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EVALUATION

The objective of this effort is to develop and validate a simlation

of the space-based radar (SBR) phased array lens system. This report

contains the simulation theory and inmlmentation methods used to set up

the simlation. The key accnolishment of this effort has been to

establish a new nethod to perform an analysis, to the accuracy desired,

of a large SBR phased array lens system that includes all electrical

factors that influence the RF far field pattern. Also, the key parts of

the simulation have been validated.

This effort is Dart of RADC TPO-3A.

RUSSELL C. STEENROD, Capt USAF
Project Engineer
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SECTION 1

INTRODUCTION

The objective of this contract is to develop and validate a computer program

for simulation of space-based radar (SBR) phased array lenses. This simulator will

be used to analyze the performance of candidate lenses. The parameters of primary

concern are radiation power gain and pattern characteristics.

A typical SBR is shown in Figure 1-1. The transmitter provides the space feed

that illuminates the lens during radar transmit, The space feed may be in the form

of several independently controlled beams that provide lens radiation pattern shap-

ing, adaptive nulling, and time delayed lens sector illumination. (The time delayed

compensation is required because of significantly different transmitter-to-lens path

lengths to different points on the lens). Beam steering and, possibly, amplifica-

tion are performed by the lens.

A lens comprising two arrays of metallic radiators sandwiching a ground screen

currently is being modeled in the simulator. A typical lens of this type is showm

in Figure 1-2; for simplicity, dipole radiating elements are indicated. The simula-

tor also will be capable of analyzing other element types; e.g., folded dipole,

bowtie, turnstile, and parasitic (Figure 1-3). Focusing and scanning of the len3-

transmitted main beam is accomplished by electronic modules interconnecting the

radiating elements between the illuminated and nonilluminated arrays (Figure 1-4).

These modules also may provide power amplification.

An accurate analysis of a large space-based phased array lens, comprising hun-

dreds of thousands of elements, is a formidable problem. Infinite periodic array

theory alone is not adequate when, for example, edge effects must be considered.

A space-based lens is expected to have stringent constructural and deployment con-

straints that will result in, at best, a piecewise periodic lattice; e.g., a lens

composed of wedge-shaped gores may have nonperiodic spacings in the vicinity of

gore interfaces. Another source of nonperiodicity may be inherent in the electronic

modules. They may not be identical in the event of selected power failures.

(Simple progressive phasing between module settings, however, can be treated with

a variation of "standard" infinite array theory as described in this report.)

The large number of elements in the lens arrays and the expected nominal peri-

odicity within sections of each array suggests obtaining a first approximation of

element currents from an infinite array analysis of each section since, within a

1-1
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section, periodic elements and nearly uniform module amplitude settings may be

assumed. It is expected that, for limited scan angles, the currents on many ele-

ments within a section will assume these first-order solutions. The phased array

simulator, therefore, makes extensive use of infinite array theory.

A successive approximation method is employed whereby infinite array analysis

provides a first approximation of array currents and patterns. Higher approxima-

tions then are obtained, with relative ease, by methods that draw upon these first

approximation currents. The higher approximations provide corrections to the cur-

rents on elements in the vicinity of discontinuities in module amplitude settings

or periodicities; e.g., lens edges and section interfaces. Scattering from nearby

structures, such as supports and hinges, also may be accounted for in the higher

approximations.

The first approximation patterns, although involving large numbers of elements,

are computed from closed form expressions. Since the number of elements with cur-

rents perturbed from their infinite array values is expected to be relatively small,

higher approximation "correction patterns" may be computed by direct summation of

the field from each element. The superposition of the first approximation and cor-

rection patterns results in the overall pattern. This approach takes maximum advan-

tage of the nominal periodicities and largeness of the arrays. It is as computa-

tionally manageable in the radar receive mode as in the radar transmit mode without

resorting to reciprocity. This is important since the modules may well be nonrecip-

rocal. This approach also may avoid the need for a fast Fourier transform (FFT)

for pattern computation. An FFT is not practical if, for example, fine angular

pattern resolution in the vicinity of a null is required.

An infinite array analysis usually assumes plane wave excitation. During radar

transmit, the illuminating field is expected to differ smoothly from a plane wave

across the face of the lens. This difference is taken into account by expanding

the beamformer field in plane waves and analyzing the lens separately for each

plane wave component.

The first approximation infinite array method employed here is an extension of

a moment method, plane wave expansion technique recently developed by Munk and

Burrell.1  It is applicable to lens arrays composed of arbitrarily-shaped wire radi-

ating elements. The elements may be inclined with respect to the array plane. Feed

line scattering, amplitude and phase adjust modules between the arrays, and an

imperfect ground screen also are accounted for. In particular, this technique

1-3
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permits the modules to be progressively phased, although the module-to-module ampli-

tude adjustment is assumed uniform throughout. The plane wave expansion technique

facilitates computing the array-to-array coupling through the imperfect ground screen

and suggests straightforward extensions, not discussed here, applicable to dielec-

tric support sheets (e.g., Kevlar and Kapton) on which the radiators may be mounted.

The infinite array lens analysis facilitates computation by providing the first

approximation solution to a perturbation problem; it also provides clues to the per-

formance of several important finite (but large) lens characteristics. For example,

the array active impedance variation with module phase setting, an important para-

meter for module designers, can be assessed directly. The effect of imperfect

ground screen "feedback" from the target side to the feed side of the lens also can

be observed.

A general discussion of the simulator and its current design status is contained

in Section 2. A detailed theoretical discussion follows in Section 3. The program-

ming and data flow are discussed in Section 4. Preliminary results and validation

are given in Section 5.

1-
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SECTION 2

DISCUSSION

2.1 SIMULATOR CAPABILITIES

The simulator for analyzing candidate SBR phased array lenses must predict the

RF impact of the lens on the following SBR gain performance factors:

1. Beam scan coverage,

2. Main beam and sidelobe beam widths, positions, and levels,

3. Null depths and positions,

4. Effective radiated power,

5. Available received power, and

6. Bandwidth

These performance factors must be evaluated as a function of several lens parameters:

1. Structure fabrication and deployment variations

a. Array lattice tolerance

b. Element orientations and locations relative to ground screen

2. Space environment effects (heating, etc.); e.g., lens warping

3. Module phase and amplitude variations

a. Production tolerances

b. Failures

The sumulator, besides analyzing large periodic planar arrays, thus must account for

the effects of lens warping, discontinuous periodicities, and edge elements.

The ground screen for a candidate lens is expected to be of coarse mesh construc-

tion to minimize overall weight and temperature gradient effects. For an active lens,

where the modules impart gain, the isolation between illuminated and nonilluminated

arrays may not sufficiently suppress the "feedback" penetration coupling between

these arrays. This interarray radiation coupling must be included in simulations.

The array lattices may be triangular or rectangular; thus, sinulations must

apply to general rectilinear arrays. The array elements may be turnstiles, dipoles,

folded dipoles, etc. They may have parts inclined with resnict to the array plane;

e.g., V-type dipoles. The effects of scattering from the feed lines and unbalanced

mode feed line radiation also must be considered.

A phased array lens simulator, therefore, must consider many effects in accu-

rately modeling SBn lenses. This capability of the simulator leads naturally to its

2-1
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use as a lens design tool as well as a means for evaluating designs. The interac-

tion between the simulator and the desi'ning membranes (radiatin- elements and

ground screen), modules, and space feeds is shown in Figure 2-1. The membrane

designers can decide on array lattice size and type (rectangular, equilateral

triangular, etc), ground screen transmission characteristics, and radiating ele-

ment physical constraints. The simulator then can be used to "optimize" the choice

of a radiating element type, shape, and size within these constraints such that

active impedance variation with scan is minimized. The latter is important in

module design.

2.2 CURRENT STATUS, FUTURE IHPROVEIIENTS, AND EXTENSIONS

The status of key components of the phased array lens simulator is shown in

Table 2-1.

The theory category is subdivided into "general" and "detailed." A detailed

description includes all equations down to the lowest level. A completed "code"

refers to flow charts as well as a computer program. A satisfactory "debug" indi-

cates the code is implemented and providing reasonable results. A successful

"validation" connotes agreement with other methods in solving special problems.

These other methods could be theoretical, computational, or experimental. Validated

results are presented in Section 5. A detailed plan for validating all aspects of

the simulator is being prepared and will be published in a separate document.

The only component of the simulator that is not expected to be completed under

the current contract is "support structure scattering." A major effrot is required

here to implement a geometrical theory of diffraction within the higher approxima-

tion moment method code. Another extension to the simulator, not currently envi-

sioned, that fits well within the general framework of a plane wave expansion moment

method, is the capability of including the effects of dielectric support sheets such

as Kevlar or Kapton. A number of improvements for increasing the computational effi-

ciency and data handling also can be investigated in subsequent efforts; e.g.,

optimizing the choice of current expansion functions in the infinite array moment

method technique. Other methods for improving efficiency will be implemented if

time permits (Section 3.2..',).

2-3



TABLE 2-1

PHIASED ARRAY LENS SI MULATOR DES TGN/ IMPLEMENTATION STATUS

Theory Code Debug Vaiain Sect ion

General -Detail vidtoj_______

Data Mana~e-cent X X 4

Fir-st _!yjpproximnat-o-n 3.2, 3.4

Impednnce Mfatrix

Planar Eh:;unts X X X X X 3.2.2, 3.2.4

Feed Line Scattering X X 3.2.3

Fecodback Coupling X X X 3.2.1, 3.2.6

Coeralized Module X X 3.2.6

Space Feed x 3.2.5

Radiation Pattern X X 3.4

I'hrAj~pro> m~aionls 3.3

Currents X X 3.3.1

Radiation Patte rn X X 3.4

Support St-rcr ure X 3.3.2
Scattering
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SECTION 3

THEORY

This section describes the theoretical foundation for the phased array lens

simulator. Although the theory is directly applicable to active lenses composed of

arrays of metallic radiators (dipoles, turnstiles, etc.), it can, with straightforward

modification, be extended to apply to other lens types such as those composed of

microstrip arrays. The theoretical development is not complete. Most missing de-

tails, however, are relatively minor and are expected to be completed and implemen-

ted by the end of the current effort.

A theoretical overview is presented in Section 3.1. This is followed (Section

3.2) by a detailed discussion of the application and generalization of infinite

array theory and the moment method in arriving at a first approximation to the array

element currents. The general theory is described in Sections 3.2.1 and 3.2.2 as

it applies to lenses restricted to rectangular array lattices, single-port array

elements, planar radiating elements (e.g., no feedline scattering), and a special-

ized module model. The theoretical extensions that remove these restrictions, model-

ing of the space feed illuminating the lens, and techniques for increasing computa-

tional efficiency are discussed in Sections 3.2.3 through 3.2.8.

The theory for obtaining corrections to the infinite array currents is discussed

in Section 3.3. A higher approximation method is developed that employs the infi-

nite array currents as the ivirial solution in an iterative procedure that accounts

for array edges, module failures, support structure scattering, etc.

The theory for efficiently computing the fields radiated by the array element

currents is contained in Section 3.4.

3.1 OVERVIEW/

The lens array simulator solves a steady state (ejt'it temporal variation assumed)

problem by a successive approximation method. This method is particularly appli-

cable to lenses composed of many radiating elements (perhaps hundreds of thousands)

in each of two parallel arrays. The first approximation is based on infinite array

theory. This provides approximations to such parameters as radiating element cur-

rents, active impedances, coupling between arrays, and radiation patterns (by trun-

cating the infinite array after the currents are found). The resulting radiating

element currents are used in obtaining successively better approximations of these

3-1
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parameters. In this manner, the nominally periodic nature of each of several sec-

tions of a lens can be used to advantage in simplifying the overall analysis. The

impact of such effects as "feedback" radiation coupling between arrays and active

impedance variation with scan can be assessed with infinite array theory alone since

most of the elements are expected to appear as if they reside in infinite arrays.

The first approximation thus is of use in lens design; e.g., for optimizing radiat-

ing element type (dipole, folded dipole, etc.) and ground screen design within such

constraints as module load impedance limitations, overall lens weight, and cost.

3.1.1 First Approximation

Infinite array theory is applicable to large numbers of identical elements

arranged periodically. A candidate lens is expected to be largely periodic; however,

due primarily to manufacturing and deployment constaints, this periodicity is ex-

pected to differ between sections of the lens. In the first approximation method,

since most sections will be large, infinite array theory is applied separately over

each section -- called a "cell." The first approximation current solutions usually

are highly accurate within each cell; they may be less accurate near the cell bounda-

ries. Higher approximations for the currents on these elements will provide corre-

sponding corrections to the radiated field (Section 3.1.2). Other anomolies in peri-

odicity within a cell due, for example, to element module failures, also will be re-

solved by higher approximations. The number of elements requiring analysis beyond

the first approximation is expected to be relatively few (perhaps hundreds rafher

than hundreds of thousands).

Each cell is defined by a periodic lattice, progressive module phasing, uni-

form module gains, uniform input and output impedances, and identical element orien-

tations. Subdivision into cells is not determined solely by periodicity, but also

by relative uniformity of module characteristics and settings, as well as other con-

siderations discussed below.

The illumination across a cell during radar transmit will not be that of a

uniform plane wave. Application of infinite array theory, therefore, requires plane

wave decomposition of the illuminating incident field. Each plane wave excitation

is analyzed and the resulting currents and patterns superimposed. Since a component

plane wave excitation may have a phase distribution across the lens that differs

from the progressive phase setting of the modules, and since the arrays may'signifi-

cantly couple via RF penetration through the ground screen as well as through the

modules, "standard" infinite array theory alone is not adequate. (The reference to
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standard infinite array theory here refers to an analysis of a periodic array of

identical structures (elements) -- either plane wave or lumped circuit source ex-

cited -- where the latter are progressively phased along the array plane. Array

elements generally are not identical for the lenses under consideration due to pro-

gressively phased modules.) The simulator therefore includes an extension to stand-

ard infinite array theory whereby "feedback" modes are identified. Each feedback

mode assumes element currents related by (3-1) and (3-2); for simplicity, rectangular

lattices are assumed.

-jkmd (s +u,, ) -jknd (s +u i )la aio xX x y y y(31

mn(u) 00(u)

Ib I b -jkmdx Is x+(u+l)a I -jknd ys y+(u+l ) y(IooI ue xxeXe yy(3-2)
mn(u) 00(u)

Equation (3-1) applies for the illuminated array (array a); (3-2) applies for the

nonilluminated array (array b)

where (see Figures 1-2 and 1-4)

m and n are the array element identifying integers (positive and negative
where m = n = 0 refers to the "reference" element)

d and d are the x and y interelement spacingsx y

and y are the module x and y directed progressive phase "directionalx y

cosine" components

s and s are the incident plane wave x and y directional cosinesx y

u is the feedback mode integer (u = 0, 1, 2, ..

k is the propagation constant

The total currents, I and I , are obtained by superimposing all feedback mode
mn mn'

currents; i.e.,

a a (3-3)

mn mn(u)
u

i
b  

= 
b

mn I mn(u) (3-4)

The feedback mode reference element currents can be determined iteratively,

under certain conditions, by solving first for the zero th mode currents (u = 0) and

so forth (Section 3.2.1). Each higher order mode current is dependent on previous

mode computations, but each involves essentially standard infinite array theory.
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That (3-1) is a reasonable representation can be argued as follows. The

array a current phasing is influenced by the phasing of the incident field. The

modules impart an additional phase prior to inducing array b currents. The result-

ing array b currents radiate through the ground screen and induce an "additional"

component of array a currents. The latter, phased by the modules, induces a corres-

ponding component of array b currents and the process continues.

The standard infinite array analysis employed is based on a plane wave expan-

sion formulation for the field from an infinite array of current dipoles developed

by Munk and Burrell.' This formulation is incorporated into a "pulse expansion

function, pulse weighting function" moment method solution for the element currents.

Radiating elements that can be well represented as identical arbitrary collections

of bent wires of differing radii thus can be analyzed by the simulator. The major

portion of the computation time is used in determining a corresponding generalized

impedance matrix [Z]. This matrix relates pulse expansion functions in typical mo-

ment method fashion with the understanding that each expansion function now is a

progressively phased infinite array of current "pulses." It is necessary to solve

for the reference element current only since the unifoLm amplitude, progressive

phasing of the element excitation implies the same relationship for the element

currents. The matrix equation that must be solved is

[Z I (3-5)

where the column vectors I and V correspond to the reference element current distri--

bution and excitation, respectively. The number of simultaneous equations expressed

by (3-5) is limited to the number of pulses on a single element; thus, "matrix

solution" consumes little computational time. By far the most computational time

is used in computing the matrix elements of [Z]. Each matrix element computation

involves a truncated doubly-infinite series which is slowly convergent; also, [Z] is

not completely independent of excitation,. The matrix must be recomputed, for exam-

ple, for a change in scan angle.

First approximation radiation patterns are computed by superimposing the ra-

diation from each feedback mode current to obtain "total" cell patterns and then

superimposing these cell patterns. Since each cellular feedback mode current is a

uniform amplitude, progressively phased distribution -- as indicated by (3-2) --

each corresponding radiation pattern is computed easily by pattern multiplication.

The simulator employs a closed-form expression for the array factor which applies to

a general rectilinear lattice and corresponding cell boundary.
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Lens warpinug is modeled in the simulator by tilting ceils to best fit the

curvature. Since each cell must be planar, the accuracy with which a warp is to be

modeled vill impact on the choice of cell size. Greater accuracy usually will re-

sult from larger numbers of smaller cells.

