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Adaptive Determination of Designs

in Attribute Life Testing (*)

by

Mohammad Kazim Khan

Virginia Polytechnic Institute & State University

1) Introduction

Consider a system of N components (N is fixed positive integer) working

independently and having identical cumulative distribution functions (c.d.f.)

of the time till failure F(t;e). F is a known function and e is an unknown

parameter, belonging to a parameter space 0. The components fail randomly

at unobservable times. The system is inspected after X units of time and

the number of failed components is observed. The replacement of the com-

ponents could be according to the following two policies:

(A) Only failed components are replaced at each inspection.

(B) All items in the system are replaced at each inspection

(frequent replacement policy, or block replacement policy).

The determination of the appropriate replacement policy depends upon the

type of system under consideration. For example, policy (B) is preferred

over policy (A) when it costs more to inspect and replace only failed com-

ponents as compared to changing the whole system. Moreover, sometimes it is

practically impossible to change only failed components without effecting

the whole system. For examples see Barlow and Proschan (1967). In quantal

responsc bioassay studies policy B is followed, where, after experimentation,

the whole batch of experimental units (mice, fish, etc.) is replaced by a

(*) Part of the Ph.D. dissertation written under the guidance of Professor

S. Zacks for the Department of Mathematics and Statistics, Case Western

Reserve University, Cleveland Ohio.



new one. Finney (1978) provides an exhaustive reference list for such

bioassay designs.

Let J(xI),J(x2 ),...,J(xn ),... denote the number of components failing
n-I n

during the intervals (0,xl),(xlXl,+x2) .... (E xi  I  xi)....

Intuitively, we would like to use the information (J(x1 ),... J(xn),X,...,xn)

to determine xn+1 such that J(x n+) will provide as much information on 6

as possible. To define the best or optimal interinspection time at the

(n+l)st stage, we shall use the criterion of maximizing the conditional

Fisher information about 0 given (J(x1),... ,J(xn),Xl,...,xn). More specifi-

cally, let Fn denote the sigma algebra generated by (J(xI),... ,J(xn),xl,

...,xn ) and let l(e;xn+lIFn ) denote the conditional Fisher information of

e at the (n+l) at stage given F n . Generally, I(e;xn+iIFn) depends on 6 and

on F n . Hence, the optimal value of xn+1 is a function of the unknown para-

meter 6 and of the past history of the system. Since e is unknown one has

to change the criterion of optimality in a suitable manner.

It is readily seen (Khan 1980) that, if I(F(x 1 ;e)) and 1(e;xl) represent

the Fisher information function of F(x1 ;0) and 0 given x1 respectively, then

I(F(xl;e)) = N/{F(x1 ;e)(1-F(x1 ;e))} (1.1)

and

l(0;x I ) = I(F(x1 ;e))(O --- F(xl;e))2 (1.2)

One can also easily show (Khan 1980) that under replacement policy B, the

conditional Fisher Information function, given F nl, is

l(O;xIFn) = l(F(X F(xn;0))2 (1.3)

In particular, for the negative exponential failure distribution, (1.3)

holds under both replacement policies.

The terms 'design levels', 'dose levels', 'interinspection times' will

be used interchangeably, depending upon the special application of the methods.
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2) Adaptive Designs

As discussed in the previous section, the tolerance or failure time

distribution yields for a design level x the probability of response F(x;e).

Let J(x) be the total number of responses at a design level x, among N

identical and independent units. Given x, J(x) has a binomial distribu-

tion, provided all units started to function together. That is,

J(x) n B(N, F(x,e)) .

From the point of view of maximizing the Fisher information function e,

we may proceed to define the optimality criterion as follows.

Considering 1(6,x) as a function of x, we would like to find the

design level x0 such that

I(e;x) < I(6;x0 ) (2.1)

for all xe X where X is some appropriate design space. If F(x,8) is a

continuous function of x such that F(x,O) is also a continuous function

of x, then there exists a unique x0 such that (2.1) holds provided X is a

compact subset of R. Usually, x0 will depend on 0 by some (known) functional

relation, say, g i.e.

g X
(2.2)

6 + g(e) = X0(a)

Hence, if 6 is unknown, x0 cannot be determined. The following are some

typical examples of g encountered in application

(i) F(x,0)= 1 fx exp(- (t-0)2) dt ; g(O) = 6 . ----- 7---
This model is known as the Probit model in bioassay studies. .-1 TIC :

(ii) F(x,e) = (I + exp(- (x-0))} -  ; g() = 0 •

This model is known as the Logit model in bioassay literature.

