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I. INTRODUCTION

One concept which could potentially increase the firepower of the ﬁ
"fire-and-forget" class of helicopter borne missile systems would be to
acquire and hand off multiple targets from a precision pointing and track-

ing system (PTS) to several missile seekers simultaneously, or almost so,

in a short period of time. A typical over-all fire control configuration
is shown in Figure 1-1. The pointing and tracking system typically con-
sists of an optics train, line of sight (LOS) stabilization system, for-
ward looking infra-red (FLIR) imaging system, manual and autotrack system,
laser range finder and associated electronics. An imaging missile seeker
could be an infrared type. It is assumed that during preflight checkout
or during the actual flight, the lines of sight of all the missile seekers
are aligned with the 1ine of sight of the PTS. However, due to gyro drift,
boresighting inaccuracies, vehicle vibration and flexure, etc., the seek-
ers will not remain boresighted with the PTS. Since the PTS has a larger
field of view (FOV) in both axes as compared to missile seekers, it is
expected that the FOV of all the missile seekers will be located within
the FOV of the PTS. The multiple target problem then becomes that of
locating targets and missile seeker aim points within the PTS field of
view, deciding which target is to be assigned to each missile, generating
error signals to the torquers in order to slew the missile LOS such that
its assigned target is in the center of its FOV, and initiating automatic

seeker tracking.
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In general, the task of locating a given smaller image within a larger
image is known as "image registration". The smaller image is referred to
as the window or the reference and the larger image is called the search
area. With the above notation, in the multiple target problem, the image
obtained from the PTS sensor is the search area and the image obtained
from each missile seeker is a window. Therefore, there is one search
area and more than one, say n, windows. It is assumed that all the n win-
dows are completely located within the search area. Now the problem of
multiple image registration can be defined as that of finding n subimages
of the search area which best match the n windows. Even though very lit-
tle attention has been given to date to the problem of multiple image
registration, a considerable amount of work has been done in the area of
single image registration. Several interesting problems such as map
matching, cloud motion tracking, ship and aircraft identification are
solved through digital image registration.

In Chapter II, the problem of single image registration is precisely
defined and varuous existing methods of accomplishing digital image re-
gistration are described. The inherent problem associated with regis-

E tration algorithms is their high computational cost. An algorithm which
is computationally efficient for single image registration may not be

efficient for multiple image registration. A detailed comparison of the

important multiple image registration methods based on the number of A
arithmetic operations for software implementation and the complexity of

hardware for real-time implementation is presented in Chapter III. New

methods of accomplishing multiple image registration which are computa-

tionally more efficient than the most commonly used template matching
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techniques (correlation and sequential similarity detection algorithm)

are described in Chapter IV. Conclusions and recommendations are given

in Chapter V.
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II. EXISTING METHODS FOR DIGITAL IMAGE REGISTRATION

The problem of locating a given image within a larger image uses
techniques and algorithms fundamental to the disciplines of image pro-
cessing and pattern recognition. Template matching methods such as "cor-
relation" and "sequential similarity detection algorithms" are widely
used for the determination of local similarity between two images [1] -
[7]. The inherent problem associated with the above two methods or any
image registration method is high computational time. Several schemes
such as "two-stage template matching" and "course-fine template matching"
have been proposed to speed-up template matching methods [8]), [S]. The
"method of invariant moments" which is widely used in classifying an un-
known pattern as one of several known patterns can also be used to ac-
complish digital image registration [10] - [14]. Various methods of
accomplishing single digital image registration are described in this

chapter.

Problem of Digital Image Registration

Let two images, S the search area and W the window, be defined as
shown in Figure 2-1. S is a MxM array of digital picture elements (pix-

els) which may assume one of G possible levels on the gray scale, i.e.,

0 < S(i,j) < G-1 (2-1)
for T<i<Mand 1 <j <N
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Figure 2-1.

Search area and window.
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Wis a kel (K < Mand L < N) array of pixels having the same gray

scale range.
0 < W(z,m) < G-1 (2-2)
for l<2<Kandl1<m<lL

Let Si.j denote each unique KxL subimage of S whose upper left
corner coordinates are (i,j). Then (i1,j) is also called the reference
point of subimage Si,j and the (M-K+1)(N-L+1) reference points corre-
sponding to the (M-K+1)(N-L+1) possible subimages of S are called allow-

able reference points.

S,3(2sm) = S(i+e-1 , j4m-1) (2-3)
for l<t<Kand 1l <mc<lL

1 <i<M-Ktl and 1 < j < N-L#H

When S gnd W do not differ in pixel resolution and rotation (or
have been preprocessed to equalize the pixel spatial resolution), digita?
image registration is a search over the allowed range of reference points
to find the subimage Si*,j* which best matches the window W. Existing
techniques for registering an image within a larger image and schemes to

speed-up these techniques are presented in this chapter.

Correlation
When two images do not differ in pixel resolution and rotation,
the method most widely used for image registration is cross-correlation
(1] - [6]. The elements of the unnormalized cross-correlation surface,

R(1,j), are defined to be
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R(1,3) K)EH( ) S; 4(2,m) (2-4)
»J E] 3 L,m i3 L.m
for T <1 <MKl , 1 < < "=lHl

In most cases, coordinates of the maximum value of correlation
surface indicate image registration. However, since R(i,j) is a cross
correlation, it is possible that the maximum value of correlation sur-
face does not indicate true image registration. This is illustrated
below. Consider an ideal case where W exactly matches subimage Si*, j*
Then

K L
RU%3*) = 3 T wi(e,m) (2-5)

2=1 m=]

Consider a2 nommatching reference point (i,S) where

S‘i"j(z,m) =(t;) w(z,m) = Woax (2-6)
for l<e<K,l<mc<lL.

Correlation value, R(i,3), is given by

o a K L
R(ioj) = umax !,;] m; u(l,lI'I) (2'7)

It is easy to show that
R(1,3) > R(i*,3%) (2-8)

Therefore, even in the ideal case a search for a maximum over the cor-
relation surface does not necessarily yield true registration. In order

that the maximum value of the correlation function indicate true image

registration W and S1 j must be normalized. Elements of the normalized

cross-correlation surface are defined to be

§ o v
Lo o s
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L
é‘ m; W(e,m) Si,j(""')

R(1,4) = 25 T
[12_:1 mg w2 (2,m)]" (3 2 s, j(e.m]*

(2-9)

for 1 <1 <MKl , 1 < < N-L#]

This obviously involves more computation than the unnormalized
method given by (2-4). In spite of its high computational cost, corre-
lation is widely used in image registration for the following reasons:

1. Correlation appears to be a natural solution for the

mean-square-error criterion.

2. Digital hardware and analog optical devices implement

correlation easily.

In general, the amount of computation associated with any similar-
ity detection method is proportional to the number of pixels in the win-
dow and the number of pixels in the allowable search area. In the
correlation method each of the KL pixels in W is compared with the cor-
responding pixel in si,J to compute R(i,j). Since the correlation func-
tion has (M-K+1)(N-L+1) elements a total of KL(M-K+1)(N-L+1) pairs of
pixels are compared. Thus the total computation time is roughly propor-
tional to KL(M-K+1)(N-L+1). The approximate number of arithmetic opera-
tions required to compute the normalized correlation surface is derived
in Chapter III. Several modified versions of the standard correlation
algorithm exist and each version has its own advantages and disadvantages.

Vector correlation, feature matching correlation and hybrid correlation

algorithms are briefly described on the next pages
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Vector Correlation Algorithm

The standard correlation algorithm, as a measure of similarity,
computes the cross correlation surface between the window W and the
search area S by using only intensity levels for pixels of W and S. The
vector correlation method computes the cross correlation surface between
W and S based on gradient as well as gray scale values of pixels [15].
Let S(i,j) and GS(i,j) be the pixel and gradient values of the (i,j)th
pixel of the search area. Similarly, W(t,m) and GW{2,m) are the pixel
and gradient values of the (2,m)th pixel of the window. Now, a two-
dimensional vector consisting of intensity and gradient values can be
associated with each pixel of S and W. Let V(i,j) be the vector asso-
ciated with the (i,j)th pixel of S, i.e.,

S(i,
vS(4,4) = [ (.4) (2-10)
65(1,4)

for l<i<Mand1<j<N

Similarly, V"(z,m) denotes the vector associated with the (%,m)th pixel
of W.

W W(e,m)
Vi(z,m) = (2-11)
GW(2,m)

for l<e<Kand1 <m<L
Let

S s S

Vi, 3(0em) = VO(i+e-1, jom-1) (2-12)
for <2<k l<mc<l

and T <1 <MK, T < J < NoL#]
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Elements of the unnormalized vector correlation surface of S and W are
defined to be
|
L
) e 35 e’ o 5(2.m)) (2-13)
2=1 m=| ’
for T <1 <MKtl, 1 < < N-L#1
Elements of the normalized vector correlation surface are defined to be
K L
2. T (Wiem)T (V 3{em))
R(1,§) = 21 m=L (2-14) L
t)‘; i (Wem))T (W(e,m))1" |
1=]1 m=1
K L ]
S T ,\S X
[3:1 m§1 (v3,5(2m))" (V] 4(2,m))] l

for T <1 <Mktl, 1 <§ <N-LH

It can be easily shown that

t[u(:r.,m)si (2,m) + GW(z,m) GS, .(z,m)
R(1,4) = ‘2‘ - L]

(2-15)
[2] )“: [W2(2,m) + GWe(2,m)]]"
1=] m=1

1
s¢ . (2,m) + 652 (2,m)]7"
[2 m):t Ty + 62 (e,m])

for 1 <1 <MKtl, 1 < J < N-L#]

Since the vector correlation method is based on more independent informa-

tion than the standard correlation method, it is exnected to have a better
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performance. However, the vector correlation method involves consider-

ably more computation than the standard correlation method.

Feature Matching and Hybrid
Correlation Klgoritﬁis

Since images W and S are obtained from two different sensors, a

certain amount of preprocessing is necessary before computation of the
correlation surface. In addition to the pixel spatial resolution equal-
1zation preprocessing, if the two sensors differ in dc gain and bias,
each image can be preprocessed such that its mean pixel value is zero

and standard deviation of pixel values is unity. This process is called
intensity level normalization. Normalized images can then be correlated.
There are two variations of the standard correlation algorithm suggested
by the Rand Corporation [16]. Based on the preprocessing technique used,
the algorithm is called either the feature matching correlation algorithm
or the hybrid correlation algorithm.

Feature Matching Correlation Algorithm. In this method, the

window (reference) is segmented into homogeneous regions. A homogeneous
region is defined as a set of spatially connected pixels whose pixel
values remain almost constant over the region. Each of the homogeneous
regions is then preprocessed separately based on its characteristic.

For example, intensity level normalization of a homogeneous region is
accompl ished by subtracting the mean pixel value of the region from each
pixel and by normalizing with respect to the variance of pixel values.
Similarly, the search area is also segmented into homogeneous regions

and each homogeneous region is preprocessed separately. The preprocessed

window and search areas are then correlated using a standard correlation
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algorithm. Simulation results reported in Reference [16] indicate that

this method yields a sharper correlation peak as compared to the stan-
dard correlation method. This may be due to the enhancement of high
frequency content of each homogeneous region. The feature matching
correlation also compensates for contrast reversals be;yeen the cor-
responding homogeneous regions of the window and the search area. How-
ever, depending on the scene and sensor resolution it may not be possible
to decompose all scenes into homogeneous regions. Such scenes are call-
ed non-homogeneous scenes. Even if a scene is composed of homogeneous

regions, it is extremely difficult to accomplish segmentation in real

time.

Hybrid Correlation Algorithm. In hybrid correlation only the

window is segmented into homogeneous regions. Each subimage of the
search area is assumed to be the matching subimage and is segmented
identically as the window. The correlation between the window and the
subimage is computed by matching each homogeneous region of the window
with its corresponding region in the subimage and by combining the par-
tial results additively. Simulation results in Reference [16] show that
this method is better than the standard correlation algorithm, but not
as good as the feature matching correlation. However, the hybrid cor-
relation algorithm has the advantage of not segmenting the search area

and thus requires less computation as compared to the feature matching

correlation.
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The Fast Fourier Transform Method of Computing
Correlation Function

The convolution theorem of fourier analysis states that convo-
lution in the time or space domain is equivalent to multiplication in
the temporal or spatial frequency domain. Since correlation is a form
of convolution, an alternate method of computing the correlation function
thus exists [17], [18]. Let X and Y be two images of the same size.

