
AD-A093 464 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 9/2
PRELIMINARY IMPLEMENTATION OF POSER (U)

SEP AG S 4J BE VAN
NLASIFIED RSE-M EMO-3272DRICR-7660 3 NL

I.h II

L.

11111"-- IL _ 116

MICROCOPY RESOLUTION IIST CHART
NATIINAL IIA U tl ANI [1,

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3272

Title: A MLIMINARY NLEENTATION OF

Author: / i/evan

Date: Sep

~SUMMARY

POSER is a process organisation to simplify error recovery intended for use
in fault - tolerant, distributed computer systems running real - time programs.,

This memorandum describes the process organisation used in POSER and how the
organisation has been experimentally implemented in a multi-computer simulation.
Application program design has been studied by producing a large radar tracking
program which runs on the POSER simulation. A version of the radar program
exists in MASCOT and some comparisons of the two complete programs have been
made. Finally, some broad comparisons of the MASCOT and POSER methods are made.

Accession For

* NTIS GRA&I
DTIC TAB
Unanncunced
Justificatio

By
Distribution/1vailabUlIty Codes

Dis Special

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright
C

Controller HMSO London

1980

f SUMMARY

POSER is a process organisation to simplify error recovery
intended for use in fault - tolerant, distributed computer
3yStems running real - time programs.

/ This memorandum describes the process organisation used in
POSER and how the organisation has been experimentally
implemented in a multi-computer simulation. Applicationp
program design has been studied by producing a large radar
tracking program which runs on the POSER simulation. A version
of the radar program exists in MASCOT and some comparisons of
the two complete programs have been made. Finally, some broad
comparisons of the MASCOT and POSER methods are made.

A PRELIMINARY IMPLEMENTATION OF POSER

0) INTRODUCTION.

This locument d.?scribes the facilitits provided for the
applicati) programmer by POSER, and tries to evaluate the
efficacy)1 these facilities. POSER was originally]escribed
in [] but in order to make the document self - contained,
;ome of t'ik basic ideas are repeated hore.

POSER is a process organisation intended for use in
real-time, distributed computer systems, and is in many ways
.imilar to MASCOT [2]. The main differences are that POSER
does not illow shared data areas; POSER synchronisation is
implicit, not explicit; and the motivation of POSER was to
simplify the implementation of the error recovery mechanisms
needed to make *omputer systems fault tolerant. Inter process
communication in POSER is constrained to be entirely by
message passing - i.e. we have a data flow machine at the
highest level of abstraction. A general introduction to the
philosophy of fault - tolerance and error recovery can be
found in [31, and a background to the POSER proposals in [4].

In a practical implementation, a "POSER Kernel" would be
orovided giving facilities similar to those found in a MASCOT
"frozen system". T'ie kernel will contain the scheduling
facilities, and mechinisms for performing error iecovery.

1) POSER - a brief dcscriotion.

1.1) Proc :ses and Channels.

A POSER "process" is the counterpart of a MASCOT activity,
.,nd tie POSER "channel" corresponds to a MASCOT "channel". The
important distinction between the two types of channel is that
-l MASCOT channel is simply a data area with some associated
iccess procedures to this data, whereas the POSER channel is
another process constrained to perform only a message passing
function between POSER processes. Thus both processes and
channels can be scheduled in the POSER system.

Processes and channels consist of four objects:

Process code.
Own data.
Space for in,)ut parameters.
Space for out-put par.neters.

The own dati is private to the process or channel of which
.1 forms a part and the process code uses this, together with
uput parameters, to form results which are put in the output
-pace. The kernel is responsible for the movement of data from
,he output space of one process or channel to the input space

t 2

of the next.

The process is allowed to modify or merge input parameters
to form single or multiple outputs. The only function of a
channel is to provide buffering between processes and to
ensure correct process connectivity. Channels may have
multipl.e inputs, but only a single output. This simplifies the
connection between the processes and in most cases allows
procesces to be designed with a single input and a single
output.

In a similar manner to a MASCOT Activity Channel Pool
(ACP) diaqram, the interconnections between the POSER
processes and channels can be expressed in a diagram. The
POSER process is drawn as a box containi,,g the process code
and owndata and the channel as a bar. The interconnections are
shown by drawing directed arcs between processes and channels.
An example of a simple POSER system is shown in figure (1.1).

1.2) Communications.

The processes and channels communicate entirely by message
passing, thus the data flow defines the process
synchronisation. Since POSER prevents the use of shared data
areas, processes which wish to share information can only do
so by passing copies of the information to each other. It is
this data flow foundation that makes the process organisation
conducive to automatic error recovery.

1.3) Error Recovery.