3.1.2 Hi ,her Approximat ions

First approximation currents on array elements near cell boundaries and dis-

continuous periodicities (e.g., module failure) within a cell are likely to be in

error. Corrections are provided by higher approximations; thus, the higher approxi-

mation method is applied only in the neighborhood of cell boundaries and other dis-

continuous periodicities. "The higher approximation method can include the effects

of scattering from support booms and struts, ground screen edges and creases, etc.,

in a straightforward manner.

The higher approximation method makes use of first approximation feedback

fields penetrating the ground screen and the fields radiated by first approximation

currents on neighboring elements. These fields, in addition to the illuminating in-

cident field, form a known excitation from which the second approximation curre.,t on

(2)a (2)b
an array a element, I ( ) , ancd the current on its array b counterpart, I ( ) , are

computed. This computation employs a "free space" thin wire moment method in a

straightforward manner. Since the radiation coupling through the ground screen is

approximated by the first approximation array h to array a feedback fields, the only

coupling between the arrays that must be solved "simultaneously" is the module feed

line coupling. The latter is incorporated easily in the moment method. The number

of neighboring elements, L, that must be considered in this computation is determined

by observing the convergence of I(2)a and I(2)b as L is increased. This number is

not expected to be large (L < 40) for reasonable interelement spacings ('_ X/2) and

most scan angles. The order of the moment method matrix equation that must be

solved -- one for each array (a and b) -- is limited to the number of expansion

functions on a single radiating element.

The third and higher approximations are obtained in a similar manner. Each

approximation uses the previous approximations's currents to obtain the contribution

to the exciting fields from neighboring elements. The feedback field remains the

same as that computed in the first approximation except for a scalar multiplicative

adjustment. The latter is determined as the ratio of most recent port current approx-

imation to first port current approxamation for the array b element under considera-

tIon.
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The corresponding higher approximation radiated field correctiois are ob-

tained by summing the fields radiated by the relatively few array elements that

undergo higher approximation current corrections.
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3.2 FIRST APPROXIMATION CUFRENTS

A combined infinite array/moment method technique is applied in obtaining a

first approximation of the array element currents in a cell. (A cell is defined in

Section 3.1.1 as a section of a lens.) This method is an extension of that developed

by Munk and Burrell.' It is applicable to a large lens section (cell) composed of

identical arbitrarily bent wire radiating elements in each of two parallel arrays;

each array nay have different elements. It also accounts for amplitude and phase

adjust modules interconnecting the arrays and an imperfect ground screen between the

arrays. In particular, the technique permits the modules to be progressively phased

although the module amplitude adjustments must be uniform throughout the cell.

3.2.1 Port Representation and Solution

A lens formed by two infinite dipole arrays, a and b, in periodic lattices on

either side of a finitely conducting infinite ground screen is shown in Figure 1-2.

The two arrays and ground screen are parallel. A coordinate system with x and y
-*ex

axes located on the screen also is shown. An exciting plane wave, E , is assumed

arriving from the negative z side (behind the screen) and directly incident on array

a (Figure 1-4); amplitude and phase adjust modules connect array a to array b. Array

a faces the radar transmitter during radar transmit; array a faces the target during

receive. Array a thus is always on the illuminated side and array b is always on

the nonilluminated side.

The following analysis of this lens is not restricted to dipole array elements.

Each element can be a collection of thin bent wires; e.g., folded dipole or dipole

with parasitic scatterers. For simplicity, all wires comprising an element are as-

sumed to lie in their respective array plane. This restriction is removed in Sec-

tion 3.2.3, where elements inclined with respect to the array plane and feed line

scattering are considered.

Array a elements may differ from array b elements; however, each element within

an array is assumed identical and lying in a rectangular lattice. A generalization

to arbitrary rectilinear (triangular, etc.) lattices is described in Section 3.2.4.

The analysis is structured around a port representation. Each pair of termi-

nals entering an array element is assumed to be a port; thus, unbalanced mode cur-

rents at each terminal pair are neglected. The module-to radiator feed lines are

considered part of the modules. Multiports and unbalanced mode currents are consid-

ered in Section 3.2.7.
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The port voltages and currents* are shown in Figure 1-4. The superscript

(a or b) indicates the array and the subscript the element location; e.g., rn denotes
th th

the m column from the yz plane and n row from the xz plane. The m = 0 and n = 0

elements lie on the z axis and are referred to as the reference elements.

Array a and array b port currents are determined by requiring that they satis-

fy the port boundary conditions

Va . Vaa + Vab + Vex (3-6)
mn mn mn mn

Vb = Vbb (3-7)
Mn mn

where
Va and Vb ia ib th

are related to I and I via the mn module (including feed
mn m mn mm

lines) two-port parameters
aath = , hegoudexre

Vaa is the array a mn element port voltage with e 0, the ground screenmn

assumed perfe,2tly co;ducting, and the array a ports excited 
with the I

a

mn
as ideal current sources (Figure 3-1)

Vb b is the array b counterpart to Vaa
mn mn

Va b is the array a mnth element port voltage with e = 0, all array a ports
mn b

open-circuited, and the I mas ideal current sources exciting the array b
mm

ports (Figure 3-2)ex i theth
Ve x is the array a mn element port voltage with all array a ports open-
mn

circuited and the ground plane assumed perfectly conducting (Figure 3-3)

In arriving at (3-6) and (3-7), the finite conductivity of the ground screen

is considered significant with regard to feedback from array b to array a. Severe

pattern degradation may result if the module amplification is comparable to the

ground screen attenuation; therefore, it is important to preserve this effect in

the model.

The solution of (3-6) and (3-7) is based on techniques recently developed by

Munk and Burrell.' Each array element is modeled as piecewise linear and the array

is viewed as a collection of infinite arrays, each one corresponding to one linear

segment. Since the excitation is assumed to be a plane wave, the relationship of

*Phasorq associated with e j t temporal variation are assumed throughout.
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the current on tile mn element to the reference (00th ) element current is known.

It therefore is necessary to solve for the reference element current only. A moment

method procedure can be applied where each expansion function is an infinite array

of currents corresponding to one linear segment. The field from each "expansion

array" is expressed as a doubly infinite sum of plane waves. One advantage of this

plane wave expansion is that penetration through imperfect ground screens becomes

straightforward.

The method presented here is an extension of Munk and Burrell's work in that

interconnecting modules are introduced between arrays and, more importantly, the

modules may differ from element to element. In particular, the modules will intro-

duce a linear progressive phase and thus differ in a well-defined manner. The mod-

ules are identical for the plane wave excitation

-jksxx -jks y -jks z
-se 1 -'e 1
Eex (r) = EeX () e e Y e (3-8)

The induced port currents become

-jkmd s -jknd s
mn e xx e Yy (39)

b -jkmd s -jknd s
I 00 e e (3-10)n 0

where

r xx + yy + zz is a field point

x, y, z are the rectangular coordinate system unit vectors

k is the propagation constant

s, s y, s are the directional cosines of the propagation direction of E

d and d are the x and y interelement spacingsx y
aand h

Iaad Ib0 are the reference element port currents.

The justification for (3-9) and (3-10) can be demonstrated from linearity considera-

tions; a similar form applies to the induced port voltages. Equations (3-9) and

(3-10) are not sufficiently general if the modules are progressively phased. If the
i th

phase imparted by the mn module with respect to the reference module is
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-k (md a + nd ay), the feedback phenomenon due to the imperfect ground screen
xx y y

suggests* port currents of the forms

n a=Zjkm0 () (s X +uO) x -jknd (s +uan)
mn =O a0.u , jmxS+U~) yy

u=

b  = - lo0,ubt -jkmd rS +(u+l)u x I -jkndy[sy +(u+l)a]y I
= E I e X'xe (3-12)

mn u= 0
a b th

where u is referrcd to as a feedback mode number. The I a andI b are the u
00(u) 00(u)

mode coefficients of array a and array b reference element port currents determined,

as described below, by satisfying (3-6) and (3-7) with (3-11) and (3-12).

aa bb ab
With port currents expressed by (3-11) and (3-12),V., VM, V in (3-6) and

(3-7) become

aa e-jkmdx (sx+Ux) -jkndy (s+Uxy)v aa 
=  

za Isx+U xSy+Uy le0(u) e e(3-13)

u=O

vbb = z b b  -jkmd x[sx +(u+!)a x
Van S +(u+l)a ,+(Ul)y 0(u) (3-14)

u=O y y
-jknd [s +(u+l)a

y y ye

ab ab b -jkmdx [s x+(u+l)a x
mn ' s +(U+l)axs +(u+l)a I00(u) e (3-15)

u=O

e-jkndy [s y+(u+t)a y

whore

zaa is the array a active impedance when driven by port currents (3-9) and
Sx'Sy the ground screen perfectLy conducting

bb
z is the array b active impedance when driven by port currents (3-10) and

x'y the ground screen perfectly conducting

The modules impart a phase on the array a curre-nts. The resulting array b currents

radiate through the ground screen and induce an "additional" component of array
a currents. The latter, phased by the modules, results in a corresponding com-

ponent of array b currents and the process continues.
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ab
z ,S is the active mutual impedance from array b ports to array a ports with
Sx'Sy array b excited by port currents (3-10) and array a open-circuited

(feed lines removed)

Specifically,

Va
aa V0 (3-16)

SxS Y a0 perfect ground screen

)-b

bb 0 (3-17)
Z ax'5y Ib

100 perfect ground screen

ab V00 (3-18)
z = --f

s ,s b
X Y 100 imperfect ground screen, array a ports open-circuited

Ian b

where I0 0 and I0 are reference element port currents with the arrays excited by port

currents related by (3-9) and (3-10). A moment method technique for computing

aa bb ab
z bz and z based on Munk and Burrel's work, is described in

SxS xSy Sxy,

Section 3.2.2. An expression for the short-circuit array a port currents

-jkmd s -jknd s

TM 00 e e (3-19)

due to gex with the ground screen perfectly conducting, is determined in Section 3.2.2.

The Vex in (3-6) then are given by
mn

Sex z aa I ex z aa I ex e-jkmdX s -jkndysy (3-20)

ex a
where the reference direction for I is the same as for I in Figure 3-1. Equa-mn 

m

tion (3-20) can be derived by considering the V
e x in Figure 3-3 as ideal voltage
mn

sources. The current flowing through these sources then is the superposition of cur-

rents due to e with the V sources shorted and the V sources with E removed.mn m

Since the open-circuit port currents are zero,

Vex ex aaTe x +  / z = 0 (3-21)

and (3-20) follows.
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th th
The mn port voltages and currents are assumed related by the mn module

(including feed lines) impedance parameters according to

Va . aa Ia  _ zab Ib (3-22)
mn mod mn mod mn

b ba -jkmda -jknd a bb b (3-23)
mnV -Zmo e e yya - z
m mod mn mod mn

For simplicity, the module progressive phase setting appears only in the array a to

array b mutual impedance parameter. General module models are considered in Section

3.2.6. In combination with (3-11) and (3-12), (3-22) and (3-23) become

a-jkmdx (s x+uax ) -jknd y(s y+ua y)

Vm mod - OO(u)e e

u=O

(3-24)

ba b -jkmd x[s x+(u+l)a x] -jkndy [s y+(u+l)ay

-Zmod lo0(u ) e e
u=O

Vb  zba a e-jkmdx [s x+(U+l)Cx ] -jknd ys y+(u+l)ay ]mb - mo ZI ( x xe (3-25)

m od 00(u)e
u=O

odbb u 0 b( e-jkmdx [s x+(u+l)a x] -jkndy [s y+(u+l)ay

-zd 1O0(u)e e

Equations (3-6) and(3-7), in combination with (3-13), (3-14), (3-15), (3-20),

-jkmd s -jknd s

(3-24), and (3-25) become, after dividing through by e e y y and group-

ing terms,

u -jkmd x ux -Jkndyuay a + ab e-jkmdx(u+l)ax
za a e e a + U+l

u0 u100(u) =O (3-26)

-jkndy (u+l)ay Ibn aa ex
e yO0(u)] = , I00

x y

Oe-jkmdx(U+l)a x e-jkndy(u+l)a y [ z b a d Ia + zbb I00(u)] 0 (3-27)

e- mod 00(u) U+l 00() 0 (-7

where

aa aa + aa
u mod sx+Uax , sy+uny
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ab ab +ab
U+l mod s x+ (u+l)c ,tXs y+(u+l)ot

bb bb +bb
=+ Zmod s s +(u+)OLXI ,+(u+)cL

Since the arrays are assumed infinite, corresponding to any practical module

imparted phase shifts, -kmd Xa - knd y t , the phasing of the modules repeats every

rectangular section of M by N elements; i.e., M, M', N, and N' can be found such that

kd a M
2xxM (3-28)

2 Tr N(3-29)

Equations (3-26) and (3-27) then become

-2 e 2 
Trum'/M -j2 nuN'/N aa a u -j2Tm(u+l)M'/m (3-30)

'-j2Trn(u+l)M'/M -j21Tn(u+l)N'/N Fba a 4 bb 1b 1
___ e e ILmod 00(u) u+l 00(u)]j- (-1

These equations must hold for all m and n. Premultiplication of each by

j21rmvM'/M j2irnvN'/N
e e ,where v is an integer, summation over one "progressive phase

period" 1 < m < M and 1 < n < N, and interchange of summations results in

N 1[ej21rm(v-u)M'/M e J21Tn(vu)N'/N I zaa I00(a

u=0 n1l m1-
+ j2im(v-u-1)M'IN J2,nn(v-u-I)N'/N zab Ib (-2

e ~+1 00(u) (-2

-2rvM/ '-.' N'/N zaa ex
-ej2mM/ e snv 00

-- xy
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[ mod 100(u + Zu~1 lo() b

Now
N M

ej2 m(v -u)M'/M ej2n(v-u)N'/N (3--)

unless (v-u)M'/M and (v-u)N'/N are both integers; sinilarly

tI eJ2 m(vul)M'/M eJ27In(v~ul)N'/N - (3-35)

u n=l m 7-1

unless (v-u-1)M'/M and (v-u-e)N'/N are both integers. Assune that only lower ordered

feedback nodes are significant, as is expected to be the case if the ground screen

attenuation sufficiently exceeds nodule amplification. Then, if M or N is suffi-
ciently large, it follows that the terms in (3-32) and (3-33) containing the left-

hand side of (3-34) can be assumed nonzero only for u =v and the terms containing
the left-hand side of (3-35) can be assumed nonzero only for u = v - i.

The solutions to (3-32) and (3-33) then are determined iteratively as follows.

From (3-32), with v = 0,

aa Iaa aa ex (3-36)
0 00o s Xs 00

aaz
z5 ,s 1eax y Iex (3-37)

00(0) aa 00
z0

From (3-33), with v = I,

ba a bb bb (3-38)
Zmod I00(0) + I  I00(0)

ba
Ib mod a (3-39)

00(0) bb 00(0)a1
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or
ba aa

b mod Z '
~00(0) bb .aa YC 3-40)

z 1z0

From (3-32), with v =1

aa aa(, + ab b
00(1) 0 1 100(0) 0(-1

ab

1001 ) (3-42)00(1) aa0()

Z1

or

ab ba

00(l) za b b aa '00
1 1o s0sT 33

And so forth; in general,

eiab

a u 1  (3-44)
'00(u) Iaa 00(u-1)

U

ba

b z md I a(3-45)
00(u) zbb 00(u)

U+l

for u =1, 2,....In conjunction with (3-11) and (3-12), equations (3-37),

(3-44), and (3-45) solve the problem.
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3.2.2 Plane-Wave Expansion Moment Method

aa bb
The array a and b active impedances, z a z bb array b to array a mu-

ab
tual impedance, z , and the array a reference element short-circuit port current,

s ,s
x y

ex
100, are considered in this section. The development is based upon the work of Munk

and Burrell.1

Consider first either array a or array b with the ground screen absent. Let

the array elements be composed of thin wires lying in the plane of the array.(The

case of wires with components normal to the array plane can be handled by the proce-

dure developed below if some formulas are replaced with those of Section 3.2.3).

Let the array lie in the xy plane. A port voltage or current source array excita-

tion that is uniform, except for the progressive phase -jk (mdx  + ndy s y) impartedyy

th
at the mn element with respect to the reference element (m = n = 0), results in

the current

-jkmd s -jknd s

(r+ r' I 1 0 0 (r)e e (3-46)m mn 0

along the mn th element wire axis, where r' is a point along the reference element

wire axis (path C') and r' is the vector from the reference element feed to the
th mm

mm element feed. This form for I m(r'+r") also will arise if the array is ex-

cited by a plane wave with directional cosines s , sy, and s for the propagation

direction. Under this excitation, once 10 0 (r') is determined, the current on any

array element is given by (3-46).

