed

x{e-YO /S2+i e-Y VS2i ds

The formulas

2+i+ )71 r2 F/-X-q++ x2

(31)

-r 2 . -2i/i 1 - x 2

where x Is a real number, are convenient for the conversion, if necessary. of the
-omplex form of the right-hand side of (30) (and the similar formulas that appear
later) to a real form. Equations in (31) are proved by squaring them.
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If we let a = -1 in (30), the effects of the virtual reactions r(x) and

m(x) disappear, and we find Kerr's (6) solution obtained by applying the reflec-

tion principle on the concentrated load P that is situated in the semi-infinite

plane. This solution by Kerr's (6), however, is not sufficiently general becaulse

it does not give a solution for 0o = 0. A solution for yo = 0 is given by (30)

if a # -1 but arbitrary. (We note that the condition y > 0 assumed initial_ for

finding a solution need not be observed at this stage.) The solution, therefore,

is not unique. Moreover, pushing this line of inference further, we find that

other kinds of virtual ractions, such as higher-order derivatives with regard to

y, or more generally, any point-, line-, or area-singularities distributed in the

lower half plane, 0 _ y - m , may be adopted instead of p(x) and m,(x) with
proper change of the formulations to represent the effect of the assumed virtual

reactions. This conclusion applies, as may be seen below, to all the solutions

of any other boundary conditions. The nonuniqueness reveals the defect of the

virtual reaction method. The remedy is presented later.

Solution for the fixed edge.

Simultaneously solving the Fourier trans'orrms (56) and (57) (in Appendix

IT) of the boundary conditions in (17), we find (29)1 and

m(s) = P 40(fJsi + /i:--){e
- y o _e-Yo

/ i 3
21 -i (32)

Comparison of (32) with (29)2 shows that the solution fcr the fixed edge is found
by changing -(l+a) in the second intergral on the right-hand side of (30) to -a

In this case it is impossible to eliminate all the effects of the virtual reacticns

p~x) and m(x) by giving a an appropriate number. In other words, the reflection

principle fails to yield a solution for the fixed-edge boundary condition.

Solution for the free-edge.

Use of the appropriate Fourier transforms of the derivatives of y in

Appendix II transforms the boundary conditions in (18) to the simultaneous equa-

tions for (8) and ;(a),

p(s){(vjs 2 + /s4i)/(/s2+i + I- rs/+1 A 4 4+1

(33)

P(S) - i ~s)((S2 + 4i)/(fs2'i + ,,i)) B

where
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Pr

A P(~)[E -yoIs2 +i E e-yo "S I

A = -( eov ,2ej _ E oV'r

B P(l- ) f= E~
21

(34)

E = (1-v)s 2 + i

E = (1-v)s 2 - i

The solution of the simultaneous equations on the above is expressed here in the
following intermediate form,

p(s) = M/ t ( s-s- + 4 71)

-- (35)
n (S) - N/( (/s2+i + s--i)} ,

where the numerators M and N are

M = -AIs7'Tl(vs2 + /S4+) + B/vS+1(/S2+i + S2-i)

(36)

N = -A/s+l(/s2+i + / ) + B(,s 2 + s4+:)

and A is

r - 2 +. /'#-l ) 2

4-4I + 47-i

(37)

= (/S1 - vs2)[/Sl + (2-v)s2]

(1,2+j + 1,i) 2
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Transforming the numerators M and N further, as shown below, we find the

final solution in the following form:

O(s) P [e +  q [ue yo 4 + _UeYo ##?-

2i [/5 - vs2j[/S4+1 + (2-)s 2 ]
(38)

/2(s) = + ,f[*j - YVey°  +Vi e y Y0 2- 1

21 [/6 - v s 2[/s-+i + (2-v)s 2  0

where

U = S-i [{(l-v)s [(l-u) - v(l+oz)] - 2ivs2 + (1-u)) - 2 S4+{+ (t-v)s2+i}]

(39)

V - {(l-v)s4[(l+a) - v(l-a)] + 2ivs
2 + (1+a)) + 2/-+{a(lv)s2 + i}

and U and V the conjugate complexes of U and V, respectively.

On substitution of A and B from (34), the numerator M becomes

M = - [Ue -Yo -iUey ° 2 i] , (40)

where

U = -(l+a)(vs
2 + /s + l)E/s2 -i + (-.)Vs+(/,2i + Is2-i)E (41)

Substitution of M from (40) and A from (37), into the intermediate form (35) yields

the final form (38) 1 . We transform U in (41) to

U = /9-i{R + Q/s 4+1} , (42)

where

R - -(1+c)vs 2 E + (1-3)(s 2+i)E

(43)

Q = -(l--)E + (l-a)E
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Substitution of E from (34), and T from (34)L yields
R = (1-v)s4[(1-) - v(1+c)] - 2vs 2 + (i-n)

(44)
Q = -2[a(1-v)s 2 + i] (

Substitution of R and 0 from (44) into the expression of U in (42) yields the
expression of U in (39)

On substitution of A and B from (34), the numerator N becomes

N = P [-Ve-y 0 /s 2 +' -yo -i21 + Ve '(45)

where

V =(1+a) (/s2i + /4 2i)E/2i - (1-.) (,,2 + / 14+)E (46)

Lubstitution of N from (45) and A from (37) 2 into the intermediate form 2
yieils the final form (38)2. We transform V in (46) to

V T - Q/14 , (47)

where

T (1+a)E(s 2-i) - (1-a)Evs 2  
(48)

5ubstitution of E from (34)3 and E from (3L)4 into T in (48) yields

T = (1-v)s4[(I + ) _ (l-a)] + 2ivs 2  + (+a) (49)

Substituting T from (49) and Q from (44) 2 into the expression of V in (47) yields
t'e expression of V in (39) 2 •

Substitution of 3(s) and M(s) from (38) into (26) yields the solution for
the free-edge condition. It is impossible also in this case to eliminate all
the effects of the virtual reactions p(x) and m(x) by giving a an approtriate
nunber. rn other words, the reflection principle fails +.o yield a solution for
the free-eije boundary condition.

C,.ndition lntt 'tmust be assiwned In the outside reeion.

1Tse of the Fourier transfor of general4zed functions means dealing with
the 7'ntirp infinite plane. On the infinite plane that we are currently dealing
w-th, however, a definite condition is given only in a part, say A, of our

220



interest and, except if any at infinity, no definite condition is Fiven in the
outside region, say B. The nonuniqueness emerges because use of the virtual
reaction method, and the reflection principle as well, produces in fact wncon-
trolled deflection in the outside region B through the use of Wyman's solution
(2), a solution with regard to the infinite plane. If the conditions are definite
throughout the entire infinite plane, the solution must ooviously be unique.

in physical terms, it is reasonable to assume that, even if a load is sur-
ported by a floating plate occupying a region A, the level of the water in t.e
outside region B is invariable. On the other hand, even though a plate of our
interest covers only a part of the entire infinite plane, use of Wyman's sciution
in the reflection principle and in the virtual reaction method reveals that there
exists intrinsically an assumed plate covering the entire infinite plane. Taking
this situation into consideration, we may interpret that the condition

w = o (5o)

in the outside region B of the assumed infinite plate replaces the condition
that the level of water is constant in the region B of the physical infinite
plane. The condition (50) implies that no virtual reactions must be imposed in
the region B of the assumed infinite plate. Therefore, once we adopt the new
condition, i.e., (50), we must disuse both the reflection principle and the
virtual reaction method.

S1224ARY AND CONCLUSION

The deflection of a floating elastic plate has so far been analytically
solved only for the entire infinite plane. With regard to the plates other than
the infinite, solutions presumedly valid for the simple-edge boundary condition
have been produced by the application of the reflection principle in which the
aoove-mentioned analytical solution is used as an influence function.

We have introduced unknown virtual reactions that we can determine to
satisfy given boundary conditions by using the soluticn -with regard to the
infinite plane as the influence function, and developed an analytical machinery
that enables us to compute the deflection of a floating elastic plate expectedly
valid to any shape under any boundary conditions. The mathematical method
essentially consists in the use of the Fourier transform of generalized func-
tions. T1he key t new development is the discovery of the double Fourier
transform of kei 4 zX+y".

The boundary-value problems of the semi-infinite plate are studied with the
virtual reaction method. It is found that the reflection princirle yields a
solution presumedly valid only for the simple-edge boundary condition. The
virtual reaction method consistently yields a solution presumedly valid for e'.-er-
boundary condition. The alleged solutions, however, are not unique.

We have found the reason for the nonunlqueness: The influence function rr-
duces uncontrolled deflection in the outside of the semi-infinite plate, i.e.,
in the remainder of the entire infinite plane, which the Fourier transfsrm cf
generalized functions necessarily includes in its range of application. The -nr.-
dition that must be imposed to produce a unique solution for a plate occupying
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a region other than the entire infinite plane is that the deflection is zero
everywhere outside the region that the plate occupies. Use of the influence
function to obtain a solution in a region other than the entire infinite plane
must be abandoned.

APPENDIX I

A EPIEF INTRODUCTION TO THE T:-EnnY OP GENERALIZED FJ_:CTTINS

For the study of quantum mechanics, P.A.M. Dirac introduced in 1926 the
delta function, 6(x). He defined the delta function to be equal to zero at
x 0, to be infinite at x = 0, and to satisfy

I 6(x)dx = 1

He also showed -hat, for any finite function ¢(x), the relation

V (x)6(x)dx - (0) (51)

holds true - the relation usually referred to (Hoskins Wh, p. 35) as the
samnlinxs orcrertv of the delta function. The delta function has been rroved to
be a convenient mathematical tool but nevertheless had not been accepted by
mathematicians as a valid mathematical concept until L. Schwartz clarified in
19 4 5 the mathematical foundation underlying the delca function concept. Since
Schwartz's work, the delta function is accepted by mathematicians as a straight-
forward mathematical concept.

To define the delta function in modern terms, it is the commonly accepted
a7oroach to start with the concept of functional. A functional is an operation
through which a number is determined for a function. For instance, given a
r-7iar function f(x), the integral

L J (x)f(x)dx

may Ileter=i1ne a finite number for any function €(x) if this integral is interwrable.
Therefore the integral is a functional. It may be observed that a desire to give
a functional an expression of integral implicitly prevails in the theory of gen-
eralized functions.

The modern concept of delta function is constructed not on Dirac's initial
definition, which is a difficult mathematical concept, but on the sampling pro-erty
(51), i.e., on the identification of the delta function with a functional that
yields a number 0(0) for a function 0(r). This functional, however, cannot be
expressed as an integral (in other words, (51, is deceptive) in the classical sense,
because 5(x) in (51) is not an ordinary function. 7he modern approach overcomes
this difficulty by taking the advantage of the following observation,

222



t is found that there are several se'uences of rerular functions w-ose
limits exhibit the sarmplinw property (see Gel'fand and Shilov (3', Tp. 3L _'.
For instance, Fourier's single integral formuia

lim sin(vx) f(x)dx = 7f(O)

shows that an expression of the delta function is

5(x) = 1 sin(vx) (2
5(x Lm (x (52)

Tne classical con,'et -f fanctio is, therefore, enlarwed io the modern 4 ,cet

to the inclusion of the limits of the sequences of reguiar functions. The en-
larged function conceot is called the generalized functions. The delta functicn
is a generalized function.

The algebraic process used in the above for defining generalized functicns
is the same as the one used for defining real n-m .bers as the limi- of the Se-
quences of rational numbers. (Birkoff (1) is ver-r readable on this subject.)
In the same way as the real number is useful for computation, the zeneralized
function is useful for analysis. For instance, consider a sequence

of Freneralized functions of variables xi, ..., .... , X, wnich con-

verges to a generalized function f. Then, the theory of zeneralied functicr2,
(ei'fand atnd Shilov (3), p. 2)) as:;orts that the sequen-e of derivnti':'

3f x c/h. onverget, to ; )'/1.r - i pr p ,,rty that does rI esri y do Id t 'i,
in the& ctic )f or dinary fun t 1 ons.

.he expression (4) of the delta function as the Fourier transform.- of iunit7
is derived when (52) is rewritten to

6(x) 
ei eitXd ,

2T V- -

which is equivalent to CL).

Use of the Fourier transform (4) of unity -nd the sampling property (51
of the delta function is the essence of the Fourier recinrocal relationshim.
To demonstrate this, let us assume the relationship

f (t)e idt g()

M'lultiplying this by exp(-in&), integrating with regard to F, and exrhanin-

the order of integrations, the above becomes
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f (t )dtl oei ( -nd g("e ir d (54)

(The order of integrations may be exchanged, lecause we may assume that the
dcubie integral exists in the sense of generalized functions. ) Using the formula
4) of the delta function, the left-hand side of (5h ) reduces to

2n] f (t) 6(t-TI)dt ,

"high becomes 2rf(q) by use of the formula (51) of the sal..in; property of the
-;-ta function. Eq (5L) thus reduces to

g(4)e if% = 2uf(n) (55)

which is the inverse of (53).

he brief introduction to generalized functions in this appendix is suffi-
cient for a casual reading for comprehending the outline of this paper. For
understanding the details of the theory of generalized functions, which is
needed for a further development of the mathematics in this paper, it should be
noted that currently three different approaches to the theory of generalized
functions are available to applied mathematicians.

The most widely accepted approach is Gel'fand and Shilov's (3), which is

based, however, on the modern concept of functional space and contains the mate-
rials that are actually more than we need. The easiest approach is presented
by Hoskins (W), but it deals with only the case of a single independent vari-
able, and ends up eventually in the functional space approach and in the use of
theory of integrations. The brief introduction in this appendix is a digest of
an essential part of the approach initiated by G. Temple in 1955, formalized by
_iwhthill (8),and extended by Jones (5). Although not widely recognized, this
approach seems to be a natural one to the theory of generalized functions.

APPENDIX I1

FOURPI-R TRANSFORMS ON THE BOUCARIES OF THE SEDTI-INFINITE PLATE

For the convenience of calculatinw the Fourier transforms of the boundary
conditions (16), (17), (18), the Fourier transforms of the expressions contained
in them are written out by use of (25), as shov.-n below:
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Je w(x,+O))dx

I -(+ e{-Y0
4 2i 1 e-yol /82-p

41,/S- 2/s4+1(/, +i + 4i)
(56)

L:isx aw(x2+0 dx

P P(1cl) eY 0 V/- -i e-yorl' I+ iti(S) -(57)

41 (22+- +7 ,

eisx 32w(x,+O) d

- - (1+ot) 1 ij -y /1F e 2- ) + (8

+ 4 ps2 -YOs+ - 421 e(58

+ (S)~ j I

e i a2WX+O)dx

____s
2 e-YO" - eo~ y+

41 /S-+1r 21
(59)
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(iSx 33w(x,+O) d

- L__~ - s2-~-rue - (s2-i)e~YO )-
41

- - (s) + ! _( s+) L2_i.2j+(60)

je isx 63w(X,+0)d

(61)

4(1 s2{e Yo/9 Ti -Y0 Afi ;s7

4j e -2(/2i + 'i)

'Thefr'Lti' in the-e formiLlas are expref-,sed 'n ~h or-is 7lven on ~.'ri.,ht-
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CYCLIC STRESS-STRAIN BLI HAVIOR NIAR A NARROk ELI. I IiCAL FILAW

Dennis M. Tracey and Colin E. Freese

Mechanics and Engineering Laboratory
Army, Materials and Mechanics Research Curnter

Watertown, Massachusetts

ABSTRACT. The elastic-plastic, plane strain conditions at the ends of a

narrow, elliptical flaw are examined for the ca~;e of a zero-tension,

cyclic loading. The flaw considered has an aspect ratio of 1-0-0 which

corresponds to a length to tip radius ratio of 2000. Hence, the flaw

serves as a model for a crack. A specialized numerical formulation was

developed for solution of this problem. It involves aspects of both the

finite element and mapping-boundary collocation methods. Attention is

restricted to loadings which maintain the zone of plastic deformation

close to the flaw ends. Numerical results demonstrate the forms taken by

the stress and strain distribution s within the pla,;ti( rcV [ion, during a

cyclic load pattern.

INTRODUCTION. We focus here on the analytical problem of determining the

elastic-plastic, stress-strain states that develop ahead of a blunt-tipped

flaw during cyclic loading. This is a basic protlem which is encountered

in studies aimed at developing improved predictive criteria for macrocrack

growth in structural materials. [or certain limi(ted conditions, linear

elastic fracture mechanics provides a satisfactory basis for crack growth

prediction. Using results of crack growth in a material specimen, a crack

growth "law" is established which predicts the growth rate da/dn in terms

of the variation AK of the elastic, crack tip, stress singularity amplitude.

W hen this linear elastic approach fails to give satisfactory predictions, the

elastic-plastic analytical problems arise. Such is true, for instance, in
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si "dies attempting to explain the phenomenon of crack growth retardation

and the general crack behavior in variable amplitude load cycling. It is

expected that plasticity effects, identified through analyses such as that

presented here, will provide a framework for devising improved growth

criteria. Of course, the nonlinear character of the elastic-plastic problem

makes the task of identifying generally meaningful "plasticity effects" a

very complex one, indeed. The work reported here hopefully represents a

step toward resolution of this broad problem.

We limit attention here to load conditions which produce localized

plasticity, i.e., a plastic zone which extends no further than a few tip

radii from the flaw ends. Such is the case when the applied tension is

restricted to small magnitudes relative to the material's yield stress.

Our treatment of an elliptical flaw contrasts with the usual choice of a

sharp crack model in fracture analysis. The large value 2000 for the length

to tip radius ratio 2a/, appears to offer a suitable simulation of a natural

macrocrack. Although the elliptical shape was chosen for reasons of analy-

tical convenience, it has the blunt tip characteristic that we wished to

include in this study. It is clear that sharp and blunt crack solution.s

will display major differences under conditions of localized yielding. We

are interested in quantifying these differences and have conducted some

work along these lines, although we reserve this particular subject for a

subsequent report. We limit ourselves here to the discussion of' the

elliptical flaw analysis.

The flaw is considered to be isolated within an infinite domain.

1emote uniaxial tension is imposed in a direction perpendicular to the

flaw's length and plane strain constraint is specified. 'The continuum is
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modeled as a non -h ardcni n, Prandt I -I cuss mat er i a I. ence, the Mises vield

criterion applies and plastic flow occurs under a constant value of ecquiva-

lent stress equal to the yield stress Y. The stress-strain relationships

have a rate form, so an incremental analysis following the cyclic load path

is necessary.

The numerical formulation was designed specifically for this problem,

from aspects of the finite element and stress function boundary collocation

methods. The problem is doubly symmetric, ,o thail w e con!ider one quadrant

of the geometry. In a region surrounding the flaw end, where plastic de-

formation is anticipated, finite element approximations are made for the

incremental displacement field. This region extends a distance of 4, ahead

of the flaw, as illustrated in Figure (1). Only the mesh of the first

quadrant is in fact used. The contour r defines the interface with the

elastic region wh ich is, represented bY ;I complex \;Iriable pow(er scries,

st res,; funct ion approximation. (:onlfor;il mI I;ITi ,  -, w Lsed to rI nstoril

the flaw onto a unit circle, and this allowed utili.zatiol of analytic

continuation principles for satisfaction of the traction free flaw boundary

condition. In the transformation, r maps to a circular arc centered at the

end of the flaw. A form of boundary collocation alone, F is employed, in-

volving the unknown coefficients of the power series. Conditions of equili-

brium and compatibility are enforced across F, and these provide equations

relating nodal displacement changes to the change in applied tension.

Ilhis hybrid type of formulation was chosen both ior rL;ons Of mItheoat ic;al

accuracy and efficiency of analysis. It is well established that the mapping-

stress function collocation approach is an effective way to solve elasticity

problems, especially for infinite domains, BoWie [1]. Likewise, the suit-

ability of the elastic-plastic finite element formulation has been amply

demonstrated, Tracey and Freese [2].
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The elastic solution to our problem is known, and it suggests that

the flaw tip stress oyy exceeds the remote tension I 1 a factor of 64.2,

i.e., I + 2 a4,. In the tip vicinity, the stress gradient is severe:

Oyy falls by a factor of 5 from the flaw surface to the interface F. The

mesh shown in the figure has element edges with lengths of the order of )/lO.

This level of spatial discretization was found to be suitable, based upon

the numerical elastic solution. We found the oYY distribution to be well

within one percent of exact, when element midpoint data was considered.

Before discussing the numerical solution, we next outline the equations

employed in the analysis.

-uRMIULATI ON. We refer the reader to Bowie IIJ and Iracey and Freese [2j

for complete descriptions of the mapping-collocation and finite element

formulations which formed the basis of this work. Here, we begin our dis-

cussion with the equations which govern in the elastic region beyond the

interface. The point of departure is the expression for the Airy stress

function W(x,y) in terms of the two analytic functions of the complex

vtrible z = x 4 iy (:) and l(z)

W = Re (z ¢ + f ' dz) (i)

The field quantities are expressible in terms of and . For instance,

the stress increment Aax, displacement increment Auy and the x,y compo-

nents of the force resultant acting on the generic arc AB are given by

Laxx = Re (-z " + 2' -') (2)

Auiv  = IT ((Iv) z .' - ( 3 -v) 4 4 (1ev) ,/- (3)

AL . i :.. + I + 1A (4)
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InT equat ion (3), F and are t he e Ia .t i mat r :tI coiit ant In equlTi (ii (1 ,

the bracket notation indicates the change ii) goiig from posit i on A to B '

barred quantities represent complex conjugate;, and the primes ind :it(

differentiation.

The mapping funct ion t ransforms the el I ipt i cal fIi, I n the -;iLic

onto the unit circle I ! in an aui I iary ,-plane, acc,)ding to

z (a+h) (./2 * (a-)/(2L) -. ,I.. I

where a arid b are the semi -axes of the t I a,. The wcri( deta I of our

problem in the L plane is illustrated in Fi cure (2 .: c he sk.er, :he

interface r appears a- a circular arc cent ,ed at = . I he 1- inite e I r,.

grid was desi gned in this plane where it t al a ;:I I , I )Iar ",,Ira te r,

centered at the origin.

The boundary condi t ions that ,-,1;1 ht. sat isi ,, can be -unmari cd

d f, o I I , ,

I V V. "IT )
0 as z

xv

I] I law urface i t ract ion tree

I II Au x  ' ) (I alIoru, x

L , 0 alon, v

V Xi AU AI x v vv ,o Tit i 1L i "IC a ,cssIF '+llx' Z' v' " XX' Z''xc' ,x..c t~i~~ts IIO .

The most significant advantage c! nappinji thc flaw onto the unit

c rc e is that the t rac t ion frec 1"l coTe!iti In can be met 1W tile method

of ,il'tic continuation. It f*, loR,q 1ro eqllaLtion I) that it 4 is

defined in the interior of the flaw, .I, ncordirig to
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or cquiivlcntly, in I . 1, if is 'iven iA; teris of y

- 1=1 -( 1' ) ¢ .' ( . (7)

tf h: The traction free cond it i on are imp i it Iy satisfied. ith the

definition (7), the problem resorts to finding the single analytic func-

tioT Iich sati -fies conIdit ions I, II, and IV.

The remote stress conditions I and syi;metry conditions 111 require that

LI (a+b) '/8 as r (8)

le ¢ = 0 along x = 0
(9)

IIn : = 0 along y 0

I., conditions are satisfied, of course, by the exact stress function

for the elastic problem:

elastic
I a = 51 [(a+b) - (3a+b)/ .]/8 (10)

The representation chosen for the elastic-plastic problem consists of a

finite term power series added to the elastic function:

15
; elastic + r/(21)n (11)

n=l

The plastic deformation within F will locally perturb the solution (10).

For this reason, the series was chosen to have negative powers of ( -1).

The coefficients cn are real to satisfy the conditions of symn;metr'. Tiese

unknowns are determined in conjunction with the finite element unknowns,

as discussed next.

bilinear, isoparametric finite elements were used. There were a

total of 314 nodes, 27 of which were positioned on F. The nodal displace-
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meit tII 1enien t s ux, - for the- inter fa ce od'. i re rep rt en ted 1,% the

vector array AL wh ile the remnaining unknowns iril(Ti o7 tu 1 are deno ted

'[he f I aw surface and \ -ax i s; bounda ry coind i t insl, wt rt( t re atcel rout ii tiI

Thie i ntc rface was considered as a surface w i h a xi al' Ic0 1( t racti on

di !t ribut ion ;vari able in the sense that i t i s (--,rcs scd in t3Ierms (,I t he

Unknowns (X1 n'using equat ionis such as (2) alongp wi th 1 1 th '1) si aud a rd

cons i st ert l oad procedure was emlp loved to de1(fine1 TiOdal1 10ais tfrom thc t Ia

tiori distri but ion. This involves a iitflCel cal iut egrAi ion (2 point il

rule) over each element edge that lies on the i nt clrf;ce. I f We donolte' the(.

vector array of the load components for nodes On :a ' ̂ P nd i f the cof-

ficients are arranged in the vector array oc, then

=c a - AT d

where c i a a rectanto I ar a rraY and d is a ec( t or i i raYv oi Ot, nt .Vo

our problem, there were S3 nodal unknowns a long , so thaIt c was 01 od

53 x 15.