Then the cross correlation between X and Y is given by
R(iij) = IFFr{l(Usv) _Y_*(U,V)} (2“]6)

where,
Xx(u,v) is the discrete fourier transform of X
Y*(U,v) 1is the complex conjugate of the discrete fourier
transform of Y
IFFT signifies the inverse fourier transform operation
The size of the correlation surface is the same as that of X or Y.
However, R(0,0) is the only valid element and other elements are ignored.
Since W is a KxL array and S is a MxN array, Equation (2-16)

cannot be directly used for the computation of the correlation function.

 This problem can be solved by padding W with zeros as described below.

0<S(i,J) <61, for0<i<M1,0<j<N (2-17)
and 0<Wiem)<G1,for0<2<K-1,0<mcL-} (2-18)

Construct a new image w] of size MxN by padding W with zeros.

W(z,m) , for 0 < 2 < K-1,0<m< L1
Wy (2,m) = (2-19)

0 ,forM>2>KorN>m>L
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Let S(y,v) and W,(U,V) be the two dimensional DFT's of S and W.

Now,

R(1,3) = IFFT(S(u,V) « Wy(u,V)] (2-20)
for 0<i<Ml1,0<] <N

R(1,j) is valid for i = 0,1,2,...,M-K and j = 0,1,2,...,N-L and other
values are ignored.

To compute the DFT or IDFT of an array of size MxN, MN 1ogzMN
complex multiplications and complex additions must be performed. MN
complex multiplications are needed to multiply the DFT's of S and w].
Since the FFT method yields the unnormalized correlation surface, it must
be normalized. For large M and N, the FFT method of computing the cor-
relation surface requires fewer calculations as compared to the direct
approach. However, this method requires an additional memory of 4 MN
real words which may not be feasible for large values of M and N. It
is difficult to implement this method in real time due to hardware limi-

tations.

Sequential Similarity Detection Algorithm

In this algorithm, a search over each of the (M-K+1)(N-L+1) refer-
ence points is performed as in correlation. However, the criterion for
similarity at reference points is significantly different from that of
the correlation method. The unnormalized ervor e'(i,j,2,m) and the
normalized error e(i,j,2,m) between the pixel W(z,m) and its corres-

sponding pixel in Si i are defined as

e'(i,3,2,m) = lSi’j(z,m) - N(2,m)| (2-21)

e(f,dst,m) 3 ISy 5(2,m) - §; 5 - W(z,m) + W] (2-22)

st adhe faams poen




(2-23)

and
S5k & 2 Sy (e (2-24)

The correlation method yields the correlation surface as a measure
of similarity, while the sequential similarity method computes the error
surface as a measure of dissimilarity. The normalized error, E(i,j), as-

sociated with reference point (1,j) is defined as

K L
E(foj) = 21 Z E(i,j,l,HI) (2'25)
2= m=]
for 1<i<MKtl, 1< < N-L+]

Now the problem of digital image registration reduces to the problem of
finding Si* §* such that

E(i*,j*) < E(i,j) for 1 < i < M-K+1 and i # i* (2-26)
1< <N-L+l and j # j*

In general, computation of error is simpler than computation of
correlation since addition takes less time than multiplication and is
easier to implemeat. There are methods such as Constant Threshold Se-
quential Similarity Detection Algorithm" and "Monotonic Increasing
Threshold Sequence Algoritmms" suggested by Barnea and Silverman which
further reduce the number of additions [7]. These methods are based on
some kind of guess work or statistical assumptions and cannot be gener-
alized. The number of arithmetic operations required to implement the

SSDA method in its entirety is computed in Chapter III.
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Moments Method

Given a two dimensional continuous function f(x,y), the moment

mpq of order (p+q) is defined by the relationship
o [ f xPyd £(x,y) dx dy (2-27)
for p,q = 0,1,2,3,...

A uniqueness theorem states that if f(x,y) is piecewise continuous and
has non-zero values only in a finite region of the x-y plane, then the
moments of all order exist and the moment sequence, {mpq}, is uniquely
determined by f(x,y) and conversely, {mpq} uniquely determines f(x,y)
[19].

The central moments can be expressed as

Mg = (x-X)P (y-3)% F(x,y) dx dy (2-28)
for P,q = 0,1,2,...
) m m
where X = m]—o y ¥ = H%
00

For a digital image these moments are given by

"2 2 (P (9 #() (2-29)
X

The normalized central moments are defined as

u
2 P9 = -
npq E%Q 3 » for p,q = 2,3,4,... (2-30)
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Hu has derived a set of seven invariant moments from second and

third order central moments [10]. They are given by

%1 % 20 * o2 | (2-31)
= 2 2 -
o2 (nzo - noz) +4 n-” (2 32)
82 = (nan = 301,02 + (3nyy - nps)? (2-33)

37 \N30 ~ °M2 21 = "o3
¥, = (o + n )2 + + )2 (2-34)
4 30 7 M2 21 ¥ 03
2
% = (n3g - 3mp)(ngg *+ mp)lingg * mp)" - (2-35)

3(ngy + ngz)21 + (nyy = nggdngy + ngg)[3lngg + mpp)? -
(ngy + mg3)”]
% = (ngg = ngp)llngg *+ 1p)? = (ngy + ngy)] + (2-36)

4nyq(ngg * nyp)nyy + ng3)

- | 2 i
¢7 = (3’112 - n30)(n30 + n-lz)[(n30 + ﬂ]2) - (2 37)
3(“2] + no3)2] + (3'1]2 - ﬂ03)(ﬂ2] + n03)[3(n30 + n]2)2 -

(n2] + n03)2]

This set of moments has been shown invariant to translation, rotation,
reflection and scale change [10].

The method of moments is used for automatic classification of an
unknown pattern as one of several known patterns. Let A1s A5y -ees A
be k known patterns whose invariant moments are also known. Let x be
a given unknown pattern to be classified as one of the k known patterns.

Now, the moments method consists of computing the invariant moments for
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x and comparing them with the invariant moments of LI PYRFRRI I

x is classified as a; if the invariant moments of x best matches, ac-
cording to some prespecified rule, the invariant moments of ay. The
moments method is widely used in applications such as visual and digi-
tal pattern recognition, recognition of two dimensional patterns with
linear distortion, aircraft and ship identification and character recog-
nition [10] - [14]. It is not widely used for image registration be-
cause of the enormous computation involved. However, this method looks
promising for the multiple image registration problem for the following
reasons.
1. If the images do not differ in rotation and resolution,
it is not necessary to compute the normalized central
moments or the jnvariant moments. The moment sequence
{mpq} determines f(x,y) uniquely and can be used to
characterize each subimage of S.
2. It may be possible to obtain good registration results
using very few moments. This trade-off should be in-
vestigated in a follow-on program using simulation of
real digitized scenes.
3. If the correlation or SSDA method is used for multiple
jmage registration, the correlation surface or error

surface has to be determined for each of the windows

—

separately. In other words, computation is directly

proportional to the number of windows. For the moments
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method, however, once the moments are computed for all

subimages and windows, matching is accomplished with
negligible computation.
As a result, the moments method may prove economical for the

multiple image registration problem.

Hough Transformation for Digital lImage
Registration

One possible way of accomplishing digital image registration is

by detecting the predominant lines in the window and the search areas
and using that information to find the subimage of S which best matches
the window. Consider an image consisting of a number of discrete white
points (edge points) on a black background. The problem is to detect
the groups of colinear or almost colinear edge paints (white points).

Of course, the problem can be solved by testing the lines formed by all
pairs of edge boints. However, computation required for n points is ap-

proximately proportional to n2

and may be prohibitive for large n.

In 1962, Hough proposed an ingenious method of detecting Tines in
binary images [20], [21]. He replaced the original problem of finding
colinear points by a mathematically equivalent problem of finding concur-

rent lines. A straight line is given by the equation
y=smx +¢ (2-38)

where m is the slope and ¢ is the intercept. Any line can be uniquely
identified by its slope and intercept. Therefore, a line in the x-y

plane maps into a point in the m-c parameter plane and vice versa. Sim-

ilarly, a point in the x-y plane maps into a line in the parameter plane.
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This can be seen by letting x and y be constants and solving for m as

a function of ¢ in Equation (2-38). The result is
m=-lc+y/x=ac+b (2-39)

where a and b are constants. In the m vs. ¢ plane, (2-39) is the equa-
tion of a straight Tine. Thus, n points on a straight line in x-y plane
are transformed to n lines which intersect at a common point in the m-c
plane. Therefore, the problem of finding colinear points in the x-y
plane is equivalent to that of finding concurrent lines in m-c plane.
Slope and intercept both being unbounded complicate the applica-
tion of the Hough transformation for line detection. 1In order to over-
come this problem, Duda and Hart suggested the use of an angle-radius
rather than slope-intercept parameter plane [22]. A straight line can
be uniquely specified by the angle & of its normal and its algebraic
distance o from the origin as shown in Figure 2-2. The line can now be

represented as
Xcos 8 +ysine=p (2-40)

where o is bounded and takes on values between 0 and 21 and p is less
than or equal to R, where R depends on the size of the image. From
Equation (2-40) the following properties of the Hough transformation can
be easily verified.
1. A point in the image plane (x-y plane) corresponds to
a sinusoidal curve in the parameter plane. This can

be seen by letting x and y be constants in Equation
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Figure 2-2. The normal co-ordinates of a straight line.
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(2-40) and solving for o in terms of 8. The result

s p = K sin (6 + P) where K = x2 + yz and p =

arctan x/y.

2. A point in the parameter plane corresponds to a line
in the image plane. This can be seen by letting o
and 6 be constants in Equation (2-40). The result
ijs y = ax + b where b = p/sine and a = -cose/sins. i

3. Points lying on a straight line in the image plane
map into sinusoidal curves in the parameter plane

each passing through a common point.

4. Points lying on the same sinusoidal curve in the

parameter plane correspond to a family of lines through

one point in the image plane.

Therefore, if all the edge points are mapped to the parameter
plane, the prob]em of finding colinear edge points in the x-y image
plane becomes that of finding concurrent sinusoidal curves in the para-
meter plane. The point cf intersection of these sinusoidal curves

uniquely identifies the straight line edge in the image plane.

Detection of Lines in Digital Images

Let F be a digital image of size KxL whose pixels can assume one
of G possible levels on the gray scale. Let GF be the gradient image of
F which can be computed using any of the known edge detection algorithms
(e.g., Sobel edge detector or Roberts cross operator). GF is then trans-
formed into a binary image by setting all pixels with gradient values
greater than a predetermined threshold to one (edge points) and all re-

maining pixels to zero (non-edge points). Let n be the number of edge
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points in the binary image. Suppose all edge points are mapped into
their corresponding sinusoidal curves in the parameter plane. In gen-

eral, these n curves will intersect at " n-1

n{n-1

points corresponding to
possible lines. Exactly colinear subsets of edge points can be
found, in principle, by finding coincident points in the parameter plane.
Unfortunately, this method is exhaustive and computation grows quadrat-
ically with the number of edge points.

When it is not necessary to determine the lines exactly, following
Hough's basic proposal, the p-86 plane can be quantized into a quadruled
grid on the basis of an acceptable error in o and 8. The quantization
is confined to the region 0 < 6 < 21 and 0 < p < R, where R depends on
the size of the image. Assume that an accumulator is placed in each cell
of the grid. For each edge point (xi, yi), the sinusoidal curve given
by Equation (2-40) is entered in the grid by incrementing the count in
each accumulator along the curve. When all edge points are mapped, each
accumulator contains the number of curves through it. A count of k in
accumulator cell (Gi,pj) means that precisely k edge points lie (to with-
in the grid quantization error) along the 1ine whose normal co-ordinates
are o, and Pj- However, the exact location of these k edge points on
this line in the x-y plane is not known (i.e., it is not known if the
edge points are adjacent or widely separated), To determine this, some

sort of connectivity test must be used.

