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Adaptive Determination of Designs
in Attribute Life Testing (*)

by
Mohammad Kazim Khan

Virginia Polytechnic Institute & State University

1) Introduction

Consider a system of N components (N is fixed positive integer) working
independently and having identical cumulative distribution functions (c.d.f.)
of the time till failure F(t;68). F is a known function and 8 is an unknown
parameter, belonging to a parameter space 9. The components fail randomly
at unobservable times. The system is inspected after X units of time and
the number of failed components is observed. The replacement of the com-
ponents could be according to the following two policies:

(A) Only failed components are replaced at each inspection.

(B) All items in the system are replaced at each inspection

(frequent replacement policy, or block replacement policy).

The determination of the appropriate replacement policy depends upon the
type of system under consideration. For example, policy (B) is preferred
over policy (A) when it costs more to inspect and replace only failed com-
ponents as compared to changing the whole system. Moreover, sometimes it is
practically impossible to change only failed components without effecting
the whole system. For examples see Barlow and Proschan (1967). 1In quantal
responsc bioassay studies policy B is followed, where, after experimentation,

the whole batch of experimental units (mice, fish, etc.) is replaced by a

(*) Part of the Ph.D. dissertation written under the guidance of Professor

S. Zacks for the Department of Mathematics and Statistics, Case Western

Reserve University, Cleveland Ohio.
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new one. Finney (1978) provides an exhaustive reference list for such
bioassay designs.

Let J(xl),J(xz),...,J(xn),... denote the number of components failing
n-1 n

during the intervals (0,x1),(xl,xl,+x2)»---,(121 Xy s 151 xi)""
Intuitively, we would like to use the information (J(xl),...,J(xn),xl,...,xn)
to determine X+l such that J(xn+l) will provide as much information on 6

as possible. To define the best or optimal interinspection time at the
(n+1)st stage, we shall use the criterion of maximizing the conditional
Fisher information about 8 given (J(xl),...,J(xn),xl,...,xn). More specifi-
cally, let Fn denote the sigma algebra generated by (J(xl),...,J(xn),xl,
...,xn) and let I(e;xn+1[Fn) denote the conditional Fisher information of

9 at the (n+l) at stage given Fn' Generally, I(e;xn+1|Fn) depends on 9 and

on Fn. Hence, the optimal value of X is a function of the unknown para-

+1
meter 6 and of the past history of the system. Since 6 is unknown one has
to change the criterion of optimality in a suitable manner.
It is readily seen (Khan 1980) that, if I(F(xl;e)) and I(e;xl) represent
the Fisher information function of F(xl;e) and g given X respectively, then
L(F(x;36)) = N/{F(x;;6) (1-F(x;30))} 1.1
and
1(0ix)) = L(F(x,30)) (<% F(x,30))° (1.2)
| 1’ 30 1’ ’
One can also easily show (Khan 1980) that under replacement policy B, the
conditional Fisher Information function, given Fn-l’ is
) 2
< |F = . 9 .
1(0;x |F _ 1) = T(F(x_;0)) (55 F(x_;8)) (1.3)
In particular, for the negative exponential failure distribution, (1.3)

holds under both replacement policies.

The terms 'design levels', 'dose levels', 'interinspection times' will

be used interchangeably, depending upon the special application of the methods.
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2) Adaptive Designs

As discussed in the previous section, the tolerance or failure time
distribution yields for a design level x the probability of response F(x;8).
Let J(x) be the total number of responses at a design level x, among N
identical and independent units. Given x, J(x) has a binomial distribu-
tion, provided all units started to function together. That is,

J(x) ~ B(N, F(x,0)) .
From the point of view of maximizing the Fisher information function 8,
we may proceed to define the optimality criterion as follows.