(iii) F(x,B) (e-1) le exp{-e ) -1] , x > 0 ;t.

g(6) " 1.9366/0.

i "
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(iv) F(x,O) I - exp(-x/0) , x > 0 ; g(e) = 1.5936 a

To overcome this difficulty of the dependence of x0 on the unknown para-

meter e, we apply an adaptive techniques for estimating a by using a

sequence of design levels x1 ,x2, ... ,x,.., and corresponding to each design

level we define an estimate of 0, 0n. The double sequence {x ann > }

is called an adaptive design.

Definition (2.1)

An adaptive design {x n, n} is asymptotically optimal if for each

fixed e c o,
(i) 0 as. 0 as n + w

n
a.s•(i)Xn * x 0(0) as n + =

(iii) (n ;x n)a_" l(0;x (0))

Note that if I(0,x) is a continuous function of 0 and x then (iii) follows

from (i) and (ii).

A slightly relaxed (weaker) definition of optimality is as follows:

Definition (2.2)

An adaptive design {xOnI is asymptotically c-optimal if for each

fixed c > 0 and each fixed 0 c 0,

i) a.s. as n +
n

(ii) lim supxn - x0 1)I < E a.s.
n

(lii) limsuplI(en ;xn ) - MIX 0 (0))l < c a.s.

n

Note that if the adaptive design {xn n n } is independent (functionally) of

c, then definitions (2.1) and (2.2) are equivalent.

Venter and Gastwirth (1964) defined the optimality criterion (in the

negative exponential case) to be that a sequence {x n is asymptotically

optimal If

- [ n
liminf n 1 E{I(01 ;x) = I(O;x 0 (0)) (2.3)

for each 0 c 0

-4-



Note that if an adaptive design is optimal in the sense of definition (2.1)

then by the Lebesque dominated convergence theorem and the regularity pro-

perty of the Cdsaro means (Powell and Shah (1972), Knopp (1956)) it is

asymptotically optimal in Venter's sense. However the converse may not

hold. Therefore, definition (2.1) is a stronger optimality criterion.

One of the shortcomings of definition (2.1) is that it does not take

into account the rate of convergence of the adaptive design. This factor

could be very important for experiments of moderate sample size. There-

fore, it is preferable to find some bound to the asymptotic variance of

the adaptive design.

3) Discrete Adaptive Designs

In this section we shall assume, unless otherwise stated, that

(i) X,0 are compact subsets of BR

(ii) F(x,e) is a differentiable function of 0 for each fixed x so that

the Fisher information function exists.

(iii) F(x,e) has a unique continuous inverse for each fixed x.

(iv) F(x,O) is a continuous function of x and e.

(v) g(O) is a continuous function of 0, where g is as defined in (2.4).

(vi) 1(0,x) satisfies the Lipschitz condition.

Condition (i) will not have any effect in applications of the results.

Conditions (ii) - (vi) will be satisfied in almost all the models encountered

in bioassay and reliability studies. For example for the Probit and Logit

models the above conditions will be satisfied when 0 is the shift parameter.

Since 0 is a compact set, we can, without loss of generality, assume

that

0 = [a,b] ; < a < b < + . (3.1)

Furthermore, since g is a continuous function, g(o) is also a compact

set. Therefore it is reasonable to define the design space

-5-



I

X = g(O) = [a,b] (3.2)

where a = inf g(e) (3.3)

ecO

and V sug g(e) (3.4)

For any given c > 0, let K be an integer such that

K > (bV - al/e (3.5)

and define

d. a' + K- (b' - a') i , i=O,...,K . (3.6)

All the experiments are performed at some of these design levels. Note that

d i+ - di < £ i = 0,1,...,K-1 (3.7)

Define the set of discrete designs to be

x {d ; 1 = [,d,2,...,K} (3.8)

Unless otherwise stated we shall assume that g(8) j X. The first design

level Xi, K is a random variable taking values in X'. The maximum likelihood

estimate of F(di,6) given Xi, K = d i and N is

N- a(di) = J1(di)

