

UNCLASSIFIED
SuRCUmTY CLM0PICAIO* OF ?No$ P563 f(bin Om" Euem

UVCLASSIUD

Report No. 4563 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 6
1 November 1979 to 31 January 1980

November 1980

This research was sponsored by the
Defense Advanced Research Projects
Agency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO
Effective date of contract: 1 September 1978
Contract expiration date: 31 January 1980
Principal investigator: R. D. Rettberg

Prepared for:

Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

T The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

Report No. 4563 Bolt Beranek and Newman Inc.

FIGURES

Processor Node Components.. 3
Processor Node Components..°.... oo 9
NC68000 Interface to Processor Node...................... 17I/O Adapter SOS ° *... 23
Processor Node Memory Interface and Memory Module........ 26
Receiver Components.. 33
Transmitter Components 41

- ii -

Report No. 4563 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 6, describes aspects

of our work performed under Contract No. MDA903-78-C-0356 during

the period from I November 1979 to 31 January 1980. This is the

sixth in a series of Quarterly Technical Reports on the design of

a packet speech concentrator, the Voice Funnel.

This report describes the hardware design of the primary

processing resource of the Voice Funnel, the Processor Node.

-. -1-

Report No. 4563 Bolt Beranek and Newman Inc.

2. Processor Node Hardware Description

The Butterfly Multiprocessor upon which the Voice Funnel is

being built consists of Processor Nodes which are interconnected

by Switch Nodes. The designs of the Switch and the Switch Node

have been described previously.* A preliminary design for the

Processor Node was described in the Design Report. The current

report describes the Processor Node design as it now exists. The

description in this report is not intended to be a reference

manual for the Processor Node, but is rather a description of the

design and the considerations and tradeoffs that went into the

design.

The Processor Node is a collection of hardware components

which together provide the resources that support the processing

of the Butterfly Multiprocessor. Its physical components are:

- a Motorola MC68000 16-bit microprocessor
- a memory management unit
- main memory and main memory controller
- Read Only Memory
- Processor Node Controller
- peripheral bus adapter
--interface to the Butterfly Switch

These components communicate over a high speed internal bus

called the Data Bus. Figure 1 illustrates the interconnection of

the major Processor Node components and gives the bus

* in Development of a Voice Funnel System: Design Report,' BBN
Report No. 4098, and ODevelopment of a Voice Funnel System:
Quarterly Technical Report No. 2,' BBN Report No. 4143.

-2-

Report No. 4563 Bolt Beranek and Newman Inc.

68040 I MOS MEMORY -IIB
CPU WIT14 B3YTE ICROCODEI

[:7 PAR~TY
MMR

IMANAGEMENT Meon MOR NROE
UNTCONTROLLE CNOLER

________8 770 2 MS/m

4X8S
BOOTSTRAP em

ROM BTE"
SWITCH BUTTERFLY SWITCH OUTPUT BUS

BUTTERFLY SWITCH INPUT BUS

4 mSil"

Processor Node Components
Figure1

-3-

Report No. 4563 Bolt Beranek and Newman Inc.

communication rates in megabytes per second.

The MC68000 is a VLSI microprocessor from Motorola which

combines state-of-the-art technology and advanced circuit design

techniques to achieve an architecturally advanced 16-bit

microprocessor. Its primary features include:

- 32-bit data and address registers
- 16 megabyte direct addressing range
- wide variety of instruction types
- five data types
- I/O access through the memory address space
- 14 addressing modes.

Augmenting the MC68000 is a custom designed Memory

Management Unit which separates the virtual address space seen by

an executing process from the actual memory configuration. In

addition to address translation, the MMU provides protection by

allowing each process only certain access privileges.

Up to four main memory modules can be attached to the

Processor Node. Each module has 128K bytes of semiconductor

memory and is implemented with 16K bit memory chips. Byte parity

provides single-bit error detection. Battery backup assures no

loss of state information on system power failure.

A 16-bit wide 2901-based microprocessor with 1K words of

64-bit wide microcode RON is used to control the various

Processor Node resources and provide those functions which,

because of throughput or indivisibility requirements, cannot be

-4-

Report No. 4563 Bolt Beranek and Newman Inc.

provided by the MC68000. The Processor Node Controller (PNC)

also acts as the controlling agent in Butterfly Switch

transactions.

4K bytes of Read Only Memory (ROM) are provided to allow

execution of instructions immediately upon power on. The ROM

contains the loader and diagnostics and serves as a permanent

residence for such programs as the system debugger.

Also on the Data Bus are two kinds of bus adapters: an

adapter to an input and an output port of the Butterfly Switch,

and an adapter to the BIOLINK which connects I/O peripherals such

as local net interfaces and the interface to the PSAT to the

Processor Node.

Physically, the Processor Node consists of a 12" X 18" 4-

layer printed circuit board which holds all non-memory elements

and one or more 10* X 11" 4-layer PC daughter boards for the

memory units. Each PC board has its own switching power supply.

Four mass-terminated cables provide power, connection to the

Butterfly Switch input and output ports, and connection to the

I/0 boards.

2.1 Processor Node Controller

The elements of the Processor Node execute many simultaneous

operations. As an example, the following operations could be

-5-

Report No. 4563 Bolt Beranek and Newman Inc.

executing simultaneously:

1. the MC68000 adding two numbers,

2. an incoming message from another Processor Node being
assembled,

3. a block of data being transmitted across the switch,
and

4. an arbitration being made as to which I/O controller is
next to access local memory.

For high throughput environments (such as the Voice Funnel)

multiple concurrent operations are normal and desirable. An

important design issue in the Processor Node is how to provide

communications paths between the various autonomous hardware

resources while controlling and serializing their interactions.

The problem is complicated by the use of ICs from different

families which have incompatible timing requirements; for

example, the Bootstrap RON is much slower than main memory.