Considering I(8,x) as a function of x, we would like to find the
design level x, such that

0
I(o5x) < I(85%,) (2.1)

for all xe X where X is some appropriate design space. If F(x,8) is a

3

36

such that (2.1) holds provided X is a

continuous function of x such that —— F(x,9) is also a continuous function l
of x, then there exists a unique x0
compact subset of R. Usually, X, will depend on 8 by some (knowm) functional
relation, say, g i.e.
g:0-+X
(2.2)
6 + g() = xo(e)

Hence, if 6 is unknown, x, cannot be determined. The following are some

0
typical examples of g encountered in application
1 >4 2
F(x,8) = -1 - , - ) L
. i
This model is known as the Probit model in bioassay studies. rryiz eV |
ITic T+ |
(ii) F(x,08) = {1 + exp(- (X-G))}-l : g(8) =0 . YRHWﬁ?VF:P«
viilial ot ten i i
This model is known as the Logit model in bioassay literature.|~~ -~ - - -—-
- . P _ !
(111)  F(x,0) = (e-D7! [e expl-e™®*} -1] , x>0 ; E
Avndinr 3k
g(8) = 1.9366/6. AT e




(iv) F(x,0) =1 - exp(-x/9) , x > 0 ; g(8) = 1.5936 4 .

To overcome this difficulty of the dependence of x. on the unknown para-

0

meter 0, we apply an adaptive techniques for estimating 6 by using a

sequence of design levels xl,x .,xn,... and corresponding to each design

DIk

level we define an estimate of g, en. The double sequence {xn,en;n > 1}

is called an adaptive design.

Definition (2.1)

An adaptive design {xn,en} is asymptotically optimal if for each

fixed 6 ¢ 0O,

(1) e, 838- 9 as n >+ o,

(ii) X a38- xo(e) as n >+ o
L. . a.s. .

(iii) I(en,xn) 3 1(e,x0(e)) .

Note that if I(8,x) is a continuous function of 6 and x then (iii) follows
from (i) and (ii).

A slightly relaxed (weaker) definition of optimality is as follows:

Definition (2.2)

An adaptive design {xn,en} is asymptotically e-optimal if for each

fixed ¢ > 0 and each fixed 6 ¢ O,

(i) 8 a_.»s.

n

0 as n >+ o

(ii) lim sup|x_ - x (8)| < ¢ a.s. :
n n 0

(111) lmsup|I(e sx ) - T(0,x (®))| < € a.s. ,
Note that gf the adaptive design {xn,en} is independent (functionally) of
e, then definitions (2.1) and (2.2) are equivalent.

Venter and Gastwirth (1964) defined the optimality criterion (in the

negative exponential case) to be that a sequence {xn en} is asymptotically
*

f optimal if

. . . -1 n .
liminf n I E{I(Oi,xi)}

. I(05xy(0)) , (2.3)

for each 06 ¢ 0 .
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Note that if an adaptive design is optimal in the sense of definition (2.1)
then by the Lebesque dominated convergence theorem and the regularity pro-
perty of the Césaro means (Powell and Shah (1972), Knopp (1956)) it is
asymptotically optimal in Venter's sense. However the converse may not
hold. Therefore, definition (2.1) is a stronger optimality criterion.

One of the shortcomings of definition (2.1) is that it does not take
into account the rate of convergence of the adaptive design. This factor
could be very important for experiments of moderate sample size. There-
fore, it is preferable to find some bound to the asymptotic variance of
the adaptive design.

3) Discrete Adaptive Designs

In this section we shall assume, unless otherwise stated, that

(i) X,0 are compact subsets of R .

(ii) F(x,0) is a differentiable function of 8 for each fixed x so that
the Fisher information function exists.

(iii) F(x,0) has a unique continuous inverse for each fixed x.

(iv) 73;.F(x’6) is a continuous function of x and 8.

v) g(0) is a continuous function of 6, where g is as defined in (2.4).

(vi) I(e,x) satisfies the Lipschitz condition.

Condition (i) will not have any effect in applications of the results.

