
AD-A093 543 WHITE SANDS MISSILE RANGE NM F/S 12/1
ROBUST FILTERING AND SM OOTHI NG VIA GAUSSIAN MIXTURES.IU)
DEC A8 0 S ASGEE, A A DUNN

UNCLASSIFIED WSRT-73 L

mhhhE~hEEEEE
Eomhhhomhhmr-



111I1 1__II8,
1.25 IIII 8

111IL2 1.4 111111.6

MICRO(OPY RES('I UITION IHS1 ('IART

H

1, -f I
i

'IN M -- 1



TEChN IC AL 'EP'ORT

NO. 73

~-t 1
I~ jANUARY '19S04

I

ROBUZ T FIL'ERING MEND SMOCJHNtd ',
GA",USSIAN MIXTURI!ES

DATA SCIENCES G!VrSTUiI
rA US MN 141Tr ' ~~.L RANGE

ii' v~WHITE SANDS MSIE RANGI-, NEW 'A XICO

- I 81 1 07 014



TECHN ICAL REPRT-

NO. 73

JANUAPY 1092O

ROBUST FILTERING AND .S4OOTHING VIA
- GAUSSIAN MIXTURES..

Il
MATHEATICA SERICES RANC

II M~ATATSIC SERVISIBRNC

US ARM4Y WHITE SANDS MISSILE RANGESP

5 WHITE SANDS MISSILE RANGE, NEW MEXICO



TECHNICAL REPORT

NO. 73

Prepared by ,.
WILLIAJM S. AGEE
Mathematician, Math §cs Br

BARBARA A. DUNN
Mathematician, Math Svcs Br

Reviewed by..-' -
JON' E. GIBSON
Chief, Math Svcs Br

Approved by c- -- " - w) .-X">--,"
PATBICK J.- HIGGINS

Chief, Data Sciences Div

I
I



UNCLASS zF: ED
Securitv Cassr~cazlon

DOCUMENT CONTROL DATA. R & D
Scu y cuati atjion *f Ire body of abstrac? *nd inldexing annotatioen n~ust be*rerd'An . 'raI.oeiscafed

i. AI N&4GACT'4!" 'Co3Pr&I# r WAuh) 'a. IMPORT~ SECURITY CLASSIFICAI';OP

Data Sciences Division UNCLASSIFIEDNational Range COera-tions Directorat e2bGRU
White Sands Mi4ssile Rane, New Mexico 33002 NA -~~/9

ROBUST I LTERING AND SMOOTHING VIA GAUSSIAN ',I.X(TURES

4. DESCRIPTIVE -40TES (-7-ypo of report and inclusivg dae$c)

S. AU ri-ORS) (Fzrs! .=,. middle -njtjo!. lastn.ame)

William S. )Agene and Barbara A. D.unn

IS. REPORT' DATrE 74. TOTAL NO. OF PAGES 17b. NO- OF REFS

DECEMBER 1980 30 6
84. CONTIRACT OR GRANT NO. go. ORIGINATOR'S REPORT' NUW(UCRIS)

b. PROJECT NO. Technical Report No. 73

ob. OTNER REPORT NOtSi (Any other nuinborm IJ'At =4y oo..adianed
this report)

d.

10. DISTRIBUTION STATEMENT

DISTRIBUTION OF- THIS qDOCUMEN SUIMTD

I I- SUPP..EMECNTARY NOT ES 12. SPONSORING MILI TARY ACTIVITY

13. ABSTRACT

Robust methods provide a fres'n approach to the treatment of outliers :r fi~tring
and smoothing applications. In deriving the filter and smo,,other equatizns ' ta :e
conditional mean formulation or maximum a posterior-* formulation the -measurerment
noise probability denrsity is replaced by a pseudo density which is Gaussian mixture
with very heavy tails. The resulting robust filter and smoother are apolied to
tracking-datato obtain improved estimation per, .ormance in the presence ofC ouitliers.
The improvern!int in estimation perfornance is evaluated by Monte Carlo using
simulated tracking data. The Monte Carlo results indicate the improvement in