The principle of virtual work provides the relat ionships between the

nodal tink n and1 U, ng stan dard riot at ion the equia ionls tAe the

form

[t F"K (130

hIlle c o n t n ui tVy k con di t I onfi, acro ss is -;,I i I ie d 1> tq i iti i Y I hi (,C 0 ']1011elt

of MU1 to the expressions; involving ATl intld sugrescted h% thle ;I re-lll,

tion and the equat ions for the displacement incre-ment , equat it u (3). 111

results in a matrix equation of the form

LU' a + Ir h (4
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L; ae~ IU *j oIJ I Sir a 1ec cr arrTT

t arie art at I (xL oa (qisat ios for s tv eiiinati . from

L; i 11 F I .i 0 1 Ii I t i 17 L: :aI I N. t& . I en b

Li ,i. the i l etr

i "A c - t ,- i , h+ (1 h)

Ilt atrlx T si rL td it is n::CriCallvr established b,)y a partial

(.ai;siun tl~ iatinn dl oritu.. For all , it is given by

w;ut o, lI\ Ic e T I c , a sy's tem, of 53 ec:uat ionsin the 15 coeffofi c t s

S ...1 i( 'r ,ci(h2re was nd to soc this svte ::. hith the cc -

-tn c o ,r .,t en :, , %i i acecnt jr, crcmn t s,st an s nerere, :s awa d

IIt, dforss 1rc:ncts arc co'.nted. c refer the reader to oar eatlier

,:, t123 shin h de cribs tihe adaptrie load incrementaton algorithm which;

,a Itiilg ed. it scet tic magnitade of YE at each step of the load path

t~ccord ing to a pre.scribed allowable, yield surface, deviatoric stress c:hatnge.

* :I i(AlH b S.S Ie considered a Iload spect rum which hal, the, rem.ote

1 hsl:,n xarvin, b:taen values of 0 and 0.089 Y. The ra.\imum value of

.151_ Y cores' onds to the point in the initial monotonic loading when the

I it ic :one hdM extended to within one element of F. The spcct rum. was

mul lned for 1 1/2 cycles, requiring a total of o8 load steps with the

duptlve increrentation algorithm restricting the yield surface stress

haige at each step to O(Y/20).

The nature of the stress variations which occur ahead of the flaw

i;n Te eplaind in terms of the elastic-plastic boundary movement. In
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I ' i it 3 c t'3 c I , t p t i o i i d I I i t IC 11 il.\ I ,i f ' 1 (I i : tiW

Iteid spect r'Ii . The spect ir1m is repesent ed by th,,- load ni segment OAF,

unloading segment BCD and relouadin se gment 1L F(;. Slate5 .*', C, and F; are

approximately at one-ha I f peak loa. T!er' i s I i,, expect ed gradual expain-

sion of the plastic -one during loading, as indicated hy the ,ontours for

states A and 1). Upon lou.d reversal, there is an inttcri of pure1' t lastic

response, corresponding to elastic unloadin.g at all plastically deformed

points, and this is ft.ll owetd by rt\'er se cieldin,: 0') IT ai' an ,xpans imn

of the plastic --one until the laGLd miliamni is 1t.ac dhc,. Ihis behavior is

indicated by the boundaries labeled C and !I. Ii* h I ad iacrease from theC,

zero load state D, elastic unloading occur .iyy 0), followed b an

expanding zone of' renewed forard p1atic Ilo,, as ilrdicated by tile loundaries

labeled E, F, and C. There are to intriguing aspects of these results.

First, the solution has a periodic character : the 1,oundaries for peak load

states B antd ( are nc:irlv identical, and the same is; Irte tor the loitldarice

of states C arid 11. Seco() lv, a drimrat ic chialig' ill the 1l; a i zone ocL1rretd

during the last load step FG (t.I had the st, ll Vali e of 0.0022 Y), as

indicated by the outer two boundaries in the figure. buring FC, the stre-ss

states of all elements beyond the middle boirdarv reached the vield suirface

but no significant plastic flo, occurred. PlaStic straining was linllited t-,

the zone within the boundary labeled I)= F A, and thus this defines the

cyclic plastic zone of our problle , Assuy. t ed hy the labelinug,, there

were rllnor differnce, ill The elastic-pllast it l' ilidarics for stat,.s [1, F,, ;m

A. Rtic"s [31 plastic solerpoSition anji;lN;iY, p iredn t
' ,  

trat the. cyit

plastic zone ';hould correspond to the plastic -one at the irtermediatc lead

state A. That analys is also predicts the ieriodic solut ion behavior tha t

we observed. Noteworthv, however, is theI fnct that wiile the superposition

L _ _ _ _ _ _ _ _



inii\ siShi~ "lOn ;isiimpt I of pr'I 0i )I t i can I p1 ast i c flou. throu" ou1 t

t he louad his tor%,a found wha'it pe ar s t o cons t i lt te s Igniiet nor.

prpart i oil tN :'coulrse(, T l resulIts and Coisp'ari F.s 5canl serve to

defijne just shult I s ignrli fi Car It i n t h is reicard .

The stress dist ribut ion t VV v s . x/, ) is given in Figure (4) at the

load posi tions A - G. 'The vert ical divi sins on the plot rarit, off ,he

locations of the cyclic plastic boundary, the mo;-.otonic plastic houpniarv

and the modeling i-,iterface 7. As a first observation, cuirves A and b

cecioustrate the fac:t that the maximum stress valiu increases and the

location at which the maximum occurs changes as the load level is ancrea sec-.

CurTve C iilust rate>, the compressive stress State tnat deveClops upon load

re'ral. here j; a sinc le element experiencing plastic: flow at load

> it i on C. The reverse Yield :one spreads and the. hYdrostaticcoprsso

i ncrcuses as the ],)ad decruases , as, shown by curve D. U'pon re loau'ing , the

::uejaIat the flaw, surface regains a tensile stress' state arc1 a --one o :

forwa rd yie ld is developed , whi le the compressive stress fi~eld i s overcome .

Ourve F ilIlustrates; how the form of the stre's di strihUt ion inf'lect ion

points) is, defined by the current, cyclic and monotonic plaistic --ones.

The dip in the curve 1: shows the last evidence of the com"Pre's . VC hvdm O-

s-tatic history. Consistent with the elastic-plastic b)oundarY results of

lia e r1 ,we see that the -v stress di stribution. at (: \erv cl:osely

a Fe (s w ith that fo)und at louid state B3. There are simal1 di ffe' -ces

between curves F and G that are apparent with in the cyclie plastic ZLenec

The variation of the stress,-strain state Fc~~ dulring, the load

eira di spl1av'd in Figure (5) for six l ocat ions ahead of The flaw.

h, .tres s and ,t rlin value,; are nIorma i Zed by the Vi (Id s e .and v'ieIlI

tra'inI r'espectively. The spatial positions (xalc .oir, I
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correspond to the centers of Clements 1, 3 , S , 9, and I1. 0niy tile

first three of this group of elements are in tile C,.clic plastic zone, as

evidenced by the open loops between load states B, 11, and G. It can I.

seen that there are significant differences, poin t to pont, in Stlets

range, strain range, mean stress, and mean stiain. In terestingjly, the

mean stress throughout the cyclic zone is essentially .tro. I-ro, the plot,

we see that each stress-strain history, nori:ializd as it is by the yield

values, starts with a slope close to unity, and then at a stress level

above yield - the level increasing with distance from: the fl aw surface -

the slope drops drastically with a resultant large increase in strain ,ith

further loading to peak load B. Upon load reversal, tle stress and strain

decrease according to the point's initial elastic slope, until reverse

yield in the case of the first three points or attain:;e!i t of the load fr(C

state in the case of the other points. Although the strain decreases dunrill

the un loading and there is a region that Cecri enecs comosres i ve st rc s, ttie

strain remains tensile. Consistent with the behavior neted in Figure ( ,

we see that the stress-strain state, after reloading to peak load, very

nearly coincides with that of state B. As we have mentioned, thi type of

periodic stress-strain hehavior is predictable using the assurption of

proportional plastic flow. The lack of proportionality in the solution call

he seen from Figure (6) which is a r-plane plot of the (7X' I yv'

st ress I st ory of a lo i t W i thin i e,uul I . Propol I i )n I f , u ,, woIld

require that the stress, ptint not \vviture fromt a di 5mtcr of' the yitld

surface, vet there is n 32' variation on each ;idf- of the circle. Nonethe-

less, we see that st ate; I, I), and C very o,ar fal on a diamter. Ihese
stress states are approximately those o- fully plas:tic, hiaxia1, plane

strain extension, where c = 2 o = '_ 2 Y/ . . The development of these
yy 39
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It; I\ IY !;ist ic ,tatcs at thle f100v surface sp ps the key to the rea! iz

ton ol per! odic it v of' the solution ahead o, 'fli the ow

I lUS 10N S. Wie commYcfted earlier on the generic rc levance of this elastic-

;.ost ic solut ion to crack growth criteria studies. There is little in thle

I *i U1 ture oil thle is-ue that asour primvarvY concerni here : rare ly, the \OYt

arsstages, of- crack tip deformiation when ela- tic strains are sigir.1 "::11't

and1 plastI C zone extent is very small1 in conrpari -j, to crack I ength 'Ih

lack of i nformation is true not just for CVL 1 1 loadings , bl.t for morjoton-

Ini igs as well, Of course, research needs are hardly limitted to this

early stage of elastic-plast~c deformation and to the particular load ve

considered. Futuire wo(rk will consider thle near tip field, as predicted c:

thie Fl tnt and sh.,rj cirack niode lo , which deve lop- at hi ghecr load levels

and aribleamplitude cycling.

I1. 0. L. Bowie, "Solutions of Plane Crack Problems By Mapping Techni.pie,'

in Mlechanics of Fracture, v. I, G. C. Sib, ed. , Noordhoff, Levduj, 1973-.

1). M. TIracev and C. L. Freese," Adaptive Load Incrementotion in Liastic-

Plastic Finite Element Analysis ," to appear J. Computers and Structures, 1960.

-.J. P. Rice, 'Mechanics of Crack Tip Deformation and Elxtens ,ion by Pa tlgte,''

nr Fatigue Crack Propagation, ASTM STP 41S, 1967.
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Figure I ELLIPTICAL FLAW AND ENLARGED TI P REGION Sioj IN(,
FINITE ELEMENT MESH
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ELASTIC-PLASTIC ANALYSIS OF SCREW THREADS

G. P. O'Hara
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory

Watervliet, NY 12189

ABSTRACT. An elastic-plastic analysis method is suggested for screw

thread teeth. In this method a single tooth is analyzed using boundary
conditions to simulate a long chain of identical teeth. A set of five
different loads are suggested to simulate pressure and shear on each flank
along with a general stress field in the component. An example is worked
out for a British Standard Buttress thread form. Data is presented from

the example to show that friction is a very important parameter.

I. INTRODUCTION. The problem of stress concentrations In screw

threads has long been obscured by the larger numher of parameters involved
and the lack of a systematic approach which could help to explain the

variation that is in any experimental program. The object of this work is
to try to cut through those problems and try to present a useful, organ-
ized approach which can encourage more work in this general area.

An example of the large number of parameters is the geometry descrip-

tion shown in Figure 1. While these dimensions may be of use to the

designer to insure that the component will fit together, the stress ana-
lyst needs only a few of them. The major geometry parameters are the pri-
mary flank angle (a), secondary flank angle (s), and root radius (R). The

primary loading parameters are the applied load (W), its angle (Y), and
position (b). These last three parameters follow the convention of
Heywood [I]. A further simplification is to nondimensionalize all linear

dimensions to the pitch (P).

The very high performance requirements of military hardware have in

the past produced a new thread form [2,31 for use on cannon breech compo-
nents. During the development of the Watervliet Buttress thread, the
Heywood equation [1] was used to choose geometry parameters for testing

with good success. The Heywood stresses, however, were never correlated

with test results. The reason for this was pointed out by this author [4)
and it is simply that Heywood isolated his teeth so that only effects due

to the load on the tooth would be present. In most experiments, the
stress in the fillet of a thread is the result of load on the thread plus
a stress concentration of the general stress field in the component.
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in a recent paper [5] this author offered an elastic stress concen-
tration approach to screw threads. In this work the overall loading on a
thread is resolved into two forces parallel and normal t-) t',e pitch line.
These are divided by the area on the pitch surface to p,;Qduce two average
stresses, radial stress and shear transfer rate. Of these, shear transfer

rate is used to normalize all stresses, and the radial stress is used in a

plot with the maximum fillet stress to produce a curve which is a char-

acteristic of a particular thread form. This curve is usually generated
as the coefficient of friction is varied from -1.0 to 1.0. where the sign

denotes the direction of the friction vector, positive being away fr,)m the
fillet. This sign convention gives the radial stress the same sign con-
vention as all other stresses with tension positive. With this method an
axial body stress in terms of a uniform remote tension can be easily added

to produce a family of characteristic curves.

The above work is all elastic and certainly only looks at less than
half of the overall problem. Elastic-plastic analysis adds a new set of

problems to the analysis. First is that it is possible to identify five
different plastic zones in a single tooth (Fig. 2), the axial stress zone,
the Heywood zone, the secondary flank zone, the shear failure zone, and
the bearing failure zone. It is difficult to imagine a problem in which

only one of these is present and the usual case is where plasticity
involves three or more of those zones working together with each starting
at its own load.

The major factor that complicates elastic plastic analysis is that it
is directly linked with the material stress-strain curve, and a general
solution can be found only for materials with similarly shaped curves.
For this report the assumed material will be 7075-T6 aluminum (Fig. 3) [6)
with a proportional limit of 65 Ksi and 0.2 percent offset yielded of 72
Ksi. This is an engineering stress-strain curve defined out to 6% strain.

11. ELASTIC PLASTIC 11ETHOD. The NASTRAN Rigid Format 6, Piecewise

Linear Analysis is covered in the Theoretical Manual [7] and uses the tri-
angular ring element (CTRIARG) which was implemented in a parallel program
with the trapezoidal element reported by Chen [8]. In this method the

number and size of the linear steps is selected by the user before the
run. It is the duty of the user to select steps which produce adequate
results within the limitations of the available computer time. The pro-

gram then selects the slope off the stress-strain curve by extrapolating
the change in effective strain for the current load step out to 'he end of
the next load step and using an estimated elastic modulus (E)

0 i+I - ai
Ei (1)

ei+ I - ei
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Where 01+1 and ei+ l are est imated values;. This will be equal to the slope
of one of the liner segments of the input stres;s-strain curve only when
both points fall within the same liner segment of the curve. In the cane
of a zero modulus the element is assumed to have no increase in stiffnes
and a zero element stiffness matrix is generated.

The use of the stepped constraint input is not normally aIIowed
because of the ambiguity that would exist if bot h forces and constraints
were stepped together. This can be overcome using a small l:1AP alter
package in the executive control deck when only constraint input is to be
used. Under these conditions it would seen that superior results could be

expected because the extrapolation is done on the basis of strain.

The solutions In this report have been Set up on the basis of 13 load
steps, however, in one case the solution was truncated when a portion of
the structure exceeded the defined stress strain curve and entered tie
zero slope region. When this has happened to all elements connecting any
grid point a singular body stiffness results and the solution is stopped.

This results when the modulus (E) is zero and the element stiffness matrix
becomes zero.

III. BOUNDARY CONDITIONS. In this work a small tinite element grid
(Fig. 4) will be used to similate the behavior of a tog , chain ot identi-
cal threads. This requires boundary conditions for the three surfaces
where the model is cut out of the larger problem aq well as applied loads.

These surfaces are the two radial planes and an axial cylinder. These
surfaces will be treated differently for axial load and the Heywood loads
on the thread bearing surfaces.

The grid points on the axial cylinder must be constrined to replace
the bulk of the body material. For the axial stress input these points
are free in the axial direction and are constrained to a fixed displace-
ment in the radial direction. This radial displ icement accounts for
Poisson contraction in the body. The grid points in the radial planes are
generated at the same radial locations to allow them to be constrained in
pairs, one in each radial plane. The radial displacement of each point of

a pair is equal and the relative axial displacement of all pairs is the
same. This forces the radial plane to conform to the same deformed shape
while being free to distort out of the planes. In the elastic-plastic
solution for axial stresses the constraint values for Poisson's constraint
and relative elongation are stepped together to produce ai piecewise con-
straint input condition.

In the solution for lievwood loads tihe obiect i ; to react the load out
in shear, therefore the grid points on the acial cylinder are given a zero
displacement in the axial direction. This zero dlsplacement is also given
to the radial displacements to similate a st if structure. The two radial
planes retain the same constraints as for the axial Loads, however, the
relative axial displacement is set to zero. In this case forces on the
bearing surface are stepped to produce the piecewise loads.
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lu1, teI.. 0 ,.ho '1 t hec forces on a ;.irt icu]ar t hr, id fouth. ':r. ii. a
r ijv id a on,'J siry b, rv ,rtn, flank wit h a presc;ure and ,o s'.,: load oni

.,,€,. '** i mary1  lank is the one which is n e ,d fo' iA r " r ifcr.
Tie' r liry flank be;m'rns ld<'d under reverse loadi:;< or 3en 1:<>oiacc--

mit r et,..0vt 1, tit: radial clearance. In this paper only t ! or- .lads on

t h- primary flank will be used. In this case the pressure. <d, shear loads
art idded into an overall load W whitch is then resolved into a radial load
(L -and axial load (L) . The s, are the loads which are averaged over the

ar,,, at the pitch line to produce the radial stress (Or) and the shear

trjusftr rate (R).

I V. LXAPILES ( F ASTJC-ILASTIC AhALYSIS. Th this psiper four exs:i-
p -'s ,,t ,last ic-plat -c 'Analysis will e- shown for the thread form usesi
t iw :it i sh Standa ri Buttress. his form appears as a high strength

t Lr Tad si several Army structures; such as the '1,AS c, non breech and some
i: , t i, ci.ryv armor piercing projectiles where :t seems t o have been

st I rtt-. anc ut t ht- 1ow rad i a load conponent . The loa ings arc all

unfor m ii, lied loads and include one axial stress load and three -'Od
t "'p, PToe finite element grid is shown in Fi.'ure 5 with the e-eon:

,hrkv~lk, t,, expose ,'ach side. Thlis '-rid has a pitch diameter of i0.O
t 011 t !i itch lend,,tI.

I rst lad is , fn kxi.kI stre-. . - toe body of the compon ent witg a
i i t Ki . This is done by constraining the relative axial d isplact -

.:n ,L the rdial planes t n a xed valuc and stepping that value in t he
it- wise solut ion. Tihe axial cylinder is stepped in a similir w.,y to

pritice the! Poisson cont ract ion. Fig'ure 6 shows a shrunken element plot
oit tho', elemtnts which have become nonlinear. In this plot all the ele-
ments shnwn are above the proportional limit stress of 65 Ksi. The ele-
ments siown doubled are above the conventional yield stress at the .2%
offset point.

The three Heywood loads use three different values of fri-t ion cmi-
ficients -. 5, 0.0, and +.5 where the sign on friction denotes the direc-

tion of the friction vector. Figures 7, 8, and 9 show the plots of non-
linear elements. It should be noted that the shear trainsfer rte for Fig-
ure 9 is lower than the other two. This is because that solution exceeded
the f-i strain maximum oi the stress-strain definition and the solution was
stopped at that point. The arrows in these plots point out the element
where the maximum stress occurs which is different in each of these solu-
tions and the axial stress plot.

These plots of nonlinear element show one part ot hite overal, pic-
ture. The next thin, to look at is the maximum stress in the fillet.
Figure 10 is the curve of fillet stress vs axial stress for the axial
load. This soluttion was stopped at this point because the constraint in-
put leave'; so~me que stion about the nominal input stress when the bulk
st ress exceeds the yield point. Thie maximum fillet stresses for all three
ileywood loads are plotted against shear transfer rate in Figure I1. The

very high values for the st resse-s art' the result of the mult i-axial stress
state in the f il let and other than that ,he plot speaks for it self.
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4A5'RAN usus the displacement met hnd ird dilnocenit s ire jlten lire

Useful In evaluating a problem than st resses so an exanpIl 0! displacentent
seems In order. Figure 12 shows the Z or axial displacement of grid j,,,int
number 155 which is at the mid point of the primary bearing surface (on

the pitch line) for Hleywood loads. In this plot the di spl 1Cements have
been connected to reference the bottom of the fillet as the :,ero point.
The difference here is well defined although not is rnarkled as is the
fillet stress c:ise, probably because fillet stress is a much more local-

1.'ed effect than t his dLsplacement.

V. CONCLUSION. in conclusion this paper has it temapted to define a
method of elast Ic-plastic analysis of individual t hread teeth. The prob-
lem if how to define reisonable loading coidit ion fir i; spec I fic practic,il
problem has not been def ined. Even with this liflitatl ion, an example hi1;
show:i the relati%., magnitude of seVel 1 loadii 4  Lt.Iti . I'lie re.ader
should pay particolar attention to the very definite effect ,t friction on
the behavior of the thread.
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GENERALIZED PLANE-STRAIN PROBLEMS IN AN ELASTIC-PLASTIC

THICK-WALLED CYLINDER

P. C. T. Chen

U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL

Watervliet Arsenal, Watervllet, NY 12189

ABSTRACT- A uew finite-difference approach has been developed for

solving the generalized plane-strain problems of partLally-plastic thick-
walled cylinders made of strain hardening or ideally-plastic materials.

The tube is assumed to obey the von Mises' criterion, the Prandtl-Reuss

flow theory and the isotropic-hardening rule. The forces include internal
pressure, external pressure, and end force. An incremental approach is
used and no iteration is needed for each increment. The approach is sim-

pler than others yet quite general and accurate. The desired acciracy can

be achieved by reducing the grid sizes and load increments. Some numeri-

cal results for the stresses and displacements in partially-plastic thick-
walled cylinders with either open-end or closed-end conditions are

presented.

I. INTRODUCTION. In i recent paper [1], a new finite-difference

approach was developed for solving the axisymmetric plane-strain problems

subjected to internal or external pressure beyond the elastic limit. The
material was assumed to obey the von ises' yield criterion, the Prandtl-
Reuss flow theory and the isotropic hardening rule. The ideally-plastic

material was treated as a special case. The new formulat~on was also used
to determine the residual stresses in hollow cylinders due to quenching
[21. Since the plane-strain end condition was introduced only for sim-
Flicity, it is desirable to extend the approach to consider practical

problems with either open-end or closed-end conditions.

In the present paper, the finite-difference approach is developed for
solving the generalized plane-strain problems o: thick-walled cylinders
subjected to internal pressure, external pressure or end force beyond the
elastic limit. [he explicit equations between the incremental-stresses
and increnental strains are used. The present approach is valid for
ideally-plastic (31 as well as strain-hirdening materials (4]. The

approach is simpler than others [3,41 vet quite general and accurate. The

desired accuracy can be achieved by redocing the ?rid size and load incre-
ments. No iteration is needed in each incremental loidLng step.
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II. BASIC EQUATIONS. As;uming small strain and no body forces i.
the axisymmetrtc state of generalized plane strain, the radIal ard tfl-
gential stresses, or and oe, must satisfy the equilibrium ecuation,

r( or/ar) = 00 - Or  ; (1)

and the corresponding strains, t r and c0 , are given in terms of the radial
displacement, u, by

Er = au/r , Eo = u/r , (2)

It follows that the strains must satisfy the equation of compatibility

r(ata/3r) = r O (3)

Whereas the differential equations (1), (2), and (3) hold throughout the
tube regardless of the material properties, the constitution equations
assume various forms according to the adopted form of yield function,
hardening rule, total or incremental theory of plasticity. In the present
paper, the material is assumed to be elastic-plastic, obeying the Mises'
yield criterion, the Prandtl-Reuss flow theory and the isotropic hardening
law. The complete stress-strain relations are [5]:

d i ' = doi'/2G + (3/2)oijdo/(oH') (4)

do * 0 for i = r,b,z

dEm = E-1(1-2v)dOm (5)

where E, V Young's modulus, Poisson's respectively,

2G = E/(l+v)

m =(Er+E+Ez)/3 , i em,

(or+0+oz)/3 , Oi' 01 -(51

a = (l//2)[(or-O0) 2 + (oo-oz) 2 + (Oz-Or)2]1/ 2 > 0o , (6)

and oo is the yield stress in simple tension or compression. For a
strain-hardening material, 11' is the slope of the effective stress/plastic
strain curve

a U~ftF))(7)
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For an ideally-plastic material (HA' -0) , the quantity (3/2)da/(cH' ) is
replaced by dA , a positive factor of proportionality. When a < o. or do K
0, the state of stress is eLastic and the second term in equation (4) dis-
appears. Following Yamada et al [6), equations (4) and (5) can be rewrit-
ten in an incremental- form

do1 - dijdcj fuor t,1 r,9,z

and

dij/2G v /(l-2v) + 6jij - oi' oj'/S

where

2
S - (1 + j,'G~2 i/E _ a/(I-a) ,()

3 3

cLE is the slope of the eftective stress-strain curve, and i is t'he
Kronecker delta.