Conditions (ii) - (vi) will be satisfied in almost all the models encountered

in bioassay and reliability studies. For example for the Probit and Logit
models the above conditions will be satisfied when 6 is the shift parameter.
Since 0 is a compact set, we can, without loss of generality, assume
that
0= fa,b] ; —» <ca<b < 4o, (3.1
Furthermore, since g is a continuous function, g(0) is also a compact

set. Therefore it is reasonable to define the design space




X = g() = [a",b"] (3.2)

where a” = inf g(8) 3.3)
0e0

and b’ = sup g(8) (3.4)

For any given € > 0, let K be an integer such that
K> (b” - a”)/e (3.5)
and define
d; =a” + K b - a®) 1, 1=0,...,K . (3.6)
All the experiments are performed at some of these design levels. Note that
di+1 - di <e 3 i=20,1,...,K1 (3.7
Define the set of discrete designs to be
X" ={d; ;1= 0,1,2,...,K} (3.8)
Unless otherwise stated we shall assume that g(6) ¢ X”. The first design
level Xi,K is a random variable taking values in X”. The maximum likelihood
estimate of F(di’e) given xi,K = di and N is

~1 =
N Jl(di) = Jl(di) .

We define the estimate of 6 as

_ -1 - b
el,K = [F (di , Jl(di))]a . (3.9
where i
b a, if X < a '
3 [xla =
' x, 1if a<x<b
X b, if X >b

Adaptively at the nth stage (n > 2) define the design level x“ K € X* such

that

(3.10)
1f g0, 1 ) ¢ ldg 5> dgyy) -

This implies that for all n > 2 .




‘xn,K - g(en—l,K)| < ¢ almost surely . (3.11)
Let Jn(di) denote the total number of responses among N units at the nth
stage given Xn K- di' Also let Fn be the sigma algebra generated by
(XI,K"'"Xn,K’JI""’Jn—l)’ then due to the block replacement policy, (and
the memory less property of the exponential distribution in policy A).
Jn(di)|Fn ~ BN, F(d,,8)) . (3.12)
(For more details see Khan (1980) and Zacks (1973).)

At the nth stage we define an estimate of 6 as

~ -1 5
Onk = iZo & My plF (di’JMi .

)] . (3.13)

Where Mi n is the total number of times in n stages the design level di was
9

repeated and JM denotes the average number of responses during these Mi a
y

i,n
repititions of di'
Hence, for each fixed € > 0, we define the discrete adaptive design
{Xn K en K} for {g(8),0}. Note that K depends on &, for simplicity of
* b

notation, however, we will write K instead of K(g).

The following lemma and a theorem of Anscombe are needed for further

developments.

Lemma (3.1)

If {Yn} is any sequence of random variables such that

a.s,
y &s°
n

6 as n > 4

and {Nr} is any sequence of non-negative integer valued random variables

such that
Nr 838 4o as r > 4o
a.s.
then, YN -+ 0 as r > 4w .
r

Proof: See M.K. Khan (1980) or R.A. Khan (1975).
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Theorem (3.1) (F.R. Anscombe)

Proof.

Lemma (3.2)

Proof.

Suppose that X1 X2,...,Xn,... are independent and identically distri-
buted random variables with mean zero and variance one. Let
§ =X +X, 4+ ...+X ;3 n~>1
n 1 2 n -

Furthermore, let v(t) denote a positive integer-valued random variable

for any t > 0 such that

t
Vﬁ—l-g c as t > 4w ,

where ¢ > 0 is a constant. Then for any x ¢ R,

Su(t) 1 & 2
1im P21 o xl = e(x) = f exp(-u~/2) du .
torto Y (t) /27 =

See Anscombe (1952). For a simpler proof of the theorem see Renyi (1957).

For the discrete adaptive design, let di be the maximal design level
smaller than g(g) and Mi n is the associated number of repetitions of di'

then

By negation, if the lemma is false, there exists a set A c (@ such that

PA) >0 (3.14)

and for each w ¢ A, as n » +=

Mi,n(w) -+ Mi(w) < o .

