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almost so in a short period of time. The multiple target problem is that of

locating targets and missile seeker aim points within the PTS field of view,

deciding which target is to be assigned to each missile, generating error

signals to the torquers in order to slew the missile LOS such that its assigned

target is in the center of its FOV, and initiating automatic seeker tracking.

The task of locating a given smaller image within a larger image is known

as image registration". A detailed comparison of the important multiple image

registration methods based on the number of arithmetic operations for software

implementation and the complexity of hardware for real time implementation is

presented. New methods of accomplishing multiple image registration which are

computationally more efficient than the most commonly used template matching

techniques (correlation and sequential similarity detection algorithm) are

described. Conclusions and recommendations are given.
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I. INTRODUCTION

One concept which could potentially increase the firepower of the

"fire-and-forget" class of helicopter borne missile systems would be to

acquire and hand off multiple targets from a precision pointing and track-

ing system (PTS) to several missile seekers simultaneously, or almost so,

in a short period of time. A typical over-all fire control configuration

is shown in Figure 1-1. The pointing and tracking system typically con-

sists of an optics train, line of sight (LOS) stabilization system, for-

ward looking infra-red (FLIR) imaging system, manual and autotrack system,

laser range finder and associated electronics. An imaging missile seeker

could be an infrared type. It is assumed that during preflight checkout

or during the actual flight, the lines of sight of all the missile seekers

are aligned with the line of sight of the PTS. However, due to gyro drift,

boresighting inaccuracies, vehicle vibration and flexure, etc., the seek-

ers will not remain boresighted with the PTS. Since the PTS has a larger

field of view (FOV) in both axes as compared to missile seekers, it is

expected that the FOV of all the missile seekers will be located within

the FOV of the PTS. The multiple target problem then becomes that of

locating targets and missile seeker aim points within the PTS field of

view, deciding which target is to be assigned to each missile, generating

error signals to the torquers in order to slew the missile LOS such that

its assigned target is in the center of its FOV, and initiating automatic

seeker tracking.

7
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In general, the task of locating a given smaller image within a larger

image is known as "image registration". The smaller image is referred to

as the window or the reference and the larger image is called the search

area. With the above notation, in the multiple target problem, the image

obtained from the PTS sensor is the search area and the image obtained

from each missile seeker is a window. Therefore, there is one search

area and more than one, say n, windows. It is assumed that all the n win-

dows are completely located within the search area. Now the problem of

multiple image registration can be defined as that of finding n subimages

of the search area which best match the n windows. Even though very lit-

tle attention has been given to date to the problem of multiple image

registration, a considerable amount of work has been done in the area of

single image registration. Several interesting problems such as map

matching, cloud motion tracking, ship and aircraft identification are

solved through digital image registration.

In Chapter II, the problem of single image registration is precisely

defined and varuous existing methods of accomplishing digital image re-

gistration are described. The inherent problem associated with regis-

tration algorithms is their high computational cost. An algorithm which

is computationally efficient for single image registration may not be

efficient for multiple image registration. A detailed comparison of the

important multiple image registration methods based on the number of

arithmetic operations for software implementation and the complexity of

hardware for real-time implementation is presented in Chapter III. New

methods of accomplishing multiple image registration which are computa-

tionally more efficient than the most commonly used template matching
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techniques (correlation and sequential similarity detection algorithm)

are described in Chapter IV. Conclusions and recommendations are given

in Chapter V.
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II. EXISTING METHODS FOR DIGITAL IMAGE REGISTRATION

The problem of locating a given image within a larger image uses

techniques and algorithms fundamental to the disciplines of image pro-

cessing and pattern recognition. Template matching methods such as "cor-

relation" and "sequential similarity detection algorithms" are widely

used for the determination of local similarity between two images [1) -

[7]. The inherent problem associated with the above two methods or any

image registration method is high computational time. Several schemes

such as "two-stage template matching" and "course-fine template matching"

have been proposed to speed-up template matching methods [8], [9). The

"method of invariant moments" which is widely used in classifying an un-

known pattern as one of several known patterns can also be used to ac-

complish digital image registration [10] - [14]. Various methods of

accomplishing single digital image registration are described in this

chapter.

Problem of Digital Image Registration

Let two images, S the search area and W the window, be defined as

shown in Figure 2-1. S is a Mxl array of digital picture elements (pix-

els) which may assume one of G possible levels on the gray scale, i.e.,

0 < s(ij) <_ G-1 (2-1)

for l < i < M and I < j < N

13
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L - -- - reference point (i,j)

SN -- 0 L -40

Search area S Window W

Figure 2-1. Search area and window.j
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W is a KxL (K < M and L < N) array of pixels having the same gray

scale range.

0 <_ W(I,m) <_ G-1 (2-2)

for I < L < Kand I < m < L

Let S W denote each unique KxL subimage of S whose upper left

corner coordinates are (ij). Then (,J) is also called the reference

point of subimage S and the (M-K+I)(N-L+I) reference points corre-

sponding to the (M-K+I)(N-L+I) possible subimages of S are called allow-

able reference points.

Si*j(I'M) a S(i+.-1 , J+M-1) (2-3)

for I < Z < Kand I < m < L

1 < < M-K+l and 1 _ j _ N-L+l

When S and W do not differ in pixel resolution and rotation (or

have been preprocessed to equalize the pixel spatial resolution), digitaT

image registration is a search over the allowed range of reference points

to find the subimage Si*.j* which best matches the window W. Existing

techniques for registering an image within a larger image and schemes to

speed-up these techniques are presented in this chapter.

Correlation

When two images do not differ in pixel resolution and rotation,

the method most widely used for image registration is cross-correlation

(1] - [6]. The elements of the unnormalized cross-correlation surface,

R(i,j), are defined to be
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R(,ij) - . w(,m) S A(L~m) (2-4)

for I < < M-K+1 , I <j I ":-L+l

In most cases, coordinates of the maximum value of correlation

surface indicate image registration. However, since R(ij) is a cross

correlation, it is possible that the maximum value of correlation sur-

face does not indicate true image registration. This is illustrated

below. Consider an ideal case where Wd exactly matches subitage St.J . .

Then

K L
R(i*,J*) - - W ('m) (2-S)

Consider a nornatching reference point (t,j) where

s=(,) -max W(t.m) = Wmax (2-6)
(m)

for I < t < K, I <m < L.

Correlation value, R(ij), is given by

K L

R(ij) L; M;ma W(I'M) (2-7)

It is easy to show that

R(i,) > R(i*,J*) (2-8)

Therefore, even in the ideal case a search for a maximum over the cor-

relation surface does not necessarily yield true registration. In order

that the maximum value of the correlation function indicate true image

registration W and Si~ j must be normalized. Elements of the normalized

cross-correlation surface are defined to be
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R(i.J)w(Lm) s J(m)

W2(,tm) K L S (Lm) (2-9)

for 1 < i <M-K+l , 1 <j <N-L+l

This obviously involves more computation than the unnormalized

method given by (2-4). In spite of its high computational cost, corre-

lation is widely used in image registration for the following reasons:

1. Correlation appears to be a natural solution for the

mean-square-error criterion.

2. Digital hardware and analog optical devices implement

correlation easily.

In general, the amount of computation associated with any similar-

ity detection method is proportional to the number of pixels in the win-

dow and the number of pixels in the allowable search area. In the

correlation method each of the KL pixels in W is compared with the cor-

responding pixel in $t, j to compute R(ij). Since the correlation func-

tion has (M-K+l)(N-L+l) elements a total of KL(M-K+l)(N-L+l) pairs of

pixels are compared. Thus the total computation time is roughly propor-

tional to KL(M-K+I)(N-L+I). The approximate number of arithmetic opera-

tions required to compute the normalized correlation surface is derived

in Chapter III. Several modified versions of the standard correlation

algorithm exist and each version has its own advantages and disadvantages.

Vector correlation, feature matching correlation and hybrid correlation

algorithms are briefly described on the next pages
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Vector Correlation Algorithm

The standard correlation algorithm, as a measure of similarity,

computes the cross correlation surface between the window W and the

search area S by using only Intensity levels for pixels of W and S. The

vector correlation method computes the cross correlation surface between

W and S based on gradient as well as gray scale values of pixels (15J.

Let S(j) and GS(ij) be the pixel and gradient values of the (i,j)th

pixel of the search area. Similarly, W(z,m) and GW(z,m) are the pixel

and gradient values of the (1,m)th pixel of the window. Now, a two-

dimensional vector consisting of intensity and gradient values can be

associated with each pixel of S and W. Let VS(ijj) be the vector asso-

ciated with the (i,j)th pixel of S, i.e.,

VSs j) = [ )] (2-10)vS~tJ)" GS(;.J)J

for I < i <M and I <j IN

Similarly, VW(z,m) denotes the vector associated with the (i,m)th pixel

of W.

V W (2-11)
LGW(.t,m)J

for I < t < Kand I < m < L

Let

vS(LIM) ; vS(i+t-l, J"-l) (2-12)

for I <I < K, 1 <m <L

and 1 < i < M-K+1, 1 <_ J _ N-L+l

L ......
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Elements of the unnormalized vector correlation surface of S and W are

defined to be

R(ij) L 1 (vW(L.m))T (V , (I'm)) (2-13)

for 1 <1 < M-K+, I < j <_ N-L+l

Elments of the normalized vector correlation surface are defined to be

K L
Z' ;.l T V. , )T (v.jzm)

R(ij) = , ri(2-14)[ lm~l(vW(Z.m))T (vW(Lm))]'

1

m j(.m))T (VSj(tm))J

for 1 <_ < M-K+l, 1 < j < N-L+l

It can be easily shown that

Ri) ; l[W(L,m)St.j (tm) + GW(tm) GStij (#.m)
R(i,j) - K • (2-15)K jW2(j"m) + G2(-m

1
K mnl

(t[S2(L,m) + GS 2j (I'm)JJ

for 1 < I < M-K+l, 1 < j .N-L+l

Since the vector correlation method is based on more independent informa-

tion than the standard correlation method, it is expected to have a better
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performance. However, the vector correlation method involves consider-

ably more computation than the standard correlation method.

Feature Matching and Hybrid

Correlation Algorittins

Since images W and S are obtained from two different sensors, a

certain amount of preprocessing is necessary before computation of the

correlation surface. In addition to the pixel spatial resolution equal-

ization preprocessing, if the two sensors differ in dc gain and bias,

each image can be preprocessed such that its mean pixel value is zero

and standard deviation of pixel values is unity. This process is called

intensity level normalization. Normalized images can then be correlated.

There are two variations of the standard correlation algorithm suggested

by the Rand Corporation [16]. Based on the preprocessing technique used,

the algorithm is called either the feature matching correlation algorithm

or the hybrid correlation algorithm.

Feature Matching Correlation Algorithm. In this method, the

window (reference) is segmented into homogeneous regions. A homogeneous

region is defined as a set of spatially connected pixels whose pixel

values remain almost constant over the region. Each of the homogeneous

regions is then preprocessed separately based on its characteristic.

For example, intensity level normalization of a homogeneous region is

accomplished by subtracting the mean pixel value of the region from each

pixel and by normalizing with respect to the variance of pixel values.

Similarly, the search area is also segmented into homogeneous regions

and each homogeneous region is preprocessed separately. The preprocessed

window and search areas are then correlated using a standard correlation
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algorithm. Simulation results reported in Reference (16] indicate that

this method yields a sharper correlation peak as compared to the stan-

dard correlation method. This may be due to the enhancement of high

frequency content of each homogeneous region. The feature matching

correlation also compensates for contrast reversals between the cor-

responding homogeneous regions of the window and the search area. How-

ever, depending on the scene and sensor resolution it may not be possible

to decompose all scenes into homogeneous regions. Such scenes are call-

ed non-homogeneous scenes. Even if a scene is composed of homogeneous

regions, it is extremely difficult to accomplish segmentation in real

time.