This form was used in the finite-element formulation for solving
elastic-plastic thick-walled tube problems [7). In the following section,
the incremental stress-strain matrix will be used in the finite difference
formulation.

lI 1. FIN"ITE-DIFFERENCE FORMULATION. Consider an )pen-endi orcle-
end thick-walled cylinder of inner radiuis a and external radius b. The
tube i3 subjected to inner pressure p, external pressure (1, and end force
f. The elastic solution for this problem is well-known and thne pressure
p*, q*, or f* required to cause initial yielding can he determined 1)-
using the Mises' yield criterion. For loading beyond the elastic limit,
an incremental approach of the finite-differenice formulatio,-n is uised. Fthe
analysis starts with the applied pressure p, q, or f and the loading path
is divided into ma increments with

, p -q (i)/-q*)/q , AIf -(f-f*)/ .(

The cross section of the Lut~e is divided into n rings with

whe r, o is the r. jliis of rhe eias t ic-plastic initerf ace. A t the h oiI

of each increment of toviding , the dis-tribution of displ;Icements;, strlins;
and st re-Sss is issme. be kn,)wn andl we want I deter-nine A'u,A

A E Z0 ( r' Ln (3 *) ,> % a t iit! ~r I po i t s. Aince trio incrometil ;tretose,; ir
re[.ited tti ncre-,ot 2: strains by thie Lncrpreit il -.rm 0E.()) i:,_
Aui rAt,,, there oxIl - ii ; tlhr,-o ,ukikn )wns it ici ;t it~wi thk lt ho t

he 'feterrilned for "., I tre~jernt ot loi~dlng. AC)ning for the f icr t.i,

the ixtial strain Ii tIc leenI.nt of r, the uinkno)wn vartibles 1: the0

present formil ition ire, r)j ,(I , for t - I , . n,n+I-i d A

'6 7



The equation of equilibrium (1) ind the equation ofroptblt 3
ire valid for both the elastic and the plastic region-, at a thick-wIdJed
tube. The finite-difference formis of these two equations at i 1,... ,n
are g-iven in t41 by

(ri+j-2ri)(AUr)i - (ri±l-ri)(A ob)i +~ ri(j or)+

= (i~iri)J~jor~ -ri[(ar)pi~ (Ordi1  1

for the equation of equilibrium, and

for the equation or coopatibilitv. ;ith the aid of t~ie incrementa.
stress-strain relitio.i- (Eq. (8)), equation (12) can he rewritten as

+ [(ri+j-2ri)(dii)i + (-ri+i+ri)(d',I)i](,lcr)i

+ +

+ [(ri+j-2rj)(d13)i +- (-ri+1+rf)(d129) + ± d3)+1E

(ri±1-r9)(aoi-)i - ri[(Or)i~i (00i!. lA

The boundary conid t iona fo the -aroblem are

r~~ ~ -A ,,, z)(bt L= rj

C-:ite re is )for opun-end tube;i iand i ,for closed-'end Lane iLg h
incrpiflental rebat ion' (!-'. ( ,we rewrit,, Ojltn Im(>)a

+ I -, , ), L
("I )n+I-- ~n~i+ ('1 j

<HA



and

S(ri+l-ri)lri[ (d2)3 )i(ALOe)i + (d 13) jt Lr)j + ri+ I[I(d23) i+1(LE )i+1

+ (dl3)i+l(A6r)il1j1 + (r~jl-rQ)[r1 (d 3 3 , 1 + jjd0+)'_
i-I

P,2p+ tf/il(8

Now we can form a system of 2n+3 equations for solving '_n+1 unknowns,
(AE 6 )j, (AErdi, at i ,2.,nitland c. Equations (16), (17), and

(18) are taken as the first and last two equations, respectively, and the

other 2n equations are set up at 1.= 1,2,... ,n using (13) rind (14). The
final system is an unsymmetric matrix of arrow tyvpe With the nonzero) terms
appearing in the last row and column and others clustered about the main
diagonal, two below and one above.

In the computer program which was developed, the dimensionless qjuanti-
ties r/a, EEr/Oo, ~eOEcz/o),oO, 09/'J" OZ/oo0, pie0O, q/o ),
f/(ra 2 o0 ) were used in the formulit ion and the Gaussian eliminiat ion meLh-
od was used to solve these equaL ions. .%!I calculations were carried out
on 13,'l 36()/ModeL 4 4 with double pre-t io to L redukce round-oit er ro rs.

IV. NUMERICAL RESULTS AND DISCUJSSION S. The generalized plane-striin

problems of thick-walled cylinders subjected to internal pressure p beyJond

the elastic limit were solved. The elastic-perfectly-plastic as well as
strain-hardening materials were considered for open-end or closed-enid con-
ditions. The numerical result were based on thie following pqrimeters:

b/a = 2, v = 0.3, at 0).03 , w = 0 or 1. Various v-ilues ot M and Tu were

used to test_ the converlence of the nuocjricoil results. Thke incrementail
loadings were ipplied uintil, the rLilly plas;tic statre was reached. TPie v I I-
ue for p corresponding to this final ,stite was lonoted b.' it**. It was
founld that the results of thes;e vi _e or ill t our cas es converge be

increasing m and/ or n. rr n = [J, Ip. )M W( l1iU1 AV 0s t**/o -

37 8 02 (a 0 0, w - as csc ); ~ X8 (i 9', I " i oe 2)) ; 0
(a - f) S -: - 0 'Is ':1 1 ; ) ; *l.oL Ii . , - 1 'Is / 4 ). Vfl -

t o1. ~t1 rOlH II14 are -41 iln I , tFIAu i, ) . I- L i i -o(W , L110 bore iC
al tsjLice1imotsL' is tjnwt loii )t kintri:i pr,-ssurc tor , st 1;- 1, 2, in~i -4.

Figure 2 shiows the re Litiq, hous euiie: Lntcrnal pressure in(I e lastiic-plastic
houndiry for case,; i, 2, trid 4. Vim, et fcts ot end conditions and stritin
hardening cio als;o be se040 ii ine-') I wo ft - unres. The distrtbntions'- of ra-
dial and' tanigenti Lst rome:,; ! )r 1 . , .2, i.4, l * , 100 1.8 -ire

s hown in Figure 3 fo)r ca, I ind in t F r i tor cAs e 2. Final lv the is-
trihutionsi of -U.,i ~tress, toir ,, i 1. , 1.-., intl 1..o are stiown ini F'igure

5 for cases I A T. I '-. T1W OffeCt 0i on~j initin d elastic-pl-astic
boundairy on the axi ii stre-ss is q~ui te signi [canrt.



The present approach determines Ac. directly for each step of incre-

mental loadings whereis in [4] , many iterations were needed because A val-
ue of c z was assumed. In addition, the computer stora;c ;ee-ed in this
approach was only 357 of that in [41 , and much larger i: can be used to

yield better results. The present approach is simpler vet more general

than the other finite-difference approaches because both ideallv-plastic
[3] and strain-hardening materials [41 can be considered in a unified

manner. Furthermore, very accurate numerical results can be obtained and

used to verify the accuracy of [7,8] the finite-element programs.
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QUADRATIC AND CUBIC TRANSITION ELEMFNTS

M. A. Hussain, J. D. Vasilakis, and S. L. Pu
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL

Watervliet, NY 12189

ABSTRACT. Based on the investigations of Barsoum [1], Henshell and
Shaw [2], quarter-point quadratic elements have been successfully used as
crack tip elements in fracture mechanics. This concept of singular ele-
ment was extended to cubic isoparametric elements [3]. Recently it was
discovered by Lynn and Ingraffea [4] that under special configuration,
transitional elements improve the accuracy of stress intensity factor
computations. These transitional elements are located in the immediate
vicinity of the singular elements with the mid-;ide nodes so adjusted as
to reflect or extrapolate the square root singularity on the stresses and
strains at the tip of the crack.

In this paper, we have obtained the locations of mid-side nodes of
these transitional elements for the quadratic as well as cubic elements.
Explicit computations for a typical element are symbolically carried out
using MACSYMA*[5]. These computations reveal that in addition to the
desired square root singularities, the crack tip senses a stronger
singularity, i.e., of order one. Further, the strength of this singu-
larity cannot be controlled, as was possible for the cubic and quadratic
collapsed elements, where, by tying the collapsed nodes together, we
could easily annihilate this strong singularity.

These cubic elements also have Hibbit-type [6] singularities. The
locations of mid-side nodes for these sIngularities have also been deter-
mined.

The cubic transitional elements were used for double-edge crack prob-
lem, and it was found that there was improvement in accuracy for a config-
uration which consisted only of singular and transitional elements. How-
ever, for a well-laid out grid, the improvement was only marginal. MACSYMA
has proved to be an indispensible tool for the present investigation.

*MACSYMA is a large program for symbolic manipulation at MIT.
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SECTION I. Consider a quadratic quadrilateral isoparametric ele-

ment,
8 8

x NiX i  , y NiY i  (1)

8 8
U I NU i  , v= NiVi (2)

i=l i=l

where Ni are the shape function of 'Serendipity' family [6), and are given

by,

CORNER N - (l-$)(l-n)(->-r-l) , etc. (3)

NODES 4

MID-SIDE1NIDESID N =  (l- 2 )(l-n) , etc. (4)

NODES 5 2

Without loss of generality consider the sectorial element, together with

the mapped unit element in the transformed plane, shown in Figure 1. For
simplicity, considering the one dimensional case along line 1-2 in Fig-

ure 1 (i.e., ri = -1) we have from (1)

x = -1(-l) + -1 (l+L + (l-C2) L (5)

The condition for the coalescence of roots of (5) at x = 0, together with
the condition that 6L > 1 gives

n L+2 /+ (6)
4

This is the result, in a slightly different form, obtained by Lynn and
Ingraffea [4]. With this location of mid-side nodes, the mapping of the
general element of Figure 1 becomes, from (1) and (2),

x {(+l) cos a + (i-n)}{ (A-i) + (vf+i)} 2  (7)
8
y i (T+i){(F( 1) + (v7+i)} 2 sin ct (8)

The Jacobian of the transformation (1) and (2) is then given by

J"(-l){(-l) + (V'+i)} 3 sin a (9)816
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As can be seen from (7), (8), and (9) that the Jacobian has a third order

zero while x and y have second zeroes at

_ 1 (10)

Using the inverse of the Jacobian matrix, the strain component can be

written as

au I uY _ u dv)
;x¥ J drl - - - d , (11)

Substituting the various derivatives and collecting terms we get

au A, _ A,
__ A + + A (12)

x ( (:-1) + r'+l) 2  (F,(--l) + )T+l) 3

where A1 , A2 , and A3 are given in the Appendi:.

Comparing (12) with (7) and (8) it is seen that the strain component

not only has singularity of order one half but also of order one. Simi-

larly we have

au I u dx +udx A4  A 5

-= - {- - r+ --- } = (- l + n
2  (L + + + A6 (13)

where A4 , A5 , A6 are given in the Appendix.

SECTION II. Consider now the cubic, 12 node, quadrilateral

isoparametric element,
12 12

x N X y NiY (14)t =1 1Ii
and displacements

12 12

u- X NiII , v- N Vi (15)
i-i -

where the shape functions are given by

CORNER 3e

NODES 32N1 = (i- )(1-n){9( 2
+n 2

)-I0) , etc. (16)
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MID-SIDE e

NODES 2 3

The general transitional element together with its man in E-r, plane is

given in Figure 2. For simplicity consider the one dimensional case

along line 1-2-3-4 (i.e., n = -1),

-1 f (-9+27 lL-22+9L) + C
2 (9-9 1L-9B2L+9L)

16 + (l_27 1L+27B2LL) + (_1+9£ 1L+982LL)

The requirement that (18) be quadratic in ,, together with the condi-

tion of coalescence of roots gives the following, ohysically possible

solution for locations of mid-side nodes for all L,

L +4rL+4L+4 9- ,(19~

4L+4,T+l
62L 9

With the above values the general mapping of the element shown in Figure

2 then becomes

x = (( +l)cos a - (q-1 (VT-l) + (,,+1)}2 (2D)
8

y = I ( 7+l){(T-l) + (/y+I)) 2 sin a (21)
8

and the Jacobian of the transformation becomes

-=(xy) - 1 (1r1) (i((_l) + (,v+1))3 sin cx (22)

9( ,q) 16

These expressions are the same as for quadratic elements (compare eqs. (7),

(8), and (9)), and hence the Jacobian has third order zeroes and x,y have

second order zeroes, at

28 L+0 
(23)
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Following the procedure outlined before, the strain components can be
obtained from the following,

uB 1  B2
- B 4 + B (24)
ax (('T-1) + vL+I)2 ((/-L-I) + " L+l) 3

au- + .... .B5  . . + B (25)
9v ( (vT-1) + T+l)2 (F('i?-I) + "T+1) 6

where BI - B6 are given in the Appendix. Similar expression hold for
derivatives of v. Equation (24) and (25) again reveal the same kinds of
singularities as (12) and (13).

SECTION III. In the cubic elements there is an additional set
of locations of mid-side nodes which give Hibbit-Type [6] singularity.
This is obtained from the condition that all the three roots of (18)
coalesce. The location of nodes is given by

L =(Ll/3 + 2) 
3

3 (26)

2 1/ 3  3

2 1

and the transformations become

X = -- {(n+l)cos a - (+-)}{(L / l) + /3+
16

(27)

1 1/3_ 1/3+1)
y = - {(l+l)sin a}{ (L -1) + L/+I

and the Jacobian becomes

j - (x,_y) = 3sin(c) 1/3_)T,(1 1/3_I) + L1/3+l}S (28)

128

Following the procedure outlined before It can be shown that

au C' 2

x ((LI/3_) + LI/3+1)3 (I + L

C3
+ + C4  (29)

( (LI1/3_1) + Ll/3+1)
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The above equation indicates that in tUls case th.c singularitic. are of
order 1, 2/3, and i/3. This combination is of no e ictt-ret in
linear fracture in homogeneous media.

SECTION IV. The sample problem of a double-edg.:-crcked plate
of [4] is selected for numerical assessment of transition elements when

they are used with 12-node collapsed singular elements. Figure 3 is an

idealization we usually take for such a mode I crack problem. The dis-
tance a between the crack tip and the nearest node in a collapsed , Iement

is often taken in the range of 0.5% to 3% of the crack length a. T.e
ratios a/b and b/c are usually in the range of 2 to 10. Stre:s intensity
factors for several values of p, b/c, and a/b with and without the use of
transition elements are tabulated in Table I. Comparing to the reference
value, KI = ov-aF(a/2a), where F(l/2) = 1.184 [7], the percentage errors

% are also snown in the table. The result with the use of transition

elements is better only when a very large ratio of b/c (=20) is used.

TABLE I. STRESS INTENSITY FACTOR AND PERCENTAGE 7-RROR FOR A DOUBLE-EDGE-
CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELE.i',S WIT7
AND WITHOUT TRANSITION ELE.MENTS. FINITE ELEMENT IDEALIZATION
OF FIGURE 3.

Without Transition With Transition

Elements Elements
b/c a/b SIF SIl-

0.005 4 10 2.8808 2.31 2.6736 2.C)>
10 4 2.8376 0.78 2.7831 -i6
20 2 2.9863 6.06 2.7851 -1.0c

0.01 4 5 2.7986 -0.61 2.7926
10 2 2.8334 0.63 2.7813 -'.-2

TABLE II. STRESS INTENSITY FACTOR AND PERCENTA;E ERROR FOE A DKYLE-E -(:
CRACKED PLATE USING 12-NODE COLLAPSE! SING1ULAR EMGNT
AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT lDEA'I'ATO,

OF FIGURE 4.

Without Transition lt , Tr,;ns tior
Elements F] en t

a/c SIF AT SIF

0.005 40 3.325 28.09 2.7658 -1.71
0.01 20 2.963 5.23 2.7654 -],7C

0.02 10 2.8115 - 0.15 2.7650 1. sQC
0.04 5 2.7632 - 1.86 2.655 - .7
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Another idealization, Figure 4, similar to the one used by Lynn and
Ingraffea [4] is used to recompute stress intensity factors for ,,arious
values of a/c to see whether the transition elements in cubic isoparamet-
ric elements can give as good improvement in accuracy as reported in [4]
in the quadratic isoparametric case. These results are tabulated in
Table II. It shows again the result obtained from the use of transition
elements is better only when a very large ratio of a/c is used.

In this paper the stress intensity factors are calculated from the
normal component of displacement of the node on the crack surface and
nearest to the crack tip. It usually gives better results than the aver-
age value computed from nodal displacements along the rays from the crack
tip at various angles (8].

For elastic crack problems, the correct order of singularity at the
crack tip is taken care by the collapsed singular elements. The use of
transition elements does not practically improve the accuracy.

CONCLUSIONS. In this paper we have been able to obtain explicit
expressions for singularities the crack tip senses from a transitional
element. The application of these elements for a few practical problems
of fracture mechanics as well as stress concentration factors has been
partially successful. It is believed that this is due to the fact that
the crack tip senses not only the square root singularity but also a
stronger singularity. The strength of this singularity cannot be con-
trolled as was possible for collapsed singular elements, where the strong
singularity was essentially eliminated by tying the nodes together.
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APPENDIX

In this appendix we give the explicit expressions for the coefficients
of the various terms in the strain components given in the text.

A,1  2CR-i) {4n(R-l)[Ru 8-u 6  + 4R[u 7-u 5

+ (2nR+R-2rt+l)[u 2-Ru4J] + (2nR-R-2fl-l)[u 3-Ru 1J

A2 f 1 {(3r)2 +4T+l) (R-1) (u 8-u 6) + 4 (r+l) (R+1)u 7
2(R-1)'

-4(rr+3)(R+l)u 5 + (R(3n
2 +7nl+4) - nr+lu4

+ (3Rn(nr+i) - (3n2+7n+4) )u3 + (R(3 n 2 +5r+4) - (T2+I8 u

- (R(3 n2 +q-8) M2 (n+5r44))u 1 )

A 2- 2(2
3(R-1) (2 5 -u 2 -u 1 )

A 4 2((r)+l)cos a~ - (nj-i)) {R(-~ Ru7u5)-4(-~
(R-1) 2 sin a 4~R1u Ru- 5  ~Riu

(R(2rr+i) -(2r)-1)(Ru 4-u 2) + (R(2n-1) -(2rr+1))(u 3-Ru I}

A (R-1snc {2(R-1)[cos ct(3n2 +4nt+) -(3n
2 -4n+1)](u 8-u 6 )

+ 4(R+1) (cos ct(n+l) - (n-3) )u7 - 4(R+1) (cos cz(r+3) - (n-i))u5

- (cos c[R(3n2 +7rt+4) - 3n(rr-I-)] - (R(3l 2 -n)-8) -(3 n 2 -5r+4)JI)u 4

" (cos cx[3Rn~rl+l) - (3n2 +7nt+4)] - [R(3 n2 -5r+4) -(3n
2 -n.-8) 1)u3

" (cos cL[R(3n 2+5n+4) -(3n
2+n_8)3 + (-3Rn(n-i) + (3 n2 -7n+4)])u 2

- (cos c%[R(3n 2 +n-8) -(3n
2 +5r+4)] + [-R(3n2-7n+4) + 3~-))l

A6  2 {Cos a(-2u +U 4+u) + (2u 7 -u 4 -u 36 (R-1i) 2 sin a -4
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B Ri){ [R 2 (27n 2-l8rl-l) - R(54n2 -36TI-38) + 27r, 2 -18T,-1](Ru -u)

+ 9R(2R+1)(u 9-11 ) + 9R(R+2)(u 3-u 8

+ - (R-1 )2 (9n 2 -2rn-3) (u -Ru ) - - (R-1 )2 C(9Tn+2Ti-3) (u -Ru)
4 5 12 4 6 11

+ .1 R 2(27 n 2 +18ri-l) - R(54, 2 +36ri-38) + 2 7T 2+18n-1 I(U -Ru1 )

B [R 2 { 1R(45n'+27 r,2-Tri-105) - R(90r13+54n 2 -146fl-222)
2 (R-i)3  16

+ 45n3 +27 T 2 -37nI-3]u 1 + 1 2R 2+6R+i)[(n+3)u2 - (nr4-)u I

9 - (R 2 +6 R+2) I(rt+3) u - (rt+i) u8  +
34 8

+ [R~ R2 (45rn3 +27rTi 2 -37n-3) - R (gon 3 +54n 2-i46rl-222) +

16

+ 4 5T)+2 7n' - rl 015u 4

- 1-. (R-i)2(n+l)((15 T)2 -7)u5 + (15n 2 +6nj-5)u 1]

16 51

+ -2- (R- 1 )2 ( r-1)(I 5yl2+,6f) U + (15t) 2 -7)u
16 6 12

-LI (rr+l)(R 2 (45 r,2 +36n-1) - 2R(45fl2+36r1-37) + 45r,2+36n+35Ju
16 

u

+ -r+- (R 2 (45, 2 +36Tn+35) - 2R(45r,2 + 36r,-37) + 45ni2 +36 -Iju10)

B3  21 16 1 (2R+l)ul - (5R+4)tu2 + (AR+5) u3 -(R+2)u4)

B - (r+) Cos OL - -TI + - [R- R2 (2 7r2 -18n-1) -R(54,
2 -36n~-38) +

4 sin cx(R-1)'

+ 27f n2l18n-1](-Ru I+U 4 + 9R(2R+1)(u 2 -u 9  +

+ 9R(R+2)(-u +U) + 1 (R-1) 2 (9n2 -2n-3)(u+Ru12

+ -. (R-1)2 Onfl+2r-3)(u -Ru11 ) +
4 6 1

+ .1 [R 2 (27nr2 +18rl-l) - R(54r) 2+36TI-38) + 27T)2 +18nr-l](-u +Ru )
4 7 10
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B R 1 { [ 2 (45, 3 (coG a-i,) + 27T)2 (COS ax+3) - n(cos at+71)

5 sin a (R-1)3  16

* 35(3CO c +i)) + R (9OT)3(_COS at+i) - 54T) 2(COS ci+3) +

* 2rl(73 cos a-1) + 74(3 cos cr9-)) + 45rl3 (cos a-1) +

* 27n 2(cos ci+3) - I(37 cosa +35) - 3 COS a-i)ul
9- (r3 O a-r+l) [ (2R 2 +6R+1)u 2 - (R 2 +6R+2)u]

1 i [R 2 (4 5n 3 (COS a-i) + 27 n 2 (COS a+3) - r(37 Cos a-35)
16

-(3 Cos a+i)) + R (9OI 3 (-cos a+i) - 54 T 2 (COS a+3)

+ 2r)(73 cos a-i) + 74(3 cos a+i)) + 45 n 3 (COS a-i) +

-4 27 T 2 (COS a+3) - fl(cos ax+71) + 35(3 cos a+1)]u 4

+ -L (R-1i) 2 (15n3 (COS a-il) + 3I 2 (5 cos a+7) - TI(7 cos at+i)
16

- 7 cos a-5)u5 - -a-- (15T1 3 (COS a-il) + 3T) 2 (7 cos a+5)
5 16

+ nI(cos ax+7) - 5 cos a-7)(R-1 ) 2 U6 +

16

- (cos a+3)) + R (9On 3 (-COS at+1) - 54n 2 (3 cos a+1)

* 2y)(cos a-73) + 74(cos a+3)) + 45 T3 (COS ai) +

* 27 n 2 (3 cos a+1) + T)(71 cos a+1) + 35(cos a+3)]u 7

*+ ((nl+l)cos a-rj+3)[-(R 296R+2)u8 + 2R 2 +6R+1)u 9 I

1 I [R 2 (45 i9(COS a-i) + 27I 2 (3 cos a+1) + (71 cos a+1) +
16

+ 35(cos aL+3))+ R(9On 3 (-COS a+,) - 54 12 (3 COS a+1)

* 2r)(cos a-73) + 74(cos a+3)) + 45n3 (cos a-1) +

* 27 n2(3 cos a+1) + nl(35 cos a+37) - (cos a+3)]u 1 0 +

+ -p- (R-1) 2 [(15n 3 (COS a-i) + 3T)2(7 Cos a+5) + rn(cos a+7)
16

- (5 Cos a+7)]u 11

9 (R-1 ) 2 ([15n3 (cos a-1) + 3T)2(5 cos a+7) - TIQ cos a+1)
16

- (7 Cos 5)u1

B 6 =2 sn9 a(-3 {(2R+)[-cos au 1 + U1 0 J + (5R+4)[cos au2 - u 9]

- (4R+5)[cos au 3 - u 8] + (R+2)[cos au4 - u7])
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FIGURE 3. AN IDEALIZATION FOR A QUARTER
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PERTURBATION AND BIFURCATION
IN A FREE BOUNDARY PROBLEM

Roger K. Alexander* and Bernard A. Fleishman
t

Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12181

Abstract. We study the equation with a discontinuous non-

linearity:

-Au = XH(u-l)

(H is Heaviside's unit function) in plane domains with various
boundary conditions. We expect to find a curve dividing the
harmonic (Au = 0) region from the superharmonic (Au = -A) region,
defined by the equation

u(x,y) i.