In addition, the Butterfly architecture requires many

functions which are not provided by the MC68000. These functions

include:

1. a 32-bit time-of-day clock and timer which can

interrupt the MC68000 at a given time,

2. refreshing the dynamic memory chips,

3. converting virtual to physical addresses,

4. moving a block of memory from one Processor Node to
another,

5. restarting another processor node,

-6-

Report No. 4563 Bolt Beranek and Newman Inc.

6. supporting inter-process communications with the dual-
queue mechanism,

7. handling timeouts for both messages being transmitted
and solicited replies,

8. controlling interrupt acknowledges from the MC68000,

9. controlling error reporting from events such as
timeouts, checksum errors, and parity errors,

10. posting events for the operating system,

11. generating power-down interrupts and power-up
sequencing,

12. interacting with I/O device controllers on background
jobs,

13. initializing the MMU's segment attribute registers
after a restart.

Also, as the software impact of a multiprocessor environment

becomes clearer, additional previously unrecognized functions may

need to be added to the Butterfly architecture. Control

flexibility thus becomes an important design consideration.

These motivations led to the inclusion of a high speed

processing element called the Processor Node Controller (PNC).

To reduce complexity, a single bus is used to interconnect the

various Processor Node elements. This approach satisfies the

need for flexible control hardware and reduces the

interconnection complexity to a minimum.

-7-

Report No. 4563 Bolt Beranek and Newman Inc.

2.1.1 Microinterrupt Requirements

The execution of all Processor Node functions involves a

sequence of transfers from one bus element to another and/or

activation of bus element control lines. Each function occurs

through the PNC's execution of a sequence of microinstructions

from its 1K-word, 64-bit wide, Control Store memory.

Several of the data transactions must have very low delay.

For example, the delay required when the MC68000 accesses its

local memory has a dramatic impact on system performance. Other

issues such as low DMA latency, prioritization of switch

transaction events, and handling of memory refresh have led to a

microinterrupt-driven PNC. In this architecture, a hardware

element generates a microinterrupt service routine address

corresponding to the highest priority function request. When the

PNC enables microinterrupts, the service routine begins executing

almost immediately.

2.1.2 PNC Hardware Implementation

The PNC has four components interconnected as shown in

Figure 2. (The numbers in each box indicate how many ICs are

used for that function. The other numbers are bus widths.)

A 16-bit bipolar microprocessor unit using the AMD 2901

provides a means for the PNC to perform data manipulations and

-8-

ie

Report No. 4563 Bolt Beranek and Newman Inc.

19

CONTROL LINES TO OTHE R

1K 64 -IT PROCESO OE EORE

ICRO- ~READ ONLY ~RND EORE

2OERNCNONOIION I ROR CONTROL
SEQECRo STORE

20 BRANCH CONDITIO $EQUNCE MEMORY

1" ' , T 2911
- '2 ARITHMETIC/

LOIC UNIT

CONTRL LIES 7CONTROL STORE ADDRESS BUSMICRO INTERRU"T
S SERVICE ROUTINE J---- 'f, 16

32 FUNCTIO'I REQUEST ADISS (10
GENEHATOR

IT DATA BUS

Processor Node Controller Components
F'igure 2

-9-

Report No. 4563 Bolt Beranek and Newman Inc.

provides storage for 13 variables used in various Processor Node

functions. Four additional 16-bit registers are provided for use

during a microinterrupt service routine. Distinctive

characteristics of the microcoded processor are:

- seventeen 16-bit registers,

- an eight-function ALU,

- two-address architecture which allows simultaneous
access to two working registers,

- flexible data source selection which allows ALU data to
be selected from five source ports for a total of 203
source operand pairs for every ALU function,

- left/right 32-bit rotates,

- carry, zero, and negative status flags which can be
used to control conditional branches.

The 1K 64-bit read only Control Store memory consists of 16

high-speed PROMS with edge-triggered output registers. In this

architecture, the next microinstruction is fetched from the

Control Store in parallel with the execution of the current

microinstruction. This pipelining approach allows a 9 MHz PNC

microinstruction rate. A writable Control Store would have been

the preferred choice if not for cost (a factor of five over non-

writable Control Store) and the additional complexity required to

load the Control Store in a multiprocessor environment, where the

PNC controls all switch transactions.

The 10-bit Control Store address is sourced by a

conventional microprogram sequencer within a microinterrupt

- 10 -

Report No. 4563 Bolt Beranek and Newman Inc.

service routine or by the Microinterrupt Service Routine Address

Generator (MSRAG) just before entry to a microinterrupt service

routine. The microprogram sequencer is implemented using the AND

2911, augmented by two multiplexers which allow two-condition

four-way branching. Other microsequencer features include:

- a pushdown stack for saving up to 4 return addresses,

- a means for returning to the zero microcode word,

- an internal address register usable as the address for
commonly used routines.

The MSRAG is implemented using Programmable Logic Arrays to allow

for future function additions.

2.2 Processor and Memory Management

The processor we have selected for use in the Voice Funnel

is the 8 Mhz Motorola MC68000. Lower speed versions of this

machine have been available since Q3 1979 and we expect full

speed parts at the beginning of 1981. We have selected this

processor because: 1) it is a 32-bit microprocessor, 2) it has a

reasonably high instruction rate, and 3) it can manipulate a 24-

bit virtual address space.

-II-

Report No. 4563 Bolt Beranek and Newman Inc.

2.2.1 Processor Candidates

There were two candidates for the processor in the Voice

Funnel: a commercial microprocessor or a custom microprogrammed

processor. The advantages of a commercial microprocessor are its

small size, low cost, and multiple sourcing. The primary

advantage of a custom microprogrammed processor is that it can be

designed to provide all those functions which are required in a

multiprocessor environment.

We have selected use of a commercial microprocessor because

it reduces the engineering risk and the MC68000 seems to satisfy

our requirements in most of the critical areas. The choice is

not without drawbacks since it was necessary to add the PNC co-

processor to correct for defects (from a multiprocessor

standpoint) in the MC68000. Use of a commercial microprocessor

did allow us to concentrate on those aspects which are unique to

our multiprocessor.