We define the estimate of e as

0 F (F1 (d M b (3.9)
1,K I 1 i a

where
a , if x < a

xb

Ixa x, if a < x < b

b , if x > b

~th
Adaptively at the n stage (n > 2) define the design level X c X such

that

Xn,K d i
(3.10)

if g(On 1 ,K) c [di  di+1 )

This implies that for all n > 2
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IXnK - g(enln,K) l < c almost surely (3.11)

Let J n(d ) denote the total number of responses among N units at the nth

stage given Xn,K = d . Also let Fn be the sigma algebra generated by

(X1,K .... Xn,K,Jll ... ,Jn-l), then due to the block replacement policy, (and

the memory less property of the exponential distribution in policy A).

J n(d i) IFn -. B(N, F(dile)) -(3.12)

(For more details see Khan (1980) and Zacks (1973).)

At the nth stage we define an estimate of e as

K - 1I - b
E n M [F (di,J n)]  (3.13)n,K i=0 i,n i M a- a

Where Mi,n is the total number of times in n stages the design level di was

repeated and J denotes the average number of responses during these M.

repititions of di .

Hence, for each fixed £ > 0, we define the discrete adaptive design

{Xn,K , 6n,K) for {g(e),6}. Note that K depends on c, for simplicity of

notation, however, we will write K instead of K(£).

The following lemma and a theorem of Anscombe are needed for further

developments.

Lemma (3.1)

If {Y n is any sequence of random variables such thati n
i a. s.SY a !S a s n - + 4

n

and N rI is any sequence of non-negative integer valued random variables

such that

N as + as r +w
r
a.s.then, Y N s0 as r++

r

Proof: See M.K. Khan (1980) or R.A. Khan (1975).

-7-



Theorem (3.1) (F.R. Anscombe)

Suppose that X .... Xn'"are independent and identically distri-

buted random variables with mean zero and variance one. Let

Sn - X1 + X9 + . X ; n 

Furthermore, let v(t) denote a positive integer-valued random variable

for any t > 0 such that

c as t -+wv

t

where c > 0 is a constant. Then for any x c IR,

___ 2

lir P Sv t  < x = 4P(x) = f exp(-u /2) du

Proof.

See Anscombe (1952). For a simpler proof of the theorem see Renyi (1957).

Lemma (3.2)

For the discrete adaptive design, let di be the maximal design level

smaller than g(0) and M. is the associated number of repetitions of d.,

then

M. + +as n++ [P 9]

Proof.

By negation, if the lemma is false, there exists a set A c Q such that

P(A) > 0 (3.14)

and for each w c A, as n -w

i,n i

(Note that nl' Min(w) always exists, being a non-decreasing sequence of

integers.)

Since,
K

Z 0M. ,n(w) = n, for all n and for each w c Q

-8-
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as n +w , there exist some design levels, say, d 2 d .... q > 1,
i i j29

such that as n *+ ,

M. ( ) + , 2. = 1,2,...,q

and for each j # t, 2 = 1,2,...,q , there exist constants M.() such

that as n -+

M.,( ) U M(CW) < +o0

By the strong law of large numbers

F(djO)I a;s 0 as n.n 3

Therefore, for almost all w c A, the subsequence

'JM. (w) - F(d,)I 0
j£,n

as n I Z 1,2,...,q

By the continuity of F and the fact that e E [ab],

[F- 1 (d M. )] = YM. CU) - e
jI n 32 ,n

as n- +a , for each 2 1,2,... ,q

Now

K n1

10 6 *< n- M Y - 8n,K i j0 j,n M.J,n
K -1q I< E n Mn(b-a) +jn YM, M6

(J # Ji 2 ; 2 = n . q).

Therefore, for almost all w e A, we have
q -

18n m(W) - e < o(I) + o(I) EZI n M.
-- J .,n

o() (3.15)

By the definition of Xn,K we have

g( n-l, K - (b-a)/K < Xn,K < g(nl , K)

This implies that for almost all w E A

limsuplXn,K() - g(O)I < (b-a)/K (3.16)
n

-9-



It follows that

X n,K(w) d. infinitely often, (3.17)

for almost all w A.