This curve is called the free boundary since its location is
determined by the solution to the problem.

We use the implicit function theorem to study the effect
of perturbation of the boundary conditions on known families of
solutions. This justifies rigorously a formal scheme derived
previously. Our method also discovers bifurcations from prev-
iously known solution families. Finally, numerical methods for
this problem are discussed.

1. Introduction Let Q be the unit square I(x,y)I0 < x,y 1 11
in the x,y-plane, F0 its left edge f(0,y)t0 < y < 1 and F1 = Ar

the rest of the boundary. Let H denote the Heaviside unit function

= 0 t < 0,

H (t)=
I 1 t > 0.

*Supported by National Science Foundation.

tSupported by U. S. Army Research Office.
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Fleishman and Mahar [FM] have posed a boundary value problem
with discontinuous nonlinearity almost equivalent to the
following:

-A u = H (u -l ) in ,

(1) ul = h(y)F0

u = 0,

where X is a real parameter, and h is a given function. (When
in the second equation h(y) is replaced by Ah(y), problem (1)
is equivalent to that in [FM]; see the remarks in Section 3
following the proof of Proposition 2.)

Equations resembling the PDE in (1) have been proposed for
models in plasma physics and thermal conduction problems [K].
Further references to work on differential equations with dis-
continuous nonlinearities may be found in [Ch].

Our problem is a free boundary problem: a typical solu-
tion u may be expected to define by the equation u(x,y) = 1 a
curve (across which u and its first derivatives are continuous)
which separates the region where u < 1 (and Au = 0) from the
region where u > 1 (and Au = -X). The location of this separa-
ting curve, however, is not known beforehand; it is determined
by the solution itself.

In the next section we shall specify precisely what we mean
by a solution of (1). For the moment, we proceed informally.
To begin, we specialize to the boundary condition h - 0, and
record the results of 1FM], which motivated the present work.

The problem (1) with h : 0 is called the reduced problem.
It always has the trivial solution u 0. When i > 4 positive
solutions appear which depend on x only: for x0 a-solution of
the quadratic equation

x 0 (l-x 0) = X-
1
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+ 1 1
(that is x 0 =x 1-4X ) we have either one (X = 4)

or two (X >4) solutions of the form

L(l-x 0 )x, 0 < x < x 0
(2) U0 (x) =U0(X) 12

X[x- I(x +x0)] x x < 1,

whose graphs are shown in Figure 1. Note that uW(x) > u+(x)

for 0 < x < 1. Thus u0 (resp. u0) corresponds to points on the

upper (resp. lower) branch of the X,u-curve in Figure 2.

The line x = x0 is the free boundary where u0 = 1. The

solution and its gradient are continuous in the whole square,
and the differential equation is satisfied in the classical
sense in the regions where u0 < 1 or u > 1. It is not asserted0
that these are the only solutions.

We turn now to problem (1) with h(y) 1 0, which will be
called the perturbed problem. In this case no closed-form
solution is known. Under the assumption that solutions exist,
a formal scheme was developed in [FM] to calculate first-order
approximations to the solution (and associated free boundary)

close to a given reduced solution uo. The questions of exist-

ence of the solution, and the range of validity of the pertur-
bation scheme, were left open.

In attempting to answer these questions, we have establish-
ed the following theorem, to the proof of which the remainder of
this paper is devoted.
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THEOREM 1: For X > 4, consider the solution u0 of the reduced

problem (1) corresponding to x0 = x0 (X), that is, on the "upper

branch" of the curve in Figure 2. For all boundary data h(y)
sufficiently close to zero in an appropriate function space,
there is a unique solution u of (1) which depends continuously
on h; this solution determines through the equation u(x,y) = 1
a-uniquc curve whose equation may be written x =7x3 + b(y)

The perturbation b(y) of the free boundary depends continuously
(Fr6chet-) differentiably on the function h, and is given to
first order by the perturbation scheme of [FM].

+
For the "lower branch" x0 = x+ (X), all of the above assertions

0
hold, provided that x0 does not belong to a certain sequence of

exceptional values having x0 = 1 as their only limit point. For

each n = 1,2,... there is an exeptional value of x0, xn, at which

the reduced problem has a bifurcation: there are solutions of the
reduced problem having free boundaries of the form x = x +

a cos niry + o(a) for all a in some neighborhood of zero.

In the next section we specify the class of admissible boundary
values h(y); Section 3 gives the sequence of exceptional values of
x0 for which bifurcation occurs in the lower branch of solutions of

the reduced problem.

The theorem asserts that, aside from the bifurcations, which
surprised us, the perturbed problem has solutions which may be
approximated by the scheme proposed in fFM]. In a way, the asser-
tion is actually stronger: the admissible boundary value functions
h(y) have uniformly convergent Fourier cosine series, and it will
follow from the proof of the theorem that the perturbation of the
free boundary may be computed (to first order) term by term.

Note that continuously differentiable dependence on h is estab-
lished for the free boundary, not for the solution u. Thi is
because our method of proof is to reformulate problem (1) as a non-
linear integral equation for b(y), the perturbation of the free
boundary. While using the Green's function (see Section 2) to
transform (1) into an integral equation for u leads formally to the
same results, we have not been able to establish the estimates need-
ed for a proof by this route.

In Section 2 of this paper we formulate a nonlinear integral
equation for b(y) and prove that by solving it we can solve problem
(1). In Section 3 we use the implicit function theorem to solve
our nonlinear integral equation, and show that bifurcation occurs
when the implicit function theorem fails. To apply the implicit
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function theorem we need to know that certain linearized expressions
are Fr~chet derivatives; the justifying estimates are provided in
Section 4. Section 5 concludes with a discussion of current work
on numerical methods for this problem, other geometries, and open
questions.

2. Reformulation of Problem (1) as a Nonlinear Integral Equa-
tion. For reasons that will emerge below, we restrict our attention

to boundary data h in Cl'a([0,1]) which satisfy h'(0) = h'(1) = 0.
By a solution u of problem (1), for such an h, we mean a function

u( C1 ( )n C2 ( \{(xy)ju(xvy)=l}).

satisfying the boundary conditions in (1). (If one is content with
a less regular solution, a milder assumption can be made on the data,
e.g., that h be merely continuous.)

Let us suppose now thaL u is a solution of (1) but we have for-
gotten everything about u except the location of the free boundary.
We ought to be able to recover u by replacing the Heaviside function
in (1) by X times the characteristic function of the region to the
right of the free boundary, then solving the resulting linear Poisson
problem. With a few technical assumptions this idea works, as we
show presently.

It also suggests an appropriate space for the boundary data h.
The source term in the Poisson equation belongs to every LP space,

so we choose any p > 2 and seek a solution in W2'p(2). Such a

function has d trace on the left boundary r0 which is in W -p(1f 0 )

(see [A]), so we require that h belong to this space.

To show that h is continuously differentiable, let
10 = 1 - 1-.
p

The norm of h (see [A])is

P fl 1 1 1h' (x)-h' (y)I p  i/p
+ f +p dx dy <

[h~lp'ro 0 0 (x-yi dd

1 1
Hence W2 p' p  wl,, and it may be shown that h is absolutely con-
tinuous. Since 1 + op = p the integrand in the double integral is

(h'(x)-h' (y))/(x-y) p , and a result of A. Garsia [Ga] shows that
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h' satisfies a uniform H61der condition with exponent 1 - 2/p.

The only difficulty in solving the Poisson problem to recover

u W W2 ,p is that singularities can appear in its derivatives at the
corner of the square unless certain conditions are satisfied by
the data. The method of [M] may be used to show that the compati-
bility condition in this case is

h'(O) = h'(l) = 0,

which makes sense because h' satisfies a uniform H61der condition.

Finally, we do not want to "pull the free boundary around the
corner", so we suppose that h < 1. We can now state conditions
under which a solution of (1) can be recovered from knowledge of
the free boundary only.

Let

A = fh( W2 p'P(r )h < 1 and h'(0) = h'(1) = 0),

(3)

B = ((X,b) ( JR x C(0,1) 1X > 4 and 0 < x 0 + b(y) < 1

for 0 < y < 1},

where x0 may be either x () or x (X) but fixed.

PROPOSITION 1: For h ( A and (X,b)C B the problem

- A~u = tX (xy) x > x 0 + b(y)}

(4)
ulo = h, j

has a unique solution u( W 2()C CI(), a (see [A]). More-
p

over, if h and b are small enough and

u(x 0+b(y), y) E 1

then u is a solution of (1) and actually b (C I '
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PROOF: The existence, uniqueness and regularity of the solution
of (4) follow from the conditions on the data, by the theory of
the Poisson equation in a rectangle (see [Gr, M]). Thus we have
only to show that if u = 1 on the putative free boundary, then u

is actually a solution of (1) and b( C

Suppose u(x 0+b(y), y) = 1. To establish u as a solution of

the free boundary problem (1), it is enough to show that

x < x0 + b(y) (resp. x > x0 + b(y)) implies u < 1 (resp. u > 1).

First consider the region x < x0 + b(y) to the left of the curve.

Since u is a harmonic function there, its maximum must occur on
the boundary; it cannot occur in the interior because u is not
identically constant. (Recall that u(0,y) = h(y)< 1, u(x0 + b(y),y)=.

Obviously the maximum does not occur on the left edge of the square,
nor on the top (y=l) or bottom (y=0), because 3u/an = 0 there;
hence the maximum is 1 and is taken on only at the free boundary.

We use a similar argument for the part of the square lying to
the right of the curve x = x0 + b(y); there u is a superharmonic

function, and it may be seen that its minimum occurs only on the
free boundary curve. The previous argument applies except at the
corners (1,0) and (1,1). For these points we note that if h and b

are small enough, u will be close in W 2'p (hence in CI 'a) to the
solution of the problem (4) with h = 0 and b = 0, and it follows
that u(1,0) > 1, u(1,1) > 1.

Finally, the solution of the reduced problem has 3u/ax bounded
away from 0 near the free boundary. Hence if h and b are small
enough, the solution of (4) has the same property. Since b satis-
fies u(x 0+b(y),y) = 1, it follows from the classical implicit

function theorem that b( C

Let us pursue further the observation with which we began this
section. Given hC A and X > 4, Proposition 1 shows that a solution
of (1) may be obtained by finding b (C(0,1) such that (X,b)( B and
the solution u of (4) satisfies

u(x 0+b(y),y) = 1, 0 < y < 1.

We now use Green's representation formula for u to obtain a nonlinear
integral equation for the free boundary b.
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To obtain the Green's function, we note first that the linear
problem

Au =Xu in Q,

U --- O, Ur =- 0,F0 n 1

has eigenvalues

= -2[(m+I2 + n2 m,r> 0,

with corresponding eigenfunctions

2 sin (m+ ) 1x, m > 0, n 0,

11

12 sin (m+-f)7rx cos n7Ty, m > 0, n > 1.

The Green's function for the Laplacian with these boundary
conditions is given by the bilinear formula

2 sin (m+ )7 x sin (ni+-)
G(x,y, ,n) 2- -- E 1

7T m=0 (M+l1) 2
(5)2

4 O 1 1
4 2 sin(m+y)rrx cos nTy sin(m+ -)Tr cos nrn

7T m>0 12 2
n5l (m+y)

Now we write the solution of (4) with the aid of Green's representa-
tion formula

u(x,y) = f (u -G - G ) ds + I G Au d dn,

where n is the outward unit normal. Since 3/an = - / on the left
boundary r0 of the square and Au = 0 to the left of = 0 + b(n),

the solution of problem (4) may be written

u(x,y) = - iG (x,y,0,n)h(n)dn

(6) 0 1
-X 1f G(x,yF,r)d dn,

0 x 0+b (n)

so that our constraint on the free boundary, u(x0+b(y),y)-l = 0,
takes the form
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-f Gr (x0+b(y),y,0,n)h(n)dn - Af f G(x 0 +h(y),y,F,,n)d dn - 1 0,
0 x0+b(n)

(7) 0 < y < i

If b(y) is a solution of this nonlinear integral equation then x= z+b(y)

is a free boundary for a solution of (1). In the next section we
use the implicit function theorem to solve this equation for b(y).

3. Solutions of the Equation for the Free Boundary. Denote
the left side of (7) by F(h,X,b). We regard F as an operator from
AxB, defined in (3), into C(0,1), and we seek solutions b(y) of
the operator equation

(7) ' F(h,X,b) = 0,

for each X, in the neighborhood of the known solution b(y) 0 of

F (0,X ) = 0, ), -, 4.

The results are described in the followinq theorem, from which

Theorem 1 follows immediately.

THEOREM 2. For X > 4, let x0 
= x0 (,) be the free oundary for the

"upper solution" of the reduced problem. Then there is an open
neiqhborhood U of (0,X) in Ax3and a unique continuously differen-
tiable mapping g: U - C( ,1) such that g(0,7)v 0 and F(h, ,(h,4) 0
for (hk)( U. The partial derivative Dlg matches t- expressionSliven

by the perturbation scheme of [FM].

If x0 = x0(+), the free boundary for the "lower solution", then

all the above results hold provided x0 is not a solution of one of

the equations
1 sinh n~x0 cosh nir(1-x0 )

(8.n) 1 - x 0 = n cosh ni (n 1,2 ....

Each of the equations (8.n) has a unique sulution x0 in the

open interval (-,l). The solutions to these equations form a mono-

tone sequence tending to 1, and at each such point x0 a bifurcation

occurs.

To be specific, fix n > 1 and let x0 be the solution of equa-

tion (8.n) in (1,1). Let n n /x 0 (1-X 0 ) , and let Z be any complement

of the linear span of cos nry in C(0,1). Then we find
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i) an interval I = (-6, + 6),

ii) continuous functions 4: I -+ IR and : I + Z with
4(0) = X , ,1(0) = 0, andn

iii) a neighborhood V of (n ,0) in IR x C(0,1),

such that for all t in I the following pairs are solutions of
F(0,,b) 0 in V:

a) (Xb) (kn +t,0) (corresponding to symmetric solutions u0 (x)

of the reduced problem),

b) (,,b) (, (t), t cos nn (.) + ty(t)) (the bifurcated
solutions) ;

and every solution- in V has one of these forms.

We (jive the proof as a sequence of lemmas; the proof of the
perturbation result comes first, followed by the bifurcation proof.

For the perturbation result we use the implicit function
theorem, which requires the existence, continuity and invertibility
of D3F, the partial (Fr6chet-) derivative of F with respect to its

third argument. The information needed is established in the next
three lemmas.

LEMMA 1. For h( A and (X,b) B, let u be the corresponding solution

of (4) jveby ('). Then D3F(h,X,b) is the linear operator in
C (0,1I) [iven b
(9) D 3F(h,X,b)- K (y) - 0 (x0fb(y),y)"£Cy)

3 0 0

PROOF: We show here only that the expression qiven by (9) defines a
bounded linear operator in C(0,1). The estimates necessary to show
that it is the (Fr6chet-) derivative are given in Section 4. Inci-
dentally, the same argument shows that D2F is continuous in AxB as
wel .

For each fixed (h,X,b), the operator (9) is a multiplication
operator by a bounded continuous function, plus an integral operator.
Tht multiplication part is evidently a bounded operator. The
integral operator is even compact, as we now show. Call the kernel
of the integral operator k(y,rl) It is of the form
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1 1+(-)
k(y,n) = 2- log 2+ 2 + analytic function.

[ (b (y) -b (TO2)) -n

If we also denote the integral operator by k we have

IkS(y') - kS(y)j = Ifl[k(y',n) - k(y,n)1 ( )dni
0

<_ 111 I, f Ik(y',n) - k(y,r) Idri
0

<_ HaII W(Y'-y),

where w(x) - 0 as x -* 0. Thus k takes bounded sequences into
uniformly bounded and equicontinuous sequences.

LEMMA 2. D3F is a continuous mappinga of A x B into the space of

bounded linear operators in C(0,1) = C

PROOF: The continuous dependence of D 3F(h,X,b) on its arguments

jointly is easily seen as follows. First, the solution u of (4)

depends continuously in the norm of CI '" on the data h,X,b. Next,
the mapping(u, ~b) CI' CO * u

(C R x C 0 - (x 0 (X ) + b(y) ,y) ( C0

is evidently continuous, proving the continuity of the multiplication
part of D3F. For the continuity of the integral operator, we observe

that the norm of the difference of the integral operators in
D3F(h,X,b) and D3F(h',X',b') is dominated by

1

max f IG(x +b(y),y,x0 +b(n) ,n)-G(x I+b (y),y,x I+bI (r1 ) ,r) jdn,
y 0 0 00

I I

where x0 = x0 ( ). The integrandis continuous as a function of all

its arguments outside an arbitrarily small ne'-hborhood of n = y,
over which the integral is as small as we ple-.;e because the singu-
larity is only logarithmic. This proves contin.uous dependence.

LEMMA 3. D3F(O,XO) = X[(l-x 0 )I-K], where K is the compact integral

operator in C(0,1) with kernel

K(y,n) 0 + 2 E a cos nny cos nrn.
n=l n
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The eigenvalues a are given byn

0 0 =x 0

1 sinh nx 0 cosh n7(l-x0)
n ni coshn, nl,2.

PROOF: When h E 0 and b E 0 we find from (2) and (9) that

D 3 F(0,X,0) = X[(l-x 0 )I-K],

where K is the integral operator with kernel

K(y,n) = - G(x 0 ,y,x 0 ,n).

By substituting into the Green's function (5) we find that the
eigenfunctions are {cos nuy: n > 0) and that the eigenvalues are
given by 2

Wsin 2(m+ ) -DX0
2 sC 0  = - 2 = x '

m=0 (m+n)

2 sin 2(m+ ) TX 0G n = -7 2Trm=0 (m+ )2+n2

1 sinh nx 0 cosh n (l-x0
n7r cosh n7 n

Interchange of the order of summation in this calculation is justi-
fied by the fact that outside any neighborhood of (x,y) = (tm) the
series for the Green's function converqes uniformly; the resulting
series for K(y,n) converges uniformly away from y = rj.

In order to compute the linear approximation of the pe.turbtd
free boundary and compare it with the calculation of [FM], we also
need DIF.

LEMMA 4. D F(OXO) is the integral operator from
1

X {h W p' (r0) jh' (0) = h' (1) = 01 into C(0,1) with the kernel

1+ Pn cos ny cos nnn,

n=l

302



where

Pn cosh ni(l-x 0 /cosh nil, n = 1,2,

PROOF: The operator F depends affinely on h, so D F is the integral

operator from X into C(0,1) given by

D IF(h,X,b) -h(y) - (x (x0+b(y),y,0,n)h(n)dn.
1 0

Since x0+b(y) > 0 the kernel is analytic, so D1F is compact. The

computation of the eigenvalues proceeds exactly as for D3F.

The results up to now have established that F is a continuously
differentiable mapping of AxB into C(0,1). We now wish to apply the
implicit function theorem to solve the equation

F(h,X,b) = 0

for b as a function of h and X, say g(h,X), such that g(0,X) = 0.
This can be done if D3F(O,X,O) is invertible. From Lemma 3 it

follows that this is the case whenever I - x0 is not equal to any

of the a , eigenvalues of K. Now it is easy to see that1 n
Gn <, n = 1,2 .... ; hence if we take x0 = x (X), corresponding to1 2n D3(, 0)i
the upper solution (see Fig. 2), 1 - x0 > >a nand D3F(0,X,0) is

always invertible. This proves the perturbation result for the
upper solutions.

For the lower solutions x = X0+ M > 1; so - <

and 1 - x0 can coincide with an eiyenvalue of K. In fact this

happens just once for each n, as we now show.

PROPOSITION 2. For each n = 0,1,2,... there is a n > 4 such

that

1 -x 0 = 0n ,

x0 being taken with the "+" sign. The Xn form an increasing

sequence with no finite point of accumulation.

PROOF: Since a = x 0, we have c0 
= I - x when x = 4.

h c s 0 0
This corresponds to the appearance of the nontrivial solution,
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followed by its splitting, for X > 4, into an upper and a lower
solution. For n > 1, we use the formula

a_1 sinh nirn n isinh n (sinh nfT + sinh n7(2x0-l))

T increases 0from

to see that as x0 increases from I to 1, o increases from
0 f n

tanh n to - tanh n7, while 1 - x0 decreases from i to 0.2nr nnr 0'

Hence there is a unique solution of the equation 1 - x0 = n

The inequality x0 > 1-- for the solution of this equation shows

that x 0 - 1, therefore X tends to infinity, as n .n

We may now verify that the scheme of [FM) gives b correctly
to first order in h, for those points (A,u0 ), A > 4, on the graph

of Figure 2 for which D3F(0,X,0) is invertible; namely, for the

entire upper branch and for all points (X,u+) on the lower branch

except the ones covered by Proposition 2. Since

F(h,X,g(h,X)) = 0

it follows that

D1 g= - (D3F)- 1DF.

Now any h CA has a uniformly convergent Fourier cosine series
a0

h(y) - 2 + Z an cos n7y.
n=ln

Hence the linear approximation to b = g(h,X) is

a0 CO Pn

D-g(0,hx_ an cos niyDl(')h- 2(i-2x 0) n=l lxGnn

This matches the calculation in [FM) when h is replaced by Xh; see
the remark following equation (1).

Now we return to the situation when l-x 0 = an for some01

n = 1,2,... We do not attempt to describe what happens at x0 -2

To show that bifurcation occurs, and thus establish the second
part of Theorem 2, we apply a bifurcation theorem of Crandall and
Rabinowitz [CR]. The hypotheses of that theorem are established in
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the three lemmas which follow.

LEMMA 5. Let x0 satisfy the equation l-x 0  a for some n and

let Xn = i/x 0 (l-x0  Then D 3F (0, n ,0) has a one-dimensional null

space, spanned by cos n~ry, while its range has codimension one,
coinciding with the null space of the continuous linear functional

4n(f) = 1 f(y) cos nny dy.
0

PROOF: From the form of K(y,n) (see Lemma 3) D3F(O,X1n0) annihi-

lates cos nny when -x0 = an; and since the n 's are distinct,

cos mry is not in the null space for m W n. From the Schauder
theory for compact operators the range has codimension one. For
the characterization of the range, observe that
n(D 3 F(0,n,0)*"0) = 0 for any O c C(0,1); since the range of

D 3F(0, I,0) is a hyperplane it coincides with the null space of 4n"

LEMMA 6. D2D3F exists and is continuous in a neighborhood of

(0,'n,0). (We give the proof of this lemma in Section 4.)

LEMMA 7. D2D3F(OXn,0)*cos nn(.) does not belong to the range of

D F(0,X ,0).3 n

PROOF: The proof of Lemma 6 shows that cos n7(') is an eigenfunction
of D2D3F(0, n,0). The eigenvalue is

[ dx cos

0dx cosh nn (2x0 -1)]-- (1 0.
- X -A( 1 4 cosh nn _=X n

This completes the proof of Lemma 7, and of Theorem 2.

4. Estimates for the Derivative Calculations. In this section
we prove estimates to show that D3F and D2 D3 F have the analytic forms

given in Lemma 1 and Lemma 6, respectively.

We begin with D 3F. Let (h,X,b)( AxB and let B( C(0,1) such that

(h,X,b+B) AxB. Denoting by L the operator on the right side of (9),
and using (6) to express 9u/Dx,-we have
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[F(h,X,b+ ) - F(h,X,b) - L ] (y) =

-f G (x +b (y) +(y)y, 0,f) h () dTl ~ f G (x 0+b (y)+ (y) y, ,n) d~dn
ox0+b (n) + (n)

+Jf GC(x+b (y) y0, ) h (T)) d + Xfjf G (x 0 +b(y),y, ,T))d~dn
o 0 x 0+b (I)

1 1

+ XG(x0 +b(y)yOn)h(n)dn + X f f G(x0+b(y)YEn)ddn]

SO+b (y)

- X f G(x 0+b(y),yx 0+b(n),'
" )ifl)d n.

0

We need to show that the norm in C(0,1) of this difference,
divided by I ISI 1, may be made arbitrarily small by choosing
liaI . sufficiently small. Rearranging terms, as in the usual
proof of the Leibnitz Rule, we find that the above expression is
equal to
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0 h(n) dn [ - G(x 0 +b(y)+8 (y) ,y,0, n) + G (x0 +b(y) ,y,0,n)

+ 0(y) G (x 0 +b(y) ,Y,0,n)]

+ X f 1 dnf dE -G (x 0 +b (y) +0 (y) ,y,T,n) + G(x0+b(y) ,y, Ti)

0 x 0 +b (n)

+ (y) Gx (x0+b(y),Y,&,n)1

+b(n)+ (h )
01 dq [1 G(x 0 +b(y)+0(y),y, rl)d - 8() G(x0+b(y),Yx0+b(n),)j

0 x0+b (n)

Each of the first two integrals is of the form

f(x 0+b(y)+8(y),y) - f(x0+b(y),y) - 8(y) fx(x 0 +b (y) , y)

CI,a
for a C function f, and from Taylor's Theorem it follows that for
any £ > 0 there is a 6 > 0 so small that

max If(x 0 +b(y)+8(y),y) - f(x 0+b(y),y)
0 < y < 1

- 8(y) f (X +b(y) ,y) I <ci 18

provided HOI. < 6.