Digital Image Registration

Step 1: Transform the window and the search area to binary images as

described previously.
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Step 2: Divide the o-p parameter plane into a quadruled grid on the

basis of acceptable error in 8 and p.

Step 3: Map each edge point in the reference into its sinusoidal curve
in e-p plane. Even if the acceptable error in 6 and p is mod-
erate (5 degrees and 3 pixels), the parameter plane will have
more than KL cells. As a result any attempt to use all the
information in the e-p plane will increase computation. In
order to accomplish data reduction only the predominant lines
(cells with relatively high count) are retained as features of
the window and the remaining information is ignored.

Step 4: Determine the predominant lines present in each subimage of the
search area by repeating the procedure outlined in Step 3.

Step 5: Match the line features of the window with those of each sub-
image'according to some predetermined criterion. One way of
doing this in the 6-p plane is given in Reference [23].

It is felt that Hough's method of image matching is not very
sensitive to slight geometric distortion and rotation and is also insen-
sitive to small differences in pixel resolution of the window and the
search area. However, this method requires a highly reliable algorithm

to quantize gradient images to two levels. In the parameter plane, cell

(Gi,oj) represents the 1ine in the picture plane whose normal co-ordinates
are o, and P and the corresponding count gives the total number of edge
points on that line. The exact location of edge points on the line is

not known. Therefore, in order to determine a true line (i.e., points
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are adjacent on a 1ine) and prevent isolated edge points from affecting
the result, Hough's method may have to be coupled with some kind of

connectivity test.

Schemes to Speedup Template Matching

* "Template matching”" is the common terminology used for correlation
and sequential similarity detection algorithms. In template matching,
each of the KL pixels in W is compared with its corresponding pixel in
Si,j to compute the measure of similarity (correlation) or dissimilarity
(sequential similarity detection algorithm). Therefore, the total amount
of computation is roughly proportional to the product of the number of

3 pixels in the reference and the number of allowable reference points in
the search area. Since there are KL pixels in W and (M-K+1)(N-L+1) al-
lowable reference points in S, computation is proportional to KL(M-K+1)
(N-L+1). Three popular schemes of accomplishing savings in computation
and speeding up template matching are presented in this section. All
methods accomplish savings in computation by reducing the total number |
of pixel pair comparisons. These methods are computationally more ef-
ficient in terms of the number of arithmetic operations required (soft- 1
f ware implementation) but may not enjoy any advantage in real time imple-

mentatifon using special purpose hardware.

_Two-Stage Template Matching f

The two-stage template matching technique, suggested by Rosenfeld

and Vanderbrug, searches for Six 5 which best matches W in two stages

: (8).
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Stage 1: In the first stage, some subimage W' of size pxq from

W and its corresponding subimage S; j of the same size in Si are

matched to compute a measure of similarity (correlation) or d:ssimilar-
ity (SSDA) between W and Si,j for i = 1,2,...,M-K+1 and j = 1,2,...
N-L+1. W' and S%’j are shown in Figure 2-3. The net effect of step one
is to find the (M-K+1) by (N-L+1) correlation surface with a reduced
reference array size.

Stage 2: In the second stage, all reference points, (i,j) for
which the measure of similarity is less than (correlation) or the measure
of dissimilarity is greater than (SSDA) a predetermined threshold T are
discarded as non-match points. At the remaining reference points, the
window W is matched with Si.j in its entirety. The method of finding
Si*,j* is the same as before. The computational savings in this two-
stage recognition procedure results from not having to match the entire
template at each reference point. Savings in computation depend on the
size of W' and threshold T.

Rosenfeld has suggested a method to determine optimal values for
the size of W' and T for a given W and S. His analytical model is based
on many simplifying assumptions which are rarely true for typical mil-
itary type images. Improper selection of W' and T can lead to the pos-
sibility of discarding the true registration point in the first stage

itself.

Course-fine Template Matching

Course-fine template matching is also a two-stage matching algo-

rithm [9]). For the first stage, the spatial resolution of both image
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arrays is reduced by replacing each pxq subarray by its average. This

yields a reference array, W', of size K/p x L/q and a search area, S',
of size M/p x N/q. The amount of computation required to find the course

correlation surface for W' and S: is proportional to %%-(%---5 +1)

(g-- %-+ 1). At each of the correlation surface peaks for wh?ch the
correlation value is greater than T, the original reference W is cor-
related with the original search array. The largest value of this cor-
relation computation is treated as the registration point. Savings in
computation depend on p, q and T. This technique can also be used with

the SSDA method.

Hierarchical Search Method

This technique is a generalization of the “"course-fine template
matching" scheme. In this method the search for Six i* is done in n-

resolution levels [24], [25]. From a given window W and the search area

1,2 1

S, a set of windows {W ,W ,...N"} and a set of search areas {$S ,Sz,...,

s"} are created as shown in Figure 2-4. Resolution of the window and
search area in the X or Y direction at any level is twice the resolution

of the window and search area for the next level, respectively. W' can

be created from wi“ i-1

by dividing W into blocks of size 2x2 and treat-

ing each block as a pixel with value equal to the average of its four
i-1

pixels. Similarly, Si can be created from S Matching starts at the

lowest resolution level (level-n) where W of size EL—x L is matched

2" "
with S" of size Eﬁ X ﬁﬁ . The amount of computation at this level,
2
: K L (M K N L
therefore, is proportional to EF-ER (Ei - Eﬁ + 1)(;5 - Eﬁ + 1). Based

on some predetermined criterion, only the most promising test locations

are selected for testing in (n-])th Tevel,
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In the (n-l)th level, N"'] is matched with S"'] only at locations

selected in nth level. This procedure continues from the (n-])th Tevel

th , h

to the (n-2)"" level and so on. Finally at the 0t level, the registra-

tion point is identified. Savings in computation depends on the number

of levels used and the criteria used to select promising test locations
at each level. It should be pointed out, however, that the more points
eliminated at each level, the greater is the possibility of obtaining a
false match.

In this chapter various existing methods of accomplishing digital
image registration are presented. The most commonly used method is cross-
correlation. There exist two independent ways of computing the correla-
tion surface (Direct method and Fast fourier transform method). The FFT
method requires a large amount of memory for software implementation and
is very complex for real time hardware implementation. The direct method
requires less memory as compared to the FFT method, involves no complex
multiplications or complex additions, and can be easily implemented in
real time using digital hardware. Even though the vector correlation
algorithm is expected to yield better performance than the standard cor-
relation algorithm, its use is limited by the large amount of computa-
tion required to implement the method (more than twice the computation
needed by the standard correlation algorithm). Due to the difficulty
encountered in the automatic segmentation of digital images into homoge-
neous regions, the two variations of the standard correlation algorithm,
namely, feature matching correlation and hybrid correlation algorithms
may not be of any significant use. The other template matching method,

sequential similarity detection algorithm, computes an error surface as ‘
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a measure of dissimilarity between the window and the search area.

Since this method requires addition and a few division operations, it
can be easily implemented (addition and subtraction operations are sim-
pler than multiplication and division operations).

Algorithms which accomplish image registration by matching moments
(moments method) or straight line edge content of the window and the
search area are called feature matching algorithms. The moments method,
which is computationally inefficient for single image registration, looks
promising for multiple image registration. The necessity of a highly
efficient algorithm to transform a digital image to a binary image (edge
and non-edge pixels) and a connectivity test to identify true straight
line edges (i.e., composed of adjacent edge pixels) makes the use of
Hough's transformation for digital image registration less attractive.
Therefore, it is concluded that the standard correlation algorithm, the
SSDA and the moments method are more promising using present state-of-
the-art hardware. A detailed comparison of the above three methods is
presented in the next chapter. It should be pointed out, however, that
very large scale integrated circuits developed to perform a specialized
task may at some future date make any of the algorithms discussed above
as being computationally inefficient feasible. Because of this possibil-
ity, a follow-on program should investigate the computational accuracy

of some of these methods.




IITI. COMPARISON OF METHODS FOR MULTIPLE IMAGE
REGISTRATION

Problem of Multiple Image Registration

Let the search area S and n windows w], wz, ey wn be defined as
shown in Figure 3-1. S is a MxN array of digital picture elements which

may assume one of G possible levels on the gray scale.

0 < S(i,j) < G- (3-1)
for T<i<M, 1<j<N
wk is a KxL array of pixels having the same gray scale range.

0 < W (2,m) < G- (3-2)

for l<t<K l<m<Landk=1,2,...,n

Each KxL subimage of S can be uniquely identified by its upper left cor-

ner's coordinates. Let S_i j denote the KxL subimage of S whose upper

»

left corner is (i,j).

for <2<k, T<m<t
and 1 <1 <MK+, T < § < N-L#]

If S and wk do not differ in pixel resolution and rotation, the multiple
image registration'problem reduces to that of finding (i¥, ji) such that
S:« i:4 Dest matches W, , for k =1, 2, ..., n.
ik,JE k
Correlation and sequential similarity detection algorithms are

commonly used for the registration of a smaller image within a larger
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image. These methods have been proven to be reliable and computation-

ally efficient for the problem of single image registration. However,

a method which is efficient for single image registration may not be
efficient for multiple image registration. In general, in order to com-
pare the computational efficiency of different algorithms, the number of
arithmetic operations, memory requirement, computational speed and com-
plexity of implementation must be considered. The method which requires
fewer arithmetic operations for software implementation may be complex

or even infeasible for hardware implementation. It is extremely difficult
to arrive at a valid means of comparison without knowing, exactly, how the
methods are implemented. Therefore, the problem of multiple image regis-
tration is studied from both software as well as hardware points of view,

independently.

Comparison of Software Implementations

If the algorithms are implemented entirely using software, the
amount of core memory required and the number of arithmetic operations
to be performed can be used as a means of comparison. It is assumed
that:

a. Multiplications, divisions and squaring operations are
equivalent (i.e., 1 multiplication = 1 division =1
squaring).

b. Enough memory is available to store the intermediate
results for future use.

c. Computation time is directly proportional to the number

of arithmetic operations performed to implement the method.
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tion and addition requirements for the correlation, the SSDA

and the moments methods are derived in the following sections.

Correlatio

n Algorithm

Elements of normalized correlation function of search area S and

window wk are defined to be

for

and

Let

Therefore,

for

and

(s zL W (2,m) S, :(2,m)]%
2 2 k L,m i3 L.,m
RE(1,4) = 0] — (3-4)
[T 3 wemild 3 s¢ (em)]
=1 m=1 k 2=1 m=1 '*J
1 <i <MK+l , 1 < < N-LH]
k=1, 2, s N
k.8 & 2
A'i,J = [gg'l mg] wk(l’m) Si’j(znm)] (3'5)
B A (3-6)
= £.,m -
k =1 m=1 k
K L ,
Cy 5" 2z m§=:] 57,3(2m) (3-7)
Ak .
RE(1,) = E-kic-J—— (3-8)
1,3

1 <1 <MKl , 1 < J < N-L#

k’], 2, eeey N
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Equations for the number of multiplications and additions in terms of

M, N, K, L and n are derived in the four steps below:
k
i,J
one multiplication and one division or two equivalent

1. Computation of Rﬁ(i,j) from A ., Bk and Ci j requires
multiplications. Since there are (M-K+1)(N-L+1) ele-
ments in each of the n correlation surfaces, a total
of 2n(M-K+1)(N-L+1) equivalent multiplications are re-

quired for this stage.

2. To compute A: j? (KL+1) multiplications and (KL-1) ad-
ditions are performed. Since, for each of the n win-

k

dows, Ai,j
points, this task requires a total of (M-K+1)(N-L+1)(KL+1)n

must be computed at (M-K+1)(N-L+1) reference

multiplications and (M-K+1)(N-L+1)(KL-1)n additions.
3. Bk is computed for each of the n windows and thus re-
quires KLn multiplications and (KL-1)n additions.
4. ci,j for i =1,2, ..., Mk¥1 and j =1, 2, ..., N-L#]
can be computed in many ways. In this report, it is
assumed that the Sf,j(l,m) values, for 1 < ¢ <K

and 1 <m < L, are first computed and stored.