The boundary condition from which 100(r') is determined is

E tn=E tn-E (3-47)tan tan tam

along the surface of the reference element, where E is the field radiated by all

I (r + r'n), E is an exciting plane wave in the absence of the array (impressed

field), E is the total field, and the subscript "tan" denotes "component tangential

to wire surface." Along perfectly conducting wires, Etan = 0 at all points except

at a source port, where Eta n is the source field of an ideal port voltage source,
tan. th

V0 and it is assumed that each mn element is excited by port voltage

V V -jkmd s -jkndysy (3-48)
mn 00
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A moment method solution of the thin wire approximation of (3-47) results in

an approximation of 100(r').2 In this procedure, the wire axis of the reference ele-

ment is approximated by an N straight line segment fit (Figure 3-4). The reference

element may be composed of disjoint wires (as with parasitics) and also may have

multiple wire junctions (as with top-loaded dipoles). First, Io(r') is expanded as

Ns
l0(r) , j fj W) (3-49)

j=l

where f.(r') is an expansion of wire current constrained, for simplicity, to be non-I th
zero only along the j segment of length A4 , and I. is an unknown coefficient to be

determined. The substitution of (3-49) into (3-47) results in

Ns
-exI~ s (r,j) =E E(-0E tan tan - Etan (3-50)

j=l

where E (,j) is the field radiated by the infinite array of j th segment expansion

-jlmd s -jknd s
-j -* x x y wegtnfu -

functions, f.(r') e e With respect to each of N weighting func-
23 5

tions, wi(r) , the weighted average of (3-50) along a path, C, on the reference ele-

ment wire surface parallel to C'(Figure 3-4), results in*

[] = ex + (3-51)

where the it h elements of the N x I column vectors 1 Ve, and V are, respectively,
s

I.
1.

i

C

V, = f E .wi(r) d (3-53)

C

thand the ij element of the N s x N generalized impedance matrix [Z] is
S S

Zij r) E tan(r,j) dR (3-54)

* For convergence purposes, the path is taken a wire radius in front of the
array plane.

3-21

L
1

h



where dk is an increment of length along C. The reference directions for the paths

C and C' are chosen to be the unit vectors ki and k., respectively, where

1.(P) = f.(')i. and wi(r) = wi(r) i (Figure 3-4).

In determing Zij, the field E is expanded in a double sum of plane waves as

-*s-jk(r-r.) "g+ _
3d d 0-*± (3-55)E (r,j) 2d x d ' y h jt

x y
p=-- q=-

for (r-r)-z < 0 where

Aj/2 W ."+£

f e di' (3-56)

-Aj/2

r! thj position vector to the center point of the j segmert along C'

n = free space wave impedance

1 9 X g+) x

i+ xs + P3y) + y(sy + + )z g
x y

-[sx + A2  
2] s + q .J /2

A = free space wavelength

If the expression under the radical in gz is negative, gz is chosen to be

n2gative imaginary; if the expression is positive, gz is nonnegative real. This

assures that all plane wave modal fields travel outward from the array plane and

nonpropagating modes attenuate. A plus sign subscript on h, g., and ib! corresponds
1 3

to field points r in front of the array plane; i.e., (r - r').z > 0. A minus sign

subscript corresponds to field points behind the array plane; i.e., (r-r )-z < 0.

Equation (3-55) is obtained by integrating, with respect to ' over the jth

segment, the expression for the field radiated by an infinite array of point current

dipoles, f i(') di' (Appendix A).1 The more general case, where ( ') extends over

two or more segments bent with respect to each other, can be treated in a similar,

3-22



although more complicated, fashion. Except for notational difference, (3-55) fol-

lows the development of Munk and Burrell.'

-~ -~th
If wi(r) is restricted to extend over only the i segment along C of length

Ai., (3-54), with (3-55), becomes

_ n -jk(ri-rj (357

Zij - 2dd e +(hj+'i) 3+ +

p=-- q=--

where

A /2 -kg

fi J e w1(r) dZ (3-58)

-A i/2

and th
and ri = position vector to the center point of the i segment along C. Only the

"+" sign is indicated for i± (hence, also for i'± and hj+) in (3-57) since the sim-

plying assumption of wires lying only in the xy plane permits choosing r as well as

r. with no z components. The more general expression for Z.. is derived in

Section 3.2.3.

The progressive phasings, s and Sy, which, for a particular p and q, cause

g to be zero, can result in an infinite Z... These progressive phasings correspond

to "grating lobe singularities" since they correspond to grating lobes just entering

the visible range; i.e., nonattenuating plane waves propagating along the array

plane. This is one possible source of "blind spots" and rapidly varying active im-

pedances with scan. This is only a "potential" condition for infinite Z.. since,-* 1J

although gz is in the denominator of hj+, in some situations a compensating effect

occurs. Such is the case, for example, in E-plane scans with periodic infinite ar-

rays of y directed dipoles not widely spaced in the x direction since h j± i = 0 for

p = 0 and q such that gz = 0 (grating lobe singularity). The presence of a perfect

ground screen potentially can inhibit a blind spot due to a grating lobe singularity

as is shown below.

If the array is a distance d in front of a perfectly conducting infinite

ground screen (positive z axis directed from ground screen to array as for array b),

the field 'E (r,j) at any point r in front of the ground screen excited by the
thinfinite planar array corresponding to the j expansion function and its image is

given by
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_j - ~ ~ ek( i_;j)
(r,j) d d e j + 1j

x p=-- q=-

_j k(r _- j 2d ) + (3-59)

-jk 
r- -4-z-+

2d d ye h j +j +

for (r - r!)z <o. The first term in (3-59) is the ground screen absent contribution

given by (3-55). The second term is contributed by the perfect ground screen. It

is important to note that t'. for the jth expansion function and its image are identi-

cal due to the simplifying constraint that all wires lie parallel to the xy plane;

i.e., d is independent of j. Thus, h and for the image term are the same as
.+

for the ground screen absent term. The h. and ip_ do not occur in the image terms

since only field points in front of the ground screen apply.

The ijth element of the generalized impedance matrix for the array in front of

a perfect ground screen [Zs] is given by (3-54) with Es3gs replacing E; thus

-4. -

-gs t e - hZij = 2dx d y  e+ hi+ ij+ i+

p--- q=--

(3-60)

+ 2dd e r"£'+
x -- q=--w

As with (3-57) only the "+" signs for , h and' appear. A rearrangement of

terms in (3-60) results in

jk[(r r' oo oogz

Zi ddy sin (kdg) h (3-61)
x y p= q-2
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it is apparent from (3-61) that Zgs is bounded at a grating lobe singularity since

sin kdg
z is bounded as gz-O (g appears in the denominator of h. ). This ground

gz

screen suppression of a blind spot at a grating lobe singularity assumes the radia-

ting elements lie in the array plane. If, for example, the dipole arms are inclined

with respect to the array plane or feed line scattering is present, the ground screen

may enhance the blind spot effect at a grating lobe singularity above what it would

be if the ground screen is absent; thus, consideration of out-of-plane radiating ele-

ments (Section 3.2.3) is important.

With a ground screen present, (3-51) becomes

[Zgs]1 = exgs + V (3-62)

where the element of Vex,gs are given by (3-52) with ex expanded to include its

reflection from the perfect ground screen; thus, the it h element of Vex,gs is given by

Vex'gs = [- e j 2 k s
Z 

d ]  Vex (3-63)

-4. -4

The shape of the expansion and weighting functions .(r') and wi(r) affect.3 -

only 'p. and'p. in accordance with (3-56) and (3-58). If f.(r') and w.(r) are unit

"pulses," then

sin[k(W .g)6 ./2(
. -(3-64)3ji A. k(f'-g!)Ail2

and

i 6 sin[k(i ' g )Ai/21 (3-65)
ii Ai i" g± ) i/2

The sin x forms in (3-64) and (3-65) exist for all values of x; however, care is
x

required in their computation when x is near zero.

The array b active impedance, z
hb then can be determined by solving (3-62)

ex~gs

for the source segment, i =is current coefficient, I i  with V , 0 for all
s
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i and V. = 0 for all i # i . Then1 S

V.
bb s (3-66)z = --
SxSy 1

s

aa

The array a active impedance, z , can be obtained in the same manner.
x9Sy

ex
The array a reference element short-circuit current, I00, can be determined

by solving (3-62) for I . Now, however, Vi = 0 for all i and the elements of Tex,gs
i1s

are given by (3-63) with Ve given by (3-52).

ab
The array b to array a mutual coupling, z , through the imperfect ground

Sxy

screen can be determined from (3-51) where [Z] is the array a generalized impedance
-ex -*e

matrix, V. = 0 for all i, and the elements of V are given by (3-52) with E re-

placed by the field t transmitted through the ground screen with array b excited by

current sources given by (3-10). (A means for determining E is discussed below.)

Thus

[za]-a -7t (3-67)

where the i element of V is

t a E'w '(r) dZ (3-68)

and the "a" superscript stands for "array a." The i element, a in the solution
s i

-a S

vector, Ia of (3-67), is the short-circuit array a reference element port current.

The reference element open-circuit voltage is

t aa aV00  Z -z 5 5 yI (3-69)
Sx'y s

as is justified by the argument following (3-20); thus,

aa Ii

z = - s i (3-70)
SxS y b

100
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The field Et is obtained readily from knowledge of the plane wave transmission

coefficients of the ground screen and the plane wave decomposition (3-55). The array

b current is determined with array b excited with port current sources (3-10). The

array b reference element current is obtained from the solution to (3-47) with

Vex = 0 for all i and
1

0 ii

V. = (3-71)
bb I ii
sxvs y00 sSxSy

-b
The solution to (3-51), denoted Ib, gives rise to the field

N
41 (- = E Ib n-jk(r-r!)g

E r j~7 2b d e h ij. ip (3-72)

j=l p=-- q=-y

incident on the ground screen where the subscripted negative signs indicate that
(3-72) applies for (-+)z <0 (which is appropriate since the ground screen is be-

(-r! ) <

hind array b). Since E is a superposition of plane waves, E is readily ob-

tained by applying the proper transmission coefficients to each component plane wave.

Each plane wave in (3-72) propagates in the g_ direction; thus, j_ and i (the normal

to ground screen) form the corresponding "plane of incidence." A unit vector normal

to the incidence plane is

fl g
ff  

(3-73)

and a unit vector parallel to the incidence plane and normal to is

A1  g-X (3-74)

Any plane wave travelling in the g_ direction can be decomposed into two plane waves,

one having the E field polarized along A, and the other having the E field polarized

along n . If T and Ti are the corresponding transmission coefficients and g is

the transmitted wave direction (gt = - for a good conducting screen 3 ),

3-27

M Ai I



then
N
S _ o jk(r-rg t

2dd e 

j=l p=- q -

(3-75)

t + 
!T

where ij_ is 1Pj with g replacing g-.

The substitution of (3-75) into (3-68) results in

Ns . .. )t
vt l b  xn- -jk (r - rj  (ingTlhj)..

i ~ j 2d XdY p =_-

j=l _= q-

(3-76)

+ (q -nl)TII (nl j _)_ v- t -
)j- i -

~ab

and z a is determined from (3-67) and (3-70) as previously discussed. In (3-76)sx tSy
xy

t £ti- is with _ replacing g

3.2.3 Inclined Radiators and Feed Line Scattering

The development in Sections 3.2.1 and 3.2.2 is limited to array radiating

elements oriented in the plane of the array. This method can be generalized to

handle scattering from element feed lines and radiation and scattering from elements

having arms inclined with respect to the array plane (Figure 3-5).

FEED LINE

GROUND SCREEN

Figure 3-5. Coaxial-Fed Bent-Arm Dipole
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Munk and Burrell [1, eq.(3)1 obtain the expression for the field from an in-

finite planar array of point current dipoles. They indicate that this expression is

valid for arbitrarily oriented dipoles; the dipoles need not be oriented parallel to

the array plane. Munk and Burrell also mention that a moment method can be developed

from this expression. This development is carried through for the special case of

array elements composed of bent wires confined to the array plane (Section 3.2.2).

Expressions based on [1, eq.(3)] that are similar to the mutual impedance expression

[1, eq.(19)] given by Munk and Burrell are developed; however, [1, eq.(19)] was de-

rived for the restricted case that mutually coupled antenna segments did not both

pass through any plane parallel to the array plane. The generalization of the mo-

ment method to handle "out of plane" elements necessitates more complicated expres-

sions. These are derived here.

The field dE at r due to an infinite planar rectangular array of point cur-

rent dipoles

-jkmd s -jknd sdt =e e ~ fdas (3-77)
mn

is given by

dE,(r 2 2 e -jk - ') g+ h+fd (3-78)

dE~~ 2d d eh-f9

-p q= -

(r-') 'z

where the coordinate system is that of Figure 1-2, r' is the location of the refer-

ence element, m = n = 0, and the remaining variables are as defined in Section 3.2.2

with 92 replaced by the unit vector i'. This result is derived in Appendix A forJ
the more general case of rectilinear (skewed grid) lattices. The modifications nec-

essary to extend the results in this section, as well as those in the previous two

sections, to general rectilinear lattices is discussed in Section 3.2.4.

Consider now a rectangular array of identical, but arbitraily bent, thin wire

radiator elements. Let the reference element, m = n = 0, be segmented in ac-

cordance with the moment method, as in Section 3.2.2, and let f (t') be the
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r. -th SEGMENT ALONG WIRE SURFACE

jth SEGMENT ALONG WIRE AXIS

GROUND SCREEN

Figure 3-6. Expansion and Weighting Factors for

Out-of-Plane Segments

3-30



th -
reference element J segment expansion function. Then, with r' P + 9292 as

defined in Figure 3-6,

-jk~r-r!).gi+ -, " ' .i+
E. eh+ e f3( 3)d9, (3-79)

32id

and

E.~r) = rd(r~r) = -q (r) (3-80)
3E 2d xd Xpqr

.f h x y - q=
3 segment

where

.+.+ j 6./2

-jk -r! ) • ik ..
Xp(r) = e h. e - f.( )dt2 if<-2 j
p q jJjjj 2 J

-Aj/2
i (3-81)

-j k(r-rP)g jkZ£i^'"

= e h. e f f( )dt!

S-A ./2

3

(3-82)

-j (;-r )'t / 2 " '

-r)"jkt g
ee3-31 j j

if < (-r-3)l >..
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Implied in (3-80) is a jth segment integration with respect to v'. This integration

divides as indicated in (3-82) when r defines a point common to a plane that simul-

taneously divides the jth segment and is parallel to the array plane. The t! co-
th J

ordinate of the point along the j segment that lies in this plane is defined by
r , M e

equating z axis projections of r and r! + Z! 2! yielding
.J J 3

= ^, (3-83)

For !-z>0, i.e., the 2- direction indicated in Figure 3-6, integration withJ j

respect to Z' from -A./2 to the value of k' defined by (3-83) involves plane waves
J J J

propagating away from the array plane on the positive z axis side; hence, the + sub-

script is indicated for ^ and t in the first integral of (3-82). For the inte-

gration from the (3-83) value of 2' to A./2, the properly chosen plane waves propa-
U J

gate along the negative z axis away from the array plane. Hence, the second inte-

gral in (3-82) indicates g and h. with negative subscripts.

The -c and +c appearing in the first and second integrals in (3-82) are in-

cluded to avoid integrating through the singularity that occurs in the plane of the

source array. This singularity is a consequence of the plane wave representatioD of

the field. Although this singularity appears integratable, this adjustment is ex-

pected to significantly improve convergence of the doubly infinite sum in (3-80).'

For nonself-elements, i 0 j, E equal to the wire radius is probably adequate. For

self-elements, i = j, c may have to be smaller.

If £.'z < 0 (i.e., is directed along the th segment opposite to that

indicated in Figure 3-6), the sign of (3-82) simply changes as indicated by the ±

depending upon

A..
<. '  - ^  (3-84)- § (r- r ) ' Z > .Z

2 j 2

th
As discussed in Section 3.2.2, the ij generalized impedance matrix element,

[ZLij, is determined by weighted integration of the j thcurrent segment field along

the surface of the ith wire segment. Let ri locate the center point of the i seg-

ment surface path as indicated in Figure 3-6). (For i 0 j, the ith segment match-

ing path may be taken along the axis of the i
t h segment.)
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With r r +2 2Z

A~ /2i

where E.i is given by (3-80). For simplicity, assume that the z coordinate projec-

tions of all wire segments are either disjoint (nonoverlapping) or identical. Then,

[Zj 2d qd Qpq (3-86)

xyp=-- q=--

where A /2

f-jk2..2.. *g4
Qpq =e 2.hj+~ e _

Aj /2

1 (Z )d2 e j f (2.')d2.'

A 1_ /2 if (r '!-Z

e i-h JJ ii +

-A /2

A 2/2

f A 2  jZ ./ jk9

jf (r r e<
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If pulse expansion and weighting functions are considered, then Qpq becomes

-jk('r-r!)'g+ _ , -
Qpq -e I i' hji+ j+ if (ri-r;)z > 0

jk(r.-r! j ki! -W-j* 6./2
t [e ih e + -e

iJ+jf. ~i+]
(3-87)

-j k(r. -r j jke2 jki!2.g ./2 i
-e Z.h j-T-i-- - e r -e

if (rir 0; 'z > 0

where

sin[k(i j+)Ai2]

iW i±± A

sin[k( i-9+)A /2
j± 'j k- 2

A k(i4Zf.+ aj/2 )./

j]
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If a ground screen is present a distance, d, behind the array, image fields

must be considered in each impedance element computation. Let double primed posi-

tion vectors and segment path lengths refer to image currents. Then, since the

coordinate origin lies on the ground screen,

-'.= ( ) + - z(.r.) (3-88)

the xh r + 9(r) - (3-89)

and the ijt h element of the generalized impedance matrix for an infinite array over

a perfect ground screen becomes

Zgs  = + (3-90).i Zij 2d Q ypq

p=- q=-

where

-j k('r.-'r') "g gs
Q g s = e i + . ,

pq i j+ i+ j+

j+ gZ 'j +

gs +
j+ j k(' 9+

For plane wave incidence cxcitation, the generalized voltage vector elements

given by (3-52) must be appropriately modified to account for reflection.