For the last integral we add and subtract a term to obtain

1 x
(10) A f d G(x0+b(y),Yn)d& - O(n)G(x 0+b(y),y,x0+b(n),n),

0 0
x 0+b (r)

x 0 +b (n) +a (7)

+ X f dni d& [G(x0+b(Y)A+8(Y)'Y'&'q) - G(x0+b (y) 'y'C'-)"
x 0 +b(n)
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The first of these may be written
x 0+b (n) + (ri)

Xl0 an / E [GC 0+b~y),F -) G~x0+bGy)xybx0+b())y ),"

x 0+b(n)

Let c > 0 be given. We show that the integral above is bounded in
maximum norm (considered as a function of y), by a constant times
c times the maximum norm of . We choose M il. so small that

115111/4 < c, and log (i/1 ) < c,

and let y = 118113/ 4 .

For each fixed y, 0 < y < 1, let D(y) denote the disk of
radius y about the point R,nY = (x0+b(y),y). Letting S denote
the region of integration and I(U,n) the integrand we have

ff I( ,T) dTd = ff I d~dn = I I d~dn

S Sr1D (y) S\D(y)

There are constants C and C' independent of y such that

Iff I d~dn < C' fy log (1/r) rdr < C y2 log (l/y),
SOD 0

2 2 2where we have taken r = - ( Cx0+b(y)] + (n-y) . Outside D(y)

we estimate the integrand by the mean value theorem to obtain,
with constants C1 and C', independent of y,

If f I d~dm I < C' jf (l/r) I1i1o d dn < C(l/y) H112
S\D(y) - S\O

from the fact that ff 1 < j[j 18 . Combining these estimates with
S

(11) we obtain the desired estimate for the integral.

The second integral in (10) is estimated the same way. This
completes the proof of Lemma 1.

Finally we turn to the proof of Lemma 6. Let us write the
Green's function in the form

log 1 + Q (x,y,F,n),
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7  2 1/2

where r [x-)2 + (y-n) 2]I/ 2, and Q has no singularities in the
square. Then D3F may be put in the form

D 3F(h,X,b) = M + XL 1 ,

where M is the operator of multiplication by the function

(12) _j(x0+b(y) ,y)

and L1 is the integral operator with kernel

1 1_______________

L(Y,'n) = - log 1+ N(x0+b(y) ,yx0+b(n),n)
1 (b(y)_b rn))7

where N is analytic.

The dependence on X is only through x0. Thus the singularity

does not depend on X, and D(XLI)/9X may be computed by differentia-

ting the kernel. The operator ;(XL 1 )/3X depends continuously on X

and b. To see that D2D3F exists and is continuous, it remains to

be shown that the function (12) may be differentiated with respect
to X. (Recall that x0 is determined by A.) Since

-U (x0+b(y),y) = f G(x 0 +b(y) ,y,0,n)h(n)dn

X f Gx (x0+b (y) , y, F, n) d~dnj,
0

x 0 +b (n)

the only problem is the differentiated logarithm in the second
integral. This term is

1 1 d I1 1l 1 E:=ld

f log I f-dfl - I

Jx0+b( r (XY) (x 0+b(y) ,y) 0 r = x0+b(h)

- - log 1dn +f log( 1 ____ dn
00

showing that differentiation by x0 may be performed under the integral
sign.
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5. Further Work and Open Problems. The obvious iteration
scheme for numerical solution of our problem (1) is probably

- Aun 1 =H(Un-I).

But a simple analysis of the one-dimensional problem

- u X= H(u-l), u(O) = h, u'(1) = 0xx

shows that this scheme converges only to the upper solutions.
This suggests that to find the lower solut~ons of the two-dimension-
al problem, some other scheme must be tried. A further problem is
that the solution u is necessarily not globally smooth. This implies
that some kind of adaptive scheme must be used to refine the mesh
near the free boundary. Our work on this approach is continuing.

Our method may also be applied to the following problem, con-
sidered in [FM2]. In polar coordinates (r,O),

- Au = XH(u-l) in D, the unit disk in the plane,

u(l,e) = h(6), 0 < 0 < 2Tr,

with h > 0 and small. Classical solutions are constructed in [FM2]
by means of a monotone iteration scheme. When the method of the
present work is used, the assumption h > 0 may be dropped; it turns
out further that there are no bifurcations from the family of
radially symmetric solutions of the reduced problem, h - 0. Details
of these results will appear elsewhere.

We turn to some questions left unanswered by our present
approach. First, the smoothness of perturbed or bifurcated free
boundaries is of interest. Our method yields a free boundary of

class C2 -  We conjecture that it is analytic. A second problem
is the effect of perturbation at the bifurcation points: if the
boundary values h(y) are nonzero, what happens to the bifurcated
solutions? Some of the ideas of [S], in particular a coordinate
transformation to "straighten out the free boundary," may lead to
answers to both of these problems.
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where

x(s) (v(s), ;(s)) (7)

and

FF(v(s), .(s)) ]
P(x(s), s) = I A

LN(v(s), (s), s)1

It is convenient to choose the normalization N(v, , s) so that s
approximates the arc length of the solution branch for some parameter
F (0, I)

N(v, -, s) = ;'v(s) - v(s0), + (0 - ) ) - o - ()

When the Euler-Newton technique is applied to (6), computational difficulties
near singularities are eliminated since the Jacobian :matrix remains non-
singular near such points.

These techniques and an algorithm for their implementation are
presented in deta.l by Keller [1] and have previously been applied to
laminar flame problems [7-10] and catalysts problems [I1] which exhibit
multiple steady statts. Therefore, we forego a discussion of the exact
computational procedure.

IV. HOPF BIFURCATION FOR]'ALISX. We use the term formalism here since
the presentation will De stripped OT the technical mathematical assumptions.
A proper mathenatical framework can be found in the work of Crandall and
Rabinowitz [3] and the references therein. OLr work follows closely the
presentation of loess and Joseph [4], though >codified somewnat to account
for the nonzero steady state problem and the form of the model equations
(2). Since this bifurcation theory is most effectively used in a study
of the dynamics associated with an exchange of stability, we begin with a
brief discussion of steady state stability.

The stability of time-independent solutions can in principle be
resolved by examining the eicenvalues of the linearized houndary vaiue
problem. If the eigenvalues all have negative real parts, the steady
state is stable; whereas, if an eigenvalue nas a positive -al part, the
solution is unstable. Exceptions to this principle occur wren the linearizes
problem has a zero eigenvalue or a nair of ,-onlex conjugate, purely v:,rirv
eigenvalues. In the current reactor pronlem, a zero eigenvalue oives rise
to a limit point bifurcation (a point of vertical tangency) on the response
curves. The bifurcation of a periodic solution (Hoof bifurcation) occurs
when a pair of complex conjugate eigenvalues Ii) and t.) hecome pirelv
imaginary. We assurme that this crossing of the imaqina-' axis occurs at
pO so that .. ) = +i, with , positive. It is also assu Q1,l that
Re a1(( 0) / 0 where = dn/d. This ensures a strict crossing of the

axis and is nearly always satisfied in these problems.
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To present the Hopf h bfrcra t io n f or ;u I In Ie' I ' f i
value problemn and wirite i t is

L Iw 0, C (v 1.

where

L w =F (V, ;w) (V :w
Pi V

and

G (v',. ')=-(v m,)

The essential renuirerlents for Hopf bi fu rcat ion withou t th~r
assumptions may be su;'2:a~izod as follows. Assume i . are s'i o~e >
values of L., , that ni.- is not an e~qenalue foe n = 9, 2, 3....a

that the real part of .(+.. ) is nonzer.. Then one can conS.'rc1 a
bi4furcating perioo-ic solution of (I) wi th f requem;c. v a a r
bational expansion which can be shown to tcoke the for' 14]

uix t) V 0  2 d 0  +i
u~qt)=v Rej "'O + 2'- - 2d 2 R e. e

o 2 ± l 2) 10

2 2

W(~ . + ~~2 + o(. )(1

t n (j (iS

where -i - a naux i a r y pa r am et r r !pr e, (n,,i n1 ~e LL
to the H-o~f point. The vectci- functior -, ; .ro 'ri
to the eigenvalue +i.,; -.. ac na. are ml uIti ons ufcer> !r ' .

q e ne ous b ou n dary va1 ,ie ob I C. i'e e in C'e
that the sirin or . yleias, ()I. T fo - . r J r
therefore dete-rmines, tee, direc t on of- iifurcatioi A 'ilr~v i-' ,r;

the change i n the f 'P~junCy of !,re ti turca ti nq scI i. on .Ttio e~ r' r j "'1
expansion (9) p)rovides a jo0~i aoproximation to t', 'P er!,i I 0 in fe-
computational purposes.

The stabil ity~ of t.he nifurcatri nio 1 tIo ':-'V' i a ~' .
of the Flounj(t exponents, o, di SW '.f( b 7'o KV Ivin

essential re';ul It is, thit'. i the prii lit i"1 .< 1 i lv .:: i
the b,'^furcO-Ion nprit if the io ~ 2a :*',
neglative r-,ai par!,, ,.nd if Re . is - c it.

'316



T he rtiFl~l
are k. -o V A

next.

two-point bourilar j r Vo' 7.

pai r of pnjrt. ,* i.
by f ifidirl~ r ;-

al jori thrl :'. ) ;, *- * i i l

re,,ponse C-urv - t i ' t.:
method to 1 c, ~e

Let L* -!onite ?ni2 al 'ri c~.ce
adjoint 1"C' i d. .r'~

f rom t h e e i 1 :f

L V ,

These eigenve. tor,- a rt, t r-.' *'i re. r

Here we have irit!rjccj hi C, ] f-r nner pr':j Al:

d..

where denc'e: *'it do ~ru, o t :e ticc'A '

A sequenc, -f 1hre- Ji ri-r n )0~)(- o ;Fr~tu l),jT- :r/ -I
must next be, slvei. T he,,e jre

L dv" -F

-2 Vv

~,. 9



(20)

v vv

by the rule

(v ____ (21)

With these computations c oi~pole te, we novi com'pute (.) .,anid from,.

vv 22~

and

vvv I

J V(v- w , .(2)

vv

Thfe f~ ir;, t rh,? ~ ! K.

te 1 4 nP' 'I

-1 1 vm ~
lua jIv

or t r rin a.(

* I~~l r 'l 1,1,il VI

t!- cli V. ( f earied p ro) 1
d I

r': I1I IT A(r1

i I rVa;~ <-

V



2 F
_- ~ Y -_11- + B Dy e(' 2 (2S
Peh ,s2 3s

The boundary and initial conditions are:

1 Pe (Y - 1) at s = 0, T > 0

ao =t=,> (26)

-~-__-0 at s = 1, -> 0 ?7)3s ,s

0i at 0. (28)

In writing these equations, we have dri i rad the fol Ioirig dimension-
less quantities:

.y 7c/co T/

s = x/L T=tv/L

Pea = vL/D e Pe h C PvL/ke

B :hc0 /,C T =UPL/avC

D =Ae IL/v Y= E/RTc.'

The above model describes an exotnorrmic A - reaction occurring in a
homogeneous tube under tne aslsumrnt'ions that tho velocity pro-1ile is flat
with constant velocity v; the variaLbles y and :depend only an one space
dimension and tir;t-; the diffusion, of re actantl A is governed by FiCK':
Law with an Offective diffusivity, D.,; heat conouction is descriWed by
Fourier's Law witi- an effective theri i1 coriihct~vity, ke; the heat loss
at any point is [uron~ortional to ( -)- and the reaction rate is
describatble h,, an Ar'rnenius oxn-re ,,i(n The dimensional predecessors
of the above Eq~jations aind non a, )lci,; i/ §this forinulation are
discussed in cetaf? in two revi ev irt jc~cs LIZ, 13].

VII. RESULTS. W,,e now illustrate the util ity of our numerical
Drocedures by a , l)]ing, the atove ,2tods to !ne tuoular rc ,ntor oe
(24-28) for a coipl e of p-ara.i.ter ocw hinations. A ;-iare extersi ve
treatment will be iven elsewn.oer- Li4 ;,c trace the steacv s,3te
solution branches;, *eter-.-ne nrc VilitY, and i solate tre,_ or,:,-
cation points. The hopf biflircation coio:)tat1 ons are tnen performied
to determine the dir-ction of bif~rcation, the staibi'itv of the osc-illa-
tior close to the biturcatiol in and the as,-,ptotic solutions for
the orbits. -,he,,e , iyrptoti.' oll 'i n (9) aire tren used to start the
ti'ne-dopien J,,nt co< ,uti ti'cls isn "i Cil a -- nera 7 crdn ed on the
method of 1 in(- !ii~ ne e iti-ie peiccsolutions, are
computed and toen traced as tne B i klem' r:1hiiLCr is van eui.

If one thJiks, of tja inn 520 J, tr'o -ictr byv varying the
hi-n ~ ~ ~ ~ A i~' 5;o o:t a niiin te:,iperature so
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that a miore complete -onver,,-cr, A tb cc iical Pir*, oe
Thus one tries to operate thercCt. a, on' of tr( hi;1 : ,teay sta.'es
in Figures I and 2. These hiqhr stsi, tate, cio ,liv n ,O r,
not by starting the reactor out. (it the nigjh stahlo steady btr' ut by
varying a physical parameter such as, the flow~ vewici'y, feed to perature,
or the Damkbhler, which is used here.

The first example is il lustratod in Fiolure 1 which corcsponds to thc
parameter values Peh =Pollrn 5, B = 0.5, -, 25, 3.5 andl 1 There
is a unique steady state for all values of the [lo. .i ) ii r ') wi'e" ni111oLs
in the stability at D = 0.262, and D = 0.295. At D 0 >026 the hif,,jration
is to the left arid unstable. At iue volule D 'D.9 1 tc hirctiOn '
also to the left but is not ,aable . 3, uing > tl h e i o s c d
was traced from D 02 rloon to aboutj' D 0.20 !src t ,e s me ao S

tions cease to exist 'and the ti.:-dovndn i,,) tso s o tre -,at
steady state directly tcolow. ('sol conjecture atheo ssth hc n of
periodic solutions ccnnerst with the unstab~le t-r:i0j r3'r,
D r 0.262.)

The response curve ldyna:mics i,,,cjciatCd Xihvr' rw

number D can nolw be exol)ained >ctecase :<ts
close Lo zero, the roan 5cr tw; , '.fca 5in,: i - ~ .-

ture and thus lovm cu'.verslon r tne ical A irit i
the steady state indi' ta> a *nn Steoi'v ~
to rise. As D passes sc-rounat D cl 4W- rcc ;rs 4a
and concentratinn profl es 1050. o~ s~l sc a * ' ICC
which does not cease until D recc Lac 0.9 2% -e r-- 1n t

operates in a stable steady s'a*,e ono ex*Jn,;,r
the Damk6ler is row decrea-.e1l At D 0.295 a l an
in the temperature and concentratar. Orofiles V.eins to
oscillations cant inue tso qr(c.; ,:;t -ase hrou'a1 1;4 '') . -

stable steadyv s tate as I D = (j' -26 n of 'nena j5a, 3.i ;'-
as ignition and extinction procf-sse-, cespec51.'elv

The second exarple repre~lorc -I n Ficure - r' B I"t

parameter values Peh = es5
This sase deiionstritos, a 1 3 1 aljli 'j' r r a-n

steady states. Tae fir-st *alil 'I'' Y ~ t, n,,o
and all intermediat asi a,( ,*Ldta,- , r' ca-,*-
tion point is encountered at D rt) A st r- 51 ;)ur ldil- a:,i- c-
tes to the left at tom value of ' ,oor.

If D starts out (s1iose ts zor.) (r i
increases and r,'ial .ns in a Itarl- I l9-
point is encountered ait whichnln o n tc _I ra rl' ji I ~
higher stahle oslcillatinn. Thi-I), 1 ~' it flurir -,1,1 v n i'
a jun10[ to an rv-n hi~ie-r t'bl 11 o' ni i) aj
amp I i tudol atf the te,!p-yr-a tur sc I (:,)?Ii
and thor, rii1)14l1/' m I2 ' 91.
the reaction theDa-1 6y'nier r- b'r -!n sn:t'Sa:i.~m~i d cr0".5"
the amiplitude of a p~eriodic )rmit ;itss at. D 0.1t ,san out,
decays, Juso,-s dlown, continus's tiJs Ir.a thonrl B' . *V-,

depen0 n t n olu~ Ic~ to ,--i i or- *! -A....... t,- ' -i r'

lower turning-.-It
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VIII. CONCLUSION4S. The bifurcation technique_ prec c. eraD.e
one to determine the possiblE steady states and bit~rcatln:' stable ano
unstable oscillations. Thus systematic numerical metnoas are escablished
for investigating the response curve dyrai2:3, inciuding Ju.,p phenomena,
and the oscillatory dynamics for a broao array of tiodels found in chemical
reactor theory, combustion theory, and even matnematicul biology.
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NOTAT ION

a cross-sectional area of the reactor, m -

A frequency factor, s
-I

B dimensionless heat of reaction, '.HcO/ ,CpTr,

c concentration, mol/m 3

Co inlet concentration, mol/m 2

Cp specific heat, J/mol'K

D Damkohler number, Ae-YL/v

De effective diffusivity, m2/s

E activation energy, J/mol

AH heat of reaction, J/mol

ke effective thennal conductivity J/s n/,K

L reactor length, m

P reactor perimeter, m

Pem Peclet number for mass transfer vL/De

Peh Peclet number for heat transfer .-CpvL/ke

R universal gas constant

t time, s

T temperature, OK

To inlet temperature, "K

s dimensionless axial distance, x/L

U heat transfer coefficient, J/m' s'K

v velocity, m/s

x axial distance, m

y dimensionless concentration, c/cO

Greek symbols

B dimensionless heat transfer coefficient, UPL/av;Cp

y dimensionless activation energy, E/RTO

0 dimensionless temperature, T/T2

0 density, kg/mr

T dimensionless time, tv/L

324

__ - . .-- - __i i



REFEREN;CES

1. Keller, H.B., In AjjII-ioris _!)_fi'rctin_TheorL (Edited by
P.H.Rabinowitz), p. 359. Academic Press, ,e\, York, 1977.

2. Poore, A.B., Arch. Rational Mech. Anal., 1976, 60, 371.

3. Crandall, M.G. and Rabir;owitz, P.H., MRC Tech. Sunmary Report #1604,
University of Wisconsin, Madison, Wisconsin, 1976.

4. Iooss, G. and Joseph, D.D., Elementary_ StaLLI.it, and Bifurcation
Theory, University of Minnesota Lecture Notes, l979.

5. de Boor, C. and Weiss, R., MRC Tech. Summary Report #1625, University

of Wisconsin, Madison, Wisconsin, 1976.

6. Stepleman, R.S., Math. Comp., 1976, 3, 92.

7. Heinemann, R.F., Overholser, K.A. and Reddien, G.W., Chem. Engng. Sci.
1979, 35, 833.

8. Heinemann, R.F., Overholser, K.A. and Reddien, G.W., A. I. Ch. E. J.
in press, 1980.

9. Peterson, J. Overholser, K.A. and Heinemann, R.F., Chem. Engng. Sci.
in press, 1980.

10. Overholser, K.A. and Heinenann, R.F., Submitted for publication, 1980.

11. Bissett, E. and Cavendish, J.C., 72nd Annual A. I. Ch. E. Meeting,
San Francisco, 1979.

12. Schmitz, R.A., Adv. Chem. Ser., 1975, 148, 156.

13. Varma, A. and Aris, R., In Chemiical Reactor Theory (Edited by L. Lapidus
and N.R.Amundson), p. 79. Prentice-Hall, Englewood Cliffs, NJ, 1977.

14. Heinemann, R.F. and Poore, A.B., submitted for publication, 1980.

15. Sincovec, R.F. and Madsen, N.K., ACM-TOMS, 1975, 1, 232.

325
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ABSTRACT. The coupled dynamic thermoelastic problem was formulated

as a fourth-order partial differential equation in temperature (or stress).

The fourth order Laplace-transformed operator was decomoosed into a "wave

like" and a "diffusion like" operator. Boggio's theorem was extended vis-a-

vis this decomposition. As a result of this extension two functions were

defined, one satisfies a "wave like" equation, the other a "diffusion like"

equation. The boundary value problem for the fourth order PDE in temperature

was formulated in a finite medium and a method of solution was obtained

through Boggio's theorem and a perturbation techniuqe.

I. INTRODUCTION. The dynamic thermoelasticity problem has been

studied quite extensively since its beginning in 1838 when Duhamel derived

equations for the strain field in an elastic medium containing temperature

gradient. A comprehensive review of the literature up to 1960 was given

by Chadwick [1]. A more recent treatise on the subject was the 1975

edition of the book "Dynamic Problem of Thermoelasticity" by Nowacki [2].

Other articles which have close relevance to the subject matter of thermo-

elastic wave propagation are listed in references [3-18]. Since the

literature on the subject is so vast, the reference list contains only those

which the authors have some faimilarity with.

To understand the nature of thermoelastic wave, it is instructive to

look into the characteristics of the uncoupled waves. For a hypothetical

medium with the thermal expansion coefficient a = 0 the pair of equations of

thermoelasticity are uncoupled to give the one-dimensional wave and heat

equation respectively. On inserting the plane wave solution of the form

{,5,T! = o {O TO) exp {i(kx- ) (1)

into each of the following uncoupled equations
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2
AX tt

anc

Tx X . ... 1 T t3

one obtains two relations between and k,

2 = 2k2 ,

and

2iw = ,k 2  , )

For waves of assigned frequency by letting . b2 a rea, c'ns:ant, trfe

solutions obtained are:

T, exp -P,(t-: - + u exp _ -iw t -i
C c

T = T> exp (-; -K X~--),, (6)

+- exp ixl/ - i(t + x)}
TO  

Kx 42x 2Z ¢ ,

which represent progressive waves travelling along the x-axis. The thermal

wave is subject to dispersion as the phase velocity /271 is a function oT

the frequency.

On the other hand, if one assigns k to be a real constant, waves of

assigned length are represented by

O u0
= 0+ exp {i-(x-ct) + u exp {iK(x+ct)Y,

T = T0 exp {-k2t + ikxl. (7)

The elastic waves have the same character as before whereas the

temperature is a standing wave, the amplitude decaying exponentially with
t ime.

For the propagation of the coupled plane harmonic waves one assumes the

same wave form as represented by equation (1) and substitutes the solutions

in the pair of coupled equations such as equations (18) and (19) of reference

17. One can either study waves of assigned frequency or waves of assigned
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length. Chadwick [1] discussed these solutions in great length in his

article. In essence, the purely elastic and thermal waves which are the

solutions of the completely uncoupled equatiuns are modified. Chadwick

calls these modified waves quasi-elastic and quasi-thermal waves. For

waves of assigned frequency, a thermoelastic wave of displacement or temperature

consist of a quasi-elastic and a quasi-thermal mode. This phenomenon

represents a coupling f elastic and thermal effects, the strength of which

depends on the frequency and the coupling constant .-. The quasi-elastic

mode, in contradiction to purely elastic wave, is subject to damping and

dispersion. On the other hand, both the purely thermal and its modification,

the quasi-thermal mode, exhibit dampinq and cispersion.

Waves of assigned length, as would be expected, display properties of

modificdtion and coupling just as waves of assigned frequency. The quasi-

thermal mode is also a standing wave, like its counterpart in the uncoupled

wave. A comprehensive discussion of the modified waves as outlined here

can be found in Chadwick's article [1].

The subject of this paper is on waves in a bounded medium. Some discussion

of the boundary value problem in one dimension can be found in [16] and

[17]. A different approach will be adopted in this paper. This approach

is based on the idea contained in Iqnaczak's paper [15] in which he showed

how the solutions to the coupled problem can be approached via Boggio's

theorem [19]. Boggio's theorem indicates that the displacement solution,

as well as the temperature solution to the couPled problem can be

constructed by superimposing two solutions, each satisfyinq a "wave like"

and a "diffusion like" equation respectively. This fact that the solutions

to the coupled partial differential equations can be decomposed mathematically

into two solutions as described above will be demonstrated in the followino

sections throuoh the Laplace transform method. In the next ,uction the

fundamental equations will be displayed.