2.2.2 MC68000 Shortcommings

It is our opinion that the MC68000 is the most suitable

device for the Butterfly Multiprocessor, and we are grateful to

Motorola for producing a 32-bit machine which enabled us to avoid

many serious problems. However, the design is lacking in a few

areas -- we hope that by pointing out the weaknesses, future

designs will be improved.

- 12 -

U

Report No. 4563 Bolt Beranek and Newman Inc.

The MC68000 executes a bus error exception when the MMU

signals that some protection attribute has been violated or a

remote memory reference has timed out. During the bus error

exception, seven words of state information are saved on the

stack. Unfortunately, this state information is not sufficient

to allow instruction retry. This prevents graceful recovery and

makes demand paging unworkable. With the machine's 24-bit

virtual address space, this is a serious oversight.

While advertising a bus structure whose architecture is

easily interfaced, the MC68000 has substantial deficiencies when

throughput is a primary goal. For example, in its four-cycle

read operation, the first two cycles are used to keep the address

stable for the previous memory operation, ungate the old address

from the bus, regate the new memory operation address onto the

bus and provide a delay before informing the world that a memory

access is about to start. The MC68000 then expects an

acknowledge signal indicating that the memory access can be

terminated one cycle later. All decisions on what to do with the

memory access (e.g., access local or remote memory, access an I/O

peripheral register, interrupt acknowledge, etc.) must be made

within that one-cycle period or the MC68000 will add additional

cycles to the memory access, thus lowering throughput. The

principal problem is that while the MC68000 knows it is going to

do a memory access, it keeps that fact hidden from the outside

world for half of the minimum memory access period. Because of

- 13 -

-- _ A

Report No. 4563 Bolt Beranek and Newman Inc.

this, memory reads from local memory require five cycles instead

of four. Local memory write operations also require five cycles

although no loss of throughput is incurred since the minimum

MC68000 write operation takes five cycles.

2.2.3 The MC68000 Interrupt System

The MC68000 provides a vectored interrupt system. An

interrupt vector sourced by an element requesting service is used

to find the address of the appropriate service routine. Multiple

interrupt requests can be pending simultaneously on seven

priority levels. The highest priority request having a priority

level greater than or equal to a 3-bit code in the processor

status register will trigger an interrupt. The highest priority

element requesting an interrupt then supplies an 8-bit vector to

the processor. We are allocating the 7 priority levels as

follows, with level 7 being the highest:

7) PNC error or remote processor node interrupt message
6) memory parity error
5) microcode settable interrupt
4) I/O system high level interrupt request
3) I/O system low level interrupt request
2) microcode settable interrupt or system timer
1) microcode settable interrupt

The MC68000 provides 256 interrupt vectors which at first

glance appear to be ample (the PDP-11 allows only 56). However,

this poses serious problems. The MC68000 itself uses 47 of the

interrupt vectors for various exceptions (e.g., bus error, trace,

- 14 -

Report No. 4563 Bolt Beranek and Newman Inc.

spurious interrupt, etc.). Many of the LSI I/O devices use

interrupt vectors freely, causing a shortage of interrupt levels

with even a small number of devices.

For example, the Zilog SIO uses 8 interrupt vectors. If

this chip is employed, only 26 I/O channels can be supported. In

order to provide the 100-200 channels which could be connected to

a single Processor Node, we will have to allocate unique

interrupt vectors to only those devices which require low latency

response. This requires that some interrupt service routines

determine the cause of the interrupt themselves. Here the PNC

provides a valuable service. During the interrupt acknowledge

sequence, the PNC first determines if the I/O system is to source

the interrupt vector. If so, the highest priority interrupting

device provides both an 8-bit interrupt vector and an 8-bit

device number/error code. The PNC stores both bytes in a special

memory location reserved for each priority level. The interrupt

service routine can then easily determine the cause of the

interrupt if more than one event has the same interrupt vector.

2.2.4 Memory Management Unit

Integrating the MC68000 into the Processor Node requires

several interesting design techniques which are briefly

described. The need for non-standard interface techniques arises

out of the design goals of the interface. The more important

- 15 -

Report No. 4563 Bolt Beranek and Newman Inc.

design goals are:

1. the MC68000 local memory access delay should be
minimized,

2. the PNC should be able to convert virtual to physical
addresses,

3. the PNC should be able to test for protection

violations,

4. context switching should be fast,

5. all MMU registers should be both read and write,

6. cost and complexity should be minimized, and

7. physical memory space should be uniform.

To set the context for the discussion, the reader should be

familiar with the MNU functional description given in Quarterly

Technical Report No. 5, BBN Report No. 4396. Figure 3 shows the

final MC68000/MMU architecture. A SAR refers to one of the 512

32-bit Segment Attribute Registers and ASAR refers to the 16-bit

Address Space Attribute Register.

The first design technique is to set up the MC68000 to

access local memory, except when the PNC is executing a

microinterrupt service routine. This, coupled with the use of a

delayed version of the Processor Node clock to clock the MC68000,

allows fine tuning of the synchronization between the MC68000 and

PNC. During this period of synchronization, the MMU is

converting the virtual address to the physical address and the

PNC is loading the physical address into a latch in the memory

subsystem. Only a small delay penalty is paid using this

- 16 -

Report No. 4563 Bolt Beranek and Newman Inc.

al Y ImtNUPT REQUESTS

TNTRRUPT _
SREQUEST

AR lTRATOR;

.3

~WTROL O0I@ .311 jIT

I CPUADDRESS BUS IWIi

CPU DATABUS JAM,,I , s f16 TO i S 74

i 8 (I . BRANCH 4• I , , -.' ,.Jxs t'
ADO0RESS

4
DATA INPUT P4YSICAL ADRl A TO MEMORY SYSTEM

LATCH DATA MUX E Q STEI ATTRIBUTE 'IT'Et IJ i~l
I I G R ISTER 2

fie fie(1 19
.. D ,ATABUS

13 ' 4 3 ' ~4 (S r2

0I PROTECTION VIOLATION PROGRAMMABLE LOGICSNC I DETECTION I ARRAYTOGENERATE
SYNCHRONIZATIONC PROGRAMMABLE LOGIC MICROINTERRUPT SERVICE

A R R A Y R O U T INE A D D R E S S 7

MC68000 Interface to Processor Node

Figure 3

- 17 -

Report No. 4563 Bolt Beranek and Newman Inc.

approach since determining what to do overlaps the first step of

the most probable MC68000 operation.