Hence, for almost all c c A,

M. ( +) as n - +

This contradicts the definition (3.14) of the set A. Hence,

P(A) = 0

i.e.,

M. a. +- as n '+ (Q.E.D.)1 ,n

Lemma (3.3)

For the discrete adaptive design

P0 ( ++on ) =0,(Mj ,n

for all j # i, where d. is the maximal design level less than g(e).
1

Furthermore,

-1 a.s.
1-,n

Proof.

If the Lemma is wrong, there exists a j # i and a set B c P such

that

B = {w: M. (w) -M3 ,n

and

P(B) > 0 .(3.18)

Let w c B, since by the negation hypothesis

N. (w) + ,
S,n M

X n,K(O = d. infinitely often. (3.19)

By lemma (3.2),

M i , n (w)-+ , as n++ ,

for almost all w c .c

10



Therefore, without loss of generality,

X n,() d i  infinitely often (3.20)

for almost all w E B

Since j # i, we have

Idi - d I > (b-a)/K

Hence, for almost all w c B, we have
limsupIXn,K(w) - g(O)J > (b-a)/K if j # i+1

n

and (3.21)

limsup Xn,K(w) > di+1 if j = i+1
n

By similar arguments as used in lemma (3.2), for almost all w c B, we

have

0n,K () +O as n-++co

g(O n,()) g(O) as n +m

Since,

g(OnlK) - (b-a)/K < Xn,K <_ g(0n1,K), for all n,

for almost all W E B , we get

limsuPIXln,K (w) - g(O) < (b-a)/K
n

and (3.22)

limsup XnK ( ) < g(e) < di+ 1

which contradicts (3.21)

Hence,

P(B) = 0

i.e.,

P( +o) 0
j,n

for all j i
(Q.E.D.)

~- 11 -
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Theorem (3.2)

The discrete adaptive design {X , 0n K } is asymptotically

n,K n ,K

- optimal for {g(O),O}.

Proof.

Without loss of generality let g(0) c (di , d i+).

By lemma (3.3) we have,

-I a.s.
n M. -1 as n+4

1,n

By the strong law of large numbers and lemma (3.1), we have

-- a.s.
J4 F(die) as n

i,n

-1 b
By the continuity of [F (di'y)Ja with respect to y and the fact that

0 c [a,b], we deduce that
a.s.

Y M. s as n - + (3.23)

1,n

Hence,

K -1

-< F n M. IYM - 6

S j j,n M.
,n

K -+

< (b-a) j O n Mjn + e6

j#i 1,n

a.s.

= o(i) by (3.23) and lemma (3.3)

which proves (i) of definition (2.2)

Since,

IXnK - g(e)l < IXn, K - g(On-1,K) I + g(0nl ,K) -g(O)l

< (b-a)/K + o(1) ,

by taking limsup, we get (ii) of definition (2.2)
n

In fact, we have proved that with arbitrary large probability

Xn,K =d (3.24)

- 12 -
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for all, except finitely many, values of n.

Furthermore, 1(6,x) is a continuous function of (O,x), satisfying the

Lipschitz condition. Therefore, there exists a constant A < -"'such

that

iimspjl( ,X - ~e~go))~< A (b-a)
lispi6n,K' n,K -~~~)) K (3.25)
n

By taking K large enough we get (iii) of definition (2.2). (Q.E.D.)

Theorem (3.3)

For the discrete adaptive designs {X n, e },

Vn(O nK - 0) D N(O,D) as n .

for each e c (a,b) such that g(e) c (did i+i
-1 i 1 )( F(.,o -I- l-I(i 2

where D = N. Fi )l~F~ d,) ae F1 (. e =F(d.,e)

Proof.

By the Central limit theorem

D
I/ni j n -F(dO ),.- N(0,D i

as n. -- + ,where,

D, = N F(dilO)(l 1 -~il)

By lemma (3.3) and Anscombe's theorem (3.1),

V' i (m3~ - F(d.,e6)) 9 N(0,D d

as n-+

which implies,

Vn a i~n- F(d ,e)) 9 N(0,D )

a s n ).+ .