II. MATHEMATICAL MODEL. Since the following discussion will be

restricted to one-dimensional wave propagation, all the equations will be

given in one-dimensional form. Let the bounded region R be given by

0 - x < 9. The equation of motion is

rx = nutt (8)
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where p is the density, is the stress and u is the displacement of a

field point at x. Equation (8) can be expressea in the strain e as

xx= pett (9)

The coupled energy equation is

Txx- Tt = net  (10)

where K is the diffusivity (K 
= pc/K), q = yT0/,ck and -y = (3 +2,)/-, ,

being the coefficient of thermal expansion.

The Duhame1-Nes ann constitutive e quatici is

u = Ee-yT (11)

where E is the Young's modulus of the materials.

The boundary conditions are as follows:

x 0, e(O,t) f(t)

Tx (0,t) - ,-iT(O,t) = g(t) (12)

X ( 3., ( (,,t) c

Tx( ±1,t) + :2T(,,,t) = 0 (13)

hI  h2where f(t) = -p(t), q(t) = h-T (t) hI and h2 are heat

transfer coefficients at the inner and outer surfaces respectively.

DIMENSIONLESS VARIABLES. We define dimensionless variables x, t, T, c,

by the barred quantities as follows:

c2
... T = I - a (14)

Two dimensionless parameters , and r are defined

= r2, rE= 2 (15)

Inserting equations (13) and (14) in equations (9) and (10) with the

additional equation (11) to reduce the PDE's to dimensionless form in the

variables T and -., we have
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r2Txx (l+alc2)Tt 2 2co t  (16)

r2axx (tt = a3cTtt 17)

where a, = (3A+2 )2/Topc(X+2w)r 2

a2 = (3x+2p)/pcTor

a3 = (3x+2,o)/(x+2p)r.

The boundary conditions in dimensionless form are:

x = 0, o(O,t) = ?(t)

Tx - iT =g(t) (18)

where f(t) f(t)/E, PI - lI' 1 = g(t)e/To"

x = 1, (l,t) 0,

T+ T = 0 (19)Tx

where P2 =2•

FOURTH-ORDER PDE's. The pair of second-order PDE's can be reduced to a

single fourth-order PDE either in T or in o. By simple algebraic manipula-

tions we obtain

(r2TT)xx (Txx-Ttt)t = xxt

and

(r 2  ) - a .xx-ttdt = xxt" (21)

It is noted that equations (20) and (21) can be put in a more compacL form

by introducing two operators as follows:

6 2/Ix2  2 2/t 2. (22)

Thus we can write

[6 2(r2 6 2_D) D(r 2 2_D 2)]T = al2 r 22DT

or
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I Il DE( OMTI 1I ION IF[ i) I e '

to IL''OJii o Ij1'~ t (0 t he then 'of' I i I , i' I I K' 11

c ~ioipl I thed ofno t ~ u hfi i) * nt I 'a~E )f (i ~
heorel; wi Pet (ieM n fo Y n t jIlo (m''i t i f vil tri

The )r-oof OT t he tfldore ir wil ie flyn ir. t. fit. , st to r l

and t hen1 'or t he Cou plIed fno14, t j ons

U'd.('UPL EL [QUA T)Y I e t t I n : i in (!,I '3 ve obtal-i'

A ,,w imno foli ifnfli i i 1 n'i1 tii m i , ,)v and Ttt we will

.410w that thtin' o- i + 'wo '.o'c on,, ,~i d v K, t such that

L aplajce, t ra n,' tn,: -q at ion i e ' is

whe re , i s t he tra ns form variable, 14 v ao-d T a -( t ra ns fo med f nc ti on-

o or ,no rt nen e(1 ua *,i on ( ?f /i rewr 1 t ten in si , ylo i c rrms * ho ,yrilol'I

10e1 nO 'jed 1,o rep c i ct he ope ra tor,, on u and v 11 hu

Cu 0), av-0

aind e'IJuat I Mn 1. - d' t'b i noi Lap I a( e t runs * orrit.Ie -OrieCS

T he dec owpo-,i t ion theorer. states that it (]u s K, (S u HT wie re

Kt) ttthen liv 0 and I=u 4 v.

PROOF. Def ine vl,'A such tia t v rT-u , since a s s~e have

Hv - IT-flu HiT -Cu- (5' -,,)

hut by hyn~othesis Llu 0. thus



Hv HT - (s'-s)u

hence Hv = 0 if and only if (s) = s--s which ic, qiven in tho rypothesis.

It is noted that this theorem can be stated for the system of '?)E's

in equation (24) and (25) Ly simply applyinq inversion to the above. Also.

ri parallel theorem can be stated by irterchanqinq the roles played by 1,

and v. That is, if Hv = 0, (0-! 2)v =T, then Dlu - 0 and T u + v.

L(OUPLEL E-qUATIONS. Takine the Laplace trans-orm of equdtior (24) and

writing the resuttinq equation in symbolic form

LT 0 31

where
2 2 2 2 2 2 2L .r2 -s )(r2 -s) - a1I r - s'

We shall atteipt to decompose L as follows. Let

L = (r - -p)(r- -q) (32)

where p and q are functions of s to be deterviined. Expanding equation (32)

and equating coefficients of like Dowers of .2 with that from equation (31),

we get

? -?

p + q sI + s + al1s and pq = s (33)

Therefore p and q are the roots of the followina quadratics

- (s2+s+a 2s)z + 3= 0. (34)

Now we can write equation (31) in the form

LLT -0 (35)
where L r2,,,2-p, L2 2  r2  2_q.

The decomposition theorem states that oiver equation (31), L u 0

and k(s)ui = L2T where k(s) = p-q, then L2 v = 0, T - u + v.

PROOF. Define v = T-u. Since L2 = LI + p-q we have

L2v = L2T - L2u = L2T - Lu - (p-q)u = L2 T - (p-q)u = 0.
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It is notei. touna-, o~rr can, be stated i o a s,,ii lor ",dy ~ c

chdnqinj the roles iayed by uantJ v.

I V. [3OUNL)ARY- VAL'iF [ROF.I.SM ANF; [TS SOLJTIOT. IY ". _PTRTURFATi C:16

The boundary value probler, ot the fourtn order PD_ in equation (I)can

stated, for example, in T(x,t) as,

LT .C I t 0b

where, L r' d (I C7 - in" toec 1-1"0 iatedi bc~ncary

Condi t i ons

-x 5, J,t)

1+t

The second conditions in enuation (C/) and ir; e treSS boundlarl.

conditions. They are ex;pressed, :rlrnon the rse )I the flohainel-'%ewriar

equation (11)1 aod the enerqy e,,val in ,10, an:>, , e I i L or,,

te rms, o-F the te!!pe rait e.

To solve the boundary vilk& prnhltem we .ral -. Jr ,,sr_ ,,

transforr i i a]l toe equat'on ' , ( ) a n ( I T Lt '

transformed equation are a,, follnvs:

where L rK> Fsr-

IT'( (ITl,) .

Accordi nq to the decom;)osi tion ftorem prove:l In:r o ''



functions u and v, we have

2,2_[r 2 -p(s)]u(x,s) = 0

22_ 
(42)

[r 12-q(s)]v(x,s) = 0.

After u and v are solved as solutions of the ODE, the solution to the

fourth order ODE, equation (39), can be obtained as the sum of tnese two

functions. However, the boundary conditions in equation (40) and (41) are

applied to a linear combination of these furctions. A perturbation

technique is proposed.

PERTURBATION TECHNIQUE. Let

T(x,s,,-) +.(x s)cj

j=O

[ )j, 0 j  X ) ( 4 3 )
v x,s,~ ) 2 u.(x,s) 9  43

v(x,sl,) XS
i=0 

j

.qhere T., u. and v. are the exoansion coefficients of the respective,] 2 .1
,rc t. ions.

The boundary value prouleris for the expansion coefficients are obtained

by insertinr equation (43, anc in equations , (4 )) and (41). Thus we

nave the 2)PE

-' -I 1  T (44)n-

III t * t)dn lar¢ Ior-,

-; 1. n = C)
' o il 0 , n 0 (4 5 )

- :T 1, n 1 n =
-TIn s  (s )  n-2 'In 0, others

' l(46)

-% '; ,' 'IT ~ ~ r' ,: ,
• ,

- I I IIf' IIIIII II - I I I



We also need to expand p(s) and q(s) into in-inite series of even

powers in . Thus,

p P2j(s)t 2j q q2j(s) 2"j (47)j 0 jo

Inserting equations (43) and (47) into equation (42) yields

2 2 2
(r2 2-pO)u 2 ,(xs) = I P?. kUk(Xs

k=O
(48)

22,

(r (S -qo)v 2 ;(x,s) z= q2 _kVk(x, -)
k=O

The ODE's in equation (48) represent a set oc recursion relationships

amongst the expansion coefficients u. and v. respectively. Even though3 2

p(s) and q(s) have exoansions in even powers of , u(x,s,c) and v(x,s,,

must be expanded in both odd and even powers of because the boundary

conditions depend on , as well as

The boundary conditions for u. and v. are coupled and are given by

the following system

x = 0, cUn - 1lUn + 'v - I= \ (s)
n ~' I n Or

n n
/l pjUr. + v. - sun - sv n u49)j)=Ojr- j=O qjn-i -sn n n-2

n-2  In(s)

The usage ha- been explained in equation (45).

x "1 u + +,n ',2Un n "2 V n

n n
Y p u n. + X. qjV - su sv (50)

js0 j=O n- n n

- Sun 2 - svn_2 = 0.

Uncoupled case, 0. In this case the system of equations becomes n = 0

by letting
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(r262-pO)u0 (Xs) 0, PO  S 2

u0 (Os) = 0, uo(l,s) 0

and

(r262 -qO)v 0 (xs) =0 (52)

[5- l]Vo(Os) = I(s), [6+El]Vo(l,s) 0

This shows that u0 (x,t) is identically zero, signifyinq the fact that

in the fundamental temperature response there is no contribution from the

stress input. On the other hand, v0 (x,t) is the uncoupled temperature

distribution in the bounded region 0 < x 1 with the given thermal boundary

conditions.

First order in -. The first order expansion coefficient uI(x,s) satisfies

the following transformed boundary value problem

(r 2 2 -s 2 )Ul(x,s) (53)

x= 0, (s-l)ul(Os) = ?(s), x = 1, (s-l)U 1 (xs) = 0.

Here uI is by choice made to represent the solution of the pure stress

proolem with the impact stress at x = 0. Observinq from the first boundary

condition in equation (51) it can be said that ul(O,t) = f(t)e t which is

unstable. This suggests that this perturbation method holds only for

small time.

The first order expansion coefficient vl(x,s) is the solution to the

following boundary value problem:

(r2 2 -s)Vl(x,s) = 0

x = 0, [ -V,]V (Os) U[-]Ul(G,s) (54)

x 1, [,+ 2]V1 (1,0) -+ + 2 ]U1 (,s)

Equation (54) shows that the t oundary conditions are coupled. Vl(X.t)

is the solution of the unsteady Fourier heat equation with boundary conditions

that depend on ul(x,t), so that vl(x,t) is not purely thermal but depends



on the stress throuqh the boun iry :c -) I( : Lio.

Second order in The second ord r exp ns ion oei cient, , .

solution to the followinq trancfor~ie? I.oundary value :,rckiem

(r2 2-s2)uq(xs)

x = 0, u2(O,s' - Vo S'2 0(s-i)

X = 1, u2( ,s) s 2 v (1 ,s)(s-i)

Thus, u2 (x,t) is a contribution to the temperature distribution in the

form of a mechanical wave due to the zero-order temperature fielc.

The second order expansion cofficient v2 (x,s) is the solution to tc-C

following transformed boundary value problem

(2_-s)v 2
(x 's) q2 VO(x

's , q2  - s-i

x = 0, [ - V2 (Os) - -L -clu2(O,s) (56)

x = 1, O. .l v2(i" IS - : -2]u2(l~s

It is noted that v2(xt) is a response to the nonhomoneneous unsteady

heat equation with a source term due to vo(x,t).
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SOLUTION TO THE RIEMANN PRODLEM FOR THE EQUATIONS OF GAS DYNAMICS

IN A TUBE WITH VARYIt4 CROSS SECTION

Reza Malek-Madani and Shao-Shiung Lin

Mathematics Research Center, University of Wisconsin

ABSTRACT

The equations of gas dynamics in a tube with varying cross section are an

example of a nonhomogeneous system of conservation laws. In this work we study the

Riemann problem for this system by viewing it as a perturbation of the classical

equations of gas dynamics in a uniform tube. Also, we study the Riemann problem and

the formation of singtlarities for a related, but simpler, problem of nonhomogeneous

Berger's equation.

1. IntroJuction. The equations of gas dynamics in a uniform tube have been studied

quite extensively in recent years. It is well known that, as a hyperbolic

conservation law, these equations exhibit discontinuous solutions, while the initial

value problem is not mathematically well posed in the class of weak solutions !li.

It is not difficult to envisage the mathematical reason for the nonsmoothness of

solutions. These equations enjoy a full set of real characteristics and, if the

initial values are chosen properly, the information carried by the characteristics

will overlap and shocks develop. The problem under study in this paper has one

additional property, namely the variation in the tube's cross section, that will

persunably contribute even further to the shock producing mechanism-.

Section 2 concerns with the derivation of the equations studied in this work.

The arguments of Hughes (21 have been followed and, as it will become apparent, the

system under consideration is an example of nonhomogeneous hyperbolic conservation

laws. In Section 3 a simpler but related problem is discussed for the purpose of

under tanlinq the shock pr,!u.-r ,l me-han sms that do not exist in t he homogeneous

problem.

Spornored by the Unit-] States Army under Contract No. DAAG29-80-C-0041.
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Section 4 concerns the solution of the Riemann probler. it is well known [3],

(4] that the solution of the Riemann problem played an essential role in developing

a numerical scheme in order to solve the initial value problem for the equations of

gas dynamics in a tube with uniform cross section. Motivated by this fact T. P. Lui

(5) applied a modified Riemann problem for the general nth oder nonhomogeneous

conservation laws and developed an iterative scheme which converges to the weak

solution of the initial value problem. Although the above scheme is quite

successful theoretically it is rather difficult to implement it. Since we have in

mind a concrete example from the equations of gas dynamics it is our contention to

propose a simpler Riemann problem and hope that it would give rise to more

manageable computations. We are presently studying this problem.
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2. Derivat ion of the? mo,1 0. t In. Con;ider an invi cci i!;eritrcj-c qass flow

through a two dimensional duct " t(x,y);A1 ( x) . y ' A(x), - < x < "}. The

motion of the gas is governed by the equations of conservation of masL and linear

momentum

p + (C'u) + (Ov) = 0
t x y

(pu)t  + (o.'U + P) + (puv) 0 , (2.1)

2(pv) t + (puv)x +yP +

with P f(p), where p p(x,y,t) is the density, P = P(x,y,t) is the pressure

and u (u,v) is the velocity vector, together with the Neumann boundary

conditions

u(x,A (x) ,t)A (x) = v(x,A (x) ,t), i =  1,2

and the initial conditions

p(x,y,O) = P (X,y)

u(x,y,0) = U0(x,y)

v(x,y,0) = v 0(x,y)

In the remainder of this section we will outline briefly the procedure

discussed in [3] which approximates (2.1) by a one-dimensional nonhomogeneous Fystem

in the variables p and u. For a physical quantity q(x,y,t) defined in the

region 9) we define the average (q) of q in the y-direction

A 2(x)

(q) r q(x,y,t)dy
A(x) A

A1 (X)

where A(x) = A2 (x) - A1 (x). Averaging each equation in (2.1) and using the

boundary conditions yield
A' (x)

(P) + (Pu) A(x) (pu),
t X A(x)

(Pu)A'(x) (Pu2 (2.2)
t x x A(x)

(Pv) + (Puv) + (P = 1Puv)
t x y A(x)

(P) = (f(p))
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In orer to further simplify (2.2) we make the following: assumptions:

(A) the total variations of A1 (x) and A2 (x) are small,

(B) the quantity IHl << 1, i.e., the flow is pre,]nrminantly in the x-lircctinn,
u

(C) f( ) f((p)) for some f

Then it is reasonable to assume that

(pu) = (pHu)
(D) 2 2

(pu ) = (pH<u)

etc. ;An asymptotic analysis with respect to I-v Ids more plausibility to the
u

equations (2.3). Thus (2.2) becomes

A' (x)
Pt + (PU)x A(x)PU

2 A'(x) 2

(Pu)t + (Pu + P)x A(x) pu , (2.3)
t x A(x)

p = f(p)

where we have made the following identifications

(p) ~ p(Xt), (u) ~ u(x,t)

etc.

System (2.3) is the one-dimensional approximation of (2.1). It should be

pointei nut that as far as the authors know there has not been a riqornuis analy .

of how reasonable the assumptions (A-P) are. Nevertheless, the system (2.3) is a

mathematically tractible model of (2.1). It is believed that the study of (2.3)

will shed some light to the structure of the solutions of the more dIi'ficult, but

exact, equations of gas flow in a duct with variable cross section.
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3. Formation of sinoularities for the e iation ut + f(u) x = A(x)u. Before

proceeding with the solution to the Riemann problem for the system (2.3) it is

instructive to study how the spatial dependence of (2.3) e:nters as an important

feature in producing shocks. Consider the nonhomogeneous Berger's equation

u t + uux = a(x)u . (3.1)

The following proposition is in the same spirit as the ideas proposed in (6].

Proposition 3.1. If a(x) > 0 and a'(x) < 0 for all x, then the solution to

ut + uux = a(x)u

u(x,0) =0 
(3.2)

will form a shock at finlt? ti-e fcr every pnsitive initial value u0 .

The proof of the above proposition follows immediately from the following le.na

and corollary.

Lemma 3.1. Consi4er t e ,:t:al vai'ue rroblem (3.2). Let x( ,t) be the

characteristics definA4

dt

(3.3)
dudu a(x)u , u(O) = u

Then

t
x(F,t) u( ,s)ds +

0

(3.4)
x( ,t)

u(&,t) a(s)ds + u0

x{( ,t) = C (r-,t)[l - a(F) I,' G(,,s)ds , (3.5)

0

where
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t

0

Proof. (3.4a) and (3.4b) follow fron (3.3) by inteqratlnq with rcs-.rect to t and

x. (3.5) follows from (3.4) by observing that x, sat1Ffies

xt = a(x,t))x. - a(F)

(3.4a) follows by integrating (3.3a) in the tire interval [0,t]. Si.c'

du
= a(x) , (3.7)

(3.4b) is then easily obtained by intejrating (3.7) :;r the x-direction. (3.h '!,"

(3.6) are subsequently derived from (3.4).

Corollarv 3.1. Assume that u0 is onsitivp.

(1) If a(x) 0 for all x then (3.2) has a olobal smooth solution.

(2) If a(x) > 0 and a' (x) > 0 then

a( ) f G( ,s)ds < 1 (3.8)
0 

'

and (3.2) has global s~rooth Folutions.

(3) If a(x) > 0 for all x and a'(x) < 0 for all x then

a( ) f G( , ,s)ds > 1 (3.9)

0

Hence, there exists t such that

If conditions of part 3 of Corollary 3.1 hold, then the solution forms a shock at

least beginninq from t.

Proof. The proof of this corollary relies essentially on (3.5). This equation

provides us with a means of measuring at what rate characteristics starting at two

346



points , ani r on the x-axis will approach each other. (1) Follows

1wrnedii tly !r-rm (3.5) since if a(x) < 0 then x is always positivc and the

character i;tics will he expandinq. The proof of (2) is essentiaily the same. Since

a(x) > 0 a simple phase plane analysis shows that x(C,t) > for t > 0.

Since a is increasing we have

a(x(C,t)) > a( )

which, in turn, implies that

t
- f a(x(C,s))ds < -ta(U) (3.10)

0

Exponentiatiny (3.10) and recalling the definition of G(C,t) yields

I -ta(&) I
f G( ,s)ds < e + ae + (3.11)
0 a(() a( )

(3.8) then follows by letting t approach infinity. Thus, a global smooth solution

to (3.2) exists since, as can be seen from (3.5), (3.8) forces the characteristics

to expand. On the other hand, if a is decreasing, the inequality (3.8) is

reversed and thus there exists t such that

t
a( ) j P( ,s)ds = 1

or equivalently,

x (Et) :0 .(3.12)

This completes the proof of Corollary 3.1.

Proof of Proposition 3.1. We note that t = t( ). Now, we claim that there exists

I and such that

x( , ( )) x( 2, ( )) = x • (3.13)
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By way of contradiction, assume for all T and 2 I I

1 2x ( T 1 t ( " ) ) € x ( ,2 t ( ":, ) ) ( 3 .1 4 ,

Let f(T) = x(r, ( )). Then (3. 14) inplies that f if; a r,,notors funetion d :

therefore, f' (T) = x (Tt( )) E 0 for all i which contradict:s (3.12). Hence,

there are two characteristics starting at FI and ,2 which meet at (x,t)

the other hand, by the standard uniqueness theorom in ordinary d~fferestIdl

equations, the above characteristics viewed in the (x,s) plane reach tl u lint.

x = x at two different values of u. Therefore, a smooth solution cannot ,Xi!: r.,

a neighborhood of (x,t). This completes the proof of lProposition 3.1.

Next, we turn to the nuestion of the Riemaun problem for the related i:r,

ut + f(U)x = g(x,u) (3.15)

We assume that f is genuinely nonlinear, i.e., f" > 0. Consider (3.15) wit'-

Riemann initial condition

u r ,x > 0

u(x,0) = { (3.16
uz x < 0.

We will give a brief outline of how the local solution to (3.15)-(3.16) is

constructed. Our claim is that the initial discontinuity (3.16) is imrediately

resolved by the corresponding conservation law

ut + f(u) x = 0 (3.17)

Then the term g(x,u) governs the evolution of the resolved waves. Hence, to solve

(3.15)-(3.16) we divide the proble.A into two cases:

Case A: The solution to (3.16)-(3.17) is a rarefaction. Let

u Y if (

u 0 
() ' (3.1)

u if

be this solution, where
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I. IL r r t

Con-s ider

d f' , ) :,0 0
dt

(3.19)
- 0u, u,,)-U )

l~et uId, CI x(, ' . , ., u 0 of .1 ) on " r

1,, et u, t i t . It is not
k£" . Thu

difficu'.t to show that x %,t 1 0 f( -;" ( ) hus
r

u(x,t) - uK(x,t),t)

is a solution of (3.17)-(3.18) within the reqion x (t) ( x ( x (t), withZ r

x.(t) = x(U.,t), i = r,i.1 1

Case B: The solution to (3.16)-(3.17) is a shock. Let

u£ if > s

u
0 () (3.20)

u if < > s
Sr

be that solution with

f(u ) - f(ur £ x
S 

=  
-

u r u t

Then, in a similar manner to Case A we construct the solution to (3.15)-(3.16),

namely,

u (x,t) if x < x(t)

u(xt) (3.21)

Ur(Xt) if x > x(t)

where
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u (x,O) u ~ r (.2

and

Oix r
-t x(O) fl(3 .23)

u (x,t) x't)
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4. Solutio', to the T i ,r.n pr, 1l, m f K .,,,.t 1c> (7 .f . In Glimm proposed

an iterat ive scheme in orl',r to obtain t Le ;olut ion to the initial value probleim for

the qenera - conservation law

ut + f(u) x  - 0, u(x,O) = Uo(X) (4.1)

where f : Rn + Rn is smooth ond genuinely nonlinear. The building block of this

iterative scheme is the solution to the associated Riemann problems

u (x,0) = x< (4.2)
u ,r x > C.

Ir

The set of step functi ns in (4.2) is chosen as a pointwise approximation of the

initial value. The new feature in the system (2.3) is the nonhomogeneity which is

due to the geometry of the duct. In this section we discuss the solution to the

Riemann problem for (2.3) which arises from the discretization of the initial

condition and the boundary of the duct. First we note that (2.3) can be written in

the form

(AP) + (Apu) x = 0
(4.3)

2(Apu)t + (Apu + AP) = -A'P

where A(x) has the form

I , x < 0

A(X) = (4.4)
1 - , x > 0

and

(p_,u), x < 0
u 0(x) = (4.5)
S(p ,u ) x > 0

AS in [5], we assume that bo th the initial condition and the boundary of the duct
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have small bounId vacriations. When 0 (4.3-4. ) reduc';,o to . elass;c:.