Then C_i j is computed as
5 3 2 (em)
o = Ss <(2,m (3-9)
B S e T
for T <1 <MK+l and 1 < j < N-L#H]

Computation of Ci j's is done only once and the values are stored in E
9

memory for later use. The above tasks require MN multiplications and
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(M-K+1)(N-L+1)(KL-1) additions. This technique requires an additional

MN+(M-K+1) (N-L+1) memory locations.
By adding the partial results of the above four steps,

Total number of additions = (3-10)
[(M-K+1)(N-L+1) + 1]J[(KL=1)n] + (M-K+1)(N-L+1)(KL-1)
Total number of multiplications = (3-11)

[(M-K+1)(N-L+1)(KL+3)+KL]In + MN

For M=240, N=256 , K=1L = 32,
Total number of additions = (3-12)
48107598n + 48106575

Total number of multiplications

48295699n + 61440

(3-13)

Sequential Similarity Detection
Algorithm

The correlation method yields the correlation surface as a measure

of similarity, while the sequential similarity method computes the error
surface as a measure of dissimilarity. The normalized error, ek(i,j,n,m),

between wk(z,m) and S, J.(Jz.,m) is defined as
ek(i)j”'!m) = lsi’j(gdm) - Si,j - Wk(l,M) + wkl (3-14)

where

K L

~

W= 3 2 WI(z,m) (3-15)
kK 3w K




The normalized error, Ek(i,j), associated with the reference point (i,j)

for
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K L
s . =1 -
Si.j /T ;2] m§] Si’j(z,m) (3-16)

‘is defined as |

K L
(2d) = 3 3 elingiem) (3-17)

T <1 <MK+, 1 < < N-L#HT

To register W, within S, (iﬁ,j;) must be found such that

E (ik3F) < E (3,3) for, 1 < i < M-k, i £ i (3-18)
and 1< j < N-L+1, § # 3

Equations for the number of multiplications and additions required to

register n windows using the SSDA method are derived in the following

steps:

To compute each ﬁk’ (KL-1) additions and one multipli-
cation (division) are required. Since there are n such
windows, a total of (KL-1)n additions and n multipli-

cations are performed to compute ﬁ for k=1, 2, 3,

k
cey N

It is assumed that gi,j is computed independently at

each reference point and stored in memory for later

use. This task needs (M-K+1)(N-L+1)(KL-1) additions

and (M-K+1)(N-L+1) multiplications and requires
(M-K+1) (N-L+1) memory locations.

Computation of Ek(i,j) requires (3KL)+(KL-1) = (4KL-1)

additions. Since there are (M-K+1)(N-L+1) elements
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in each of the n error surfaces, a total of (M-K+1)

(N-L+1)(4KL-1)n additions are performed to compute

n error surfaces.

Therefore,
Total number of additions = (3-19)
[(M-K+1)(N-L+1)(4KL-1)+(KL-1)]n + (M-K+1)(N-L+1)(KL-1)
Total number of multiplications = (3-20)
(M-K+1)(N-L+1) + n

For M=240, N = 256, K=1L = 32
Total number of additions = (3-21)
192568393n + 48106575
Total number of multiplications = (3-22)

47025 + n

The number of multiplications required is negligible when compared to

the number of additions.

Moments Method

Given a two dimensional function f(x,y), the moment mpq of order

(ptq) is defined by the relation,

mpq= f f xpyp f(x,y)dx dy (3-32)

for P,g=20,1, 2, 3, ...

A uniqueness theorem states that if f(x,y) is piecewise continuous and has

non-zero value only in a finite region of X-Y plane, then the moments of
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all order exist and the moment sequence, {mp }, is uniquely determined

q
by f(x,y) and conversely, {mpq} uniquely determines f(x,y) [10]. For

a digital image these moments are given by
m =3y xpyq f(x,y) (3-24)

for P,q=0,1, 2, 3, ..

Since the digital image satisfies all the conditions required by the
uniqueness theorem as stated above, moments of all order exist and the
moment sequence {mpq} can be used to accomplish digital image registra-
tion as described in the three steps below.
1. Let {mp:} denote the moment sequence for the window
Hk. Compute all moments of order less than or equal
to r where r is a predetermined number, for each of

the n windows.

L f: f Pnd W, (2,m) (3-25)
PA (<1 =l k
for p,q=0,1, 2, 3, ..., r, such that ptq < r
and k=1, 2, ..., n.

Although the reliability of this method increases with
increasing r, the amount of computation increases with
r and therefore a trade-off exists. For some applica-
tions, the moments method has been found to be success-
ful for r equal two or three [10] - [14].

2. Compute all moments of order r and less for each of

the (M-K+1)(N-L+1) subimages of S.
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‘. K L
LI 2: P9
m> = Pm? S, .(2,m) (3-26)
Pq 22; m=1 1»J
for p,q=0,1,2, ..., r, such that ptq < r
and 1 < i <M-K+1, 1 < § < N-L+1.

3. To register W, within S, find (i;,j:) such that

kK k3

i 2.3 (ko2 _
5 Mg " Mg ) < fg (Mpq - Mpg) (3-27)
for 1< <MKt , i i
and 1:_jiN-L+'l,jfj:

To register n windows w], Nz, cees wn within S, moments for the n
windows and (M-K+1)(N-L+1) subimages are computed only once (step 1 and
2) and step 3 is repeated n times (once for each window). The amount of
computation associated with step 3 is negligible when compared to the
amount of computation associated with steps 1 and 2. Therefore, although
this method is computationally inefficient for n=1, its efficiency with
respect to other methods increases for large n.

The total number of multiplications and additions required to im-
plement this method depends on the number of moments used to characterize
each KxL subimage. Equations for the number of additions and multipli-
cations required to register n windows are derived for the following two
cases:

a. Case 1: All moments of order two and less are used to accomplish
image matching. To compute these six moments for each KxL subimage,

6(KL-1) additions and 8KL multiplications must be performed (see Table

3-1). There are n windows and (M-K+1)(N-L+1) subimages of size KxL.
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Table 3-1

Computation of moments of order three and less.

Moment Additions Multiplications
Mg (KL-1)(M-K+1) (N-L+1) 0

Moy (KL-1) (M=-K+1)(N-L+1) KL (M-K+1)(N-L+1)
™o (KL-1) (M-K+1) (N-L+1) KL(M-K+1) (N-L+1)
my (KL-1) (M-K+1) (N-L+1) 2KL (M-K+1) (N-L+1)
Mg2 (KL-1)(M-K+1)(N-L+1) 2KL (M-K+1 ) (N-L+1)
L (KL-1)(M-K+1)(N-L+1) 2KL(M-K+1) (N-L+1)
m, (KL=-1)(M-K+1) (N-L+1) 3KL(M-K+1) (N-L+1)
My (KL-1)(M-K+1)(N-L+1) 3KL(M-K+1)(N-L+1)
LN (KL-1)(M-K+1) (N-L+1) 3KL(M-K+1) (N-L+1)
My3 (KL-1)(M-K+1)(N-L+1) 3KL (M-K+1) (N-L+1)
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To register each of n windows within S, 11(M-K+1)(N-L+1) additions and

6(M-K+1) (N-L+1) multiplications must be performed (step 3). Therefore,

] Total number of additions = (3-28)
6(KL=1) (M=K+1)(N-L+1) + [11(M-K+1)(N-L+1) + 6(KL-1)]n

Total number of multiplications = (3-29)

8KL(M-K+1)(N-L+1) + [BKL + 6(M-K+1)(N-L+1)]n

For M=240, N =256, K=32and L = 32
Total number of additions = (3-30)
288639450 + 523413n

Total number of multiplications = (3-31)

385228800 + 290342n

b. Case 2: All moments of order three and less are used to accomplish

image matching. Following the steps of case 1 it can be shown that

Total number of additions = (3-32)
481065750 + 903705n

Total number of multiplications = (3-33)

963072000 + 490730n

Comparison of Multiplication and
Addition Requirements

The number of additions and multiplications which are required to
implement correlation, SSDA and moments method for various values of n,
are shown in Figures 3-2 and 3-3, respectively. From Figures 3-2 and
3-3 it is clear that if n is greater than 7, moments method with r equal

two requires less computation when compared to the correlation method.
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However, if r equals 3, n must be greater than 19 for the moments method

to have a computational advantage over the correlation method. Substan-
tial savings in computation can be accomplished for the moments method
by having lookup tables for each of the moments as described below.

The moment m__ of a two-dimensional discrete function f(x,y) of size

Pq
KxL is given by

5 3 il (3-34)
m = £"m" f(z,m) 3-34
PA =1 m=t
2Pm% is a constant for given values of 2, m, p and q.

Pq _ P Qq -
Let, Kun 2 m (3-35)

Now, if Kzg for 2. =1,2,3, ..., Kandm=1, 2, ..., L are precomputed

and stored in memory, m__ can be computed by performing, only, KL multi-

Pq
plications and (KL-1) additions no matter what the values of p and q are.
Assuming that such look-up tables are available for all moments of order
3 and less, equations for the number of additions and multiplications

are recomputed.

For r equal two;
Number of additions = (3-36)
6(KL-T) (M=K+1) (N-L+1)+[T1T1(M-K+1) (N-L+T) + 6(KL-1)]n
Number of multiplications =
5KL(M-K+1)(N-L+[)+[5KL+6(M-K+1)(N-L+1)]n (3-37)

By substituting values for M, N, X and L,
Number of additions = (3-38)
288639450 + 523413n
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Number of multiplications = (3-39)
240768000 + 287270n
Similarly, if r equal three,
Number of additions = (3-40)
481065750 + 903705n
Number of multiplications = (3-41)

433382400 + 479466n

The number of additions remained the same, but the number of multi-
plications is reduced substantially. This fact is graphically shown, in
dotted lines, in Figure 3-3. In general, an accurate comparison of com-
putation time required by different methods is not possible. This is
because the ratio of multiplication time to addition time depends on a
number of factors such as machine used, bit length and algorithm used to
accomplish multiplication of two numbers. However, the previous analysis
shows that the moments method is computationally feasible and takes less
number of arithmetic operations than the correlation method if the number
of windows to be registered is sufficiently large. A direct comparison
of the SSDA and moments methods is difficult because the SSDA method
requires more additions while the moments method requires more multipli-
cations. Since the ratio of the time required to perform one real multi-
plication to the time required to perform one real addition is not known,
one single measure of comparison cannot bg determined. In general,

real multiplication time = a x real addition time,

where the value of "a" depends on the machine, its bit length and algo-

rithm used to implement multiplication. It is bounded by the bit length,
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however (i.e., a < bit length). Assuming that 'a' equals three, for a

machine such as the IBM 370 the total number of equivalent real addi-
tions required to implement correlation, SSDA and moments methods (for
r equal 2 and 3) for different values of n are plotted in Figure 3-4.
If all moments of order two or less are used to characterize each KxL
subarray, the moments method using lookup tables is computationally
more efficient than the other methods, for n greater than or equal to

five.

Comparison for Hardware Implementation

To accomplish multiple image registration in real time (or almost
so), image matching algorithms must be implemented using fast hardware.
A given algorithm can be implemented in many ways. Three simple sche-
matics shown in Figure 3-5, 3-6, 3-7, one for each method, are used for

comparison of the complexity of implementation.

Correlation Algorithm

Correlation between the window wk and the subimage Si,j is com-
puted in four stages as described below.

Stage 1: In the first stage, Sﬁ’j(z,m), wi(z,m) and the product

SI’j(z,m)wk(z,m) are computed for ¢ =1, 2, 3, ..., Kandm = 1,

2, ..., L. This requires a total of 3KL two-input multipliers

(three multipliers for each pixel pair).

K L
Stage 2: In the second stage, JA Z 2 (9, m)W, (2,m),

K K L
Z Z (e,m) and C; E Z Si j(2.m) are computed

using three KL-input adders.
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Stage 3: In the third stage, two two-input multipliers compute

k
Ai,j and the product Bkci’j.
Stage 4: Finally, a divider computes Ri(i,j) using the results

obtained in Stage 3.

Therefore, 3KL+3 two-input multipliers and three KL-input adders are re-

| quired to compute Rz(i,j) from S. . and W,.
| k 1, k

f Sequential Similarity Detection
f Algorithms

The error between the window wk and subimage Si

j is computed in
three stages as described below.

