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ABSTRACT

High efficiency, multicomponent signals for maximization of signal-

to-noise ratio are investigated. Maximization of signal-to-noise ratio

in colored noise requires control of volume distribution of the signal

ambiguity function and transmission of unity efficiency signals. Signal

efficiency is defined as the ratio of average power to the peak power.

It is concluded that the signals must be frequency hop pulse trains.

Quadratic congruences are chosen to place the components in time-frequency

space. The number theoretic properties of these signals provide bound on

the position and amplitude of the various peaks of the signal ambiguity

function. The trade-offs are shown between volume removal, number of

component signals, and the time-bandwidth product.



-2- October 28, 1980
ELT:LHS:cac

TABLE OF CONTENTS

Page No.

Abstract ...................................................... 1

I. Introduction ............................................ 3
4

II. Efficiency...............................................

(a) Single FM Signal ................................... 5

(b) Multiple FM Signals ................................ 6

III. Multicomponent-Disjoint Time Signals .................... 7

IV. Quadratic Congruence Placement .......................... 10

V. Bounds on the Ambiguity Function ........................ 15

VI. Conclusions and Further Work ............................ 16

VII. Acknowledgments ......................................... 17

References .................................................... 18

Appendix ...................................................... 19

LIST OF FIGURES

Figure No. Page No.

I Linear Congruential Code for N= 5 .............. 11

2 Quadratic Congruential Codes for N= i1 and
N n 13 .......................................... 12

3 Quadratic Congruential Codes for N f 19 (Prime),
N- 21 (Non-Prime) and N - 37 (Prime) ............ 14

=4__



-3- October 28, 1980
ELT:LHS:cac

I. INTRODUCTION

The problem we are addressing in this report is how we can design

signals which have small volume contributions near the origin and in a

strip parallel to the time axis of the ambiguity function. Because of

the difficulties of direct synthesis of signals from the signal ambiguity

function, the usual approach is to select an interesting set of realizable

waveforms and investigate the properties of the selected set of waveforms.

Here we investigate signals which are composed of several components of

the form

N

u(t) f uK(t). (1)

K= 1

The rationale is that if we can choose a set u K(t) whose crossambiguity

functions appear in regions of no interest, then this will have the effect

of maximizing the signal-to-interference ratio because we minimize the

overlap of total ambiguity volume and clutter scattering function.
(1 )

The scattering function of interest is a strip parallel to the time axis.

All practical transmitters operate under peak power constraints. In

order that we can transmit the maximum possible amount of energy in avail-

able transmission time, we must design signals which have the maximum

average power for fixed peak power. In the next section, we define the

concept of signal efficiency which will be used to rule out certain

classes of multicomponent signals from consideration. The problem here is

that although we gain clear regions in the ambiguity plane, we must reduce

average power (i.e., signal energy) and, hence, little improvement is

realized in the signal to interference ratio when one is partially noise

limited.

Finally, we will discuss a set of signals which have 100% efficiency

and which can be used to move the ambiguity volume out of the strip of

interest. These are the quadratic congruential codes. The quadratic

congruential codes are based on ideas that have been used in development
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of linear congruential codes. (2) We will use the number theoretic
(3)properties of congruences to establish bounds on the ambiguity function

in all regions of the time-frequency plane. The results show that as we

increase the available time-bandwidth product, we can move more ambiguity

volume outside the interference strip and, hence, increase the signal to

interference ratio. Bounds on the volume and height distributions of the

ambiguity function have been established by Price and Hofstetter. (4)

What we have developed in this paper are easily generatable, unity

efficiency codes that move the signal ambiguity-function volume away

from the strip parallel to the time axis of the ambiguity function (i.e.,

we eliminate the effects of sources of interference in frequency band

around desired frequency). This concept has application to clutter

rejection and spread spectrum communication.(
5'6 )

II. EFFICIENCY

The design of the energy efficient codes has been addressed by

Schroeder (7) and Ackroyd. (8,9 ) We define the signal efficiency as

Ef Pe/Pak x 100% (2)

for a signal

u(t) 0; 0<t <T.

Thus, we consider time limited signals. We have that

T

ave T u(t) I dt (3)

0

and

p M fu(t) 2 2 M . (4)Ppeak t
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We assume the signal, u(t), is energy normalized. Thus,

T

Eu Iu(t)I2dt = 1.

0

Hence,

P =l/T
ave

and

Ef = (1/TM ) 100% . (5)

We now consider two classes of signals.

(a) Single FM Signal

These are signals that have only one frequency component at one time.