Hybrid Correlation Algorithm. In hybrid correlation only the

window is segmented into homogeneous regions. Each subimage of the

search area is assumed to be the matching subimage and is segmented

identically as the window. The correlation between the window and the

subimage is computed by matching each homogeneous region of the window

with its corresponding region in the subimage and by combining the par-

tial results additively. Simulation results in Reference [16] show that

this method is better than the standard correlation algorithm, but not

as good as the feature matching correlation. However, the hybrid cor-

relation algorithm has the advantage of not segmenting the search area

and thus requires less computation as compared to the feature matching

correlation.
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The Fast Fourier Transform Method of Computing
Correlation Function

The convolution theorem of fourier analysis states that convo-

lution in the time or space domain is equivalent to multiplication in

the temporal or spatial frequency domain. Since correlation is a form

of convolution, an alternate method of computing the correlation function

thus exists (17], [18]. Let X and Y be two images of the same size.

Then the cross correlation between X and Y is given by

R(i,j) = IFFT{X(U,V) Y_*(U,V)} (2-16)

where,

X(U,V) is the discrete fourier transform of X

Y*(U,V) is the complex conjugate of the discrete fourier

transform of Y

IFFT signifies the inverse fourier transform operation

The size of the correlation surface is the same as that of X or Y.

However, R(0,0) is the only valid element and other elements are ignored.

Since W is a KxL array and S is a MxN array, Equation (2-16)

cannot be directly used for the computation of the correlation function.

This problem can be solved by padding W with zeros as described below.

0 <_ S(i,j) _ G-I , for 0 < i < M-1 , 0 <_ j <_ N-I (2-17)

and 0 <_ W(i,m) I G-I , for 0 <_ . <K-i , 0 <m <L-I (2-18)

Construct a new image W 1 of size MxN by padding W with zeros.

SW(t,m) ,for 0 < i. < K- , 0 < m < L-1W1 (t,m) = . .. (2-19)
W 0 ,for M > z > K or N > m > L .

........ ..... .. ..
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Let S(U,V) and W l(UV) be the two dimensional DFT's of S and W.

Now,

R(1,j) a IFFT[S(u,V) -•W*(Uv)) (2-20)

for 0< <M-1 ,0 <j <N-1

R(i,j) is valid for i = 0,1,2,...,M-K and j = 0,1,2,...,N-L and other

values are ignored.

To compute the DFT or IDFT of an array of size MxN, MN log2MN

complex multiplications and complex additions must be performed. MN

complex multiplications are needed to multiply the DFT's of S and W .

Since the FFT method yields the unnormalized correlation surface, it must

be normalized. For large M and N, the FFT method of computing the cor-

relation surface requires fewer calculations as compared to the direct

approach. However, this method requires an additional memory of 4 MN

real words which may not be feasible for large values of M and N. It

is difficult to implement this method in real time due to hardware limi-

tations.

Sequential Similarity Detection Algorithn

In this algorithm, a search over each of the (M-K+I)(N-L+l) refer-

ence points is performed as in correlation. However, the criterion for

similarity at reference points is significantly different from that of

the correlation method. The unnormalized error e'(ij,i,m) and the

normalized error e(i,j,t,m) between the pixel W(t,m) and its corres-

sponding pixel in Si' j are defined as

e'(i,j,tm) Is i(tm) - W(Zm)1 (2-21)

e(ij,z,m) JS1, (Em) - Sij W(Lm) + WI (2-22)
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where K L

SW(L.,m) (-3

and

=iL =1Sj(tm) (2-24)

The correlation method yields the correlation surface as a measure

of similarity, while the sequential similarity method computes the error

surface as a measure of dissimilarity. The normalized error, E(i,j), as-

sociated with reference point (ij) is defined as

K L
E(ij) = 1 e(ij,,m) (2-25)

for 1 < i < M-K+l, 1 < j _ N-L+l

Now the problem of digital image registration reduces to the problem of

finding Si*,,j such that

E(i*,j*) < E(ij) for 1 < i < M-K+l and i i* (2-26)

1 < j _ N-L+l and j t j*

In general, computation of error is simpler than computation of

correlation since addition takes less time than multiplication and is

easier to implembnt. There are methods such as Constant Threshold Se-

quential Similarity Detection Algorithmu" and "Monotonic Increasing

Threshold Sequence Algorithms" suggested by Barnea and Silverman which

further reduce the number of additions [7]. These methods are based on

some kind of guess work or statistical assumptions and cannot be gener-

alized. The number of arithmetic operations required to implement the

SSDA method in its entirety is computed in Chapter III.
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Moments Method

Given a two dimensional continuous function f(x,y), the moment

mpq of order (p+q) is defined by the relationship

mpq = J xy q f(x,y) dx dy (2-27)

for pq = 0,1,2,3,...

A uniqueness theorem states that if f(x,y) is piecewise continuous and

has non-zero values only in a finite region of the x-y plane, then the

moments of all order exist and the moment sequence, {m pq1, is uniquely

determined by f(x,y) and conversely, {m pq} uniquely determines f(x,y)

[191.

The central moments can be expressed as

Upq = f f (x-) p (y-Y)q f(x,y) dx dy (2-28)

for P,q = 0,I,2,...
m m 0

Where 10 '= MOOmO'

For a digital image these moments are given by

Upq = Z (x-i)p (yy)q f(x,y) (2-29)
x y

The normalized central moments are defined as

Spq , for p,q = 2,3,4,... (2-30)npq" p+ l

2
U10 0
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Hu has derived a set of seven invariant moments from second and

third order central moments [10]. They are given by

O= + n1 o2 (2-31)

0 ( 20 - 2 + 4 n 2 (2-32)

'3 = (n30 - 3n,12)2 + (3 n21 - no3)2  (2-33)

0 = (n30 + n12 ) 2 + (n21 + no3 ) 2  (2-34)

05 = (n30 - 31 1 2 )(n 3 0 + n12 )[(n30 + "12) 2 (2-35)

3(Tn21 + no3 ) 2 ] + (3n21 - n03 )(n 21 + n 03 )[3(n 3 0 + n12 ) 2

(nT21 + n2)2

6= (n20 - no2)E(130 + ri2 ) - (n21 + no3 )
2] + (2-36)

4n,11("30 + n' 12 )(n 21 + no3)

'7 (3n12 - n30 )(n30 + nl 2 )[(n 3 0 + n12 ) 2  (2-37)

3(Tn21 + no3)2) + (3n12 - no3)(n21 + no3)[3(n30 + n12 ) 2

(Ti2 1 + no3 ) 2 ]

This set of moments has been shown invariant to translation, rotation,

reflection and scale change [10].

The method of moments is used for automatic classification of an

unknown pattern as one of several known patterns. Let a1 , a2, ..., ak

be k known patterns whose invariant moments are also known. Let x be

a given unknown pattern to be classified as one of the k known patterns.

Now, the moments method consists of computing the invariant moments for
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x and comparing them with the invariant moments of a,, a2, ... , ak.

x is classified as ai if the invariant moments of x best matches, ac-

cording to some prespecified rule, the invariant moments of a The

moments method is widely used in applications such as visual and digi-

tal pattern recognition, recognition of two dimensional patterns with

linear distortion, aircraft and ship identification and character recog-

nition [10] - [14]. It is not widely used for image registration be-

cause of the enormous computation involved. However, this method looks

promising for the multiple image registration problem for the following

reasons.

1. If the images do not differ in rotation and resolution,

it is not necessary to compute the normalized central

moments or the invariant moments. The moment sequence

m pq} determines f(x,y) uniquely and can be used to

characterize each subimage of S.

2. It may be possible to obtain good registration results

using very few moments. This trade-off should be in-

vestigated in a follow-on program using simulation of

real digitized scenes.

3. If the correlation or SSDA method is used for multiple

image registration, the correlation surface or error

surface has to be determined for each of the windows

separately. In other words, computation is directly

proportional to the number of windows. For the moments
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method, however, once the moments are computed for all

subimages and windows, matching is accomplished with

negligible computation.

As a result, the moments method may prove economical for the

multiple image registration problem.

Hough Transformation for Digital Image

Registration

One possible way of accomplishing digital image registration is

by detecting the predominant lines in the window and the search areas

and using that information to find the subimage of S which best matches

the window. Consider an image consisting of a number of discrete white

points (edge points) on a black background. The problem is to detect

the groups of colinear or almost colinear edge points (white points).

Of course, the problem can be solved by testing the lines formed by all

pairs of edge points. However, computation required for n points is ap-

proximately proportional to n2 and may be prohibitive for large n.

In 1962, Hough proposed an ingenious method of detecting lines in

binary images [20], [21]. He replaced the original problem of finding

colinear points by a mathematically equivalent problem of finding concur-

rent lines. A straight line is given by the equation

y = mx + c (2-38)

where m is the slope and c is the intercept. Any line can be uniquely

identified by its slope and intercept. Therefore, a line in the x-y

plane maps into a point in the m-c parameter plane and vice versa. Sim-

ilarly, a point in the x-y plane maps into a line in the parameter plane.
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This can be seen by letting x and y be constants and solving for m as

a function of c in Equation (2-38). The result is

m = x-c + y/x = ac + b (2-39)

where a and b are constants. In the m vs. c plane, (2-39) is the equa-

tion of a straight line. Thus, n points on a straight line in x-y plane

are transformed to n lines which intersect at a common point in the m-c

plane. Therefore, the problem of finding colinear points in the x-y

plane is equivalent to that of finding concurrent lines in m-c plane.

Slope and intercept both being unbounded complicate the applica-

tion of the Hough transformation for line detection. In order to over-

come this problem, Duda and Hart suggested the use of an angle-radius

rather than slope-intercept parameter plane [22]. A straight line can

be uniquely specified by the angle e of its normal and its algebraic

distance p from the origin as shown in Figure 2-2. The line can now be

represented as

x cos a + y sin e = p (2-40)

where e is bounded and takes on values between 0 and 2n and p is less

than or equal to R, where R depends on the size of the image. From

Equation (2-40) the following properties of the Hough transformation can

be easily verified.

1. A point in the image plane (x-y plane) corresponds to

a sinusoidal curve in the parameter plane. This can

be seen by letting x and y be constants in Equation
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C1.0 straight line

x

Figure 2-2. The normal co-ordinates of a straight line.
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(2-40) and solving for p in terms of e. The result

is p - K sin (e +0 ) where K *- x2 + y2 and 0=

arctan x/y.

2. A point in the parameter plane corresponds to a line

in the image plane. This can be seen by letting p

and e be constants in Equation (2-40). The result

is y = ax + b where b = p/sine and a = -cose/sine.

3. Points lying on a straight line in the image plane

map into sinusoidal curves in the parameter plane

each passing through a common point.

4. Points lying on the same sinusoidal curve in the

parameter plane correspond to a family of lines through

one point in the image plane.

Therefore, if all the edge points are mapped to the parameter

plane, the problem of finding colinear edge points in the x-y image

plane becomes that of finding concurrent sinusoidal curves in the para-

meter plane. The point cf intersection of these sinusoidal curves

uniquely identifies the straight line edge in the image plane.

Detection of Lines in Digital Images

Let F be a digital image of size KxL whose pixels can assume one

of G possible levels on the gray scale. Let GF be the gradient image of

F which can be computed using any of the known edge detection algorithms

(e.g., Sobel edge detector or Roberts cross operator). GF is then trans-

formed into a binary image by setting all pixels with gradient values

greater than a predetermined threshold to one (edge points) and all re-

maining pixels to zero (non-edge points). Let n be the number of edge
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points in the binary image. Suppose all edge points are mapped into

their corresponding sinusoidal curves in the parameter plane. In gen-

eral, these n curves will intersect at 2 points corresponding to

- 21)possible lines. Exactly colinear subsets of edge points can be

found, in principle, by finding coincident points in the parameter plane.

Unfortunately, this method is exhaustive and computation grows quadrat-

ically with the number of edge points.