-

Stage 1: In the first ctage, Si

j and Qk are computed using two

KL-input adders and two dividers.

Stage 2: In the second stage, ek(i,j,z,m) for 2=1,2, ..., K
andm =1, 2, ..., L are computed using KL four-input adders.
Stage 3: Finally, one KL-input adder computes Ek(i,j) as shown
in Figure 3-6.

Therefore, SSDA implementation requires three KL-input adders, KL four-

input adders and two multipliers.

Moments Method

A schematic for the computation of all moments of order two and

less is shown in Figure 3-7. Moments of Si can be computed in two i

»J
i stages.

Stage 1: In the first stage, the products A j(z,m), msi 2,m), 1
] 14

zsi j(9.,m) and m25i J.(sL,m) are computed for 2 = 1,

j(
unsi’j(z,m), )

2, ..., Kandm=1, ..., L. 5KL two-input multipliers are re-

quired foar the above purpose. §
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Stage 2: In the second stage, six KL-input adders compute Mog?

Mgs Mo1> M1» Mpge and me,.
Therefore, the moments method requires a total of 4KL-5(K+6)+6 two-

input multipliers and six KL-input adders to compute all moments of
order two and less.

From Figures 3-5, 3-6, and 3-7, it can be seen that all three
methods can be easily implemented using multipliers and adders (i.e.,
none of the methods involve function evaluation). The moments method
looks simpler than the other two methods with just one level of multipli-
cations and one level of additions. In general, no method has any sig-
nificant advantage over others as far as the complexity of implementation
is concerned.

If the video images are sampled at 5 MHz and if it is required to
register all n windows simultaneously (or almost so) between sampling,
more than one correlator (probably n correlators) may have to be used in
parallel when implementing the correlation or SSDA method. Therefore, if
n is large, these two methods may prove uneconomical. The maximum number
of parallel units that can be used is also restricted by cost and the
volume of space and power available. For the moments method, however, if
there is one unit of hardware to compute all the required moments, the
degree of mismatch between si,j and each of the n windows can be computed

almost simultaneously as shown in Figure 3-8. The hardware required to

k
Pq

moment's method accomplishes multiple image registration using relatively

compute }E {m__ - m;g)z for k=1, 2, ..., n is negligible and therefore
4 ,

less hardware as compared to the correlation and SSDA methods when n is

large.
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In this chapter, computational efficiency of the correlation,

the SSDA and the moments method is compared from software as well as
hardware points of view, independently. It is found that the moments
method becomes more efficient as the number of windows increases. It
takes less computation time if implemented using software and less hard-
ware for real time implementation if the number of windows is sufficient-
1y large. In general, feature matching algorithms are expected to be
more efficient than template matching algorithms when the number of win-
dows is large. Modifications of the moments method and two new feature

matching algorithms are presented in the next chapter.
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PRECEDING FiGE BLANK~iOT FIliED

IV. NEW METHODS FOR DIGITAL IMAGE REGISTRATION

D TN

For multiple image registration, it has been shown that the mo-
ments method is computationally more efficient than template matching al- 1
gorithms if the number of windows is sufficiently large. This is because
computation for template matching algorithms is directly proportional to |
the number of windows whereas in feature matching algorithms features are !

extracted for all subimages of the search area and windows only once and

the matching procedure is repeated once for each window. Computation re-
quired to match the features is negligible compared to that required to :
compute the features. ]
In general, feature matching algorithms for multiple image regis-
tration are expected to be more efficient than template matching algo-
rithms. For this reason, an effort was made to improve the moments meth-
od and to develop new feature matching algorithms. Two new feature
matching algorithms, one based on intraset and interset distances [26],
and the other based on correlation between adjacent pixels [27], are
presented in this chapter. The computational efficiency of each of the
new methods is compared with that of existing methods. A technique of

making the standard correlation algorithm more suitable for multiple reg-

istration is also described.

Moments Method

In order to obtain meaningful results from any of the image reg-

istration algorithms, it is necessary to preprocess windows and subimages
67
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of the search area such that the mean and the standard deviation of their

pixel values are equal. This is called intensity level normalization and
is required when the window and the search area are obtained from sensors
with different d.c. gain and bias. Ideally, each KxL subarray of the
search image should be preprocessed to have zero mean and unity standard
deviation. This, however, would require too much additional computation.
Fortunately, normalization can be incorporated into the moments method
with almost no additional computation. Two cases where it is not possi-
ble to use the moment sequence {mpq} directly to accomplish image regis-
tration without intensity level normalization are given below. Means of
incorporating normalization within the algorithm without actually chang-
ing the pixel values are also described.

Case 1: Let W and Si*,j* be the window and its matching subimage
of the search area, respectively. Since the two images are obtained from
different sensors, the corresponding pixels may not have the same pixel

value. Assume that W and Si* j* are related by the following equation.

W(z,m) = ¢ S (2,m) , T<e<kK T<m<l (4-1)

i*,j*
where ¢ is a constant.

The moment, mgq, of the window is given by

K L
m = Y Y oPmd w(z,m) (4-2)
LS I =
for pP,g=0,1, 2, ...

Si* j* .
The moment, mpq ¥, of the subimage Si* j* is given by




From Equations (4-1), (4-2) and (4-3), it is clear that

S.p s
mw =cm i*,3*

Bq bq for p,gq=20,1, 2, ...

Siy &
Any attempt to match the moment sequences {mgq} and {mp;*’J*} directly

Teads to false registration. However,

S.n -
T:ﬂ Mog (4-4)
=B — for pg=0,1,2, ... 4-4
m i*,j* P9
00 m,,"°
00 S
mt m 12J
Therefore, the sequences {-%9} and {—gg—-} must be matched to accomplish
m i,
registration. 00 Moo

Case 2: Assume that Si*,j* and W are related as described by

Equation (4-5).

W(e,m) = ¢ Si* (¢m) +d , 1 <2< Kand 1 <m< L (4-5)

2J*
where ¢ and d are constants.
For this case,
Siv ix
mw #Fm 175J

oq * Mg for, p,q =0, 1, 2, ... (4-6)

Let W and §1* j* be the mean pixel values of W and Si* §*? respectively.
Suppose, W' is obtained from W by subtracting its mean pixel value Q
from each pixel. S%* j* is obtained from Si* %o similarly. Now, W' and

S%*’j* are related by the following equation.

W' (2,m) = ¢ S%*,j* (2,m) (4-7)

for T<i<Kandl <mc< L
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The following relations between the moments of W' and S;, j* can be eas-
ily derived
Sie s
L RS L L _
d RPN L =0, 1,2 (4-9)
an L Moq , for p,gq=20,1, 2, ...
Therefore,
' ms%*’j*
R I (4-10)
mh i,
rs. om.¢
for p»q=20,1, 2, ...

provided that r and s are not simultaneously equal to zero. Therefore,

1]
mwl msi’j
for this case the sequences {-&$} and {—%‘3——} can be matched to accom-
Mrs mr;’J

plish image registration. However,

2Pmd (W(z,m) - W)

=
x
M=

1}
)
<l
—
3
M|tV

(4-11)

3
~
©n

2"mS (W(z,m) - W)

)
)
—
3
[}
—

K L ~ K L
Y P uem) -w Y Y oPm
. 2=1 m=] 2=1 m=1
K L . X L
> 2'mS Wie,m) - W 2] N 2"m®
2=1 m=] 2=1 m=1
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K L
W 5 Y 2Pmd
- Moq = W5 mz'l
-~ K L
woo W 2"m®
rs 2=1 m=1
Now,
W
K L m
= l_ ") -
Let qu and Krs be constants defined as
K L
-1 Pnd 4-13
%a = T 9.§1 m§l o (8-13)
K L
_ b rs -
and Ko = KT 2 éé% L m (4-14)
From Equations (4-11) through (4-14)
wl . w w
- K m
"pq _ - "pa ~ "pq"00 (4-15)
m w - K mw
rs Mrs rs 00
[ : qu and Krs are constants which can be precomputed and stored. Therefore,
mhq = Koq"00
it is clear from Equation (4-15) that if sequences { N } and
Mrs KrsmOO
,,,51'.3 K ms i3
{qu pg,go } are used for image registration, intensity level
i,d _ i,J
Mps Krs™00

normalization is accomplished with almost no additional computation.

This makes the moments method more reliable without excessive additional
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Distance Measures for Digital
Image Registration

Pattern classification by distance measures is one of the earliest
concepts in automatic pattern recognition. The motivation for using dis-
tance functions as a classification tool follows from the fact that the
most obvious way of establishing a measure of similarity between pattern
vectors, which can also be considered as points in Euclidean space, is
by determining their proximity. Common distance measures used for pre-
processing and feature extraction, a new registration method based on
intraset and interset distances, the number of arithmetic operations re-
quired to implement this method and the relation between distance measures

and moments of a digital image are described in this section.

Distance Measures

Point-to-Point Distance. Let Pi and Pj be any two points in the
two-dimensional x-y plane. Each point can be uniquely identified by its

x and y co-ordinates, i.e.,

P 4]
i Ly,
.
p.=] I
J Y,
L 3

The square of the distance between points Pi and Pj is given by

2 ] 2 2
D°(PyP3) = (Xg=X;)" + (¥;-Y))
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Point-to-set-distance. Let Po be a point and Sa be a set of 'a’

points in the two-dimensional plane, i.e.,

_["o“
P, = y
I.OJ
Sy = (Pys Pos veos Py Pl

The distance between the point Po and set Sa’ DZ(PO,Sa), is defined as
the mean square distance between the point Po and the 'a' members of the

set Sa. Therefore,

a
DZ(PO,Sa) = %-5;1 ((Xo-xi)2 + (Yo-vi)zl (4-17)

Intraset distance. The intraset distance of a set is defined as

the mean square distance between the points of that set [26]. The mean
square distance, Dz(Pj,Sa), between a fixed point Pj and all other a-1}
points of the set Sa is given by

p? (P s,) = }: [(x -X ) + (v -Y,) ] (4-18)
1#

.

Since Dz(Pj,Pj) is zero, DZ(PJ,Sa) can be written as

a
02 (P;S,) = ;; [(xg-x;)? + (vj-vi)zl (4-19)

Therefore, the intraset distance of Sa’ Dz(sa), is given by

0%(s,) = W}, ,)f] L0x2 + (408 (3-20)
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Equation (4-20) can be easily reduced to a simple closed form in terms

of statistical properties as described below:

02(s) = vy 5 5 (xx)2e e § S (vov)?
a a(a-1) & .~ j i ala-1) & & joi
j=1 i=1l j=1 i=]
(4-21)
a a : a a 2
In Equation (4-21) —(a_-T)' Z 2 ’X -X, )2 and T 2 - (Yj"Yi)

will be referred to as the X-component and Y-component of intraset dis-

tances, respectively.

Let
- 1 a - 1 &
X =2 ; X;and ¥V = - Z Y, (4-22)
j=1 i=1
Then
S 3 x)2e % (X, Fex T2
-X. = X:=X-X.+X
J=1 i=1 L j=1 i=1 J 1
¥ % en? 2 - 20x,-X)(X
= ng i [( J-' ) + (xi-x) - (XJ" )(X.i‘x)
(4-23)
It can be shown that
a a _
}__‘ 2 X)(X;-X) = 0 (4-24)
Therefore,

a
z (x,-T%  (4-25)
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"
=<
l
3:
+
W e
U
ke

where
a a
2.1 )_: 2.1 3 x%? (4-26)

Therefore, the X-component of intraset distance, Di(sa)’ is given by

2 _ 2 2

DX(Sa) = 3T Oy (4-27)
Similarly, the Y-component of intraset distance is given by

2 . 2 2

Dy(Sa) = a—-T Oy (4-28)
where

a
-1 3 (¥,-V)2 (4-29)
a &y i
From equations (4-2G), (4-27) and (4-28),
2 2
0(s,) = &1 (0,0 + 0, %) (4-30)

Equation (4-30) expresses intraset distance in terms of variances associ-

ated with the X and Y coordinates of the set points.
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Interset distance. Let Sa be a set of 'a' points and Sb be a set

of 'b' points in the two-dimensional plane. Then, the interset distance
between sets Sa and Sb is defined as the distance between their centroids
[26]. If (Xa, Ya) and (Xb, Yb) are the centroids of set Sa and Sb’ re-

spectively, the interset distance $quared between Sa and Sb is given by

oz(sa,sb) - (X'a-xb)2 + (7;-75)2 (4-31)

Feature Vector far Digital Image

Let F be a KxL array of digital pixels which may assume one of G

gray levels.
T<F(XY)<G6,T1<X<K, 1<Y<l (4-32)

Let SY denote the set of pixels with pixel value equal to g and ng be the
number of elements in SJ. Now, digital image F can be considered as the

union of sets S], 52, ceey SG.