The second technique is to recognize that relocation and

protection are really separate functions. This allows time

multiplexing of the 1K by 16-bit memory containing the SARs.

During the synchronization microstep, the relocation portion of

the SAR is gated to the AD bus. The low 4 bits of the Data bus

become bits 16-19 of the physical address. Bits 8-15 of the Data

bus are added to bits 8-15 of the virtual address to form bits

8-15 of the physical address. Bits 6-7 of the Data bus enter a

Programmable Logic Array (PLA) which, during the synchronization

process, generates the microinterrupt service routine address

associated with the particular MC68000 access (e.g., local or

remote memory, I/O space access, or segment zero access). In the

microinterrupt service routine, a bit in the microword selects

the protection portion of the SAR. The Protection PLA generates

a signal which can be tested or used to cause a bus error to the

MC68000. The multiplexing of these MMU memories reduces the cost

of the MMU by approximately 35%. The penalty of this

multiplexing is the reduction of the total number of SARs from

1024 to 512.

The third design technique is to map virtual segment FF

(decimal 255) into physical segment zero, in which the PNC

control registers are located. The MC68000 always sign-extends a

short address offset. Thus the instruction *MOVE RO,8000'

- 18 -

Report No. 4563 Bolt Beranek and Newman Inc.

actually causes RO to be loaded into byte 8000 of segment FF

because of the sign extension. By mapping virtual segment FF

into physical segment zero, all MC68000 access to PNC control

registers (a reasonably high frequency event) can use the short

addressing mode.

The other element in the MC68000/MMU interface to the PNC is

the Address Register. This register is multipurpose; it serves

as a means for converting virtual addresses generated by the PNC

to physical addresses, and checks for page and segment protection

violations. It also allows accessing the SAR registers by the

PNC. To access a SAR register, the PNC first requests the

MC68000 to give up its command of the address and control lines.

The PNC then loads the SAR address into both the Address register

and the ASAR. Since the SAR address is the logical OR of these

two registers, the correct SAR is selected. The third

utilization of the Address register is a mechanism for allowing

microcode branching on various bit values. Bits 0, 1, 2, and 3

can be used in two- or four-way microcode branching. Thus, to

test if some address is even or odd, it is first loaded into the

Address register. The next microinstruction can then branch to

an even or odd microword depending on whether the address is even

or odd.

-19-

Report No. 4563 Bolt Beranek and Newman Inc.

2.3 Bootstrap Read Only Memory

The Read Only Memory (ROM) consists of one 4K x 8 Erasable

Programmable ROM. This ROM is needed to allow execution of

instructions immediately upon power on. In addition to the

bootstrap, other programs such as the system debugger and some

diagnostics will reside in the ROM.

Accesses to the ROM are triggered by the MC68000 reading

from location 8000-8FFP of segment zero. The PNC reads two

successive bytes from the ROM to form the 16-bit word given to

the MC68000. The byte manipulation plus the slow access time of

the ROM result in a 2 microsecond ROM access time. This slow

access time creates no problems, however, since the programs

executing out of ROM need not execute quickly.

A special mapping of locations 0-7 of segment zero into

location 0-7 of the ROM allows the MC68000 to pick up the stack

pointer and program counter to be used on startup from the ROM.

2.4 Butterfly I/O Link Adapter

A single processor subsystem consists of a Processor Node

and up to four I/O modules. These I/O modules communicate with

the Processor Node via a bus protocol called the BIOLINK

protocol. An adapter on each Processor Node assists the PNC in

satisfying the bus protocol.

- 20 -

Report No. 4563 Bolt Beranek and Newman Inc.

Three types of transactions are supported by this protocol:

- MC68000 read from or write into an I/0 device control
or data register,

- I/O device controller read from or write into the
Processor Node's local memory,

- I/O device controller request for an interrupt and
source of an interrupt acknowledge response word to the
MC68000.

The finest granularity of signal transitions in the BIOLINK

protocol occurs at the Processor Node clock rate. Thus the

BIOLINK is synchronous. Transactions require an acknowledgement

signal from the address's bus element to signal completion of the

transaction. This type of protocol allows devices of different

latencies to be accessed. Thus, when the MC68000 reads a

particular device register, it will be forced to wait until the

device's controller is able to access the device on behalf of the

MC68000.

In development of the BIOLINK adapter, five design goals

were initially established; they are listed below in ascending

importance.

1. PNC bandwidth utilization should be minimized in I/O
controller accesses to local memory,

2. the cost and complexity of the hardware should be
minimal,

3. multiple I/O controllers should be given equal access
privileges to local memory,

4. the PNC should be free immediately following a data
transaction to/from the I/O adapter, and

-21-

Report No. 4563 Bolt Beranek and Newman Inc.

5. interrupt vector capture should be a very simple
transaction.

2.4.1 I/O Link Adapter Implementation

The hardware implementation of the I/O adapter consists of

two parts as shown in Figure 4. A pair of back-to-back 16-bit

latches pass data and address information between the PNC's Data

bus and the BIOLINK's Address/Data bus, and a small finite state

machine controls the autonomous aspects of the BIOLINK protocol.

The finite state machine handles such tasks as: BIOLINK bus

capture, round robin arbitration of the I/O controllers

requesting access of local memory, microinterrupt request

generation, data acknowledge synchronization, and bus enabling of

the I/O Address/Data latch to the BIOLINK Address/Data bus.

The finite state machine implements only those BIOLINK

protocol functions which must be handled immediately or which

cannot be handled by the PNC. For example, arbitration of the

multiple I/O controller requests to access memory could be done

by the PNC on a polling basis. However, the resulting PNC

bandwidth utilization and delay would be unacceptable.