Therefore by the well known property of continuous function of a sequence

satisfying the central limit theorem (see Billingsley (1979) pp. 320, problem

27.10) we have

-13-



ii
/n ([FDCd., J )J-o)

1,fl

Sn (YM - 0) -+ N(O,D) (3.26)

for each 0 z (a,b), as n +

where

D=D { F-l(diz)I z =F(d ,) 2
1 z

Finally,

/n (0 ) /n ( K n-1
n,K = j = Mi,n YM.i,n --1 1,1 K

-n M. in(Y -) + /n n- M. (Y1,n Njo n .
j~i J,n

By lemma (3.3)

-1/2 a.s.n N. 0
j,n 

0

for each j i

Therefore,

/n ( n,K-O) = n - I M. i/n(YM  - O) + o (1)n,1,n N. pz1,n

which implies by (3.26)

/'n (0 n,K-0) D N(O,D)

as n+-
(Q. E. D.)

Remarks.

M If din = f(M. ,n) where f is a measurable function of Mi n
il ,n' 

i n

such that

K d a.s.

i_4 i,n

0< d i  < I a.s. V i and V n

and define an estimate of e by
K

0n,K ijO d ,n Y
i,n

-14-



Then all of the above mentioned results for the discrete adaptive

design will hold when 0 n K is replaced by 6n,K under suitable con-

ditions on f.

One such function is
Ml,n K Mi,n)

d i,n(r) ( ; r > 1

Such a weighting smoothes out the effect of the first guess, XlK ,

very fast.

(ii) The discrete adaptive design may be used to prove the asymptotic

optimality of certain continuous adaptive designs.

(iii) Asymptotic confidence band for 0 are

L()=) z D1'2  -1/2
L(O) = 0n,K Za/ 2  n

and
1I/2 -1/2

U(O) = 0n,K + Za/2 D n

where D is given in theorem (3.3.2) and Z%/2 represents the (l-a/ 2 )

inverse of the standard normal distribution function.

So far we have assumed that g(O) # di for i = 0, 1... ,K The following

theorem considers the case when g(O) = d for some i.i+1i

Theorem (3.4)

For the discrete adaptive design if there exists an i such that for

some fixed K

g(e) = d i+ , then
a.s.

() n,K  O as n - +

(ii) limsuplxn,K  - g(O) I < (b-a)/K
n

(iii) limsuplI(On,K , XnK) - I(0,g(O)i < AK- (b-a) where A <
n

is a constant

-15 -



-Proof.

BV similar arguments as iemma(3.2) and lemma (3.3) one can easily

show that

P(M -* ~) 0

for all # ,i+ 1.

Which implies that

n- (M i. + M )~ as. 1 (3.27)

as n-+

By similar arguments as theorem (3.2) part (i) follows that

nKa-,s. 0 as n-+

Since,

g ~ --, (b-a)/K <s X nK .gO -,

b~y taking limsup , we get (ii).
n

Since 1(-I,x) satisfies the Lipschutz condition we get (iii) (Q.E.D.)

Remark.

Since gel) = d there may exist a 0 < p < I such that

PO nK i.o.) = p

Thus, X =d, infinitely often with probability p
n,K I

and X nK= d 11infinitely often with probability i-p.

Therefore the result on asymptotic normality may not hold.

Remark.

We can construct test of hypothesis concerning 0. Let 11:e 6 0 VS.

appropriate alternative, the quantity

N IM (J 0M ~ - F(dlf) 0 2) (Fdif 0 ( ~dt

measures the discrepancy between the observed and the expected frequencies.

Let v be the total number of design levels yielding (after pooling if

necessary) the quantity

& -16-



Ri n  N i Mi  F(d ,0 )(1 - F(di,00))i~ ,n 1

greater than 9, then under H, and given

M ; i i 0,1,2,...,K,ijn

the statistics

2 K 2 -1 2
X2[V) = iE0 (Ni Mn) i,n-F(d 0)

i,n

has approximately a conditional chi-square distribution with v degrees of

freedom.

(4) Comparison of the d a d with Continuous Designs

There are many ways to define continuous adaptive designs {x n,0 n  such

that

0 a~. O as n +u+n

a.s.Xn s g(W) as n++=

nnand I( n',xn ) a ;s. I(O'g(O)).