The details of the mechanisms used by the POSER kernel for
error recovery are not relevant here, but the applications
system is, to some extent, influenced by these mechanisms. In
particular it is necessary for the applications system to tell
the kernel what information it requires to be preserved in the
event of an error occurring. This can best be done by giving
the kernel a procedure which can copy the salient data.

2) PRACTICAL IMPLEMENTATION.

2.1) Multi Computer Simulation.

In order to try out some of the ideas put forward by
POSER, a computer program has been written which simulates a
distributed computer system. Each computer has its own POSER
kernel ind i network is provided so that any computer may
communi,-ate with any other.

Thi.; exporimental simulation has been produced in
ALGOL68RT 15,61 which runs on RSREs main computer, an ICL
1900. This implementation provides facilities for inter -
connectinq processes and channels and a scheduler based on the
data flow btween processes and channels. The checkpointing
and error recovery mechanisms have not been included. There is

3

also an implementation of MASCOT on the main computer so some
comparisons can be made between the two programming methods.

The simulation system suffers from several problems which
could only have bpen solved by using special machine code
instructions. As a result, the user has access to some of the
kernel data areas which would be hidden from him in a proper
system.

These problems are being tackled in a new simulation whichis currently being written to run on the FLEX computer (71.
The new simulation will provide a cleaner user interface and
the kernel data areas will be inaccessible to the user. The
checkpointing and error recovery mechanisms are being included

in this simulation.

2.2) Process and channel. shells.

Each process and channel is kept within a "shell" which
contains the owndata, process code, parameter spaces and a
scheduling condition. Since the only difference between a
process and a channel is in the process code and owndata, it
suffices to describe a process shell.

The process shell in the present simulation is an ALGOL68
procedure which takes as parameters the space for the inputs
and outputs to the process, the number of the process and a
data area which contains information about the process for the
kernels use. The format is:

PROC process shell = ((1 REF PARAM input, output,
INT process number,

REF MYPROCESS this process

BEGIN

END;

Inside the shell, the user must declare the owndata,
process code and the scheduling condition for the process. The
schedulinq condition is put into the kernel data area and is
used by the kernel scheduler which is described in (2.4).

A detailed example of a process shell is given in the

append i x.

2.3) Setting up processes and channels.

The processes and channels used in a POSER system have to
be specified with interconnection information so that the
kernels can provide the links necessary for the data flow.
This is equivalent to the MASCOT "form" command for setting up
subsystems.

4

A computer for each process or channel must be given and
the shell is loaded onto that computer with space allocated
for the input and output parameters. The transfer of data
between the parameter spaces is taken care of entirely by the
kernel .

2.4) Scheduling.

Each computers kernel has its own scheduler which operates
on the processes and channels loaded on the computer. The

* scheduler calls the users running condition for each shell in
turn until a runnable process or channel is found. The process
code of the process or channel is then -xecuted. After this

* "activation", control is returned to the scheduler.

For efficiency, the scheduler was later modified to only
evaluate the condition if there had been a change in the state
of the shell parameters since it was last called. This
improved scheduler gave a considerable improvement in
scheduling overhead. Some timing results obtained using a
large test program will be presented later.

3) WRITING APPLICATION PROGRAMS.

3.1) Overall design.

The breakdown of a real-time problem into the various
* processes and their interconnecting channels must be done

before any detailed programming can occur. This task should be
within the capabilities of an experienced programmer who will
also decide the running conditions for each process. The
production of the process code resembles normal sequential
programming and could be written by a less experienced
programmer.

3.2) Process code.

I' The programmer has to provide a procedure which transforms
the input parameters provided by the shell and sends the

* r sult to the shell output parameters. It is necessary for the
programmer to check the validity of the input data received
since he and not the kernel knows what is expected.

With valid input data, the process code can operate using
itany data local to the process shell. Data required from
* another process must have been previously requested and made

available to the process as input parameters. To simplify the
process codc, the user can, of course, define local procedures
but these must be declared inside the process shell.

* 3.3) Scoedul-ing.

At present the kernel requires an element of the MIPROCESS
belonqing to each shell to be set by the user. Th-,s is a

* procedure called Orunnablew which delivers true if the shell

* 5

is available for activation.

In all cases, since data flow controls all
synchronisation, a process or channel will be runnable if a
subset of the input parameters are full and the appropriate
output parameters empty. A typical case might be:

runnable OF this process := BOOL:
BEGIN

((full OF input[l]) AND (NOT full OF output[l1))
OR
((full OF input[2l) AND (NOT full OF output[2]))

END;

In this case, the process can either take data from input
1 and deliver to output 1 or take from input 2 and deliver to
output 2.

3.4) Synchronisation.

Since all processes and channels are scheduled by the
arrival and departure of data, normal synchronisation will
cause no problems. If a process needs three sets of data from
three different channels, making "runnable" deliver FALSE
unless all three inputs are full will achieve the necessary
synchronisat ion.