Furthermore, arbitration of who is to gain control of the BIOLINK

cannot be done by the PNC by simple polling since the arbitration

and locking must be accomplished in one microstep. During I/O

device register accesses and interrupt vector capture sequences

the PNC does assert and negate the BIOLINK Control signals since

- 22 -

Report No. 4563 Bolt Beranek and Newman Inc.

PNC CONTROL SIGNALS

T, I

7 1
DATA BUOf ADAPTER

ATBU PROGRAMMABLE
LOGIC ARRAYH

116 '(16

IODAAOUTtJT IOADORESSI
10DATOUTU I

°
ATA

s
NPUT CL SYC"RONOUS !LOATCH I TC REGIST ER ,

LAC 21 ATCH '2PT

BIOLINK ADORESSDATA aUS

BIOLINK CONTROL BUS

I/O Adapter
Figure 4

- 23 -

Report No. 4563 Bolt Beranek and Newman Inc.

these operations have relatively low duty cycles and the PNC must

be dedicated to the transaction anyway.

2.5 PNC Memory Interface and Memory Modules

Although the processor is often more interesting, the memory

system of a machine provides the same amount of computing power

through its effective cycle time and its size and organization.

In our current design there are several design points which are

different from the original conception of the Processor Node's

memory section.

In many systems, Error Detection and Correction (EDAC) logic

is supplied with the hope of substantially improving the soft

error rate of the memory. This logic requires a large number of

chips (both control and memory). It is questionable whether it

is worth doubling the number of chips to include EDAC. In the

Processor Node memory, we chose to provide simple parity instead

of EDAC, which may or may not be a realistic point of view. This

uncertainty has reinforced the idea of placing the memory on a

card by itself so that if a modification is necessary, only one

card needs to be changed. While 64K dynamic memory chips are now

appearing, their cost, soft error statistics, and availability

make their use in the memory system an engineering risk at this

* time.

- 24 -

I

Report No. 4563 Bolt Beranek and Newman Inc.

We have selected a basic memory size of 128K bytes on the

basis of the expectation that 64K memory chips will make it

unreasonable to provide a smaller memory. It also seems that

around 80K bytes will actually be needed in the Voice Funnel

application. Expansion of the local memory can be accomplished

in the future by changing to denser chips in the same space

allocated for memory, by adding memory boards, or by a demand

paging system.

2.5.1 Memory Implementation

The memory has two parts: an interface on the Processor

Node, and the memory module. The interface on the Processor Node

is quite simple, consisting of a transceiver to allow gating the

Processor Node's Data bus to/from the Memory Address/Data bus,

and a multiplexer for sourcing the high 4 bits of the local

memory address. The memory module is more complex, in part

because of the need for automatic refresh upon power loss, but

primarily due to error control and reporting.

The memory module is illustrated in Figure 5. Its major

components are:

1. the memory, which includes the 72 16K memory chips,
their line drivers, and the delay line required to
develop critical control signal edge relationships,

2. latches, decoders, and line drivers for latching and
buffering PNC data to/from the memory module,

-25-

Report No. 4563 Bolt Beranek and Newman Inc.

DAABSMMU RAM DATA

16 4 - A DRESS BITS 16-19

CONTROL LINES FROM ng*MEMR'4 FILN
PNC MICRO WORD ADRADATAI HIGH ADA

TRANSCEIVERS .SL 8ER'

LT LOGI
116 PROCESSOR NODE

INTYERF ACE TO
J 7~ MEMORY

TO OTHER ME MOR Y MODULES

£OOAESSCONTROL PRT AA

ADDRESS DRIERE DYAICRM
RFECOUNOL 77

FOU ARRS
"AIT ERRORY

ADDRESS REGISTER

Processor Node Memory Interface and Memory Module
Figure 5

-26-

Report No. 4563 Bolt Beranek and Newman Inc.

3. parity generation and parity error detection logic,

4. a means for refreshing the memory chips and locking out
the PNC from affecting memory state when the PNC is
powered down.

Whenever a Processor Node reset is detected, all memory

modules will automatically enter the self-refresh mode. In this

mode, the module locks out all PNC interactions with the memory

module except for that access which will change the memory module

to the normal mode. A reset can occur when the system-wide reset

button is activated, when a restart message is received, or when

one of the power supplies detects that the power bus input

voltage is too low.

In the normal case of power cycling, the PNC enables and

inhibits the auto-refresh mode in a controlled manner. That is,

all memory chip control signal timing relations are satisfied.

When either of the two asynchronous reset events occurs, the

possibility exists that the memory chip timing will be incorrect.

We could have included extra hardware to prevent this occurrence

but did not because it is not required. In a multiprocessor

environment, activation of the system-wide reset occurs only as a

result of a catastrophic system-wide failure. If the Processor

Node receives a restart message, it is considered to be broken by

the community of other Processor Nodes so that potential loss of

memory contents is not a concern.

- 27 -

Report No. 4563 Bolt Beranek and Newman Inc.

Each memory board has a 19-bit register in which is stored

the address of the memory location which had the earliest parity

error. Since a parity error generates a level six interrupt

request, eventually the MC68000 will get around to reading this

register (thereby allowing the register to be loaded again).

What a particular Processor Node will do in the event of parity

error detection is not clear at this moment. Most probably, we

will invoke a soft restart and inform the community of Processor

Nodes of a Processor Node malfunction. Persistent memory parity

errors may cause the failing node to be disconnected.

All memory accesses require three cycles. The first

microstep loads the address and type of operation (read, word

write, or byte write) into a latch on each memory board. In a

write operation, the PNC broadcasts the data to be written to all

memory boards. The selected memory board latches the data,

thereby freeing the PNC to do some non-memory-related operation

during the third microstep. In a read operation, the PNC reads

the data during the third microstep. The second microstep is

thus free to be used to do something else. Thus memory bandwidth

is 43MHz and uses the PNC during only two of the 3 cycles.

