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ABSTRACT

Robust methods provide a fresh approach to the treatment of outliers
in filtering and smoothing applications. In deriving the filter and
smoother equations via the conditional mean formulation or maximum a
posteriori formulation the measurement noise probability density is
replaced by a pseudo density which is Gaussian mixture with very heavy
tails. The resulting robust filter and smoother are applied to
tracking data to obtain improved estimation performance in the presence of
outliers. The improvement in estimation performance is evaluated by
Monte Carlo using simulated tracking data. The Monte Carlo results
indicate the improvement in performance to be somewhat greater than the
improvement obtained when using robust filters and smoothers derived from

M-estimates.
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I.  INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust
M-estimates of regression developed by Huber [1]. The robust M-estimates
provide a natural treatment of outlying observations and have been extremely
successful in dealing with outliers in other data reduction problems [2]
and [3]. The extension of the M-estimates of regression to filtering and
smoothing provides a fresh approach to the problems caused by outliers in
filtering and smoothing applications. Robust methods for estimation have
been designed to perform well when observations from contaminating distri-
butions are present. The conventional estimation techniques of least squares,
minimum variance, maximum likelihood, etc. may become useless when the ob-
servations are contaminated by outliers. In filtering and smoothing appli-
cations, outliers have often been treated by testing the filter or smoother
residuals. If the residual is too Targe relative to some measure of dis-
persion of the residuals, the corresponding observation was rejected and
considered to have been obtained from a contaminating distribution. Other-
wise, the observation is processed normally by the filter or.smoother. This
procedure was often successful when only a small proportion of outliers were
present in the observation sequence. Also, in order that such an outlier
detection sequence be successful, a robust measure o f dispersion of the filter
or smoother résidua1s is necessary. These old methods of treating outliers
in filter or smoother observations were added to the filter or smoother algo-
rithm as an afterthought. In contrast to this the development of robust filter-
ing and smoothing methods by the use of M-estimates provides a method of treat-

ing outlying observations which is inherent in the filter or smoother equations.
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In previous reports [4] and [5] we have developed the extensions of
M-estimates using a specified § function to the filtering and smoothing of
tracking data. Tais application was evaluated extensively using Monte Carlo
methods. The results of this evaluation showed a significant decrease in
estimation error using Hampel ¢ functions when small outlying observations
were present. ‘When large outliers were present, filters using M-estimates
of fer complete protection against the destructive effect of these outliers.
Also, when no outliers were present, there was negligible loss in efficiency
using filters with M-estimates as compared to using an ordinary Kalman fil-
ter.

The robust filtering and smoothing techniques developed in this report
are an application of the work of Masreliez [6] on approximate non-Gaussian
filtering. We assume that the filter or smoother observations are sampled
from a Gaussian mixture pseudo-density. After deriving the robust filter-
ing and smoothing equation, we give the results of an extensive Monte Carlo
evaluation of these robust techniques when applied to simulated tracking
data in the presence of measurement noise contaminated by outliers. We
also compare these Monte Carlo results with equivalent Monte Carlo results

obtained using robust filters based on Hampel y functions.
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II. APPROXIMATE NON-GAUSSIAN FILTERING

Assume that the state of a process is given by the linear model

x(k+1) = s(k+1,K)x(k) + u(k), (1)
where the state vector x(k) of the process is an m-vector, u(k) is a
Gaussian state noise vector with zero mean and covariance Q(k). o(k+1,k)
is an mxm transition matrix. Let scalar observations of the process be
given by

Z(k) = H(k)x(k) + v(k), (2)
where H(k) is a row vector and V(k) is a measurement noise error which may
be contaminated by outliers.