perfor-nance to be scmewhat greater than the improvement obtained when using robust

r

D)D I '.V 0 e1473 0 W-a POA d.W19 UNCLASSIcIED



UMCLASFH
Socurity Cassification

Robust Es'.imationt
7iltaring
Smoot-iing

UNCLASIF:7I

Socurty Cssifistio



ABSTRACT

Robust methods provide a fresh approach to the treatment of outliers

in filtering and smoothing applications. In deriving the filter and

smoother equations via the conditional mean formulation or maximum a

posteriori formulation the measurement noise probability density is

replaced by a pseudo density which is Gaussian mixture with very heavy

tails. The resulting robust filter and smoother are applied to

tracking data to obtain improved estimation performance in the presence of

outliers. The improvement in estimation performance is evaluated by

Monte Carlo using simulated tracking data. The Monte Carlo results

indicate the improvement in performance to be somewhat greater than the

improvement obtained when using robust filters and smoothers derived from

M-estimates.
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I. INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust

M-estimates of regression developed by Huber 1l]. The robust M-estimates

provide a natural treatment of outlying observations and have been extremely

successful in dealing with outliers in other data reduction problems [2]

and [3]. The extension of the M-estimates of regression to filtering and

smoothing provides a fresh approach to the problems caused by outliers in

filtering and smoothing applications. Robust methods for estimation have

been designed to perform well when observations from contaminating distri-

butions are present. The conventional estimation techniques of least squares,

minimum variance, maximum likelihood, etc. may become useless when the ob-

servations are contaminated by outliers. In filtering and smoothing appli-

cations, outliers have often been treated by testing the filter or smoother

residuals. If the residual is too large relative to some measure of dis-

persion of the residuals, the corresponding observation was rejected and

considered to have been obtained from a contaminating distribution. Other-

wise, the observation is processed normally by the filter or smoother. This

procedure was often successful when only a small proportion of outliers were

present in the observation sequence. Also, in order that such an outlier

detection sequence be successful, a robust measureof dispersion of the filter

or smoother residuals is necessary. These old methods of treating outliers

in filter or smoother observations were added to the filter or smoother algo-

rithm as an afterthought. In contrast to this the development of robust filter-

• ing and smoothing methods by the use of M-estimates provides a method of treat-

ing outlying observations which is inherent in the filter or smoother equations.

| | M1



In previous reports 14] and £5] we have developed the extensions of

M-estimates using a specified p function to the filtering and smoothing of

tracking data. This application was evaluated extensively using Monte Carlo

methods. The results of this evaluation showed a significant decrease in

estimation error using Hampel ,p functions when small outlying observations

were present. When large outliers were present, filters using M-estimates

offer complete protection against the destructive effect of these outliers.

Also, when no outliers were present, there was negligible loss in efficiency

using filters with M-estimates as compared to using an ordinary Kalman fil-

ter.

The robust filtering and smoothing techniques developed in this report

are an application of the work of Masreliez [6] on approximate non-Gaussian

filtering. We assume that the filter or smoother observations are sampled

from a Gaussian mixture pseudo-density. After deriving the robust filter-

ing and smoothing equation, we give the results of an extensive Monte Carlo

evaluation of these robust techniques when applied to simulated tracking

data in the presence of measurement noise contaminated by outliers. We

also compare these Monte Carlo results with equivalent Monte Carlo results

obtained using robust filters based on Hampel functions.
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II. APPROXIMATE NON-GAUSSIAN FILTERING

Assume that the state of a process is given by the linear model

x(k+l) = (k+l,k)x(k) + u~k), (1)

where the state vector x(k) of the process is an m-vector, u(k) is a

Gaussian state noise vector with zero mean and covariance q(k). (k+l,k)

is an mxmn transition matrix. Let scalar observations of the process be

given by

Z(k) = H(k)x(k) + V(k), (2)

where H(k) is a row vector and V(k) is a measurement noise error which may

be contaminated by outliers.