When it is not necessary to determine the lines exactly, following

Hough's basic proposal, the p-e plane can be quantized into a qudruled

grid on the basis of an acceptable error in p and e. The quantization

is confined to the region 0 < a < 211 and 0 < p < R, where R depends on

the size of the image. Assume that an accumulator is placed in each cell

of the grid. For each edge point (xi, y1 ), the sinusoidal curve given

by Equation (2-40) is entered in the grid by incrementing the count in

each accumulator along the curve. When all edge points are mapped, each

accumulator contains the number of curves through it. A count of k in

accumulator cell (e1 *Pj ) means that precisely k edge points lie (to with-

in the grid quantization error) along the line whose normal co-ordinates

are ai and pi. However, the exact location of these k edge points on

this line in the x-y plane is not known (i.e., it is not known if the

edge points are adjacent or widely separated), To determine this, some

sort of connectivity test must be used.

Digital Image Registration

Step 1: Transform the window and the search area to binary images as

described previously.
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Step 2: Divide the 0-p parameter plane into a quadruled grid on the

basis of acceptable error in e and p.

Step 3: Map each edge point in the reference into its sinusoidal curve

in 0-p plane. Even if the acceptable error in e and p is mod-

erate (5 degrees and 3 pixels), the parameter plane will have

more than KL cells. As a result any attempt to use all the

information in the e-p plane will increase computation. In

order to accomplish data reduction only the predominant lines

(cells with relatively high count) are retained as features of

the window and the remaining information is ignored.

Step 4: Determine the predominant lines present in each subimage of the

search area by repeating the procedure outlined in Step 3.

Step 5: Match the line features of the window with those of each sub-

image according to some predetermined criterion. One way of

doing this in the 8-p plane is given in Reference [23].

It is felt that Hough's method of image matching is not very

sensitive to slight geometric distortion and rotation and is also insen-

sitive to small differences in pixel resolution of the window and the

search area. However, this method requires a highly reliable algorithm

to quantize gradient images to two levels. In the parameter plane, cell

(ei.Pj) represents the line in the picture plane whose normal co-ordinates

are 8i and pj and the corresponding count gives the total number of edge

points on that line. The exact location of edge points on the line is

not known. Therefore, in order to determine a true line (i.e., points
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are adjacent on a line) and prevent isolated edge points from affecting

the result, Hough's method may have to be coupled with some kind of

connectivity test.

Schemes to Speedup Template atching

"Template matching" is the common terminology used for correlation

and sequential similarity detection algorithms. In template matching,

each of the KL pixels in W is compared with its corresponding pixel in

S W to compute the measure of similarity (correlation) or dissimilarity

(sequential similarity detection algorithm). Therefore, the total amount

of computation is roughly proportional to the product of the number of

pixels in the reference and the number of allowable reference points in

the search area. Since there are KL pixels in W and (M-K+l)(N-L+l) al-

lokable reference points in S, computation is proportional to KL(M-K+l)

(N-L+1). Three popular schemes of accomplishing savings in computation

and speeding up template matching are presented in this section. All

methods accomplish savings in computation by reducing the total number

of pixel pair comparisons. These methods are computationally more ef-

ficient in terms of the number of arithmetic operations required (soft-

ware implementation) but may not enjoy any advantage in real time imple-

mentation using special purpose hardware.

Two-Stage Template Matching

The two-stage template matching technique, suggested by Rosenfeld

and Vanderbrug, searches for Si.,j . which best matches W in two stages

[8).
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Stage 1: In the first stage, some subimage W' of size pxq from

W and its corresponding subimage S!j of the same size in St,j are

matched to compute a measure of similarity (correlation) or dissimilar-

ity (SSDA) between W and Si~ j for i - 1,2,...,M-K+l and j = 1,2,...

N-L+I. W' and S!,j are shown in Figure 2-3. The net effect of step one

is to find the (M-K+l) by (N-L+I) correlation surface with a reduced

reference array size.

Stage 2: In the second stage, all reference points, (ij) for

which the measure of similarity is less than (correlation) or the measure

of dissimilarity is greater than (SSDA) a predetermined threshold T are

discarded as non-match points. At the remaining reference points, the

window W is matched with S i j in its entirety. The method of finding

Si, j. is the same as before. The computational savings in this two-

stage recognition procedure results from not having to match the entire

template at each reference point. Savings in computation depend on the

size of W' and threshold T.

Rosenfeld has suggested a method to determine optimal values for

the size of W' and T for a given W and S. His analytical model is based

on many simplifying assumptions which are rarely true for typical mil-

itary type images. Improper selection of W' and T can lead to the pos-

sibility of discarding the true registration point in the first stage

itself.

Course-fine Template Matching

Course-fine template matching is also a two-stage matching algo-

rithm [9]. For the first stage, the spatial resolution of both image
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arrays is reduced by replacing each pxq subarray by its average. This

yields a reference array, W, of size K/p x L/q and a search area, S',

of size M/p x N/q. The amount of computation required to find the course

correlation surface for W' and S' is proportional to 11 (!! - + 1)
pq p pN L

- -+ 1). At each of the correlation surface peaks for which theq q
correlation value is greater than T, the original reference W is cor-

related with the original search array. The largest value of this cor-

relation computation is treated as the registration point. Savings in

computation depend on p, q and T. This technique can also be used with

the SSDA method.

Hierarchical Search Method

This technique is a generalization of the "course-fine template

matching" scheme. In this method the search for Si, j . is done in n-

resolution levels [24] [25]. From a given window W and the search area

S, a set of windows {W1 ,W2,...W n} and a set of search areas {S , 2 ,

Sn) are created as shown in Figure 2-4. Resolution of the window and

search area in the X or Y direction at any level is twice the resolution

of the window and search area for the next level, respectively. Wi can

be created from Wi- by dividing Wi-l into blocks of size 2x2 and treat-

ing each block as a pixel with value equal to the average of its four

ca b i-lpixels. Similarly, S can be created from S . Matching starts at thewn ~,f K ~L

lowest resolution level (level-n) where Wn of size - x -- is matched
nN T o 2 2

with S of size M x -The amount of computation at this level,
2 2 K L M K N L

therefore, is proportional to n n (- - + l)+ 1). Based

on some predetermined criterion, only the most promising test locations

are selected for testing in (n-1l)th level.
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39

In the (n-i) level, W is matched with S only at locations

selected in nth level. This procedure continues from the (n-1)th level

th , th
to the (n-2) level and so on. Finally at the 0 level, the registra-

tion point is identified. Savings in computation depends on the number

of levels used and the criteria used to select promising test locations

at each level. It should be pointed out, however, that the more points

eliminated at each level, the greater is the possibility of obtaining a

false match.

In this chapter various existing methods of accomplishing digital

image registration are presented. The most commonly used method is cross-

correlation. There exist two independent ways of computing the correla-

tion surface (Direct method and Fast fourier transform method). The FFT

method requires a large amount of memory for software implementation and

is very complex for real time hardware implementation. The direct method

requires less memory as compared to the FFT method, involves no complex

multiplications or complex additions, and can be easily implemented in

real time using digital hardware. Even though the vector correlation

algorithm is expected to yield better performance than the standard cor-

relation algorithm, its use is limited by the large amount of computa-

tion required to implement the method (more than twice the computation

needed by the standard correlation algorithm). Due to the difficulty

encountered in the automatic segmentation of digital images into homoge-

neous regions, the two variations of the standard correlation algorithm,

namely, feature matching correlation and hybrid correlation algorithms

may not be of any significant use. The other template matching method,

sequential similarity detection algorithm, computes an error surface as
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a measure of dissimilarity between the window and the search area.

Since this method requires addition and a few division operations, it

can be easily implemented (addition and subtraction operations are sim-

pler than multiplication and division operations).

Algorithms which accomplish image registration by matching moments

(moments method) or straight line edge content of the window and the

search area are called feature matching algorithms. The moments method,

which is computationally inefficient for single image registration, looks

promising for multiple image registration. The necessity of a highly

efficient algorithm to transform a digital image to a binary image (edge

and non-edge pixels) and a connectivity test to identify true straight

line edges (i.e., composed of adjacent edge pixels) makes the use of

Hough's transformation for digital image registration less attractive.

Therefore, it is concluded that the standard correlation algorithm, the

SSDA and the moments method are more promising using present state-of-

the-art hardware. A detailed comparison of the above three methods is

presented in the next chapter. It should be pointed out, however, that

very large scale integrated circuits developed to perform a specialized

task may at some future date make any of the algorithms discussed above

as being computationally inefficient feasible. Because of this possibil-

ity, a follow-on program should investigate the computational accuracy

of some of these methods.



III. COMPARISON OF METHODS FOR MULTIPLE IMAGE
REGISTRATION

Problem of Multiple Image Registration

Let the search area S and n windows W,, W2, ... , Wn be defined as

shown in Figure 3-1. S is a MxN array of digital picture elements which

may assume one of G possible level.s on the gray scale.

0 < S(ij) < G-1 (3-1)

for 1 <i <M, l <j <N

Wk is a KxL array of pixels having the same gray scale range.

0 < Wk(-,m) < G-1 (3-2)

for 1 < <K, I <m <L and k = l, 2, ..., n

Each KxL subimage of S can be uniquely identified by its upper left cor-

ner's coordinates. Let Si. denote the KxL subimage of S whose upper

left corner is (ij).

Si (x,m) = S(i+Z-l, j+m-l) (3-3)

for l < i < K, I < m < L

and I < i < M-K+l, 1 < j < N-L+l

If S and Wk do not differ in pixel resolution and rotation, the multiple

image registration problem reduces to that of finding (i*, j*) such that

Si,., best matches Wk, for k = l, 2, ..., n.
kk

Correlation and sequential similarity detection algorithms are

commonly used for the registration of a smaller image within a larger

41
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image. These methods have been proven to be reliable and computation-

ally efficient for the problem of single image registration. However,

a method which is efficient for single image registration may not be

efficient for multiple image registration. In general, in order to com-

pare the computational efficiency of different algorithms, the number of

arithmetic operations, memory requirement, computational speed and com-

plexity of implementation must be considered. The method which requires

fewer arithmetic operations for software implementation may be complex

or even infeasible for hardware implementation. It is extremely difficult

to arrive at a valid means of comparison without knowing, exactly, how the

methods are implemented. Therefore, the problem of multiple image regis-

tration is studied from both software as well as hardware points of view,

independently.

Comparison of Software Implementations

If the algorithms are implemented entirely using software, the

amount of core memory required and the number of arithmetic operations

to be performed can be used as a means of comparison. It is assumed

that:

a. Multiplications, divisions and squaring operations are

equivalent (i.e., 1 multiplication = 1 division = 1

squaring).

b. Enough memory is available to store the intermediate

results for future use.

c. Computation time is directly proportional to the number

of arithmetic operations performed to implement the method.
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Multiplication and addition requirements for the correlation, the SSDA

and the moments methods are derived in the following sections.

Correlation Algorithm

Elements of normalized correlation function of search area S and

window Wk are defined to be

K L2

2 L Wk(z'm) Si,j(,m)]
2

RK(~)= .= (3-4)
k K L K L

=l ml W m t=l m=l

for 1 < i < M-K+l , 1 j < N-L+l

and k ,2, ..., n

Let

Ak K L 2 (3-5)W~ Wk(", ) Si j(',) 2  35

L=l m=l

Bk = 2 , W (3-6)

Ci ml 2 (.,m) (3-7)
w ~ m=l i

Therefore,

2 Ak
RA x = " (3-8)
k(j = k Ci ,j

for 1 < i <M-K+l , I <j <_N-L+l

and k = , 2, ..., n
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Equations for the number of multiplications and additions in terms of

M, N, K, L and n are derived in the four steps below:

1. Computation of R2(ij) from A Bk 
8 and C requires

one multiplication and one division or two equivalent

multiplications. Since there are (M-K+I)(N-L+I) ele-

ments in each of the n correlation surfaces, a total

of 2n(M-K+I)(N-L+l) equivalent multiplications are re-

quired for this stage.