In many situations the conditional mean provides an optimal estimate
of a parameter or process. We will follow the work of Masreliez [6] in
deriving an approximate conditional mean of the process specified by (1)
and observed by (2). We denote the conditional mean conditioned on the

observations in the set ZK = (Z(1),Z(2),---,Z(k)} by x(k|k) = E[x(k)|Z¥].
Let p(x(k)[Zk) be the probability density of the state x(k) conditioned

on the observation set Zk. Using Bayes rule p(x(k)}Zk) can be written as

p(x(k)lZK): EﬁZ(k)lx(k))g(x(k)Jzk-l) N
p(zk) 2% T

The basic assumption in the derivation of Masreliez is that p(x(k)lzk'1)
is Gaussian with mean i(k}k-1) and covariance P(k|k-1). The conditional
mean estimate of x(k) is given by

%(K|K) = E[x(k) 247 - fx(km(x(kuz"'])pmk)'x(k)mm
pz(k) 2T !

L}
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[II. THE ROBUST CONDITIOMAL MEAN FILTER

We apply (11), (12), (17}, and (18) to derive a robust filter. We as-

sume tnat p(Z(k)!x(k)) is the Gaussian mixture,

P(Z(K) 1x(K)) = ZagN(Z(K)-H(xIx(k)-a ) R, ) (19)
i
In (19)

Nzl -Hx -2l r ) = (1 )exe | -e-aeas ) -a(i>)?/§R [ (20)
K k k l k k

We do not require that x; = 1 so that (19) may not be a density function,
but rather a pseudo-density. Also, the sum in (19) may be infinite. Thus,

we have individual Gaussians centered at ak1), each having standard deviation

/ﬁ;. The locations a(1) and the amplitudes a; are considered design para-

meters of the robust filter. We obtain p(Z(k)}Zk'l) from
Prk=1y 2 k-1 |
p(Z(k)Z* ) -fp(x(k)lz IP(Z(X) |x(k))dx (k) (21)
Rn
Using (19) and the Gaussian assumption for p(x(k)]Zk'l) the convolution in

(21) gives p(z(k)|2%D = 1o p(z(K)-H(K)R(k]k-1)-ap ), (k) (22)
11

where M(k) is the covariance of the residuals,

M(k) = H{k)P(k!k=1)HT (k) + Ry (23)
Using (22) in (11) and (12) we obtain the filter equation,
x(klk) = K(klk=1) + PCklk=T)HT (kDM (k) (Z (k) -H kDX (K [K-1)-T,), (24)
where
o = ow,alll (25)

-

-
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This considerasiy simplifies the computation of the robust filter. The co-

variance of the ressiduals, M{k), is estimatad from gast pradicted rasiduals
using the rotust MAD estimate,
— | | (
MKT = median | Z(k-3)-H(x~3)x! k-31k-3-1) I [ .6715 (27)
J=0,8-1 1 :

The conditional ccvariance, P(k), is obtained using (22) in (17) and (18),

- T - 72 i \ \ \
Pr) = 2Lk R=1)-P (k- () | Ex)-mk) ( H =10 (28]
where
2 2
(aéT)_ak) = ?5 (ail)_ak) (29)
Snly thosa zeems in (29) for which [Z{k) - #()x(k %-1) - (1) M%)

>
.
—
~<
—

> . e P T s
- 1. We have 2130 tastad %nhe Filtar with

w
()
3
—~
.
-~ -
~
1
-
)

LU [N




aﬁi) =i - JMKT , |#] Z 0. Several different choices of the amplitude have

been testad. The most extensive testing has been done with 2= 1 and o = ;

/(] + 1).