2.6 Switch Receiver Section

The function of the Receiver is to collect and assemble

incoming messages from the Butterfly Switch in an input buffer.

- 28 -LiJ

Report No. 4563 Bolt Beranek and Newman Inc.

Sometime during the assembly, the receiver requests

microinterrupt service of the PNC. In the resulting service

routine, the PNC uses the message type in the input buffer to

determine what to do with the input buffer's data.

We have elected to implement the receiver as a microcoded

finite state machine. This approach has the advantage of

allowing a wide variety of message formats and optimization of

the Receiver/PNC synchronization. More importantly, the approach

frees the PNC for other service functions while the message is

being assembled. In addition, it allows recognition of a Restart

message without PNC intervention.

If a Restart message arrives, the Receiver checks a 16-bit

password and, if it is correct, issues a restart to the rest of

the Processor Node. The receipt of a Restart message indicates

that the community of other Processor Nodes has agreed that the

Processor Node receiving the Restart is in serious trouble (i.e.,

all other means for communication with it have failed). Since

there are few software failures which will prevent one Processor

Node from communicating with another, the community will assume a

hardware failure has occurred. The advantage of having the

Receiver interpret the message is that only a small section of

the hardware need be working to initialize all finite state

machines of a Processor Node (including the Receiver).

- 29 -

Report No. 4563 Bolt Beranek and Newman Inc.

2.6.1 Preventing Deadlock

Two input buffers are provided. Assembled in one buffer are

those message types which require the Processor Node to send out

a reply message. Assembled in the other buffer are those

messages which can be processed without using the switch. Two

buffers are needed to prevent deadlock.

The Receiver peeks at each incoming message and makes the

decision either to assemble the message in one of the two input

buffers or to reject the message. Message rejection occurs when

some resource needed to assemble the message is currently in use.

For example, if the message is a "read-request', and the input

buffer for messages requiring a reply response is full, the e
message will be rejected.

A Restart message cannot be rejected. If one arrives, the

Receiver checks a 16-bit password and if the password is correct,

issues a restart to the rest of the Processor Node.

2.6.2 Supporting Long Messages

The overhead involved in crossing the switch, coupled with

the extra message data associated with routing, checksumming, and

source Processor Node number inclusion, suggest that throughput

can be substantially improved by sending more data in each

message.

- 30 -

Report No. 4563 Bolt Beranek and Newman Inc.

There are two ways we could read long messages. The first

is the one used with short messages: accept the whole message

into a large input buffer and poke the PNC just before reading

the last part of the message. This approach makes the Receiver

very simple but has some very undesirable characteristics. For

instance, it requires the Receiver to have a very large input

buffer. Complexity is introduced using a large buffer because of

the MSI architectures of larger memory chips, the need to go to

multiplexing schemes (the PNC has to read the data), and the

extra address bits required. In addition, since the PNC is

activated at the end of the message assembly, the input buffer

will be locked by the PNC's loading the data into local memory

for a duration almost equal to the assembly time.

The second and preferred way of handling long messages is to

have an input FIFO. In the current implementation, a 16-byte

input FIFO is used. This allows the PNC to start loading data

into memory very soon after the beginning of the message is

detected so that overlap of memory load and message assembly

occurs. The FIFO approach also reduces the hardware required by

the Receiver by reducing the number of state variables and

allowing use of dual-port memories for the input buffers.

- 31 -

rd
Report No. 4563 Bolt Beranek and Newman Inc.

2.6.3 Flow Control

A characteristic which we have come to expect of

communications networks is a requirement for flow control. This

is necessary whenever we cannot guarantee that the receiver has

sufficient resources to accept what the transmitter may wish to

send. With the use of a Receiver input FIFO (and as we shall see

in the next section, a corresponding Transmitter output FIFO),

flow control is required. The cost of flow control in the MSI

implementation was surprisingly low; the only cost was for the

extra wires in the interconnecting cables and a small increase in

Switch Node complexity. Since for all Butterfly systems of

practical interest there are more Processor Nodes than Switch

Nodes, moving the complexity from the Processor Node to the

Switch Node is a good choice. The use of flow control in larger

Butterfly systems (presumably using VLSI implementations) may not

be justified. Instead, large dual-port memories or even multiple

memories may be the better solution.

2.6.4 Receiver Implementation

A block diagram of the Receiver is shown in Figure 6. It

consists of four parts:

1. a set of ECL to TTL line drivers and receivers,

2. a 16-word 16-bit/word dual-port memory,

- 32 -

Report No. 4563 Bolt Beranek and Newman Inc.

TO/FROM BUTTERFLY
SWITCH OUTPUT PORT

PNC CONTROL SIGNALS

RECEIVER CONTROL (2
PROGRAMMABLE "2 SWITCH DATA
LOGICARRAY ,INPUTREG q-CLK

RECEIVER r F-74 ,4 _ _4 i _
CONTROL I DATADELAY I

* STORE 4 I CHECKSUM
'i PLA

) T ' iCHECK SUM

SYNCHRONOUS CLK CLK REGISTER -- LK
REGISTER ,. PORT

_____________________________1CO T 1616. BIT DUAL

FROM PNC o PORT HAM

FOP1C OST -,O. T SHEADER CHECKSUM MICROCODE
REGISTER

TO PNC MICRO INTERRUPT
SERVICE ROUTINE

ADDRESS GENERATOR DATA BUS
PLA

Receiver Components
Figure 6

-33-

Report No. 4563 Bolt Beranek and Newman Inc.

3. a checksum generator, and

4. a ROM/PLA-controlled finite state machine.

The finite state machine which drives the register control

and state update is implemented with a general structure of a

programmable logic array sourcing the address lines of a ROM

control store.

We plan to run the Receiver FSM at the same clock frequency

as the PNC to remove the synchronization problems which would

arise from using autonomous clocks. While the Receiver's FSM

structure allows a somewhat higher upper frequency of operation,

the small potential benefit of using different clocks does not

outweigh the additional complexity for synchronization.