1 2 G

F=S US U...US (4-33)

Each element of the set Sg. which is just a point in the two-dimensional

X-Y plane, is uniquely specified by its coordinates.

9. (p9 p9 g -
$¥ = {PYs P2s ooy PO ) (4-34)
g
where
g
g N
P = r s for i =1,2, ..., ng (4-35)
il

and g=1,2, ...
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Each of the G sets can be characterized by its intraset distance which is

defined as the mean square distance between its elements. From Equation

4-3 the intraset distance of the set SY is given by

p2(s9) = Df(sg) + Ds(sg) (4-36)
2n
= - (G gz + ¢ 92)
g x y
where
N9
o 2= T (8-39)2 (4-37)
x3 g i=]
and
"9
o gz - }‘- > (vg-vg)z (4-38)
y g i=l

The location of one set with respect to the other can be characterized by
the interset distance between them which is defined as the distance be-
tween their centroids. Since there are G sets in F, there exist 91%111
distinct interset and G intraset distances. A Eﬁgill -dimensional feature
vector consisting of G intraset and Qig:ll interset distances maps the

digital image F to a point in the Qigill -dimensional fuclidean space.

Derivation of Multiplication
and Addition Requirements

Consider the digital image F of size KxL described by Equations
(4-32) and (8-33). Intraset distance of the set $9 is given by Equation
(4-36). The X-component of the intraset distance, Di(sg), can be written

as




L
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2 n
02(s9) = 5=f o ,° (4-39)
g X
n
2n 29 (Xg - X9
= ? i=1
ng- ng
0g
“ar I 0§ -1
g i=1
29
= Zr 12 09% -0 (1)
g i=1 g
where
29
WL 3 (4-40)

g i=1

The multiplication and addition requirements to compute the feature
vector are derived in the steps below. It is assumed that multiplica-
tions, divisions and squaring operations are equivalent.
1. From Equation (4-40), it is clear that ng-l additions and
one multiplication (division) are required to compute X,
2. Computation of D2(s9) as described by Equation (4-39) re-
quires ng+4 multiplications and ng+1 additions. Therefore,
a total of 2ng additions and (ng+5) multiplications are
needed for the computation of Di(sg).
3. Similarly, 2ng additions and (ng+5) multiplications are
required for the computation of Ds(sg).
4. Adding results of steps 2 and 3, 4n, additions and 2n, + 10)

multiplications must be performed to compute DZ(Sg).
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5. Since there are G sets in the image F,

Total number of additions = 3 (4ng) = 4KL
g=1

G

@-41)

Total number of multiplications = 3 (2ng+10)=2KL+IOG (4-42)

g=1

6. The interset distance between two sets is the distance

between their centroids (See equation (4-31)). Two multi-

plications and three additions are regquired to compute

each of the Eigzll interset distances.

Total number of additions = §§(g-12

Total number of multiplications = G(G-1)

(4-43)

(4-44)

Therefore, in order to compute the feature vector for a KxL array of pix-

els which can assume one of G gray levels, a total of 4KL+ 3G{G-]

additions and 2KL+G(G+9) multiplications must be performed.

Multiple Image Registration

2

A method of accomplishing multiple image registration using feature

vectors of windows and subimages of S is described below.

Step 1: Compute the feature vector for each of the n windows and each of

(M-k+1)(N-L+1) subimages of S. Let, VK

of the window wk and subimage Si 5 respectively.

and VAR denote feature vectors




(4-45)

V;’J for, 1 < i < M-K+] (4-46)
1.3, 4-4
Vs and, 1 < j < N-L+1

VAEN)

G(G+1)
L 7 -

The above vectors can be considered as points in G(g+1 -dimensional
Euclidean space.

Step 2: To register wk within S, find the subimage Si « Whose feature

.

»J
k’Yk

vector best matches that of wk. In other words, find Si* j* such that

k’Yk
ko JTedk 2 K isj 2
[IVE = v S < v - v (4-47)

for T <1 < M-Kk+1, 1#1:

and 1 <J < N-L+1, j#ji‘(‘

where, Ile-V1’J[|2 is the square of the distance between vectors Vk and

vied,
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To register n windows w], wz, cees wn within S, the feature vec-

tors for n windows and (M-K+1)(N-L+1) subimages are computed only once
(step 1) and step 2 is repeated n times, once for each window. The com-
putation associated with step 2 is small when compared to the computation
associated with step 1. Therefore, although this method is computation-
ally inefficient for n=1, its efficiency with respect to the correlation
method increases for large n. Equations for the number of additions and
multiplications required to register n windows are derived below.

In step 1 (M-K+1)(N-L+1)+n feature vectors are computed.
4KL+§giglll additions and 2KL+G(G+9) multiplications are required to com-

pute one feature vector. Therefore,

Numb$: gzegd?itions} - [aKL + 3G(g-1 JL(M-K+1) (N-L+1)+n] (4-48)

Number of multipli-
cations in step 1

2 G(G+1)
2

} = [2KL + G(G+9)][(M-K+1)(N-L+1)+n] (4-49)

In step 2, G™+G-1 additions and multiplications are performed to
compute HVk - V1’Jl|2. There are (M-K+1)(N-L+1) reference points and n

windows. Therefore,

b f additi 2
Mmber gte; OTHIONS) < (6%4+G-1) (M-k+1) (N-L+1)n (4-50)
Number of multipli-, _ G(G+1) )
cations in step 2 == (M-K+1) (N-L+1)n (4-51

From Equations (4-48) through (4-51),

Total number of additions = (4-52)

[4KL+§§iglll][(M-K+l)(N-L+1)+n] + (GZ+G-1)(M-K+1)(N-L+1)n

oIl T.’"Tg
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Total number of multiplications = (4-53)

[2KL+G(G+9) [ (M-K+1) (N-L+1)+n] + Qigi‘l (M=K+1) (N-L+1)n

For M =240, N = 25 and K = L = 32,

Total number of additions = (4-54)
{47025 (GZ+G-1) + 1.5 G(G-1) + 4096]n + 70537.5 G(G-1) +
192614400

Total number of multiplications = (4-55)

(2048 + G(G+9) + 23512.5(G+1)G]n + 47025 G(G+9) + 96307200

The number of additions and multipiications which are required to
implement distance and other methods for various values of n and G, are
shown in Figures 4-1 and 4-2, respectively. From Figures 4-1 and 4-2 it
is clear that if n is greater than 4, the distance method requires less
computation when compared to the correlation method. In order to have
one single measure of comparison, the time ratio relating multiplication
and addition operations can be used. For machines like the IBM 370,
multiplication time is three times the addition time. With the above
assumption, the number of equivalent additions required to implement cor-
relation and distance methods for various values of n and G is shown in
Figure 4-3. Figures 4-1, 4-2, and 4-3 prove that the distance method is
computationally more efficient than the correlation method if the number
of windows is large.

Relation between Distance Measures
and Moments

Let F be a KxL array of digital pixels which may assume one of G

possible Tevels on the gray scale.
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1 < F(X,Y) <G (4-56)

for T<X<K,1<Y<lL

Let S% denote the set of pixels with pixel value equal to g and ng be
the number of elements in S3. Now, digital image F can be considered as
the union of sets S], SZ, cees SG.

F=s'usiu..us® (4-57)

Each element, which is just a point in the two dimensional x-y plane of

the set Sg, is uniquely specified by its coordinates.

9. 9 p9 p9d 9
S {P], P2’ P3, ... Pn )]
9
where
q _ s
pd = ,fori=1,2, ..., n (4-58)
i L v9 g
and g=1,2, ..., G

The set SY can be considered as a two dimensional discrete function whose
value is equal to g at P?, Pg, cees P% and zero elsewhere in the x-y

q
plane. Therefore, the central moments of S are given by

n

}E? g(x§ - %9)% (4-59)
‘|=

®

g
H20

Uq
27 g(vd - 79)2 (4-60)
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n
9
g = = . -

Moo T &, 9 T Mgt (4-61)

1

From Equations (4-59), (4-60) and (4-61),

W5t 1 o 2 2
== 2 [3-X0)% + (v3-79)] (4-62)
¥00 9 i=1

The intraset distance of the set S9 is given by Equations (4-36) through
(4-38).

n
g
02(s9) = 2q (T [0x3-39)2 + (v3-79)%)) (4-63)
g i=1
Therefore,
2n ug +ug
0%(s9) = 3 (2% (4-64)
g UOO

Equation (4-64) shows the relation between the intraset distance and mo-
ments of the set S%. Since (“go+“gz) is invariant under translation and
rotation [10], the intraset distance is also invariant under translation

and rotation. If each point P? is considered as a point mass of value

K300 ; istri
g, ———a—-—-is the square of the radius of gyration of the mass distribu-

k00

tion about its centroid. Therefore,

2n
02(s9) = (=y) * v (8-65)
9

where, r is the radius of gyration of Sg about its centroid.
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The interset distance between the sets $7 and Sh is defined as the

distance between their centroids.

p?(s9,sM = (x9-xM?2 + (V9-7M)2 (4-66)
g h g h
- (do "';o)z . (1 "‘21)2
g g
Mo Moo Moo ™Moo

Equation (4-66) shows the relation between the interset distance between
the sets SY and Sh, and their moments. Simulation results given in Refer-
ence [16] show that matching homogeneous regions separately and combining
the partial results additively yields sharper correlation peaks. If the
image is composed of homogeneous regions as described in Reference [16],
all pixels of the homogeneous region normally fall into the same set when
the image is segmented based on pixel values. Computing intraset distance,
in some sense, is the same as processing each homogeneous region sepa-
rately. The relative location of homogeneous regions with respect to

each other is determined by interset distances. Therefore, the distance

method is expected to perform better than the moments method if the scene

is composed of homogeneous regions.

Correlation of Adjacent Pixels
for Image Registration

Let W be a digital image of size KxL whose pixels can assume one

of G possible levels on the gray scale.

0 < W(z,m) < G-1 (4-67)

for T<a2<Kand 1l <mc<L

o - e
SV ST - SN RSP SRS e
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The normalized correlation between adjacent pixels of the 1th row
of the digital image W is given by the ensemble average
- EW(2,m)W(2,m+1)}
. EIN“(2,m)} (4-68)
Since there are L elements in any row of W, p, can be approximated by
the spatial average
] L"l
T 2 W(2,m)W(e,m+1)
= m=1
P ~ L (4-69)
1 2
'E W (29'“)
m=1

where Py always lies between zero and one. When all pixels in the zth

row have the same value, Pe is one. The value of Pys in some sense, is
related to the difference in pixel values of the adjacent pixels. Values
of adjacent pixels are highly correlated for most images except at edge
pixels. If pixel W(g,m) is of a certain gray level, then the adjacent
pixel W(2,m+1) along the scan line g, is likely to have a similar value.
This property of o, has been used in image coding and transmission in the
past [27, pp. 278-281]. A new method of accomplishing image registration
using normalized correlation of adjacent pixels of rows and columns of

digital images is presented next.

Feature Vector for a
Digital Image

Since in Equation (4-69) L/(L-1) is a constant and can be dropped *

without losing any information, the normalized correlation between adja-

th

cent pixels of the ¢~ row is given by E L
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L-1
W(z,m)W(2,m+1)
0y = 20 (4-70)
Y W2(2,m)
m=1
for 2=1,2, ..., K

Let %m be the normalized correlation between the adjacent pixels of the

mth column.
K-1
2] W(2,m)W(e+1,m)
L &=
m T (4-71)
Yy W(e.m)
2=1
for m=1,2, ..., L

The (K+L)-dimensional feature vector, Vw, of the digital image W is giv-

en by
VI = [p] Py« + + POy Ty o oL] (4-72)

Multiple Image Registration

A method of accomplishing multiple image registration using fea-
ture vectors of windows and subimages of the search area S is described
below.

