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EVALUATION

The objective of this effort is to develop and validate a simlation

i AR b e T

of the space-based radar (SBR) phased array lens system. This report
contains the simulation theory and implementation methods used to set up
the similation. The key accomplishment of this effort has been to
establish a new method to perform an analysis, to the accuracy desired,
of a large SBER phased array lens system that includes all electrical
factors that influence the RF far field pattern. Also, the key parts of
the similation have been validated.

This effort is part of RADC TPO-3A.

@U’J’lé(/ ( . /_J)iﬂ y‘\,«(/}

RUSSELL C. STEENROD, Capt USAF
Project Engineer
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SECTION 1

INTRODUCTION

The objective of this contract is to develop and validate a computer program
for simulation of space-based radar (SBR) phased array lenses. This simulator will
be used to analyze the performance of candidate lenses. The parameters of primary

concern are radiation power gain and pattern characteristics,

A typical SBR is shown in Figure 1-1. The transmitter provides the space feed
that illuminates the lens during radar transmit. The space feed may be in the form
of several independently controlled beams that provide lens radiation pattern shap-
ing, adaptive nulling, and time delayed lens sector illumination. (The time delayed
compensation is required because of significantly different transmitter-to-lens path
lengths to different points on the lens). Beam steering and, possibly, amplifica-

tion are performed by the lens.

A lens comprising two arrays of metallic radiators sandwiching a ground screen
currently is being modeled in the simulator. A typical lens of this type is shown
in Figure 1-2; for simplicity, dipole radiating elements are indicated. The simula-
tor also will be capable of analyzing other element types; e.g., folded dipole,
bowtie, turnstile, and parasitic (Figure 1-3). Focusing and scanning of the lens--
transmitted main beam is accomplished by electronic modules interconnectinn the
radiating elements between the illuminated and nonilluminated arrays (Figure 1-4).

These modules also may provide power amplification.

An accurate analysis of a large space-based phascd array lens, comprising hun-
dreds of thousands of elements, is a formidable problem. Infinite periodic array
theory alone is not adequate when, for example, edge effects must be considered.

A space-based lens is expected to have stringent constructural and deployment con-
straints that will result in, at best, a piecewise periodic lattice; e.g., a lens
composed of wedpge-shaped gores may have nonperiodic spacings in the vicinity of

gore interfaces. Another source of nonperiodicity may be inherent in the electronic
modules. They may not be identical in the event of selected power failures.

(Simple progressive phasing between module settings, however, can be treated with

a variation of "standard™ infinite array theory as described in this report.)

The larse number of c¢lements in the lens arrays and the expected nominal peri-
odicity within sections of each array sugpgests obtaininnm a first approximation of

¢lement currents from an infinite array analysis of each section since, within a

1-1
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section, periodic elements and nearly uniform module amplitude settings may be

assumed. It is expected that, for limited scan angles, the currents on many ele-
ments within a section will assume these first-order solutions. The phased array

simulator, therefore, makes extensive use of infinite array theory.

A successive approximation method is employed whereby infinite array analysis
provides a first approximation of array currents and patterns. Higher approxima-
tions then are obtained, with relative ease, by methods that draw upon these {irst
approximation currents. The higher approximations provide corrections to the cur-
rents on elcments in the vicinity of discontinuities in module amplitude settings
or periodicities; e.g., lens edges and section interfaces. Scattering from nearby
structures, such as supports and hinges, also may be accounted for in the higher

approximations.

The first approximation patterns, although involving large numbers of elcments,
are computed from closed form expressions. Since the number of elements with cur-
rents perturbed from their infinite array values is expected to be relatively small,

"correction patterns' may be computed by direct summation of

higher approximation
the field from each ele¢ment. The superposition of the first approximation and cor-
rection patterns results in the overall pattern. This approach takes maximum advan-
tage of the nominal periodicities and largeness of the arrays. 1t is as computa-
tionally manageable in the radar receive mode as in the radar transmit mode without
resorting to reciprocity. This is important since the modules may well be nonrecip-
rocal. This approach also may avoid the need for a fast Fourier transform (FFT)

for pattern computation. An FFT is not practical if, for cxample, fine angular

pattern resolution in the vicinity of a null is required.

An infinite array analysis usually assumes plane wave excitation. During radar
transmit, the illuminating field is expected to differ smoothly from a plane wave
across the face of the lens.  This difference is taken into account by expanding
the beamformer field in plane waves and analyzing the lens separately for each

plane wave component.

The first approximation infinite array method employed here is an extension of
a moment method, plane wave expansion technique recently developed by Munk and
Burrell,! It is applicable to lens arrays composed of arbitrarily-shaped wire radi-
ating elements. The elements may be inclined with respect to the array plane. Feed
line scattering, amplitude and phase adjust modules between the arrays, and an

imperfect groundscreen also are accounted for. In particular, this technique

1-3
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permits the modules to be progressively phased, although the module-to-module ampli-
tude adjustment is assumed uniform throughout. The plane wave expansion technique
facilitates computing the array-to-array coupling through the imperfect ground screen
and suggests straightforward extensions, not discussed here, applicable to dielec-

tric support sheets (e.g., Kevlar and Kapton) on which the radiators may be mounted.

The infinite array lens analysis facilitates computation by providing the first
approximation solution to a perturbation problem; it also provides clues to the per-~
formance of several important finite (but large) lemns characteristics. For example,
the array active impedance variation with module phase setting, an important para-
meter for module designers, can be assessed directly. The effect of imperfect
ground screen ''feedback" from the target side to the feed side of the lens also can

be observed.

A general discussion of the simulator and its current design status is contained
in Section 2. A detailed theoretical discussion follows in Section 3. The program-

ming and data flow are discussed in Section 4. Preliminary results and validation

are given in Section 5.
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SECTION 2

DISCUSSION

2.1 SIMULATOR CAPABILITIES

The simulator for analyzing candidate SBR phased array lenses must predict the
RF impact of the lens on the following SBR gain performance factors:

1. Beam scan coverage,

2 Main beam and sidelobe beam widths, positions, and levels,

. Null depths and positions,

3

4. Effective radiated power,

5 Available received power, and
6

. Bandwidth
These performance factors must be evaluated as a function of several lens parameters:
1. Structure fabrication and deployment variatiomns

a. Array lattice tolerance
b. TElement orientations and locations relative to ground screen

2. Space environment effects (heating, etc.); e.g., lens warping
3. Module phasc and amplitude variations ’

L a. Production tolerances
;, b. Failures
The sumulator, besi:des analyzing large periodic planar arrays, thus must account for

| the effects of lens warping, discontinuous periodicities, and edge elements.

N The ground screen for a candidate lens is expected to be of coarsec mesh construc-
tion to minimize overall weight and temperature gradient effects. For an active lens,
where the modules impart gain, the isolation between illuminated and nonilluminated :
arrays may not sufficiently suppress the "feedback" penetration coupling between

these arrays. This interarray radiation coupling must be included in simulations.

The array lattices may be triangular or rectangular; thus, sinulations must 3
apply to general rectilinear arrays. The array elements may be turnstiles, dipoles,
folded dipoles, etc. They may have parts inclined with respact to the array plane;
e.g., V-type dipoles. The effects of scattering from the feed lines and unbalanced

node feed line radiation also must be considered.

rately modeling SBR lenses. This capability of the simulator leads naturally to its

"' A phased array lens simulator, therefore, must consider many effects in accu-
|

-
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use as a lens design tool as well as a means for evaluating designs. The interac-
tion between the simulator and the designing membranes (radiating elements and
ground screen), modules, and space feeds is shown in Fisure 2-1. The membrane
designers can decide on array lattice size and type (rectangular, equilateral
triangular, etc), ground screen transmission characteristics, and radiating ele-
ment physical constraints. The simulator then can be used to "optimize'" the choice
of a radiating element type, shape, and size within these constraints such that
active impedance variation with scan is minimized. The latter is important in

module design.
2.2 CURRENT STATUS, FUTURE IMPROVEMENTS, AND EXTENSIONS

The status of key components of the phased array lens simulator is shown in

Table 2-1.

The theory category is subdivided into 'general” and "detailed.” A detailed
description includes all equations down to the lowest level. A completed "code"
refers to flow charts as well as a computer program. A satisfactory 'debug" indi-
cates the code is implemented and providing reasonable results. A successful
'validation" connotes agreement with other methods in solving special problems.
These other methods could be theoretical, computational, or experimental. Validated
results are presented in Section 5. A detailed plan for validating all aspects of

the simulator is being prepared and will be published in a separate document.

The only component of the simulator that is not expected to be completed under
the current contract is "'support structure scattering.” A major effrot is required
here to implement a geometrical theory of diffraction within the higher approxima-
tion moment method code. Another extension to the simulator, not currently envi-
sioned, that fits well within the general framework of a plane wave expansion moment
method, is the capability of including the effects of dielectric support sheets such
as Kevlar or Fapton. A number of improvements for increasing the computational effi-
ciency and data handling also can be investigated in subsequent efforts; e.g.,
optimizing the choice of current expansion functions in the infinite array moment

method technique. Other methods for improving efficiency will be implemented if

time permits (Section 3.2.3).




"

TABLE 2-1

PHASED ARRAY LENS SIMULATOR DESIGN/IMPLEMENTATION STATUS

Theory Code Debug Validation Section
General | Detail
Data Managenent X X 4
First Approximation 3.2, 3.4
Impedance Matrix
Planar Elcments X X X X X 3.2.2, 3.2.4
Feed Line Scattering X X 3.2.3
Fecdback Coupling X X X 3.2.1, 3.2.6
N ‘ Ceheralized Module X X 3.2.6
i! Space Feed X 3.2.5
'j _Radiation Pattern X X %Lé__*_J
I Higher Approximations 3.3
’ Currcnts X 3.3.1
Radiation Pattern X X 3.4
Support S%ructnre X 3.3.2
Scattering
. . e — e ——— —
'/
{
{
|
!
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SECTION 3

THEORY

This section describes the theoretical foundation for the phased array lens
simulator. Although the theory is directly applicable to active lenses composed of
arrays of metallic radiators (dipoles, turnstiles, etc.), it can, with straightforward
modification, be extended to apply to other lens types such as those composed of
microstrip arrays. The theoretical development is not complete. Most missing de-
tails, however, are relatively minor and are expected to be completed and implemen-

ted by the end of the current effort.

A theoretical overview is presented in Section 3.1. This is followed (Section
3.2) by a detailed discussion of the application and generalization of infinite
array theory and the moment method in arriving at a first approximation to the array
elemnent currents. The general theory is described in Sections 3.2.1 and 3.2.2 as
it applies to lenses restricted to rectangular array lattices, single-port array
elements, planar radiating elements (e.g., no feedline scattering), and a special-
ized module model. The theoretical extensions that remove these restrictions, model-
ing of the space feed illuminating the lens, and techniques for increasing computa-

tional efficiency are discussed in Sections 3.2.3 through 3.2.8.

The theory for obtaining corrections to the infinite array currents is discussed
in Section 3.3. A higher approximation method is developed that employs the infi-
nite array currents as the in:{ial solution in an iterative procedure that accounts

for array edges, module failures, support structure scattering, etc.

The theory for efficiently computing the fields radiated by the array element

currents is contained in Section 3.4.

3.1 OVERVIEW i

§u . :
Jut temporal variation assumed)

The lens array simulator solves a steady state (e
problem by a successive approximation method. This method is particularly appli-
cable to lenses composed of many radiatinn elements (perhaps hundreds of thousands)
in each of two parallel arrays. The first approximotion is based on infinite array
theory. This provides approximations to such parameters as radiating element cur-
rents, active impedances, coupling between arrays, and radiation patterns (by trun-
cating the infinite array after the currents are found). The resulting radiating

element currents are used in obtaining successively better approximations of these

3-1
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parameters. In this manner, the nominally periodic nature of each of several sec-
tions of a lens can be used to advantage in simplifying the overall analysis. The
impact of such effects as "'feedback" radiation coupling between arrays and active
impedance variation with scan can be assessed with infinite array theory alone since
most of the elements are expected to appear as if they reside in infinite arrays.
The first approximation thus is of use in lens design; e.g., for optimizing radiat-
ing element type (dipole, folded dipole, etc.) and ground screen design within such

constraints as module load impedance limitations, overall lens weight, and cost.

3.1.1 First Approximation

Infinite array theory is applicable to large numbers of identical elements
arranged periodically. A candidate lens is expected to be largely periodic; however,
due primarily to manufacturing and deployment constaints, this periodicity is ex-
pected to differ between sections of the lens. 1In the first approximation method,
since most sections will be large, infinite array theory is applied separately over

each section -- called a "cell." The first approximation current solutions usually

are highly accurate within each cell; they may be less accurate near the cell bounda-

ries. Higher approximations for the currents on these elements will provide corre-

sponding corrections to the radiated field (Section 3.1.2). Other anomolies in peri-
odicity within a cell due, for example, to element module failures, also will be re-
solved by higher approximations. The number of elements requiring analysis beyond

the first approximation is expected to be relatively few (perhaps hundreds rather ‘]

than hundreds of thousands). ,

Each cell is defined by a periodic lattice, progressive module phasing, uni-
form module gains, uniform input and output impedances, and identical element orien-
tations. Subdivision into cells is not determired solely by periodicity, but also
by relative uniformity of module characteristics and settings, as well as other "con-

siderations discussed below.

The illumination across a cell during radar transmit will not be that of a
uniform plane wave. Application of infinite array theory, therefore, requires plane
wave decomposition of the illuminating incident field. Each plane wave excitation

is analyzed and the resulting currents and patterns superimposed. Since a component

plane wave excitation may have a phase distribution across the lens that differs i
from the progressive phase setting of the modules, and since the arrays may-signifi-
cantly couple via RF penetration through the ground screen as well as through the

modules, ''standard" infinite array theory alone is not adequate. (The reference to
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standard infinite array theory here refers to an analysis of a periodic array of
identical structures (elements) —-- either plane wave or lumped circuit source ex-
cited -- where the latter are progressively phased along the array plane. Array
elements generally are not identical for the lenses under consideration due to pro-
gressively phased modules.) The simulator therefore includes an extension to stand-
ard infinite array theory whereby 'feedback' modes are identified. Fach feedback
mode assumes element currents related by (3-1) and (3-2); for simplicity, rectangular
lattices are assuned.

—jkmd’(sx+uux) ~-jknd (s +uzx )
* e yoy oy (3-1)

a a
Imn(u) B I()O(u) €

—kadx[sx+(u+1)ux] —jkndy[sy+(u+1)uy]

b b e (3-2)

Tn() = Tooq) ©

Equation (3-1) applies for the illuminated array (array a); (3-2) applies for the
nonilluminated array (array b)
where (see Figures 1-2 and 1-4)

m and n are the array element identifying integers (positive and negative
vhere m = n = 0 refers to the “reference" element)

dx and dy are the x and y interelement spacings

o and « are the module x and y directed progressive phase "directional
cosine” components

Sy and Sy are the incident plane wave x and y directional cosines

u is the feedback mode integer (u = 0, 1, 2, ...)

k is the propagation constant

The total currents, I;n and Isn’ are obtained by superimposing all feedback mode

currents; i.e.,

a _ a

Imn - ; Imn (u) (3-3)
b b .

Ton = z:‘ Imn(u) (3-4)

The feedback mode reference element currents can be determined iteratively,
. - . . tt
under certain conditions, by solving first for the zero ' mode currents (u = 0) and

so forth (Scction 3.2.1). Each higher order mode current is dependent on previous

mode computations, but each involves essentially standard infinite array theory.




That (3-1) is a reasonable representation can be argued as follows. The
array a current phasing is influenced by the phasing of the incident field. The
modules Impart an additional phase prior to inducing array b currents. The result-
ing array b currents radiate through the ground screen and induce an "additional"
component of array a currents. The latter, phased by the modules, induces a corres-

ponding component of array b currents and the process continues.

The standard infinite array analysis employed is based on a plane wave expan-
sion formulation for the field from an infinite array of current dipoles developed
by Munk and Burrell.® This formulation is incorporated into a "pulse expansion
function, puise weighting function' moment method solution for the element currents.
Radiating elements that can be well represented as identical arbitrary collections
of bent wires of differing radii thus can be analyzed by the simulator. The major
portion of the computation time is used in determining a corresponding generalized
impedance matrix [Z].  This matrix relates pulse expansion functions in typical mo-
ment method fashion' with the understanding that each expansion function now is a
progressively phased infinite array of current 'pulses.”" It is necessary to solve
for the reference element current only since the unifo.m amplitude, progressive
phasing of the element excitation implies the same relationship for the element

currents. The matrix cquation that must be solved is
(21 T =V (3-5)

where the column vectors I aﬁd v correspond to the reference element current distri-
bution and excitation, respectively. The number of simultaneous equations expressed
by (3-5) is limited to the number of pulses on a single element; thus, "matrix
solution" consumes little computational time. By far the most computational time

is used in computing the matrix elements of [Z]. Each matrix element computation
involves a truncated doubly-infinite series which is slowly convergent; also, [Z] is
not completely independent of excitation. The matrix must be recomputed, for exam-

ple, for a change in scan angle.

First approximation radiation patterns are computed by superimposing the ra-
diation from each feedback mode current to obtain "total™ cell patterns and then
superimposing these cell patterns. Since cach cellular feedback mode current is a
uniform amplitude, progressively phased distribution -- as indicated by (3-2) --
each corresponding radiation pattern is computed ecasily by pattern multiplication.
The simulator employs a closed-form expression for the array factor which applies to

a general rectilinear lattice and corresponding cell boundary.
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Lens warping is modeled in the simulator by tilting cells to best fit the k
curvature. Since each cell must be planar, the accuracy with which a warp is to be i
modeled will impact on the choice of cell size. CGreater accuracy usually will re-

sult from larger numbers of smaller cells.

3.1.2 Higher Approximations

First approximation currents on array eclements near cell boundaries and dis-
continuous periodicities (e.g., module failure) within a cell are likely to be in

error. Corrections are provided by higher approximations; thus, the higher approxi-

L i, Al A ¥ ok

mation method is applied only in the neighborhood of cell boundaries and other dis-
continuous periodicities. iThe higher approximation method can include the effects

of scattering from support booms and struts, ground screen edges and creases, etc.,

in a straightforward manner.