They may have many frequency components but these components must appear

in different time slots. We may characterize these signals with a

rectangular envelope as

u~t) .i e(t)
u(t) , 0 < t < T. (6)

11

Thus, M i and the efficiency is/T

E ff 1 x 100 1 00%.
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(b) Multiple FM Signals

At first consideration, these signals appear to have many desirable

properties. They do not have the pedestal behavior that many of the

single FM signals possess, such as SQFM and VCHIRP. They have reduced

volume in the strip since each FM component can be designed so that

their crossambiguity functions appear outside the strip of interest.

However, they have a diminished efficiency. Consider

N

u(t) aKej K ( t )
, 0 < t <T. (7)

K=I

If we assume for simplicity that the signal is energy normalized, each

component of the signal has the same energy, and the frequency components

are far removed from one another then

E = NTa = 1u

and

a = /i - . (8)

Hence, the maximum value for the signal is at most

M - Na- VrN/T . (9)

This occurs when all cosines go through their peak value at the same

time. Thus, we have

I 1 I00E = X - 100 =1 % (10)
Ef TX N/M

so that we reduce efficiency inversely and the number of components we

have in the signal.
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Computer results have shown that for N = 2, with two CHIRP signals

spaced apart, we do indeed see a reduced volume in the strip by a factor,

of about 2. However, since we must reduce signal energy by about the

same factor, virtually no gain in SNR is achieved under noise limited

conditions. Thus, to prevent possible loss in SIR, the efficiency of

signal must be 100%.

III. MULTICOMPONENT-DISJOINT TIME SIGNALS

It is clear from the previous discussion that any multiple component

signal we consider must also have a 100% efficiency. Thus, we conclude

that the component must be disjoint in both time and frequency in order

to achieve this end.

In this section we shall show that, if the components are widely

spaced in time and frequency, we can move the volume away from the origin

and we will discuss how much of the volume is involved. In the next

section, we present a new class of signal which provides our greatest

hope of achieving maximum SIR.

We first consider two components and then generalize the results to

N signal. Exact placement of the components in time-frequency space will

be discussed in the next section.

For two components, we have

v(t) = u (t) + u2 (t). (11)

The ambiguity function is

Avv = Au1 + u2 , u1 + u2

- Au 1u + Aulu2 + Au2uI + Au2u 2 . (12)

11 12 21 2
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Taking the magnitude squared, we have

iAvv 1 2 = I(Au 1u + Au2u2) + (AUlU2 + Au2u1 )I 2

A - -- B
IAulu1 + Au2u2I IAu1u2 + Au2U1 2

+ 2Re{ (AUU1 + Au 2 u2 ) (AU U2 + Au2 U )*}• (13)

We discuss the various terms in Equation (13) labelled A, B and C.

First, we observe that since the signals are widely spaced, the

peaks in the cross term and the auto term appear in totally different

regions of the time-frequency plane. Hence, C is very small and can be

ignored. By the same argument, B can be shown to be

B =fi IAuU 12I + IAu2U112

Thus, the total is

2f 2 1Au2U112. (14)

IA vv 12 IAU1U1 + Au 2u 2 12 + IAulU2 12 +

Also, we know that

J Au1u2(T,) 12dTd = Eu1Eu2. (15)

-CO

Suppose for simplicity that each component has the same energy. Thus,

Eu = Eu 1/2 and Ev  1.
1 2
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Since the total volume is unity and the volume under each cross term in

(14) is 1/4, we have moved half of the volume away from the main lobe and

placed it at the peak of the two cross terms.

Consider now an N-component signal.

v(t) = uK(t) (16)

K= 1

Each component will have EuK = 1/N. By the same argument, we have that

IAvv u IAUU1 +... +AuNuNI 2

N

+ Auu , (17)

j,K=1
K#j
2

the second term of which has N -N terms.

Since the signals are assumed widely separated and if the cross

terms do not overlap, we have that the second term has volume.

2 1V = (N-_N)(-1) =1i-1I/N (8
sec N

and, hence, we have moved all but 1/N of the volume away from the origin.

The difficulty here is that if the volume is still in the strip or if

the cross terms overlap, we have lost much of the gain for our present

application. For example, the cross terms may themselves pile up consider-

able volume although away from the main lobe, yet in the strip. In the

next section, we will discuss a placement in T-W space which assures that

these problems do not occur. We shall use a guard-band in frequency to

account for the problem of zero-time cross terms.
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IV. QUADRATIC CONGRUENCE PLACEMENT

In this section, we discuss a method of placing the signal components

in time-frequency space which assures that we will have the maximum SIR

with 100% efficiency. The notion of efficiency requires that we consider

essentially pulse-train like signals, each of which possesses a different

spectral component.