Riemann problem for the quations o qas dynamics in a uniform tujr 7'. For th

case E positive we apply the same ideas an in Section 3, nameiy, t'e olution o

(4.3)-(4.1) can be viewed as a small perturbtion of the solution to the

corresponding problem when c - 0. The implicit function theorem is tho main tool

in obtaining the exact solution of (4.3)-(4.5). To illustrate the method we cheese

a particular solution of the = 0 case and carry out the necessary

calculations. Let

x

(,u), 0 <- < s
t

Ix 1/2
(P (x ,t ) ,u (x ,t ) ) = (p ,u s, s < -< (P ' ) )

m mm

S 1/2 x1/2
g(t

) '
' < < (P'( ))t m t +

be the physically admissible solution to (4.3)-(4.5) with E = 0, i.e., the

solution to the Ri. aann problem consists of a backward shock (p ,u; p ,u ; s) and

a forward rarefaction wave connecting (P M I to (P +) (cf. PI). Then the

solution to (4.3)-(4.5) with c positive consists of a backward shock

(p ,u F p1( ),u (F); s(c)), a discontin ity (P (r)'U 
( ) ;  

P2 
'  

0) which
1 1. 1 2

is due to the eometry of the duct, and a forward rarefaction connectina

r2 (Cl,u2(0 ) to (p +,u+). The five formulae relatino s(c), p1  ), u 1 ( ),

p2(E) and u2 (E) are

s(p 1  p_) P1 u P u ,

2 2
s(p1u1 - p u ) = P 1U1 p1  - - P(P )

(1 - E)P2u 2  0 P1 u 1 (4.7)

(1 f - 2 + P u2 4Pp + -N L~'
2 2 2 1 2 1 2

+ 
2

U2 u+ p

P+
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After eliminating s ard u from (4.7) wo car forrul,to the above rolIem ir, t h

form

F(lP'U2 ) 0 (4.8)

where (F ,F ,F 3 ) is

rP1 11/2
F2 PIP2U2,E) (1 - )P 2u2 - r1 u - +1 (P(P -P

p2
F 2(P 1 .p 2 ,u 2 ,C )  U2  u + d- , (4.9"

P+

F (P ,P 2u e) = P (.-C)(P u2 + P(P } - (1-c) 2u2 - P P(p ) - - p(P )

3 1 22 1 2 2 2 2 2 1 1 2 1 1

1
+ 1 EP P(P

2 1 2

We point out that the sign of the square root in (4.9) is chosen so that the usual

entropy condition is satisfied [i]. (4.9)-(4.9) is now set up for applying the

implicit function theorem. The problem is solved if we can uniquely determine

P1' P2' and u2  in terms of E. A rather tedious calculation leads to the

Jacobian of (4.9):

det = 2P (U2  - P'(p )[P'(p (4.10)
,(p1,p2,u A m m m

Thus, if tne initial step (p ,u_; p ,u +) is such that

U - P ( ) 0 (4.11)

i.e., the original flow of the qas is either subsonic or supersonic, we see that the

small variation in p - _ implies that

u2 - P'(p ) *0 . (4.12)
m m

Therefore, the determinant in (4.10) is nonzero and we can uniquely solve for

P1 " P2' and u2  in terms of C. This completes the solution to the Riemann

problem (4.3)-(4.5).
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There are still t'o intrestinu rohl,ms in connect ion with (4.3) who n e

would be valuabe h×th to thc 'hory an I'e ip; ,ction. The first qu,-sti-n 2

whether the above scht-r~e artial ly converse,'; tn the weak so u ion of t init :a.

value problem. The second uontlon in how easily this sch,,me r-an be implemented

numerically. We are presently studyirq these questions.
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MEf~T:) CkMS-ISPV - S;PVKA~I-X IX AND 'MAE1 CO')Rb AAT

Juiliain J. Wu
U. S. Army Arsament Riii ea re lind 1DoVe 1 p1IW t ComTni nd

Large (: h' einS,'t e!ns 1.a Ijrritorv
(et Weap Liboratory
Watervlilet, NY 12189

AliSTrRA CT . A so lit i oi r1ul7;It V 071o and numerical resulit s airt pr so nt ed
hecre (or the time-dependent p~roble:n. of beam deflect ions Linder a moving
1 aiol whic h can be noeit her a force or a ma ss. The ha sis of t his a ppro~,
i thno variatifonal finite elemlent di set Vzat inn consi stent in Spotial m ad

t ime coordinates. The moving lead effect resuti:s in equivianeat stt 1:: Oe-

mat ix and force vector which ar,* evaluated ii ong t ho Iink, of Jisco-.,_t:
it in a time- lengcth plane. Numerical result s for several' p)roblemts hUv.
nlecn obtaoi ned . Som-,e of which a re compared with solIt ic('0 out .iined by
b-urler series expinsiono.

I. INTRODUCTIO)N. A SOILut ionf c oto n. o-ena,- iars:
aore. present ed for bex, not ions sub "ct od to. mov ing load s. "O-U of tL&

6wrk on this pvroblem has been related to roil .,nd! bridge design (see,fr
example, reference 1]j and many papers cited thero from 191) to 1971).
loweWLve r, the appli it ion (,f t he anail vos cain obvious ly be ext ended to
ricks for rocket f trio, aind to ian dyn iiiCs j

In Sect ion 11 of this Ipupr, A vuriat ional formulation for a ovin-
a rce problecm is doescr ibed. %I so givcin ore the proc edore s whichU lend toa

finite element mitrix emoution. AN detailed description of thu treatment
ofaconcent ra-ted mov n' fonce is given inScion 11. Tevariatitonal

c00C em SOoc iid With l u tube dvnoILnic s is, presen t od in Sect ion IV.
lils a- b problem ootuir tls 'no 1)Vn;, 7105s proble-m i15 1 !;peci-sI is
Finite eloellcn 1,1it ion ('Iii I- e r ived from this lo~~ion), Out tlie

dut i s of this 'noru comnplicAed problem is omitted from the present
p t pcer. Some (4l th 0  onci results obtaiined for a mToving, force probl.-.1
,ire, r ,porited in th. last sect ion and ire colipo rcd wit h re sult s oht a i neo

rom q5o rio so lot ions .

1 1. So-ThI ' N F. )R1LATI oN FaRk A :1mV IN(; FoRCl'Ii, I In this
set iotesi o o-oain wil bedecibdindt i Is-- for i1

r 1)In); force ,problan. Tii novi. a.p--robten will, ho mc t s a
I i ise, of a more goe2r ii p r')blma n Io ions ana yIi kil lyn inl a

a-ir wwt ion.

(Co;ilr i vr~lt iCal forc!e P moving On an Etiler-IBernoulli beam. TneL
ei roult i-il eqilit ion is1 ,lven by

FP1-9 + PAy~ '(-)I
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r. \'X dt ) I d n teLs t.1 h -l:. 1k -

C ,o rdi nit X x and L i 202 L' I

f ineL rt. i . area ind mait nil~j A, j:. I'

itenrited by 6,x = x(t ) i s t h..
di f t erentliat ion wi th r(esilect to x cid
r ,s pec t to0 t .

lot roduc in,, nondino;i I Il p1i i k'

w ie-r, a.x i S t he I (le'it hi it t hL le t'- 1111i I I a1
T, t he probemn i s )f i ntre, t2. (lj; Lq Ic a

The hat s ()have been OM it ted n 1 .i II..a

wit 11

B~ounda ry cond it ions; a ssoc iate~d l.ii s-. (I )or (3) will now be int rod iced
in con junct ion of a variatioenal problem-,. Consider

with1

I y"y*" - y~y* - ( 6 (X-X) IdxdL

+ dt k, y(Ot )(dt )+ k)y 1 (0 wt k*'3,

+ Y2;)J dxlk;lv(x,fl) - Y(x)ly*(x,l); (j

drlero y*(x,t) is t he ad joint variaible of y(x,t) If one? takes the f irst
vairia ion of I considering y(x,t ) to be f ixed:
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n J con.sid,,r * v* to b' Co C' t V I I- it r ry, i rv, easy to , t I 

(5) is eitquiv'ltot to th i : i rotit ii ,I ,d I', ( l) nIL t l .l'il;

boundarv and init iaI concdit ion s.

y"' ( ,) kjv(i,r ) t
y"(U,t ) - k 2 v' (),t = U

0 t 1 (a)
" (l,t) - k 3 y(I,t ()

y"(1 t) + k 4 Y' ( It ) 0

y(x,O) = 0

and , x % I
vlx, I) - k 5 [y'(x,0) - Y(x)] =

Taking appropriate values for k 1 , k2, k 3 , and k 4 , problems with a wide.
ran4e of boundary conditions can be realized. The initial conditions in

-q. (6b) are that the beam has zero initial velocitv, and, if one take
ks to be - (or larger number compared with unity),

y(x,() = Y(x) (,h,)

The neaning for cases whe re k 5 is not so need not be our concern here.

To derive tie finite element natrix equitions, one be.ins with Eq.
(S' ) and wr ite

1) ( 7a)

j [y"5y*" - y' y*y - Q6(x-x)6y- ldxdt
0"0

.1

+ J dt[kly(Ot)6y"(Ot) + k 2 y'(Ot)1y*(Ot)

+ k 3 y(1,t)6y*(1,t) + k 4 Y'(1,t)6y*'(1,t)]

+ dx[y-k 5 y(x,0) - Y(x)] y*(xI) (7h)
0
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:1, .I l iLir Ltj+

0 r

."her,- K is thle jntinhr ol divit ol i1mp x oi i , in t (A t vpicd 'ridi
SChk IO is shOWn in FigLve 1) t~Ii fII 75) C In 1104 no~ Wr. t tn a

K I 1 . K-'

L J V jl\k(V4

K
+r

6i-i6y Ki r d''d

K= = L ~ .

+- - j (l I Y ) y*~~d

K= 'K 0

The Shape f LnCt iOil %'oCtr is now i ot rod iic d

y( j~ n) a iT(~r Y(i

* c (, ,n)=.'r r,)*r= Ni.j)(,,l I)
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I, I BI 0o)

F\1S11I.E Krdl..\PI,)SU II' Bif~1i': X (I, i) ,\XX[ ki IX iL!uATi i (1 r)

Ik I (i,j) k (i ,j)

l (I1 , I 9 I (1 ,3)

2 (2,1 1( (2,3)

3 (1,2) 11 (1 ,4)

4 (2,2 12 (-2,4)

5 (3,1) 13 (3,3)

6 (4, 1 14 (4,3)

7 3, 2 1 I (3,4)

8 (4,2) >1 (4,,)

"A3LE I. VALIUES OF hi 1 XL,, . 17)

i2

1 1 U - 3 1

o I2 0 1 I -2 1

3 o o 3 -2

4 0 0 I-1
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T.l t i ,(fl I i deI e ry xl - xt ).; )Ir txm , :It Ih toc

' l tfl 1t- 1 tt de i ...... I c -hi Is It C j I

I~ I t It I- tI("1 1 1

1lloVc f rom (8) la 's

- -VK

L

t ~ ) (lh (17 ) id (19, onvl wr ite (1 s)

Iit i .2 (2 nt w I) tt he oi1nit,,d e-(isilv once th ex.c tor-I of

.ttL (. For eximnpL,, if T , 9(210) reduces to

p=1 1

p=l (1=i1 p+q -1
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L0 H" no1 t Ih ]., lin iUt -:i i, !.

t hi -iproblemn cin b, wr itz on .s

E I v ) + 11 Px,)y' Ay-+~\

= 'x ,t L(~ )ix

- nJx v- + 2xy' + y16(x-x)

t g c 0 s iSx - x + yA , c i (.b12)

:' 1'11 iltt tOi 01)S A rC t hie Sn 171 S A 0 s TI L I pre vi tus s c t i on i 1 t ho ie iav c r,i,.
an , - def 1 ti i . h u in t uh ise- re p, no i n t Ie be am " W:),cceVr a pp rnpr

,it t. The new notat ions are dt-fined here--

P(x t 7 lR (x) p( t) axiail force i n t he tutbe due t,)i-,inernal1

p re ssukirc alu t2

R(K) =inner radius, :- tub,

- Ax

.1 x~t jP~ut)+ ' (sin al) ,dx)()

=recoil tr-1c-3i tube inertila in axial direction.

!f(x) AeI0 i i (1 ( s t ep f tI i c i on

x X(t) posit ion of the projectile

mp T1 mIS t f )ro poLCt i t

p = gra-v itit ional I -icl rait ion

i-iI ir imidi o,.tlaioi I! i:.It ia-i is befOr. 1:1d i-r i t o c -- ~
in is lii ;firmi, haill ist i- ire!otire is nolt 0111 ime 5 o t tt

w- o srit t -- ii In i n so I r

3b63



1' a -x W

- yX +Ix'tv6 -)

t Ii; iea o a 11 1 1 t1) "onp bc on ;th t hfor e t ar (lii 1.; iias lr,)et iei sn

.A vairiat tonail proble-n otae wit h the! differentj ai emiat ion o:
£(24 ) n hnti ned t hrono- 1) int op Irat. ion-byv-pairt S.

12 6:

Si~ 0

- y*X-j Ixd y Via v v*' dxdt -

.1 v,1* 1'i V .1 d

19 = H, vyt ~ I I Xy'i ~ ~td

-i< j a V *~ L.. j 1* L + ~ Y~ k~ L y' y*t ~ xpx
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.1 1

co

.- I

, = - ,;nr COS U j x) , )' : ::d Xd t

%,

x - ;K7) - r7[iv(x,') + T) -x '

L k =V =

- +

±(× 1)[ +) 4- (-P- -+4  -t- kTvy(xt) + pvI (.Z)

))

+ t i (,,t) 
= )

- 1 I

't r InIII t 1w 1 I+t :i, t t r- )t , ) r l_) 't
I c i I 1: I i r I C 1-pt ol li
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As t, ise,, f rom to t the \'fl)CtV v.i r t r-m w i t o
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v W'f t Al r, Iti ren, c Mt, 111 it urci i
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ri 12 dt l x '. 4 l 1 \, i ~ > t ;I, - i u -

i i t : o ( nc('..,I~ ta -t rV It t. di rt -.v I

r i lit cild 0t Lte bc*0E. a i: I. J ei t: . t 1 ~ I

tir th l Ia-,i d t o t raivo I r' so I, ( I n -Ir L '7 Ir t.> -

(1 10tCs, t hel 1) i n t Wi(f L 1. 01' , , "I; ~ f t W11 V C

t o. At t = I . kI T, thuit Ir, t, t w. , the I wr and thlit dc f lec-
t i on should be zero io t1w!; iat Ic ,t.

SoILtit ions by Fou r IkL7 s, rI~ i ,r - i Iso ohta ined a nd t iwvX i -e ,ia310

given in these taible cs n Lm hr> i pireo't! ses) for close compiri . ,:s.

Ta ble IlIl shows- ' that fa)r T -10) '-a , v 1I/ Ji O or more or T isar

t -lin 'i f C t i-ies theit ntuoral f ruo .. oecy TI t hie oe let ions a s P mo)Ves a( ro1Ss

t heu heavn 15s ni,,;riv th lst ;it i del 1 et 01 of oTe dv'n-ic ef fect at t ll I wll

ii t he ca se TF 11) , a s indi (-ated, by t he defI c t i a c urv cat t 1.0 is

iTd i :seeriblhe. Fo r v = / 3 .in d v 3 .33 th1wu -vnai c e f f ect i ve r y suc 1i
P1r0ni01inCul as( indicalted byv Taibi. I' i'td( V. hli :,reement hu ntoo-

prt~skenl result s compared rciofi bly well withi t nu c so),A Ln In
mis I and I I I It i s c-x tr e oI yl well n e a se n, m-rlIv ctl casii i

alw [:aIa Table I1I1

AilM,! I II L. Dt)hFLEC:"! PlIF M A SlIPLY SU1'I)RTKI Bi:1MlXIL(AI.IPL

t- o.O *75 1________

I ( . ( I' /) (14 26)W (e7 I (

I (.) ( I) (22 8,) (1434)

I (~.) (091) (140), (1 176) (.
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WAVE PROPAGATION IN PER IOD ICALLY LAYERED %1EDIA

T. C. 1'. Ting
Department of Materials Lao ineering

University of Illinois at Chicago Circle
Chicago, Illinois, o0080

ABSTRACT. Wave proIpa.ation normal to the layeringo of a
periodically layered medium is studied. The 'avered medium can be
finite or semi-infinite in extent. Each period consists of two
layers of linear elastic or viscoelastic m--aterials. The medium is
initiallv at rest and at time t= 0 a transient wave Is generated
by the prescribed boundarY conditions. The stress response at a
finite x is obtained by the analogy between the exact solution
at the centers of odd layers in the layered medium and thu solution
in a homogeneous viscoelastic medium. In the case ot a semi-
infinite layered medium, ti-e stress response at a large x ~s
obtained by an as,.mptotic analysis. For the value of x ,hich is
not very large, higTher order asymptotic solutions are g tven.
Numerical exampl'es ar presented for an elastic composite subjected:
to a uinit step stress In time anm lied at x=0.

1. IN TR 0 1 -C.'I -3N . Mo~t ofr the approximatc thocries for wave
propa.,ation ill A lay-ered medCIum1- ficus, On th-e determ nation Of the
dispersion relation or the freqjucncy ceuuatlon due to a harmonIic
osc i IIat ion [1-4] a lhough, -.om:1 or .tiiv theocries, are able to) Irv-
dict the late-time :is.vmptotic souinin ai scmin-in initc layvered
medium due to ai stcn load aule t the bouudarv. Forth ltc,
exact theoriesi maY he ulsed to) tine toe1 as .mmultic solut ion and thle
wave front solution [S-7].

To predict the tranis cut response ait points not niecessari ly
far away from the im-,pact end T .here the as 'ymptotic solution loes
not apply) and to pointst-- not neesar ear thei wave rou,1t, a
new theory based on the analog. een tne dYnamic resluonse1 Or -
semi- tntin itc layered m-.ed ium and ai se .n nte hono geneoks
vi scoelastic mecd iur has.- ic en proposecd recently by Ti ng anld.1iua
[8] . Thle fundamenital ide0a iS to charac ter re thle I avercd uo.m
an ''equivalent'' homogeneous - vi scoelaist ic mud iulim such that tiue
dynamic response of the lattcr is idenlt icul to) that Of the laYered
Medium ait the centers of: thu alternate lavers. Although the ie
af model ing a compj))- Ls to by A S s Io last iL c CMcd I urn I S not lnew [9, 1o,
,he 'theorv of vis-caylastic inalo,,Yll ,ntroducod in [S] succeeds in
c:)r rela at L ng p rec i so) the ina, I g ht seen ai 1 ave red m--ediuml arnd a
homog"ieeous vi scoe last is e:lm Since si ropa got i on in a
hoimogeneous lineair vi>o s cnemnsni olved easmI c by. man\

milown numerical I schemes e .froam one Can obt a in the
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;:1a in tJm LtlL~llul tauvfc .- .1rv

The( thcory, at v Isa,cl±>.: t:~o, ;:Oatcc fl t2 70I a
semi in t ,fin[ ite n ed ur. [rn t-i: ''or v> rauat.rr eneral
thea -v Ouh c applies to a : in rii c Cdn

Consider a periodic 1crdmedian~ as; s:lrown in Fig .I J hic
eachl period 2wConsists )f t.vo la,,ers a: nimogeneous;, 10>)

inear elastic or v Ccm:0mate2rials . The tw.,o a'. :fercnt
m-.aterials in thle lacops twiji Lc desig-nate. a> mnaterial I and 2,

material 2 occupies [tiers 2,1,0,.. The thicknesses, or 'iou;viaa.
layvers are denotedi by h1  12. 1h" pU' -'' I and2
ref -er to material I and -2 rioecti iv. tha 1a~in ft toe
layered medium is :nit~ill at rust c i's

x UV xta .urc laere -choose tile cer '-lsraeoir0 o
other boundary, s = ned to hbe the Ce'nt r" 1 rse

layver N where N can he an even or aJd integer. i e2n ce

N - I

Ne will cansider !-ane wave, proragdit.on ii thec directian xa
which thle only- non-vanishning component of the di'acmn 5in zn
x direction. --a toerefore have a mne-dz-.ensonal wave -pro pagat 2on
problemn in which tiie ey-,ation of ration oad tile continuity of thne
displacement a re v ye n b %

IIr I Jliz 01,'>!

ari J~ r; .ae malk norma. i zt Ik ni stai,
oarticle':eloi ,-. nJlm>dn~x resoc~e; ana
-1(t be the rI ixationi runction t toe Faam Iorelsi
maizterials, -j-t aiid .t I aire :ndvenant It i diet Z
ta .d as Lamd 'Dm2) in t. [heC srra -strn1, In :'cla:t ittn
the form of St'ej '1c c onvo u t nn

t
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whetre we hiavt .is s med tilat

.a.(x, ) : v. x,0 c .(x,U ) i u 0

I1. GENELRAL SOLUTION. The general saiut~on to Lqs. (2-6) can
Le obtained bv the method of Lapla!ce transform and b the use of the
Floquet theory. We define tie Laplace transform, f(p), of a func-
tion f(t) h5

-Pt
t(pf = f(t)e dt .7

C-

Afzer appi v ng the Laplace transform to ELis. (2-b, the general
solutlon for the stress and tie velocity in 1e\ers I and 2 can be
ritten as

-7 ,'1) =A I sh 1(k I x1 + I1 sinh x (8a

V(x P  = -- I sinh (kL x) 1 cosh (k X) (8b;

o (x,p) = A, cosn "kx - k,- B Sinh -k,)

v (x,p) sinh (kx- k.J) + B, cosh kx - k 8d)

wnehre

k i  P/ki~ vgi

Ai and Bi (i-I ,2 a re( determined bv tile continulr) conditionl it
[ 1 (h2 ) :(h p  '

xn = h.,, =v.g

and tile quasi -per; odic;t property of the s, ation together tith the
continuite condition at x 2- I l

37 3



toI co:I~ ~ . .:: .- )tIi io

%Ko:,er A. anor d ar' Olatc

- . -1 --

mn-c C: S)

lie~~')r in 0l : ;

33 7

-- - Now"



whvere n is an integer.>lule vur. we c ::, i,. -l2-. i1

is a characteristi a cX',Onrlw: - . hcre:,re ,.di"
the general solution sltu . ,s tiu t,(ofleL, wie o.
second general solution hy chaagn< the sbyg of - kh'

of this second solution %,l. dt? o 2ted ..
general solution for the st ' 1s ,'d ot 'n% . at x

lavered medium can be rtten is, using Li. ;, 1 1,

1 2n.,I h !

v2n x, ,p = ''sinh n x 1 k
1 I

zli~n s xi ,.n I '\' c - xl + p o s h ,'K x .e

(-'.- .A -P csh>k. x s- hix nh x

-. - " I - -,n.

+ A, pN :o , =sh K x - sL i . C

.' m .

-I1 ~sinh< h cos e 'i-

wuhe re

+hen proper values 'or n and x1  (or x<; are Iw1en .

he used to determine so i:t on it an o i-L in the la\ere medium. The
tw' o offi ci o t. 11i a nd ij re Jeter::ineul from thle boundary anl

tionis at x = 0 . md x -

In the no x t sec t ion o i -h tke anal ,0 be '-o s jut 10 -
at thle centers of tht- i vers, a~id the 5)1 anton ,n a homogenicous visco -

elastic medium.

III. \-:QCOEL\STI( ANALOY." The stress i:id ye 2ocit at the
centers Of the lavers hav -e :l sImp!! fo:m. B lettin

x, x < in Ekis 17 (I , w n a ,v

1~ !



pt.,

v(wP) = -n- -. )

+ U 2nil I 5K (2en1 )r

/ n+1, _K +- :-vi2 n-. + p 0

We now con side r a hOrmene Ous ,is ot rc p , linear ViScoc'lastlc

miedium which occupucs 0 - x Z and %,nich > at rest at tI one I:-
subjected to certain proscribeu boundary conait ions at x = an,!
x = Z. Let Lnand ', c, the norn-,ai stress s, normal strain ana
particle velocity, respectively. AlI s o, let ani~d G be the "eqlu:nca-itlent" mass density and the "eanuivalent" relaxation function or7 this
homogeneous viscoelastic mazreri al. The ectuation of motion, the

continuity condition, the stress-strain relation and the initial
conditions are

71

X) t)I t

V

B; an~t in'theLatilace trans.":o em to Ecjs . . ._.er.-0nt;:

far tole stress; and velocrt\ %will Contain thc ennnr 1 tr

r~~ XI" t .>UN

In View of thle cxpntanti altes in Ls (!91, we snI ei.
'e&quivalent'' eel ixit'_On!nt1 : ~At ha. th-e rt iton

v,1~i'1l~ t 17P' tl

l e w ill also Jefin11 '.1Cen'ms dniy a the a eu
71aSs1 dens;ity' in thIIe iace C.MectaI M IS:
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.it. El . 22 , the gener.li >1:.02 to ha. ,2,, an l~ ,ritten as

.... x , <x 2 a

=x a e e

\Ix ,p , = p (- Ii e ) 2 4a in

where a and a' are arbitrary functions 7) n.

There are several ways. to identify the )naiagv aetween Eqs.
and (24)> If the stress in material 1 is or main interest, we ta
set

A,= A' aa

we then nave

for x = 2.. '20

and

for x = ( 2 n+l)c (26b

here

.JL.J = _____ = 12, 2

It should be pointed out that ;,bie } and V as g-ven o, is. 2-,
are defined for all x, its. (20a, and (2b: appiy only to x _n
and x =2n+-) , respectively. BV using the Ldentitv

'J '. "  =  ;,M = :~ i ,m [) M, L

the last of Li. ahj yan u written as

v 2 Lx,p) =a5-M {P~,lxp , = <2n+1 ..,12

it i Eq .2), , W, C has.tt !, a. . in the foi iowing form:

TlI I -i

e 'a t \ , i ' a' 0
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o (2nw, t) + (13 - d: (33)

Br
where

c2 )//(n 1)2/- t - 2

S 2(34)

c, is the group velocity of the elastic layered medium and 1,'2,53
are constants depending on the geometry and material constants of the
layered medium [15].