Step 1: Compute the feature vector for each of the n windows and each

k

of (M-K+1)(N-L+1) subimages of S. Let V" and Vi’j denote feature vec-

tors of the window wk and subimage Si j* respectively.

Step 2: To register W\, within S, find the subimage Si* % whose feature
k*vk
vector best matches that of W.. In other words, find Si*

., such that
k k*Jk
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. o
||Vk-V1E’JkH2 < Hvk_VT,JHZ (4-73)

for 1< 1 < MK#1, i#if, and 1 < § < N-L#T, §A5

where |le'Vi’j||2 is the square of the distance between the vectors

vK and v'ed,

To register windows w1, NZ’ cens wn within S, the feature vector
for n windows and (M-K+1)(N-L+1) subimages are computed only once (Step
1) and Step 2 is repeated n times, once for each window. Since the com-
putation associated with Step 2 is small compared to the computation
associated with Step 1, this method is more efficient for multiple image
registration than the correlation and SSDA methods.

Berivation of Multiplication
and Addition Requirements

Equations for the number of multiplications and additions in terms
of M, N, K, L and n are derived in the seven steps below.
1. From Equation (4-70), it is clear that 2L multipli-
cations and 2L-3 additions must be performed to compute
Py Similarly, 2K multiplications and 2K-3 additions
are needed to compute LA Since there are K rows and
L columns, a total of 4KL multiplications and (4KL-3K-
3L) additions are required to compute the feature vec-
tor for a KxL array.
2. Let pl(i,j) and om(i,j) denote the normalized corre-

th

lation between adjacent pixels of the £~ row and the

mth column of the subimage Si 'E respectively. In
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order to compute the feature vector for the subimage
S] 1° 4KL multiplications and 4KL-3K-3L additions are
required as outlined in Step 1.

3. Once V]’1 is computed, V]’2 can be computed with

very few arithmetic operations as shown below.

L-1

W& SN, 1,1

L
2;| Sf’](z,m)

A2(1,1)

p,(1,1) (4-74)

3

E

where

A£(1,1)

L-1
2 51’](2,m)51’](2,m+1) (4-75)

B,(1,1) = m; sf’](z,m) (4-76)

Now,

L-1
égl S]’z(z,m)s]’z(z,m+l)

py(1,2) = (4-77)

S l,m
m-] ,2

RSy (DS (0,2) + 57 (U108, H(n,0)
B, (1,1)-57 1 (2,1) + 5 ,(z,1)

From Equation (4-77), 92(1,2) can be computed from
pz(],]) by performing only 5 multiplications and 4
additions. In general, pg(i,j+1) can be computed

from ol(i,j) by performing 5 multiplications and 4

additions.
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Since there are K rows, computation of pz(i,j+]) from

pz(i,j) for ¢ =1, 2, ..., Krequires a total of 5K

multiplications and 4K additions. Also,

cm(i,j+1) = om+](i,j) form=1, 2, ..., L-1 (4-78)

Therefore, it is recessary to compute cL(i,j+1) which
needs 2K multiplications and 2K-3 additions. In other
words, computation of the feature vector Vi’j+] from Vi’j
requires 7K multiplications and 6K-3 additions. How-
ever, in order to compute Vi’j+] from Vi’j, Vi’j and

the first column of Si . must be stored. Since Vi’j

sJ
is a (K+L)-dimensional vector and S; j is a KxL array,

2K+L additional memory locations are required.
Similarly, computation of V'iﬂ"j from Vi’j requires
7L multiplications and 6L-3 additions and K+2L addi-
tional memory locations.

There are (M-K+1)(N-L+1) allowable reference points
in the search area. The feature vector associated
with the first reference point (1,1) is computed as
described in Step 2. This requires 4KL multipli-

V2,1’ o M-K+1,1

cations and 4KL-3K-3L additions. s V

are computed using the procedure similar to the one
in Step 3. This requires (M-K)(6L-3) additions and

7L(M-K) multiplications. For line i, the feature

vectors Vl’z, v”3, . 1,N-L+1

ey V can be computed

using the procedure outlined in Step 3 with 7K(N-L)
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multiplications and (6K-3)(N-L) additions, and there

are (M-K+1) such lines. Therefore, to compute (M-K+1)

(N-L+1) feature vectors:

Number of multiplications = (4-79)
4KL + 7(M-K)[K{N-L)+L]

Number of additions = (4-80)
4KL - 3K - 3L + (M-K)(N-L)(6K-3) + (M-K)(6L-3)

6. The computation of n feature vectors for n windows
needs 4KLn multiplications and (4KL-3K-3L)n additions.

7. (2K+2L-1) additions and (K+L) multiplications must be
performed to compute lle - Vi’jllz. Since there are

(M-K+1)(N-L+1) reference points and n windows,
Number of multiplications = (K+L)(M-K+1)(N-L+1)n (4-81)
Number of additions = (2K+2L-1)(M-K+1)(N-L+1)n (4-82)
From Step 5 through Step 7,

Total number of multiplications = (4-83)
{4KL+(M-K+1) (N-L+1 ) (K+L) In + 4KL+7 (M-K)[K(N-L)+L]

Total number of additions = (4-84)
{(2K+2L-1) (M-K+1 ) (N-L+1 )+ (4KL-3K-3L)}n +
(M-K) (N-L) (6K=3)+(M-K) (6L-3)+4KL-3K-3L

For M =240, N = 256, K = 32, and L

32,

Total number of multiplications

(4-85)

3013696n + 10487296
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Total number of additions = (4-86)

5976079n + 8849104

The number of additions and multiplications which are required to
implement several registration methods for various values of n are shown
in Figures (4-4) and (4-5), it is obvious that the new method based on
correlation between adjacent pixels is computationally more efficient

1,341 . yi¥1d

than any of the methods previously considered. Since V
can be computed from Vi'j with few arithmetic operations, this method
is promising for real time implementation. A few simulations were run

using images from similar sensors and the above method was successful.

Feature Extraction Technique for
Fast Image Regjg;ration

When two images do not differ in pixel resolution and rotation,

the method most widely used for image registration is cross-correlation.
The elements of the normalized cross-correlation surface are defined to

be

L
2 W(e,m) S, . (2,m)
R(1,§) = £ m=1 -
Z] Y W(2,m)] [’; m; 53,5(2m)]

m=1
for T <4 <MK#l, 1 < § < NoL#]

(4-87)

In general, the amount of computation associated. with any simi-
larity detection method is proportional to the number of pixels in the
window and the number of pixels in the allowable search area. For the
cross-correlation method, each of the KL pixels in W is compared with

the corresponding KL pixels in $4 j to compute R(i,j). Since the

B . ot “L-i-ﬁiIHiiiIIhﬂIn-l--h-uI.-HiIllI.IIII....'ii;i;;;:::::I
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correlatfon function has (M-K+1)(N-L+1) elements, a total of KL(M-K+1)

(N-L+1) pairs of pixels are compared. Thus the computation time is
roughly proportional to KL(M-K+1)(N-L+1). Schemes such as "two-stage
template matching” and “course-fine template matching" have been pro-
posed to speedup correlation method and are described in Chapter I. A
feature extraction technique presented in this Section selects a set of
pixels, W', from the window W to be used in correlation and thus achieves
significant savings in computation with 1ittle effect on the correlator
accuracy and reliability.

A1l methods which speedup correlation accomplish the task by
somehow reducing the total number of pixel pair comparisons during com-
putation of the correlation surface. Feature extraction, one of the
fundamental methods for data compression in the field of pattern recog-
nition can be used to accomplish the same. An ideal feature is re-
quired to have the following properties:

1. The feature should retain, from the original pattern,

as much information as possible.

2. The feature should accomplish as much data reduction

as possible.

3. The feature should be invariant or depend on some in-

variant properties of the original pattern in a known

way.
In practice the first two above are conflicting properties. However,
striking a balance with consistent and acceptable accuracy for recog-

nition of the original pattern can be accomplished.
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Consider the subset of pixels, W', from W as a feature based on |

the mean and standard deviation of pixel values of W as shown in Figure
4-7. W' is a set of all pixels in W such that W(z,m) is either greater
than the mean plus a constant p times the standard deviation (u+pc) or
less than (u-po), where p is the scale factor greater than zero. This
feature retains pixels from W whose pixel values are relatively low or
high as compared to the mean. Data reduction is accomplished by delete-
ing all pixels in W whose pixel values range from (u-pc) to (u+ps). The
amount of information retained and the number of pixels n in W', depends
on the scale factor p and therefore is controllable. Finally, the fea-
ture depends on statistics of the window in a known way.

Elements of the correlation surface are computed by comparing
only the n pixels from W which belong to feature set W' with their cor-
responding pixels in the subimages of S.

2 W(z,m) Sy (2,m)
R(1,§) = 2] -

2
2 3 ]
[(Em) W (R.,IR)J [(lz,m) Si’j(f-sm)]

(4-88) ;

for all (2,m) such that W(z,m) belongs to W' and for y

1 <1 <MK, 1 <3 < N-LH : 4

Now the computation time is roughly proportional to n(M-K+1)
(N-L+1). The percent savings in computation time depends on the histo-
gram of W and the scale factor p and therefore is scene dependent.
However, simulation results presented in the next section indicate a
savings of 50 to 75 percent if p 1is set to one. The percent savings in

computation time, T, can be computed using the relation
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T (E'ﬁ-'l)*l 00% (4-89)

In real world problems, n depends on the scene and nothing much
can be said about it without knowledge of the histogram of W. However,
in order to gain some insight into this method, consider the following
two examples.

Example 1: Let W be an image whose pixel values assume a unimodal
gaussian distribution with mean u and standard deviation o; i.e.,

] X=u 2 :
p(x) = exp[: ] (4-90) ;
X 20
Then,
1 utpo
number of pixels in W' _
number of pixels in W 1- ] p(x)dx (4-91) ;
X=uspog
=1 - [erf(E:E%:E) . erf(“’Eg'“)]
=1 -2erf(p) :
where

i P _)(2/2
erf(p) = f e dx
er g

Therefore, T = 200 erf(p)%

A plot of T versus p is shown in Figure 4-8. For small values of
p, the curve is almost linear indicating rapid reduction in computation
time as p is increased from zero. For large values of p the curve
becomes flat yielding small savings in computation for corresnonding

increases in p.
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Figure 4-7. Histogram of the window.
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Figure 4-8. Plot of percent savinas in
computation T versus scale factor p.
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Example 2: Let W be a bimodal image which means that the histogram of

W is a mixture of two unimodal histograms p](x) and pz(x). ¥ is the
mean of pl(x) and oy is the standard deviation about u,. Similarly u,
is the mean of pz(x) and o, is the standard deviation about u,. If Py
and P2 are apriori probabilities of two principal brightness levels,
then the histogram of W, p(x), can be expressed as [26, pp. 326-328]

p(x) = Py py(x) + P, py(x) (4-92)

where P] + P2 = ]

For the gaussian case

2
={x-uy)
py(x) = ! exp[ 2] ] (4-93)
27 o4 20
1 1
2
=(x-u,)
py(x) = ] exp[. 22 ] (4-94)
VZ o 20
: 2 2
Let u and 02 be the mean and variance of pixel values of W.
E[le = f [P]p] (x) + P?_pz(x)]x2 dx (4-96)

i = P, f xzp.I (x) dx + P2 f xzpz(x) dx

= P] (u% + o%) + Pz(ug + og)
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2

The variance ¢~ is given by:

o = E[x?] - @ (4-97)

Pl(“$ + °12) + Pz("g + °§) = (Pyuy + "2“2)2

2 2 2 2 2 2 2 2
P]“‘ - P]u] + quz - quz - 2P]P2"]u2 + Plol + PZUZ

2 2 2 2
P]“](] - P]) + P2u2(1 - Pz) - ZP]qu]uz + Plol + PZ?Z

2 2 2
P]PZ(H] - uz) + Pla] + onz

' The percent savings in computation T is given by:

utpo
T= f p(x) dx (4-98)
u=-po
utpa
= f [Pypy(x) + Popy(x)] dx
u-po
utpo utpo
= P f P (x) dx + Py f pz(x) dx
u=po u=0p
. u+po-u1 u=po-u,
=P]{er L 5 ] - erf[ e 1}

utpoo-u M=po-u
+ Pylerfl 02' 2] . erf[ % 21y

Substituting Equation (4-95) into the above equation yields
Pz(l-lz'u] )+9°] [Pz(uz-u-l )-90]}
g [+

- erf

T= PI{erf[

Py (uq=u,)+oa Py (uq=u,)-po
+ Pz{erf[—"—l—z-z——] - erf[ 11 °2 1}

92
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2 2 2 2
where § = PIPZ("]'“Z) + P.|c] + P202

Notice T depends on the parameters Hps Mgs Oy and gy of the image and of
course on the scale factor p. T is scene dependent and general conclu-

sions cannot be drawn without knowledge of the histogram of W.