In many situations the conditional mean provides an optimal estimate

of a parameter or process. We will follow the work of Masreliez [6] in

deriving an approximate conditional mean of the process specified by (1)

and observed by (2). We denote the conditional mean conditioned on the

observations in the set Zk = (Z(1),Z(2),---,Z(k)} by x(kfk) = E[x(k)IZk].

Let p(x(k)lZk) be the probability density of the state x(k) conditioned

on the observation set Zk. Using Bayes rule p(x(k)IZk) can be written as

p~x(k) IZk) : p(Z(k)ix(k))p(x(k)IZ-) 
(3)

p(Z(k)Z k-l)

The basic assumption in the derivation of Masreliez is that p(x(k)IZk -l)

is Gaussian with mean x(klk-l) and covariance P(kjk-I). The conditional

mean estimate of x(k) is given by

x(k]k) 2 E ~xkIZ k] -fx(k)p(x(k) I Zk ' l )(Z(k)x(k))dxk)

r, p(zC )lzk- (4)

3
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Using (5) in (5) results in
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(7)
p(Z(k)!x()). 1 (

Integrating (7) by parts gives,

x(Ik) = x(k'k-), + pl(z(k)zk-1)P(k' k-) ' ' (k p ( k))dx(k)

Using x p(Z(k) x"k)) -T(k)- , - x(k), (9)

in (8) we obtain

Using p '('z )p(Zjk) x[!k) p(xV(k) 7 , (Zk  ecme

x S i -7m 1,k)'!, 'kk 'l

3Z p (7T,<
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mum variance - r ahen temeasureme:nt s ~s n o r.Gu s sin .>-,ocr

to cnit reszecifi4:a--4on ojF thls az~crox~rna~e filter, i4 s rneca = ry

tO cr e a n ex r zs s~ 3 r. r :e zn c c c , en

P(k C k (1k ()(xk-xk'' 7<

An expression for ccmputing P(k) is derilved simillar to the der-~va-on of

x(kO). This derivation is outlined below.

(1l4)

-(x k 1k)-x (kk-I k xk-

Let S(k) =E~ (x W-x k' k- I))x x j!<-) zk Then using ~

5(k) = 1" -klT~;(< 1c('k fxk (k - ( - (k1

'Assimirc ~(~)Z 1 )is Gaussian, we use (6) and integrate by parts twice

to ottain.

?( k-) Pk ' k->;:Z kyl

h :<z (76)
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111. THE ROBUST CONDITIONAL MEAN FILTER

We apply (11), (12), (17), and (.181 to derive a robust filter. We as-

sume that p(Z(k)!x(k)Jis the Gaussian mixture,

p(Z(k) lx(k)) = zaiN(Z(k)-H(kQx(k)-a k ,'RK (19)

In (19)

N(Z(k)-H(k)x(k)-a~), Rk) = ( k/Y )EXP -(Z(k)-H(k)x(k) -a(i))2/2Rk1 (20)

We do not require that = 1 so that (19) may not be a density function,

but rather a pseudo-density. Also, the sum in (19) may be infinite. Thus,

we have individual Gaussians centered at a(i), each having standard deviation

The locations ai) and the amplitudes ai are considered design para-

meters of the robust filter. We obtain p(Z(k)lZk -l) from

p(Z(k)!Zk -l) =fp(x(k)IZ k-l)p(Z(k)ix(k))dx(k) (21)

Using (19) and the Gaussian assumption for p(x(k)IZkl) the convolution in

(21) gives p(Z(k)lzk-)= ra p(Z(k)-H(k)x(k~k-l)-a( ', M(k)) (22)
i ik

where M(k) is the covariance of the residuals,

M(k) =H(k)P(kk-l)HT (k) + Rk (23)