2. To compute Ak  (KL+l) multiplications and (KL-I) ad-

ditions are performed. Since, for each of the n win-

dows, A. must be computed at (M-K+I)(N-L+l) reference

points, this task requires a total of (M-K+I)(N-L+I)(KL+I)n

multiplications and (M-K+I)(N-L+I)(KL-l)n additions.

3. Bk is computed for each of the n windows and thus re-

quires KLn multiplications and (KL-l)n additions.

4. CI j for i = 1, 2, ... , M-K+l and j = 1, 2, ... , N-L+l

can be computed in many ways. In this report, it is

assumed that the 2 (i,m) values, for I < t < K

and 1 < m < L, are first computed and stored.

Then C i1  is computed as

K L 2
C = tl S 2, S ,m) (3-9)i'j -- -- I

for I < i <M-K+l and I <j <_ N-L+l

Computation of C. 's is done only once and the values are stored in

memory for later use. The above tasks require MN multiplications and
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(M-K+I)(N-L+I)(KL-I) additions. This technique requires an additional

MN+(M-K+l)(N-L+I) memory locations.

By adding the partial results of the above four steps,

Total number of additions = (3-10)

[(M-K+I)(N-L+l) + l[(KL-I)n) + (M-K+I)(N-L+I)(KL-l)

Total number of multiplications = (3-11)

[(M-K+I)(N-L+I)(KL+3)+KL]n + MN

For M = 240, N = 256 , K = L =32,

Total number of additions = (3-12)

48107598n + 48106575

Total number of multiplications = (3-13)

48295699n + 61440

Sequential Similarity Detection

Algorithm

The correlation method yields the correlation surface as a measure

of similarity, while the sequential similarity method computes the error

surface as a measure of dissimilarity. The normalized error, ek(i,j,,m),

between Wk(jtm) and S (z ,m) is defined as

ek(i'9'jm) ISi,j(%'m) - S. " W.(i'm) + Wk (3-14)

where

K L

K Wk("m) (3-15)
ak -d 1 W

and
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The normalized error, Ek(ij), associated with the reference point (ij)

is defined as

K L
Ek(i"J) = I ek(i,j,Lm) (3-17)

tlm=l

for 1 < i <M-K+l , I < <N-L+I

To register Wk within S, (i*,jk) must be found such that

Ek(k )'* ") < Ek(ij) for, 1 < i < M-K+l, i # i (3-18)

and I < j <_ N-L+l, j # j*

Equations for the number of multiplications and additions required to

register n windows using the SSDA method are derived in the following

steps:

1. To compute each Wk, (KL-l) additions and one multipli-

cation (division) are required. Since there are n such

windows, a total of (KL-1)n additions and n multipli-

cations are performed to compute Wk for k = 1, 2, 3,

n.

2. It is assumed that Si j is computed independently at

each reference point and stored in memory for later

use. This task needs (M-K+l)(N-L+l)(KL-1) additions

and (M-K+I)(N-L+l) multiplications and requires

(M-K+1)(N-L+l) memory locations.

3. Computation of Ek( iJ) requires (3KL)+(KL-1) = (4KL-1)

additions. Since there are (M-K+1)(N-L+l) elements
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in each of the n error surfaces, a total of (M-K+I)

(N-L+1)(4KL-I)n additions are performed to compute

n error surfaces.

Therefore,

Total number of additions = (3-19)

[(M-K+I )(N-L+I )(4KL-I )+(KL-l ))n + (M-K+I)(N-L+I )(KL-I)

Total number of multiplications - (3-20)

(M-K+I)(N-L+l) + n

For M = 240, N = 256, K = L = 32

Total number of additions = (3-21)

192568393n + 48106575

Total number of multiplications - (3-22)

47025 + n

The number of multiplications required is negligible when compared to

the number of additions.

Moments Method

Given a two dimensional function f(x,y), the moment mpq of order

(p+q) is defined by the relation,

pq= f f xPy p f(x,y)dx dy (3-32)

for p,q = 0, l, 2, 3,...

A uniqueness theorem states that if f(x,y) is piecewise continuous and has

non-zero value only in a finite region of X-Y plane, then the moments of
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all order exist and the moment sequence, {m pq}, is uniquely determined

by f(xy) and conversely, {m pq} uniquely determines f(x,y) [10]. For

a digital image these moments are given by

mpq = y xPyq f(x,y) (3-24)

x y

for p,q - 0, 1, 2, 3,

Since the digital image satisfies all the conditions required by the

uniqueness theorem as stated above, moments of all order exist and the

moment sequence {m pqI can be used to accomplish digital image registra-

tion as described in the three steps below.

1. Let (m k } denote the moment sequence for the window
pq

Wk* Compute all moments of order less than or equal

to r where r is a predetermined number, for each of

the n windows.

k K L
mk = ZPmq Wk(Lm) (3-25)

for p,q = 0, 1, 2, 3, ..., r, such that p+q.< r

and k = 1, 2, ..., n.

Although the reliability of this method increases with

increasing r, the amount of computation increases with

r and therefore a trade-off exists. For some applica-

tions, the moments method has been found to be success-

ful for r equal two or three [10] - [14].

2. Compute all moments of order r and less for each of

the (M-K+I)(N-L+I) subimages of S.

LL
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K L
mp = tpmq S1 (t~m) (3-26)mpq X= IM= i

for p,q = 0, 1, 2, ... , r, such that p+q <_r

and 1 < i < M-K+l, 1 < j N-L+1.

3. To register Wk within S, find (ik,jk) such that

(m k - mkk2 m< (ink - miJ) 2  (3-27)
pq pq pq pq pq pq

for 1 < i <M-K+ , i i

and I <j <N-L+1 , A j .

To register n windows Wl, W2, ... , Wn within S, moments for the n

windows and (M-K+I)(N-L+l) subimages are computed only once (step 1 and

2) and step 3 is repeated n times (once for each window). The amount of

computation associated with step 3 is negligible when compared to the

amount of computation associated with steps 1 and 2. Therefore, although

this method is computationally inefficient for n=l, its efficiency with

respect to other methods increases for large n.

The total number of multiplications and additions required to im-

plement this method depends on the number of moments used to characterize

each KxL subimage. Equations for the number of additions and multipli-

cations required to register n windows are derived for the following two

cases:

a. Case 1: All moments of order two and less are used to accomplish

image matching. To compute these six moments for each KxL subimage,

6(KL-l) additions and 8KL multiplications must be performed (see Table

3-1). There are n windows and (M-K+l)(N-L+l) subimages of size KxL.
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Tabl e 3-1

Computation of moments of order three and less.

Moment Additions Multiplications

in00  (KL-1)(M-K+l)(N-L+l) 0

* 01(KL-l )(M-K+l )(N-L+l) KL(M-K+l )(N-L+l)

* 10 (KL-l)(M-K+1)(N-L+l) KL(M-K+1)(N-L+l)

m 1(KL-l )(M-K+ ) (N-L+l) 2KL(M-K+ ) (N-L+l)

M02(KL-l )(M-K+l )(N-L+l) 2KL(M-K+l )(N-L+l)

m 20  (KL-1)(M-K+l )(N-L+l) 2KL(M-K+l )(N-L+l)

"'12 (KL-1)(M-K+l)(N-L+l) 3KL(M-K+l)(N-L+l)

* 21  (KL-1)(M-K+l)(N-L+l) 3KL(M-K+1)(N-L+l)

in30  (KL- ) (M-K+ ) (N-L+l) 3KL(M-K+ ) (N-L+1)

* 3(KL-l )(M-K+l )(N-L+l) 3KL(M-K+l )(N-L+l)
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To register each of n windows within S, ll(M-K+I)(N-L+I) additions and

6(M-K+l)(N-L+l) multiplications must be performed (step 3). Therefore,

Total number of additions = (3-28)

6(KL-1)(M-K+1)(N-L+l) + [1l(M-K+l)(N-L+l) + 6(KL-l)]n

Total number of multiplications = (3-29)

8KL(M-K+I)(N-L+I) + [8KL + 6(M-K+l)(N-L+l)]n

For M = 240, N = 256, K = 32 and L = 32

Total number of additions = (3-30)

288639450 + 523413n

Total number of multiplications = (3-31)

385228800 + 290342n

b. Case 2: All moments of order three and less are used to accomplish

image matching. Following the steps of case I it can be shown that

Total number of additions = (3-32)

481065750 + 903705n

Total number of multiplications = (3-33)

963072000 + 490730n

Comparison of Multiplication and

Addition Requirements

The number of additions and multiplications which are required to

implement correlation, SSDA and moments method for various values of n,

are shown in Figures 3-2 and 3-3, respectively. From Figures 3-2 and

3-3 it is clear that if n is greater than 7, moments method with r equal

two requires less computation when compared to the correlation method.
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However, if r equals 3, n must be greater than 19 for the moments method

to have a computational advantage over the correlation method. Substan-

tial savings in computation can be accomplished for the moments method

by having lookup tables for each of the moments as described below.

The moment mpq of a two-dimensional discrete function f(x,y) of size

KxL is given by

K L
mpq = Z m pm q f(L,m) (3-34)

21m=l

LPmq is a constant for given values of x, m, p and q.

Let, KPq = JPm q  (3-35)

Now, if K pq for 2 = 1, 2, 3, ... , K and m = 1, 2, ... , L are precomputed

and stored in memory, mpq can be computed by performing, only, KL multi-

plications and (KL-I) additions no matter what the values of p and q are.

Assuming that such look-up tables are available for all moments of order

3 and less, equations for the number of additions and multiplications

are recomputed.

For r equal two;

Number of additions = (3-36)

6(KL-I)(M-K+I)(N-L+I)+[II(M-K+I)(N-L+l) + 6(KL-l)]n

Number of multiplications =

5KL(M-K+I)(N-L+I)+[5KL+6(M-K+1 )(N-L+l)]n (3-37)

By substituting values for M, N, K and L,

Number of additions = (3-38)

288639450 + 523413nLA
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Number of multiplications - (3-39)

240768000 + 287270n

Similarly, if r equal three,

Number of additions = (3-40)

481065750 + 903705n

Number of multiplications = (3-41)

433382400 + 479466n

The number of additions remained the same, but the number of multi-

plications is reduced substantially. This fact is graphically shown, in

dotted lines, in Figure 3-3. In general, an accurate comparison of com-

putation time required by different methods is not possible. This is

because the ratio of multiplication time to addition time depends on a

number of factors such as machine used, bit length and algorithm used to

accomplish multiplication of two numbers. However, the previous analysis

shows that the moments method is computationally feasible and takes less

number of arithmetic operations than the correlation method if the number

of windows to be registered is sufficiently large. A direct comparison

of the SSDA and moments methods is difficult because the SSDA method

requires more additions while the moments method requires more multipli-

cations. Since the ratio of the time required to perform one real multi-

plication to the time required to perform one real addition is not known,

one single measure of comparison cannot be determined. In general,

real multiplication time = a x real addition time,

where the value of "a" depends on the machine, its bit length and algo-

rithm used to implement multiplication. It is bounded by the bit length,
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however (i.e., a < bit length). Assuming that 'a' equals three, for a

machine such as the IBM 370 the total number of equivalent real addi-

tions required to implement correlation, SSDA and moments methods (for

r equal 2 and 3) for different values of n are plotted in Figure 3-4.

If all moments of order two or less are used to characterize each KxL

subarray, the moments method using lookup tables is computationally

more efficient than the other methods, for n greater than or equal to

five.

Comparison for Hardware Implementation

To accomplish multiple image registration in real time (or almost

so), image matching algorithms must be implemented using fast hardware.

A given algorithm can be implemented in many ways. Three simple sche-

matics shown in Figure 3-5, 3-6, 3-7, one for each method, are used for

comparison of the complexity of implementation.

Correlation Algorithm

Correlation between the window Wk and the subimage Si i is com-

puted in four stages as described below.