IV. MONTE CARLO EVALUATION OF THE ROBUST FILTER

Evaluation of the robust filtering method described here has been done
with a view toward eventual application to trajectory estimation. Emphasis
in the evaluation is on the use of simulated rather than real trajectory
data. This allows a quantitative determination of any advantages in the
use of robust filtering in the presence of outliers and also any loss in
efficiency using robust methods when no outliers are present. The simulated
trajectory is that of a constant velocity, level flying aircraft. The filter
model assumes the trajectory to have constant acceleration in three cartesian
coordinates. Let x, y, z be the East, North, and Up components of trajectory

position. We assume that the dynamic model for each of the coordinates is

given by
o - - 2/, - - -
x](k+1) 1 4 A//Z x](k) 0
Xp(k+t1) | = 1 0 1 4 X5 (k) + 0 (30)
Xo(k+1 0 01 X4 (kK Wk ,
| 3 )_ L 4 Lk | W)

where & = t, 5 - ty x](k), xz(k), x3(k) are position, velocity, and ac-

celeraticn components, respectively. W(k) is a zero mean Gaussian accelera-
tion state noise with variance q. The filter observations, Z(k), are scalar
positions corrupted by additive noise,

Z(k) = H{k)x(k) + V(k),
with H(k) = [1 0 0]. The measurement noise is Gaussian with covariance
R(k). The measurement noise is contaminated bty outliers which are generated
by choosing the mean, u(k), of the measurement noise

0 if no outlier
u(k) =[ (31)

l (k) if outlier present




In order ta decicde wnether or not an outlier is to be present at each time
t,» We use a two state Markov chain. Let i denote the state of the Markov
chain. 1 = 1 is the state of no outlier present and i = 2 is the state cf
having an outlier present in the data. Let Pij(k) be the probability of

a transition frem state i to state j in the interval (tk_], tk). The transi-

tion probabilities are chosen to provide a given percentage of outliers in
the observations and also to generate a desired average run length of out-
liers. The transitions between states are realized by use of a pseudo random
number generator.

The constant velocity trajectory used for evaluation is given by

x(teq) = x(t, ) + ;(tk+]-tk)

ytey) = y(t) + ¥l -t) (32)

Z(tk+]) = Z(tk) + Z(tk+]-tk)

with x = -550 ft/sec, y = =525 ft/sec, and Z = 0. A sampling interval of

tk+1 = .05 sec was used. A Monte Carlo evaluation of the filter is done

by computing scme statistics of the filtering errors over N filter runs.

-~

Let ;i(tk)’ yi(tk)’ and ii(tk) denote the filtered position estimates at

time t for the it rin and let ki(tk)

x () = xy(t ), ¥yl) =

. ~ -
yi(tk) - yi(tk)’ and Zi(tk) = Zi(tk) - Zi(tk) denote the error in filtered

"

positions for the iﬁﬁ~fiiter run at time ty. Also, let xi(tk) =

~

"N ® ~

X - ki(tk), }1(tk) =y - yi(t), and Z;(t,) = 2 - Z;(t,) denote the errors

10
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The Gaussian mixture filter in Figs 5 and & gives scmewhat smailer esti-
maticn errcrs than the robust filter using Ha(l, 2, 3).

The robust Gaussian mixture filter was also evaluated with respect t
its ability to adapt to changes in the measurement noise variance. Using:

the same simulated trajectory as before,. the measurement noise standard
. . ; - < < ~
deviation was taken to be vR{K) = 20 £t for 0 5 t = 25 sec, »R{k) = 10C ft

for 25 < t = 30 sac, and YR{X) = 50 ft for 40 < t £ 50 sec. Figs. 7 and

.

'

% 8 compare the average estimation errors of the Gaussian mixture filter with
'5 a5 = 1 and having Gaussians at zero and odd integer muitiples of Sk with

! the estimaticn 2rrors of the rcbust filtars using the Hampel + Functions

', Ha(l, 2, 3) and Ha {3, 3,3) under the above measursment noise variations.

g

v The results for Ha (1, 2, 3) and Ha (3, 3, 3) were reportad in [4]. Except
AF for the way in which the dispersicn estimats, Sk’ of the filter residuals is
Y

r estimated, “he filter using Ha (3, 3, 3) represants a conventicnal way of

handling cutliers in 2 Kalman filtering appiication. Figs. 7 and 8 show
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V. APORCKIMATE MCM-3AUSSIAN SMOOTHIMG