The fundamental notion that we require is as follows: the degree to

which two signal components correlate with one another, if they occupy the

same time slot, is determined by their proximity in frequency. If they

occupy the same spectral location, they will maximally correlate. As

they separate, their correlation decreases inversely as the frequency

difference between them.

This concept was used to develop a set of codes which have mutually

small crosscorrelation properties for all shifts in time and frequency

axis.(2) These are the linear congruence codes. The difficulty here is

that we are not interested in a set of codes but only one placement.

Further, the autocorrelation properties of these codes were such that

significant side lobe could appear within the strip of interest (i.e.,

for zero Doppler).

We shall first require that a guard-band be placed between the top

of a low component and the bottom of the next component up. This assures

that for the present application we have minimum strip volume. We call

this guard-band G Hz. Each component will be separated by at least G Hz

from all others. Now we call the spectral centroid of each component

f so that the set {f K is what we must choose in order to define the

signal. The individual components themselves may be chosen to suit the

desired behavior at and around the main lobe; whereas, the set (f K }

determines how large and where are the side lobes of the signal. Since

most of the volume (see Equation 18) occurs in the side lobes, this is

the cricial choice.

We shall first demonstrate a poor choice of centroid set. Suppose

we take, as our set, a linearly increasing frequency fK = fo + KAf

001M 1
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K =0,...,N-l. This is shown in Figure 1 for N=5.

f4 3
f
34 0

f3f2

T

Figure 1. Linear Congruential Code for N = 5.

There are two problems with such a signal. First, if we shift the signal

one slot horizontally and one slot vertically, then 4 dots overlap one

another. Similarly, if we shift two slots in both directions, then 3 dots

overlap. This accounts for the ridge behavior that CHIRP signals possess

in their ambiguity functions. Secondly, if we shift horizontally one slot,

then all but one of the dots are the same distance apart. This accounts

for the poor side lobe structure that CHIRP signals have in their auto-

correlation function.

What we desire is a signal that has no more than one overlap for

every shift and a nonconstant difference for horizontal shifts. To this

end, we now consider a quadratic of the form.

YK+l = [YK + (K+I)]Mod(N),

0 < K < N-1 (19)

In what follows, we shall assume that N is the prime number. We also

assume that y0 is zero. However, the actual frequency will be fog the

lowest spectral centroid. Figures 2 and 3 show several examples of the

arrays generated for several values of N. Two of these are prime; whereas,

the third is not. Notice the symmetry with respect to the center for all

of these arrays. This may first appear to preclude the use of these sets.

However, we get around this by only using the first (or second) half of

the arrays.
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-- - - N=N11 -- -

N 13

Figure 2. Quadratic Congruential Codes for N 11 and N P 13.
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We shall now present the properties of the quadratic congruences

defined in Equation (19), leaving the proofs for the Appendix. We will

then apply these results to establish the results for the ambiguity function.

prop. 1) y(K) = K((+l)] Mod(N) 0 < K < N-1

prop. 2) Symmetry: for any N, odd

y(N-K-1) = [y(K)] Mod(N) 0 < K < N-1

prop. 3) Horizontal Shift:

y(K + m) f[y(K)+Km+y(m)] Mod(N) 0 < K,m < N-I

prop. 4) Difference with Horizontal and Vertical Shift:

Z(K,m,k) y(K+m)-y(K)+ 9

- [y(m)+Km+]Mod(N) 0 < K,m,t < N-1

Property one establishes a closed form for generating the arrays

without the recursive formula. It shows why we call these quadratic

congruences. The formula is quadratic in K. Property two is the symmetry

property we observed previously. Property four is the main result. We

observe that for any (m,k) with m 0 0, the difference, 2, is a linear

congruence. Thus, for N prime the differences must go through a complete

residue sequence, Mod N. Thus, we know the minimum distance (in frequency)

for the entire time-frequency plane. For the m - 0 case, all the shifts

are Z units apart. This is another reason for the guard-band. The

property for horizontal shifts of the CHIRP-like signals switches axes

and now is valid for strict Doppler shifts with no time shift.

Since the differences go through a complete residue class, there can

be only one intersection of the two frequency patterns. If we were

extending the patterns (Mod N), there would be exactly one crossing.