Differential line drivers and receivers are being used

because of past experience in interconnecting large systems.

These receivers have a common mode noise rejection of at least

one volt which allows system integration to be done with little

worry about grounding and inter-cable crosstalk. ECL

transceivers are used instead of TTL transceivers because the

higher common mode rejection of the TTL transceivers does not

offset the lower power consumption, lower edge speeds, and

substantially higher speed of the ECL transceivers. Thus all

communications between Butterfly Switch Nodes and between

Processor Nodes and Switch Nodes use balanced ECL compatible

signal protocols.

-34-

Report No. 4563 Bolt Beranek and Newman Inc.

A dual-port memory provides a means by which the Receiver

can be assembling a message in one of the input buffers and the

PNC can be accessing data from a buffer during the same

microstep. The Receiver FSM controls where the next nibble of

Butterfly Switch output port data is to be loaded (i.e., one of

the 64 possible locations), and the PNC can gate one of the 16

Receiver memory words onto its Data bus.

Calculation of the checksum is accomplished via a PLA which

can either load the 4-bit contents of the Header Checksum

Register (which is loaded by the MC68000) into the Checksum

register, or update the Checksum register with the data from the

Butterfly Switch output port.

2.7 Switch Transmitter Section

The approach of using PNC bandwidth with a few shift

registers was initially thought to yield the simplest means for

interfacing to the Butterfly Switch input port. The PNC always

initiates a message transmission and therefore has nothing to do

until message transmission is complete. This assumption turned

out to be incorrect since the PNC interacted with other Processor

Node resources, many of which were doing something while the

message was being transmitted. Moreover, several Processor Nodes

reading one Processor Node's memory could require 100% of its PNC

bandwidth in returning replies, thus effectively halting the

- 35 -

Report No. 4563 Bolt Beranek and Newman Inc.

node.

Moreover, a significant amount of additional hardware was

required to provide those high speed functions which could not be

implemented with a serial decision machine like the PNC. For

example, the switch implementation expects the message to be

terminated immediately upon giving a rejection to the Processor

Node. Sensing this rejection cannot be done on a polling basis

by the PNC, so special hardware must be provided to

microinterrupt the PNC. This microinterrupt must also have a

shorter latency than other requests. Handling the flow control

in long messages requires sensing the "stop sending data" line.

This has longer latency requirements but still must be handled

very quickly because of the small input FIFO at the destination.

We have chosen to implement the Transmitter as a finite

state machine similar to that used in the Receiver. This

architecture satisfies the goal of minimizing PNC usage and

requires very little additional hardware compared to the approach

discussed above. The separate transmit and receive FSMs also

mirror the full duplex nature of the interface and separate the

PNC and transmitter functions at a well-defined boundary. The

robustness of the transmitter structure also facilitates the

addition of messages which have formats different from those

originally planned.

- 36 -

Report No. 4563 Bolt Beranek and Newman Inc.

2.7.1 Transmitting Long Messages

As was the case in the Receiver, the existence of long

message formats to improve switch bandwidth utilization suggests

that an output FIFO be implemented. An output FIFO allows the

Transmitter's FSM to begin sending the message even before the

first data byte is loaded into the output FIFO. This greatly

reduces the delay that is normally encountered in store-and-

forward techniques. The two flow control lines that were needed

because of the Receiver's input FIFO now also provide flow

control on the transmit side. Hence when the PNC becomes so busy

(e.g., responding to I/O controller access requests to local

memory and/or servicing the Receiver) that the Transmitter's

output FIFO becomes empty, the Transmitter simply asserts the

flow control line which indicates *this nibble should be

ignored." Eventually the PNC will be available and will complete

transmission of the message.

2.7.2 Two Output Buffers

The Receiver required two buffers to avoid deadlocks. The

Transmitter, however, could be implemented with only one buffer.

When a reply message must be sent, the PNC could simply ask the

Transmitter to stop transmitting the message, assemble the reply,

wait for the reply to be transmitted, and then reassemble the

original message in the one output buffer. This works because

-37-

LAI_ -j

Report No. 4563 Bolt Beranek and Newman Inc.

the PNC had to create the preempted message in the first place

and presumably has not lost the means to reassemble the message.

We chose to provide two output buffers not only to mirror

the receiver structure but to reduce PNC bandwidth utilization

and introduce fairness. Fairness becomes an issue when a

Processor Node must transmit both a request and a reply message

at the same time. With the one buffer structure, the reply

message must always be transmitted or deadlock will result. This

could be resolved by having the PNC reassemble the reply and

request messages alternately in the one output buffer as

rejections are sensed. Unfortunately, this requires almost as

much PNC intervention as does the first design approach.

The final motivation for providing two output buffers was

that the FSM structure and size of the Transmitter RAM memory

made it very easy, and the resulting interactions with the PNC

became very clean. The PNC now sets a flip-flop in the

Transmitter telling it that the corresponding output buffer is

not empty. In the Transmitter's idle state, which occurs after

transmission of a message or when a rejection is sensed, the

flip-flop assertion is sensed and the message transmission

begins. At the end of transmission, the Transmitter clears the

flip-flop, thus enabling another message to be assembled by the

PNC. The Transmitter has full responsibility for retransmission

on rejection, checksum generation, and alternate path selection.

If both output buffers are non-empty, the Transmitter will

- 38 -

d

Report No. 4563 Bolt Beranek and Newman Inc.

alternate their transmission upon rejection responses, thereby

guaranteeing fairness.

2.7.3 Alternate Path Selection

In the minimum Butterfly Switch configuration, the switch

network is vulnerable to switch node failures. Intuitively, the

failure of an individual switch node can be seen to affect a

wedge of switch nodes and entry points, emanating in both

directions from the failed node.

A good way to make the switch network more resilient against

failures is to introduce some redundancy by adding an extra

column of switching elements. This provides four paths from

source to destination and brings up the problem of alternate path

selection.

There are two ways of dealing with these alternate paths to

a given destination. They can be handled either at a software or

a hardware level. At the software level, the alternate paths

would manifest themselves as several addresses for any given

destination. As a processor notices that it can no longer access

a destination by one address, it switches over to an alternate.