In the Toilowing, scme robust fixed lag smootning squations are de-
rived in a way similar to the derivations of the robust, Gaussian misture
filter 2quations, i.2., using the conditional mean derivation employed by
Masreiiez znd assuming a Gaussian mixturs pssudc density “or the measure-
ment ncise. In fixed lag smcothing an astimatze of the state x{x) of the
system described by (1) and (2) is desired using the measurements Z(1),

| o kN o, .
(2}, ---, Z(k), =---, Z{k+N). Let aZ = {Z(k), Z{k+1), Z(k+2), ---,

+ k- ) , . ce s !
Z(k+N):. Tren Zk N2 gk 1 UAZk+N. Tne posterior cenditional density is *

given by

ST (k=1
( (o kN, PL.‘.Z \X(K),p(X(Kl!Z )
Plx(k)|Z%" = e T (36)
K+Ny o k=1
PaZ™ ™M™

We again assume that P(x(k)’iz"1

) is Gaussian. The conditional mean,
x(kik+N) = £[x(k !Z ] is given by

x(eenn) = P71 N2 feop (a2 M x 0 Ip (k) (247
M

Adding and subtracting x(k'k-1) gives

x(kIk+N) = Q(km £ p ‘(\zk*“'z‘ 1 /(x(k Jox(klk-1))P(x (k) 121
o (2% N1 (k) yex (k) (38.
Rm
Assuming P(x(k)fzk']) is Gaussian, we use {(5) to obtain
(k) = xlkk=1) - P z* N 2R e (kjk- 1d/’{%;(;7 p(x(k) |21

PG x (k) )ex(k) o

A




N nadinthen 2R SRR i

Lo
Ehatet

Integrazing /3¢) by oarts,

> 3 ' v - - -' : Y IR -.r -1 3
x{ x#N) = x(k=1) + P 1(~" N, zk- 1\°(<;k—.} Pix(x) 4‘ s
' ' ) JX\_K}

P

p(azY X (k) Yex (k)

Assuming statistical incependence o7 the cbsarvztions

k+N v {
PLaZ™ Vix(k)) = 15 P(Z{k+j) 'x{k))

j=0
Then
3 ot Niy) = b g, PG ki)
x (k) M PN j:O b 3% (k) ’
where Q, = P(Z{k+jlx(x))
AR Y

Assuming no stata ncise in the forward interval, we have

. T ) 3PLZ(ke3) X (k)
3X( ) -9 ( kJ.J’ "k H ( J .‘Z(k'{.J

Substituting (41) - (44) into (40) gives
x . 1, kN, | N
x(klksN) = x(kik-1)-P7"(2Z X (K))P(kik-1) T 3
: N, y k=1
EZi;+j§f?_(’$Zk N x(k))P (((&),Zk
R:l
But

k+N

PLZTIx GNP (k1 ZT) = p(z**N (i) 26T,

. - - ~

(41)

(42)

(43)

(44)

(45)




Then
N
W St - k=N k- - 7
x(k =) = x(k'k-1)-0 l(;L Mgk l)P(k‘k-l} oy e,
‘ ‘ ‘ ' .z 377K [
J=0 p)

Tioes 3 KN K-
H (krd) iy 2271240

SL{K*])

' .

In order to use (46) for rocust smootning, it is necessary :C

KN k- |
7 h

specify pn{aZ so that it has nheavy tails and czn be used in

(46) to arrive at a useful robust smootner without tco much complexity.

lea\

k+M, k-1 . .o . . .

p(aZ” "|Z"7") can either be specified directiy cr computed via

. . e keN,

integration frocm a specification of p{:Z" " Ix(k-1)). In the latter

approach tne integration is too difficult when trying toc achieve

R . k=N, - iy
robustness by ssecifying thas {7 ix(k=1)) = 2p(Z(k+j) x{k-1})

and assuming that p(Z{x+j)'x{k-1}) is 2 Gaussian mixture. In the
- . : x+N, k-1 Loy ok
former approach assuming p{xZ” 127 ) = ap(Z(k+j}iZ7 )

J

k") a Gaussian mixture is easy

with p(Z(k+j)|Z
to handle mathematically but results in poor smoothing performance.