The higher approximation method makes use of first approximation feedback

fields penetrating the ground Screen and the fields radiated by first approximation

ol oa

currents on neighboring elements. These {ields, in addition to the illuminating in-
cident field, form a known excitation from which the sccond approximation curre.t on

2 2
an array a element, I(")a I(“)b

, and the current on its array b counterpart, , are
computed. This computation employs a "free space'" thin wire moment method in a
straight forwvard manner. Since the radiation coupling through the ground screen is
approximated by the first approximation array b to array a feedback fields, the only
coupling between the arrays that must be solved "simultaneously’ is the module feed
line coupling. The latter is incorporated easily in the moment method. The number
of neighboring elements, L, that must be considered in this computation is determined
by observing the convergence of 1(2)a and I(z)b as L is increased. This number is
not expected to be large (L “ 40) for reasonable interelement spacings (> A/2) and

most scan angles. The order of the moment method matrix equation that must be

solved -- one for each array (a and b) -- is limited to the number of expansion

functions on a single radiating element.

The third and higher approximations are obtained in a similar manner. Each

approximation uses the previous approximations’s currents to obtain the contribution
to the exciting fields from neighboring elements. The feedback field remains the
same as that computed in the first approximation except for a scalar multiplicative

adjustment. The latter is determined as the ratio of most recent port current approx-

imation to first port current approx.mation for the array b element under considera-

tion.
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g The corresponding higher approximation radiated field correcticns are ob-
tained by summing the fields radiated by the relatively few array elements that

! undergo higher approximation current corrections.
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3.2 FIRST APPROXIMATION CUFRENTS

A combined infinite array/moment method technique is applied in obtaining a
first approximation of the array element currents in a cell. (A cell is defined in
Section 3.1.1 as a section of a lens.) This method is an extension of that developed
by Munk and Burrell.! Tt is applicable to a large lens section (cell) composed of
identical arbitrarily bent wire radiating elements in each of two parallel arrays;
each array may have different elements. It also accounts for amplitude and phase
adjust modules interconnecting the arrays and an imperfect ground screen between the
arrays. In particular, the technique permits the modules to be progressively phased

although the module amplitude adjustments must be uniform throughout the cell.

3.2.1 Port Representation and Solution

A lens formed by two infinite dipole arrays, a and b, in periodic lattices on
either side of a finitely conducting infinite ground screen is shown in Figure 1-2.
The two arrays and ground screen are parallel. A coordinate system with x and y
axes located on the screen also is shown. An exciting plane wave, ﬁex’ is assumed
arriving from the negative z side (behind the screen) and directly incident on array
a (Figure 1-4); amplitude and phase adjust modules connect array a to array b. Array
a faces the radar transmitter during radar transmit; array a faces the target during
receive. Array a thus is always on the illuminated side and array b is always on

the nonilluminated side.

The following analysis of this lens is not restricted to dipole array elements.
Each element can be a collection of thin bent wires; e.g., folded dipole or dipole
with parasitic scatterers. For simplicity, all wires comprising an element are as-
sumed to lie in their respective array plane. This restriction is removed in Sec-
tion 3.2.3, where elements inclined with respect to the array plane and feed line

scattering cre considered.

Array a elements may differ from array b elements; however, each element within
an array is assumed identical and lying in a rectangular lattice. A generalization

to arbitrary rectilinear (triangular, etc.) lattices is described in Section 3.2.4.

The analysis is structured around a port representation. Each pair of termi-
nals entering an array element is assumed to be a port; thus, unbalanced mode cur-
rents at each terminal pair are neglected. The module-to radiator feed lines are
considered part of the modules. Multiports and unbalanced mode currents are consid-

ered in Section 3.2.7.
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The port voltages and currents* are shown in Figure 1-4. The superscript
(a or b) indicates the array and the subscript the element location; e.g., mn denotes
the mth column from the yz plane and nth row from the xz plane. The m = 0 and n = 0

elements lie on the z axis and are referred to as the reference elements.

Array a and array b port currents are determined by requiring that they satis-

fy the port boundary conditions

vl = veT 4+ v+ v (3-6)
mn mn mn mn

v o= PP (3-7)
mn mn

where
a b a b . th . .
v and V are related to 1 and I via the mn module (including feed
mn mn mn mn
lines) two-port parameters
aa |, th . rex
an is the array a mn  element port voltage with ©° = 0, the ground screen
' . : ; a
assumed perfectly conducting, and the array a ports excited with the Imn
as ideal current sources (Figure 3-1)
bb | aa
v is the array b counterpart to V
mn mn
ab th . Fex
v is the array a mn element port voltage with E*~ = 0, all array a ports
m o b . -
open-circuited, and the Imn as ideal current sources exciting the array b
ports (Figure 3-2)
th .
V;: is the array a mn element port voltage with all array a ports open-

circuited and the ground plane assumed perfectly conducting (Figure 3-3)

In arriving at (3-6) and (3-7), the finite conductivity of the ground screen
is considered significant with regard to feedback from array b to array a. Severe
pattern degradation may result if the module amplification is comparable to the
ground screen attenuation; therefore, it is important to preserve this effect in

the model.

The solution of (3-6) and (3-7) is based on techniques recently developed by
Munk and Burrell.! Each array element is modeled as piecewise linear and the array
is viewed as a collection of infinite arrays, each one corresponding to one linear
segment. Since the excitation is assumed to be a plane wave, the relationship of

*Phasors associated with eJmt

temporal variation are assumed throughout.
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h
element to the reference (OOth) element current is known.

t
the current on the mn
A moment

It therefore is necessary to solve for the reference element current only.

method procedure can be applied where each expansion function is an infinite array
The field from each "expansion

of currents corresponding to one linear segment.
One advantage of this

array" is expressed as a doubly infinite sum of plane waves.

plane wave expansion is that penetration through imperfect ground screens becomes

straight forward.
The method presented here is an extension of Munk and Burrell's work in that

interconnecting modules are introduced between arrays and, more importantly, the

modules may differ from element to element. In particular, the modules will intro-

duce a linear progressive phase and thus differ in a well-defined manner. The mod-
ules are identical for the plane wave excitation
b . B . -jks x -jks y =-jks z
E* @ =" e *e Ve F (3-8)
The induced port currents become
a a —jkmdxsx —jkmlysy
Imn = IOO e e (3-9)
-jkmd_ s -jknd s
=12 e XX e yy (3-10)
mn 00
where

r = xx +yy + zz is a field point

X, Yy, z are the rectangular coordinate system unit vectors

k is the propagation constant
S, s , s are the directional cosines of the propagation direction of Eex
d and d_ are the x and y interelement spacings
b
Igo and IOO are the reference element port currents.
The justification for (3-9) and (3-10) can be demonstrated from linearity considera-
Equations (3-9) and

tions; a similar form applies to the induced port voltages.
If the

(3-10) are not sufficiently general if the modules are progressively phased.

n module with respect to the reference module is

phase imparted by the mnt
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-k (mdX o+ ndy uy), the feedback phenomenon due to the imperfect ground screen 3

X

suggests* port currents of the forms

- -jkmd (s +ua ) —jknd (s +ua
DI e N P A ) (3-11)
mn 00(u)
u=0
> -ikmd (s +(u+lda ] -jknd [s  +(u+l)e ]
D o x "]eJ vty y (3-12)
mn 00 (u)

u=0
where u is referrcd to as a feedback mode number. The I3 and I are the uth
00(u) N0 (u)
mode coefficients of array a and array b reference element port currents determined,
as described below, by satisfying (3-6) and (3-7) with (3-11) and (3-12).

With port currents expressed by (3-11) and (3-12),V:i, Vbb, V:s in (3-6) and y

mn
(3-7) become

—Jkndx(sx+umx) —3kndy(sy+umy)

aa _ aa a N
Vo ~ :E: g +ue,s +ua IO”(U) e e (3-13)
u=0 ® y y
© s s N 1
iy Vbb B Z zbb 1 kadx[ X-L(u+‘)axJ
31 mn s +(utlda_,s +(urlde “eo(u) © (3-14)
- - u=0 X X y y
i -jknd [s +(ut+l)a
5 J y[ g (u+l) y] j
} e
Vab ) 2 ab Ib e-_]kmdx[sx+(u+1)axl _
mn “s +(utl)a ,s +(utl)a 00(u) (3-15)
u=0 ¥ Y y )
-jknd_[s +(utl)a
. 3 y[ g (utl) y]
whore
E zza s is the array a active impedance when driven by port currents (3-9) and
K k4
i; * Y the ground screen perfectly conducting
zzb s is the array b active impedance when driven by port currents (3-10) and
£ 4

Y the ground screen perfectly conducting

AT ION

* The modules impart a phase on the array a currents. The resulting array b currents

radiate rhrough the ground screen and induce an "additional” component of array 1
o a currents. The latter, phased by the modules, results in a corresponding com- g
; ponent of array b currents and the process continues. i
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ab
z
S_,s
y array b excited by port currents (3-10) and array a open-circuited
(feed lines removed)

is the active mutual impedance from array b ports to array a ports with

Specifically,
yad
;33 - (o]0} (3-16)
S ,S 2
Yy 00 perfect ground screen
‘7>;E>
zbb _ _00 (3-17)
“sx,s Ib
y 00 perfect ground screen
Vab
zab - _00 (3-18)
sx,s Ib
¥ 00 imperfect ground screen, array a ports open-circuited i
where Igo and Igo are reference element port currents with the arrays excited by port 1
currents related by (3-9) and (3-10). A moment method technique for computing i
238 , zbb , and zab based on Munk and Burrell's work, is described in
S_,S S ,S S_sS_»
x’7y X7y x*7y

Section 3.2.2. An expression for the short-circuit array a port currents

ox ex —jkmdxs -jknd s
I = 15%% e Xe yy (3-19) 1
mn 00 $

due to E°¥ with the ground screen perfectly conducting, is determined in Section 3.2.2.

The V;: in (3-6) then are given by

—kadxsx -Jkndysy

ex _ _  aa ex _ _ _aa ex _ ;
an z ,s Imn z ,8 IOO e e (3-20)

'y Xy

where the reference direction for I:i is the same as for I:n in Figure 3-1. Equa- \

tion (3-20) can be derived by considering the V:; in Figure 3-3 as ideal voltage

PR L -5

sources. The current flowing through these sources then is the superposition of cur-
X ex 2ex

rents due to E®* with the V;n sources shorted and the an sources with E removed.

Since the open-circuit port currents are zero, {_

ex 1Y ex aa -
Tt . / zsx’Sy 0 (3-21)

and (3-20) follows.




e et e

The mnth port voltages and currents are assumed related by the mnth module

(including feed lines) impedance parameters according to

a aa a ab b

an " Zmod Imn - Zmod Imn (3-22)
b ba  Tdkmdyo, jkadoa gy (3-23)
A = -z e e I -z I

mn mod mn mod “mn

For simplicity, the module progressive phase setting appears only in the array a to
array b mutual impedance parameter. General module models are considered in Section
3,2.6. In combination with (3-11) and (3-12), (3-22) and (3-23) become

od -jkmd_(s_+ua_ ) -jknd_(s_+ua_)
vd = - 38 Zla o xox g t8ytudy
mn mod 00(u)
u=0
(3-24)
_ b ® b e-kadx[sx+(u+1)ax] e-Jkndy[sy+(u+l)0ty]
mod 00 (u)
u=0
@ 4 -' + +
Vb - _ Zba Z 12 R kaix[sx+(u+1)ax] . Jkl'ldy[sy (u l)uy] 25
mn mod 5 Oo(u) - )
u=

_ zbb i Ib e-kadx [sx+(u+l)ax] e—Jkndy[sy+(u+l)ay]
mod ~ 00(u)
Equations (3-6) and {3-7), in combination with (3-13), (3-14), (3-15), (3-20),
-jkmd s -jknd_ s
X X

(3-24), and (3-25) become, after dividing through by e e Y'Y and group-
ing terms,
o0 <«
aa -jkmdxuctx -jkndyuay a z: ab -jkmdx(u+l)ax
2y ¢ € IOO(u) + Zutl LE
u=0 u=0 (3-26)
..J'kndy(l.H-l)Oty Ib _ zaa Iex
€ 00(u) s_,s_ 00
X'y
o
}E: -jkmd_(u+l)a e-jkndy(u+1)ay b2 a L bbb -0 (3-27)
o mod ~00(u) ~ Zu+l "00(u)
where
aa aa aa
z = Z + z
u mod sx+uax, sy+ucty
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Rca R (R s TR

zab - zab + zab
ut+l mod s_+{(utl)o_,s +(u+l)a
x Xy y

bb =zbb + bb
Zu+l mod " Z%s +(u+l)a_ ,s +(utl)a
X X"y Yy
Since the arrays are assumed infinite, corresponding to any practical module
imparted phase shifts, —km.dxuX - kndyuy, the phasing of the modules repeats every

rectangular section of M by N elements; i.e., M, M', N, and N' can be found such that

kdxax W

2w - M (3"28)
kd o N
——LXZH =N (3-29)

Equations (3-26) and (3-27) then become

:E: o-2mmuM' /M -32 nuN'/N aa ja . }E: emJ2m(u+1)M! /M (3-30)
u  00(u)
u=0 u=0
—JZHn(u+l)N /N zab Ib = a2 18¥
u+l “00(u) ‘s 'Sy Too
x
-j2mm(u+l)M' /M —JZ'Im(u+1)N /N a bb b _
:E: e zmod 00(uw) * Zut1 Yooy | =0 -3D
=()

These equations must hold for all m and n. Premultiplication of each by

. ' . '
ermeM /M ernnVN /N, where v is an integer, summation over one '"progressive phase

period" 1 <m <Mand 1 <n <N, and interchange of summations results in

Z Z Z: [Jan(v—u)M ™ j21rn(v—u)N /N] aa 30(u)

u=0 n=1 m=1
jan(v-u-l)M ™ j2wn(v-u-1)N‘/N ab _b
Zu+l IOO(u) (3-32)

N M
= L 1
2 : oJ2mmvM ™ oJ2mvN /N ,28
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© N M
Z Z ej2nm(v-u—l)M'/M ejZnn(v-u—l)N'/N
u=0 n=1 m=1l (3-33)

ba .a bb _b
[zmod Tooqu) * 2wt IOO(u)]

<

Now

M
: ' s - '
2 e]an(v—u)M ™M e]Zﬂn(v uN' /N _ 0

M-

(3-134)
n=1 m=1
unless (v-u)M'/M and (v-u)N'/N are both integers; similarly
N
z ej27rm(v-u—l)M'/M ej21rn(v-—u—1)N'/N -0 (3-35)

=}
[
ot

m=

unless (v-u-1)M'/M and (v-u-1)N'/N are both integers. Assume that only lower ordered
feedback modes are significant, as is expected to be the case if the ground screen
attenuation sufficiently exceeds module amplification. Then, if M or N is suffi-
ciently large, it follows that the terms in (3-32) and (3-33) containing the left-
hand side of (3-34) can be assumed nonzero only for u = v and the terms containing

the left-hand side of (3-35) can be assumed nonzero only for u = v - 1.
The solutions to (3-32) and (3-33) then are determined iteratively as follows.

From (3-32), with v = 0,

aa aa _ aa ex
Zo Loocoy = st,sy Ioo (3-36)

zaﬂ
a sx’sz ex
Too(0) = ~aa Loo (3-37)
0

From (3-33), with v = 1,

ba _a bb _bb _
21od To0(0) * %1 Tooco) = °© (3-38)

zba
b mod .a
Yooy © _bb T00(0) (3-39)
1
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or
f ba 222 i
E b zmod S8 %
‘; = - 3-4
To0(0) b _aa (3-40)
% %1 %o i
é |
’ From (3-32), with v = 1, !
i :
‘ |
9 aa .aa ab b _ ' ‘
f 21 Toocry *21 Tooqo) T ° (3-41)
3
§
E zab
] a _ 1 b
; Too1) = ™ Taa Too(0) (3-42)
q Z
3 1
or é
:
ab ba ;
3 a 21 %mod zsx’s ox
3 = -
Too1) * Taa ob Laa 00 (3-43)
1 %1 %
i And so forth; in general,
| i
\ vab '
| 22 :
5 a - _-u_ b _ '3
| f00(w) ~ 7 Zaa To0(u-1) (3-44)
3 u f
zba
b - mod .a _
3 Toouw) =~ Tob  Toe(w) (3-45)
z
7&' u+l
E for u =1, 2,.... In conjunction with (3-11) and (3-12), equations (3-37),
3 (3-44), and (3-45) solve the problem.
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3.2.2 Plane-Wave Expansion Moment Method

. aa bb 3
The array a and b active impedances, 2 g0 Zg o » array b to array a mu-
x*7y x’"y
i ab . .
tual impedance, Zo o and the array a reference element short-circuit port current,

xy
183’ are considered in this section. The development is based upon the work of Munk

and Burrell.!

Consider first either array a or array b with the ground screen absent. Let
the array elements be composed of thin wires lying in the plane of the array.(The
case of wires with components normal to the array plane can be handled by the proce-
dure developed below if some formulas are replaced with those of Section 3.2.3).