Stage 1: In the first stage, S 2 .,m), W2(,m) and the product

Sij (Zm)Wk,m)m are computed for Z = 1, 2, 3, ..., K and m = 1,

2, ..., L. This requires a total of 3KL two-input multipliers

(three multipliers for each pixel pair).'r~- K L
Stage 2: In the second stage, =, K m(

1, =l m=1 j

Bk W2 (,m) and C. S2 .(,m) are computed
= = i mjk = ml k, i .=l m=l 13

using three KL-input adders.
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Stage 3: In the third stage, two two-input multipliers compute

A and the product BkCij.

Stage 4: Finally, a divider computes R2 (ij) using the results

obtained in Stage 3.

Therefore, 3KL+3 two-input multipliers and three KL-input adders are re-

quired to compute R2(ij) from S and W

Sequential Similarity Detection

Algorithms

The error between the window Wk and subimage S is computed in

three stages as described below.

Stage 1: In the first tage, Si j and Wk are computed using two

KL-input adders and two dividers.

Stage 2: In the second stage, ek(i,j..tm) for i = 1, 2, ..., K

and m = 1, 2, ..., L are computed using KL four-input adders.

Stage 3: Finally, one KL-input adder computes Ek(ij) as shown

in Figure 3-6.

Therefore, SSDA implementation requires three KL-input adders, KL four-

input adders and two multipliers.

Moments Method

A schematic for the computation of all moments of order two and

less is shown in Figure 3-7. Moments of Si~j can be computed in two

stages.

Stage 1: In the first stage, the products zSij (2,m), mSi (zm),

URS i,j(z,m), .2S (.,m) and m2.Si~(z,m) are computed for z = 1,

2, ..., K and m = 1, ..., L. 5KL two-input multipliers are re-

quired for the above purpose. A
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Stage 2: In the second stage, six KL-input adders compute moo,

m10 , o 1, n11 , mn2 0, and mo02 .

Therefore, the moments method requires a total of 4KL-5(K+6)+6 two-

input multipliers and six KL-input adders to compute all moments of

order two and less.

From Figures 3-5, 3-6, and 3-7, it can be seen that all three

methods can be easily implemented using multipliers and adders (i.e.,

none of the methods involve function evaluation). The moments method

looks simpler than the other two methods with just one level of multipli-

cations and one level of additions. In general, no method has any sig-

nificant advantage over others as far as the complexity of implementation

is concerned.

If the video images are sampled at 5 MHz and if it is required to

register all n windows simultaneously (or almost so) between sampling,

more than one correlator (probably n correlators) may have to be used in

parallel when implementing the correlation or SSDA method. Therefore, if

n is large, these two methods may prove uneconomical. The maximum number

of parallel units that can be used is also restricted by cost and the

volume of space and power available. For the moments method, however, if

there is one unit of hardware to compute all the required moments, the

degree of mismatch between S i, j and each of the n windows can be computed

almost simultaneously as shown in Figure 3-8. The hardware required to

compute _ (m k ij 2 for k - , 2 ., n is negligible and therefore
pq pq

moment's method accomplishes multiple image registration using relatively

less hardware as compared to the correlation and SSDA methods when n is

large.
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In this chapter, computational efficiency of the correlation,

the SSDA and the moments method is compared from software as well as

hardware points of view, independently. It is found that the moments

method becomes more efficient as the number of windows increases. It

takes less computation time if implemented using software and less hard-

ware for real time implementation if the number of windows is sufficient-

ly large. In general, feature matching algorithms are expected to be

more efficient than template matching algorithms when the number of win-

dows is large. Modifications of the moments method and two new feature

matching algorithms are presented in the next chapter.
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IV. NEW METHODS FOR DIGITAL IMAGE REGISTRATION

For multiple image registration, it has been shown that the mo-

ments method is computationally more efficient than template matching al-

gorithms if the number of windows is sufficiently large. This is because

computation for template matching algorithms is directly proportional to

the number of windows whereas in feature matching algorithms features are

extracted for all subimages of the search area and windows only once and

the matching procedure is repeated once for each window. Computation re-

quired to match the features is negligible compared to that required to

compute the features.

In general, feature matching algorithms for multiple image regis-

tration are expected to be more efficient than template matching algo-

rithms. For this reason, an effort was made to improve the moments meth-

od and to develop new feature matching algorithms. Two new feature

matching algorithms, one based on intraset and interset distances [26],

and the other based on correlation between adjacent pixels [27], are

presented in this chapter. The computational efficiency of each of the

new methods is compared with that of existing methods. A technique of

making the standard correlation algorithm more suitable for multiple reg-

istration is also described.

Moments Method

In order to obtain meaningful results from any of the image reg-

istration algorithms, it is necessary to preprocess windows and subimages

67
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of the search area such that the mean and the standard deviation of their

pixel values are equal. This is called intensity level normalization and

is required when the window and the search area are obtained from sensors

with different d.c. gain and bias. Ideally, each KxL subarray of the

search image should be preprocessed to have zero mean and unity standard

deviation. This, however, would require too much additional computation.

Fortunately, normalization can be incorporated into the moments method

with almost no additional computation. Two cases where it is not possi-

ble to use the moment sequence {m pqI directly to accomplish image regis-

tration without intensity level normalization are given below. Means of

incorporating normalization within the algorithm without actually chang-

ing the pixel values are also described.

Case 1: Let W and Si,,j. be the window and its matching subimage

of the search area, respectively. Since the two images are obtained from

different sensors, the corresponding pixels may not have the same pixel

value. Assume that W and Si,,j are related by the following equation.

W(Im) = c Si,,j,(zm) , 1 < z < K, 1 m < L (4-1)

where c is a constant.

The moment, mW , of the window is given by'pq

K L
m W ): 1: Zp W(Z,m) (4-2)
pq Z= m=l

for p,q 0, 1, 2,

The moment, m q of the subimage Si*, . is given by!p
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Si*'j* pmq Si

pq L=l m=l

From Equations (4-1), (4-2) and (4-3), it is clear that

m = c - for p,q = 0, 1, 2,mpq mpq, ..

Any attempt to match the moment sequences {m q} and {m p directly
pq pq

leads to false registration. However,

_ m s i * Ij *

q= Pq for p,q = 0, 1, 2,... (4-4)m W

mW  m

Therefore, the sequences { W2} and must be matched to accomplishw
registration. mOO ,00

Case 2: Assume that Si.,j. and W are related as described by

Equation (4-5).

W(Im) = c Si*,j*(#,m) + d , l < < K and l <m < L (4-5)

where c and d are constants.

For this case,

Wmpq mpq ' for, pq=0, 1,2, (4-6)

Let W and Si*,j* be the mean pixel values of W and Si*,j . , respectively.

Suppose, W' is obtained from W by subtracting its mean pixel value

from each pixel. S'.,j. is obtained from Si.,j., similarly. Now, W' and

S!. are related by the following equation.

W'(z,m) = c St (,m) (4-7)

for l < z < K and I < m < L
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The following relations between the moments of W' and S!.,j. can be eas-

ily derived

oM *3* (4-8)

mO 0 "'00 0

and mpq = C pq , for p,q = 0, 1, 2, ... (4-9)

Therefore,

mW' mSi*,j*

W-I= S! (4-10)
mrs _S ,j,

mrs

for pq = 0, 1, 2,

provided that r and s are not simultaneously equal to zero. Therefore,

mW  m Ii 

for this case the sequences t-PI and {- -- _} can be matched to accom-
mrs I,Jmrs

plish image registration. However,

K L
m' r Pmq (W(,rm) - W)

m=l(4-11)

mr ( PmW(,m) - W)~

.=l m=l 4= m=l
K L ~K L

I Z mrms W(xm)- W _ ZJsri
m=l m=l

7=77t 4
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K L q

MW -
=pg Zi1 m1l
mW ~ K L rms
Mrs =1: m1

Now,

K L L

I W(z,m) --- (4-12)
I1t=l m=l

Let Kpq and Krs be constants defined as

K L
Kpq= L t m= pmq  (4-13)

K L
and Krs = T -14)

From Equations (4-11) through (4-14)

mW MW K 
( )

pq pg pqm00W9 W (4-15)-1T- w w
rs  mrs Krsm00

Kpq and Krs are constants which can be precomputed and stored. Therefore,

mW -K mW
it is clear from Equation (4-15) that if sequences [ Pq  and

rs rs O0
mSij. S.~

m -9 K m S191

SS " mo } are used for image registration, intensity level

rs "Krso0

normalization is accomplished with almost no additional computation.

This makes the moments method more reliable without excessive additional

computation.
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Distance Measures for Digital

Image Registration

Pattern classification by distance measures is one of the earliest

concepts in automatic pattern recognition. The motivation for using dis-

tance functions as a classification tool follows from the fact that the

most obvious way of establishing a measure of similarity between pattern

vectors, which can also be considered as points in Euclidean space, is

by determining their proximity. Common distance measures used for pre-

processing and feature extraction, a new registration method based on

intraset and interset distances, the number of arithmetic operations re-

quired to implenent this method and the relation between distance measures

and moments of a digital image are described in this section.

Distance Measures

Point-to-Point Distance. Let P i and P. be any two points in the

two-dimensional x-y plane. Each point can be uniquely identified by its

x and y co-ordinates, i.e.,

[ x.
i [X]

P j

The square of the distance between points Pi and P. is given by

2 22D (Pi,P) = (Xi-Xj) + (Yi-Y.) 2  (4-16)

1 3 1 3 1I
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Point-to-set-distance. Let P0 be a point and Sa be a set of 'a'

points in the two-dimensional plane, i.e.,

Po= 0
0 1 YL Yo J

Sa = P P2 ""...' P0a-l' Pa}

The distance between the point P0 and set Sal D2 (PoSa), is defined as

the mean square distance between the point P0 and the 'a' members of the

set Sa' Therefore,

D2(P ,Sa) = X + (Yo-Yi)2  (417)

Intraset distance. The intraset distance of a set is defined as

the mean square distance between the points of that set [26]. The mean

square distance, D2(p,S a), between a fixed point P. and all other a-l

points of the set Sa is given by

2 a(Xl-X + (y.-Yi ) (4-18)

i j

Since D2 (pPj) is zero, D2 (pis a ) can be written as

D2(pjSa) = i1 (Xj-Xi )2 + (yYi 21 (4-19)

Therefore, the intraset distance of Sa1 02(Sa) is given by

j2 (Sa I C(X X2 + (Yj-Yi)2] (4-20)

i~a--7 - ,.=, j j-
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Equation (4-20) can be easily reduced to a simple closed form in terms

of statistical properties as described below:

0 2 a(S l a 2 a aoZ(Sa) = a- 1 j~- ' ( x.x.) + -l " (Y.'Yi) 2

= ~ J= j ~ ~ -)j=l 1=1

(4-21)

1 a a 1Xi) n a-(a qJ i YjY

In Equation (4-21) /x ) ( 2 and 1 Y- 2
a-,j=j ll aa j=l i=l

will be referred to as the X-component and Y-component of intraset dis-

tances, respectively.

Let

1 X and V Yi (4-22)
aia Xii n1

Then

a a 2 a 2

j=l i=l 1 ji=1

- F(X.-Y) 2 + (xi-7)2 - 2(X.- )(X.-X)

j=l1 i=

(4-23)

It can be shown that

a a

--(x.Xx.-) 0 (4-24)
J=l 1=l 1

Therefore,

a~ (XXa a) a
-- l + i= (x. 2  (4-25)

j=l i=l j1 i j=l i l



75

a al (X 2X+2  a a (Xi-Z)2
=a -2 a-

2  2 a2  2
=a cox  + a ox

= 2a
2 ax 2

where

x2 1 (Xi_) a l (Xj)2 (4-26)
i~l j=l

Therefore, the X-component of intraset distance, D (Sa), is given by

Ds 2a 2
a = ax (4-27)

Similarly, the Y-component of intraset distance is given by

D2 (Sa) = 2a 2 (4-28)

where

a2 =2 (4-29)

From equations (4-20), (4-27) and (4-28),

D2(S a (,x2 2 (4-30)a a -T x ' 'y)

Equation (4-30) expresses intraset distance in terms of variances associ-

ated with the X and Y coordinates of the set points.
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Interset distance. Let Sa be a set of 'a' points and Sb be a set

of 'b' points in the two-dimensional plane. Then, the interset distance

between sets Sa and Sb is defined as the distance between their centroids

[26]. If (Xa, V) and (7b, Vb) are the centroids of set Sa and Sb , re-
a a b9b re

spectively, the interset distance Squared between S and Sb is given by

D2 (SaSb) a - b) + (Ya-b) (4-31)

Feature Vector for Digital Image

Let F be a KxL array of digital pixels which may assume one of G

gray levels.