Using (22) in (11) and (12) we obtain the filter equation,

x(klk) = x(klk-l) + P(klk-I)HT(k)M-l(k)(Z(k)-H(k);(klk-l)-a'k) ,  (24)

where

(Ci Iak = LWiak (25)
i' i

- -I I I I I "" ' -"...... ,) _ . " .-
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The ..eih- S,,1. are given by

,I: (Z Ik) - .' x" k k _ i )  , ,-H(.,x k-!l)
= . (26)

in compurinc. the we ighted a','erage in (25) it is not necessary to comrute

al -he erms in the sum, since many of the Nei;h-s Zie e zero for = aI

:rac:ical purposes. 'e only need to compuze those terms in (25) and the

corresocnd i ng weihts in (2) for wnich jZ(k) - H(k)x(k k-l)-a ,

This considerably simplifies the computation of the robust filter. The co-

variance of the residuals, M(k), is estimated from past predicted residuals

using the robus. MAD estimate,

V ) = median Z(k-j)-H(k- )x(k-j~k-j-l) /.6745 (27)

The conditional ccvariance, P(k), is obtained using (22) in (17) and (18),
MI -2 2

T. ... . ( a a (k)P( ik-l), (23)

where
2 M 2 

(9
(ai)- k  : W. (a k)-a<k2 (29)
ki K \. k k

O'nly those -erms 4n (29) for whi-h Z(k) H(k)xk-l) - a -

are ccmcuted.

The locations, a k produce a smooth pseudo-density if 'hey are chosen

at zero and odd inzegrai multiples of ,T , i.e., a, = , a(i) =

K K

sgn ,2 i-) , T - We hav1e also zeste the t w

i -



a ) = i kT , i-I 0. Several different choices of the amplitude have

been tested. The most extensive testing has been done with a. I and =

1 11

4 8
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IV. MONTE CARLO EVALUATION OF THE ROBUST FILTER

Evaluation of the robust filtering method described here has been done

with a view toward eventual application to trajectory estimation. Emphasis

in the evaluation is on the use of simulated rather than real trajectory

data. This allows a quantitative determination of any advantages in the

use of robust filtering in the presence of outliers and also any loss in

efficiency using robust methods when no outliers are present. The simulated

trajectory is that of a constant velocity, level flying aircraft. The filter

model assumes the trajectory to have constant acceleration in three cartesian

coordinates. Let x, y, z be the East, North, and Up components of trajectory

position. We assume that the dynamic model for each of the coordinates is

given by

xl(k+l) I 0 +2 0 (30)

x2(k+l) 0 1 A x2(k) (30)

x3(k+l) 0 0 1 x3(k) W(k)

where a = tk+l - tk. xl(k), x2(k), x3(k) are position, velocity, and ac-

celeration components, respectively. W(k) is a zero mean Gaussian accelera-

tion state noise with variance q. The filter observations, Z(k), are scalar

positions corrupted by additive noise,

Z(k) = H(k)x(k) + V(k),

with H(k) = [l 0 0]. The measurement noise is Gaussian with covariance

R(k). The measurement noise is contaminated by outliers which are generated

by choosing the mean, .(k), of the measurement noise

(k) 0 if no outlier

ui U(k) if outlier 
present

ill IlII II I | | 9



In order to decide wnether or not an outlier is to be present at each time

tk, we use a two state Markov chain. Let i denote the state of the Markov

chain. i = 1 is the state of no outlier present and i = 2 is the state of

having an outlier present in the data. Let Pij(k) be the probability of

a transition from state i to state j in the interval (tk-l, tk). The transi-

tion probabilities are chosen to provide a given percentage of outliers in

the observations and also to generate a desired average run length of out-

liers. The transitions between states are realized by use of a pseudo random

number generator.