Let the array lie in the xy plane. A port voltage or current source array excita-

tion that is uniform, except for the progressive phase -jk (mdX s, + ndy sy) imparted

th . .
at the mn element with respect to the reference element (m = n = 0), results in

the current

5 4 O -jkmdxsX ~-jknd s
e+ ') =1,(x") e e yy (3-46)

iy

juted

th . : Ty, .
along the mn element wire axis, where r' is a point along the reference element

>
wire axis (path C') and rén is the vector from the reference element feed to the

th . T 2 . . . .
mn element feed. This form for Imn(r +rmn) also will arise if the array is ex-

cited by a plane wave with directional cosines S Sy’ and s, for the propagation
> >
direction. Under this excitation, once Ioo(r') is determined, the current on any

array element is given by (3-46).
The boundary condition from which foo(;') is determined is

s rex >
~ Eran © Pean ~ Fran : (3-47)

along the surface of the reference element, where i is the field radiated by all
fmn(; + ;;m)’ £°% is an exciting plane wave in the absence of the array (impressed
field), E is the total field, and the subscript "tan" denotes 'component tangential

to wire surface.” Along perfectly conducting wires, E = 0 at all points except

tan
at’ a source port, where Eta is the source field of an ideal port voltage source,
m th elemen¥ is excited by port voltage

b
1}

VOO’ and it is assumed that each mn

-jkmd_s_  -jknd_s !
Vo=V e XX e vy a (3-48)
mn 00 .
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A moment method solution of the thin wire approximation of (3-47) results in
an approximation of f00(¥').2 In this procedure, the wire axis of the reference ele-
ment is approximated by an NS straight line segment fit (Figure 3-4)., The reference
element may be composed of disjoint wires (as with parasitics) and also may have

multiple wire junctions (as with top~loaded dipoles). First, TOO(;‘) is expanded as

N
S
=1

> >

where fj(r') is an expansion of wire current constrained, for simplicity, to be non-
th . c s

zero only along the j segment of length Aj, and Ij is an unknown coefficient to be

determined. The substitution of (3-49) into (3-47) results in

X _§ (3-50)

>s oy
I, E an(r’J) " “tan tan

it

.Mmz

-

J=

x> L, ., . . P .th .
where E (r,j) is the field radiated by the infinite array of j segment expansion
—kadxsx -jknd_s

functions, ?3(;’) e e 7Y with respect to each of N_ weighting func-

tions, ;i(;)’ the weighted average of (3-50) along a path, C, on the reference ele-
ment wire surface parallel to C'(Figure 3-4), results in¥
—ex =

[zl = v+ v (3-51)

where the ith elements of the NS x 1 column vectors i, vex’ and V are, respectively,

I,
1
v - f E¥¥ 0. (D) a2 (3-52)
i i
C
> > >
v, = f Ew, (r) & (3-53)
c

and the ijth element of the Ns X Ns generalized impedance matrix [Z] is
- ES > . (3 54)
= - W . -
Zij é i(r) tan(r’J) d

* For convergence purposes, the path is taken a wire radius in front of the
array plane.
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where d¢ is an increment of length along C. The reference directions for the paths

C and C' are chosen to be the unit vectors i, and lj’ respectively, where

i
>y - >0z > > - >~ s
?j(r ) fj(r )lj and wi(r) wi(r)li (Figure 3~4).

In determing Z,., the field Es is expanded in a double sum of plane waves as

ij

Jk(r—r ) 8+ >

B,y = :
r,j) = Bia¥ys (3-55)
p_-cn qS—D'I
for (;;?)-i < 0 where
Aj/2 N SR 8L
Bro= 2 £, () e 7 av (3-56)
jz J
~-Aj/2
r! - . .th '
3 = position vector to the center point of the j segmert along C
n = free space wave impedance
>
h, 1 .3 ~ ~
jt = g—‘(ks X gi) X g,
s = R(s. +p) +y(s. + ) t 5
&y X P&; M sy 997 &,

[}
]

2 2
A A

2 1- [sx + pd ] - [sy + qd ]
X y

free space wavelength

A

If the expression under the radical in g, is negative, &, is chosen to be
n2gative imaginary; if the expression is positive, g, is nomnegetive real. This
assures that all plane wave modal fields travel outward from the array plane and
nonpropagating modes attenuate. A plus sign subscript on KJ g, and d' corresponds
to field points £ in front of the array plane; i.e., (r - r Yoz > 0, A minus sign

subscript corresponds to field points behind the array plane, i.e., (r-r3 Yoz < 0.

Zquation (3-55) is obtained by integrating, with respect to %' over the jth

segment, the expression for the field radiated by an infinite array of point current
dipoles, fj(?') de' (Appendix A).! The more general case, where ¥j(¥') extends over

two or more segments bent with respect to each other, can be treated in a similar,
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although more complicated, fashion. Except for notational difference, (3-55) fol-

lows the development of Munk and Burrell.!

E -
If Gi(r) is restricted to extend over only the ith segment along C of length
Ai’ (3-54), with (3-55), becomes

S
hed had -jk{(r,-r})g
- n i -
Z = e . (3-57)
1 24,4, z : z : e (hyy iy Vip Viy

=—0 q=—

where
A, /2 P
1 —jkli-g+k N
w,_ = e - wi(r) dg " (3-58)

-a,/2

>
and r, = position vector to the center point of the ith segment along C. Only the

"+" gign is indicated for é+ (hence, also for w3+ and ﬁ5+) in (3-57) since the sim-

plying assumption of wires lying only in the xy plane permits choosing T as well as
=
r, with no z components. The more general expression for Zij is derived in

Section 3.2.3.

The progressive phasings, S, and Sy’ which, for a particular p and q, cause
g, to be zero, can result in an infinite Zij' These progressive phasings correspond
to "grating lobe singularities" since they correspond to grating lobes just entering
the visible range; i.e., nonattenuating plane waves propagating along the array
plane., This is one possible source of "blind spots" and rapidly varying active im-
pedances with scan. This is only a "potential" condition for infinite Zij since,
although g, is in the denominator of ﬁ5+, in some situations a compensating effect
occurs. Such is the case, for example, in E-plane scans with periodic infinite ar-
rays of y directed dipoles not widely spaced in the x direction since gjt'ii = 0 for
p = 0 and q such that g, = 0 (grating lobe singularity). The presence of a perfect
ground screen potentially can inhibit a blind spot due to a grating lobe singularity

as is shown below.

If the array is a distance d in front of a perfectly conducting infinite
ground screen (positive z axis directed from ground screen to array as for array b),
the field £°’8S (r,j) at any point T in front of the ground screen excited by the
infinite planar array corresponding to the jth expansion function and its image is

given by
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-]

© 3 Y ~
$9,88(2 4y o N 2 : 2 : e'Jk(rfrj) &y E
sJ 2dxd R s

yr‘ p=- q=-®

. w © -jk(;¥?3+2d£)é+ . (3-59)
D DD DI Pi+v5
Xy
p=-w q=—(x7

for (: - ;J!)'i zo, The first term in (3-59) is the ground screen absent contribution
given by (3-55). The second term is contributed by the perfect ground screen. It
is important to note that 9:3 for the jth expansion function and its image are identi-
cal due to the simplifying constraint that all wires lie parallel to the xy plane;

i.e., d is independent of j. Thus, h., and w' for the image term are the same as

J+
for the ground screen absent term. The h and wJ! do not occur in the image terms

since only field points in front of the ground screen apply.

The ijth element of the generalized impedance matrix for the array in front of

25,88

a perfect ground screen [ng] is given by (3-54) with E replacing Es; thus

z8% = -Jk(r ‘1' . 8_,_ ey b,
i3 J+ iTj+7 i+

pz—oo q=_co

(3-60)

Z Z -Jk(r -r +2dz) g
J+ in+wi+

Xy p_—m q=_m

As with (3-57) only the "+'" signs for é+, -ﬁj , and “’3+ appear. A rearrangement of

+
terms in (3-60) results in

-ik[(F,~F!) g, +dg_]
gs i 4+
Ziy = E E i % sin (kdg ) b, i+ i"’j+¢1+ (3~61)

p_ - 00 q= -0




it is apparent from (3-61) that Z?; is bounded at a grating lobe singularity since

sin kdgz is bounded as gz+0 (gz appears in the denominator of ﬁ5+). This ground

g
z
screen suppression of a blind spot at a grating lobe singularity assumes the radia-

ting elements lie in the array plane. If, for example, the dipole arms are inclined
with respect to the array plane or feed line scattering is present, the ground screen
may enhance the blind spot effect at a grating lobe singularity above what it would

be if the ground screen is absent; thus, consideration of out-of-plane radiating ele-

ments (Section 3.2.3) is important.
With a ground screen present, (3-51) becomes

(28517 = V%8S 4 v (3-62)

where the element of Vo?®° are given by (3-52) with EeX expanded to include its
-ex,gs

reflection from the perfect ground screen; thus, the ith element of V

ex j2kszd ex
yeXeBS 211 — e Ve (3-63)

is given by

1

- > >
The shape of the expansion and weighting functions ?S(r') and wi(r) affect
only w5+ and wi+ in accordance with (3-56) and (3-58). 1If fj(;') and wi(;) are unit

"pulses," then

sin(k(2}-8,)4,/2] (3-64)

y!oo= A, =
i+ 3 k(£3°gt)Ai/2

and

_ sinlk(i;r8,)8,/2] (3-65)
Vir T 8 TR )A /2

1 8y

The 533—5- forms in (3-64) and (3-65) exist for all values of x; however, care is

required in their computation when x is near zero.

The array b active impedance, z:b then can be determined by solving (3-62)
X'y
ex,gs

for the source segment, i = is’ current coefficient, Ii , with Vi = 0 for all
s
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i and Vi = 0 for all i # is' Then

bb s
s S I, (3-66)
x’"y ig

. aa . .
The array a active impedance, 2y o » can be obtained in the same manner.
’

Xy
The array a reference element short-circuit current, Igg, can be determined
by solving (3-62) for 1, . Now, however, V, =0 for all i and the elements of Vo *8°
s

are given by (3-63) with Vix given by (3-52).

»S
Yy

screen can be determined from (3-51) where [Z] is the array a generalized impedance

The array b to array a mutual coupling, zzb , through the imperfect ground

- >
matrix, Vi = 0 for all i, and the elements of 7 are given by (3-52) with E¥* re-
placed by the field E' transmitted through the ground screen with array b excited by

current sources given by (3-10). (A means for determining 'Et is discussed below.)
Thus

(22172 = 7 (3-67)

where the ith element of Vt is
v; = f ECw2 (D) 4 (3-68)
c? :

and the "a'" superscript stands for "array a.' The is element, Ii , in the solution
s

vector, T2 of (3-67), is the short-circuit array a reference element port current.

The reference element open-circuit voltage is

t _ aa a
Voo - Zg g L, (3-69)
X'y s

as is justified by the argument following (3-20); thus,

I
ab zsx’s is
z = - —* 3 85 (3-70)
S _,8 b
%y I00
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The field Et is obtained readily from knowledge of the plane wave transmission
coefficients of the ground screen and the plane wave decomposition (3-55). The array
b current is determined with array b excited with port current sources (3-10). The

array b reference element current is obtained from the solution to (3-47) with
ex

Vi = 0 for all i and
0 i#i
v, = (3-71)
’ ST < i=1
Zg »S 00 s
0y

The solution to (3-51), denoted ib, gives rise to the field

N
s I TN
—Jk(r—rj)g N

B - b_n 2 : E 3-72
E (1) Z Ij dedy e hj_wj_ ( )

j:]_ p=-® q==-«

incident on the ground screen where the subscripted negative signs indicate that
(3-72) applies for (;—;!)-2 <0 (which is appropriate since the ground screen is be-
hind array b). Since E' is a superposition of plane waves, E is readily ob-

tained by applying the proper transmission coefficients to each component plane wave.
Each plane wave in (3-72) propagates in the é_ direction; thus, § and Z (the normal
to ground screen) form the corresponding 'plane of incidence.”" A unit vector normal

to the incidence plane is

g_ * 2
ﬁi. = —_— (3-73)
| g_ 2|

ﬁ” = é_ x ﬁJ_ o (3-74)

Any plane wave travelling in the é_ direction can be decomposed into two plane waves,
one having the E field polarized along ﬁl and the other having the E field polarized

along ﬁ” . IET) and Tl] are the corresponding transmission coefficients and gf is

the transmitted wave direction (éf = -z for a good conducting screen3),




] i 1
F- then j:
E' NS -
3 Jk(l’ r )g .
ot > - ~ o
! E = Ty(n-h, 1
| @ =1 z' z: (5,7) Gy -R, )
(3-75)
| T,
+ T *h,
’ BT Ry T
4
e ' . t .
£ where zpj_ is wj— with g_ replacing g .
4 The substitution of (3-75) into (3-68) results in
N o0
. -Jk(r r )g
vy = E [(2 ni)Tl(“i h )
1=1 p_ - gq=-»
(3-76)
s A A t' ot
ORI TR R Fi
and zab is determined from (3-67) and (3-70) as previously discussed. In (3-76)

35 sx,sy
4l
g t

v;_ 1s ¥,_ with §° replacing §_.

3.2.3 Inclined Radiators and Feed Line Scattering

The development in Sections 3.2.1 and 3.2.2 is limited to array radiating
elements oriented in the plane of the array. This method can be generalized to
handle scattering from element feed lines and radiation and scattering from elements

having arms inclined with respect to the array plane (Figure 3-5).

FEED LINE

~,
~

GROUND SCREEN

. i e

Figure 3-5. Coaxial-Fed Bent-Arm Dipole
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Munk and Burrell [1, eq.(3)] obtain the expression for the field from an in-
finite planar array of point current dipoles. They indicate that this expression is
valid for arbitrarily oriented dipoles; the dipoles need not be oriented parallel to
the array plane. Munk and Burrell also mention that a moment method can be developed
from this expression. This development is carried through for the special case of
array elements composed of bent wires confined to the array plane (Section 3.2.2).

Expressions based on [1, eq.(3)] that are similar to the mutual impedance expression

[1, eq.(19)] given by Munk and Burrell are developed; however, [1, eq.(19)] was de-

rived for the restricted case that mutually coupled antenna segments did not both
pass through any plane parallel to the array plane. The generalization of the mo-

ment method to handle "out of plane" elements necessitates more complicated expres-

e Ry

sions. These are derived here.

The field dF at r due to an infinite planar rectangular array of point cur-

rent dipoles

) —jkmdxsx ~jknd s .
: ‘f’mndz=e e YV g a gt (3-77)

is given by

N n -ik(z-2') -8, o
dE(r,r') = 7d d e + h,fde (3-78)
Xy

p= -® Q= -

(¥-1')-220

3 where the coordinate system is that of Figure 1-2, ;' is the location of the refer-

] ence element, m = n = 0, and the remaining variables are as defined in Section 3.2.2

with 25 replaced by the unit vector 2'. This result is derived in Appendix A for

the more general case of rectilinear (skewed grid) lattices. The modifications nec-

» essary to extend the results in this section, as well as those in the previous two ;

sections, to general rectilinear lattices is discussed in Section 3.2.4.

Consider now a rectangular array of identical, but arbitraily bent, thin wire

radiator elements. Let the reference element, m = n = 0, be segmented in ac-

b cordance with the moment method, as in Section 3.2.2, and let fj(z') be the
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reference element jth segment expansion function. Then, with r o= ;5 + 1513 as

defined in Figure 3-6,

00 © > 5> ~ A ~
-jk(r-r')-g jkele't-g
Tz 2y = n 3 o R e v ] _
dEj(r,r ) dedy E E e hjt e fJ.(ILJ.)d!Lj (3-79)
p=—m q= -— O
<> > - A A
if (r-r! 200t
(r Yoz 1% z
and
w0 [+
E @ = B, = 53 Z E qu(r’) (3-80)
_th Xy p= - q=-x
j  segment
where
Aj/2
- > ~ Ay oA
-ik(e-t!)-g, jka!tl-g, A,
7y = J e 131 7= [ [ . g RS I Y I
qu(r) e j / e fj(lj)dkj if (r rj) z <k Zlij z|
-A. /2
. (3-81)
[(E-r!)-3/8!-z]-¢
k(z-r!) g ’ jke'ir.g
-jk(r-r})* 2.
" P+ 2 hi e vyap!
= * h, f.(@})dar)
e i+ ) € IR ot
-A,/2
J
(3-82)
6 /2
. 3 o
-jk(r-ri)-g_ jkeili-g_
e 1 by e JJ O
[(?-‘r">-z/éjz-£1+e
A LY
if - —E'L ﬁ;-z 2 (E-r1) 52 -21 i)z
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Implied in (3-80) is a jth segment integration with respect to ﬁj. This integration
divides as indicated in (3-82) when T defines a point common to a plane that simul-
taneously divides the jth segment and is parallel to the array plane. The 2] co-
ordinate of the point along the jth segment that lies in this plane is definid by
equating z axis projections of r and ;3 + 13 i}, yielding

- -
(r - r!

)z

RENEA

0 - (3-83)

fad)
.
.
N

For 25-£>0, i.e., the %! direction indicated in Figure 3-6, integration with

h|

respect to 23 from —Aj/2 to the value of 23 defined by (3-83) involves plane waves

propagating away from the array plane on the positive z axis side; hence, the + sub-

script is indicated for é+ and h,, in the first integral of (3-82). For the inte-

j+
gration from the (3-83) value of 13 to Aj/2, the properly chosen plane waves propa-
gate along the negative z axis away from the array plane. Hence, the second inte-

gral in (3-82) indicates é_ and ;j— with negative subscripts.

The -¢ and +c appearing in the first and second integrals in (3-82) are in-
cluded to avoid integrating through the singularity that occurs in the plane of the
source array. This singularity is a consequence of the plane wave representation of
the field. Although this singularity appears integratable, this adjustment is ex—
pected to significantly improve convergence of the doubly infinite sum in (3-80).
For nonself-elements, i # j, € equal to the wire radius is probably adequate. For

self-elements, i = j, € may have to be smaller.