I < F(X,Y) < G , 1 < X < K, 1 < Y < L (4-32)

Let Sg denote the set of pixels with pixel value equal to g and ng be the

number of elements in Sg . Now, digital image F can be considered as the

union of sets S , S2  ..., SG .

F = S] U S2 U ... U SG  (4-33)

Each element of the set Sg, which is just a point in the two-dimensional

X-Y plane, is uniquely specified by its coordinates.

s g g . (4-34)"" 2 ng9

where

P9 - for i 1, 2,..., ng (4-35)
a Y 2, ,

and g 1 , 2,9.. G
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Each of the G sets can be characterized by its intraset distance which is

defined as the mean square distance between its elements. From Equation

4-3 the intraset distance of the set Sg is given by

D2(Sg) = 2(sg) + D2(S g )  (4-36)

2n 2 2

9n X9

where

n
a 2 = 1 g (X-g)2  

(4-37)
xg  ng i=l

and

n
g2  1 g (yg-,g) 2  (4-38)

y ng Il

The location of one set with respect to the other can be characterized by

the interset distance between them which is defined as the distance be-

tween their centroids. Since there are G sets in F, there exist G(G-1)
2

distinct interset and G intraset distances. A G(G+l) -dimensional feature2

vector consisting of G intraset and G(G-1) interset distances maps the
2

digital image F to a point in the G(G+l) -dimensional Euclidean space.2

Derivation of Multiplication

and Addition Requirements

Consider the digital image F of size KxL described by Equations

(4-32) and (4-33). Intraset distance of the set Sg is given by Equation

(4-36). The X-component of the intraset distance, D2 (sg), can be written

as
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112sg) 2 n 2 (-9

Dx(S )x = -xxg 2439

2 n

n

2n (Xql Th)2
g g

ng--Tg-=1

n
2 g (xg)2 - n(X) 2)
n i~ n~ 9 g

where

nxg L g xg (4-40)
ng i=I

The multiplication and addition requirements to compute the feature

vector are derived in the steps below. It is assumed that multiplica-

tions, divisions and squaring operations are equivalent.

1. From Equation (4-40), it is clear that n gl additions and

one multiplication (division) are required to compute Xg .

2. Computation of D2(S g ) as described by Equation (4-39) re-x

quires n +4 multiplications and n +1 additions. Therefore,g g

a total of 2n9 additions and (n +5) multiplications are

needed for the computation of D2(Sg).

3. Similarly, 2n additions and (n +5) multiplications are

required for the computation of D2 (Sg).
y

4. Adding results of steps 2 and 3, 4n, additions and 2na + 10)

multiplications must be performed to compute D2(Sg).
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5. Since there are G sets in the image F,

G
Total number of additions = : (4ng) = 4KL 4-41)

G
Total number of multiplications = _ (2n +lO)=2KL+lOG (4-42)

g=l g

6. The interset distance between two sets is the distance

between their centroids (See equation (4-31)). Two multi-

plications and three additions are required to compute

each of the G interset distances.

Total number of additions 3G(G-) (4-43)2

Total number of multiplications = G(G-l) (4-44)

Therefore, in order to compute the feature vector for a KxL array of pix-

els which can assume one of G gray levels, a total of 4KL+ 3G(G-I)
2

additions and 2KL+G(G+9) multiplications must be performed.

Multiple Image Registration

A method of accomplishing multiple image registration using feature

vectors of windows and subimages of S is described below.

Step 1: Compute the feature vector for each of the n windows and each of

(M-K+I)(N-L+I) subimages of S. Let, Vk and Vi'j denote feature vectors

of the window Wk and subimage Si, j , respectively.

• A
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Vk

Vk

V k for k 1, 2,. , n (4-45)

V k

LG(G+l)2

Vi

VIA3  for, 1 i < M-K+i
V ~= 2 (446

V=and, 1 < j N-L+i 4-6

G(G+l)
L 2

The above vectors can be considered as points in G(G+I) -dimensional
2

Euclidean space.

Step 2: To register W k within S, find the subiniage Sij whose feature

vector best matches that of W V In other words, find S.i .j. such that

11Vk _ V k1 2 < iVk _ vi,ju12 (4-47)

for 1 < i < M-K+l, i~i*

and 1 < j _NL1

where, H1Vk- v ''H12 is the square of the distance between vectors V k and

Vilij
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To register n windows WI, W2, ... , n within S, the feature vec-

tors for n windows and (M-K+I)(N-L+l) subimages are computed only once

(step 1) and step 2 is repeated n times, once for each window. The com-

putation associated with step 2 is small when compared to the computation

associated with step 1. Therefore, although this method is computation-

ally inefficient for n=l, its efficiency with respect to the correlation

method increases for large n. Equations for the number of additions and

multiplications required to register n windows are derived below.

In step 1 (M-K+l)(N-L+l)+n feature vectors are computed.

4KL+ 3G (G- ) additions and 2KL+G(G+9) multiplications are required to com-2

pute one feature vector. Therefore,

Number of additions, = [4KL + 3G(G-) ][(MK+I)(NL+I)+n] (4-48)
in step 1 2

Number of multipli-) = [2KL + G(G+9)][(M-K+l)(N-L+l)+n] (4-49)
cations in step 1

In step 2, G2+G-1 additions and G(G+l) multiplications are performed to2

compute IVk - vi'jIi 2. There are (M-K+l)(N-L+l) reference points and n

windows. Therefore,

Number of additions1 = (G2+G.l)(MK+l)(NL+l)n (4-50)
in step 2

Number of multipli- }  G(G+I) (M-K+I)(N-L+l)n (4-5l'

cations in step 2 2

From Equations (4-48) through (4-51),

Total number of additions = (4-52)

[U43G(G- )][(M-K+I )(N-L+ I )+n] + (G2+G-1)(M-K 1)(N-L+1)n
E. . .2
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Total number of multiplications = (4-53)

[2KL+G(G+9)][(M-K+I)(N-L+l)+n] + G(G+I) (M-K+I)(N-L+I)n2

For M = 240, N = 256 and K = L = 32,

Total number of additions = (4-54)

[47025 (G 2+G-1) + 1.5 G(G-1) + 4096]n + 70537.5 G(G-l) +

192614400

Total number of multiplications = (4-55)

[2048 + G(G+9) + 23512.5(G+l)G]n + 47025 G(G+9) + 96307200

The number of additions and multiplications which are required to

implement distance and other methods for various values of n and G, are

shown in Figures 4-1 and 4-2, respectively. From Figures 4-1 and 4-2 it

is clear that if n is greater than 4, the distance method requires less

computation when compared to the correlation method. In order to have

one single measure of comparison, the time ratio relating multiplication

and addition operations can be used. For machines like the IBM 370,

multiplication time is three times the addition time. With the above

assumption, the number of equivalent additions required to implement cor-

relation and distance methods for various values of n and G is shown in

Figure 4-3. Figures 4-1, 4-2, and 4-3 prove that the distance method is

computationally more efficient than the correlation method if the number

of windows is large.

Relation between Distance Measures

and Moments

Let F be a KxL array of digital pixels which may assume one of G

possible levels on the gray scale.
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1 < F(X,Y) < G (4-56)

for 1 < X < K , I < Y < L

Let Sg denote the set of pixels with pixel value equal to g and ng be

the number of elements in Sg . Now, digital image F can be considered as

the union of sets SI S2, .

F = S1 U S2 U ... U SG  (4-57)

Each element, which is just a point in the two dimensional x-y plane of

the set Sg , is uniquely specified by its coordinates.

S9={pg, Pg, Pg. .. Pg
1' 2' 3' n

where

X?
p9 = I , for i = 1, 2, ..., ng (4-58)

and g = 1, 2, ..., G

The set Sg can be considered as a two dimensional discrete function whose

value is equal to g at Pg Pg ..., Pg and zero elsewhere in the x-y1' ' nq

plane. Therefore, the central moments of Sg are given by

n

9 ~ 9  220 g - (4-59)

9 n
0 = g(Yg- v)2 (4-60)
02 Ju

4J
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n
g g n ng (4-61)

From Equations (4-59), (4-60) and (4-61),

n
2 [ (Xi-Xg) 2 + (yi- Yg) 2  

(4-62)
go ng i=l

The intraset distance of the set Sg is given by Equations (4-36) through

(4-38).

n
O2(Sg) 2_T (i g [(Xg'Xg) 2 + (yg_yg) 2 ]) (4-63)ng' i=1 1

Therefore,

02(5) 2n "20'02) (4-64)
9 .00

Equation (4-64) shows the relation between the intraset distance and mo-

ments of the set Sg . Since (ug +Ug ) is invariant under translation and20 "02)

rotation [10], the intraset distance is also invariant under translation

and rotation. If each point P9 is considered as a point mass of value
1

,20 02 is the square of the radius of gyration of the mass distribu-

00

tion about its centroid. Therefore,

2n

2n 2
D2(Sg) : (n-.) * r (4-65)

where, r is the radius of gyration of Sg about its centroid.
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The interset distance between the sets Sg and Sh is defined as the

distance between their centroids.

D2(sg5 sh) = (-gx)2 + (-yg~yh)2 (4-66)

mg mh ) mh
_ m oo)2 01l 2mg0  m ho +mg " h

'"00 00

Equation (4-66) shows the relation between the interset distance between

the sets Sg and Sh, and their moments. Simulation results given in Refer-

ence [16] show that matching homogeneous regions separately and combining

the partial results additively yields sharper correlation peaks. If the

image is composed of homogeneous regions as described in Reference [16],

all pixels of the homogeneous region normally fall into the same set when

the image is segmented based on pixel values. Computing intraset distance,

in some sense, is the same as processing each homogeneous region sepa-

rately. The relative location of homogeneous regions with respect to

each other is determined by interset distances. Therefore, the distance

method is expected to perform better than the moments method if the scene

is composed of homogeneous regions.

Correlation of Adjacent Pixels

for Image Registration

Let W be a digital image of size KxL whose pixels can assume one

of G possible levels on the gray scale.

0 < W(x,m) < G-l (4-67)

for I < z < K and I < m < L
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The normalized correlation between adjacent pixels of the th row

of the digital image W is given by the ensemble average

P-EfW(i,m)W ( ,m+l )}

E{W2 (,m)} (4-68)

Since there are L elements in any row of W, p can be approximated by

the spatial average

1 L-1ELl W(Z,m)W(Z,m+l)

Sm W(,(4-69)
1 L

where pZ always lies between zero and one. When all pixels in the Zth

row have the same value, p is one. The value of p,, in some sense, is

related to the difference in pixel values of the adjacent pixels. Values

of adjacent pixels are highly correlated for most images except at edge

pixels. If pixel W(2,m) is of a certain gray level, then the adjacent

pixel W(t,m+l) along the scan line t, is likely to have a similar value.

This property of p has been used in image coding and transmission in the

past [27, pp. 278-281]. A new method of accomplishing image registration

using normalized correlation of adjacent pixels of rows and columns of

digital images is presented next.