For example, consider the following stochastic approximation method. For

the negative exponential model in which F(x;O) = 1-e
x /6

Let xI be any random variable taking values in (0,+w). After defining

XX 2 9 .... Xn and observing the responses J(xI),J(x2),..,J(xn ) we define the

(n+l)th design level x n+ as

X+l = x + anJ(xn)/N - I + exp(-c)} (4.1)

where J(x n ) is the total number of responses (failures) out of N items

(components) and c = 1.5936.

And define the estimate of 0 as

a c1 xn+l (4.2)

Usually, the sequence an is taken to be d/n, where d is a constant.

It is readily seen that (4.1) is a special caseof the Robbins-Monro

(1951) stochastic approximation method. Therefore, by the well known results

(Wetherill (1963), (1975)) on the properties of the Robbins-Monro procedure
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ax s cO as n- +4 (4.3)
n

which implies that

0 4 0 as n +a
n

Since, I(O,x) = Nx 20 -4(expx/O) -1)-1 is a continuous function of (Rx) by

(4.2) and (4.3) we have

I(0 ,x ) a;s. I(O,cO) as n +

Also

)V 2
/ (n-0) N(O,o d ) as n (4.4)

where

2 = d 2(e c - 1)/{c 2N(2d5-1)} ; dB > 1/2°d
-*1

8 = 0 exp(-c)
2

One can easily check that ad is minimized if

d= d

and

2 c 1- 2m 2 = (ec-l)N Ce/c) (4.5)

d

Another solution to this problem was given by Venter and Gastwirth (1964)

b, proposing maximum likelihood (ML) and stochastic approximation (SA) methods.

Both ML and SA procedures of Venter are strongly consistent and asymptotically

normal. i.e., if 0 represents Venter's ML or SA estimate of 6 at the nthn

stage, then

/n- (on -0) - N(O,V)

where (4.6)

V = (exp(c)-1)(0/c)
2

For the discrete adaptive design eK , we have from theorem (3.2) that

rn (e - 0) D N(O,D) (4.7)n,K

where

D exp(d /0) Nl0 d2

j - 18-



where d, t co and N, is the number of components used for design

level di .

One can easily show that for the Venter's procedures, if the system is

composed of N components (instead of one component)

Var(vln en) -i V/N . (4.8)

Hence, the asymptotic variance of these three procedures have the following

relationship
2 2

D V = min ad <od (4.9)

2
It can also be shown that min ad is in fact the least possible variance

(Cramr-Rao lower bound) of designs which are strongly consistent. There-

fore, in practical situations, especially for small sample sizes, the minimum

asymptotic variance criterion may not help to choose the best adaptive design

out of the two adaptive designs of Venter and the discrete adaptive design.

In terms of computational ease, note that for the discrete adaptive

design

Jn+l( = n (n+l)-Jn(x) + (nl) J nl(x)

and,M =M +lI{Xn+ I
Mi,n+l Mi,n + n+

By using these two equations, we see that the discrete adaptive design and

the Venter's SA procedure have almost the same level of difficulty in computa-

tion. However, Venter's ML procedure is considerably more difficult to apply

in real situations.

Furthermore, for the application of the discrete adaptive designs we

need only finitely many levels which could be pre-defined and made ready before

the actual experimentation, and hence, will be more suitable in those situations

for which there is a natural discretization of the design space (e.g., experi-

ments could be performed at certain hours only, or at certain fixed levels

-19-



(which cannot be split into smaller fractions) of the process).

One should also note that none of these adaptive procedures yield un-

biased estimate of 6 for any fixed sample size.

5) Designs Having Minimal Cost

So far we have been dealing with maximization of the Fisher information

function of 0. Now we shall discuss the construction of adaptive designs

yielding minimum value of a specified cost function. One cost function is

proposed as follows. Let us denote by T. the (unobservable) failure time1

of component i = 1,2,...,N. Let [O,x) be an interinspection interval. Then,

(x-Ti)+ denotes the length of time the ith component has been in state of

failure, where

+ = 0 if x < 0

x if x > 0

Accordingly, let h((x-Ti) +) denote the failure cost of the ith component.

h(.) should be non-negative perhaps monotonically increasing function such

that h(O) = 0. Let c1 be the cost of replacing a failed component and c2

be the cost of inspecting a component, then under the assumption of additive

costs, the total cost associated with design level x is
N +

B(x) = i l l h((x-Ti) ) + cl J(x) + Nc2

where J(x) denotes the total number of failures during the interval (O,x).