If ij'é <0 (i.e., 3 is directed along the jth segment opposite to that

indicated in Figure 3-6), the sign of (3-82) simply changes as indicated by the *
depending upon

(3-84)

As discussed in Section 3.2.2, the ijth generalized impedance matrix element,
[Z]i , 1s determined by welghted integration of the j th current segment field ;long
the surface of the i wire segment. Let r locate the center point of the i seg-
ment surface path as indicated in Figure 3—6). (For i # j, the ¢th segment match-
ing path may be taken along the axis of the ith segment.)
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> » A > A
[z]ij = - wo (r#,08 Ej (r +2,8,)de, (3-85)
-6, 12
>

where Ej is given by (3-80). For simplicity, assume that the z coordinate projec-

tions of all wire segments are either disjoint (nonoverlapping) or identical. Then,

o __n_ ,
R T > 2 Uq (3-86)

p=—w q=—m
where
WCREN W e
B I L P O TIRA R TE
Q =-e £.h, e
Pq i gt
—Ai/Z
AJ'/Z ..
jklazs-g,(
- ] 1]
wi(Qi)dSLi e fj(lj)dij
-4,/2 ; T Ty,
] if (ri rJ) 220
. Al./z A
-ik(r,-r})-g -jke £ -8
- i ] + » L7 i“i "+
=t |e &y hj+ e w, (2,)
-Ai(z
e
gt
J . -
jsz!mJZ-g+ -jk(r’i—?J!)-g_ N
£, (!Harljde e 2.+h
-0, /2
J/
/2 o A2 . .
Py -jke L g 4 feiiive .
e wi(li) e fj(lj)dlj L
A
-4,12 . 22 -
4iz~—r'.z .
]
z > o - '-A>
if (r; rj) z=0, zj 220
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If pulse expansion and weighting functions are considered, then qu becomes

> > -~
-J'k(r-rJ!)'gi

_ A~ T .o >
qu = e Ly hjtwitht if (ri rj) 220
- _)_‘*l .o _3 it.a _s "|"‘
Ll jk(r;-r}) B 1 [e jkedi-g, . jki}-g,8,/2 . ]
X . . . t 2 .
i i+ Jkﬁj-g+ + i+
(3-87)
| > > Ay A PPN
‘ -ik(r,-r}) g jkel ) * jkLl-g A,/2
i . Jk(ry rJ) g_ i3 1 eJ 38 . _eJ 57824 .
i 74- jsz!'g_ - i-
- T 8. fres 2
if (ri rj) z = 03 lj z 20

where
V.. = A sin[k(li'gt)Ai/Z]
S TR RIN/)
1°8+7°%4
Lr-g.)4 2] ]
e st k(i1 8,8,/
3£ 0 0 T RG R |
i
sin A, _
roo= A, —— E
+ 174, »

= i o5 {5 0 ezfiltez
A k((l.:l g, R.j 8, by z/(l.j z)AiIZ




If a ground screen is present a distance, d, behind the array, image fields
must be considered in each impedance element computation. Let double primed posi-
tion vectors and segment path lengths refer to image currents. Then, since the

coordinate origin lies on the ground screen,

?5' = i(ﬁ-?J'.) + ?(9-?5.) - 2(2133) (3-88)
i; = ﬁ(ﬁ-i3> + §<§-i;> - £<£.?3> (3-89)

.. th . : . .
and the ij element of the generalized impedance matrix for an infinite array over

a perfect ground screen becomes

[zgs]ij = 2]y, + 2d: Z E Qﬁz (3-90)

d
y p= - Q= =~

! where
. > > N
: -jk(xr,-r})- s
| Qgs = e 3 (1'1 rJ) g+ i ,gu Y wg
' Pq i j+ i+ i+
—>ll = i_ o . ~
hj+ g, QY xg) x g,
sin[k fr.g A./Z]
¥ 85 _ a (;J g+) J

74 TG

For plane wave incidence excitation, the generalized voltage vector elements

given by (3-52) must be appropriately modified to account for reflection.

3.2.4 Skewed Lattices

Many array lattices are skewed rather than rectangular. The infinite array

analysis descriked in this report is applicable, with only minor change, to general
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rectilinear (skewed) lattices. Any point in a skewed point lattice can be located

by two integers, m and n. The position of the mnth point is given by

->

- mde é + ndy y (3-91)

where & and § are the lattice unit vectors with associated interelement spacings

de and dy’ respectively (Figure 3-7).

A
y

-2
ox
._
| -3
-4 X
) i |
!
&
X -4 -2
2% 1%
T3x 1
E |

o>

i Figure 3-7. Ceneral Rectilinear (Skewed) Lattice
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The standard x,v,z rectangular and r, §,¢ spherical coordinate systems are
centered at the m = n = 0 point and oriented as shown in Figure 3-7. 1If identical
. . th
radiators are located at the lattice points, the mn radiator excitation phase that

will launch a wave in the r direction is expressed by
T ' = -
£ ?mn mde S + ndy sy (3-92)

where s = 1.8, Sy = r.y and the """ indicates a unit vector. This phasing also can

be expressed in terms of the more standard x axis directional cosine, Sx = ¥.X%, by

noting that (see Figure 3-7)

dé=dx-4y5y (3-93)

and, with (3-91),

N
(I 3 _ S -
r mdxx + (ndy mAy)§y (3-94)
Hence,
P _ -
tr) =mds + (ndy mAy)sy (3-95)

It then can be shown® that the skewed lattice infinite array generalized impedance
matrices, [Z] and [ng], are computed by the formulas developed in Sections 3.2.2

and 3.2.3 if theexpressions for éi and g, are replaced by

‘ . n A AA ~ A ~
¥ g = X|s *tpPg -4 E_gL] +y s, tag|tze, (3-96)
o X Xy y

. A My P AT -
g, = V/G— [sx +PyT 434 ] [?y +43 ] (3-97)
X X'y y

The feedback mode development in Sections 3.2.1 and 3.2.6 also applies to
skewed lattices if the phase imparted by the mnth module with respect to the refer-

ence module is expressed by —k(mdeae + ndyay).

All dx’ S, and o in these developments are simply replaced by de’ g0 and

. bb ab

a , and the active impedances, z;a s and z s and z g 2are understood to be
e’ y e, y e’ y

determined with the expressions for §+ and 8, given above where the relationship be-

tween s and Sy is found by equating (3-92) and (3-95) resulting in
- AyS

g = 2% 7 J (3-98)
e d
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3.2.5 Space Feed Model

The field illuminating the lens will not be planar during radar transmit;
however, a plane wave decomposition of the illumination across the lens face is
always possible.6 Each plane wave component of the illumination can be applied in-
dividually and the resulting lens patterns superimposed. The first approximation

method is being designed in this manner.

Since, in the first approximation, infinite array theory is applied to each
cell individually, a separate plane wave decomposition of the illumination is car-
ried out for each cell. Only a small number of plane wave components must be con-
sidered for each case. The maximum cell size may be chosen such that a single plane

wave fit to the illumination across a cell is adequate (Appendix B).

The propagation direction of the plane wave is along a line, f, from the
phase center of the feed to the cell center. The field components of the plane wave
are the projection of the illuminating field at the center of the cell onto the plane
perpendicular to ;. A single plane wave approximation to the illumination across a
cell may not be possible if a large number of cells is to be avoided. A 1l0-percent
accuracy in plane wave approximation to the illumination across a cell could result
in about 200 cells subdividing the lens (Appendix B). A tighter accuracy will in-

crease this number.

3.2.6 Generalized Module Model

The idealized module model assumed in the Section 3.2.1 development is gen-
eralized here. The modules were represented in Section 3.2.1 by two-port, open-circuit
impedance parameters. These parameters were assumed uniform from element to element,
within a cell, except for the array a to array b "mutual' impedance parameters which
differed between elements in progressive phase only. In this section, the module
parameters are permitted to be any complex function of the progressive phase setting.
The only restriction is that modules with phase settings differing by a multiple of
27 have identical parameter values. Open-circuit impedance parameters do not al-
ways exist; e.g., a half-wavelength section of transmission line has no such repre-
sentation. The following development, therefore, is in terms of two-port scattering
parameters. The assumed form of the "feedback” mode expansion (3-12) is modified
slightly. This permits a convenient column vector representation. The resulting
formulas are shown to reduce significantly for the special case of a passive lens

with simple line length phase shifters.
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th
The n element array a and array b port currents are assumed to have the

forms
oo E - e—_‘jkmdx(sx + uozx) e—Jkndy(sy + uay) (3-99)
mn 00 (u)
u=_oo
b -jkmd_(s_ + ua_ ) -jknd (s_ + uo )
b _ b XX X yy y _
In E IOO(u) e e (3-100)
u=-=

In column vector notation, (3-99) and (3-100) can be represented as

; _ Z: e-kadX(sX + ua ) -_]kndy(sy + uo{y) B

Imn = e IOO(u) (3-101)
u=—w
where
a
_ (IOO(u)
oo =
Ib
| "00(u)
I -
J N
I =
' mn
; Ib
i | “mn
The port conditions that must be satisfied are
Vaa + Vab vex
_ mn mn mn .
' v = + (3-102) :
mn b
Vbb 0
mn i

i
B
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where

ex
v =
mn

Vbb
mn

<1
It

X

aa ex
-2z I

s, 8 0o ©
X y

e

Uy=—o

This may be written

where

[zu]

—kadxsx —Jkndysy

Z e—kadx(sx + uozx) e-jkndy(sy + uuy)

e
-jkmd_s_  -jknd
g X X
u [Zu] IOO(u) + e e
[ aa ab
zs + ua s+ uo
- b3 x’ X
bb
0 s+ uo_,
X X

N -jkmd_(s. + ua.) =-jkn +
+Vab—z:eJ X T x er dy(sy uay)

U=~ aa Ia + z
s+ v, Sy + uay 00(u)

-kadx(sx + uax) e-jknqy@y + uay)

vy cex
Voo

ab

s  + ua
X X

bb

z
s. + ua
X

z
s_+ ud_, s+ ua
X y y

s+ ua
y

Ib
R sy + uay 00 (u)

(3-103)
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t
Let the mn h module (plus feed lines) scattering parameter matrix be denoted [S ].
mn

If the scattering parameter normalizing impedances are R? and Rb, then

= M2y s DE (3-104)
N Vel (1) I CH D (3-105)
where 3
1 0 j
[w) =
0 1
S
[R] =
Ry Rb
a
Cmn
¢ -
Cb
mn

and C:n and Czn are the "incident"” scattering variables.

Assume that Emn ma- be expanded in '"'feedback'" modes, as is Imn’ according to

@

-jkmd_(s_ + ua_) =jknd (s. + va_ )
- X X X Yy v Yy & -
C E e e COO(u) (3-106)

Y==

Then (3-103), (3-104), and (3-106) combine to yield, after division by

Ejk(msx+ nsy),
~jkmd_uc_ -~jknd ua - - -
.Z e x xe y [R]1/2([U] + [Smn])coo(u) - [ZU]IOO(U) = vg)o‘
us- (3-107)

]
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Another equation in COO(u)

5 3 - - { - s
and IOO(u)’ obtained from (3-101), (3-105) and (3-106), is

o (3-108)

o -jkmd_ue_ -jknd_uc
; vy 1/2 = 7 =
‘ > e e l.m (101 - 18, D00y - Ioo@} =0

Us—m

3 where 0 is the nulil column vector.

A set of simultaneous equations is formed from (3-107) and (3-108) in a manner simi-

lar to that in forming (3-32) and (3-33). The module phase settings, oy and uy,

o B e S

are assumed to satisfy (3-28) and (3-29); thus, {Smn] repeats every M x N elements.

z ] . ]
Premultiplication of (3-107) and (3-108) by er“mVM /M JZanN /N

, where v is an
integer, summation over one 'progressive phase period," 1:m*M and 15n¥N, and inter-

change of summations yields

= o _ wm I ve0
Z ([Fvu]COO(u) - [Fvu] [zu]IOO(u)) = (3-109)
us==-w 6 V=.‘tl,i2, .
Z Py, 18000y = Fuullgoy) =0 v=0.%1,22, ... (3-110)
u-——m
where
N M , \ (3-111)
' s - . _ 1 -
[Fvu] =2 e]Zwm(v u)M /¥ 32 n(v - u)¥ /N (R] 2([U]'[Smn])
n=1 m=1

- - ! -1
F.. ] ZZ 32m(v u)M'/M 32m(v w)N' /N (R17D (U] - [Smnl) (3-112)
n=

Y j2m(v - uw)M'/M _j2mn( IN'/N MN[U] u=wv o
(F,,J = ZZ J2mlv - u eJ2m(v - u [v] = (3-113) 2
n=1 m=1 0 otherwise i
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The simplifications resulting in the right-hand sides of (3-109) and (3~113) assume
that (v-u)M'/M and (v-u)¥'/N are never integers simultaneously. This condition
occurs whenever (v-u) is an integer multiple of M and N simultaneously. This
condition is avoided by limiting (3-109) and (3-110) to only the lower valued
equations and by limiting the infinite summations to only lower values of Iul

This is permissible if only lower-ordered "feedback'" modes, u, are significant.

A special case of interest is a passive lens with modules replaced by trans-
mission lines. The relative lengths of line determine the progressive phasing. The

R th
scattering parameters for the mn element become

_ éjZWmM'/M Ej2nnN'/N 0o 1

[smn] (3-114)

1 0

. a_ b _
if R R RO’ where RO

Equations (3-111) and (3-112) reduce to

is the characteristic impedance of the transmission lens.

‘)RO MN [U] v-u=20

[Fy,) = \’Ro MN [W]) v-u-1=0 (3-115)
0 otherwise
MNAJﬁS [U) v-u=0
Fy = 'MN/\/RO W] v-u-1=0 (3-116)
0 otherwise
where
0 1
(W] =
1 0
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Equations (3-109) and (3-110) then become

- _ _ Vgg v=20 .

Ry Coogwy + R MC00u-1y — 1250y = (3-117) 1
0 v=x1,£2, ... L

=€ - == WE -1 =0 = 0,%1,:2 ?
g 00 T RS M %00v-1) T Toow) v = 0,2l22, .. (3-118) ;

Finally, (3-117) and (3-118) can be combined to form

=exX
1 Voo V=0

1 - -
[/ﬁa[u] e (2,0 | Coowy * | Ro * Vo (2,1 | M1C4y1y = (3-119)

0 v=#1,£2, ...

Equation (3-119) can be solved for EOO(V) under the previously stated condition that

only lower-ordered feedback modes are significant. Then (3-118) can be solved for

Loovy:

3.2.7 Multiport Array Elements

The development throughout Section 3.2 has, for simplicity, considered single-
port radiating elements. The extension to multiport elements (e.g., crossed dipoles
for circular polarization (turnstile antennas) with quadrative phase shifters in the
feed lines) is straightforward due to the moment method framework employed
[2, Chapter 6)]. The present simulator development effort is not expected to imple-
ment this extension; however, the important case of turnstile array elements will
be modeled by transferring the quadrative phase shifters from the feed line to the
appropriate radiating arms. Turnstile antennas for use in an SBR lens array are
likely to be designed in just this manner, where the radiating arms are either re-

actively loaded or shaped to impart the desired quadrature phase relationship.

A loaded wire can be modeled easily within the moment method framework. If

L ,
lumped impedance loads, Zj,J' = 1’2""’Ns’ are located at segments j'on a wire, the

voltage column vector, ¥ 1in (3-51) becomes

ve® -zt (3-120)

3-44




— e s et "

ey

The elements of the column vector, v , are the values of applied voltage sources at
driven segments and [ZL] is a diagonal matrix with Z?, for its j'th diagonal element.

Equation (3-51) then becomes
| - - -
(z} + 2P = ¥ + ¥ (3-121)
Equation (3-121) may be solved for I as discussed in Section 3.2.2.

A module to feed line junction (module output) is generally a three-terminal
junction with the third terminal necessitated by the ground screen. Nonideal balun
arrangements at these module outputs cause unbalanced currents to flow on the feed
lines if asymmetries exist. The asymmetries may be electrical (e.g., module phasing
for off-broadside beam steering) or structural (e.g., Fizure 3--8). The net feed line

current, I1 + 12, is counterbalanced by current Ig on the ground rcreen; i.e.,

Ig = - (I1 + 12). This net current constitutes the unbalanced mode current. 1If Ig

is significant, a module output generally requires a two-port representation. (This,
in turn, leads to a four-port representation for a module with two outputs.) The
initial version of the simulator will be capable of modeling a module output only

as a single port. The effects of unbalanced mode feed line currents can be ac-
counted for, despite this limitation, if it can be assumed that there is negligible
coupling within the module between the balanced and unbalanced mode currents and
also between the unbalancel mode currents at the array a and array b module outputs;
i.e., only the balanced mode currents are assumed affected by the module circuitry
and the feed line unbalanced mode currents arise entirely from scattering. In Figure
3-9, the modules are treated as two ports (one port on each array side) and the cor-
respondiag port voltages and currents are transferred to the radiator excitation
ports (indicated by the sources) via the feed line transmission line equations. The
composite module/feed lines port parameters become those discussed in Sections 3.2.1

and 3.2.6., These port parameters apply strictly to the balanced mode. With radia-

R PR TR, B

tor excitation ports thus related, each feed line is modeled as a single thin wire.
The feed line scattering then is accounted for by the moment method technique dis-
cussed in Section 3.2.3. Balanced mode feed line current radiation can be neglected

due to the close spacing of the wires in a feed line.

DU
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a. Pulse (Piecewise Constant)

fJ-l fj fJ+1
| M
Lj-2 L 3-1 Lj 2j+1 Rj+2

0 o

. ’ b. Triangular (Piecewise Linear)

fi-1 3 fin1
l7><><\
23-1 23 23+1

b8y —f=— 25—

c. Piecewise Sinusoidal

Figure 3-10. Expansion Functions
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3.2.8 Increased Computation Efficiency

Evaluation of the generalized impedance matrix [Z] (or [ng]) of Section 3.2.2

usually requires considerable computer run time. This is especially true for arrays
of thin wire radiators oriented parallel to the array plane since the doubly infinite
summation in (3-57) then is slowly convergent. Fach term in the summation corre-
sponds to a plane wave field averaged over a segment a short wire radius, a, in front
of the array plane containing the current filaments. The plane waves corresponding

to large lp] or ]q] decay exponentially away from the array plane. The arguments of

2 2
these exponentials are proportional to <V/Ep g—] + [q %-] , where dx and dy are
X ¥

the x and y coordinate interelement spacings; thus, wires that are thin with respect
to dx and dy result in slow convergence. Examples indicating the number of p and q
terms (plane wave modes) typically required are given in Section 5. Several possibi-
lities for reducing the number of times that (3-57) has to be computed are being ex-
plored. These techniques, discussed below, also apply to the ground plane case

represented by (3-61).

The Toeplitz nature for straight wires is being employed. The [Z] for a
straight wire divided into NS segments has ZNS ~ 1 diagonals. If the segments are of
equal length, all elements of [Z] common to a diagonal are equal; i.e., [Z] is Toeplitz.
The st elements of [Z] are, therefore, determined from only ZNS - 1 computations of
(3-57) -- one for each diagonal. 1If an array radiating element is a collection of
straight wires, this properry applies only to submatrices centered along the main di-
agonal of [Z]. The order of each submatrix equals the number of segments on the cor-

responding straight wire.

Except for broadside phasing (sX= Sy = 0), [Z) is not symmetric; however,

[Z]ji differs from [Z]ij only by a sign in an exponential. This permits a reduction

of almost 50-percent in [Z] computation time.

The development in Section 3.2.2 employed "pulses for expansion, fj(ﬂ'),
and weighting, wi(y'), functions; these are indicated in Figure 3-10a. Each pulse
occupies one wire segment. The results in Section 5 indicate that many pulses are
needed to correctly compute the input reactance of an infinite array of near resonant ?
t1in dipoles -- approximately 20 per half wavelength for a = 0.0l) and approximately

0.8+ interelement spacing. These results assume equal segment lengths, Aj. If tiny

Aj are required only in the feed region, a large reduction in Ns may be possible by

will be available shortly. ;

modeling with unequal Aj. Results with unequal Aj
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Figure 3-11. Modeling a Junction with Overlapping Expansion Functions
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‘Overlapping expansion and weighting functions, such as piecewise linear
(Figure 3-10b) or piecewise sinusoidal (Figure 3-10c), can be tried in place of
pulses. The overlapping of adjacent functions assures continuity along the wire,
possibly resulting in a need for fewer expansion functions to approximate the current

than are required with pulses.