Feature Vector for a

Digital Image

Since in Equation (4-69) L/(L- ) is a constant and can be dropped

without losing any information, the normalized correlation between adja-

cent pixels of the Zth row is given by
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L-I1

mlW(L.,m)W(Z ,m+l)

P L (4-70)

m=l (Lm)

for x -1, 2, ...9 K

Let am be the normalized correlation between the adjacent pixels of the

mth column.

K-iKIW(Jtm)W(Y.+I ,m)

= £=1 (4-71)Km W1 2 (I'm)

for m = , 2, ..., L

The (K+L)-dimensional feature vector, Vw, of the digital image W is giv-

en by

vT-
- PP 2  PK ] 2  (4-72)Vw =P 2 P ' .... aL]

Multiple Image Registration

A method of accomplishing multiple image registration using fea-

ture vectors of windows and subimages of the search area S is described

below.

Step 1: Compute the feature vector for each of the n windows and each

of (M-K+1)(N-L+l) subimages of S. Let Vk and Vi 
"
j denote feature vec-

tors of the window Wk and subimage Si j , respectively.

Step 2: To register W k within S, find the subimage Si,., whose feature
kk

vector best matches that of Wk. In other words, find Si, . such thatkJk
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k_ i*j 12 k ,j 12
Iv v k kil < 11 l vv 1 (4-73)

for 1 < i < M-K+I, ii*, and 1 < j < N-L+l, jj*

where ijvk-vijii2 is the square of the distance between the vectors

Vk and V'.

To register windows W, W2, ... , Wn within S, the feature vector

for n windows and (M-K+I)(N-L+l) subimages are computed only once (Step

1) and Step 2 is repeated n times, once for each window. Since the com-

putation associated with Step 2 is small compared to the computation

associated with Step 1, this method is more efficient for multiple image

registration than the correlation and SSDA methods.

Derivation of Multiplication
and Addition Requirements

Equations for the number of multiplications and additions in terms

of M, N, K, L and n are derived in the seven steps below.

1. From Equation (4-70), it is clear that 2L multipli-

cations and 2L-3 additions must be performed to compute

pt. Similarly, 2K multiplications and 2K-3 additions

are needed to compute am. Since there are K rows and

L columns, a total of 4KL multiplications and (4KL-3K-

3L) additions are required to compute the feature vec-

tor for a KxL array.

2. Let p (i,j) and a m(i,j) denote the normalized corre-

lation between adjacent pixels of the i th row and the

mth column of the subimage S i j , respectively. In

it

. . . . . . .. . . . . . . . .. . Jl . . .. .. . . .. . .. .... "1
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order to compute the feature vector for the subimage

4K'. L multiplications and 4KL-3K-3L additions are

required as outlined in Step 1.

3. Once V 1,1 is computed, V 1,2 can be computed with

very few arithmetic operations as shown below.

L-1

=L 2 (-4

A A(1l))

where
L-1

A L (1,) = m l l 1 zM)Sl11 (L,m+l) (4-75)

B (11,1) = ,(I'm) (4-76)
m=l11

Now,

L-1

L 2

B z (l,1)-Sl 1(zlS.(z,) + S, 2( z,L1)S, z

From Equation (4-77), p (1,2) can be computed from

Pt (1,1) by performing only 5 multiplications and 4

additions, In general, p (1 ,j+l) can be computed

from o Z(i,j) by Performing 5 multiplications and 4

additions.
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Since there are K rows, computation of p. (i,j+l) from

p (ij) for z = 1, 2, ... , K requires a total of 5K

multiplications and 4K additions. Also,

am(ij+l) = Om+l(i,j) for m = 1, 2, ... , L-1 (4-78)

Therefore, it is necessary to compute aL(i,j+l) which

needs 2K multiplications and 2K-3 additions. In other

words, computation of the feature vector Vi ' j+l from Vi j

requires 7K multiplications and 6K-3 additions. How-

ever, in order to compute Vi'j+l from Vi'J , Vi j and

the first column of Si must be stored. Since Vi'j

is a (K+L)-dimensional vector and Si j is a KxL array,

2K+L additional memory locations are required.

4. Similarly, computation of Vi+l 'j from Vi"j requires

7L multiplications and 6L-3 additions and K+2L addi-

tional memory locations.

5. There are (M-K+)(N-L+I) allowable reference points

in the search area. The feature vector associated

with the first reference point (l,l) is computed as

described in Step 2. This requires 4KL multipli-

cations and 4KL-3K-3L additions. V2 ,1 vM-K+,I

are computed using the procedure similar to the one

in Step 3. This requires (M-K)(6L-3) additions and

7L(M-K) multiplications. For line i, the feature

vectors Vi'2 v ... , Vi,NL+l can be computed

using the procedure outlined in Step 3 with 7K(N-L)
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multiplications and (6K-3)(N-L) additions, and there

are (M-K+l) such lines. Therefore, to compute (M-K+l)

(N-L+l) feature vectors:

Number of multiplications = (4-79)

4KL + 7(M-K)[K(N-L)+L]

Number of additions = (4-80)

4KL - 3K - 3L + (M-K)(N-L)(6K-3) + (M-K)(6L-3)

6. The computation of n feature vectors for n windows

needs 4KLn multiplications and (4KL-3K-3L)n additions.

7. (2K+2L-l) additions and (K+L) multiplications must be

performed to compute iVk - Vi'JII 2 . Since there are

(M-K+l)(N-L+1) reference points and n windows,

Number of multiplications = (K+L)(M-K+1)(N-L+I)n (4-81)

Number of additions = (2K+2L-l)(M-K+1)(N-L+l)n (4-82)

From Step 5 through Step 7,

Total number of multiplications = (4-83)

{4KL+(M-K+l)(N-L+l)(K+L)}n + 4KL+7(M-K)[K(N-L)+L]

Total number of additions = (4-84)

{(2K+2L-l)(M-K+I)(N-L+I)+(4KL-3K-3L)}n +

(M-K) (N-L)(6K-3)+(M-K)(6L-3)+4KL-3K-3L

For M = 240, N = 256, K = 32, and L = 32,

Total number of multiplications = (4-85)

3013696n + 10487296
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Total number of additions - (446)

5976079n + 8849104

The number of additions and multiplications which are required to

implement several registration methods for various values of n are shown

in Figures (4-4) and (4-5), it is obvious that the new method based on

correlation between adjacent pixels is computationally more efficient

than any of the methods previously considered. Since Vt 'j + l or Vt + 1 ' j

can be computed from Vt ' j with few arithmetic operations, this method

is promising for real time implementation. A few simulations were run

using images from similar sensors and the above method was successful.

Feature Extraction Technique for

Fast Image Registration

When two images do not differ in pixel resolution and rotation,

the method most widely used for image registration is cross-correlation.

The elements of the normalized cross-correlation surface are defined to

be

K L

R(i.j) K (447)

SW(z~m)J CZ1  ~ iCtm)

for I < i <_ M-K+I, 1 < j . N-L+I

In general, the amount of computation associated with any simi-

larity detection method is proportional to the number of pixels in the

window and the number of pixels in the allowable search area. For the

cross-correlation method, each of the KL pixels in W is compared with

the corresponding KL pixels in S to compute R(i,j). Since the
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correlation function has (M-K+I)(N-L+I) elements, a total of KL(M-K+I)

(N-L+l) pairs of pixels are compared. Thus the computation time is

roughly proportional to KL(M-K+I)(N-L+I). Schemes such as "two-stage

template matching" and "course-fine template matching" have been pro-

posed to speedup correlation method and are described in Chapter I. A

feature extraction technique presented in this Section selects a set of

pixels, W', from the window W to be used in correlation and thus achieves

significant savings in computation with little effect on the correlator

accuracy and reliability.

All methods which speedup correlation accomplish the task by

somehow reducing the total number of pixel pair comparisons during com-

putation of the correlation surface. Feature extraction, one of the

fundamental methods for data compression in the field of pattern recog-

nition can be used to accomplish the same. An ideal feature is re-

quired to have the following properties:

1. The feature should retain, from the original pattern,

as much information as possible.

2. The feature should accomplish as much data reduction

as possible.

3. The feature should be invariant or depend on some in-

variant properties of the original pattern in a known

way.

In practice the first two above are conflicting properties. However,

striking a balance with consistent and acceptable accuracy for recog-

nition of the original pattern can be accomplished.



100

Consider the subset of pixels, W', from W as a feature based on

the mean and standard deviation of pixel values of W as shown in Figure

4-7. W' is a set of all pixels in W such that W(t,m) is either greater

than the mean plus a constant p times the standard deviation (u+po) or

less than (U-pa), where p is the scale factor greater than zero. This

feature retains pixels from W whose pixel values are relatively low or

high as compared to the mean. Data reduction is accomplished by delete-

ing all pixels in W whose pixel values range from (p-pa) to (U+po). The

amount of information retained and the number of pixels n in W', depends

on the scale factor p and therefore is controllable. Finally, the fea-

ture depends on statistics of the window in a known way.

Elements of the correlation surface are computed by comparing

only the a pixels from W which belong to feature set W' with their cor-

responding pixels in the subimages of S.

1m W(Im) St  ( ,m)
R(ij) a (A m) 2 (4-88)

[€ WZ (m) S1 ,j 4m)J
(19m) (t,m)

for all 4t,m) such that W(z,m) belongs to W' and for

1 <_ i < M-K+I, 1 < j _ N-L+l

Now the computation time is roughly proportional to n(M-K+I)

(N-L+1). The percent savings in computation time depends on the histo-

gram of W and the scale factor p and therefore is scene dependent.

However, simulation results presented in the next section indicate a

savings of 50 to 75 percent if p is set to one. The percent savings in

computation time, T, can be computed using the relation
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T -( .)'100% (4-89)

In real world problems, n depends on the scene and nothing much

can be said about it without knowledge of the histogram of W. However,

in order to gain some insight into this method, consider the following

two exampl es.

Example 1: Let W be an image whose pixel values assume a unimodal

gaussian distribution with mean v and standard deviation a; i.e.,

p(x) 1 expE-P) [ 2] (4-90)

Then,

M!tPa
number of pixels in W' = I - p(x)dx (4-91)
number of pixels In W

- 1 - [erf( - erf(p )

a a

- 1 - 2 erf(p)

where

-X /2
erf(p) = f e dx

Therefore, T - 200 erf(p)%

A plot of T versus p Is shown In Figure 4-8. For small values of

p, the curve is almost linear indicating rapid reduction In computation

time as p is increased from zero. For large values of p the curve

becomes flat yielding small savings in computation for corresnonding

increases in p.
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value

Figure 4-7. Histogram of the window.
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Figure 4-8. Plot of percent savings in
computation T versus scale factor o
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Example 2: Let W be a bimodal image which means that the histogram of

W is a mixture of two unimodal histograms pl(x) and p2 (x). pl is the

mean of pl(x) and a, is the standard deviation about i1. Similarly 12

is the mean of p2 (x) and a2 is the standard deviation about U2. If P1

and P2 are apriori probabilities of two principal brightness levels,

then the histogram of W, p(x), can be expressed as (26, pp. 326-328]

p(x) - P1 Pl(x) + P2 P2(x) (4-92)

where P1 + P2  1

For the gaussian case

2
PI() 1 exp[( ] (4-93)

2

p2 (x) = ]..( (4-94)P2() . 0220 2

2o

Let i and a2 be the mean and variance of pixel values of W.

- E[x] = P1p1 + P2 p2  (4-95)

E[x 2J I f EP Pl(x) + P2P2 (x)]x2 dx (4-96)

a P1  x2 pl(x) dx + P2  f x2p2(x) dx

L -m2~ 2 + 2 2
a' P, I 1 1) +P 2(u2 + 0 2)
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The variance a2 is given by:

a I E[x2  U 2 (4-97)

a p2 + a2 + 2 + 02- (P~u P 2

I (2 2 10P1 + 2P2)7

=pip2( _ P) + Pi2 _P2 1P i 2 +P 211 1 2 2 2 2P1 P2 +1 22

a~ ~ 2i 1 I 2 P , Pa

"PP 2 (Ul U2 )2 + PI12 + P 2

The percent savings in computation T is given by:

T p(x) dx (4-98)

1 -pa

f [PIPI(x) + P2P2 (x)] dx

" 1 J Pl(x) dx + P2  f P2(x) dx

U-pa U-oP

UPl{erf[ 1  - erf a .)