The constant velocity trajectory used for evaluation is given by

X(tk } = x(tk) + x(tk+l-t k)

Y(tk+l) = Y(tk) + Y(tk+l-tk) (32)

Z(tk+1) = Z(tk) + Z(tk+l tk)

with x = -550 ft/sec, y = -525 ft/sec, and Z = 0. A sampling interval of

tk+ l = .05 sec was used. A Monte Carlo evaluation of the filter is done

by computing scme statistics of the filtering errors over N filter runs.

Let x0(tk), Yi(tk), and Zi(tk) denote the filtered position estimates at

time t for the iph rjn and let Xi(tk) = xi tk) - xi(tk), i(tk) =

Yi(tk) - Yi(tk), and Zi(tk) = Zi(tk) - Zi(tk) denote the error in filtered

positions for the i t h filter run at time tk. Also, let xitk)

"- xltk), yi(tk) y - yi(tk), and Zi(tk) = Z - Zi~tk) denote the errors

KI

: 10
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R

RN R k' (34)

7 N"
R(t k Ri '-k
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4nere 1 is :"e tz, n I nmer fr i7er et time tocints. nes:eriese-

fie d, '1 5, 77 21 : and z:~ n=., And P- .5 Tese o-rans-

ition pr~tobani 4ies f or tn e Ma &0v chai r o v ide a r su t -2r :n tam -a -r

lengith -.' three. A state roise iarlanze, t ,was 'used 4r al7 f '11ter

runs.T .n all runs of th.e robust f,"rer, the rneasur=!7ent !cse veriance

Ra),-as unkc.-,t. to :ne v~e sdaraniace, wnizh -is -:ne :r' i

:uarnoit ivo-a R?'and "en -y the fiter eias eso:_ec us~r, tne

IRAD estimate of f(27).

Figures 1 and 2 Present the aier-age ?SS pciinand veiccity" filter-

ing errors 'cor a Gaussian m-lxture rcbuist filter with Observations contamin-

ated by varicus mna.nitudes o,: outliers. The Gaussian mixture filters used

in renerating Pgs 1 and 2 used mazni:o es of the Gaussians, a.

Ta.o different 2-,ussi43n mixt.ure filters are represented in F-Ics 1 and 2,one

with Gaussians at all inten rai -,ulios ol the resi&4ua! standard dJev-atior,

ks a nd 0,,e ~hGa-,ssiars a-. zero and odId integral m'ultipes o-' E ach

com1oonenr o;F the Gaussian mix(ture representing P 7 Zk- has szandard -'e-

viat ion, Sk
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OUTL!IE LrE.E.'.

There is very 'ittle ti-F-Ference in the estimation errors of the tw-"c fil4ters

oresent.ed in Fizs 1 and 2. The filter with Caussians at only --dd uile

of s . sznYa I -ss ccrmputa '-Jonai ly c~rr~;ex so tha ' it ioht be considered

the preferred Filter of tne two filters presented 4n Figs Iand 2. rigs 3

and 4 ccmcare t~e 3/erage _2stimation errors for t.'o Gaussia4 i.trelrt'

which have Gajssians at zero and od nee u~~e : One o es

filters uses '-aussian amplitujdes, :t 1 i I~ and th~e oeruses eq-al

amplituides -17-r -,e Ga us s ia ns
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Vie rcbust fi':7er- an'lch uses ecual amoliides For the Ga~ssians Gives scire-

w nat smal'e- es-i7m on err'orS thnan tre other Zajss4_An mixtt;re filters

ev a;ae. ll 'ie -c:e :?,a:- usfn ; i th ('aus i Ds 3caej at' all In4tegral

nut j es 3 - -:es no-- resuL; in a isefl fier s inc e 4t has a zero 4n-

fi-uence :!-Jn '.d _ef~r2 d.,IES :jt -r-,vi de any error correction. Figs.

and 6 :ZZ-7arz- -e esiainerrors of the Saussian nxtire filter havina

1an' $auslz:-S a- ,.4, irtegra, -,,Ui-.ileS -, S kwith th-e robust . e

:)reser-.e~l4r nn :2 n i s es a 3rr: e I fu ncti ons v th r e a kzoin ts o 1

2, ant' 2 tnrioi me denctc ty a',~ 3'.
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'JX Hail :2,31

0 4 -41 a rR II F, 64

Outl'lier Level

The Gaussian mixture filter in Figs 5 and 6 gives somewhat simaller esti-

matLion errors than the robust filter using Ha(i, 2, 3).