Since each overlapping expansion function traverses two segments, each element
of the corresponding [Z] is computed by the sum of four terms, each similar to (3-57)
but differing in computation of wi and wj. Care is required when treating multiple
wire junctions to maintain current continuity at the junctions. This can be accom-
plished by following a simple rule when modeling wires. To illustrate, consider the
three-wire junction shown in Figure 3-1la. The modeling begins by choosing any one
of the wires as terminated at the junction (Figure 3-11b). The remaining wires then
are added in succession such that each overlaps any previously placed wire (Figures
3-11c and d). This overlapping is accomplished by aligning the junction point with
the peak of the end triangle (or sinusoid) function on the wire being added. This
method is described in Reference 8 and presented in terms of "independent loop cur-

rents" in Reference 9.

The expressions for the pulse, triangle, and sinusoid functions are given in

(3-122), (3-123), and (3-124) (Figure 3-10).

For pulses,

1 L. - Af2 <Y <R, +A,/2
£.") = J J J J (3-122)
J 0 otherwise
For triangles,
L' -2, A R, , S 3¢
( J'l)/ h| j-1 ]
+ < <
£.(0") = .., - 2")/A, L, = ' =8 3-12
J( ) ( 41 )Y/ 5 3 41 ( 3)
0 otherwise
3-51
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For sinusoids, where k =

H

27
A
. v . -

sin k(g lj_l)/31n kéj

+
1] =~ . - 1] .
fj(z ) sin k(JLj+1 ') /sin kAj

0

. STt -,y i £ 11 P ETOTRPIEN Wy = 0 o 0 O

otherwise
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3.3 HIGHER APPROXIMATION CURRENTS

The first approximation method solves for the array a and array b currents
within a cell assuming the cell is infinite in extent, all array a radiating ele-
ments are identical, all array b radiating elements are identical, and interconnec-
ting modules between arrays are permitted to differ only in phase settings. The
variation in phase settings between modules must be linearly progressive. Each cell,
however, will be finite in extent and may exhibit other discontinuities in periodicity
due, for example, to module failures or nearby scatterers such as lens, edges, booms,
hinges, struts, and other structural supports. The first approximation currents
for elements near these discontinuities may be significantly in error. These cur-
rent predictions can be corrected by the higher approximation method described inthe
following subsections. Although there are a great many elements (hundreds or more)
that may reside near discontinuities, the higher approximation method is expected
to prove reasonably efficient. This is because (1) the method makes use of the
known first approximation currents and feedback fields penetrating the ground screen
and (2) a moment method matrix has to be computed and inverted only once for each
type of radiating element (dipole, folded dipole, etc.) in the entire lens. Each
approximation uses the results of previous approximations. The required number of

approximations depends upon the rapidity of convergence of successive approximations.

3.3.1 Port Representation and Solution

Let the first approximation currents on all lens radiating elements be
known. The method for obtaining higher approximation currents on an array a and
array b element pair near a discontinuity in periodicity 1s presented below by con-
sidéring the second approximaton and extending the results to the nth approximation.
A single-port representation of a radiating element is assumed. The method can be
expanded to include multiport models. The problem being modeled by the second approx-
imation method is shown in Figure 3-~12. The second approximation currents on a lens
array a and array b element pair are sought. For discussion purpeses, these elements
are referred to as the zeroth elements and variables correspondirg to this element
pair are subscripted zero. Nearby element pair currents (subscripted 1, 2,...) that
are considered in computing the zeroth element pair currents may reside in the same

cell or nearby cells. A parenthetical number appearing in a superscript of a vari-

able denotes the level of approximation of the variable; e.g., véZ)a is the second
approximation port voltage of the zeroth array a element, and I;l)a is the first

approximation ocort current on the "second" of the array a "neighboring" elements.

3-53




\
(1)a (1)b
12 el el el — - — - 12
ngz)a IgZ)b
= —— Y
véZ)a v(02)b
Tex ) \ ) J

; \,f/ J\MODULE |

ST (N SR— OOl

1

! \,\

; GROUND SCREEN
" :

Figure 3-12. Problem for Determining Second Approximation Currents




The incident exciting field (space feed on radar transmit, target return on radar
>ex s .
receive) is denoted E . The second approximation port voltages and currents for

the element pair under consideration (zeroth element pair) are related by

ex . v(l)ab + V(1)aa'

véZ)a - ;@ I(EZ)a + Ve N o (3-125)
v(()2)b -, I(()z)b . vél)bb' (3-126)

where
za(zb) is the impedance of an isolated array a (b) element with the ground
screen perfectly conducting

] !
v(l)aa (V(l)bb) is the array a (array b) zeroth element open-circuit port

0 0
voltage due to the nearby array a (array b) first approxi-
mation currents with the ground screen perfectly conducting
Vél)ab is the array a zeroth element opén—circuit port voltage due to the

first approximation array b excited field penetrating the ground

screen

ex ., t . . *ex .
V0 is the array a zero h element open-circuit port voltage due io E in

the presence of the ground screen
; . . 2)a
The reference directions for the open-circuited voltages are the same as for Vé )

(2)b
0

and V . The z* and zb ""isolated element" impedances can be determined with feed

line scattering accounted for as suggested by the Figure 3-9 model. The feedback

él)ab’ is available from the first approximation analysis.

(2)a ()b _(2)a (2)b
0 . V0 R IO , and I0

voltage V
The quantities V are related by module two-port

parameters; e.g., the impedance parameter representation is

(2)a _ __aa .(2)a _ _ab _(2)b _
V0 = -z, I0 z, I0 (3-127)

(P = e (Da b (DD (3-128)
Equations (3-125) through (3-128) can be combined to form
a aa (2)a ab _(2)b _ ex (1)aa' _ ,(l)ab _
(z° + zO ) IO + z4 I0 = - V0 - Vo VO (3-129)
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ba
)

()b _ (1)bb'
o =Y

P24 P4y (3-130)
0 0
These equations explicitly relate second approximation port currents and first approx-
imation port voltages.

A thin-wire, pulse expansion-impulse weighting, free-space moment method code
can be used to determine za, zb, and Vgx and, from first approximation currents and

t 1
él)aa’ v(l)bb and Vél)ab_lo

fields, V 0 s Other moment method codes can be used (e.g.,

see Refs. 8 and 9); however, the pulse expansion code fits well with the pulse ex-
pansion infinite array technique employed in the first approximation method of

Section 3.2.2.

Moment methods calculate short-circuit currents more efficiently than open-

] ]
circuit voltages; therefore,Vex, Vél)aa ,Vél)bb and Vél)ab are determined from zeroth
] ]
element array a short-circuit port currents Iex’ Iél)aa , and Iél)bb and zeroth element
array b short-circuit port current Iél)ab according to
ex _ _ _a .ex -
VO =-2z IO (3-131)
] ]
Vél)aa - 3 Ic(’l)aa (3-132)
1 A
bbb (1)bb (3-133)
0 0
V(()l)ab - - 2 I(()l)ab (3-134)

The reference directions for these short-circuit currents are the same as those for

(2)b

IéZ)a and IO . The justification for (3-131) through (3-134) follows closely‘the

argument following (3-20).

In the pulse expansion function moment method,10 an isolated element is mod-
eled as NS connected segments (Figure 3-4). Let is be the number of the segment
which contains the element port. A corresponding isolated-element-above-a-ground-
screen "generalized admittance matrix'" can be determined.? Each short-circuit port cur-

rent in (3-131) through (3-134) can be determined from row is of the appropriate gen-

eralized admittance matrix and the appropriate "generalized voltage vector"? accord-

ing to
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i ng - {{? ‘-,g.x (3-135)
3 s
1 ' ca = !
i I(()l)aa _ Y: Vél)aa (3-136)
s
A -~ - 1
Iél)bb - V(()l)bb (3-137)
: s
4 b b
I(()l)a _ Yi Vél)a (3-138)

a

In (3-135) through (3-138), Qi (?? ) is the matrix row vector taken from the is row
s

s
of the array a (array b) isolated-element-above-a-ground-plane generalized admittance

.. =(aa',,(1)bb’
matrix, VO 0

generalized voltage vector resulting from the nearby array a (array b) first approxi-

. = ab . h
mation currents, Vél) is the array a zerot -element-above-a-ground-screen general-

v ) is the array a (array b) zeroth-element—above—a—ground—screen

ized voltage vector resulting from the first approximation field penetrating the
ex

0 rex
ground-screen generalized voltage vector resulting from E .

N -
ground screen (Et in Section 3.2.2), and V is the array a zeroth_element—above—a—

From (3-129) through (3-138),

a aa,_(2)a ab _(2)b _ _a za ,mex , =(1)aa’, =(1)ab _
z° + z4 )I0 + zy I0 =2z XiS(V0 + V0 + V0 ) (3-139)
ba _(2)a b bb,.(2)b _ b b =(1)bb' _
z, IO + (z + z, )IO =z Yis V0 (3-140)

Equations (3-139) and (3-140) can be solved for IéZ)a and Iéz)b. The second approxi-

mation zeroth element active impedances are determined from (3-127) and (3-128) as

(2)a,.(2)a (2)b,.(2)b
Vo /T 0 0

Many elements are likely to reside near discontinuities in periodicy. This

implies a large number of (3-139) and (3-140) computations -- one for each of these

for array a and V /1 for array b.

elements. The admittance row vectors, Y: and ?? , are fixed for all (3-139) and
s

(3-140) computations if all the radiating elements throughout the lens face are identi-
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cal., This also applies to 2% and zb, since za(zb) is the reciprocal of the is ele~

-~ -~ - - ' — \
ment of Yi (Y: ). The major effort, then, is in computing Vex, vél)aa, Vél)bb,

s S

and

=(1l)ab
V0 .

Equations similar to (3-139) and (3-140) can be found for the array a and

array b second approximation current distributions. These current distribution equa- i3

tions employ the entire isolated element generalized admittance matrices, from which

a cb . . . : . : . :
Yi and Yi are extracted, with significant increase in computation time. The simu-

8 s

lator is being designed assuming the first approximation current distributions ade-

quately describe the current distributions for any higher approximation; i.e., a

higher approximation current is assumed to differ from the first current by a complex

constant scaling factor.

The third and higher port current approximations are obtained in a manner

similar to that for the second approximations. The zeroth element, nth approxima-
I(n)a and I(n)b

tion, array a and array b port currents, 0 0

, are obtained from the

n-1 approximations by solving

a aa,.(n)a ab _(n)b _ a ja ,zex , =(n-l)aa' -(n-1)ab
(z% + z, )IO + 2, 10 = z Yis (VO + V0 + VO ) (3-141)
b - - - ]
zoa Ién)a + (zb + ng)l(n)b = zb Yb Vén 1)bb (3-142)

0 i
s

The free spacc field at the zeroth array a element arising from the n-1 approximation

field penetrating the ground screen results in vén—l)ab. This field is difficult to
compute exactly. The approximation resulting from equating Vé“_l)ab and Vél)ab is
being considered. Another possibility is "scaling” Vél)ab according to
I(n—l)b
g{n-1)ab _ 70 =(1)ab 14
VO —;?ijg-vo (3-143)
0

=(n-1)aa’ s(n-1)bd'
0

The column vectors V and V0 involve summations of the fields

from L nearby elements; i.e.,
L

s(n-1)aa’_ ~(n~1)al
V0 Z V0 (3-144)
2=1
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Vén-l)bb'= :E: vén—l)bﬁ (3-145)
&=1

=(n- L =(n- L
where Vén Da (V(()n Db ) is the contribution to the zeroth element array a (array b)

v
generalized voltage excitation vector from the n-l’h approximation current on the

2th

imation distribution of current on all nearby elements is adequate for all approxima-

nearby element. These computations are facilitated by assuming the first approx-

tions and scaling in accordance with the higher-approximation port currents; i.e.,

, L I(n—l)a

g(n-l)aa _ 2 C=(Dat

VO E _;TETZ— VO (3-146)
=1 2
L

5(a=1)bb"_ L{n-1b 3eOLY (3-147)

0 I(l)b 0
=1 *
b
IQ(n)a (Il&o ) is the array a (array b) nth approximation port current at the £ th

nearby element.

3.3.2 Support Structure Scattering

The effects of hinges, ground screen edges, and other support structures on
the radiating element currents can be accounted for naturally within the higher ap-
proximations. The first approximation field excites scattering currents on the
support structures. These currents radiate fields that enter into the higher approx-
imations by the addition of generalized voltage excitation vectors, vgs and Vgs, to

(3-141) and (3-142). These equations become

a aa,.(n)a ab _(n)b _ a ja ,mex , =(n-1)aa , s(n-1)ab , tas ~
(z" + z4 )IO t 2z I0 =z Yis(V0 + VO + V0 + Vg ) (3-148)
ba .(n)a b, bby. ()b _ bib ,=(n-1)bb | =(n-1)bs _
z I0 + (z + 2 )IO 2 Yis (V0 + V0 ) (3-149)

The infinite array theory employed in the first approximation method naturally pro-
vides a plane wave spectra representation of the fields exciting the support struc-
tures. The numerous moment method and ray theory computer codes available then are

usually directly applicable to computing the support structure scattering.
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3.4 RADIATION PATTERN

Radiation patterns are determined from the target side radiating element cur-
rents on array a (array b with radar in transmit mode). If possible, reciprocity is
emploved during radar receive. If reciprocity is not permissible, as is likely with
active modules, the radar receive pattern has to be analyzed directly. The array
b radiating elements then lie on the feed side of the lens. Far-field radiation for-~
mulas then apply to lens sections individually, provided each section is in the far
field of the receiver. In many instances, the cells defined in Section 3.1.1 may

satisfy this constraint.

The first approximation currents on a cell have associated closed form radiation
patterns. These are employed where ever possible. The details in computing first
approximation cell and lens far-field patterns, with and without lens structural

warping, are discussed below.

3.4.1 Planar Periodic Array

Radiation from one side of a cell having boundaries coinciding with its
periodicity axis (Section 3.2.4) is considered here. Cells of more general shape are
treated in Section 3.4.4. All radiating elements throughout the cell are identical,
all are located at the nodes of a rectilinear lattice (Figure 3-7), all lie a height
d above a perfect ground screen, and all can be modeled as electrically thin bent
wires. A typical cell and coordinate systemare shown in Figure 3-13. The position

>
" locates its image point, and r

> ->
vector r' locates a point on a radiating element, r
locates a field point P. Thc coordinate system xy plane coincides with the infinite

ground screen. The far-field vector potential for this array is given by
- > > >

.r' ]
> > —jkr -> jkrrr > -> jk r >
, Alr) = e /I'(r') e dr' + fI"(r") e dr" (3-150;
4rr

where I'(;') is the array current, 1"(;") is the image current, and k is the wave-
number. The field point direction is given by
r=sin D cos & x + 3in 0 sin ¢ y + cos O z (3-151)

where a """ indicates a unit vector. The xyz components of r are the directional

>

cosines of r.
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The array current and image are sums of the N individual radiating ele-

ment currents I% and their images Ig.

Equation (3-150) then becomes

(3-152)
; — . > ~ > -
; ) -jkr N l jkr-r) jkrer,
‘- K(E) = _e—__ E : /Il (;l) e 1 d;' + / Il.l(;li) e 1 d;"
. T E 1 1 |

i=1 -

>y . .th *n . .
where r, locates a current source point on the i element and ry locates its image

point; i.e.,
o= (?i R+ (E DY - (?i - 2)3 (3-153)
as indicated in Figure 3-14. Let

i ;oi + (3-154)

> > -
r'=r . +t" (3-155)
i oi

N
where L locates the ground screen point corresponding to the arrav lattice point

e

(the module is generally located at ;§i ), and t' and t" are as indicated in Figure

3-14. Note that t" is defined from t' by

s R+ E DY - @ D3 (3-156)
Also t' is the same for corresponding points on the structurally identical elements.

Equation (3-152) becomes

3 N I ) e
=jkr jkret jkret
K(;') = e E e i ,/I'i(;') e ar’ -t/i;(;") e ar"
i=1 ! J

Assume that the current distributions on all elements throughout the cell are identi-

i cal within a complex constant; i.e.,

f Ii = KiI;ef (3-158)

where I;ef is the reference element current and Ki is the ratio of ith element to

reference element port currents.




e

Equation (3-157) becomes (3-159) f'
ke | r
-jkr i jkret jkr-t jkrer
A@) = e : /1' (e dr'+ fx" (™ e dr"[ ) K. e °
‘ = re - i
i=

where I;ef(r") is the reference element image current.

The reference element current moment can be approximated by

N
s

E I;ef Ajij where the electrically small segment lengths Aj and segment unit
3
j=1

vectors Qi are shown in Figure 3-4, and Ns is the total number of segments on the
wire (note that the segmentation begins a half segment in from each wire end; this

better models the zero current condition at these points). The corresponding image

N
B S N
| current moment becomes - E 1! a.0." 1
) ref, 373 5
3 " j=1 J :‘
! where

o n= @ RE+ A Py - @ - 2)z 3-160
; j ( 3 Y ( i ) ( ) |

Equation (3-159) then is approximated by
(@) = ¢F (3-161)

>
where the element factor e and array factor F are given by

N
B . -jkr s KEE, | jkreEy (3-162)
- e=e E I;ef A, (&) e Jve )
1 4mr 4 j J J 3
- i=1 ;
i ¢
N, .
jkr-roi
3 F = E K e (3-163)
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respectively. The gﬁ and gg in (3-162) correspond to £' and t" at the center points
of the jth segment and its image, respectively. Equation (3-161) is an expression of
pattern multiplication. The underlying assumption in (3-161) is that the current

distributions on any two array elements differ by only a complex constant.

The © and ¢ components of the far radiated E and ﬁ fields are given in

terms of F and the 6 and ¢ components of 2 as

Ee = —jkneeF

E = -jkne F

¢ ¢ (3-164)
- _1

He nE¢

- _1

Hq\_ n Fo

where n is the free space impedance.

3.4.2 Regular Cells

The array factor ¥ assumes a closed form expression for each feedback
mode of the first approximation currents on a regularly shaped cell. A regularly
shaped cell is one with boundaries that are paralleél to the cell's rectilinear lat-
tice unit vectors (é and § in Figure 3-15). Such boundaries form parallelograms.