3.2.4 Skewed Lattices

Many array lattices are skewed rather than rectangular. The infinite array

analysis described in this report is applicable, with only minor change, to general
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rectilinear (skewed) lattices. Any point in a skewed point lattice can be located

by two integers, m and n. The position of the mn
th point is given by

md 6 + nd 9 (3-91)
e y

where e and 9 are the lattice unit vectors with associated interelement spacings

d and dy, respectively (Figure 3-7).
e

AtY
dy A:

-2 0 x 2 x
~~ 1 -221 =

at
d
y

-3 -I

1 2

-24 - 2 4.

-2 - 1 2

x X x
dA

e

Figure 3-7. General Rectilinear (Skewed) Lattice
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The standard x,v,z rectangular and r, O,4 spherical coordinate systems are

centered at the m = n = 0 point and oriented as shown in Figure 3-7. If identicalth

radiators are located at the lattice points, the mn radiator excitation phase that

will launch a wave in the r direction is expressed by

-' = md s +nd s (3-92)

where s = .e, s =.9 and the "" indicates a unit vector. This phasing also can

be expressed in terms of the more standard x axis directional cosine, s= i.i, by

noting that (see Figure 3-7) 
X

d e = dx- xAy y (3-93)

e x

and, with (3-91),

r' = md k +(nd -MAY) (3-94)nn x y 
(-4

Hence,

md s + (nd - mAy)s (3-95)

It then can be shown 5 that the skewed lattice infinite array generalized impedance

matrices, [Z] and [Zgs], are computed by the formulas developed in Sections 3.2.2

and 3.2.3 if the expressions for and g are replaced by

s +p +xd qAy1  + [ s + q izg (3-96)

+p -q + (3-97)

zV x X xy J yJ

The feedback mode development in Sections 3.2.1 and 3.2.6 also applies to
th

skewed lattices if the phase imparted by the mm module with respect to the refer-

ence module is expressed by -k(mdeae + ndyay).

All dx, sx, and a in these developments are simply replaced by d e , s e, and

Sand the active impedances, and z are understood to be

determined with the expressions for g± and gz given above where the relationship be-

tween s and s is found by equating (3-92) and (3-95) resulting in

dxxs - Aysy
x d (3-98)

e
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3.2.5 Space Feed Model

The field illuminating the lens will not be planar during radar transmit;

however, a plane wave decomposition of the illumination across the lens face is

always possible. 6 Each plane wave component of the illumination can be applied in-

dividually and the resulting lens patterns superimposed. The first approximation

method is being designed in this manner.

Since, in the first approximation, infinite array theory is applied to each

cell individually, a separate plane wave decomposition of the illumination is car-

ried out for each cell. Only a small number of plane wave components must be con-

sidered for each case. The maximum cell size may be chosen such that a single plane

wave fit to the illumination across a cell is adequate (Appendix B).

The propagation direction of the plane wave is along a line, , from the

phase center of the feed to the cell center. The field components of the plane wave

are the projection of the illuminating field at the center of the cell onto the plane

perpendicular to P. A single plane wave approximation to the illumination across a

cell may not be possible if a large number of cells is to be avoided. A 10-percent

accuracy in plane wave approximation to the illumination across a cell could result

in about 200 cells subdividing the lens (Appendix B). A tighter accuracy will in-

crease this number.

3.2.6 Generalized Module Model

The idealized module model assumed in the Section 3.2.1 development is gen-

eralized here. The modlules were represented in Section 3.2.1 by two-port, open-circuit

impedance parameters. These parameters were assumed uniform from element to element,

within a cell, except for the array a to array b "mutual" impedance parameters which

differed between elements in progressive phase only. In this section, the module.

parameters are permitted to be any complex function of the progressive phase setting.

The only restriction is that modules with phase settings differing by a multiple of

27r have identical parameter values. Open-circuit impedance parameters do not al-

ways exist; e.g., a half-wavelength section of transmission line has no such repre-

sentation. The following development, therefore, is in terms of two-port scattering

parameters. The assumed form of the "feedback" mode expansion (3-12) is modified

slightly. This permits a convenient column vector representation. The resulting

formulas are shown to reduce significantly for the special case of a passive lens

with simple line length phase shifters.
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th
The n-, element array a and array b port currents are assumed to have the

forms

a a -jkmd x(sx + u x) -jknd y(s y+u 00(u) e e y(399)

U=--

Ib Ib -jkmdx(sx + UAx ) -jkndy(sy + uy )
mn =  I00(u) e e (

U=-

In column vector notation, (3-99) and (3-100) can be represented as

= e e-jkmdx(sx + uax) -jkndy(sy + uOy 0iro Io0(u) (3-101)

U=-.o

where

[ a 1
'00(u)

1 00= b

~00(u) J

b a

I
mn n

The port conditions that must be satisfied are

UM + (3-102)

V bb 0mm
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where

v aa + va -kdXsx+u )e-kd~ ab 1b
[ u, + s + uc +0u s z ~ u 0.'
x x y y 0() sX +u x sy + ay 00'J

ve _zaa ex e-jkind Xs X kind ys
mn s xs 00

v bb =E e-jm x(sx +Utx e dy (sy +UtY) bbbmn UA- 
Zs +Uu Xs + u 00(U)

This may be written

*-jkmd x s x+ uc ) -jknd~ + uci)

[zu] I00(u) + e e y x
00

where

zaa ab
sx+ucX, s y+ ua S X+ uaX, s + UOi

zz z

zbb+uts+c

s X + a y + yj

-Z aa Iex

Vex sxsy 0
00 1
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Let the mn thmodule (plus feed lines) scattering parameter matrix be denoted [S m.

a b
If the scattering parameter normalizing impedances are R and R ,then

V [R] 1/2 (U] + [S~n ])Zc (3-104)

.mn [ R) -1/2 (EU] I S ])C~m (3-105)

where

[U]

[R] R Ra 0b]

mn

an (310) (10) and (3-106)einidnt scmbin toayil afers ivsonb

-jk(mR; + ns )
e x y

Jk d uaX -knduaf [R] 1/2 [U + [S])Q( - zu]100(u) Ve

(3-107)
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Another equation in C and I , obtained from (3-101), (3-105) and (3-106), is
00(u) 00(u),

ej [kmd ua ejkndyucty /R] /([UJ - [Sn ] (3-108)

Ln 00 O)O(u)j

where 0 is the null column vector.

A set of simultaneous equations is formed from (3-107) and (3-108) in a manner simi-

lar to that in forming (3-32) and (3-33). The module phase settings, ax and ay,

are assumed to satisfy (3-28) and (3-29); thus, [Srn I repeats every M x N elements.

j2TrnvM'/M j27TnvNq'/N
Premultiplication of (3-107) and (3-108) by e 2 e , where v is an

integer, summation over one "progressive phase period," 1Lnr M and 1-n6N, and inter-

change of summations yields

S -ex v=0NM V00 O

([Fvu1o 0 (u) - [Fvu] [u oo(u) 1 = (3-109)
U=-- 0 V=±l,+2,

t ([F" I E - 5 ,

vu 00(u) [vu 0oo(u)) =,l± 3i0

U=--o

where

N M (3-11)

[F =E E ' ffm(v - u)M'/M ej2 n(v - u)N'/N [RI ([U]-[Sn1)

n=1 m-i

N M
[Fi I - e j2rm(v - u)M'/M ej2tn(v - u)N'/N [RI- ([U I Smn) (3-112)

n=l mrl

N M MN[U] u v
[F eJ2'm(v - u)M'/M e2 -n(v u)N'/PN [U](3-113
(vul U

n-1 m=1 0 otherwise
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The simplifications resulting in the right-hand sides of (3-109) and (3-113) assume

that (v-u)M'/M and (v-u)N'/N are never integers simultaneously. This condition

occurs whenever (v-u) is an integer multiple of M and N simultaneously. This

condition is avoided by limiting (3-109) and (3-110) to only the lower valued

equations and by limiting the infinite summations to only lower values of lul

This is permissible if only lower-ordered "feedback" modes, u, are significant.

A special case of interest is a passive lens with modules replaced by trans-

mission lines. The relative lengths of line determine the progressive phasing. The
th

scattering parameters for the mn element become

Sn = eJ27T~tiM/N rnN/NmM'/M -j2 [ ] (3-114)

if R a = Rb = RO where R0 is the characteristic impedance of the transmission lens.

Equations (3-111) and (3-112) reduce to

MN [U] v - u 0

[Fvuj I ifMN [W] v - U 1 0 (3-115)

0 otherwise

MN/$ 0f [U] v - u 0

[F"] = -MN/V 0R [W] v - u -1 0 (3-116)

0 otherwise

where

0 
1 ]
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Equations (3-109) and (3-110) then become

-ex
v= 0

0 00(v 0 00(v-i) v 00(v

-  [WIC 0 v = 0 1,±2, (3-118)

/R0 00M [W] 0 0 (v-l) -
1 00(v) 0...

Finally, (3-117) and (3-118) can be combined to form

r]U 1 00
[U] - [zv 1] C00(v) + [R__O + -I- 

[zv ]  [W]C0vI) =  - (3i9
v 0 ) +. 00(v-l)

Equation (3-119) can be solved for C00(v) under the previously stated condition that

only lower-ordered feedback modes are significant. Then (3-118) can be solved for

100(v)"

3.2.7 Multiport Array Elements

The development throughout Section 3.2 has, for simplicity, considered single-

port radiating elements. The extension to multiport elements (e.g., crossed dipoles

for circular polarization (turnstile antennas) with quadrative phase shifters in the

feed lines) is straightforward due to the moment method framework employed

[2, Chapter 6]. The present simulator development effort is not expected to imple-

ment this extension; however, the important case of turnstile array elements will

be modeled by transferring the quadrative phase shifters from the feed line to the

appropriate radiating arms. Turnstile antennas for use in an SBR lens array are

likely to be designed in just this manner, where the radiating arms are either re-

actively loaded or shaped to impart the desired quadrature phase relationship.

A loaded wire can be modeled easily within the moment method framework. If

L
lumped impedance loads, Z ,j' 1,2, ."'' Ns9 are located at segments j'on a wire, the

voltage column vector, in (3-51) becomes

V - ZL I (3-120)
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The elements of the column vector, V , are the values of applied voltage sources at

L L th
driven segments and [Z I is a diagonal matrix with Z for its j' diagonal element.

Equation (3-51) then becomes

(Z1 + [zLD) = D ex + j, (3-121)

Equation (3-121) may be solved for I as discussed in Section 3.2.2.

A module to feed line junction (module output) is generally a three-terminal

junction with the third terminal necessitated by the ground screen. Nonideal balun

arrangements at these module outputs cause unbalanced currents to flow on the feed

lines if asymmetries exist. The asymmetries may be electrical (e.g., module phasing

for off-broadside beam steering) or structural (e.g., Fiqure 3--8). The net feed line

current, I1 + 12, is counterbalanced by current Ig on tha g.round .,creen; i.e.,

Ig (1 + 12). This net current constitutes the unbalanced mode current. If g

is significant, a module output generally requires a two-port representation. (This,

in turn, leads to a four-port representation for a module with two outputs.) The

initial version of the simulator will be capable of modeling a module output only

as a single port. The effects of unbalanced mode feed line currents can be ac-

counted for, despite this limitation, if it can be assumed that there is negligible

coupling within the module between the balanced and unbalanced mode currents and

also between the unbalanced mode currents at the array a and array b module outputs;

i.e., only the balanced mode currents are assumed affected by the module circuitry

and the feed line unbalanced mode currents arise entirely from scattering. In Figure

3-9, the modules are treated as two ports (one port on each array side) and the cor-

responitag port voltages and currents are transferred to the radiator excitation

ports (indicated by the sources) via the feed line transmission line equations. The

composite module/feed lines port parameters become those discussed in Sections 3.2.1

and 3.2.6. These port parameters apply strictly to the balanced mode. With radia-

tor excitation ports thus related, each feed line is modeled as a single thin wire.

The feed line scattering then is accounted for by the moment method technique dis-

cussed in Section 3.2.3. Balanced mode feed line current radiation can be neglected

due to the close spacing of the wires in a feed line.
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GROUND SCREEN
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Figure 3-8. Asymmetrical Feed Line Configuration
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GROUND SCREEN

ARRAY a ELEMENT ARRAY b ELEMENT

Figure 3-9. Model for Including Feed Line Scattering

3-47



fi-i 3 3j+1

ki-I z j j+1
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a. Pulse (Piecewise Constant)
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9.j2 i -1 z3 z3+1 j

b. Triangular (Piecewise Linear)

f f. f.j+

c. Piecewise Sinusoidal

Figure 3-10. Expansion Functions
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3.2.8 Increased Computation Efficiency

Evaluation of the generalized impedance matrix [Z] (or [Zgs]) of Section 3.2.2

usually requires considerable computer run time. This is especially true for arrays

of thin wire radiators oriented parallel to the array plane since the doubly infinite

summation in (3-57) then is slowly convergent. Each term in the summation corre-

sponds to a plane wave field averaged over a segment a short wire radius, a, in front

of the array plane containing the current filaments. The plane waves corresponding

to large jIP or jqi decay exponentially away from the array plane. The arguments of

2
these exponentials are proportional to [p + [q a , where dand d are

d ] dy ey

the x and y coordinate interelement spacings; thus, wires that are thin with respect

to d and d result in slow convergence. Examples indicating the number of p and q
x y

terms (plane wave modes) typically required are given in Section 5. Several possibi-

lities for reducing the number of times that (3-57) has to be computed are being ex-

plored. These techniques, discussed below, also apply to the ground plane case

represented by (3-61).

The Toeplitz nature for straight wires is being employed. The [Z] for a

straight wire divided into N segments has 2N - I diagonals. If the segments are of
s s

equal length, all elements of [ZI common to a diagonal are equal; i.e., [Z] is Toeplitz.
2

The N - elements of [Z] are, therefore, determined from only 2N - I computations of
5 S

(3-57) -- one for each diagonal. If an array radiating element is a collection of

straight wires, Lhis property applies only to submatrices centered along the main di-

agonal of [Z]. The order of each submatrix equals the number of segments on the cor-

responding straight wire.

Except for broadside phasing (sx S = 0), [Z is not symmetric; however,

[Z]j i differs from [Z]ij only by a sign in an exponential. This permits a reduction

of almost 50-percent in [Z] computation time.

The development in Section 3.2.2 employed "pulses for expansion, f (0'),

and weighting, wi(''), functions; these are indicated in Figure 3-10a. Each pulse

occupies one wire segment. The results in Section 5 indicate that many pulses are

needed to correctly compute the input reactance of an infinite array of near resonant

tiin dipoles -- approximately 20 per half wavelength for a = 0.01X and approximately

0.8k interelement spacing. These results assume equal segment lengths, A.. If tiny

are required only in the feed region, a large reduction in N may be possible byJ s

modeling with unequal A.. Results with unequal A will be available shortly.
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a. Three-Wire Junction b. One Wire Chosen
Terminated at Junction

p/

c. Addition of a Second Wire by d. Addition of a Third Wire by

Overlapping First Wire Overlapping First Wire

Figure 3-11. Modeling a Junction with Overlapping Expansion Functions
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Overlapping expansion aad weighting functions, such as piecewise linear

(Figure 3-10b) or piecewise sinusoidal (Figure 3-10c), can be tried in place of

pulses. The overlapping of adjacent functions assures continuity along the wire,

possibly resulting in a need for fewer expansion functions to approximate the current

than are required with pulses.

Since each overlapping expansion function traverses two segments, each element

of the corresponding [Z] is computed by the sum of four terms, each similar to (3-57)

but differing in computation of i and j. Care is required when treating multiple

wire junctions to maintain current continuity at the junctions. This can be accom-

plished by following a simple rule when modeling wires. To illustrate, consider the

three-wire junction shown in Figure 3-11a. The modeling begins by choosing any one

of the wires as terminated at the junction (Figure 3-11b). The remaining wires then

are added in succession such that each overlaps any previously placed wire (Figures

3-11c and d). This overlapping is accomplished by aligning the junction point with

the peak of the end triangle (or sinusoid) function on the wire being added. This

method is described in Reference 8 and presented in terms of "independent loop cur-

rents" in Reference 9.

The expressions for the pulse, triangle, and sinusoid functions are given in

(3-122), (3-123), and (3-124)(Figure 3-10).

For pulses,

I k. - A./2 < V' < Z. + A./2

fj( W) = I 3 3 (3-122)
0 otherwise

For triangles,

( z - )/j-1 k k ' £

fj(2.') = (2j.. - 2.')IA+ 2'. 2' - 2j<l j j+l (3-123)

0 otherwise

3-51



For sinusoids, where k = 2f

sin. k(2.' - l)/sin kA-. < 2'<

j -3~ (3-124)

0 
othnerwis e
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3.3 HIGHER APPROXIMATION CURRENTS

The first approximation method solves for the ar.ay a and array b currents

within a cell assuming the cell is infinite in extent, all array a radiating ele-

ments are identical, all array b radiating elements are identical, and interconnec-

ting modules between arrays are permitted to differ only in phase settings. The

variation in phase settings between modules must be linearly progressive. Each cell,

however, will be finite in extent and may exhibit other discontinuities in periodicity

due, for example, to module failures or nearby scatterers such as lens, edges, booms,

hinges, struts, and other structural supports. The first approximation currents

for elements near these discontinuities may be significantly in error. These cur-

rent predictions can be corrected by the higher approximation method described in the

following subsections. Although there are a great many elements (hundreds or more)

that may reside near discontinuities, the higher approximation method is expected

to prove reasonably efficient. This is because (1) the method makes use of the

known first approximation currents and feedback fields penetrating the ground screen

and (2) a moment method matrix has to be computed and inverted only once for each

type of radiating element (dipole, folded dipole, etc.)in the entire lens. Each

approximation uses the results of previous approximations. The required number of

approximations depends upon the rapidity of convergence of successive approximations.