(Note that lim M (w) always exists, being a non-decreasing sequence of
n i,n

integers.) J

Since,

=

0 M, n(w) = n, for all n and for each w ¢ Q ,




as n » +o» , there exist some design levels, say, d. , d, ,...,d, , q > 1,
3y I Jq -
such that as n » 4w ,
MJ.‘L’n((.U)"""m ’ l=1,2,...,q ’
L

and for each j # j2 , L =1,2,...,94 , there exist constants Mj(m) sach

that as n + 4=
Mj,n(w) -+ Mj(w) < +w

By the strong law of large numbers
[J - F(d.,8)| %0 as n, - +w
nj 3 J
Therefore, for almost all w ¢ A, the subsequence
|3y

(w) - F(d,,8) > O
i n J
Jl’

as n->+4w , £ =1,2,...,q9

By the continuity of F-1 and the fact that ¢ ¢ [a,b],
-1 b
[F (dj s Iy )]a = YM- (w) > 0
L Jl,n Jg,n

as n >+~ , for each § =1,2,...,q

Now

~

-1
o < Iyn o M, |Y

j=0 J,n Mj,n

n !y, . 1Y -9
JR/’

G # j2 s L =1,2,...,q).

n,K-el

< S M, (b-a) + 3
2 3fo D j,n 072 g1

3

Therefore, for almost all w ¢ A, we have

len,K(w) - 8] < o(l) + o(1) lzl n! sz’n
=o(l) . (3.15)
By the definition of Xn,K we have
g(en-l,K) - (b-a)/K <X g < g(en_l’x)
This implies that for almost all w ¢ A
1imsup|Xn,K(w) - g(0)] < (b-a)/K . (3.16)

n




it follows that
xn,K(w) = di infinitely often, (3.17)
for almost all w ¢ A.
Hence, for almost all u ¢ A,
M, () » 4w as n > +w
i,n

This contradicts the definition (3.14) of the set A. Hence,

P(A) = 0

M, 57" 40 as n > 4o, (Q.E.D.)

Lemma (3.3)

For the discrete adaptive design
P 4o ) =
Q0L ) =0,

for all j # i, where di is the maximal design level less than g(8).

Furthermore,

Proof.
[f the Lemma is wrong, there exists a j # 1 and a set B ¢ 2 such
that
B = {w: M, n(w) > to}

3>

and
P(B) > 0 . (3.18)
Let w ¢ B, since by the negation hypothesis
M, () >+ ,
1.0
X (w) = d, infinitely often. (3.19)
n,K i
By lemma (3.2),
Mi,n(w) > 40 | as n > 4w

for almost all w ¢ 22 .




Therefore, without loss of generality,
Xn,K(w) = di infinitely often (3.20)
for almost all w ¢ B .
Since j # i, we have
Idi - dj] z_(b-a)/K .

Hence, for almost all w ¢ B, we have

1imsup|xn K(“’) - g(8)| > (b-a)/K if j # i+l
n b

and (3.21)

llmiup Xn,K(m) 3-d1+1 if § = i+l

By similar arguments as used in lemma (3.2), for almost all ¢ ¢ B, we

have
en’K(w) >0 as n -+
g(en’K(w)) +g(8) as n > 4= .
Since,
L
A g(en—l,K) - (b-a)/K 5_xn’K j_g(en_l,x), for all n,

for almost all w € B , we get

limsupIXn g (@ - g(0)| < (b-a)/K
n >

and (3.22)
lin:lsup Xox @ 8@ <d
which contradicts (3.21)
Hence, ]
P(B) = 0
i.e., i
P(Mj,n e d +°°) = O z
for all j #1i . :
(Q.E.D.)
3 - 11 ~
g
&

T e ———— o R — O gy o



Theorem (3.2)

e
|
g
|

The discrete adaptive design {Xn K en K} is asymptotically

’ ’

¢ - optimal for {g(6),0}.
; Proof.

Without loss of generality let g(8) ¢ (di , d. . ).

1+1
| By lemma (3.3) we have,

a.s.

n'_1 M, 371 as n > 4o
i,n
By the strong law of large numbers and lemma (3.1), we have

a.s.