+ P2{erft a 2  erf[ JI002

Substituting Equation (4-95) into the above equation yields

P2 (u2 -' )+PO P2 (u2-ul1 )-PaT = PI{erf[ 01 ]-erf[

+ P2{erf P ( 2 )+a -erfIl(a2

02 02
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where a2Z pP 2(41-U2 ) 2+ Pla 2 + P 2

Notice T depends on the parameters pl, u2' a, and 02 of the image and of

course on the scale factor p. T is scene dependent and general conclu-

sions cannot be drawn without knowledge of the histogram of W.

Simulation Results

Scenes used for simulation were obtained from sensors sensitive in

the visual spectrum (day TV sensors). Because of the difference in the

sensors, the two images were preprocessed such that they have the same

spatial resolution. An algorithm to accomplish this is given in Refer-

ence [4]. W is a 32x32 array of pixels and S is a 120x120 array of

pixels extracted from preprocessed high and low resolution images, re-

spectively. Since a one-bit or two-level correlator is used in this

work, W' and S must be quantized to two levels. The mean, p, and stan-

dard deviation, a, of W are first computed. Pixels are quantized to !

or 0 if they are above u+pa or below u-pa, respectively. The locations

of pixels within W with values between ,-pa and u+pa are stored and mask-

ed out of the correlation process. Also, each subimage, Sti j of S was

quanitzed to ones or zeros depending on whether the pixel value was

above or below the average value of the subimage, pi'j' as given below

W1 , if SiW((,m) 4 "99)

0 , otherwise

A number of simulations were run using typical scenes for different

values of p. As a figure of merit, the correlation surface signal-to-

noise ratio was computed as
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R -R
sNR- mx avg (4-100)Rsigma (

where Rma x is the maximum value of correlation surface,

Ravg is the average value of correlation surface,

Rsigma is the standard deviation of correlation surface.

Correlation was found successful with the highest value in the

correlation surface indicating the true registration for values of p

ranging from 0 to 1.4. When p was increased beyond 1.4, correlation

was unsuccessful. Percent savings in computation time and signal-to-

noise ratio of the correlation surface for various values of p ranging

from zero to one are tabulated in Table 4-1 and Table 4-2, respectively.

From the above simulation results, it is concluded that substantial

savings in computation (50 to 75 percent) is accomplished with little

effect on correlation accuracy and reliability.

Generalization

Since the new feature extraction technique reduces the amount of

data to be processed without altering the structure, it is applicable

not only to correlation but to many other similarity detection methods.

The following generalizations can be made:

1. By using n elements of W' as test points in sequential

similarity detection algorithm suggested by Barnea

and Silverman, the problem of digital image regis-

tration reduces to the problem of finding Si,,* such

that
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Table 4-1

Percent savings in ccomputation.

Scene P2.00 P-0.25 P-0.50 p=0.75 P-1.00
1 00.00 16.89 33.30 57.92 75.78

2 00.00 13.21 28.90 48.82 71.38
3 00.00 3.61 12.03 27.63 51.30

4 00.00 19.02 27.52 53.21 70.50

5 00.00 20.00 37.42 55.34 73.24

Table 4-2

SNR of correlation surface.

Scene 0=0.00 P=0.25 pO0.50 p=0.75 P-1.00

1 5.885' 5.609 4.907 4.669 3.934

2 7.175 6.101 5.045 4.356 4.321
3 6.775 6.769 6.650 6.347 5.236
4 7.619 7.20 6.64 6.13 5.31

5 8.197 8.14 7.91 7.51 6.85
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< e1 J for 1 _ I< M-K+I and I $ i* (4-101)

1 <_ j _ N-L+l and j t j*

In (4-101) eij can be computed using Equation (4-102)

ei', = ( I. (Si(m) " S W(t,m) + WI (4-102)

where

S i.j - , Si (z'm) (4-103)

and

(m W(L,m) (4-104)

for all (t,m) such that W(z,m) belongs to W' and for

I <_i <_M-K+1, 1 <j _ N-L+I

A few simulations were run and the above method was

found successful.

2. For the moments method, moments can be computed based

on n elements of W' rather than all the KL elements

of W.

3. This method can be combined with the improved method

for correlating similar sensor images, suggested in

Reference [30) to improve the probability of finding

the true peak.

Step 1: Compute the Cross-Correlation surface by

comparing only the n pixels from W which belong to

the feature set W' with their corresponding pixels

in the subimages of S (using Equation (4-38)).
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Step 2: Identify a predetermined number of highest

peaks and coordinates of their occurence from the

correlation surface. Let (11,Jl), (12,J2)

0 k-l'k-l) and (IkJk) be the coordinates of the first

k peaks. It is assumed that the true registration

point is one among them. Recompute R(IiJI), R(12 ,J 2 ),

R(Ik-lJk-l) and R(Ik,Jk) by comparing all the

KL pixels of W with the corresponding pixels in the

subimages of S beginning at (II,J 1 ), (12 ,J 2 ),

(Ik-l, k-l) and (Ik'k), respectively (using Equation

(4-87)). Savings in computation is accomplished in

Step 1. Step 2 increases the probability of finding

the true peak and reduces the possibility of false

registration.
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V. CONCLUSIONS AND RECOMIENDATIONS

Most of the conclusions and recommendations presented in this

chapter have been given and justified within the first five chapters

of this dissertation.

Conclusions

1. Various methods for accomplishing digital image registration are

presented in Chapter II. The most commonly used method is cross-

correlation. There exist two independent ways of computing the

correlation surface (Direct method and the FFT method). Even

though the FFT method requires less computation compared to the

direct method, it requires a large amount of memory for software

implementation-and is very complex for real time hardware imple-

mentation. The direct method requires less memory compared to the

FFT method, involves no complex multiplications or complex addi-

tions and can be easily implemented using digital hardware.

2. Even though the vector correlation is expected to yield better

performance than the standard correlation algorithm, its use is

limited by the large amount of computation required to implement

the method (more than twice the computation required by the stan-

dard correlation algorithm).

3. Due to the difficulty encountered in the automatic segmentation of

digital images into homogeneous regions, feature matching
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correlation and hybrid correlation algorithms may not be of any

significant use (especially for hardware implementation).

4. Sequential similarity detection algorithm computes error surface

as a measure of dissimilarity between the window and subiages of

the search area. Since this method requires only addition and a

few division operations, implementation is simpler than that of

the correlation method (addition or subtraction.is simpler than

multiplication or division).

5. All the three popular techniques which speedup template matching

(two-stage temolate matching, course-fine temolate matching and

hierarchical search method), accomplish savings in computation

by reducing the total number of pixel pair comparisons. The meth-

ods are computationally more efficient in terms of the number of

arithmetic operations required (software implementation) but may

not enjoy any advantage in real-time implementation using special

purpose hardware.

6. The necessity of a highly efficient algorithm to transform digital

images to binary images (edge and non-edge pixels) and a connec-

tivity test to identify true straight line edges (composed of adja-

cent pixels) makes the use of the Hough transformation for digital

image registration less attractive.

7. The moments of an image or subimage can be easily computed by per-

forming multiplications and additions only. When the window and

the search area do not differ in rotation or pixel spatial resolu-

tion, it Is not necessary to compute Hu's invariant moments and the

ordinary moment sequence can be directly used for scene matching.
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8. For the reasons given in 1 through 7, it is concluded that the

standard correlation algorithm, the SSOA and the moments method

are more promising using present state-of-the-art hardware.

9. In Chapter III, the computational efficiency of the correlation,

the SSDA and the moments methods is compared from software as well

as hardware points of view, independently, for the multiple image

registration problem. It is found that the moments method takes

less computation time if implemented in software and less hardware

for real-time implementation if the number of windows is sufficient-

ly large. Moments of any order can be computed with one level of

multiplications and one level of additions. Therefore, the moments

method is promising for real-time implementation.

10. In order to obtain better results from any of the image registration

algorithms, the window and each subimage of the search area should

be preprocessed to have zero mean and unity standard deviation.

This is called intensity level normalization and would require too

much additional computation. In Chapter IV, it is shown that in-

tensity level normalization can be embedded within the moments

method with almost no additional computation. This makes the mo-

ments method more accurate without excessive additional computation.

11. Two new feature matching algorithms, one based on interset and in-

traset distances, and the other based on correlation of adjacent

pixels are developed in Chapter IV. The distance method is com-

putationally more efficient (in terms of the number of arithmetic

operations) than the correlation or the SSDA method if the number

of windows is greater than three.
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12. It has been shown that the intraset distance of a set is a function

of zero and second order central moments of the set. The interset

distance between two sets is a function of zero and first order mo-

ments of both the sets. When an image is composed of homogeneous

regions, all pixels of a homogeneous region normally fall into the

same set when the image is segmented based on pixel values. Com-

puting intraset and interset distances, in some sense, is the same

as computing moments of each homogeneous region, separately. In

general, processing each homogeneous region separately and combin-

ing the partial results additively yields better performance.

Therefore, the distance method is expected to perform better than

the moments method if the scene is composed of homogeneous regions.

13. For multiple image registration, the algorithm based on correlation

of adjacent pixels is computationally more efficient than any of

the algorithms considered. Even for single image registration,

this method requires less number of arithmetic operations than the

standard correlation algorithm. Since the feature vector associated

with reference point (i,j+l) or (i+l,j) can be computed from the

feature vector associated with the reference point (1,j) with very

few arithmetic operations, this method is very promising for real-

time implementation.

14. From 9, 11 and 13, it is concluded that an algorithm which is cm-

putationally efficient for single image registration may not be

efficient for multiple image registration. It is also concluded

that the computation for template matching algorithms is directly

proportional to the number of windows whereas in feature matching
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algorItts features are extracted for all subimages and windows

only once, and the matching procedure is repeated once for each

window. Since the computation required to match the features is

negligible compared to that required to compute features, in general,

feature matching algorittms are expected to be more efficient than

tomplate matching algorithns if the number of windows is sufficien-

tly large.

15. There are many other feature matching image registration algorithus

reported in the literature that have not been mentioned in this re-

port. The reason for eliminating these algorithms was either they

were too computationally complex to be implemented in real-time

hardware in the near future or they were not as computationally ac-

curate as the methods presented. Special purpose VLSIC developed

at some future date my make some of these algorithms feasible.

16. A feature extraction technique based on the mean and standard de-

viation of pixel values of the window accomplishes 50 to 75 percent

savings in computation with very little effect on registration ac-

curacy. Since the feature extraction technique reduces the amount

of data to be processed without altering the structure, it is ap-

plicable not only to correlation but to many other inage regis-

tration algorithms.

Recomendations for Future Work

1. Even though the correlation, the SSOA and the moments methods are

more promising using present state-of-the-art hardware, very large

scale integrated circuits developed to perform a specialized task

may at some future date make any of the methods discussed in Chapter



116

11 feasible. Because of this possibility, a follow-on program should

investigate the computational accuracy of these methods.

2. It my be possible to obtain good registration results using very

few moments. This trade-off should be investigated through sitmula-

tion of typical military-type digitized scenes.

3. If the images are quantized to two levels (0 and 1) or three levels

(-1, 0 and +1), the computation of moments involves no multiplica-

tions. Therefore, performance of the moments method with two and

three level images as inputs should be studied.

4. Accuracy, reliability and sensitivity to noise of all three feature
e

matching methods in Chapter IV should be determined through simula-

tion.

5. The effect of quantization of images to two or three levels on the

performance of feature matching algorithus should be investigated.

6. The potential of the method based on correlation of adjacent pixels

for real-time hardware implementation should be studied.
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