3.3.1 Port Representation and Solution

Let the first approximation currents on all lens radiating elements be

known. The method for obtaining higher approximation currents on an array a and

array b element pair near a discontinuity in periodicity is presented below by con-
th

sidering the second approximaton and extending the results to the n approximation.

A single-port representation of a radiating element is assumed. The method can be

expanded to include multiport models. The problem being modeled by the second approx-

imation method is shown in Figure 3-12. The second approximation currents on a lens

array a and array b element pair are sought. For discussion purposes, these elements
th

are referred to as the zero elements and variables corresponding to this element

pair are subscripted zero. Nearby element pair currents (subscripted 1, 2,...) that
th

are considered in computing the zero element pair currents may reside in the same

cell or nearby cells. A parenthetical number appearing in a superscript of a vari-
a(2)a

able denotes the level of approximation of the variable; e.g., V0  is the second

approximation port voltage of the zero th array a element, and I M a is the first
2

approximation oort current on the "second" of the array a "neighboring" elements.
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Figure 3-12. Problem for Determining Second Approximation Currents
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The incident exciting field (space feed on radar transmit, target return on radar

receive) is denoted E . The second approximation port voltages and currents for

the element pair under consideration (zerot h element pair) are related by

2)a . za 1 (2)a + Vex + v()ab + V0 aa' (3-125)

(2)b (2) (1)bb'

V0
2 )b = zb I(2 )b + V0  (3-126)

where
a b

z (z ) is the impedance of an isolated array a (b) element with the ground

screen perfectly conducting
()aa(V ) is the array a (array b) zeroth element open-circuit port

V0  0
voltage due to the nearby array a (array b) first approxi-

mation currents with the ground screen perfectly conducting

(1)ab th
Vl0 is the array a zero element open-circuit port voltage due to the

first approximation array b excited field penetrating the ground

screen

ex thV is the array a zero element open-circuit port voltage due to E in

the presence of the ground screen

The reference directions for the open-circuited voltages are the same as for 
V 0M

a

(2)b a biand V . The z and z isolated element" impedances can be determined with feed
line scattering accounted for as suggested by the Figure 3-9 model. The feedback

voltage V0l)ab, is available from the first approximation analysis.

The quantities V0a V(2)b I(2)a and I (2)b are related by module two-port0 '0 '0 0

parameters; e.g., the impedance parameter representation is

= _z a a I(2)a _ zab I(2)b (3-127)
000 0 0

= _ 0 (I)a - bb I(2)b (3-128)

Equations (3-125) through (3-128) can be combined to form

(za + aa 1 (2)a + ab I(2)b - ex 0 0aa (3-129)
0 0 0 0 0(1
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ba (2)a b bb (2)b (1)bb'
z0  + (z + z0b) b - V0  (3-130)

0 00 0 0

These equations explicitly relate second approximation port currents and first approx-

imation port voltages.

A thin-wire, pulse expansion-impulse weighting, free-space moment method code
a b ex

can be used to determine z , z , and V0 and, from first approximation currents and
(1)aa' (l)bb' (1ab 10

fields, v0  , V , and V0  b Other moment method codes can be used (e.g.,

see Refs. 8 and 9); however, the pulse expansion code fits well with the pulse ex-

pansion infinite array technique employed in the first approximation method of

Section 3.2.2.

Moment methods calculate short-circuit currents more efficiently than open-

ex v(1)aa' (l)bb' Mlab th
circuit voltages; therefore V0 , -0 V lband V are determined from zero

ex ()aa' (l)bb' th
element array a short-circuit port currents 10 9 10 and 1 0 and zero element

(l)ab
array b short-circuit port current 10 according to

4 ex z a Iex (3-131)

0 0

V (l)aa'= - za I(1)aa' (3-132)

0 0

V(l)bb'= _ Zb Il)bb' (3-133)

0 0

= -z a I ab (3-134)

The reference directions for these short-circuit currents are the same as those for

I(2)a and I(2)b. The justification for (3-131) through (3-134) follows closelythe
0 0

argument following (3-20).

In the pulse expansion function moment method,
1 0 an isolated element is mod-

eled as N connected segments (Figure 3-4). Let i be the number of the segments 5

which contains the element port. A corresponding isolated-element-above-a-ground-

screen "generalized admittance matrix" can be determined.
2 Each short-circuit port cur-

rent in (3-131) through (3-134) can be determined from row i of the appropriate gen-

eralized admittance matrix and the appropriate "generalized voltage vector"
2 accord-

ing to
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ex ~ e
I e x 0Y (3-135)o i 0

S

I(lab'. Vo a (lWb' (3-136)0 i 0

sl(l)ab= Ya b (l)b(317

o i
SI Ma . VO a (3-138)

s

In 3-15) hrogh 3-18)-a _b
In (3-135) through (3-138), b is the matrix row vector taken from the is row

s s

of the array a (array b) isolated-element-above-a-ground-plane generalized admittance

-(l)aa' (1)bb' thmatrix, V0  (V ) is the array a (array b) zero -element-above-a-ground-screen

generalized voltage vector resulting from the nearby array a (array b) first approxi-
-(l)ab itharaazeoth

mation currents, v0  is the array a zero -element-above-a-ground-screen general-

ized voltage vector resulting from the first approximation field penetrating the

ground screen (E in Section 3.2.2), and V0  is the array a zero -element-above-a-
-*exground-screen generalized voltage vector resulting from E

From (3-129) through (3-138),

a aa (2)a ab (2)b a -a (ex + ()aa' -()ab,

(z + zo )IO : z V0  + v0  ) (3-139)
s

zba I(2)a + zb + z b )I() z b vlbb (3-140)
z 0 0 0 0

Equations (3-139) and (3-140) can be solved for 1(2 a and 1(20b The second approxi-

V a /I(2)a for array a and V(2)b / (2)b for array b.

0  0 0 "0

Many elements are likely to reside near discontinuities in periodicy. This

implies a large number of (3-139) and (3-140) computations -- one for each of these

elements. The admittance row vectors, i and are fixed for all (3-139) and
S S

(3-140) computations if all the radiating elements throughout the lens face are identi-
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a b a b
cal. This also applies to z and z, since z (zb ) is the reciprocal of the i ele-

S-a - coputng-ex, - l)aa', V(1)bh'
ment of (Yb) The major effort, then, is in computing -ex aa

m " 0 0  , and
S S

Cl) ab
0

Equations similar to (3-139) and (3-140) can be found for the array a and

array b second approximation current distributions. These current distribution equa-

tions employ the entire isolated element generalized admittance matrices, from which
-b

Y and Y are extracted, with significant increase in computation time. The simu-1 1
S S

lator is being designed assuming the first approximation current distributions ade-

quately describe the current distributions for any higher approximation; i.e., a

higher approximation current is assumed to differ from the first current by a complex

constant scaling factor.

The third and higher port current approximations are obtained in a manner

similar to that for the second approximations. The zero element, n approxima-
(n)a (n)b

tion, array a and array b port currents, 10 and0 , are obtained from the

n-1 approximations by solving

(Za +zaa (n)a + z ab 1 (n)b = za a (vex + V(n-l)aa'+ V(n-l)ab) (3-141)
( z 0)01 0  0 is 0 V0  0 -~b

s

zba I(n)a + (zb b )I(n)b = zbb (n-l)bb' (3-142)
z0  10 0( 0z )i .V 00 0 is

th
The free space field at the zero array a element arising from the n-l approximation

field penetrating the ground screen results in (n-l)ab This field is difficult to

compute exactly. The approximation resulting from equating (n- l)ab0 and v0l)ab is

being considered. Another possibility is "scaling" according to

v(n-l)ab - n (1)ab
0  i() b  0(3-143)

0

-(n-l)aa -(n-l)bb'
The column vectors and involve summations of the fields

0 ad0

from L nearby elements; i.e.,

L

v(n-l)aa' = 2 0  a(3-144)v0 0

3-583-58
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L

(n-l)bb' £ (n-l)bk (3-145)
0 = -0(315

Z=l

where V- (V0  ) is the contribution to the zero element array a (array b)
00

generalized voltage excitation vector from the n-l
t h approximation current on the

k th nearby element. These computations are facilitated by assuming the first approx-

imation distribution of current on all nearby elements is adequate for all approxima-

tions and scaling in accordance with the higher-approximation port currents; i.e.,

L (n-l a
O~n-l)aa'- E .V(1)aZ (3-146)

0 = 1 (1)a 0

V(n-l)bb'= T- I)b (1)b9 (3-147)

Z=1 9,
i(n)a (i (n)b) istearya(ra )~ th t

Z)is the array a (array b) n approximation port current at the k th

nearby element.

3.3.2 Support Structure Scattering

The effects of hinges, ground screen edges, and other support structures on

the radiating element currents can be accounted for naturally within the higher ap-

proximations. The first approximation field excites scattering currents on the

support structures. These currents radiate fields that enter into the higher approx-
-as -bs

imations by the addition of generalized voltage excitation vectors, V 0  and V0 , to

(3-141) and (3-142). These equations become

(z a + aa ) a +ab (n)b = za -a (ex + -(n-l)aa'+ (n-l)ab -as

z )ln + z0  0 z i 0  + 0  -0  + V0 ) (3-148)
s

zba (n)a + (zb + z bb )I(n)b = zb Yb (vgn-l)bb+ v0 b (3-149)

0 0 z0 0I '1i ( 0  0~l~

The infinite array theory employed in the first approximation method naturally pro-

vides a plane wave spectra representation of the fields exciting the support struc-

tures. The numerous moment method and ray theory computer codes available then are

usually directly applicable to computing the support structure scattering.
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3.4 RADIATION PATTERN

Radiation patterns are determined from the target side radiating element cur-

rents on array a (array b with radar in transmit mode). If possible, reciprocity is

employed during radar receive. If reciprocity is not permissible, as is likely with

active modules, the radar receive pattern has to be analyzed directly. The array

b radiating elements then lie on the feed side of the lens. Far-field radiation for-

mulas then apply to lens sections individually, provided each section is in the far

field of the receiver. In many instances, the cells defined in Section 3.1.1 may

satisfy this constraint.

The first approximation currents on a cell have associated closed form radiation

patterns. These are employed where ever possible. The details in computing first

approximation cell and lens far-field patterns, with and without lens structural

warping, are discussed below.

3.4.1 Planar Periodic Array

Radiation from one side of a cell having boundaries coinciding with its

periodicity axis (Section 3.2.4) is considered here. Cells of more general shape are

treated in Section 3.4.4. All radiating elements throughout the cell are identical,

all are located at the nodes of a rectilinear lattice (Figure 3-7), all lie a height

d above a perfect ground screen, and all can be modeled as electrically thin bent

wires. A typical cell and coordinate systemare shown in Figure 3-13. The position

vector r' locates a point on a radiating element, " locates its image point, and r

locates a field point P. Ti coordinate system xy plane coincides with the infinite

ground screen. The far-field vector potential for this array is given by

-jkr j r r jk r d "

A(r) - e I'(-') e dr' + I"(r") e (3-150A~)=e4 rr If rfd I

where 1'(r') is the array current, I"(r") is the image current, and k is the wave-

number. The field point direction is given by

r = sin 0 cos 6 x + sin 0 sin y -+ cos 0 z (3-151)

where a "^" indicates a unit vector. The xyz components of r are the directional

cosines of r.
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The array current and image are sums of the N individual radiating ele-

ment currents V~ and their images I"'
1 1*

Equation (3-150) them becomes

(3-152)

-jkr N jki-r jkr-
WOr = e ]2(r' e d-r' + fe 1 £rii

ri
Ji

where r locates a current source point on the i element and rd locates its image

1 1

point; i.e.,

a (r I o + (- 9)9 - r 2 (3-153)

as indicated in Figure 3-14. Let

01 r(3-154)

r r. + t" (3-155)

where r . locates the ground screen point corresponding to the array lattice point

01r -* an " ar s i d c t d i F g r

(the module is generally located at rI ), and ti

3-14. Note hat "' is defined from t'by

A = ( +- (' (3-156)

Also is the same for corresponding points on the structurally identical elements.

Equation (3-152) becomes

1~

caloithnacmlxcntnt; i.e.,

' = K + - - •(3-158)

i ie

rsidiae inFgr -4 e

rjk jk= ri f + ' (3-154)

1 Oll

= K, . 3 (3-158)

where I i ocs the oundenc reeneme nt c rre ond ingo the a o lemti on

Alsofer isne me por currespodn. onso h tutual dnia lmns
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Equation (3-157) becomes (3-159)

N- NA( 0 e ' lefr) re dr'+ I" ] Kie
4r f rf eref(r" E dr I o

i=

where ref(r") is the reference element image current.

The reference element current moment can be approximated by

N

SI' A.t where the electrically small segment lengths A and segment unit
iref. . J J

j=l

vectors are shown in Figure 3-4, and N is the total number of segments on the3J s

wire (note that the segmentation begins a half segment in from each wire end; this

better models the zero current condition at these points). The corresponding image

N
S

current moment becomes - I' A,2."
EJ ref. '

j=l

where

(j' x)x + (." y)- (.• (3-160)

Equation (3-159) then is approximated by

A( ) = e*F (3-161)

where the element factor e and array factor F are given by

-jkr Jkr't - j'' krt' (3-162)

e-- IrefjAi e
j=l

Ns jkr. .

F K, e 0  ' (3-163)
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respectively. The t' and . in (3-162) correspond to t' and t" at the center points
t t h

of the j segment and its image, respectively. Equation (3-161) is an expression of

pattern multiplication. The underlying assumption in (3-161) is that the current

distributions on any two array elements differ by only a complex constant.

The e and components of the far radiated E and H fields are given in

terms of F and the 0 and components of e as

Ee = -jkne F

(3-164)

He 1

1

where n is the free space impedance.

3.4.2 Regular Cells

The array factor F assumes a closed form expression for each feedback

mode of the first approximation currents on a regularly shaped cell. A regularly

shaped cell is one with boundaries that are parallel to the cell's rectilinear lat-

tice unit vectors (6 and in Figure 3-15). Such boundaries form parallelograms.

Radiation from irregularly shaped cells is treated in Section 3.4.3.

Consider a coordinate system as indicated in Figure 3-15. With respect

to this system,

r, of (3-163) becomes r where (Section 3.2.4)

r'= md e +ndy (3-165)

mn e y

and

r r md s +nd s (3-166)
an e e yy

and the field point e and y directional cosines s and s are
e y

s r i"e (3-167)
e

s = r.y (3-168)y

The Ki of (3-158) become, for each first approximation feedback mode,

3-65

• ' T ..... .44- . i .. ....... , m .._, - - --



y

jjy dxo-

* !y

e

Figure 3-15. Regularly Shaped Cell
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-jk(md e + nd x )K =e Ye

IM

-jkr' .a
mn

e (3-169)

where

a= e e + ayY (3-170)

Equation (3-163) then becomes

N e-I N y-1

F= e e r -

mO n=O

N e- 1 y -1
Jm~e eJn ye e (3-171)

m0 n=O

where

kde(Se - ae) (3-172)

y kd(s - y) (3-173)
y y y y

and N and N are the number of elements along constant y and constant e latticee y

lines, respectively, in the cell. These numbers are N = 6 and N = 7 for the Figuree y

3-15 cell.

The array factor can be expressed in terms of the x and y directional

cosines

s = sin e cos (3-174)x
s = sin 0 sin (3-175)

y

Since (Section 3.2.4)

dx- A ye = (3-176)
de
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then
s d sA

s = r x Y Y (3-177)
e d d

e e

In closed form, F = F(sx, s y) then becomes

j(Ne-l) e/2 j(NY-1) y/2sin Ne e/2 sin N yp/2

F(s ,s )=e e -± in~/xye sin /2 sin y/2 (3-178)

where

e = k(sxdx - s yA -A ed e  (3-179)

y = k(s d - y d y) (3-180)

3.4.3 Irregular Cells

The closed form expressions for the cell array factor developed in Sec-

tion 3.4.2 assume that the cell boundaries coincide with the cell lattice vectors.

This restricts cell shapes to parallelograms. In general, the geometry of the cell

boundaries may not coincide with the rectilinear structure. An example is shown in

Figure 3-16 (heavy line). Aclosed form expression for the array factor for this cell

is obtained by combining several array factors. Three additional arrays are indica-

p ted in Figure 3-16. Array 1 is "regular" (bounded by a parallelogram with sides co-

inciding with constant lattice coordinate lines). The array factor for Array 1,

therefore, is given by (3-178). Arrays 2 and 3 form triangles bounded on two sides

with constant lattice coordinate lines. Along each third side the y coordinate var-

ies linearly with e coordinate. A closed form expression for this array type is de-

rived below. The cell array factor then is given by

jkr.rl jkr.2 jrki.
F = e F - e F + e F3  (3-11

1 2

where the sulbscript indicates the array number. The phase factors kr-r1 , etc., are

necessary to translate the corresponding array coordinate origins, references for

array factors F1 , etc., to the cell coordinate origin. In the .Figure 3-16 example,

r I  2 = r e and r3 = 0
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Array factors for array shapes such as Array 2 and Array 3 of Figure 3-16 are of

the form

N-I N (m)-I

Je e Y ny-

F e e e j " (3-182)

m--O n=0

This equation is similar to (3-171) except that N in (3-182) is now a function ofy

m (i.e., N = N (m)). A linear behavior, expressed by
Y y

N (m) = e0 + Elm (3-183)

results in a closed form expression for (3-182). The inner summation in (3-182)

becomes

N (m)-i

e Y = e (3-184)E j

This results in

N -I N -i

1 e j(Ny(m)y + m ) e jme

F j _y - e (3-185)

e -i m0 m=0

which reduces further to

___F 
= F(SxSy) = 1 e sin e

e -ilin

J e- joe/21 1 sin(3-186)

e1 e /2sin (N /2)
-e ee

sin OPe/2)
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where

= (Eljy + e)/2 (3-187)

and e and y are given by (3-179) and (3-180).