————————

JM 5 F(di,e) as n >+,
i,n
. -1 b
By the continuity of [F (di’y)]a with respect to y and the fact that
o ¢ [a,b], we deduce that
1 Y, 5% 0as noe . (3.23)
i,n
Hence,
K~
]en—e] = | sfom My Y, - Y
j,n
Ko
< k. n M, Y -9
B J::O J,nl Mj,n I
< (b-a) S oalw, o+ |y - 8|
- J=O jsn Mi n
i# '
a.s.
= o(l) by (3.23) and lemma (3.3)
; which proves (i) of definition (2.2) .
A Since,

%, - 8@ < X (-8l ) O+ 186 ;) - 8]

| A

(b-a)/K + o(1) ,

by taking limsup, we get (ii) of definition (2.2) .
n

In fact, we have proved that with arbitrary large probability

xn,K = di (3.24)




'

for all, except

finitely many, values of n.

Furthermore, I(8,x) is a continuous function of (8,x), satisfying the

Lipschitz condition. Therefore, there exists a constant A < +v such

that

(b-a)
li?fupll(en’K,Xn,K) - I(e,g(0))| <A —F— . (3.25)

By taking K large enough we get (iii) of definition (2.2). (Q.E.D.)

Theorem (3.3)

For the discrete adaptive designs {Xn,K’ en’K}

/n(en g 8) ? N(0O,D) as n + +=

14

for each 8 ¢ (a,b) such that g(8) ¢ (di’di+l)

where D = N, F(d,,6)(1-F(d;,0)) F (di’e)le=F(di,e)

Proof.

3 2

Je

By the Central limit theorem

By lemma (3.3)

which implies,

Therefore
satisfying the

27.10) we have

— D
as ni + +o , where,
_ -1
D, = N, F(d,,8)(1 - F(d;,8)) .

and Anscombe's theorem (3.1),

- F(4,,0)) ¥ N(0,D))

i,n

as n - +w

- )
/n (JMi . - F(d,,0)) » N(0,D,)

as n -» +»
by the well known property of continuous function of a sequence

central limit theorem (see Billingsley (1979) pp. 320, problem ;

- 13 -




~1 - b
Yo ([F "(,, Iy )Ja - 0)
i,n
= /n (¥, - 9) L N(0,D) (3.26)
i,n
for each ¢ ¢ (a,b), as n » 4+ .
where
- g - 2
D =D, {—~F (di.z)l z = F(d;,0)}" .
Finally,
/ /o (3o )
n (on‘K—e) = /n ( o M Y, - 0)
o i,n K
=n M o /n (YM. . ~-8) + /n I n MJ,, (YM' -6)
1,r j#L J,n
By lemma (3.3)
n—1/2 M. ass. 0
J.n
for each j # i
Therefore,
-1 ’
/n (en,x—e) =n Mi,n /n(YM. - 9) + op(l)
i,n
which implies by (3.26)
/ D
¥n (On,K—e) > N(0,D)
as n > e (Q.E.D.)

Remarks.

(i) 1f di,n = f(Mi,n’n) where f is a measurable function of Mi,n , n

such that

0 < di,n <1 a.s. ¥i andvn

and define an estimate of @ by
. K
e = .Z d Y -
n,K i20 "i,n Mi,n




Then all of the above mentioned results for the discrete adaptive

design will hold when On is replaced by én under suitable con-

K K

ditions on f.
One such function is

M

K M
= i,n \ 1,n -1
di’n(r) = r ( L, r )

i£0 por>d

Such a weighting smoothes out the effect of the first guess, Xl K’
]
very fast.
(ii) The discrete adaptive design may be used to prove the asymptotic

optimality of certain continuous adaptive designs.