The total software approach has two deficiencies. First, it

requires the software to "know" about the switch structure on all

transactions instead of only when the switch breaks. Second, the

- 39-

/I

Report No. 4563 Bolt Beranek and Newman Inc.

benefits arising from spreading the messages amongst the

alternate paths when simple conflicts occur in the switch could

not be supported by a software-only means.

We have chosen a combined hardware/software approach. The

Transmitter will automatically choose a new alternate path for

each message transmission. This removes the need for the normal

software to have an awareness of the switch structure. To

prevent broken paths from being used, a four-bit register called

the Path Enable register allows the MC68000 to enable or inhibit

one or more of the alternate paths.

2.7.4 Transmitter Implementation

A block diagram of the Transmitter is shown in Figure 7. It

consists of four parts:

1. a set of ECL to TTL line drivers and receivers,

2. a 16-word 16-bit/word dual-port memory,

3. a checksum generator/data multiplexer, and

4. a RON/PLA-controlled finite state machine.

The Transmitter is very similar to the Receiver in its

structure. The PNC can gate one of the 16-bit words onto the

Data bus and load the low and/or high bytes of any word. Only 12

of the 16 RAN words are used for the two output buffers, so 4

words of temporary storage are added to the PNC's resources. The

- 40 -

Report No. 4563 Bolt Beranek and Newman Inc.

PNC CONTROL SIGNALS

7 7 DATA BUS

PROAHAMABLE OGN r 71A
TRANSMITTER CON REG
PROGRAMMABLE LOOICR

ARRA H3ACONT "OT*

ASC RRAYUS n - - FROM PNC MICROCODE 16o A L

(4 IPORT RAM

6 DATC CSUMIT A

CONTRROLELE

T ERA IT TERCL IAR

SERVICE ROUTINE

ADDRESS GENIERATOR 2 4
PLA I'

TOIFROM BUTTERFLY
SWITCH INPUT PORT

Transmitter Components
Figure 7

- 41 -

e ROGR.MM OLE

Report No. 4563 Bolt Beranek and Newman Inc.

switch data is sourced from a programmable logic array to provide

the various sources (e.g., zero, RAM data, shifted RAM data,

alternate path routing, checksum, ones). Alternate path

selection occurs via part of one of the programmable logic

arrays.

2.8 Performance and Statistics

Summaries of Processor Node hardware statistics and

performance numbers are given in this section. It is hoped that

they might give some insight into the expense and relative

complexity of the various Processor Node elements on an absolute

basis and relative to one another. The following table gives the

component count, IC count, and cost of each of the major

Processor Node sections. The costs are unburdened parts cost

only for a run of 25 Processor Nodes. It is assumed that each

Processor Node will include 128K bytes of local memory. The

number in parentheses is the percentage of the total for the

item.

- 42 -

Report No. 4563 Bolt Beranek and Newman Inc.

Processor Node Component IC Parts
Element Count Count Cost

MC68000/MMU 44 (6.9) 33 (13.1) 366.8 (21.3)
Processor Node Controller 61 (9.6) 40 (15.9) 256.1 (14.9)
PC boards 2 (0.3) 244.5 (14.2)
Memory chips 72 (11.3) 72 (28.6) 223.2 (13.0)
Power supplies 327 (51.3) 4 (1.6) 163.6 (9.5)
Receiver 25 (3.9) 21 (8.3) 124.4 (7.2)
Transmitter 24 (3.8) 20 (7.9) 114.4 (6.6)
Memory Controller & 45 (7.1) 35 (13.9) 91.9 (5.3)
Memory Interface
ROM 2 (0.3) 1 (0.4) 63.9 (3.7)
I/O Adapter 15 (2.4) 9 (3.6) 39.4 (2.3)
Miscellaneous 21 (3.3) 17 (6.7) 32.6 (1.9)

Total 638 (100.2) 253 (100.0) 1720.7 (99.9)

The following table gives execution times of many of the

important Processor Node functions. To simplify the generation

of the numbers it is assumed that:

1. there is no switch contention,
2. I/O device controllers are not accessing local memory,
3. remote transactions are between two distinct Processor

Nodes,
4. the clock frequency is 8MHz,
5. the Butterfly Switch is two columns deep,
6. the MC68000 is executing code out of local memory when

block transfers are in progress,
7. an addressed I/O device register adds two wait states

to an access, and
8. the MC68000 does not have to wait for a switch

transaction to start because of a previously initiated
switch transaction.

-43-

Report No. 4563 Bolt Beranek and Newman Inc.

Processor Node Function Execution Time
(microseconds)

local memory read .625
local memory write .625
remote memory read 3.750
remote memory write 1.250
I/O register read 1.625
I/O register write 1.625
block transfer initiation 8.000
interrupt acknowledge 1.750
set interval timer 1.250
read real time clock 1.500
set real time clock .875
ROM read 2.000
read SAR 1.875
write SAR 1.625
write misc register .625
read Processor Node Number .625
write Processor Node Number .625
read ASAR .625
write ASAR 1.000
read Memory control register .750
write Memory control register .625
read and clear PNC status reg .625
check user mode write 1.625
average instruction execution 1.625

memory refresh 2.4%
block transfer data rate 32 MHz for very long blocks

- 44 -

Report No. 4563 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Qefeaaa Aduaaced Rezear~b ftrgacta &qeany

Dr. Robert E. Kahn (2)

actaus spp secl~e -- Washingtoa

Jane D. Hensley (1)

flefenze Qacumentati~u Cautat (12)

fiQ1t fBcaak and NIewman Inc.

Library

Library, Canoga Park Office

R. Bressler

R. Brooks

P. Carvey

P. Castleman

G. Falk

F. Heart

M. Hoffman

M. Kraley

W. Mann

J. Pershing

R. Rettberq

E. Starr

E. Wolf

-45-

Report No. 4563 Bolt Beranek and Newman Inc.

- 46 -