Radiation from irregularly shaped cells is treated in Section 3.4.3.

Consider a coordinate system as indicated in Figure 3-15. With respect

to this system,

r ., of (3-163) becomes *'  where (Section 3.2.4)
oi mn

. R R _
r mdee + ndyy (? 165)
and
£.f' =md s +nds (3-166)
mn e’e vy

and the field point e and y directional cosines ¢ and sy are

(3-167)

(2 $3
>

s =
e

(3-168)

=
< >

s =
y

The K, of (3-158) become, for each first approximation feedback mode,

i

P




X
e
Figure 3-15, Regularly Shaped Cell
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K = e
mn
- -> .
-jkr' -a !
_ mn
T e (3-169)
where
.—> - ~
a=ae+ ayy (3-170)

N -1 N,-1

e y JkE! - (F - @)
F = E e m
m= n=0 :
N -1 Mo—1 f
NN~ my dnyy :
) Z L e e (3-171)
m=0 n=0 i
:
]
where :
v' 1i)e = kde(se - ae) (3-172)
! =kd (s - a 3-173
wy y( y y) ( )

and Ne and Ny are the number of elements along constant y and constant e lattice

lines, respectively, in the cell. These numbers are Ne = 6 and Ny = 7 for the Figure

3-15 cell. :
i
The array factor can be expressed in terms of the X and y directional ;‘
cosines ] ;
B
s, = sin 6 cos ¢ (3-174) i
é 4
‘ sy = sin 6 sin ¢ (3-175)
| Since (Section 3.2.4)
.odx -y ;
l e = =31 (3-176) :
e
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then

Sxdx s A
Sg = r-e= de - —%;l (3-177)

In closed form, F = F(sx, sy) then becomes

JO-1v, /2 TN -1y, /2
y sin N,y /2 sin Nywl/z

F(Sx’sy) - ¢ sin y /2 sin ¢y/2 (3-178)
where

we = k(sxdx - SyAy - aede) (3-179)

wy = k(sydy - aydy) (3-180)
3.4.3 Irregular Cells

The closed form expressions for the cell array factor developed in Sec-
tion 3.4.2 assume that the cell boundaries coincide with the cell lattice vectors.
This restricts cell shapes to parallelograms. 1n general, the geometry of the cell
boundaries may not coincide with the rectilinear structure. An example is shown in
Figure 3-16 (heavy line). Aclosed form expression for the array factor for this cell
is obtained by combining several array factors. Three additional arrays are indica-
ted in Figure 3-16. Array 1 is "regular" (bounded by a parallelogram with sides co-
inciding with constant lattice coordinate lines). The array factor for Array 1,
therefore, is given by (3-178). Arrays 2 and 3 form triangles bounded on two sides
with constant lattice coordinate lines. Along each third side the y coordinate var-
ies linearly with e coordinate. A closed form expression for this array type is de-

rived below. The cell array factor then is given by

~ > P aA >
jkr-rl jkr-r2 jkr-r3
F=e F - e F, +e Fq - (3-181)

where the subscript indicates the array number. The phase factors kr-rl, etc., are
necessary to translate the corresponding array coordinate origins, references for

array factors Fl, etc., to the cell coordinate origin. 1In the Figure 3-16 example,

> -> A
r,=r1, = e and ry = 0




Array factors for array shapes such

the form

N -1
e

jmy
F = E e e

m=0

This equation is similar to (3-171)

as Array 2 and Array 3 of Figure 3-16 are of

Ny(m)-l

iny_ |
Z e V| (3-182)

n=0 J

except that Ny in (3-182) is now a function of

m (i.e., Ny = Ny(m)). A linear behavior, expressed by

Ny(m) = gg tgm

results in a closed form expression

(3-183)

for (3-182). The inner summation in (3-182)

becomes
Ny(m)—l N (m)
sy, Iy
S T (3-184)
n=0 e 7 -1
j This results in
=
-
, 1' N1 N -1 _
i F(N (M) + my ) imy
e — | 5T Sy e ¥ e (3-185)
; Y1 =0 =
;. m= m=0 i
which reduces further to
il (N - L
L J;towy + (N, Dy S "
F = F(sx,s ) = —j'—w-— e e
. y e Y_1 sin '
| (3-186)

1 : ' JW 1, /2

- e

sin(Newe/Z)
sin (we/2)

-
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where
Y o= (elwy + )2 (3-187)

and Ve and wy are given by (3-179) and (3-180).

Note that when € = 0, Ny is a constant (=eo) and (3-186) reduces to (3-178) as

expected.

3.4.4 Flat Lens

The far-field radiation pattern of a flat lens face is considered here.
Curved lens faces, as may occur from structural deployment errors or from severe

temperature gradients, are considered in Section 3.4.5.

The lens patterns are with respect to a lens coordinate system, termed
""global," having z axis directed outward from the lens plane. The relationship be-
tween the global coordinate system and the local coordinate system for the vth cell
is shown in Figure 3-17. The g subscript refers to the global system and the v sub-
script to the cell system. The vth cell is positioned ;gv from the global system

and rotated an angle ¢v in the lens plane as indicated.

The lens pattern is obtained by combining the contributions from all the
cells. Closed form cell pattern expressions with respect to local cell cooi. ‘nate

systems have been developed in Sections 3.4.2 and 3.4.3. These expressions must be

modified to refer to the global coordinate system. The array factor of the vth cell
Fv(sx, sy) is given by
~ 7
jkr-rgv

Fv(sx, sy) = e F(Sx’ sy) (3-188)
where F(Sx’ sy) is (3-178) or of the type (3-181) and

s, = TR (3-189)

sy =1y, (3-190)

The global system rectangular components of the field point unit vector r, in column

vector form, are given by

r f-ﬁg T sin € cos ¢ |

fg = ! §.§g . = |sin pcos ¢ : (3-191)
r.z cos § ‘
- 8. -
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In the local coordinate system of the vth cell, r has rectangular components given by

(3-192)

where [Rv] is the coordinate system rotation matrix. For flat cells, the z axes of

the global and local coordinate systems coincide resulting in

r -
j cos ¢v sin ¢v 0 !
[Rv] = . -sin ¢v cos ¢v 0 (3-193)
: 0 0

- -

—

Equation (3-162) for the element factor e and (3-178) or equations of
type (3-181) for the array factor F employ r with components given by %v in deter-

. th . ;
mining the v cell contribution to the lens pattern.

The lens fields (3-164) are computed from the 6 and ¢ components of the

element factor, e and e¢. Here 6 and ¢ are with respect to the global system.

-~
nt

Since 5 and i; in (3-162) are generally known in local system coordinates, a deter-

mination of ey and ey requires that 0 and § be expressed in local coordinates. 1In

column vector form, the & and & global system rectangular components are respectively

i r

i é-ﬁg } [cosB cos ¢!
H 9 = A.A : = e 1 -
eg ? Yg | ?cos sin ¢ | (3-194)
B2z ; i -sin ©

'

-

The corresponding v~ cell rectangular components are

@
]

[Rv]ég (3-196)

-5
|

[Rv]&g (3-197)

where, for flat cells, [Rv] is given by (3-193).
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3.4.5 Nonflat Lens

The pattern expressions -- (3-162), (3-178), and (3-181) -- assume a flat lens
array. Departures from flatness can be caused by the adverse space envrionment and
possible antenna mechanical malfunctions or imperfections. An example of the former
would be array warping caused by thermal gradients across the lens surface induced
by alternate light and shadow areas. An example of the latter would be an imperfect
mechanical deployment of the lens in space. The development in this section gener-

15

alizes work done by Coffey and Carver,

The total lens warping is represented in a piecewise manner using the cells
defined in Sections 3.4.2 and 3.4.3. A warped array is shown in Figure 3-18. If
the warp is smooth and slowly varying, as in thermal expansion, the array surface
can be modeled by a continuous function, S(xv,yv). Discontinuous warps, such as im-

perfect antenna panel unfolding, can be modeled by piecewise continuous functions.

If the array edges are connected by straight lines (the dotted lines in Fi-
gure 3-18), the resulting surface is a quadrilateral, Q (xv,yv), that approximates

S(xv,yv) linearly in the arguments x, and Yot The functional form for Q(xv,yv) is
Q(xv’yv) = bO * blxv + bzyv + b3xvyv (3-198)

tere the coefficients b,, b., b,, and b

0’ P10 Py are unknowns. The xv,yv cross~term, b

3 3» is
a measure of the twist in the warped surface. The unknown coefficients of Q(xv’yv)
could be determined by choosing four "representative' array elements locations
(e.g., the elements closest to the corners of the array) and obtaining four linear
equations in the four coefficient unknowns. Different representative elements will

lead to different choices of Q(xv’yv)'

There should be little variation in the various ¢ 1drilaterals for small
warps. A least-squares analysis could be performed on all array element locations
to ootain a "best" quadrilateral approximation. It is believed that such an analy-

sis will not be necessary.

A simple expression for the array factor for a quadrilateral surface is not
presently available. Consequently, a further approximation must be made. A planar

surface, P(xv,yv), of the form

P(xv,yv) = a, + a X, +a,y, (3-199)

is made to "best fit" the quadrilateral Q(xv,yv) by minimizing the integral

1
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Figure 3-19. Planar Approximation, P(xv,yv) to Warped Surface, S(xv,yv)




le - Pldxdy (3-200)
The minimization process leads to the following optimum choices for the coefficients
in (3-199):

3 = b

a; = by (3-201)

3 = b

The plane, P(Xv’yv)’ containing the optimum coefficients will, in general, be tilted

with respect to the XY, plane (Figure 3-19). The tilt is measured by the polar
4 angles Bx and By. The equations that determine the tilt angles can be deduced from

knowledge of P(xv,yv).

tan Bx = a1
(3-202)

2

tan B a
y

The overall result is that the warped section of the array can be approxima-
ted by a lens array cell tilted in the local unperturbed cell coordinate system an
amount measared by the tilt angles. Element periodicity is assumed to still exist
on the tilted cell although this periodicity may differ from that of the unperturbed
cell, Closed form array factor expressions are not employed if the elements are not

periodically located.

The pattern functions must be generalized to include the case of a "tilted"

planar array. Let " extend from the origin of the vth unperturbed cell local co-

ordinate system to the mnth ground screen lattice point on the corresponding tilted

cell (Figure 3-20). Then ‘

Zn - ~ >t - W

, T = 3k, * T (3-203) |

[ where :

{ >t _ : 4 5o+ + Y (3-204) ;

2 Ton = ¥*mn®v T YmnYv (alxmn 82%m’ 2y %

i :
l and iv, ?v, and iv are the cartesian unit vectors of the vth unperturbed cell local
} coordinate system. ;;n locates the mnth lattice point in the tilted cell with re-

spect to a local tilted cell coordinate origin.

The vector ;ﬁn defines the tilted cell. The tilted cell lattice vectors and

; a suitable tilted cell local coordinate system can be determined from ;;n' The flat ]
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cell radiation pattern expressions developed in Sections 3.4.2 and 3.4.3 now are ap-
plicable to the tilted cell. The contribution of the tilted cell to the lens pattern
then can be obtained by a generalization of the Section 3.4.4 development. This is

carried out below.

The mnth lattice point in the unperturbed cell is defined by

~

—>' =
LI mde e, + ndyy (3-205)

The quantities in (3-205) are the same as those in (3-165) with the v subscripts im-
plied for e and y in (3-165). From Section 3.2.4,

>
rl

= md x
mn X

v + (ndy - mAy) v, (3-206)

The L. and Yom in (3-204) are the coordinates of the mnth lattice point in the un-
perturbed cell. From (3-206), therefore,

X = mdx (3-207)

ndy - mldy (3-208)

Yon

and (3-204) becomes

™t d_x_+ (nd_ - may)y
= md_X nd_ - mly)y
mn X'V y v ) (3-209)
+ [almdx + az(ndy - miy)] z,
The y-directed lattice vector of the tilted cell is defined by
t.t _ ot _ 2t _
dyy = fon+l ~ Tmn (3-210)

where d; is the tilted cell y-directed interelement spacing and §t is the tilted cell
y-directed lattice unit vector. Similarly, the e directed lattice vector of the til-
ted cell is defined by

~ e
dtet - 1’t: >t

e m+l,n ~ Tmn (3-211)

with similar definitions for d: and at. Equations (3-202), (3-209), (3-210), and
(3-211) combine to yield

dy = dy/cossy (3-212)
t 2 2 2 2
d, = ‘éx/cos By * ¥ /cos By - deAytaantanBy (3-213)
~t R N
- <214
y cosByyv + sinByzv (3~-214)
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4
[

~t 1 - A -
e = i [dxxv AyyV + (dxtaan - AytanSy)zv] (3-214)
e
The x and y cartesian unit vectors in the local tilted cell coordinate system are

obtained readily from

- AR (3-216)

2t = 2P xyt (3-217)
where

X=at - t.ahHyt (3-218)

Equations (3-212) through (3-218) define the lattice parameters and local coordinate
system of the tilted cell. The radiation from a tilted cell then can be determined
from the expressions of Sections 3.4.2 and 3.4.3.

A tilted cell lattice structure may differ from its original, unperturbed lat-
tice structure; e.g., an unwarped cell with a rectangular lattice (Ay = 0) has, after

warping, a tilted cell approximation with, from (3-213) and 3-215),

ét =cos B x +sin B z (3-219)
x v x “v
From (3-215) and (3-220),
At-ét = sin B_sin B (3-220)
y v x

The tilted cell lattice is, therefore, not generally rectangular; i.e., §t-ét # 0.
A tilted cell contribution to the lens far-field pattern is obtained by ex-

tending (3-188) to

N ~ -> ~

Jkr-(rgv + aoz)

t oty _
Fv(sx’sy) = e

t t
F(sx,sy) (3-221)
where T v locates the unperturbéd cell local coordinate origin and F(si,s;) is the
array factor of the tilted cell with respect to the tilted cell coordinate system.
The factor F(sx,sy) is given by (3-178) or equations of type (3-181) with Sy and sy

replaced, respectively, by

<t (3-222)

[ $3

s

(3-223)

<t Ko
(2]
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Since r will be specified with respect to the global system coordinates (i.e., via
the column vector ;g of (3-191)) and, since r with respect to the unperturbed cell
coordinates is ;v of (3-192), then, with respect to the tilted cell coordinates, the

column vector representation for r is
-t t -
r, = [R™] [R]rg (3-224)

where {Rt] is the tilted cell rotation matrix given by

gtz sty 2tz |
v v v v v v
t ~L A P SN PN N
[R7] = YooX, Y0¥, V07, (3-225)
At A At A ~t A
Z_ X Zz2_ .y zZ_ -2
| "v v Tviv v v

The expression for the element factor (;) for a tilted cell is given by (3-162)
with r having components given by ;5. Since Q3 and i; are known with respect to the
tilted cell coordinate system, a determination of ey and e¢ requires that 8 and § be

expressed in tilted cell coordinates. In column vector form, these coordinates

become
=t _ t - -
ev = [R7] [R]eg (3-226)
7, = [R) [RIG, (3-227)

where ég and Eg are defined by (3-194) and (3-195). Equations (3-196) and (3-197)
were employed in deriving (3-226) and (3-227).
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SECTION 4
IMPLEMENTATION

The SBR RF simulation successive approximation method software is subdivided
into two sections, based upon level of approximation. One section implements the
First Approximation Method (FAM), which makes extensive use of infinite array theory
(Section 3.2). The second implements the Higher Approximation Method (HAM), which
employs previous approximation results in a conventional isolated element moment
method approach to calculating the edge effects and effects of nonperiodicities on

current distributions and antenna patterns (Section 3.3).
4.1 PROGRAM FUNCTIONAL DESCRIPTION

4.1.1 First Approximation Method

The first approximation analysis is performed for each cell., Data for array
a are read in and the element data are calculated in subroutine GEOMET (Figure 4-1).

GEOMET is called again to calculate array b element data after array b data are read in.

The program loops over the incident plane waves from 1 to NPWAVE. An inner
loop then begins over the feedback modes. The feedback mode counters are calculated
for both array a and array b. The phase functions for the total impressed field are

calculated at each array reference element.

Subroutine ZMATX is called with array b data to calculate the array b impe-
dance matrix, [Z], for an infinite array above an infinite perfect ground screen
and [ZF] for an infinite array in free space. Subroutine SCAN is called to calcu-
late the array b admittance matrix by inverting [Z] and calculating the active impe-
dance. The array b reference elemeﬁt current for unit port voltage excitation is
saved. The reference element port current is taken from the LSBth column of [2],
where LSB is the number of the current segment containing the antenna element feed-

point for array b elements.

ZMATX 1s called again with array a data to calculate the array a above a
ground screen impedance matrix [Z]. The impedance matrix for array a in free space
[ZF] is also calculated in ZMATX and is written to a file. Matrix [Z] for array a
is sent to SCAN to calculate the admittance matrix for array a and the active impe~
dance for array a. The LSAth column of [Z] is saved. It is the element current for

unit port excitation.

R )

For a zero feedback loop, matrix [Z] for array a is sent to SCIA to calcu-

late the array a generalized voltage and current vectors. The reference element

port current, SCIAEX, is also calculated.
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Array a and array b reference element port currents are then calculated for
the zero feedback loop using SCIAEX.

If there is feedback and if the number of feedback modes is zero, the array a
impedance matrix for free space [ZF) is read from the file. It is sent to SCAN to

calculate the array a reference element free space admittance matrix and element
active impedance.

The array a impedance matrix for free space [ZF] and the array a active impe-
dance are sent to subroutine MUTUAL to calculate the mutual impedance between array
b and array a through the imperfect ground plane. MUTUAL also calculates the array
a generalized voltage and current vectors arising from current on array b. The

mutual impedance is used to calculate the feedback mode array a and array b refer-
ences element port currents.
When there is no feedback, the call to SCAN for the free space active impe-

dance and the call to MUTUAL are bypassed.

The program continues by calculating the reference element port feedback vol-
tages. For feedback, the voltage array is corrected for array b port current exci-

tation. For no feedback, the voltage and current arrays are set to zero.

Array a and array b generalized current vectors then are adjusted for the

correct array port voltages. The current and voltage arrays for array a and array

b are written to file., This ends the feedback loop.

Subroutine CELPAT is called to calculate the array b current moments for the
reference elements and the pattern of the antenna cell under analysis. The indivi-

dual cell patterns are stored on a file for integration into the total lens pattern.