Note that when c = 0, N is a constant (=c0 ) and (3-186) reduces to (3-178) as

expected.

3.4.4 Flat Lens

The far-field radiation pattern of a flat lens face is considered here.

Curved lens faces, as may occur from structural deployment errors or from severe

temperature gradients, are considered in Section 3.4.5.

The lens patterns are with respect to a lens coordinate system, termed

"global," having z axis directed outward from the lens plane. The relationship be-
th

tween the global coordinate system and the local coordinate system for the v cell

is shown in Figure 3-17. The g subscript refers to the global system and the v sub-
th

script to the cell system. The v cell is positioned r from the global systemgv

and rotated an angle v in the lens plane as indicated.

The lens pattern is obtained by combining the contributions from all the

cells. Closed form cell pattern expressions with respect to local cell cool,4 nate

systems have been developed in Sections 3.4.2 and 3.4.3. These expressions must be

modified to refer to the global coordinate system. The array factor of the v cell

Fv(Sx, s ) is given by
Y

j kf. r

Fv(Sx, Sy) e gv F(sx s y) (3-188)

where F(sx , s y) is (3-.78) or of the type (3-181) and

s = i.i (3-189)
x v

s y r'Yv (3-190)

The global system rectangular components of the field point unit vector r, in column

vector form, are given by

F r.Xg , sin ecos -

r r.y = sin Ocos4J (3-191)
g

r ̂z cos
- g~ L
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th
In the local coordinate system of the v cell, r has rectangular components given by

£v
v Yv = R - rg (3-192)

where [Rv I is the coordinate system rotation matrix. For flat cells, the z axes of

the global and local coordinate systems coincide resulting in

Fcos v sin p 01

V V

[Rv= V -sin p cos v 0 (3-193)

0 0 1

Equation (3-162) for the element factor e and (3-178) or equations of

type (3-181) for the array factor F employ i with components given by i in deter-
th v

mining the v cell contribution to the lens pattern.

The lens fields (3-164) are computed from the 6 and 4 components of the

element factor, e8 and e . Here e and are with respect to the global system.

Since . and 9'. in (3-162)are generally known in local system coordinates, a deter-

mination of e and e requires that C and $ be expressed in local coordinates. In

column vector form, the 6 and $ global system rectangular components are respectively

Scoso cos

0g = 'Yg = cos 0 sin (3-194)
9

S-sin 0

- < .-sin 4

g g

L .Zg _ 0

th
The corresponding v cell rectangular components are

0 = [Rv)e (3-196)

v =  [Ru]; (3-197)

where, for flat cells, [RIv is given by (3-193).
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Figure 3-18. Warped Lens Surface S(x,y) with Quadrilateral Approximation Q(x,y)
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3.4.5 Nonflat Lens

The pattern expressions -- (3-162), (3-178), and (3-181) -- assume a flat lens

array. Departures from flatness can be caused by the adverse space envrionment and

possible antenna mechanical malfunctions or imperfections. An example of the former

would be array warping caused by thermal gradients across the lens surface induced

by alternate light and shadow areas. An example of the latter would be an imperfect

mechanical deployment of the lens in space. The development in this section gener-

alizes work done by Coffey and Carver.
1 5

The total lens warping is represented in a piecewise manner using the cells

defined in Sections 3.4.2 and 3.4.3. A warped array is shown in Figure 3-18. If

the warp is smooth and slowly varying, as in thermal expansion, the array surface

can be modeled by a continuous function, S(xvyv). Discontinuous warps, such as im-

perfect antenna panel unfolding, can be modeled by piecewise continuous functions.

If the array edges are connected by straight lines (the dotted lines in Fi-

gure 3-18), the resulting surface is a quadrilateral, Q (xvyv), that approximates

S(x vy v ) linearly in the arguments x and yv. The functional form for Q(xvy v ) is

Q(xvy v) =b 0 + b 3 + vYv  (3-198)

here the coefficients b, bl, b2, and b3 are unknowns. The xvy v cross-term, b is

a measure of the twist in the warped surface. The unknown coefficients of Q(x ,Yv)

could be determined by choosing four "representative" array elements locations

(e.g., the elements closest to the corners of the array) and obtaining four linear

equations in the four coefficient unknowns. Different representative elements will

lead to different choices of Q(xvYv).

There should be little variation in the various , idrilaterals for small

warps. A least-squares analysis could be performed on all array element locations

to ootain a "best" quadrilateral approximation. It is believed that such an analy-

sis will not be necessary.

A simple expression for the array factor for a quadrilateral surface is not

presently available. Consequently, a further approximation must be made. A planar

surface, P(xvY), of the form

P(x'Yv) = a0 + a1 xv 
+ a2yv (3-199)

is made to "best fit" the quadrilateral Q(xvY v by minimizing the integral
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3-76



f IQ - Pldxdy (3-200)

The minimization process leads to the following optimum choices for the coefficients

in (3-199):

a0 = b0

a, = b (3-201)

a2 = b2

The plane, P(xvyv), containing the optimum coefficients will, in general, be tilted

with respect to the xvy v plane (Figure 3-19). The tilt is measured by the polar

angles B and B . The equations that determine the tilt angles can be deduced fromx y
knowledge of P(xv, v)

tan B x = a1x (3-202)

tan = ay 2

The overall result is that the warped section of the array can be approxima-

ted by a lens array cell tilted in the local unperturbed cell coordinate system an

amount measured by the tilt angles. Element periodicity is assumed to still exist

on the tilted cell although this periodicity may differ from that of the unperturbed

cell. Closed form array factor expressions are not employed if the elements are not

periodically located.

The pattern functions must be generalized to include the case of a "tilted"
thplanar array. Let r" extend from the origin of the v unperturbed cell local co-

mn th
ordinate system to the mn ground screen lattice point on the corresponding tilted

cell (Figure 3-20). Then

r =a 0 Z + r (3-203)

where

rmn =x XmnXv + ymn v + (alxmn + a2Yn )iv  (3-204)

th
and xv, 9v and iv are the cartesian unit vectors of the v unperturbed cell local

coordinate system. r locates the mn lattice point in the tilted cell with re-

spect to a local tilted cell coordinate origin.

The vector r defines the tilted cell. The tilted cell -lattice vectors and
mn

a guitable tilted cell local coordinate system can be determined from rmn. The flat
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Milo

cell radiation pattern expressions developed in Sections 3.4.2 and 3.4.3 now are ap-

plicable to the tilted cell. The contribution of the tilted cell to the lens pattern

then can be obtained by a generalization of the Section 3.4.4 development. This is

carried out below.

The mnt h lattice point in the unperturbed cell is defined by

r = md + nd (3-205)
mm e v yv

The quantities in (3-205) are the same as those in (3-165) with the v subscripts im-

plied for e and y in (3-165). From Section 3.2.4,

r =md i +(nd - may)y (3-206)
xv y v

th
The xmn and Ymn in (3-204) are the coordinates of the mn lattice point in the un-

perturbed cell. From (3-206), therefore,

x = md (3-207)
mm x

Ymn = nd - mAy (3-208)

and (3-204) becomes

t=nd x +(nd - m~y)y
rmn x v y v (3-209)

+ [a md + a (nd - mAY)] zlx 2 y V

The y-directed lattice vector of the tilted cell is defined by

dt 4rt -t (3-210); y rm,n+1 rmm

where dt is the tilted cell y-directed interelement spacing and yt is the tilted cell
Y

y-directed lattice unit vector. Similarly, the e directed lattice vector of the til-

ted cell is defined by

dt t =r - t (3-211)
e e rm+l,n r mn

* with similar definitions for dt and t. Equations (3-202), (3-209), (3-210), and
e

(3-211) combine to yield

dt = d /cosy (3-212)

dt = 2/cos2 x + Y2 /coS2 y - 2d Aytan tan$y (3-213)
e x xY x x y

y coso Y + sin ~yv (3-214)

3-79



i t!

e = d [x - Ayy + (d tanx - Aytany )i ]  (3-214)
d t xV V X x y v
e

The x and y cartesian unit vectors in the local tilted cell coordinate system are

obtained readily from

x = A/A. (3-216)

z = x x y (3-217)

where

A = e - (yt.t)y (3-218)

Equations (3-212) through (3-218) define the lattice parameters and local coordinate

system of the tilted cell. The radiation from a tilted cell then can be determined

from the expressions of Sections 3.4.2 and 3.4.3.

A tilted cell lattice structure may differ from its original, unperturbed lat-

tice structure; e.g., an unwarped cell with a rectangular lattice (Ay = 0) has, after

warping, a tilted cell approximation with, from (3-213) and 3-215),

^t =cos x x + sin x z (3-219)

xV XV

From (3-215) and (3-220),

^t ^t
y.e = sin Sysin 8x (3-220)

y

The tilted cell lattice is, therefore, not generally rectangular; i.e., y *e 0 0.

A tilted cell contribution to the lens far-field pattern is obtained by ex-

tending (3-188) to

F (Stst) = e ik(rgv + a0z)F(st t (3-221)
v x y x y

-* t t
where rgv locates the unperturbed cell local coordinate origin and F(s ts t) is the

array factor of the tilted cell with respect to the tilted cell coordinate system.

The factor F(s s y) is given by (3-178) or equations of type (3-181) with sx and sy

replaced, respectively, by

t ^ ^

t = r.x (3-222)

t ^ t
S ry (3-223)
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Since r will be specified with respect to the global system coordinates (i.e., via

the column vector r of (3-191)) and, since i with respect to the unperturbed cellg !

coordinates is rv of (3-192), then, with respect to the tilted cell coordinates, the

column vector representation for r is

-t t
r = [Rt ] [R] g (3-224)

t
where ER I is the tilted cell rotation matrix given by

[t.x vXv.y v v-
^t - ^t ^ A^t

[Rt ] = v yv.yv Yv.Zv (3-225)

^t ^ ^t ^ ^t ^
LZv X v  zv 'Yv  z Vv

The expression for the element factor (e) for a tilted cell is given by (3-162)
-t

with r having components given by rv. Since t' and 22' are known with respect to the

tilted cell coordinate system, a determination of e0 and e requires that 0 and 4 be

expressed in tilted cell coordinates. In column vector form, these coordinates

become

;t = [Rt ] [R]g (3-226)
v g

-t = [Rt ] [R] g (3-227)

where eg and g are defined by (3-194) and (3-195). Equations (3-196) and (3-197)

were employed in deriving (3-226) and (3-227).

i8
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SECTION 4

IMPLEMENTATION

The SBR RF simulation successive approximation method software is subdivided

into two sections, based upon level of approximation. One section implements the

First Approximation Method (FAM), which makes extensive use of infinite array theory

(Section 3.2). The second implements the Higher Approximation Method (HAM), which

employs previous approximation results in a conventional isolated element moment

method approach to calculating the edge effects and effects of nonperiodicities on

current distributions and antenna patterns (Section 3.3).

4.1 PROGRAM FUNCTIONAL DESCRIPTION

4.1.1 First Approximation Method

The first approximation analysis is performed for each cell. Data for array

a are read in and the element data are calculated in subroutine GEOMET (Figure 4-1).

GEOMET is called again to calculate array b element data after array b data are read in.

The program loops over the incident plane waves from 1 to NPWAVE. An inner

loop then begins over the feedback modes. The feedback mode counters are calculated

for both array a and array b. The phase functions for the total impressed field are

calculated at each array reference element.

Subroutine ZMATX is called with array b data to calculate the array b impe-

dance matrix, [Z], for an infinite array above an infinite perfect ground screen

and [ZF] for an infinite array in free space. Subroutine SCAN is called to calcu-

late the array b admittance matrix by inverting [Z] and calculating the active impe-

dance. The array b reference element current for unit port voltage excitation is

saved. The reference element port current is taken from the LSBth column of [Z],

where LSB is the number of the current segment containing the antenna element feed-

point for array b elements.

ZMATX is called again with array a data to calculate the array a above a

ground screen impedance matrix [Z]. The impedance matrix for array a in free space

[ZFI is also calculated in ZMATX and is written to a file. Matrix [Z] for array a

is sent to SCAN to calculate the admittance matrix for array a and the active impe-

dance for array a. The LSA th column of [Z] is saved. It is the element current for

unit port excitation.

For a zero feedback loop, matrix [Z] for array a is sent to SCIA to calcu-

late the array a generalized voltage and current vectors. The reference element

port current, SCIAEX, is also calculated.
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Array a and array b reference element port currents are then calculated for

the zero feedback loop using SCIAEX.

If there is feedback and if the number of feedback modes is zero, the array a

impedance matrix for free space [ZF] is read from the file. It is sent to SCAN to

calculate the array a reference element free space admittance matrix and element

active impedance.

The array a impedance matrix for free space [ZF] and the array a active impe-

dance are sent to subroutine MUTUAL to calculate the mutual impedance between array

b and array a through the imperfect ground plane. MUTUAL also calculates the array

a generalized voltage and current vectors arising from current on array b. The

mutual impedance is used to calculate the feedback mode array a and array b refer-

ences element port currents.

When there is no feedback, the call to SCAN for the free space active impe-

dance and the call to MUTUAL are bypassed.

The program continues by calculating the reference element port feedback vol-

tages. For feedback, the voltage array is corrected for array b port current exci-

tation. For no feedback, the voltage and current arrays are set to zero.

Array a and array b generalized current vectors then are adjusted for the

correct array port voltages. The current and voltage arrays for array a and array

b are written to file. This ends the feedback loop.

Subroutine CELPAT is called to calculate the array b current moments for the

reference elements and the pattern of the antenna cell under analysis. The indivi-

dual cell patterns are stored on a file for integration into the total lens pattern.

Array a reference element voltage and current induced for each incident plane

wave are written to file. This ends the plane wave loop.
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4.1.2 Higher Approximation Method

The higher approximation method (HAM) calculates corrections to the first

approximation of the lens patterns and current amplitudes to account for edge effects

and missing elements, or any nonperiodicities in the array lattice. HAM will be the

implementation of the theory discussed in Section 3.3.

HAM begins the calculation of the second approximation with a loop over the

nonperiodicities in the lens (Figure 4-2). For each nonperiodicity, HAM loops over

the elements in the neighborhood of the nonperiodicity.

The physical characteristics of the radiating elements on array a and array

b are read in. Next, the Z-parameters of the module are input. The program then

calculates the generalized admittance row matrices for array a and array b elements

above a perfect ground plane. The input impedances are calculated from the array

a and array b elements' admittances which are extracted from the admittance row

matrices.

The module port admittance matrix relating voltages induced along array a

and array b elements to module port currents is calculated using the impedance ma-

trices and the Z-parameters.

The generalized voltage for the array a element induced by the first approxi-

mation currents on array b is calculated using the first approximation prediction of

mutual coupling through the ground screen.

Next, the generalized voltage induced on array a element by excitation field

is calculated.

The program then loops over the neighboring elements. In this loop, the

generalized voltage, induced on the array a element by first approximation currents

on the neighboring array a element is calculated. This generalized voltage is sum-

med to obtain the generalized voltage. The generalized voltage, induced on array

b element by first approximation currents on the neighboring element is calculated
and summed to obtain the generalized voltage. This ends the loop over neighboring

elements.

The generalized voltages at the array a element are summed to obtain the vol-

tage. This voltage is used to calculate the second approximation port currents.

The module port currents for the second approximation are stored and the

loop over the elements in the neighborhood of the nonperiodicity ends, completing

the second approximation calculation.
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For higher approximations, the code assumes the current distributions will

change by a complex constant. The complex constant is the ratio of the 2nd to the

Ist approximations of the module's port currents. Therefore, the higher approxima-

tion begins by adjusting the voltage induced at the array b element by the ratio of

the 2nd to the 1st approximation module port currents on the array a side of the lens.

The higher approximation generalized voltages are calculated by looping over

all the elements in the neighborhood of the chosen element. The second approxima-

tion port currents for the module are used to adjust the 1st approximation general-

ized current vectors. The adjusted currents are then used to calculate the second

approximation generalized voltage vectors for the chosen element. The third approx-

imation port currents are then calculated using the second approximation general-

ized voltages. The third approximation port currents for the elements are stored

and used to calculate new current moments. The current moments are used to calcu-

late a correction field pattern. When the loop over the elements near nonperiodi-

cities is completed, the third approximation correction field pattern is also

completed.

The higher approximation correction calculations are complete upon completion

of the loop over all the nonperiodicities on the SBR RF array lens.