Venter and Gastwirth (1964), Zacks and Fenske (1973) and Anbar (1976) con-

sidered this cost function for (1.1.1), where h(t) is a linear function of

t. Let C(x) denote the average cost per time unit associated with the design

level x, i.e.,

C(x) = B(x)/x

The optimal design level, x*, is defined as the value of x for which

the expected average cost per time unit is minimized, i.e.,

-20-



I
*7

,{C(x*) < E .C(x) x X

provided such an x* exists.

Furthermore,
N +

E{C(x) } = x-{ i E[h((x-Ti)+)] + c1NF(x,O) + c 2N} , (5.1)

Since (5.1) depends on 0, the design level x yielding minimum value of

(5.1) depends on 0. Therefore, we consider adaptive designs which converge

to x (6).

Approximate h(.)by the first two terms of its Taylor series expansion,

i.e.,

h((x-T )) h(O) + (x-Ti)+ h'(0) (5.2)

since

h(O) = 0

h((x-T+ h() (x-T)+

Let co = h (0), which represents the cost of a unit of idle time of the

failed component i. For (5.3) one can easily show that (see Anbar (1976) in

the negative exponential model,

E{C(x)} = x 1 N{co[x-GF(x,e)] + clF(x,O) + c2 }  (5.4)

and the design level x minimizing (5.4) is the solution of

(1 + 0- I /x) exp(-x/e) = - c2 (c 0 -0 c0- (5.5)

provided

0< C 2 (C0  - c1 ) - I1 < 1 (5.6)

otherwise we can reduce the cost by not inspecting the system.

By (5.5) we get

Tiis isa x* =0<-1..~ l)-I) 1x = 2 (1-c(c 0  - (5.7)

where

(x) =(x+l) exp(-x) ; X > 0

This is, x is a continuous function of 0 such that for 6 c (a,b], x is

bounded away from zero, where
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-1
a > c0 (cI + c) (5.8)

Note that while F(x ,0) depends on 0, F(ce,a) = 1-exp(-c) is independent

of 6. Due to this fact the usual Robbins-Monro type stochastic approxima-

tion methods (used for estimating y such that F(y,0) is a known constant)

cannot be applied.

To overcome this problem Venter and Gastwrith (1964) and Anbar (1976)

proposed equivalent adaptive designs for the negative exponential model. We

will not discuss these designs here. In the following we shall show that the

discrete adaptive design can easily be modified in such situations.

Let x (6) be any (known) continuous function of the parameter 6 such

that there exist two constants a', b' so that, for each 6 E [a,b] = 0

0 < a' < x (6) < b <+ (5.9)

and

a' = inf x (0)
eO

V = sup x (0)
OCO

(Note that x defined by (5.7) satisfies these conditions).

Let X = [a',b'] and K be an integer.

Define

X' = d. : d. = a' + K- (b'-a') i=0,1,...,K (5.10)
1 1

Let x1 ,K be a random variable taking values in X'. After defining

x2,K,...,xn-.,K and 01,K'...0 n-,K define,

xn,K = a if (5.11)

x (0 n -1,K )  C [di  t di+1 )

and

6 n M [F (di,JMi  (5.12)
n,K i=0 i,n[F-  in)a

For the sake of completeness we state, without proof, the following theorems.
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The proofs follow by simple reworking of the arguments in the theorems

(3.2) and (3.3) after replacing g(O) by x (0) and g( n,K ) by x (0n,K).

Theorem (5.1)

For the modified discrete adaptive design defined by (3.5.11) and

(3.5.12), if d. # x (0), j = 0,1,2,..., K, then
3* a.s.

(i) 0 as n- +"',n,K

(* - 0) N(O,D*) as n
n (, K

where

D Ni i F(di (0)(l - F(dib0)) - I (di,e)/e F(di, 2

and d i is the maximal design level belonging to X' less that x (6).

Theorem (5.2)

For the modified d.a.d, defined by (5.11) and (5.12) if ai+ = x (6)

for some i, then

Mi e 4 0 as n +

(ii) lim sup]Xn, x *(e) _ (b--a-)/K

Remarks.

Mi All the remarks following theorems (3.2) and (3.3) trivially carry

over to the modified d.a.d, procedure (5.11), (5.12).
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