Tnis poor perfarmance is probably due to the fact that the variables

Z{k+j) conditioned ¢n Zk" are not independent. For lack of a gooc

SNkl ., , s .
k 'Z%T) in {46) we abandon “he conditiona!

method for scecifying o(:Z

Tean appreach o ropust smoothing.
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A useful roous:, Fixed lag smeoiner~ is cotained i, insteac OF
; tha menditional - 24N, camayTs cha :
r.nd*ng The cgnditionai mean ov 2iXK. K, = , W& Comouts The qaec: O
roy kN

J (&7)

dssuming that s{x(x} i ‘} is Gaussian with mean <k ¥-1) 3nd covzriznca
P(klk-1}, {47) is equivalent %o,
(48)
Lx(K)) = (x{k)-x(x k-1 T2 (ke D (x () -x (k%= 11)-Tog p (TN ix(k?)
Minimizing (43) by setting ikgé%%%l = 0 agives
2
~ e el )
x(kk+N) = x{kik=1) + P(kjk-1)p7 (227 T x{kikN)) (49)
3% (k k+N)
Assuming that
ke N R
o(aZ" M x(k}) = 1 plz{k+]) x(k)) (50)
j j:
i Tren
o \ L
2002V ak)) N ap(zkd) x(k) o)
= 51
. e LY
f 3¢(k) 520 ax(k)
)
F
anere

Q; = 7 p(2{xi){x{x)) (52)




e -y w -

Also, we can write

ap(Z{k+j)[x(k))

3p(Z(kri) [x(K)) ¢ -
ax(K) = - (et 0 (k) aZ(k+j)
Then using (50) - (53) in (49) ;

) A N )
x(k [k+N) = x(klk-l)-P(klk-l).Zo @T(tk+j,tk)HT(k+j)p'l(Z(k+j)|x(k}k+N))'
J=

3p(Z(Kk+3 ) |x(k|k+N)
aZ(k+j)

Since ;(k|k+N) appears nonlinearly on the right hand side of (54), the

solution of (54) will usualiy require iteration.

We call the expression

for robust smoothing given in (54) the MAP formulation of robust, fixed

lag smoothing.
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17, ROBUST MAP SMOQTHING YIA SAUSSTAN MI(TURES

&4

In orger =5 aotain 3 rgbust, Tixed lag smoother viz tne MAP Tarmulation,

we repiaca tre Zensitiss, p(20k+i) x(k)), oy the Zaussian mixturs pseuco-
densitiss
[P} 7 - 5 - ; 1 : oz
T x(RD) = T x MDA st x 0=l RGkes) (55)
b
(i)

In (55) we nave indivicual Gaussians centasred at 3E+j naving variancs

R{(k+j). The amplitude of each individua! Gaussian is specified by 3 Then
(56}
<1, .= ) _ .
sp(2(kei) [x()) (KL o (2Cked) ki) ol ot (k) -0 )

i -ak+j
P (2 k3 (X (K) 77— -
; aiNi

Ve(k)-al i) r(ki))

whersa ?i = M(Z(k+j)-H{k+j)a(t, ..t i

k+j'k

(56) can be writtan as

. (57)
S PO 3P(Z(k+j)§x(k)) ; -l L . . . oy =
o (203} (k) ) 5771577 RS A PIVACSA DRI SADEICIR LI L IS DR Y
where ak+j is the weighted average of the a&l},
1 =7 i) 0] (3
By % ey ks (38)

IN

i




where the weights satisfy § w&i} = | and
i

a4y (20 ) () (£ b x (k)= RCk))