Simulation Results

Scenes used for simulation were obtained from sensors sensitive in
the visual spectrum (day TV sensors). Because of the difference in the
sensors, the two imaées were preprocessed such that they have the same
spatial resolution. An algorithm to accomplish this is given in Refer-
ence [4]. W is a 32x32 array of pixels and S is a 120x120 array of
pixels extracted from preprocessed high and low resolution images, re-
spectively. Since a one-bit or two-level correlator is used in this
work, W' and S must be quantized to two levels. The mean, u, and stan-
dard deviation, o, of W are first computed. Pixels are quantized to !
or 0 if they are above u+poc or below u-po, respectively. The locations
of pixels within W with values between u-pc and u+po are stored and mask-
ed out of the correlation process. Also, each subimage, si,j of S was
quanitzed to ones or zeros depending on whether the pixel value was

above or below the average value of the subimage, Mi,4° as given below

1, if Si’j(z,m)'g My,

sy,5(2m) = ( (4-99)

0 , otherwise

A number of simulations were run using typical scenes for different
values of p. As a figure of merit, the correlation surface signal-to-

noise ratio was computed as
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R -R
SNR = —“"k"_._a_"g. , (4-100)
sigma
where Rmax is the maximum value of correlation surface,

Ravg is the average value of correlation surface,

R is the standard deviation of correlation surface.

sigma

Correlation was found successful with the highest value in the
correlation surface indicating the true registration for values of p
ranging from O to 1.4. When p was increased beyond 1.4, correlation
was unsuccessful. Percent savings in computation time and signal-to-
noise ratio of the correlation surface for various values of p ranging
from zero to one are tabulated in Table 4-1 and Table 4-2, respectively.
From the above simulation results, it is concluded that substantial
savings in computation (50 to 75 percent) is accomplished with little

effect on correlation accuracy and reliability.

Generalization

Since the new feature extraction technique reduces the amount of
data to be processed without altering the structure, it is applicable
not only to correlation but to many other similarity detection methods.
The following generalizations can be made:

1. By using n elements of W' as test points in sequential

similarity detection algoritim suggested by Barnea
and Silverman, the problem of digital image regis-
tration reduces to the problem of finding Si*,j* such
that
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Table 4-1

Percent savings in computation.

Scene p=0.00 p=0,25 p=0.50 p=0.75 p=1.00

1 00.00 16.89 33.30 57.92 75.78

2 00.00 13.21 28.90 48.82 71.38

3 00.00 3.61 12.03 27.63 51.30 ,

4 00.00 19.02 27.52 53.21 70.50 i

5 00.00 20.00 37.42 55.34 73.24 |
Table 4-2 j

SNR of correlation surface.

Scene p=0.00 p=0.25 p=0.50 p=0.75 p=1.00

1 5.885  5.609  4.907  4.669  3.934 |
2 7175 601 5.045  4.35  4.32) |
3 6.775  6.769  6.650  6.387  5.236 §
4 7.619 7.20 6.64 6.13 5.31 f
5 8.197 8.1 7.91 7.51 6.85 |

i

i

——
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Cn, g% < & ] for 1 < i< M-K+] and i # i* (4-101)
1 <j<N-L+1 and j # j*
j can be computed using Equation (4-102)
.= . (2,m) =S, . - W(e,m) + W -102

& ; (z}’jm) lsm(z m) Si.j W(e,m) + W| (4-102)
where

a 1

513 (gjm) sm(z,m) (4-103)
and

~ 1

W=— 3 W(e,m) (4-104)

" em)

for all (2,m) such that W(z,m) belongs to W' and for

Tei Mk, 1 <§ < N-L#

A few simulations were run and the above method was
found successful.

For the moments method, mohents can be computed based
on n elements of W' rather than all the KL elements
of W.

This method can be combined with the improved method
for correlating similar sensor images, suggested in
Reference [30] to improve the probability of finding
the true peak.

Step 1:

comparing only the n pixels from W which belong to

Compute the Cross-Correlation surface by

the feature set W' with their corresponding pixels

in the subimages of S (using Equation (4-38)).
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Step 2: Identify a predetermined number of highest

peaks and coordinates of their occurence from the
correlation surface. Let (Il,J,), (IZ’JZ) cee s
(Ik—l’Jk-l) and (Ik’Jk) be the coordinates of the first
k peaks. It is assumed that the true registration
point is one among them. Recompute R(I;,J;), R(I,,d5)s
cee 2 R(I 159y _4) and R(1,,J,) by comparing all the

KL pixels of W with the corresponding pixels in the

.subimages of S beginning at (I].J]), (IZ’JZ)’ cee s

(Ik-l’Jk-1) and (Ik,Jk), respectively (using Equation
(4-87)). Savings in computation is accomplished in
Step 1. Step 2 increases the probability of finding
the true peak and reduces the possibility of false

registration.
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V. CONCLUSIONS AND RECOMMENDATIONS

Most of the conclusions and recommendations presented in this

chapter have been given and justified within the first five chapters

of this dissertation.

1.

Conclusions
Various methods for accomplishing digital image registration are
presented in Chapter II. The most commonly used method is cross-
correlation. There exist two independent ways of computing the
correlation surface (Direct method and the FFT method). Even
though the FFT method requires less computation compared to the
direct method, it requires a large amount of memory for software
implementation-and is very complex for real time hardware imple-
mentation. The direct method requires less memory compared to the
FFT method, involves no complex multiplications or complex addi-
tions and can be easily implemented using digital hardware.
Even though the vector correlation is expected to yield better
performance than the standard correlation algorithm, its use is
Timited by the large amount of computation required to implement
the method (more than twice the computation required by the stan-
dard correlation algorithm).
Due to the difficulty encountered in the automatic segmentation of

digital images into homogeneous regions, feature matching

M
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correlation and hybrid correlation algorithms may not be of any

significant use (especially for hardware implementation).
Sequential similarity detection algorithm computes error surface
as a measure of dissimilarity between the window and subimages of
the search area. Since this method requires only addition and a
few division operations, implementation is simpler than that of
the correlation method (addition or subtraction.is simpler than
multiplication or division).

A1l the three popular techniques which speedup template matching
(two-stage temnlate matching, course-fine temolate matching and
hierarchical search method), accomplish savings in computation

by reducing the total number of pixel pair comparisons. The meth-
ods are computationally more efficient in terms of the number of
arithmetic operations required (software implementation) but may
not enjoy any advantage in real-time implementation using special
purpose hardware.

The necessity of a highly efficient algorithm to transform digital
images to binary images (edge and non-edge pixels) and a connec-
tivity test to identify true straight line edges (composed of adja-
cent pixels) makes the use of the Hough transformation for digital
image registration less attractive.

The moments of an image or subimage can be easily computed by per-
forming multiplications and additions only. When the window and
the search area do not differ in rotation or pixel spatial resolu-

tion, it is not necessary to compute Hu's invariant moments and the

ordinary moment sequence can be directly used for scene matching.
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For the reasons given in 1 through 7, it is concluded that the

standard correlation algorithm, the SSDA and the moments method

are more promising using present state-of-the-art hardware.

In Chapter III, the computational efficiency of the correlation,

the SSDA and the moments methods is compared from software as well
as hardware points of view, independently, for the multiple image
registration problem. It is found that the moments method takes
less computation time if implemented in software and less hardware
for real-time implementation if the number of windows is sufficient-
1y large. Moments of any order can be computed with one level of
multiplications and one level of additions. Therefore, the moments
method is promising for real-time implementation.

In order to obtain better results from any of the image registration
algorithms, the window and each subimage of the search area should
be preprocessed to have zero mean and unity standard deviation.

This is called intensity level normalization and would require too
much additional computation. In Chapter IV, it is shown that in-
tensity level normalization can be embedded within the moments
method with almost no additional computation. This makes the mo-
ments method more accurate without excessive additional computation.
Two new feature matching algorithms, one based on interset and in-
traset distances, and the other based on correlation of adjacent
pixels are developed in Chapter IV. The distance method is com-
putationally more efficient (in terms of the number of arithmetic
operations) than the correlation or the SSDA method if the number i

of windows is greater than three.
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It has been shown that the intraset distance of a set is a function

of zero and second order central moments of the set. The interset
distance between two sets is a function of zero and first order mo-
ments of both the sets. When an image is composed of homogeneous
regions, all pixels of a homogeneous region normally fall into the
same set when the image is segmented based on pixel values. Com-
puting intraset and interset distances, in some sense, {s the same
as computing moments of each homogeneous region, separately. In
general, processing each homogeneous region separately and combin-
ing the partial results additively yields better performance.
Therefore, the distance method is expected to perform better than
the moments method if the scene is composed of homogeneous regions.
For multiple image registration, the algorithm based on correlation
of adjacent pixels is computationally more efficient than any of
the algorithms considered. Even for single image registration,
this method requires less number of arithmetic operations than the
standard correlation algorithm., Since the feature vector associated
with reference point (i,J+1) or (i+1,j) can be computed from the
feature vector associated with the reference point (i,j) with very
few arithmetic operations, this method is very promising for real-
time implementation.

From 9, 11 and 13, it 1s concluded that an algorithm which is com-
putationally efficient for single image registration may not be
efficient for multiple image registration. It is also concluded
that the computation for template matching algorithms is directly

proportional to the number of windows whereas in feature matching
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algoritims features are extracted for all subimages and windows
o‘ly once, and the matching procedure is repeated once for each
window. Since the computation required to match the features is
negligible compared to that required to compute features, in general,
feature matching algoritims are expected to be more efficient than
tamplate matching algorithms if the number of windou; {s sufficien-
tly large.
There are many other feature matching image registration algorithms
reported in the literature that have not been mentioned in this re-
port. The reason for eliminating these algorithms was either they
were too computationally complex to be implemented in real-time
hardware in the near future or they were not as computationally ac-
curate as the methods presented. Special purpose VLSIC developed
at some future date may make some of these algorithms feasible.
A feature extraction technique based on the mean and standard de-
viation of pixel values of the window accomplishes 50 to 75 percent'
savings in computation with very 1ittle effect on registration ac-
curacy. Since the feature extraction technique reduces the amount
of data to be processed without altering the structure, it is ap-
plicable not only to correlation but to many other image regis-
tration algorithms.

Recommendations for Future Work
Even though the correlation, the SSDA and the moments methods are
more promising using present state-of-the-art hardware, very large

scale integrated circuits developed to perform a specialized task

may at some future date make any of the methods discussed in Chapter

Lol o A
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Il feasible. Because of this possibility, a follow-on program should

investigate the computational accuracy of these methods.

It may be possible to obtain good registration results using very
few moments. This trade-off should be investigated through simula-
tion of typfbal military-type digitized scenes.

If the images are quantized to two levels (0 and 1) or three levels
(-1, 0 and +1), the computation of moments involves no multiplica-
tions. Therefore, performance of the moments method with two and

three level images as inputs should be studied.
Accuracy, reliability and sensitivity to noise of all three feature

matching methods in Chapter IV should be determined through simula-
tion.

The effect of quantization of images to two or three levels on the
performance of feature matching algorithms should be investigated.
The potentiai of the method based on correlation of adjacent pixels
for real-time hardware implementation should be studied.
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