Array a reference element voltage and current induced for each incident plane

wave are written to file. This ends the plane wave loop.

4-2
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Figure 4-~1, FAM Flow Chart
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Figure 4~1. TFAM Flow Chart (continued)
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4.1.2 Higher Approximation Method

The higher approximation method (HAM) calculates corrections to the first
approximation of the lens patterns and current amplitudes to account for edge effects
and missing elements, or any nonperiodicities in the array lattice. HAM will be the

implementation of the theory discussed in Section 3.3.

HAM begins the calculation of the second approximation with a loop over the
nonperiodicities in the lens (Figure 4-~2). For each nonperiodicity, HAM loops over

the elements in the neighborhood of the nonperiodicity.

The physical characteristics of the radiating elements on array a and array
b are read in. Next, the Z-parameters of the module are input. The program then
calculates the generalized admittance row matrices for array a and array b elements
above a perfect ground plane. The input impedances are calculated from the array
a and array b elements' admittances which are extracted from the admittance row

matrices.

The module port admittance matrix relating voltages induced along array a
and array b elements to module port currents is calculated using the impedance ma-

trices and the Z-parameters.

The generalized voltage for the array a element induced by the first approxi-
mation currents on array b is calculated using the first approximation prediction of

mutual coupling through the ground screen.

Next, the generalized voltage induced on array a element by excitation field

is calculated.

The program then loops over the neighboring elements. In this loop, the
generalized voltage, induced on the array a element by first approximation currents
on the neighboring array a element is calculated. This generalized voltage is sum-
med to obtain the generalized voltage. The generalized voltage, induced on array
b element by first approximation currents on the neighboring element is calculated
and summed to obtain the generalized voltage. This ends the loop over neighboring

elements.

The generalized voltages at the array a element are summed to obtain the vol-

tage. This voltage is used tc calculate the second approximation port currents.

The module port currents for the second approximation are stored and the
loop over the elements in the neighborhood of the nonperiodicity ends, completing

the second approximation calculation,

4-6
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For higher approximations, the code assumes the current distributions will
change by a complex constant. The complex constant is the ratio of the 2nd to the
1st approximations of the module's port currents. Therefore, the higher approxima-
tion begins by adjusting the voltage induced at the array b element by the ratio of

the 2nd to the lst approximation module port currentson the array a side of the lens.

The higher approximation generalized voltages are calculated by looping over
all the elements in the neighborhood of the chosen element. The second approxima-
tion port currents for the module are used to adjust the lst approximation general-
ized current vectors. The adjusted currents are then used to calculate the second
approximation generalized voltage vectors for the chosen element. The third approx-~
imation port currents are then calculated using the second approximation general-
ized voltages. The third approximation port currents for the elements are stored
and used to calculate new current moments. The current moments are used to calcu-
late a correction field pattern. When the loop over the elements near nonperiodi-

cities is completed, the third approximation correction field pattern is also

completed.

The higher approximation correction calculations are complete upon completion

of the loop over all the nonperiodicities on the SBR RF array lens. 1
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Figure 4-2. HAM Flow Chart (continued)
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DATA FLCOW

Data Flow for FAM

FAM - First Approximation Method Main Program

Inputs
ALPHAX, ALPHAY

AMP
CELLID

D
DA

DELTA(NBF, |/
DELTAA (NBFA) |

DX, DY
DXA, DYA
FREQ, K

LBA(NBFA, 3),
LB(NBF, 3)

L, LSA, LSB
NA, NB

NBFA, NBF

NBFM
NPWAVE

PMAX, QMAX
PMAXA, QMAXA

PMAXM, QMAXM

(POLX, POLY, POLZ)

RBCA(NBFA,3),
RBC(NBF, 3)

(SX, SY, S2)

TPERP, TPARA

YDELA, YDEL

Module phase shifts
Amplitude of external field over cell

Alphanumeric label which characterizes the antenna
cell under analysis

Height of array b above the ground plane

Height of array a above the ground plane
Arrays of lengths of wire current segments {A}

Array b interelement spacing
Array a interelement spacing
Radiation frequency and wave number

Arrays of vectors parallel to array a and array b
wire current segments

Number of the current segment containing antenna element
feedpoint for array a and array b elements

Number of elements on array a and array b of the lens

Number of basis functions which describe the currents
on the array a and array b elements

Number of feedback modes used in mutual coupling cal-
culation

Number of external plane waves exciting array a

Control parameters for the calculation of the impedance
matrix for array b

Control parameters for the calculation of the impedance
matrix for array a

Control paremeters for the calculation of the array b to
array a mutual impedance

Polarization vector of external field

+
Array of position vectors R pointing to the center of
array a or array b element current segments from array
element feedpoint

Direction cosines of propagation direction of external
field

Perpendicular and parallel ground plane transmission
coefficients

Array a and array b skew parameters
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ZMODAA, ZMODAB |
ZMODBA, ZMODBB |\

Outputs

IAAA(NBFA) (
IAAB(NBFA)
TAEX {NBFA S

IBBB(NBF)
VAAA (
VAAB (NBF
VAEX (NBF) S

VBBB

GEOMET - Calculates

Module 2-port impedance parameters

Array a reference element generalized current vectors

Array b generalized current vector

Array a voltages

Array b port voltage

Array Element Data

Inputs

FREQ
JCODE
NFP
NS
NW

R

XB, YB, ZB,
XE, YE, ZE

XF, YF, ZF

Outputs

DELTA (NBF)
K
LB(NBF, 3)

NFS(5)

NWS (NBF)
RAD (NBF)
RBC(NBF,3)

Radiation frequency
Connector ccde
Number of feedpoint
Yumber of segments
Number of wires

Input radius
Beginning and end points

Feedpoint location

Segment length
Wave number
Segment unit vector

Array containing basis function number for each
feed segment

Segment wire number
Radius

Vector to center of segment

MUTUAL ~ Caluculates the Array b to Array a Mutual Coupling Through an In-

finite Imperfect Ground Plane

Inputs

D
DA

Height of array b above the ground plane

Height of array a above the ground plane

4-14
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DELTA (NBF)
DELTAA (NBFA)
DX, DY
IBBB(NBF)

K

LB(NBF,3)
LBA(NBFA, 3)

LSB

NBF
NBFA
PMAXM, QMAXM
PTPL

RBC(NBF, 3)

RBCA(NBFA, 3)

TSXB, TSYB
YDEL
Z(NBFA, NBFA)

Qutputs

TAAB(NBF)

VAAB(NBF)

ZMUTAB

Array b lengths of wire current segments

Array a lu.gths of wire current segments ‘
Array b interelement spacing 1
Array of current segments containing array b feedpoint
Wave number

Array of vectors parallel to array b wire current segments

Array of vectors parallel to array a wire current segments

Number of the current segment containing antenna element
feedpoint for array b

Number of basis functions for array b 1
Number of basis functions for array a
Control parameters

Flag to indicate pulse or point matching |

Array of position vectors pointing to center of array b E
element current segments -from array b element feedpoint 3

Array of position vectors pointing to center of array a
element current segments from array a element feedpoint

Array b phase factors {
Skew parameter for array b

Array a admittance matrix

Array a reference element generalized current vector
due to VAAB excitation

Ceneralized voltage vector on array a due to penetration
of ground screen by field radiated by array b currents

Mutual impedance between array b and array a reference
elements through the imperfect ground plane

SCAN - Calculates Array Reference Element Admittance Matrix and Active Impe-

dance

Inputs

L

NBF
Z(NBF, NBF)

Outputs
Z (NBF, NBF)

ZSCAN

e e sa— 3 v

The number of the current segment containing antenna
element feedpoint for array elements

Number of basis functions

Impedance matrix

Inverted impedance matrix; the admittance matrix

Active impedance
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SCTIA ~ Calculates Array Generalized Voltage and Current Vectors_ and Element
Port Current for Element in the Incident Field

Inputs

DELTA(NRF) Array of lengths {A} of wire current segments

K Wave number ‘

L Number of the current segment containing antenna element !
feedpoint for array element i

LB(NBF,3) Array of vectors [E] parallel to array wire current seg- é
ments .

NBF Number of basis functions

(POLX, POLY, POLZ) Polarization vector of external field

>
Array of position vectors [R] pointing to center of ar-

RBC(NBF, 3) ray element current segments from array element feed-

point
Z(NBF, NBF) Admittance matrix j
OQUTPUTS ;
IAEX (NBF) Short circuit current vector
SCIAEX Short circuit source current for reference element
VAEX (NBF) Total excitation vector (including reflection) for re-

ference element

ZMATX - Calculates the Immedance liatrix

Inputs
D Height above the ground plane
DELTA (NBF) Array of lengths {A} of wire current segments
DX, DY Interelement spacing '
K Wave number :
LB(NBF,3) Array of unit vectors [E] parallel to wire current seg- i
ments
I NBF Number of basis functions
; PTPL Flag to indicate 0 = point matching 1 = pulse matching
‘ RAD (NBF) Radius
7 RBC(NBF, 3) Array of position vectors [ﬁ] pointing to center of ele~
ment current segments.
WLEN Wave length
YDEL Skew parameter
4-16
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4,2.2

Outputs

Z(NBF, NBF) Impedance matrix for an array above a perfect ground
screen
ZF(NBF, NBF) Impedance matrix for an array in free space

CELLPAT - Cell Pattern Calculations

Inputs

RGV(3) Global coordinates of cell

PHICG Rotation of cell relative to GCS

PHIEC Rotation of element relative to CCS

NARY Number of arrays within cell

NY (30) Number of rows in y direction for each array

NX(30) Number of columns in x direction for each array
NO(30) Number of elements in first column of irregular array
IAS(30) Add-subtract factor for each array

RREFC(30,3) Coordinates of reference element of each array

DX (30) x separation for each array

DY (30) y separation for each array

DELTAY (30) Skew in y direction for each array

RBC(NBF,3) Array position vectors for segments of array a element
IBBB(NBF) Generalized current vector for array b elements
Outputs

THETA Polar angles to field points

PHI Azimuth to field points

ETHETA Theta component of E field

EPI Phi component of E field

Data Flow for HAM

Main Program

Inputs

ALPHAX, ALPHAY Module phase shifts

AMP Amplitude of external field over cell

CELLID Alphanumeric label which characteri?es the antenna cell

under analysis
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D Height of array b above the ground plane

DA Height of array a above the ground plane

DX, DY Array b interelement spacing

DXA, DYA Array a interelement spacing

FREQ, K Radiation frequency and wave number

AAA(NB :
- iAABEgBiﬁg Array a reference element generalized current vectors :
| TAEX (NBFA) for first approximation i :
; IBBB(NBF) Arrgy b generalized current vector for first approxi- g b
; mation 3 3
; LBA(NBFA,3), Arrays of vectors 4 parallel to array a and array b g‘f
g LB (NBF, 3) wire segments i
| ' i
' Number of the current segment containing antenna element i
g L, LSA, LSB ¢
3 feedpoint for array a and array b elements
3 NA, NB Number of elements on array a and array b of the lens
Number of basis functions which describe the currents on
NBFA, NBF
the array a and array 5 elements
NFEM Number of feedback modes used in mutual coupling calcu-
: lation

(POLX, POLY, POLZ) Polarization vector of external field

-
Array of position vectors R pointing to the center of
array a or array b element current segments from array
element feedpoint

RBCA(NBFA, 3),
RBC(NBF, 3)

(5X, SY, $2) Direction cosines of propagation direction of external

field
VAAA
VAAB(NBF) Array a voltages
VAEX (NBF)
VBBB Array b port voltage

(XLoC, YLOC, ZLOC) Location of mnth element on cell
YDELA, YDEL Array a and array b skew parameters

ZMODAA, ZMODAB, !

ZMODBA, ZMODBB | Module 2-port impedance parameters

Qutputs (Subscript j denotes order of approximation)

IAAAj (NBFA) Array a generalized current vector

IBBB4 (NBFA) Array b generalized current vector

AEA} Electric field corrections provided by higher order

ALdj approximations of voltages and currents

VAAAj Array a port voltage for 00 element j

VBBBj Array b port voltage for 00 element
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SECTION 5

RESULTS - FIRST APPROXIMATION METHOD CURRENTS AND ACTIVE IMPEDANCE

Simulation results obtained to date have been limited to infinite array E
analysis. Active impedance and current distributions have been compared with pub- —
lished results on planar, rectangular lattice, and dipole arrays.ll’lz’]3 Simula-
tion results are presently being compared with moment method analyses of large, tri-
angular, spaced-dipole arrays. The center element impedance and current have been
compared with the first approximation method (FAM). Several of these comparisons
are presented in this section. The effect of varying the orientation of the dipoles
in an infinite triangular array is presented, as is a design of a single-port turn-
stile radiator for use in an infinite triangular array. These results demonstrate
the versatility of the simulator. Convergence curves are given in terms of minimum
number of required plane wave modes (truncated doubly infinite summation in (3-16))

and number of subsections (order of [ng]).
5.1 INFINITE ARRAY COMPARISONS

Stark !! analyzed an infinite rectangular array of thin A/2 strip dipoles over u
perfect ground screen. Active impedances were computed. A single sinusoidal current
distribution on each element was assumed since this is exact for vanishingly thin
wires and since such an approximation proved valid in calculating impedances of iso-
lated dipoles not exceeding A/2 in length. These results compared well with Carter's
large finite array analysisl'+ for active impedances near the center of the array;
however, Carter also assumed the same single sinusoidal current distribution per

element.

VanKoughnett and Yen!? observed that since the dipoles were almost touching
in the collinear direction the current distribution may significantly deviate from
a single sinusoid even for very thin dipoles. They analyzed the same array in a man-
ner which permitted computing the current distribution to any desired degree of ac-
curacy. The resulting active impedances displayed a variation with scan that was
similar to Stark's results; however, the variation was considerably more pronounced

and the broadside impedance values significantly differed.

VanKoughnett and Yen's method is applicable only to elements with small spacings
in the collinear direction. Chang!3 removed this restriction by applying a "five-
term expansion' as well as a multiple mode sinusoidal expansion to the rectangular

infinite array of dipoles.

The results from the above papers selected for comparison with the first approx-

imation method (FAM) were obtained with the configuration of Figure 5-1 where
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a = dipole radius

d = dipole length

h = array height above ground screen
dx = periodicity in x direction

dy = periodicity in y direction

The excitations were unit amplitude voltages progressively phased for radiation in a

specified direction. The dimensions for three problems that were considered for *his

configuration are indicated in Table 5-1. The voltage sources were phased for a vari-

ety of E-plane, H-plane, and diagonal plane scan angles. Both current distributions
and active impedances were computed. The results from Problems 1 and 2 apply to

Chang's results. The results from Problem 3 apply to VanKoughnett and Yen's results.

The zero scan (broadside radiation) reference element current distribution for
Problem 1 is shown in Figure 5-2. Six FAM results appear. Each result applies to
one of six combinations of maximum plane wave expansion numbers p and 1, and

max ax
number of segments NS used in computing the infinite array generalized impedance ma-
trix (ng] of Section 3.2.2. Equation (3-16) shows the doubly infinite summation
in p and q needed to compute the ijth element of the NS X NS matrix [ng]. These

summations are truncated according to Iplipmax and ]q]Sqmax. The p , and

max * max

NS for the FAM results in Figure 5-2 are listed below.

Curve No. NS Prax Qpax
1 11 15 40
2 11 15 30
3 11 15 20
4 21 15 20
5 21 15 40
6 21 15 30

The required Plax and Unax increases with increasing dx/a and dy/a respectively. For
Chang's results (Problems 1 and 2) dx is almost 5 times dy. Therefore, Ppax W3S
chosen smaller than Uax® The Problem 1 current distribution results (Figure 5-2)
appear converged for 21 segments per half wavelength. The curves for 11 segments
have not yet converged. Curves 1 and 2 are further from Chang's results than curve

3 even though the value of q is higher for curves 1 and 2 than for 3. Additional

convergence results are given in Section 5.5.




The principal plane scan active admittances for Problem 1 are plotted in Figure

5-3. For these results Prax = 20, Uax = 70 angd NS = 21.

The element current for the full wavelength dipole array of Problem 2, scanned
for broadside radiation is shown in Figure 5-4. The FAM results used Prax = 15,
Uax = 50 and Ns = 21. As with Problem 1, close agreement between FAM and Chang's

method is indicated.

The E-plane and H-plane active impedances for Problem 3 are compared with
VanKoughnett and Yen in Figures 5-5 (resistance) and 5-6 (reactance). The resistance
is in close agreement throughout the 0° (broadside) to 45° scan range. The agreement
in reactance is within approximately 157 for near broadside scan. This agreement de-

teriorates for larger scan angles.
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a. Front View

Figure 5-1. Infinite Planar Dipole Array Above a Perfect Ground Screen
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1
TABLE 5-1
3
5, INFINITE ARRAY PROBLEMS
':E Problem 1 Problem 2 Problem 3
E a 0.007022 0.007022 0.00796
N
3 d 0.5 1. 0.5

h 0.25 0.25 0.25
; dx 0.25 0.25 0.5
4 d 1.2 2,2 0.5

Yy

All dimensions in wavelengths
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S 0050 - 1
3}
3 = -0.158 1 b
: Z
i &
-0.258 4 - A b4
-ip.0 -5.A 5.0 17.8

CURRENT(mMA)

Figure 5-2. Element Current for Problem 1 of Table 5-1
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Figure 5-3. Active Admittances for Problem 1 of Table 5-1
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5.2 FINITE ARRAY COMPARISONS

Thin wire moment method computer codes are applicable to finite arrays of arbi- 3
trarily bent wire radiators over infinite perfectly conducting ground screens. Two

of these codes GEMACS!8 and AMP!? are available as an aid in validating the simulator.

The results in Section 5.1 apply only to rectangular lattices. Since triangular
lattices are of particular interest, the configuration chosen for comparing FAM with
finite array moment methods is that of Figure 5-7. A 19-element dipole array is in-
dicated. Each dipole is centrally excited with progressively phased voltage sources.