W) (59)
S . . (i) .
D ghy (20 -HOerd Do ity (k-2 o RUHS))
Substituting (57) into (54) gives
<(k|k+N) = x(k|k-1)+P(k]k-1) Y oeT(t, ot YT (k)R (k+5)
XI —Xl-) l-J.Z.O¢(k+J,k (J (J
(60)
(Z(ktf)-Hlkr3 Doty 5t X (k) 3,y o)
Rearranging (60) results in
x(k[k+N) = x(k|k=1)+P(K) ? o1 (t, L .ot T (kg )R (kb
= - 1 e *Te i i)
3=0 (61)
(ZCk ) -HUkri) oty ot Ix(k k-1) -, ),

where

N
Pltk) = Pl (k[k1) + jZOQT(tk+j,tk)HT(k+j)R'l(k+j)H(k+j)o(tk+j,tk) (62)

Note that 5k+j is also dependent on ;(k|k+N) so that it is necessary to

iterate (61) in order to obtain a solution.
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In computing the weighted averages, 5k+ , 1t is not necessary to compute

J
all the terms in the sum since many of the weights will be zero for ail
practical purposes. We only compute those terms for which

lZ(k+j)-H(k+j)o(tk+j,tk)i(n)(k[k+N)-a£ig|5 3'ﬁk+j’ where 1 is the iteration

index and ;(a)(k]k+N) is the approximation to ;(k}k+N) at the ath interation
step, M(k+j) is a robust measure of the variance of the residual,

Z(k+j)-H(k+j)¢(tk+j,tk);(klk). This considerably simplifies the computation

(i)

of the a Kj?

k+j
computed.

since only a few of the weights, w given by (59) need to be
It is also necessary to have a robust estimate of the observation noise

variance, to be used in the smoother in (61) and (62). We have tried

Rk+j’
several ways of obtaining a robust R(k+j) and have found that the use of
R(k+j) = M(k) where M(k) is computed from the past filtered residuals by

(27) worked best in our evaluations. We form a robust measure of M(k+j) by

M(ke§) = HOr3) oty 5ot PCK[DOT (5,50t ) + R(KH) (63)

As in the robust filter we have taken equal amplitudes for each term

in the Gaussian sum, i.e., ay = | and have found that taking the locations

aﬁig at 0 and odd integral multiples of /M(k+j) again works well.
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VII. EVALUATION OF GAUSSIAN MIXTURE RQOBUST SMOOTHING

A Monte Carlo evaluation of the robust, Gaussian mixture smoother was

performed using the same simulated trajectory as used for the robust filter
evaluation. A smoothing interval of | sec. or 20 points was used. The
Monte Carlo sample size for the smoother evaluation is N = 10. The measurement
noise standard deviation was increased so that vR(k) = 50 ft. The outlier
contamination is the same as for the filter evaluation, i.e., a outlier
contamination of 8.8% and an average outlier run length of three. The
evaluation was performed using three iterations of the Gaussian mixture
MAP smoother.

Figs 9 and 10 compare the average RSS position and velocity errors for
a Gaussian mixture MAP smoother contaminated by various magnitudes of
outliers with the corresponding average RSS errors of a robust MAP smoother
using M-estimates with a Hampe! y~functions which we denote by Ha(3,3,3)
and Ha(1,2,3). The robust MAP smoother using Ha(3,3,3) and Ha(l,2,3) was
described in [4]. Also, plotted ih Figs 9 and 10 are the ideal values of the
RSS errors which are obtained with an ordinary optimal smoother when no

outliers are present and the noise variance is known. Figs 9 and 10 indicate

" that the Gaussian mixture robust smoother has some loss of efficiency

) (at least at the position level) when no outliers are present. Figs 9 and 10
' indicate that the Gaussian mixture robust smoother has somewhat smaller

!

estimation errors than either Ha(l,2,3) or Ha(3,3,3) in the presence of

outliers.
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