I4
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Q BEGIN
BEGIN LOOP OVER

L NONPERODICITIES

BEGIN LOOP OVER
NEIGHBORHOOD OF NONPERIODICITY

INPUT PHYSICAL
CHARACTERISTICS OF
ELEMENTS ON ARRAY A
AND ARRAY B

INPUT CHARACTERISTICS
OF MODULE (Z-PARAMETE)

INPUT OR CALCULATE
GENERALIZED ADMITTANCE
ROW MATRICES FOR ARRAY
A ELEMENT AND ARRAY B
ELEMENT EACH ABOVE A
PERFECT GROUND PLANE

EXTRACT FROM ADMITTANCE
ROW MATRICES ARRAY A
AND ARRAY B ELEMENTS
INPUT ADMITTANCES AND
CALCULATE INPUT IMPEDANCES

CALCULATE MODULE PORT
ADMITTANCE MATRIX RELATING
VOLTAGES INDUCED ALONG

ARRAY A AND ARRAY B ELEMENTS
TO MODULE PQRT CURRENTS

Figure 4-2. 1AM Flow Chart
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CALCULATE GENERALIZED VOLTAGE
INDUCED BY FIRST APPROXIMATION
CURRENTS ON ARRAY B AT AN ARRAY
A ELEMENT USING FIRST APPROXIMA-
TION PREDICTION OF ARRAY TO AR-
RAY COUPLING

CALCULATE GENERALIZED VOLTAGE
INDUCED ON ARRAY A ELEMENT BY
EXCITATION FIELD

BEGIN LOOP OVER

NEIGHBORING ELEMENTS

CALCULATE GENERALIZED VOLTAGE
INDUCED ON ARRAY A ELEMENT BY
FIRST APPROXIMATION CURRENTS
ON ARRAY A NEIGHBORING ELEMENTS

SUM TO OBTAIN THE

CALCULATE GENERALIZED 
VOLTAGE

F INDUCED ON ARRAY B ELEMENT BY

IFIRSTC APPROXIMATION CURRENTS

TNARRAY B ELEMENTS

Figure 4-2. HAM Flow Chart (continued)
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STORE MODULE PORT CURRENTS
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Figure 4-2. HAM Flow Chart (continued)

4-10



C
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OF NONPERIODICITIES

ADJUST GENERALIZED VOLTAGES,
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ARRAY A ELEMENT BY RATIO OF
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PORT CURRENTS
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NEIGHBORING ELEMENTS

READ SECOND APPROXIMATION

CALCULATE GENERALIZED VOLTAGES
AND INDUCED ON ARRAY A AND ARRAY
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INDUCES AT ARRAY A AND B ELEMENTS
DUE TO SECOND APPROXIMATION CUR-
RENTS ON NEIGHBORING ELEMENTS

END LOOP OVER

NEIGHBORING ELEMENTS

Figure 4-2. HAM Flow Chart (continued)
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CALCULATE THIRD APPROX-

IMATION PORT CURRENTS

STORE MODULE PORT CUR-

RENTS FOR THIRD APPROX-

IMATION

ADJUST CURRENT MOMENT FOR

ELEMENT BY RATIO OF THIRD

TO SECOND APPROXIMATION

PORT CURRENTS

ACCUMULATE PATTERN
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END LOOP OVER
NONPERIODICITIES

END 4

Figure 4-2. HM Flow Chart (continued)
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4.2 DATA FLOW

4.2.1 Data Flow for FAM

FAM - First Approximation Method Main Program

Inputs

ALPHAX, ALPHAY Module phase shifts

AMP Amplitude of external field over cell

CELLID Alphanumeric label which characterizes the antenna

cell under analysis

D Height of array b above the ground plane

DA Height of array a above the ground plane

DELTA(NBF, Arrays of lengths of wire current segments {A}
DELTAA(NBFA)

DX, DY Array b interelement spacing

DXA, DYA Array a interelement spacing

FREQ, K Radiation frequency and wave number

LBA(NBFA,3), Arrays of vectors parallel to array a and array b
LB(NBF,3) wire current segments

Number of the current segment containing antenna element
feedpoint for array a and array b elements

NA, NB Number of elements on array a and array b of the lens

Number of basis functions which describe the currents
NBFA, NBF on the array a and array b elements

Number of feedback modes used in mutual coupling cal-NBFM culation

NPWAVE Number of external plane waves exciting array a

Control parameters for the calculation of the impedance

PMAX QMAX'~ matrix for array b

Control parameters for the calculation of the impedance

matrix for array a

Control paremeters for the calculation of the array b to
array a mutual impedance

(POLX, POLY, POLZ) Polarization vector of external field

RBCA(NBFA,3), Array of position vectors R pointing to the center of

RBC(NBF,3) ' array a or array b element current segments from array
element feedpoint

Direction cosines of propagation direction of external
(SX, SY, SZ) field

TPERP, TPARA Perpendicular and parallel ground plane transmission
coefficients

YDELA, YDEL Array a and array b skew parameters
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ZMODAA, ZMODAB Module 2-port impedance parameters

ZMODBA, ZMODBB

Outputs

IAAA(NBFA)

IAAB(NBFA) Array a reference element generalized current vectorsIAEXk(NBFA

IBBB(NBF) Array b generalized current vector

VAAA
VAAB(NBF Array a voltages
VAEX(NBF)

VBBB Array b port voltage

GEOMET - Calculates Array Element Data

Inputs

FREQ Radiation frequency

JCODE Connector code

NFP Number of feedpoint

NS Number of segments

NW Number of wires

R Input radius

XE, YB, ZB, Beginning and end points
XE, YE, ZE

XF, YF, ZF Feedpoint location

Outputs

DELTA(NBF) Segment length

K Wave number

LB(NBF,3) Segment unit vector

Array containing basis function number for each
feed segment

NWS(NBF) Segment wire number

RAD(NBF) Radius

RBC(NBF,3) Vector to center of segment

MUTUAL - Caluculates the Array b to Array a Mutual Coupling Through an In-
finite Imperfect Ground Plane

Inputs

D Height of array b above the ground plane

DA Height of array a above the ground plane
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DELTA(NBF) Array b lengths of wire current segments

DELTAA(NBFA) Array a l,.gths of wire current segments

DX, DY Array b interelement spacing

IBBB(NBF) Array of current segments containing array b feedpoint

K Wave number

LB(NBF,3) Array of vectors parallel to array b wire current segments

LBA(NBFA,3) Array of vectors parallel to array a wire current segments

Number of the current segment containing antenna element
feedpoint for array b

NBF Number of basis functions for array b

NBFA Number of basis functions for array a

PMAXM, QMAXM Control parameters

PTPL Flag to indicate pulse or point matching

Array of position vectors pointing to center of array b
RBC(NBF,3) element current segments from array b element feedpoint

Array of position vectors pointing to center of array a
RBCA(NBFA,3) element current segments from array a element feedpoint

TSXB, TSYB Array b phase factors

YDEL Skew parameter for array b

Z(NBFA, NBFA) Array a admittance matrix

Outputs

SIAAB(NBF) Array a reference element generalized current vector
due to VAAB excitation

Generalized voltage vector on array a due to penetration
of ground screen by field radiated by array b currents

Mutual impedance between array b and array a reference
elements through the imperfect ground plane

SCAN - Calculates Array Reference Element Admittance Matrix and Active Impe-

dance

Inputs

The number of the current segment containing antenna

element feedpoint for array elements

NBF Number of basis functions

Z(NBF, NBF) Impedance matrix

Outputs

Z(NBF, NBF) Inverted impedance matrix; the admittance matrix

ZSCAN Active impedance
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SCIA - Calculates Array Generalized Voltage and Current Vectors and Element
Port Current for Element in the Incident Field

Inputs

DELTA(NBF) Array of lengths {A of wire current segments

K Wave number

L Number of the current segment containing antenna element

feedpoint for array element

LB(NBF,3) Array of vectors [Z] parallel to array wire current seg-
ments

NBF Number of basis functions

(POLX, POLY, POLZ) Polarization vector of external field

Array of position vectors [R) pointing to center of ar-
RBC(NBF,3) ray element current segments from array element feed-

point

Z(NBF, NBF) Admittance matrix

OUTPUTS

IAEX(NBF) Short circuit current vector

SCIAEX Short circuit source current for reference element

VAEX(NBF) Total excitation vector (including reflection) for re-

ference element

ZMATX - Calculates the Impedance llatrix

Inputs

D Height above the ground plane

DELTA(NBF) Array of lengths {A of wire current segments

DX, DY Interelement spacing

K Wave number

LB(NBF,3) Array of unit vectors I[] parallel to wire current seg-
ments

NBF Number of basis functions

PTPL Flag to indicate 0 = point matching I = pulse matching

RAD(NBF) Radius

RBC(NBF,3) Array of position vectors [R] pointing to center of ele-
ment current segments.

WLEN Wave length

YDEL Skew parameter
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Outputs

Z(NBF, NBF) Impedance matrix for an array above a perfect ground
screen

ZF(NBF, NBF) Impedance matrix for an array in free space

CELLPAT - Cell Pattern Calculations

Inputs

RGV(3) Global coordinates of cell

PHICG Rotation of cell relative to GCS

PHIEC Rotation of element relative to CCS

NARY Number of arrays within cell

NY(30) Number of rows in y direction for each array

NX(30) Number of columns in x direction for each array

NO(30) Number of elements in first column of irregular array

IAS(30) Add-subtract factor for each array

RREFC(30,3) Coordinates of reference element of each array

DX(30) x separation for each array

DY(30) y separation for each array

DELTAY(30) Skew in y direction for each array

RBC(NBF,3) Array position vectors for segments of array a element

IBBB(NBF) Generalized current vector for array b elements

Outputs

THETA Polar angles to field points

PHI Azimuth to field points

ETHETA Theta component of E field

EPI Phi component of E field

4.2.2 Data Flow for HAM

Main Program

In~ut S

ALPHAX, ALPHAY Module phase shifts

AMP Amplitude of external field over cell

CELLID Alphanumeric label which characterizes the antenna cell

under analysis
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D Height of array b above the ground plane

DA Height of array a above the ground plane

DX, DY Array b interelement spacing

DXA, DYA Array a interelement spacing

FREQ, K Radiation frequency and wave number

IAAA(NBFA) Array a reference element generalized current vectors
IAA(NBFA) for first approximation

IAEX (NBFA)

IBBB(NBF) Array b generalized current vector for first approxi-
mation

LBA(NBFA,3), Arrays of vectors Z parallel to array a and array b
LB(NBF,3) wire segments

Number of the current segment containing antenna elementL, LSA, LSB feedpoint for array a and array b elements

NA, NB Number of elements on array a and array b of the lens

Number of basis functions which describe the currents on
the array a and array b elements

Number of feedback modes used in mutual coupling calcu-
lation

(POLX, POLY, POLZ) Polarization vector of external field

RBCA(NBFA,3), Array of position vectors R pointing to the center of
array a or array b element current segments from array

RBC(NBF,3) element feedpoint

S SZ) Direction cosines of propagation direction of externalfield

VAAA
VAAB(NBF) Array a voltages
VAEX (NBF)

VBBB Array b port voltage

(XLOC, YLOC, ZLOC) Location of mn t h element on cell

YDELA, YDEL Array a and array b skew parameters

ZMODBA, ZMODABB P Module 2-port impedance parameters

Outputs (Subscriptj denotes order of approximation)

IAAAj (NBFA) Array a generalized current vector

IBBJ (NBFA) Array b generalized current vector

AE~j Electric field corrections provided by higher order
AE4j approximations of voltages and currents

VAAAJ Array a port voltage for 00 element

VBBBj Array b port voltage for 00 element
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SECTION 5

RESULTS - FIRST APPROXIMATION METHOD CURRENTS AND ACTIVE IMPEDANCE

Simulation results obtained to date have been limited to infinite array

analysis. Active impedance and current distributions have been compared with pub-

lished results on planar, rectangular lattice, and dipole arrays.1 1 , 12 , 1 3 Simula-

tion results are presently being compared with moment method analyses of large, tri-

angular, spaced-dipole arrays. The center element impedance and current have been

compared with the first approximation method (FAM). Several of these comparisons

are presented in this section. The effect of varying the orientation of the dipoles

in an infinite triangular array is presented, as is a design of a single-port turn-

stile radiator for use in an infinite triangular array. These results demonstrate

the versatility of the simulator. Convergence curves are given in terms of minimum

number of required plane wave modes (truncated doubly infinite summation in (3-16))

and number of subsections (order of [Zgs]).

5.1 INFINITE ARRAY COMPARISONS

Stark" analyzed an infinite rectangular array of thin X/2 strip dipoles over

perfect ground screen. Active impedances were computed. A single sinusoidal current

distribution on each element was assumed since this is exact for vanishingly thin

wires and since such an approximation proved valid in calculating impedances of iso-

lated dipoles not exceeding X/2 in length. These results compared well with Carter's

large finite array analysis1 4 for active impedances near the center of the array;

however, Carter also assumed the same single sinusoidal current distribution per

element.

VanKoughnett and Yen 12 observed that since the dipoles were almost touching

in the collinear direction the current distribution may significantly deviate from

a single sinusoid even for very thin dipoles. They analyzed the same array in a man-

ner which permitted computing the current distribution to any desired degree of ac-

curacy. The resulting active impedances displayed a variation with scan that was

similar to Stark's results; however, the variation was considerably more pronounced

and the broadside impedance values significantly differed.

VanKoughnett and Yen's method is applicable only to elements with small spacings

in the collinear direction. Chang 1 3 removed this restriction by applying a "five-

term expansion" as well as a multiple mode sinusoidal expansion to the rectangular

infinite array of dipoles.

The results from the above papers selected for comparison with the first approx-

imation method (FAM) were obtained with the configuration of Figure 5-1 where
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a = dipole radius

d = dipole length

h = array height above ground screen

dx  periodicity in x direction

d = periodicity in y directiony

The excitations were unit amplitude voltages progressively phased for radiation in a

specified direction. The dimensions for three problems that were considered for this

configuration are indicated in Table 5-1. The voltage sources were phased for a vari-

ety of E-plane, H-plane, and diagonal plane scan angles. Both current distributions

and active impedances were computed. The results from Problems 1 and 2 apply to

Chang's results. The results from Problem 3 apply to VanKoughnett and Yen's results.

The zero scan (broadside radiation) reference element current distribution for

Problem 1 is shown in Figure 5-2. Six FAM results appear. Each result applies to

one of six combinations of maximum plane wave expansion numbers p max and qmax and

number of segments N used in computing the infinite array generalized impedance ma-s

trix (Zg s l of Section 3.2.2. Equation (3-16) shows the doubly infinite summation

in p and q needed to compute the ijth element of the N x N matrix [Zgs. These

summations are truncated according to Ip ma and Jqj <  
. The p m q m andmax "a Pmax ' max

N for the FAM results in Figure 5-2 are listed below.
5

Curve No. Ns  Pmax qmax

1 11 15 40

2 11 15 30

3 11 15 20

4 21 15 20

5 21 15 40

6 21 15 30

The required pmax and q increases with increasing d /a and d /a respectively. For
mx mxx y

Chang's results (Problems 1 and 2) d is almost 5 times d . Therefore, pmax wasx yma
chosen smaller than qmax* The Problem I current distribution results (Figure 5-2)

appear converged for 21 segments per half wavelength. The curves for 11 segments

have not yet converged. Curves I and 2 are further from Chang's results than curve

3 even though the value of q is higher for curves l and 2 than for 3. Additional

convergence results are given in Section 5.5.
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The principal plane scan active admittances for Problem I are plotted in Figure
5-3. For these results pmax = 20, qmax = 70 and N = 21.

The element current for the full wavelength dipole array of Problem 2, scanned

for broadside radiation is shown in Figure 5-4. The FAM results used pmax = 15,

qmax 
= 50 and N = 21. As with Problem 1, close agreement between FAM and Chang's

method is indicated.

The E-plane and H-plane active impedances for Problem 3 are compared with

VanKoughnett and Yen in Figures 5-5 (resistance) and 5-6 (reactance). The resistance

is in close agreement throughout the 0' (broadside) to 450 scan range. The agreement

in reactance is within approximately 15% for near broadside scan. This agreement de-

teriorates for larger scan angles.
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Figure 5-1. Infinite Planar Dipole Array Above a Perfect Ground Screen
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TABLE 5-1

INFINITE ARRAY PROBLEMS

Problemu I Problem 2 Problem 3

a 0.007022 0.007022 0.00796

d 0.5 1. 0.5

h 0.25 0.25 0.25

d 0.25 0.25 0.5

d 1.2 2.2 0.5
Y _ _ _ _ _ _ _ _ _I

All dimensions in wavelengths

BROADSIDE SCAN

- \LUM151RE I TAI NFS-FANI
(3 ' 1 I) I NE -C11.A*G'1

0 21

t321

U1. tIM I Nr(m A)

Figure 5-2. Element Current for Problem 1 of Table 5-1
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Figure 5-3. Active Admittances for Problem 1 of Table 5-1
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Figure 5-4. Element Current for Problem 2 of Table 5-1
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5.2 FINITE ARRAY COMPARISONS

Thin wire moment method computer codes are applicable to finite arrays of arbi-

trarily bent wire radiators over infinite perfectly conducting ground screens. Two

of these codes GEMACS 18 and AMP 19 are available as an aid in validating the simulator.

The results in Section 5.1 apply only to rectangular lattices. Since triangular

lattices are of particular interest, the configuration chosen for comparing FAM with

finite array moment methods is that of Figure 5-7. A 19-element dipole array is in-

dicated. Each dipole is centrally excited with progressively phased voltage sources.