The robust Gaussian mixture filter was also evaluated with respect to

its ability to adapt to changes in the measurement noise variance. Using.

the same si-mulated trajectory as before,. the measurement nos standard

deviation was taken to be ART7= 20 ft for 0 < t < 25 sec, ,-~T=10ft

for25 t < 4 se, ad /T :50ft -or 40 < t -< 50 sec. Figs. 7 and

tS

. 8 Compare the averace estimation errors of the Gaussian mixture filter with

ai =i I and having Gaussians at zero and odd integer -multiples of S k with

IIthe estimation errors of the robust fil ters ujsing the Hampel -u functions

., Ha(l, 2, 3) and Ka (3, 3.3) under the above measurernent noise variations.

t; The results for Ha (1, 2, 3) and Ha (3, 3, 3) were reported in [4]. Except

" .. for he ay i whch te !spersion est.imate, Sk  of the 11ter residua's is

estimated, the fil1ter using ia (3, 3, 31, represents a conventional ,q!ay Of
ij handling outliers in a Kalman filltering application. Figs. 7 and 8 show

!T
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:hat bo h e laussian mixure rcbust fi -y- and the r-bus: filter ha Q2 , 2,

3) have ccnsi:a-ba!' smaller estimation errors :.han -.he more conventional

fi I, 2, 3-, for this application. Figs. 7 and S also indicate

:hat -he cbus- .'aussian mixture filter has somewhat smaller eszimation er-

rors than zhe robust fflter using the Hampe, v fnction, Ha (1, 2, 3).

T

+ F'ig 7
36 T

32 T

^4 xr . "I .,: r ,- E

$6t X Hacl.2.
33
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Outlier Le'el

X x3'.?
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V. AP0 O:AT ION-GAUSS7 :AN SMOOTHING

In the followingl, szrne robust fixed lag s-moothing equations are de-

rived in a w~ay similar to the deriv.ations of the robust, Gaussian mixture

filter equations, i.e., using the conditional mean derivation emploved by

Masreliez ind assum~lrg a Gaussian mixture pseudo density ,:or the mEasure-

ment noise. in fixed lag smoothing an est---a:e of the state xl') of the

system described by (1) and (2) is aesired usIng the measurem~ents Z(1),

Z(2, -- , (1k, -- ,Z(k+N). Let AZ kN= (Z(k), Z(k+l), Z(k+2),

Z(k+N):,. Then Zk+N = Zk-l UaZk+N The posterior conditional density is

given by
k+N, k-l

P(X(k)!Z k+NJ P(:izkNX(k))P(x(K)IZ (36)
P(AZk+N 1z k-1)

We again assume that P(x(k)1Zk-l.1is Gaussian. The conditional mean,

x(kj'k+M) =E~x(k)IZ kI is given by

x(kjk+N) P PlZkNZ k- 1) fx(k)P(,,'"xk)Pxk: k+N)d~

Adding and subtracting ;(kk-l) gives

x(klk+M) =x(kl'<-l) + P ( AZk+1zk)fJ(X(k)-x(k~k i)~ (k)i~l

1(zkNx (k))dix Ck) RM(38

Assuming P/x(QiYZk ) is Gaussian, we use f6) to obtain

x~ik~i+IN) x(Alk-1) - P (AZk I Z k-l) f[kxck) P(x(k)!Z )-

P cZk+"I x (k) dx (k) (39)
Mr
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intagratina (39) bynrzv

z xkkk-i

Assumin,,g stati stical, independence o- -.he olseriat-4.ns

P(%zk+x(C)) ;- P ZN- (41)
j =0

Then

k-N IZkx k))'= (kZ kIx(k))
.;x l~k) z k)3xk (42)

where Q. : P(Z(k+fxck)) (43)
3 --j

Assuming no szta noise in the forward interval , we have

3P(Z-(k+fl)x k)) T ;,P(Z(k~-i)'x(k)) (44)