(iii) Asymptotic confidence band tfor 9 are

; 1/2 -1/2
L(8) on’K Zu/2 D n

and

U(e) = o + 2z /2 -1/2

n,K a/2 D

where D is given in theorem (3.3.2) and Za/ represents the (l-a/2)

2
inverse of the standard normal distribution function.
So far we have assumed that g(g) # d1 for { = 0,1,...,K. The following
theorem considers the case when g(8) = d for some 1.

i+l
Theorem (3.4)

For the discrete adaptive design if there exists an i such that for
some fixed K

g(8) =d then

i+l
a,s.

(1) ®n.K 35" 8 as no~> 4o ,

(i1) lmsup|X . - g(®)] < (b-a)/k ,
n ]

~1
nK Xn.K) - 1(0,5(8)| < AK (b-a) where A < +=

(111) 1limsup|I(®
n

is a constant

- 15 -




Proof .
By similar arguments as lemma(3.2) and lemma (3.3) one can easily
show that
P(M + 4w) = 0
]
for all J # i, 1 + 1.

Which implies that

-1 a.s.
n (Mi,n + M1+1’n) A | (3.27)

as n » tow

Bv similar arguments as theorem (3.2) part (i) follows that

0 335 0 as n o+ 4o . 3
n.K 2
Since, §
i
!
g(en_l'K) - (b-a)/K < XK §,g(9n_l’x), :
by taking limsup , we get (ii).
n
Since I(,x) satisfies the Lipschutz condition we get (iii) (Q.E.D.)

Remark.

Since g(8) = di+l' there may exist a 0 < p < 1 such that

P(On'K <0 i.0.) = p
Thus, Xn K = di infinitely often with probability p
*
and xn,K = di+1 infinitely often with probability 1-p.

Therefore the result on agymptotic normality may not hold.

g

Remark.

We can construct test of hypothesis concerning 6. Let H:8 = 90 vs.
appropriate alternative, the quantity

- 2 -1
NM - Fld.00)) {F(d .60 (1 - F(di’eo))} '

measures the discrepancy between the observed and the expected frequencies.

Let v be the total numbcer of design levels yielding (after pooling if

necessary) the quantity




il .w“_-_---iﬂ====IIIIIIIIIIIIIIIIIIIIII‘I

Ri,n = Ni Mi,n F(di'eo)(l - F(di,eo))

greater than 9, then under H, and given

Mi,n y 1 =0,1,2,...,K,

the statistics

2[]-l)§(NM S YRR - F(d e)}z
X WVE= 480 Wy e Rion M, 1°%0

has approximately a conditional chi-square distribution with v degrees of
freedom.

(4) Comparison of the d a d with Continuous Designs

There are many ways to define continuous adaptive designs {xn.en} such

that
a.,s.
¢] 58 8 as n > 4w )
n i
i
X a;s. g(8) as n +» 4= ]

a.s.

and I(en,xn) 7" 1(8,g(8)) .

For example, consider the following stochastic approximation method. For

the negative exponential model in which F(x;8) = l—e-x/e.

Let X, be any random variable taking values in (0,+w). After defining
X sXgreooX and observing the responses J(xl),J(xz),..,J(xn) we define the

(n+1)¢th design level x as

n+l

X =x + an{J(xn)/N - 1 + exp(-c)} (4.1)

n+l

where J(xn) is the total number of responses (failures) out of N items

: (components) and ¢ = 1.5936.
And define the estimate of 0 as
T 6n+l = ¢ X

Usually, the sequence an is taken tobe d/n, where d 18 a constant.

(4.2)
It is readily seen that (4.1) is a special caseof the Robbins-Monro

(1951) stochastic approximation method. Therefore, by the well known results

(Wetherill (1963), (1975)) on the properties of the Robbins~Monro procedure
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X 37 ¢H as n > 4w (4.3)
which implies that
0 35 8 as n o> 4o
2 -4 -1
Since, I(8,x) = Nx"98 (exp(x/90) -1) is a continuous function of (8,%) by

(4.2) and (4.3) we have

16 .x ) 3% 1(8,c8) as n » 4w
n’ ' n
Also
D 2
/n (Gn-O) » N(O,od) as n -+ 4+ (4.4)
where
o5 = a*(e® - /(N (2ds-1)) ;5 dp > 1/2

B = e’l exp(-c) .