The solution which ignores the I2 and 3 terms is called the
one-term asymptotic solution and can be expressed in terms of an
integral of an Airy function [6,7]. If we retain the 2 term but
ignore the 43 term, we have the two-term asymptotic solution.
Finally, if both C2 and r terms are retained, we have the three-
term asymptotic solution.

In [15], a particular Bromwich contour was selected and Eq. (33)
was integrated numerically. A numerical example of the asymptotic
solution for n= 5 is given in Fig. 6 for the elastic layered medium
considered in Figs. 2-4. Comparison with the exact solution by the
ray theory shows that the three-term asymptotic solution is satisfac-
tory for this small value of n= 5.

A detailed discussion of when one-term, two-term and three-term
asymptotic solutions may be considered a good approximation can be
found in [15).

Although the layered medium is assumed to be elastic in this
section, the analyses can be extended to viscoelastic layered medium.
It is shown in [16] that when the layered medium is viscoelastic,
the distance traveled by the wave should appear in the asymptotic
analysis to provide a meaningful interpretation of the interaction
between the dissipation and dispersion of the viscoelastic ,ayered
medium.
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THEORY OF ACOUSTIC EMISSION

Yih-Hsing Pao

Department of Theoretical and Applied Mechanics
Cornell University

Ithaca, New York 14853

ABSTRACT

Acoustic emission is the sudden release of mechanical energy which propa-
gates in the form of elastic waves from a localized region in a material.
The technology of locating and characterizing the source of emission for the
purpose of detecting failure of the material is also called acoustic emission.
The 'anderlying theory of mechanical radiation and dispersion of elastic waves
pertaining to the technology of acoustic emission is discussed in this re-

port.

INTRODUCTION

The term of acoustic emission is currently used to describe a physical phenom-
eron as well as a technology. As a phenomenon, it describes the propagation of
transient elastic waves which are radiated from localized regions in a material
or structure due to rapid release of strain energy in these regions. By recordinF
ard analyzing the transient waves, it is possible to locate the sources of radiation
arid, in some cases, even to characterize the nature of the sources. The technology
that has been developed over the past decade to locate and to characterize the sources
is also called acoustic emission [I].

When a material is plastically deforme, micro-cracks and voids are developed.

The dynamic processes that generate elastic waves are very complex and a 7eneral
theory within the framework of materials science is still lacking. For the ourpcse of
detectinF the zones of microplastic deformation, the sources of emission may be repre-
sented by nuclei of strains of the dynamic theory of elasticity f2]. The erission
of waves by these macroscopic sources and the propagation of radiated signals in
a wave guide can then be analyzed and compared with experimental observations.
This constitutes the solution of the "direct nroblems" of acoustic emission.

To accomplish the objective of acoustic emission, it requires a solution for
the "inverse problem", that is, to determine the locations and characteristics of
the assumed macroscopic sources from the signals recorded at various stations in
the wave guide. We are, however, still far from accomplising this objective, both
in theory and in practice. The difficulttes that one encounters can be illiistrated

by the following example.
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2 Fc~ su AT 40h ~'-:ai' c.cc~

S R h

R . l11

so ILI) 2 340 161 180 a~ S 2 2W

r~~ h ~-e ti me record of a simulated a-oustic em-ission Jt Ll
1DlIate F- ~ cn er h 0.9525 cm. ThE snFmanl is fuenera~ei hr a wide-ba-nd ~ie o -
clectric transducer plact- i vertically at the surface of' t.he plate and the 'rrer

of the input siral is shown at the lower ri-rht corner of the fi o-ure. A Ciir *-.
tranr-'-ureQr ic plaoer at. a dita 40 h from the source , and it records the c
prit s1i ran'T as shown in the fi rure.

t jall, t-ILc o!(U-( of rij 1111 (an1 be 1Yc~nc Fva ric.
-1 i n cj 'ur lace f 11 ."e for irush an i id-,'lI zed hxAe , :.w e

wnr,- ct. ill rot able to caLlculate- complet ely the ouirput !7i cral s from th, cra
i . The reason is that the su-rfaco resnonse of' ther P. ate j- e rrecsed ch~

T- ,ti ci in errsof a double infinite integral whicn i.', tof~a c vlae

On the other hand, when one -.ries to compare the, th-oretlccai results, If ci -
tamned, with the exTrerimrrentajl data, he will encounter the- difficulty of niot lknow-
incr what the riezoelectric transducer does measure. A .i splacement, veai 'cc

stress? For the same rea:-on, the exact natuzre of the in-.ut hy the, *.rnns-1: i
not certain. Althourh progress- ha--s becn m~ade recently in the calib1rat ion:

dirr31, Precise m(ca-iiremerts of tht input and ou-,put c a: facouc> cr
n,;t 1teen w T rerrttelI

T n t h is r - o rt, w e r esen brie fy te th e oret, Fl Inn t2S
ba rdj on the diynamic theoory of elri:;ticitw. We discu:rs first a mathematical re-,re-
5entation of the. soirr'r e' a it then the i erinof 'Ioe.tciirac in
-I rI ate wave ra11il 4e Finailly, we .:hcw how the result:; of tlie anal wri a of di r~r-
s c n can be %TpI led( tr, locate( the s-ourc e of emi ssi on.

The t siaern fjeiould ), of elastic wer at the , a m cocrdi'na',e
X i and t 1 me t is,- Fcyvf rr',d 1 tht e Navie r-Cniichv eqra~t ion [ 2,1,1
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X+11w)vV~u + LI7 u - u -q(,)1

where c is the mass- densityardiaecstn 1PterEs.

The Loaforce f r~er unit mass- I.- ai tha -nl nerafes '<h( wave:. Th, rc,

pondin:- stress field, c (x,t) , a second saktensor, is riven by

o = XI117u + ii1lVu+ut')

is . _ vi iten'mc or (isotropi" teio'" <

AI hr-e 1neencuafes ctn at sit ns: no+ : te

The t) ovint- dyradi co ero ston, -

(A+vVV(' 0+ qIll-qv I ' t

where ( is an art! ar cr c 'nc on in te. The stt --

tol r3.. tki'ncK nd s led Greens dyanocs -a, r -aso

in an ofinil oe med~u an

F!-eiz the Greeni- 14 -; Iie In can 'oreth isoae-n ,
other tyrnes of point.. eu'r'es, knon of-- s' trains 'n the, - ror' <''

Lei t an I C b,, T.j~~r, 1Y r*- rIua lx ':a ar uinit vectors.
an i1 ax~ be t n toontrie ot'ascntcatedf" 7n r en

tir fa at x t asp crsn va-rr*1us ueTe of strains -

sot re nc 1h1 are then Icriil lo frosi

Cincbe force alng 11 -x , a p:

Double force along, ai

Center of hlint: sO IcC isi three koh~ul> fo
:'ingle coupile abhout c~C:~i
r5 rt-<'c of rotat'sos bout lVuxa +a'(
TV l it C ''onic] v momaentV~xa + ai-Vu I

1 j e0 
0 orce- iLn double_ soua<- ws th-u . o:'i -v -- n ... '> n

111ii ' L,'rj(: us d1- 'I oir ., the_ -- atsinn or collanse ol

P 1 6
C w'tv'' li od -01nra rtn .~ wi s)i7pjit . ,urces 'O-e iernl Pf er, ne n L

'-1 W< ( r-' theo :-l T I[ins.- ink lat'' 1'll,, T-wave 1'"em' P sr, L u I

I n Ji a i tr the 'Ii res I, c- 1 C P srI (Ic m rI0
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of 'trairu;,.

NN

Cy rack expre:e *r I o; . ~n.roor. .f t he: ruie r"cr

z.i. c~o c 2 't e: , c- o r r r - % 7 o, 4 *

u(x, t)

P.- :1 uron rrcan fute b- redce Ato p:r 2 h

11(. t (It -HP C ( X-x , -t )12. (7)
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-Z1

Th. = [nk- u. ,6 + ii (n [ I + n upq pk P p

and

qI q

The mn is called the moment density tensor and it is related to the strengthPCI

and orientation of a crack.

2. DISPERSION IN A WAVE GUIDE

Once a wave is generated by a source in a bounded mediu:m such as a plate or
a cylindrical shell, the wave is then multiply reflected by the boundino surfaces
which form a wave guide. As a result of interference of the reflected waves, the
disturbance observed at some distance from the source is quite di*fferent frcm that
originated from the source. This is known as the f,,eometric disr,-rsicon Cf waves
in a wave-guide.

We note that the Geen's function.e ard general solutions discussed in tIe
pre.vious section are for a source in an infinite elastic solid. To anaiv(e Waves
in a bounded medium, new Green's functions, one for each type of wave guide, must
be found. This amounts to the solving Of a new Ibo-undary va ue proble-7. c' ty
nar ics. So far, only wave guides with simple geometry like a plate, a circurlar
cy inder, and a sphere have been analyzed in detail [].

Consider an axially symmetric point source in a plate which is bounded tIy
tw, parallel surfaces z = ± h/2. The nor-,al displacement of a propariatinj"
pulse in the plate is given by [4,p. 4 6 8 ]

u(x,t) = f_ f(w)U (x,w)e-liat dL

(o)

U(r,z,w) = fO (F, o ) r( ,z u) jo( r)dC- o D( ,w 0

In these integrals, W is the circular frequency and <. is the radial wave nu7-
her, J is the Bessel function of zeroth order. The source function at Y

is separated into a temporal part and spatial part. The Fourier transform cf the
te.-,icral part is f(w), and the spatial part is represented by the function S
In term:s of the radial wave number. The N and D are complicated transceniental
functions of Cz and Ch. 'When the source is a crack, additional integration over
the. s'urface of crack is required and the S(C) furnrtion should be replaced by
the. moment density tensor of Eq. (8). Other parts of the integrand should also
be modified to reflect the angular dependence and tcnsorial property.
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The zeros of the denominator, or fi: roots ol the cuation

tanh/9 - .. '" ]t =I (e9)
tanch/P (r, 2

2 2 0 0 0 .. ..
U, =u/c -= / p :

is the characteristic equations of free waves in an elastic plate. is ki-ow.
as the Rayleigh-Lamb equation, and has been a su!b,.ect of extens4ve stuy .
By finding, the roots of this equation, one can deterrdne the phase an, 'roa v,-
locities and modal shapes of various modes of waves rtropacatinf n the ai%*ra .

Desrite its simple appearance, evaluation I the double in4 erral of F "
i's not easy. Two methods of evaluation are avncitab'e. ,One is the method Of ncr."
mode, the other is the method of generalized ray. In the method of normal m
the integral in F for U is evaluated by the calculus of residues, the
being the roots of the Rayleigrh-Lamb equation, and each term of the residual series
is the contribution from one normal mode. The intern-al in 'u must then be -v;l
ated numerically. Details of the analysis aire discussed in Ref. It.

In the method ' ;7,enorallzeJ ra , the inte-rrad of , in qc. (0) is exrand-

e(: into a series, e-ach t,' -m of the series represents the wave propar:atinr- aton- a
generalized ray path. The double inte-rai, one in is and one in F, of each
term of the series is then evaluated by applying the Cainard method [7 ], humor-
ical results for various types of point sources listed in the rovious section
are shown in a new article soon to appear [ ti.

From these prelimdnary calculations, we can conclude that the method 0" norT-
al mode is effective for waves at far field over a long time (r > 10 h)
method of generalized ray is for near fie-ld and short duration (r < ]3 h). \th
out going into details of these' resuilts, we can say that the wave rattern a' the
surface of a plate is very sensitive to the location of the receiver, rela*t-hv
toe tho source, and to the temporal function of the assumed raont source in ' ,e

3. LOCATIUG AND CHARACTN RLZINO SOUR.?

The analysis as descrilbed in the rovinun section provide afrratini
c-an be used to locate the source of e-Ission in a alate. Tn a iispersive wov'
guide, a wave packet with strong manitude propagates with the croup volooi"'
C.) which is, in rener, , differnt from the spend.I of P -wave (c), '-w' v

Dp

(e") or Rayleigh surface wave (ce). Let the strong wave packet be radiate . from
5

tIe source at (x 0,y) in a two imensional space and at the time to. If the same
w've packet is detected by three or mrc transducers at stations (x nYn) n = 3,2,3,

tt'e distance traveled by the wave fro,. the unknown seurce tn each station is then
gi ven by

r [(x -x ) + (y -y ) / r

= n 0 f'0(P4
~3q 4



Since thE_ travel time for the sam(- wave ttck- t w. ic apro L tsv hs'

is t to, we hauvo tho foll owinr thre '- in for three. Vr/~.x~~

aJndi t

By solving this sy-stem of equations we car detemine th,. lca ti~n
This is known as the melnod of tri angulaition.

it should be notedi that to apply The mothiod of' trianF'-i rcr,,we n--] kno, w
the c of the dominant signal that is detrectable by ,h1rer r< (ivwrz. ,I

waves in a plate, Eq. (10) shows tihut the scaximir lgrour v<oit"0 *_,

aintisyrimetric mode (the flexural mode) is equal to c .1.01 Th-e a

time for this g1roup of waves in n. -ass z-date is mark&', in T 17. 1 ',y an'5 %rOO.
V);/ urvier a very stroni7 sig-nal. A d dition a! an alysi1s o f 1-. --

the ra ,itudr of This g-roup) of waves was indeed tlhe strong-est r). 'le i c~
17rouns Pi fur field. T;ence by ident ifyrinr the arrival tines ofI A

ouc re"-ivini- ;ta-- :.ris, we shoulrd be able to locate the source _u,- -clv c hre
eauations of' (12).

For wave fieldI near the source, the wave packet has mot vet tieem full"yev~
aped. The sol-utions- of r- eneralized ray are then used to determine( the t~ravell.ing
speed of a predominanat sipnal.

In the current practice of non-destructive tentin- of materials, once -1o'nrre
of "weakness" is locatedj by thE ,i( oustio omi-s:;ion, other means of testdni- are,
to inspect closely the zource rer .on. Eve ntuatlly, one hopos not only to 1_aetli,

sou. c' but also to find out what '-.vne of so,(urce, cal scion it' is;. Math Le m t c f'r,",'
this is -q~uivalpnt to the determn n'tlon <If both P, (,,' andi 2(a in Fe.~lwhen

u( x,t ) is given. f ome progress ha boer madle to solve- tils inver-e probl e5* whe.,n
either f(w) or ?(- F) i.- kricwn .Vol of heV... The rrocres:-, .''nr

has not yet reachedl the staFge_ of t'li ication to areu -t ic emission.

Acrwoi'e .-f TV or, 1: - 1, 'iede r_'i wor-k i3panser(i b : the Wa-t'i n-il

1 :7 rfuir, A -ou:s' ic liioTecrhniques and lk~rpi ica e osr t T ndex\. 1 -a-

7 A. ;.I i. Thove,, Tho jah Ont i alheorn of El :ast i ci-.v , Te(v-r PlbIi enmi i:- 'loew

Their (itaracteri nation" in Psi11Acoustirs , v . 1 )4, odit(ed Jl W.IV. Nln

rind R.N. Thiiroton, Academic Press, New York, 1 IC7 ).

lishing Co., New York, 1 7 q

T. ikl wit , T e T eor r~' F ec3 95 a -;a~ a e (u de , N r h 1o l n ~,



396



ADVANCED REGISTKATION LIST 6 June 1980

26th Conference of Army Mathematicians

10-12 June 1980

Achenbach, Professor Jan, Department of Civil Engineering, Northwestern

University, Evanston, IL 60201.

Chandra, Dr. Jagdish, Director, Math,-matlcs Division, U. S. Army Research

Office. Box 12211, Research Triangle Park, NC 27709.

Chen, Dr. Peter C.T., Research Mathematician, Benet Weapons Laboratory, LCWSL,

ARRAI)OM,Watervliet Arsenal, Watervliet, NY 12189.

Dalermos, Professor C. M., Divsion of Applied Mathematics, Brown University,

Box F, Providence, R1 02912.

Davis, Julian L., ATTN: SCA-T, Bldg. 3410, U. S. Army Armament R&D Command,
Dover, NJ 07801.

Devereaux, COL Alfred B. Jr., Commander and Director, U. S. Army Cold Regions
Research and Engineering Laboratory, Box 282, Hanover, NH 03755.

Drew, Professor Donald A., Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY 12181.

Elder, Alexander S., Mechanical Engineer, USARRADCOM, Ballistic Research
laboratory, Aberdeen Proving Ground, MD 21005.

Flaherty, Professor Joseph E., Applied Math & Mechanics Section, Research Branch,
Fenet Weapons Laboratory, LCWSL, ARRAI)COM, Watervliet Arsenal, Watervliet,
NY 12189.

Fleishman, Professor B., Department of Math Sciences, Rensselaer Polytechnic
Institute, Troy, NY 12181.

Freltag, Dr. D.R., Technical Director, U. S. Army Colci Regions Research and
Engineering Laboratory, Box 282, Hanover, NH 03755.

Haug, Professor Edward J., Jr., Materials Division, College of Engineering,
I'niversity of Iowa, Iowa City, IA.

Kapila, A. L.., Assistant Professor, Math Research Center, University cf Wisconsin,
610 Walnut Street, Madison, WI 53706.

Lin, Professor S. S., Mathematics Research Center, University of Wisconsin,
610 Walnut Street, Madison, WI 53706.

l.udford, Professor Geoffrey S. S., Applied Mathematics, Theoretical & Applied
Mechanics, Thurston Hall, Cornell University, Ithaca, 1; 14850.

397



Malek-Madani, Professor R., NRC-University of Wisconsin, 610 Walnut Street,

Madison, WI 53706.

Masaitis, Ceslovas, Mathematician, USA Ballistic Research Laboratory/ARRADCOM,
ATTN: DRDAR-BLB, Aberdeen Proving Ground, MD 21005.

Meyer, Dr. R.E., Mathematics Research Center, University of Wisconsin, 610

Walnut Street, Madison, WI 53706.

-Nakano, Dr. Yoshisuke, U. S. Army Cold Regions Research and Engineering

Laboratory, Box 282, Hanover, NH 03755.

Noble, Professor Ben, Mathematics Research Center, University of Wisconsin,
610 Walnut Street, Madison, WI 53706.

Nobel, John A., Director and Professor of Mathematics, Mathematics Research
Center, University of Wisconsin, 610 Walnut Street, Madison, WI 53706.

O'Hara, G. Peter, Mechanical Engineer, USA-ARRADCOM, Watervliet Arsenal,
Watervliet, MY 12189.

Pao, Professor Yih-Hsing, Chairman, Department of Theoretical & Applied
Mechanics, Cornell University, Thurston Hall, Ithaca, NY 14853.

Polk, John, Terminal Ballistics Division, Ballistics Research Center, Aberdeen

Proving Ground, MD 1005.

Poore, Aubrey B. , Associate Professor, Mathematics Research Center and Colorado
State University, Mathematics Research Center, University of Wisconsin,
610 Walnut Street, Madison, WI 53706.

Powell, John D., Research Physicist, Ballistic Research Laboratory, ATTN:
DRDAR-BLB, Aberdeen Proving Ground, MD 21005.

Robinson, Richard, Army Concepts Analysis Agency, 8120 Woodmont Avenue, Bathesda,

MD 20014.

Ross, Edward W., Jr., Staff Mathematician, U. S. Army Natick R&D Command, Kansas
Street, Natick, MA 01776.

Saibel, Dr. Edward, Chief, Solid Mechanics Branch, U. S. Army Research Office,
Box 12211, Research Triangle Park, NC 27709.

Srlvastav, Professor Ram P., Applied Mathematics & Statistics, Suny at Stony
Brook, Stony Brook Campus, Stony Brook, NY 11794.

Sterrett, Dr. K. F., Chief, Research Division, U. S. Army Cold Regions Research

and Engineering Laboratory, Box 282, Hanover, NH 03755.

Takagi, Dr. Shunsuke, U. S. Army Cold Regions Research and Engineering Laboratory,

Box 282, Hanover, NH 03755.

398



Tallingston, Arnold, ARADCOM U. S. Army Armament R&D Command, Picatinny

Arsenal, Bldg. 3310, Dover, NJ 07801.

Tasi, Professor James, State University of New York, Department of Mechanical

Engineering, Stony Brook, NY 11794.

Thompson, Dr. James L., Act C, Survival Technology Function, U. S. Army Tank

Automotive R&D Command, ATTN: DRDTA-ZSS, Warren, MI 48090.

Ting, Professor, T. C. T., University of Illinois at Chicago Circle,
Departmerit of Materials Engineering, Chicago, IL 60680.

Tracey, Dr. Dennis M., Mechanical Engineer, Army Materials and Mechanics

Research Center, Arsenal Street, Watertown, MA 02172.

Vasilakis, John D., Mechanical Engineer, USA ARRADCOM, Benet Weapons Laboratory,

Bldg. 115, Watervliet Arsenal, Watervliet, NY 12189.

Weeks, Dr. Wilford, U. S. Army Cold Regions Research and Engineering Laboratory,

Box 282, Hanover, NH 03755.

Wu, Dr. Julian, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, NY

12189.

SUPPLEMENTAL REGISTRATION LIST 10 June 1980

Alexander, Assistant Professor Roger K., Rensselaer Polytechnic Institute,
Department of Mathematical Sciences, Troy, NY 12181.

Atkinson, Col. John C., United States Army Reserve, St. Louis, MO.

Chow, Professor Pao L., Wayne State University, Department of Mathematics,
Detriot, MI 48202.

Coleman, Dr. Norman P., ATTN: DRDAR-SCF-CC, U.S. Army Armament R&D Command,
Dover, NJ 07801.

Norman, Dr. Paul D., Burroughs Corporation, 33 Williams Way, Cain Township,
PA 19335.

Varadan, Assistant Professor Vasundara V.. The Ohio State University, 155
W. Woodruff Avenue, Columbus, OH 43210.

ADDITIONS 12 June 1980

Lenoe, Dr. Edward, U. S. Army Mechanics and Materiels Division, Watertown
MA 02172.

Ludford, Proffessor Geoffrey S. S., Thurston Hall, Cornell University, Ithaca,
NY 14850.

Stewart, D. Scott, Thurston Hall, Cornell University, Ithaca, NY 14850.

399



jf i I' ~g ...

REPORT D)JCt'.:'-IT/,TIO:4 PIGE j : A W'IW2> .:

I iL "'L'- .U f'Ui l . (',OVI ACLI I I10 j J hLLI'lL.2 LAI 1-0C, 1iMULNi

ARO Report No. 81-1 _ _ _ _ _

A TITLE (..d .b*llI) S. Y'E OF IEPORT A PERIOD COVErED

TRANSACTIONS OF THE TWENTY-SIXTH CONFERENCE OF
ARMY MATHEMATIC IANS

6. PE'IFORMING ORG. REPORT NUMBER

7. AUTHOR(.) . CONTACT OR GRANT NUMUER(s)

9 PERI MOING OHGANIZATION NAAE AfJO ADDRESS 20. PrOGRAM ELEkIENT. PROjECT, TASK
AREA 6 YIOFK UNIT NUMBERS

I1 CONTROL ING OFFICE NAME AND ADDRESS 12. REPORT DATE

Army Mathematics Steering Committee on Behalf of the January 1981
Chief of Research, Development and Acquisilion 13. NUMBER OF PAGES

399
4 o.I t

OHr-C IT? NCY NAME 6 AODDI+LSS(Pi dlIlelten Iom Conltolhn$ OII1CV) IL SECURITY CLASS. (of h1. epo,()

US Army Research Office
P. 0. Box 12211 UNCLASSIFIED
Research Triangle Park, MC 27709 IS. DFCLArSIFICATION'DOWNRAUING

SCHLDULE

" r ' LU l0. 5T7ATEMEN (of iths }.epof)

Approved for public release; distribution unlimited. The findings in this
report are not to be construed as official Department of the Army position
unless so designated by other authorized documents.

III DISTRIBUTION STAT L ENT (of th. IrsPcP ente d pr Illock dO, If dtI.t Iwo, leport)

I1. SUPPLEIALNTAHY NOTES

This Is a technical report resu't;ng from the Twenty-Sixth Conference of Army
Mathematicians. It contains most of the papers in the agenda of this meeting.
These treat various Army applied mathematical problems.

19 KEY %ORD$S on -- 80r. .1d. If j y .d dentify by block ...be,)

crack problems floating elastic plates
solitary waves stress-strain problems
flame propagation screw threads
combustion fracture mechanics
stochastic equations bifurcation
intermittent motion distributed systems

control systems wave propagation

maneuvering tirgets gas dynamics
volterra integral equations finite element method

cubic splines layered media
waves

D , ",AM 1473 UIT1ON 0 1 'Ov I' IS OP.'OL E. ..............