Note that for horizontal shifts this always occurs on the opposite side

from the center (see Figures 2 and 3), as long as N is a prime number.
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N=37

N 19 N 21

Figure 3. Quadratic Congruential Codes for N -19 (Prime),
N -21 (Non-Prime) and N -37 (Prime).
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V. BOUNDS ON THE AMBIGUITY FUNCTION

We have established the number theoretic properties for the set of

frequency differences. In light of these results and the results for

linear congruences, we can place upper bounds on the height of the

ambiguity function for the quadratic congruence signals.

Let us assume that the component signals are themselves cosines at

the frequencies {f K} and that the total bandwidth is F (-NG). The actual

components may be SQFM, CHIRPS or anything else for that matter. The

choice of signals only affects the main lobe behavior and the shape of

the non main lobes, but not their position and amplitude.

Under this assumption, we observe that two frequencies, f and f ,m n
which overlap for T1 seconds have maximum crosscorrelation

N/7Tlm-nF, m#n

C - (20)
mn {

l/N, m -n

We are also assuming that each element of the set {f K is one of the

frequencies

{f0 + KG ; 0< K <N-i}.

We are simply assuming that the components are the same distance apart.

Property four shows that for the region away from the zero time slot,

the frequency difference goes through a complete residue class. Thus, we

may bound the height of the ambiguity function with A1 where

- I + Zn [N1(21)

This result is proven in the linear congruence coding paper. (2) In the

zero time slot, where the frequency differences are all the same, we
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bound the ambiguity function with A2 where

A2 = 2N 
2  

(22)

Note that A2 is somewhat higher than A1 since an N2 appears in the

numerator. The 1/N term in A comes from the fact that there will be
1

exactly one overlap (Mod N); for the nonperiodic case there will be

at most one overlap. In the light of property two, if we were to only

use the first half of the frequencies, we can drop this term and bound

the zero Doppler strip which includes the autocorrelation function by

Al(1/2) - LN[ 1 + in -N- 1]] (23)1 ' WrFT L 2 J

This result is valid away from the main lobe (m #0).

Now we can see the trade-offs between removed volume, number of slots,

and time-bandwidth product. Thus, as we push more volume outside this

strip by increasing N, then we must increase FT in order to lower the

amplitude of the ambiguity function. Thus, we have established the

trade-offs between strip volume and peak amplitudes. The peaks away from

the main lobe and off the zero Doppler and zero-time strips are governed

by A1 which has an additional I/N term in the bound. Thus, these peaks

will be slightly higher (depending upon N). Finally, the worst case occurs

in the zero time slot (where the removed volume is going), indicating the
2

amplitude is increasing as 
N

VI. CONCLUSIONS AND FURTHER WORK

In this report, we have established the concept of efficiency and

shown that multicomponent signals can be used in clutter limited

conditions only if the components occur in disjoint time slots. We have

defined a new class of signals which provides a mechanism for removing

volume from a strip about the zero Doppler axis and also placing bounds

on the actual heights of the ambiguity function. The trade-offs between

volume removed and ambiguity amplitude have been established for this

class as well.
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What remains is to choose the size of the guard-band and the various

component signals. The guard-band is chosen by the strip size we wish to

clear. This is determined by clutter data. The component signals are

chosen to improve main lobe behavior of the ambiguity function of the

multicomponent signal.

We are presently investigating the role of the component signals and

the shapes of the ambiguity functions for various component signal choices.
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APPENDIX

Quadratic Congruences

(1) We define y(K) by

y(K+ 1) - [y(K) +(K+ 1)IMod N

Y(O)O= , 0< K <N 1, N prime

*use as "is congruent to, Mod N"

(2) T. y(K) = K+1]is a solution to (1)

P. Consider y(K +1) [ (K+ 1) (K+ 2)

+ 141 Q.E.D.

(3) T. For N odd y(K) y(N- 1-K) (symmetry about center point)

P. y(N-1-K) = [(N-1 K)(N_-I-K+ 1)

[ (N -1- K) (N -K)]

exanin N(N -1) (2N +1) 2~

y(N -I- K) n y(K)
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(4) Translation in K

T. y (K +m) a y (K) +Km +y (m)

P. y(K+M) (K+m)(K+m+ 1) [K(K+1+m) +m(K+m~+ 1)]

MFK(K+l1) +E+m(m +)+

L2 + m+ 2 j QED

(5) Corr. Add I.-y(K) to both sides

Z(K,n,t) =(K +m) + Y, -y(K) ay (m) + Km + .

Thus, for fixed translations (m,2,), mO0 Z(K,m,2t) is a

linear congruence in K. Hence, Z goes through a complete

residue sequence as 0 < K < N-l1. For m =0, Z(K,Z) X~.
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