The parameter values are

d = 0.5x
1 = 0.01x
E
= 0.7152
b
d = 0.826X
y
A= 0.413)
y
h = 0.252

Consider the standard spherical coordinates r, 8, ¢ with respect to the right hand

X, ¥, 2z coordinates indicated in Figure 5-7 where z is outward normal to the array

plane and the origin is at the reference element (m = n = 0) center. The phasing

g

of the an voltage sources can be related to main beam angular directions ea, ¢a

. > th .o
(scan angles) by letting rén denote the mn element center position vector. Then,

with reference to Figure 5-7 and the discussion in Section 3.2.4, (3-95) results in

"~ >
-jkr.r' -jk{md_o_ + (nd_ - mAy)a )
VP L y (5-1)

where o and ay are the scan directional cosines

Q

[ | x = ¢os ¢, sin 0,

o
y

sin ¢ sin 6
a a

and r is the unit vector for the main beam field point position vector. Equation
(5-1) provides the element excitations for any scan direction. The "principal”

scans are

H-plane: ay =0 (¢a = 0)
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E-plane: o = 0 (¢ = m/2)

Diagonal plane: a = o (¢a = n/4)

FAM treats the Figure 5-7 problem as an infinite array. The active impedances
for the principal scan planes for this problem, as computed by FAM, are shown in Fig-
ures 5-8 (resistance) and 5-9 (reactance). The scan angle is ea. The computational
x = 60. The discontinuities in these curves

f variables were N = 23 and p = q
; s max ma

occur at grating lobe singularities; i,e., at scan angles for which there exist in-
tegers p and q such that 9, given by (3-97), vanishes. (A discussion on grating
lobe singularities appears in the paragraph following (3-58) and in the paragraph
containing (3-61).) The H-plane grating lobe singularity occurs at ea = 23.49°, the
E-plane singularity occurs at ea = 29.22°, and the diagonal plane singularity occurs
at ea = 59.75°. The locations of grating lobe singularities depend only upon lat-
tice spacings.

The broadside scan current on the reference element (m = n = 0) of the Figure
5-7 finite array as computed by the GEMACS moment method code is shown in Figure 5-10.
Also shown are the GEMACS current with the array extended to include 37 dipoles

(same interelement spacings) and the infinite array FAM current.
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Figure 5-7. TFinite triangular lattice dipole array a height h above an
infinite ground screen. Identifying m,n indices are in-
dicated. A voltage source an centrally excites each
dipole.
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5.3 ELEMENT ROTATION IN THE ARRAY PLANE

The effects of rotating all dipole array elements in the array plane (about the
z axis) are of interest. The reference element currents and active impedances were
obtained using FAM for rotation angles (Figure 5-11) ¢ = 0°, 15°, 30°, 45°, 60°, and
90°. This was done at both broadside scan and 8, = 20°, ¢, = 0° scan. Two lattices
were considered: the Figure 5-7 triangular lattice and a dx = dy = 0.8) rectangular
lattice. The active impedances are given in Table 5-2. The reference element cur-
rents are plotted in Figures 5-12 to 5-19. These results indicate greater element

rotation induced impedance and current variations for the 20 degree scan than for

broadside and for the rectangular lattice than for triangular.
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Figure 5-11. Rotation of Dipole Radiator in Array Plane
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3
TABLE 5-2
ACTIVE IMPEDANCES FOR ROTATED ELEMENT ARRAYS
Lattice |Scan Angle ea(Degrees) (¢a=0°) Rotation Angle y(Degrees)|{ Impedance(Ohms) J
Triangular 0 0 78.87 + j 8.614
15 78.4 + 3 7.773
. 30 77.99 + j 7.147
45 78.41 + j 7.803
: 60 78.87 + j 8.607
! 90 77.86 + j 6.806
20 0 99.48 + j41.17
15 96.74 + j39.13
; 30 90.9 + 335.51
1 45 85.35 + j33.52
60 81.56 + j34.5 ;
] 90 78.73 + j37.95 ]
1 Rectangular 0 0 78.71 + j24.42 :
| 15 77.36 + j21.7 1
y 30 75.2 + j17.19 :
E 45 74.26 + j15.17 4
; 60 75.19 + j17.18 ;
{ 90 78.72 + j24.44
'! 20 0 166.6 + j12.52
i 15 158.7 + j15.66
140.1 + j23.63
118.3 + j32.58 ]
99,78 + j39.53 {
83.98 + j44.4 t
|

i
|
3
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5.4 TURNSTILE RADIATORS

The first approximation method was applied to the design of a turnstile radiator
(crossed dipoles excited for circular polarization) for use as an array element. Re-
actance loads were determined to effect the 90 degree phasing between horizontal and
vertical arms. This design avoids having to excite the radiator with the convention-
al two-port source. The array element is shown in Figure 5-20. The array lattice
was that of Figure 5-7. Only broadside array phasing was considered, resulting in
symmetric current about the axes of both dipoles. The need to model the short exci-
ted arm was avoided by passing the source through the junctions. This resulted in

the equivalent problem of Figure 5-21.

The reference element current as computed by FAM, with the complex impedance

loads ZH = ZV.= 0 is shown in Figures 5-22 and 5-23.

The current under non-zero load conditions is easily determined by FAM as dis-
cussed in Section 3.2.7. Also, by considering the radiator as a multiport - one
port for each locad and excitation - and using FAM to obtain the port parameters re-

lating these values of Z, and ZV were determined such that the currents at the load

H
ports were equal in amplitude and in phase quadrature between horizontal and vertical

arms. The resulting complex loads are

yA 0. + j32 (5-2)

H

A
\

L}

-0.2 - j48.8 (5-3)

Since, for energy considerations, purely reactive loads are desirable the small real
part of ZV was set to zero prior to computing the reference element current. This
current is plotted in Figures 5-24 and 5-25. The active impedance for this radia-

ting element in the Figure 5-7 lattice infinite array is 74.4 + j10.9 ohms.
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5.5 CONVERGENCE

Each element of the generalized impedance matrix [ng], given by (3-61), in-
volves a doubly infinite summation in integers p and q. Adequate truncation of this
summation depends on its rate of convergence. As discussed in Section 5.1, Prax and
Qpax must be determined such that the exclusion of all p and q for which |p| > Prax ;
and |q] > Unax in the summation provides an accurate result. Each pq term in the
summation represents a plane wave. Beyond the first few values of [p| + |q| these

waves are evanescent; they exponentially decay away from the array plane. The sum-

mation term corresponding to an evanescent wave is imaginary since the energy impart- i
ed to these waves is entirely reactive. The principal parameters which impact Prax

and q for wire radiators lying in the array plane are dx/a and dy/a. The larger !

these ratios of interelement spacing to wire radius the slower the convergence of

the summation.

The reactance of a '"self-impedanca" (diagonal) element of [ng] was computed

for values of p = Uax 2150 and several values of dx/a = dy/a (square lattice). i

Convergence rates are apparent from these results by plotting (Figures 5-26 to 5-29)

; | ) = IX(M))((IS%%QSO) , (5-4)

versus M where X(M) = imaginary part of a diagonal element of [ng] determined with

p = q = M. Figures 5-26 to 5-29 each correspond to a different wire radius
max max

and each display six curves. Each curve corresponds to a different interelement

spacing. Curve C in Figure 5-26 and Curve A in Figure 5-28 correspond to the same
ratio 50, of interelement spacing to radius. As expected, these two curves exhibit

similar convergence rates.

The size of [ng] is Nz where NS is the number of segments dividing a wire ra- !

diator. Convergence of the reference element wire current with increasing NS is
shown in Figures 5-30 to 5-33. Figures 5-30 and 5-31 correspond to the Figure 5-7
triangular lattice dipole array and Prax = Ymax 60. Figures 5-32 and 5-33 corre-
:’ spond to the Figure 5-7 array with the exception that the wire radius was reduced to
fg a = 0.005Xx and Prax = 4 = 80. Convergence is quite slow in both cases. It was

max
1 pointed out2? that the use of pulse expansion functions in the moment method formula-
|
i

tion in conjunction with an exact representation for the E-field operator is likely

the cause of the slow convergence. The convergence is expected to be significantly
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improved by computing the E-field via a partial difference approximation.
mately seven subsections per wavelength is expected to then be adequate.

fication is presently being implemented.
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APPENDIX A
FIELD FROM AN INFINITE ARRAY OF INFINITESIMAL CURRENT DIPOLES

This appendix contains the derivation of the equations necessary to determine
the radiation from an infinite, rectilinear array of infinitesimal current elenents.
All elements are identical in orientation, progressively phased, and of constant cur-
rent amplitude (Figure A-1). The derivation is based on the work of Munk, Burrell,

and Kornban.!*®

The vector potential for an infinite array can be written as a sum over the

vector potentials of the individual elements
o o
-> ->
dA = dA (A-1)
b 2 e

where the ordered integer pair (p,q) uniquely locates an element in the array. The

individual element vector potentials have the form 1
- 'YR ‘

> udg I e P9 ;

e (a-2)
Pq 4m  pq qu

where { is the element orientation, u is the permeability of free space, d% is the
infinitesimal dipole length, I q is the current on the pqth elemeﬂt,Rpq is the dis-
tance from the pqth element to the field point. The propagation constant, Yy, is as-

sumed complex to add generality to the argument.

The distance qu is given by

L. Hr - rpql] (a-3)

where ; points to the field point and ;;q points to the pqth current element. These

vectors have the following rectangular coordinate representations:

T = xx + y§ + zz (A-4)
+' ~ ~
r = x X + (A-5)
pa _ *pq” T Ypd’

where the array is assumed, for simplicity, to lie in the xy plane (Figure A-1).
For the case of a rectilinear lattice on the array, the coordinates of the pqth ele-

ment satisfy

x = pd

(A-6)
Pq X

Yoq = qdy + pdy (A-7)
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Figure A-1. Portion of Infinite Array of Infinitesimal Dipole Elements
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where dx and d_ are interelement separations and Ay is the array skew paremeter.
(See Figure 3-7 for an illustration of these parameters.) The skew parameter will

be zero for rectangular lattices. The distance qu now can be written as

2 2 2 . 2
qu = (pdx x)© + (qdy + pAy - y)7 + 2 (A-8)

Due to the constant amplitude and progressive phasing of the element currents, the

th : .
current Ipq of the pq  element can be written in terms of a reference current I00 as

-jkr' -8
I =1_e P9 (a-9)

where k is the wave number (k = imaginary part of y) and s is the phase unit vector.
s = s.X + syy + s,2 (A-10)
The current Ipq in (A-9) now assumes the form

-jkpd_s_ -~ jk(qd_ + pAy)s
LI xx Y y (A-11)

The array vector potential can be written as

. uLl .de 2 -jkpd s - jkpAys
k=i —2— E e XX T (A-12)
Ll p
2 -jkqd S, -YR
de = Z e vY e P (a-13)
== Pq

and represents the vector potential for a row of elements. The distance qu is
written for convenience as

qu = [a2 + [qdy - (y - p y)zll’] (A-14)

where

a2 = 22 + (pdx - x)2 (A-15)
The equation for the array vector potential, (A-13), can be transformed to a more
convenient form using Fourler transform methods. The required Fourier transform

pair is

A~3

it it




~va® + (u-u)®)®
F(w) = = 2 2.5 (418
[a® + (w-w )]
jwlt
f(r) = & 5 Héz) (al-yz-tz) where w, is a constant (A-17)
i
2)

The function HO (x) is the 0th order Hankel function of the second kind and f(t)

and f(w) are related by the usual Fourier transform equationms.

©«©

F(w) =f &I feyae (A-18)

-

© jwt
e F(w)dw (A~19)

-0

1

27

£(t)

Using (A-16) through (A-19), the array row vector potential becomes

5 x -jkaqd s
A = Z e vy F(qdy) (A-20)

q=_oo

or, more conveniently,

= jqw,t
de=§ e O Fquy (a-21)

q=..eo

where

t = -ks
y

The infinite series in (A-21) now can be transformed to a faster converging series

using the Poisson sum rule (shifted version)!’ which states

w

= jqu,t
Z e O Fqug) = T Z £(t + nT) (A-22)

ql—m N==ow

A-4

!
:
i
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for any Fourier transform pair F(w) and f(t).

The parameter T is given by

Using (A-22), the array row vector potemtial in (A-21) is

de= T Z £(t + nT)

n=—m
The function f(t + nT) is given by

f t = "

where the constant LAY is picked to be
W, =y pAy

The array vector potential then satisifies

uI. A% =  ~jkpd_s
ak={ -9 _ z: e X 4R
43dy P

p=-x

The row vector potential is

. 2m . 2m

»  dylks + 57 - pay S
-> y y y
dA = e
p Z

n=-w

where
2 T o nA 2%
T [jk] ([sy+dl)
y

= 2T
YR

H(()Z)(a -Y2 - (¢t + nT)Z)

(A-23)

(A-24)

(A-25)

(A-26)

(A-26)

(A-27)

Interchange of summation operations and change of sign on the summation index in

(A-26) and (A-27) yields
ni
© -ivk +  ——
WL ods Jykls, dy] R
e dAn

> o
dA = ¢ ——7—
4jd
3 y

= =00

A-5

(A-28)

A A G imer




T . A

S

where
s _ ndyh
R 0 Jkpdx[sx dxd ]
i = e Y H(2) (akr') (A-29)
p=—m o
where
]
v o Y42 _ n .2
r [ [jk] [sy + dy] ]

It now is necessary to transform (A-29) using the Poisson sum rule. To begin the

(2)

process, the Hankel function, HO (x), is written in terms of a modified Bessel func~

tion of the second kind, Ko(y).

Ky (U) = g%-H§2)(-ju) _ (A-30)

where U is a variable. Using (A-30), the Hankel function in (A-29) becomes

() (ipry = 23 2 2 -
HO (akr"') po KO UVz + (pdx -~ x) (A-31)
where the variable U is chosen to be

2
_ /.2 2 ni |
U _‘/<,+ k [sy +3

y

The row vector potential in (A-29) .then becomes

w -3 _ DAyA
A = e = K, z (pd, - %)
p=_m

To transform (A-32) using the Poisson sum rule, the following Fourier transform pair

is required.

g(t) = &k, [A (82 + (e-0)%1" ] (a-33)
2, 2,k
G(w) - 2j e"B(A +w ) ‘jWC (A_S[.)

(A2+w2)5

)
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where A, B, and { are constants. The row vector potential in (A-32) takes the form

@

=ipt,Q
A = E e 0 g(PTO)

n
p=_m
where
t = p'ro
TO = dx
= _ hayh
Q= ks, - 33

Xy

and the constants A, B, and ¢ are chosen to be

2
U =%2 + kz[s + nA ]
y dy

A=
B=2z2
=X

The Poisson sum rule for this transformation takes the form

o  ~ipT,Q ©
0 1
z: e glpty) = — E G(mW + Q)
p=-® 0 m=-%
where
w=2r
0

Upon transforming (A-35) using (A-36) the row vector potential becomes

s + mA _ nAyA

R 2 ® -Jkx | s, _cg d.d Y8,
dA_ = &l E e y e
n ydx E_
== - OO z
where y

(A-35)

(A-36)

(A-37)

ol
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The total array vector potential then becomes

dK—QUI d!L E -yr g+
2vd d Z

=—w m==w

> a2
for r*z <0 where

L A_nyN)e kL L0, g
&+ Y [Sx+md d d x + Y Sy+d ytgzz
X X'y, y

The array vector potential in (A-38) thus is seen to be representable as a doubly

infinite sum of attenuated plane waves. The fields are obtainable from the vector

potential in (A-38) by use of the relations

ai

Lox &
U

-
B =-L vx dan

jwe

The final results are expressed in terms of the E field.

o - P e
dE ~ nIOOdR, Z Z _Jkr'gig
T 2d.d € +

> A
for r-z20 where

>

h, | PP

== (L x
g 4

(A-38)

RS

(A-39)
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APPENDIX B

LENS CELL SIZE
The size of a cell is limited mainly by module-to-module phase settings that
differ significantly from those of linearly progressive phasing. The first approxi-
mation analysis, applied separately to each cell, assumes linear progressive phasing
between modules in a cell (Sections 3.2.1 and 3.2.6). A nonlinear progressive phas~
ing across a flat lens is necessary if a target return is to be focused on the radar

receiver; however, this deviation from linear will be minimal across a sufficiently

small cell. A typical SBR lens cell size is determined here. A circular wavefront

1
.

Figure B-1l. Linear Modeling of a Circular Arc

segment is indicated in Figure B-1.

The maximum deviation from linear is

- ~21%
2, Jaigz
w = "1' + _ -r (B'l)
L 2 J
From (B-1), the segment length for a specified error, 9y, is
i
d=2 [(c+? - 127 (B-2)

This length represents the height of a cell of containing modules, with linear pro-
gressive phasing that approximates the actual phasing to within an accuracy of
Y wavelengths.

The cell height required to maintain a specified maximum phase error will

vary depending upon the distance of the cell from the lens center. The relation-

ship of cell size relative to distance from the lens center is show in Figure B-2.

i il
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Figure B-2. Cell Height Relative to Distance from Lens Center

The radius of curvature of the wavefront at the lens increases as the distance from
the lens center increases. The cell size, therefore, also increases for the same
accuracy; for example, for a ¢ = 0.1) deviation, and feed to lens separation of

r = 444X, the length, d, at the center of the lens is d = 18.8)A. If the lens radius
is approximately 146X, then the wavefront curvature radius at the edge of the lens
is r = 468X and 4 = 20A. 1In general, the cell height, d, is calculated as follows

with reference to Figure B-2.

_ -1 d, -
6. = tan 2?; (B-3)
8 = t:an-1 %5 (B-4)
c
where
d, = cell height at lens center
rc = radius from receiver to cell center
Yc = distance from lens center to cell center
Now
Yc + d/2 = r_ tan (6 + ec) (B-5)
Yc -d/2 = r  tan (6 - OC) (B-6)
Therefore,
d = r, [tan (6 + ec) - tan (6 - ec)] (B-7)

For the above example, the cell height at the edge of the lens (ec = 1.29°, ¢ = 18°)
is d = 22.2), while at the lens center d, = 18.8).

B-2




A simple approximation to the number of cells needed to model a lens to within
an error of ¢ is obtained by setting all cell heights d = d,. The number of cells
needed to model the lens then is calculated by dividing the lens into concentric 3
rings and subdividing the rings into cells. The width of a cell is set equal i
to the height of the cell. The number of cells per ring increases for rings
farther from the lens center. In the above example, since the lens radius is
148X, the number of rings needed to cover the lens is eight. The number of

cells per ring is shown below (0 ring is the inside ring).

Ring Number Number of cells

4
10
16
22
29
35
41
47

~NouwnmSwNEoO

The total number of cells needed to cover the lens is 204. A lens portionm,

subdivided into cells, is shown in Figure 4-3.
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