3X ~~ (kj tk)H (k-j) 3 kj

Substituting (41) -(44) -;nto (40) gives

;(k!kLN) ;(k~k-l ).P-P1(ZN N P~ki:(k.T )H T(kj)

But

P( '+'-((k))(X~~jzp (.Z Nx(k)'Zk1

r



Then

1 =0 )

H;kj)~ k r~z+Nk)

In order to use (4)7or rocust smootning, it is necessary toc

specify p(-.Zk+'lZ~I so that it has heavy tails and cszn be used in

(46) to arrive at a useful robust smoother without too much, complexity.

P(Izk+111zk- )can either be specified directly or computed via

integration f rom a specification of p(,. lx(k-l)). In the latter

approach the integration is too difficult when trying to acriieve

robustness by specifying that p(r kKI) p(-kN:k-)

and assuming that P(Zk-j)'x(k-l)) is a Gaussian mixture. in the

former approach assuming p(,z k+NZk-I ) = 7p(Z(k+ji)Ik-I

with k-I a Gaussian mixture is easy

to handle mathematically but results in poor smoothing performance.

This poor performance is probably due to the fact that the variabies

Z(k+j) conditioned cn Z k1are not independent. For lack of a gooc
method for specifying p(i z )- in 46) we atandon thre condit*ona

~i mean approach to robust smoothino.



A us e--j~ rn-o u s z Ix ed a, srnoo:le' ~s c an c - nns 7- e

7k+N, asN

ASsUrfindin t'- a zzdiioa I'S oass :'rk q4: menou :e anc :oar

P(0-1) r'4) s equxvalent toeuveetvmi~ie

L~x~k)) =- log ()7

Minimizing (A3)8 by setting -z

= x(Kk-) I k- :k+ p(. ;x(kk-N))

Assumina -.hat

k+N N
0(aZ' !x(k) 7, p (z 'k-j)'x(k))()

ren

axp(Z~(kj)Ik)

j=0OXk

rd J



Also, we can write

p(Z(k+j)lx(k)) = (t .,t )HT (k+j) ap(Z(k+j)fx(k)) (53)

ax(k) k+j 'k)Z(k+j)

Then using (50) - (53) in (49)

N T T
x(kjk+N) : x(kjk-l)-P(klk-l) I (tk+ tk)HT(k+j)p-l(Z(k+j)lx(klk+N))

j=0 jvK

(54)
ap(Z(k+j)Ix(klk+N)

aZ(k+j)

Since x(kik+N) appears nonlinearly on the right hand side of (54), the

solution of (54) will usually require iteration.. We call the expression

for robust smoothing given in (54) the MAP formulation of robust, fixed

lag smoothing.

2
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17 -'OBLIS MA P Z'0CCTHIlG ':J uS:2 'I! (7'RES

in or.,er : :tain 3 robust, fixed ag srnoot,'er iia t-e 'AAP -- rmu I at4 cn,

we reoiace t~e tersities, o( k-) Q) by the '1a'ussIan ixtj.ae ose'Co-

dens it~es

= ~ )~k)- (kj ~ 55)

7 k k(i)

In (55) we have 4ndividual Gaussians centered at ak.iJ having variance

R(k+j). 'The am~plitude of each individual Gaussian is specified by ~. Then

(56)