One can easily check that oi is minimized if
a=g"
and
min o5 = (e*-DN ' (8/e)% . (4.5)
d
Another solution to this problem was given by Venter and Gastwirth (1964)

by proposing maximum likelihood (ML) and stochastic approximation (SA) methods.

Both ML and SA procedures of Venter are strongly consistent and asymptotically

normal, i.e., if en represents Venter's ML or SA estimate of 8 at the nth
stage, then
/n (8_-0) > N(O,V)

where (4.6)

vV = (exp(c)—l)(e/c)2

For the discrete adaptive design en , we have from theorem (3.2) that

,K

/n G ) g N(0,D) 4.7)

K

where

-1 4 .2
D exp(di/e) Ni 8 di
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where d1 % ¢t and N, 1s the number of components used for design

i
level di'
One can easily show that for the Venter's procedures, if the system is
composed of N components (instead of one component)

Var (/n 6,) > V/N . (4.8)

Hence, the asymptotic variance of these three procedures have the following

relationship
g 2 2
| Dy V=minogy <oy (4.9)
It can also be shown that min 02 is in fact the least possible variance

d

(Cramér—-Rao lower bound) of designs which are strongly consistent. There-
fore, in practical situations, especially for small sample sizes, the minimum
asymptotic variance criterion may not help to choose the best adaptive design
out of the two adaptive designs of Venter and the discrete adaptive design.
In terms of computational ease, note that for the discrete adaptive
design
1

)
— -1— -
F J ) = (D) 7T (x) + (D) T T L (x)

and
Myl ~ My o F I, =4

Bv using these two equations, we see that the discrete adaptive design and
the Venter's SA procedure have almost the same level of difficulty in computa-
tion. However, Venter's ML procedure is considerably more difficult to apply
in real situations.

Furthermore, for the application of the discrete adaptive designs we

need only finitely many levels which could be pre-defined and made ready before
the actual experimentation, and hence, will be more suitable in those situations

for which there is a natural discretization of the design space (e.g., experi-

ments could be performed at certain hours only, or at certain fixed levels




(which cannot be split into smaller fractions) of the process).
One should also note that none of these adaptive procedures yield un-
biased estimate of 6 for any fixed sample size.

5) Designs Having Minimal Cost

So far we have been dealing with maximization of the Fisher information
function of §. Now we shall discuss the construction of adaptive designs
yielding minimum value of a specified cost function. One cost function is
proposed as follows. Let us denote by Ti the (unobservable) failure time
of component i = 1,2,...,N. Let [0,x) be an interinspection interval. Then,
(x—Ti)+ denotes the length of time the ith component has been in state of

failure, where

+ 0 if x<0

(x) =

X if x>0 .
Accordingly, let h((x-Ti)+) denote the failure cost of the ith component.
h(+) should be non-negative perhaps monotonically increasing function such
that h(0) = 0. Let ¢y be the cost of replacing a failed component and <,
be the cost of inspecting a component, then under the assumption of additive
costs, the total cost associated with design level x is

N

B(x) = I, h((x—Ti)+) + ¢, J(x) + Ne,

where J(x) denotes the total number of failures during the interval (0,x).
Venter and Gastwirth (1964), Zacks and Fenske (1973) and Anbar (1976) con-
sidered this cost function for (1.1.1), where h(t) is a linear function of
t. Let C(x) denote the average cost per time unit associated with the design
level x, i.e.,
C(x) = B(x)/x .
The optimal design level, x*, is defined as the value of x for which

the expected average cost per time unit is minimized, i.e.,

- 20 ~




F* ——
*
E{C(x )} < E{C(x)} x i X,
provided such an x* exists.
Furthermore,
a, N +
E{C(x)}=x {5 E[h((x-T) )] + ¢ NF(x,0) + c,N} , (5.1
*

Since (5.1) depends on 8, the design level x yielding minimum value of

(5.1) depends on 8. Therefore, we consider adaptive designs which converge

to x*(e).