The parameter values are

d = 0.5X

a = 0.01X

d = 0.715X
x

d = 0.826A
y

A = 0.413A

h = 0.25A

Consider the standard spherical coordinates r, e, with respect to the right hand

x, y, z coordinates indicated in Figure 5-7 where z is outward normal to the array

plane and the origin is at the reference element (m = n = o) center. The phasing

of the V voltage sources can be related to main beam angular directions ,

d t e th
(scan angles) by letting r' denote the mn element center position vector. Then,mn

with reference to Figure 5-7 and the discussion in Section 3.2.4, (3-95) results in

-jkr.r' -jk(md a + (nd - mAy)a )
V mn=e m = e y (5-1)

where a and a are the scan directional cosinesx y

Ux = cos CP sin 0e

a = sin t sin e

and r is the unit vector for the main beam field point position vector. Equation

(5-1) provides the element excitations for any scan direction. The "principal"

scans are

H-plane: ay 0 (4 0)
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E-plane: ax  0 (0C = 712)

Diagonal plane: ax = y (1 = 7T/4)

FAM treats the Figure 5-7 problem as an infinite array. The active impedances

for the principal scan planes for this problem, as computed by FAM, are shown in Fig-

ures 5-8 (resistance) and 5-9 (reactance). The scan angle is a . The computational

variables were Ns = 23 and pmax ax = 60. The discontinuities in these curves

occur at grating lobe singularities; i.e., at scan angles for which there exist in-

tegers p and q such that qz given by (3-97), vanishes. (A discussion on grating

lobe singularities appears in the paragraph following (3-58) and in the paragraph

containing (3-61).) The H-plane grating lobe singularity occurs at 0 = 23.490, the

E-plane singularity occurs at 6 = 29.220, and the diagonal plane singularity occurs

at 6 = 59.75 ° . The locations of grating lobe singularities depend only upon lat-

tice spacings.

The broadside scan current on the reference element (m = n = 0) of the Figure

5-7 finite array as computed by the GEMACS moment method code is shown in Figure 5-10.

Also shown are the GEMACS current with the array extended to include 37 dipoles

(same interelement spacings) and the infinite array FAM current.
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Figure 5-7. Finite triangular lattice dipole array a height h above an
infinite ground screen. Identifying m,n indices are in-
dicated. A voltage source V centrally excites each
dipole. Tf
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5.3 ELEMENT ROTATION IN THE ARRAY PLANE

The effects of rotating all dipole array elements in the array plane (about the

z axis) are of interest. The reference element currents and active impedances were

obtained using FAM for rotation angles (Figure 5-11) p = 0', 150, 3Q0' 450, 60', and
9Q0*. This was done at both broadside scan and 0 = 200, 4, =00 scan. Two lattices

were considered: the Figure 5-7 triangular lattice and a d x= d O .8X rectangular

lattice. The active impedances are given in Table 5-2. The reference element cur-

rents are plotted in Figures 5-12 to 5-19. These results indicate greater element

rotation induced impedance and current variations for the 20 degree scan than for

broadside and for the rectangular lattice than for triangular.
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Figure 5-11. Rotation of Dipole Radiator in Array Plane
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TABLE 5-2

ACTIVE IMPEDANCES FOR ROTATED ELEMENT ARRAYS

Lattice Scan Angle 8 (Degrees)( ,=0O) Rotation Angle (Degrees) Impedance(Ohms)

Triangular 0 0 78.87 + j 8.614

15 78.4 + j 7.773

30 77.99 + j 7.147

45 78.41 + j 7.803

60 78.87 + j 8.607

90 77.86 + j 6.806

20 0 99.48 + j41.17

15 96.74 + j39.13

30 90.9 + j35.51

45 85.35 + j33.52

60 81.56 + j34.5

90 78.73 + j37.95

Rectangular 0 0 78.71 + j24.42

15 77.36 + j21.7

30 75.2 + j17.19

45 74.26 + j15.17

60 75.19 + j17.18

90 78.72 + j24.44

20 0 166.6 + j12.52

15 158.7 + j15.66

30 140.1 + j23.63

45 118.3 + j32.58

60 99.78 + j39.53

90 83.98 + j44.4
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5.4 TURNSTILE RADIATORS

The first approximation method was applied to the design of a turnstile radiator

(crossed dipoles excited for circular polarization) for use as an array element. Re-

actance loads were determined to effect the 90 degree phasing between horizontal and

vertical arms. This design avoids having to excite the radiator with the convention-

al two-port source. The array element is shown in Figure 5-20. The array lattice

was that of Figure 5-7. Only broadside array phasing was considered, resulting in

symmetric current about the axes of both dipoles. The need to model the short exci-

ted arm was avoided by passing the source through the junctions. This resulted in

the equivalent problem of Figure 5-21.

The reference element current as computed by FAM, with the complex impedance

loads ZH = ZV'= 0 is shown in Figures 5-22 and 5-23.

The current under non-zero load conditions is easily determined by FAM as dis-

cussed in Section 3.2.7. Also, by considering the radiator as a multiport - one

port for each load and excitation - and using FAM to obtain the port parameters re-

lating these values of ZH and Z were determined such that the currents at the load

ports were equal in amplitude and in phase quadrature between horizontal and vertical

arms. The resulting complex loads are

ZH = 0. + j32 (5-2)

Z = -0.2 - j48.8 (5-3)V

Since, for energy considerations, purely reactive loads are desirable the small real

part of ZV was set to zero prior to computing the reference element current. This

current is plotted in Figures 5-24 and 5-25. The active impedance for this radia-

ting element in the Figure 5-7 lattice infinite array is 74.4 + jlO.9 ohms.
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Figure 5-20. Loaded Crossed Dipoles with Single Feed Port
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,igure 5-21. Loaded Crossed Dipoles with Equivalent Feed
This Model is Equivalent to the Figure 5-20
Single Feed Port Radiator
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5.5 CONVERGENCE

Each element of the generalized impedance matrix [Zgs], given by (3-61), in-

volves a doubly infinite summation in integers p and q. Adequate truncation of this

summation depends on its rate of convergence. As discussed in Section 5.1, pmax and

qm must be determined such that the exclusion of all p and q for which II > p

and JqJ > qmax in the summation provides an accurate result. Each pq term in the

summation represents a plane wave. Beyond the first few values of II + JqJ these

waves are evanescent; they exponentially decay away from the array plane. The sum-

mation term corresponding to an evanescent wave is imaginary since the energy impart-

ed to these waves is entirely reactive. The principal parameters which impact pmax

and q for wire radiators lying in the array plane are d /a and d /a. The larger

these ratios of interelement spacing to wire radius the slower the convergence of

the summation.

The reactance of a "self-impedance" (diagonal) element of [Zgs ] was computed

for values of = q 150 and several values of d /a = d /a (square lattice).
xmax ymax -

Convergence rates are apparent from these results by plotting (Figures 5-26 to 5-29)

E()=IX(M) - X(150)i 54c(M) = X (5 (5-4)

I X(1 50)
versus M where X(M) = imaginary part of a diagonal element of [Zg s ] determined with

Pmax qmax M. Figures 5-26 to 5-29 each correspond to a different wire radius

and each display six curves. Each curve corresponds to a different interelement

spacing. Curve C in Figure 5-26 and Curve A in Figure 5-28 correspond to the same

ratio 50, of interelement spacing to radius. As expected, these two curves exhibit

similar convergence rates.

The size of [Zg s] is N2 where N is the number of segments dividing a wire ra-
s S

diator. Convergence of the reference element wire current with increasing N is5

shown in Figures 5-30 to 5-33. Figures 5-30 and 5-31 correspond to the Figure 5-7

triangular lattice dipole array and p max = 60. Figures 5-32 and 5-33 corre-

spond to the Figure 5-7 array with the exception that the wire radius was reduced to

a = 0.005A and amax ax 80. Convergence is quite slow in both cases. It was

pointed out 2 0 that the use of pulse expansion functions in the moment method formula-

tion in conjunction with an exact representation for the E-field operator is likely

the cause of the slow convergence. The convergence is expected to be significantly
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improved by computing the E-field via a partial difference approximation. Approxi-

mately seven subsections per wavelength is expected to then be adequate. This modi-

fication is presently being implemented.
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APPENDIX A

FIELD FROM AN INFINITE ARRAY OF INFINITESIMAL CURRENT DIPOLES

This appendix contains the derivation of the equations necessary to determine

the radiation from an infinite, rectilinear array of infinitesimal current elements.

All elements are identical in orientation, progressively phased, and of constant cur-

rent amplitude (Figure A-1). The derivation is based on the work of Munk, Burrell,

and Kornban.
1'6

The vector potential for an infinite array can be written as a sum over the

vector potentials of the individual elements

dA = pd (A-1)Pq
p=-m q=-_

where the ordered integer pair (p,q) uniquely locates an element in the array. The

individual element vector potentials have the form

-yRpq

dA = i d4 I e pq (A-2)
pq 4i pq Rp

where 2 is the element orientation, p is the permeability of free space, dt is the
th

infinitesinal dipole length , I is the current on the pq element, R is the dis-
th pq pq

tance from the pq element to the field point. The propagation constant, y, is as-

sumed complex to add generality to the argument.

The distance R is given byPq

R = ; I - ' II (A-3)
pq pq

* th
where r points to the field point and r' points to the pq current element. ThesePq
vectors have the following rectangular coordinate representations:

r xx + yy + zz (A-4)

r q = xpq + y pq (A-5)

where the array is assumed, for simplicity, to lie in the xy plane (Figure A-i).
th

For the case of a rectilinear lattice on the array, the coordinates of the pq ele-

ment satisfy

Xpq pdx  (A-6)

ypq = qdy + pAy (A-7)

A-1



x y

Figure A-1. Portion of Infinite Array of Infinitesimal Dipole Elements
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where d and d are interelement separations and Ay is the array skew paremeter.x y
(See Figure 3-7 for an illustration of these parameters.) The skew parameter will

be zero for rectangular lattices. The distance R now can be written as
pq

R2 = (pdx - x)2 + (qd + pAy - y) 2 + z2  (A-8)
pq xy

Due to the constant amplitude and progressive phasing of the element currents, the
th

current Ipq of the pq element can be written in terms of a reference current I00 as

e-jkr' •q- A9pq 00
pq I00 Pq (A-9)

where k is the wave number (k = imaginary part of y) and s is the phase unit vector.

sisx +syY^ + sz Z (A-10)

The current I in (A-9) now assumes the form
pq

-jkpdxsx - jk(qd + pAy)sy
pq I00 (-I

The array vector potential can be written as

i100dZ -jkpdxsx - jkpAys
HA "I0 e Yd (A-12)

I P=-M

: - j k q d s  "' -' PR
e pq (A-13)

q=-- pq

and represents the vector potential for a row of elements. The distance R is

written for convenience as

R = [a2 + [qdy - (y - P y)2 (A-14)

where

2 2 2
a = z + (pdx - x) (A-15)

The equation for the array vector potential, (A-13), can be transformed to a more

convenient form using Fourier transform methods. The required Fourier transform

pair is

A-3



F() e 21 2(A-16)
F~~w) = a+ (w-w1)2

f~)= e H~2  (a/- t 2 ) where w. is a constant (A-17)2 01

(2) th
The function H 0  (x) is the 0 order Hankel function of the second kind and f(t)

and f(w) are related by the usual Fourier transform equations.

I' -j wtF(w) e f(t)dt (A-18)

f(t) = ' f e F(w)dw (A-19)

Using (A-16) through (&-19), the array row vector potential becomes

S-jkqd 
s

dA ) e y YF(qd) (A-20)
p ,jy

or, more conveniently,

Jqw~t
dAe F(qwo) (A-21)

where

w= d
0 y

t =-ks
y

The infinite series in (A-21) now can be transformed to a faster converging series

using the Poisson sum rule (shifted version) 17 which states

E ejw0tF(qwo - T E f(t + nT) (A-22)

A-4



for any Fourier transform pair F(w) and f(t). The parameter T is given by

T=2 = 27 (A-23)
w0 dy

Using (A-22), the array row vector potential in (A-21) is

d =T f(t +nT) (A-24)

The function f(t + nT) is given by

H -Ct n= )-Lj t+ 1()( (A-25)
2j 0

where the constant w 1 is picked to be

W, y - p~y (A-26)

The array vector potential then satisifies

dZIci -jkpd s
d At P00 e X X iA (-6

4J d __ pA26

The row vector potential is

2 7rn 2 Trn

ciA = e Y y (2 (akr') (A-27)

where

[r' _ [s +nX2)2

jk y dl

Interchange of summation operations and change of sign on the summation index in

(A-26) and (A-27) yields

0'0d Jyk~s y + 4(A
t 4.j d Y Y dA nA-28)
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where

-jkpd [s -n~y A1

eA n ed H(2) (akr') (A-29)

P=-- 0

where

r' ( -i + n 2]
jk d y

It now is necessary to transform (A-29) using the Poisson sun rule. To begin the

process, the Hankel function, H0(2 (x), is written in terms of a modified Bessel func-

tion of the second kind, K 0 (y).

(U ) = -17 P (~2 ~) (A-30)

where U is a variable. Using (A-30), the Hankel function in (A-29) becomes

H~(akr) KO 1[UU'V d -x)2] (A-31)

where the variable U is chosen to be

The row vector potential in (A-29).then becomes

-Jkpd I d - n yA
dA n e L d 1  z2  (p - (A-32)

To transform (A-32) using the Poisson sum rule, the following Fourier transform pair

is required.

g(t) = 1iK [A [B 2 + (tC)2] (A-33)

G(w) - 2 -B(A 24w 2 -jwc (A-34)

(A 24-w 2
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where A, B, and C are constants. The row vector potential in (A-32) takes the form

dA n g(pt 0 )C-5

where

t = pTr0

To dx

Q= k(s - dd)
x y

and the constants A, B, and are chosen to be

A=U= 2[2+n

y

B= z

The Poisson sum rule for this transformation takes the form

e g(pr0 ) G (mW + Q) (A-36)

where

To

Upon transforming (A-35) using (A-36) the row vector potential becomes

*-j kx[ + ~ y__

dA n ed e (A-37)

where 
[z2 

[ 1 

-j 

' , + n 
nAy X ] 2

Z L y dx dxyd J
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The total array vector potential then becomes

'100 dX -yr •g+

dA 2ydd11Crd e (A-38)
n=- w m=- M gz

for r'z 0 where

i = jk + m x- ^ J + Y
[_ x y, g] Z

The array vector potential in (A-38) thus is seen to be representable as a doubly

infinite sum of attenuated plane waves. The fields are obtainable from the vector

potential in (A-38) by use of the relations

d4 =~ d!
i 1

dE = - V x dH
jwe

The final results are expressed in terms of the E field.

n I 0 0 d Re -3 k r -g + _

dE- 2d d e -h (A-39)

x y n=- m-

for r-z 0 where

N' _ --I.-( x g+) x g

gz -g+

A-8
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APPENDIX B

LENS CELL SIZE

The size of a cell is limited mainly by module-to-module phase settings that

differ significantly from those of linearly progressive phasing. The first approxi-

mation analysis, applied separately to each cell, assumes linear progresbive phasing

between modules in a cell (Sections 3.2.1 and 3.2.6). A nonlinear progressive phas-

ing across a flat lens is necessary if a target return is to be focused on the radar

receiver; however, this deviation from linear will be minimal across a sufficiently

small cell. A typical SBR lens cell size is determined here. A circular wavefront

segment is indicated in Figure B-1.
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Figure B-1. Linear Modeling of a Circular Arc

The maximum deviation from linear is

S= r2 + [d-- l 27

r 2  J 2  - r (B-l)

From (B-1), the segment length for a specified error, p, is

d = 2 [(r+) 2 - r 2 (B-2)

This length represents the height of a cell of containing modules, with linear pro-

gressive phasing that approximates the actual phasing to within an accuracy of

wavelengths.

The cell height required to maintain a specified maximum phase error will

vary depending upon the distance of the cell from the lens center. The relation-

ship of cell size relative to distance from the lens center is show in Figure B-2.
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Figure B-2. Cell Height Relative to Distance from Lens Center

The radius of curvature of the wavefront at the lens increases as the distance from

the lens center increases. The cell size, therefore, also increases for the same

accuracy; for example, for a p = O.IX deviation, and feed to lens separation of

r = 444X, the length, d, at the center of the lens is d = 18.8X. If the lens radius

is approximately 146X, then the wavefront curvature radius at the edge of the lens

is r = 468X and d = 20X. In general, the cell height, d, is calculated as follows

with reference to Figure B-2.

6 
= tan d, (B-3)

c -T
c1 -c

rc

where
d. = cell height at lens center

r = radius from receiver to cell center
c

Y = distance from lens center to cell center
c

Now
Y + d/2 = r tan (e + e ) (B-5)
c c c

Y - d/2 = r tan (6 - e) (B-6)
c c c

Therefore,

d = rc [tan (0 + 8c ) - tan (e- 6c)]  (B-7)

For the above example, the cell height at the edge of the lens (6c  1.290, 6 180)

is d = 22.2X, while at the lens center d. = 18.8X.
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A simple approximation to the number of cells needed to model a lens to within

an error of i is obtained by setting all cell heights d = do. The number of cells

needed to model the lens then is calculated by dividing the lens into concentric

rings and subdividing the rings into cells. The width of a cell is set equal

to the height of the cell. The number of cells per ring increases for rings

farther from the lens center. In the above example, since the lens radius is

148X, the number of rings needed to cover the lens is eight. The number of

cells per ring is shown below (0 ring is the inside ring).

Ring Number Number of cells

0 4
1 10
2 16
3 22
4 29
5 35
6 41
7 47

The total number of cells needed to cover the lens is 204. A lens portion,

subdivided into cells, is shown in Figure 4-3.

I
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