-I ~ ~ ,p(Z(k+j)1;x k)) kj
p (Z(k+j)lx(k)) aZ(k-.j N ~ Pk ~

where = M(Z(k+j )-lH(k~j) (t,. ,kx~k)-a ( j
k~ 'kJk+j ,kj)

(56) can be written as

;p(Z( .k+j)!x(k)) 
(7

where i s t6-e weighted average of the a,+;

7 0)(i)-
ak ~ a kj(8

22



where the weights satisfy W kI) I and

k~j (i)

Substituting (57) into (54) gives

;(klk+N) = ;(klk-l)+P(klk-I) N P t t) kjRl(k+j)
I (tk+jI k)H~~)

j =0
(60)

Rearranging (60) results in

;(klk+N) = x(klk-I)+P~k) N (D (t Tk)~~)R (k+j)

(61)

(Zkj-Hkj4(t '~t )H ((kHjki)(t+.tk
j ~ k=0~

Note that i is also dependent on x(klk+N) so that it is necessary to

iterate (61) in order to obtain a solution.

23



II

In computing the weighted averages, ak+j' it is not necessary to compute

all the terms in the sum since many of the weights will be zero for all

practical purposes. We only compute those terms for which

jZ(k+j)-H(k+j)s(t ,t k(')(k k+N)-a~( )j 3kFk+j, where a is the iterationk+jl kX (k k+j' k+j
index and x(a)(klk+N) is the approximation to x(klk+N) at the ath interation

step, M(k+j) is a robust measure of the variance of the residual,

Z(k+j)-H(k+j) (t k+j,tk )X(klk). This considerably simplifies the computation

of the a since only a few of the weights, w(i ) , given by (59) need to bek+j k+j' wnb 5)ne ob
computed.

It is also necessary to have a robust estimate of the observation noise

variance, Rk+j , to be used in the smoother in (61) and (62). We have tried

several ways of obtaining a robust R(k+j) and have found that the use of

R(k+j) = M(k) where M(k) is computed from the past filtered residuals by

(27) worked best in our evaluations. We form a robust measure of M(k+j) by

M(k+j) = H(k+j)(t tk)P(kjk) T(tjt + R(k+j) (63)

As in the robust filter we have taken equal amplitudes for each term

in the Gaussian sum, i.e., ai = I and have found that taking the locations

a(i ) at 0 and odd integral multiples of ,RCk-+T again works well.k+j

tl
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VII. EVALUATION OF GAUSSIAN MIXTURE ROBUST SMOOTHING

A Monte Carlo evaluation of the robust, Gaussian mixture smoother was

performed using the same simulated trajectory as used for the robust filter

evaluation. A smoothing interval of I sec. or 20 points was used. The

Monte Carlo sample size for the smoother evaluation is N = 10. The measurement

noise standard deviation was increased so that AR- V = 50 ft. The outlier

contamination is the same as for the filter evaluation, i.e., a outlier

contamination of 8.8% and an average outlier run length of three. The

evaluation was performed using three iterations of the Gaussian mixture

MAP smoother.

Figs 9 and 10 compare the average RSS position and velocity errors for

a Gaussian mixture MAP smoother contaminated by various magnitudes of

outliers with the corresponding average RSS errors of a robust MAP smoother

using M-estimates with a Hampel '-functions which we denote by Ha(3,3,3)

and Ha(l,2,3). The robust MAP smoother using Ha(3,3,3) and Ha(l,2,3) was

described in [4]. Also, plotted in Figs 9 and 10 are the ideal values of the

RSS errors which are obtained with an ordinary optimal smoother when no

outliers are present and the noise variance is known. Figs 9 and 10 indicate

that the Gaussian mixture robust smoother has some loss of efficiency

(at least at the position level) when no outliers are present. Figs q and 10

indicate that the Gaussian mixture robust smoother has somewhat smaller

estimation errors than either Ha(l,2,3) or Ha(3,3,3) in the presence of

outliers.
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