Approximate h( )by the first two terms of its Taylor series expansion,
i.e.,
+ + .,
h((x-T;) ) & h(0) + (x~-T,) h”(0) (5.2)
since
h(0) =0
+ . +
h((x-T;)" & h”(0) (x-T,)

Let c0 = h (0), which represents the cost of a unit of idle time of the

failed component i. For (5.3) one can easily show that (see Anbar (1976) in
]
4

the negative exponential model,
E(C()} = X Niey (x-6F(x,8)] + ¢ F(x,0) + c,} (5.4)

*
and the design level x minimizing (5.4) is the solution of

-1/x -1

(1+ 0 ) exp(-x/98) =1 - c2(c09 - cl) (5.5)

provided

2(c0 - cl)—1 <1 , (5.6)

0 <c
otherwise we can reduce the cost by not inspecting the system.
By (5.5) we get
* -1 -1
X =9 (1 - ¢,(eg ) ) (5.7)
where

(x) = (x+1) exp(~x) ; x>0

*
This is, x 1is a continuous function of 6 such that for © ¢ (a,b], x* is

bounded away from zero, where




‘i

-1
a>cg (Ll

*
Note that while F(x ,0) depends on 8, F(c6,8) = l-exp(-c) is independent

+ c2) . (5.8)

of 8. Due to this fact the usual Robbins-Monro type stochastic approxima-
tion methods (used for estimating y such that F(y,8) is a known constant)
cannot be applied.

To overcome this problem Venter and Gastwrith (1964) and Anbar (1976)
proposed equivalent adaptive designs for the negative exponential model. We
will not discuss these designs here. In the following we shall show that the
discrete adaptive design can easily be modified in such situations.

Let x*(e) be any (known) continuous function of the parameter 8 such

-

that there exist two constants a”, b” so that, for each 6 ¢ [a,b] = 0

*
0<a” <x (8) <b” < 4= (5.9
and

*
a’ inf x (0)
00

*
sup x (6) .
0e0

b~

*
(Note that x defined by (5.7) satisfies these conditions).

*
Let X = [a’,b’] and K be an integer.

Define
X*= d :d; =a" + K (b -a") i=0,1,...,K (5.10)
*
Let X x be a random variable taking values in X°, After defining
* % g * * defi
XZ,K""’xn-l,K an el,K""’en—l,K efine,
*
xn,K =a, if (5.11)
* d d
Oy, e [y s dyyy)
and
K
o =z oM (Fla,,s )P (5.12)
n,K i=0 i,n i’"M a ° '

i,n

For the sake of completeness we state, without proof, the following theorems.




3 The proofs follow by simple reworking of the arguments in the theorems

* *
(3.2) and (3.3) after replacing g(8) by x (08) and g(On K) by x (en K)'

Theorem (5.1)
For the modified discrete adaptive design defined by (3.5.11) and

*
(3.5.12), if d, #x (0), i =0,1,2,...,K, then

* a.s.
i 8 -+ s -+ 4o
(1) n,K as n s

* *
] (i1) limsup|X_ ., - x (o)] *°°
n n,K

(b’_a‘)/K s

(iii) vn (ef1 K- 0)2 N(O,D*) as n > 4

>

where

*
D

N R0 (- Fay,0) (2 Pl e /e = Fea 00}

*
and d1 is the maximal design level belonging to X* less that x (8).

Theorem (5.2)

*
For the modified d.a.d. defined by (5.11) and (5.12) if a4 =X (e)

for some i, then E
* a,s.
i 3
(1) %K 6 as n > 4o
. , * * a.s. ..
di) 1lim supIXn g~ ¥ (8) " (b"-a”)/K
*

Remarks.

(i) All the remarks following theorems (3.2) and (3.3) trivially carry

over to the modified d.a.d. procedure (5.11), (5.12).
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