There are, however, some limitations on synchronisation.
To suspend .i process until all others have run as far as they
can is such an example. In MASCOT there is provision for
attaching a priority 'to an activity so that high priority
activities will be scheduled in preference to low ones. If the
simulation is to be used for a wide class of programs, this is
one area that will need attention.

4) TES7 PROGRAM: A Radar Tracking Simulation.

4.1) Program Description.

In order to inves-igate application program design and to
compar(MASCOT and PJSER, a large radar tracking program,
writter in ALGOL68, wis converted from MASCOT to POSER.

Th,, proqram :-plit:s into four subsystems:

1) A radar simulation which can be controlled by input from a
keyboard. This produces a simulated radar display with the
usual sector sweeps.

2) An aircraft tracking system which can be manually updated
from the keyboard. In the absence of manual updates, the
tracker estimates position using the previous manual
updates.

3) A control system for co-ordinating the two main subsystems.

6

4) An output system to produce the radar picture on the
terminal.

The original MASCOT system used some special peripherals
which are no longer available and some of the activities were
used to transfer data to and from these peripherals. The
system which was modelled consisted of seven activities, six
channels and five pools and had simplified input - output. An
ACP diagram of this system is shown in figure (4.1).

4. 2) Thenwporm

The POSER program tried to keep the operation of the radar
and tracking subsystems as close to the original as possible.
The control system was simplified and the output system
changed to cope with the different peripherals.

Since POSER does not allow pools of data with many
processes sharing access, some means of achieving data sharing
had to be found. The approach used was a Database Manager
process whose own data forms the pool. Other processes must
request data from the manager and wait for it to be sent out
along the channels.

Of the five pools used by the original program, only three
were accessed by more than one activity; the others could
quite easily be incorporated in the owndata of a process. The

*three large datapools were merged into two; one for the
tracking system and one for the radar simulation. Each pool
wis implemented as the own data of a database manager process

*with each manager accepting commands only from its own
subsystem.

In all, ten processes were set up; two new processes came
from the two database manager processes, and a third from a
new keyboard process. To provide the necessary communications,it twelve channels were required. Each channel had a fifteen item
buffer and operated on a first in - first out principle with

4) eiual priority on all inputs.

A diagram of the POSER process organisation is shown in

__________________figure__________(4.2_______._

4.3) Process Scheduling and Synchronisation.

Tho oriqinal program worked by having the two main
system:-,, tracking and simulation, controlled by a common
timekeeper process. By using the priority mechanism, the
timing activity could be suspended until all activities were
waiting for a new timing stimulus. At this point the timer was
reactivated and the program continued. The scheduling of the

* individual processes was controlled by direct stimulation with
true parallel processing being used when more than one process
was active.

7

The POSER program was run completely by message passing
between processes and consequently the order in which
processes were called was fairly well known. The manual
interactions with the tracking system, however, made full use
of the parallel processing facilties since keyboard commands
could be processed at the same time as normal system updates.

* The corresponding timekeeper process worked by waiting for
messages to be sent out to it from the two main subsystems

* indicating that all possible updating had been completed and
then increasing time for both subsystems. The message passing
system was also used for the keyboard intrrfaces: keyboard
commands would not be acted upon unless the database was free
at that time.

All the runnable conditions used were kept as simple as
possible and simply looked for a certain subset of the shell
parameters to be in a suitable state. Since some processes had
several possible alternative runnable conditions, the modified
scheduler significantly reduced the scheduling overhead. Some
timing results will be presented in section (5).

4.4) Improvements and Shortcomings.

The greatest improvement in the new program is that of
data management. The bulk of the data kept in the MASCOT pools
has been moved into the owndata of database processes and the
rest into owndata of individual processes. Hence greater dataI
security is obtained together with a well defined data flow in
and out of the databases. S

The increased number of processes and channels has made
the size of the new program larger than the old. For a large
number of processes, a large number of interconnecting
channels are required which in most cases at least doubles the
total number of shells in the system. Since MASCOT pools have
to be replaced by database processes and associated
communications channels, the number of parallel processes is

II increased further. Thus there will, in general, be more code
in a POSER program than in an equivalent M!%cCOT program.

4 5) EFFICIENCY.

5.1) Comparison of POSER Schedulers.

Some timing runs of application programs were carried out
which werp intended to qive some idea of the relative
efficiency of the two POSER schedulers. In all cases the
runnable conditions in the application program were left
unchanged.

Running the Radar Simulation program gave the following

8

I;

~results:

Old scheduler.
average time to schedule 1600 micro-seconds.

New scheduler.
average time to schedule 1100 micro-seconds.

5.2) MASCOT and POSIFR schedulers.

In order to investigate the efficiency of similar
implementations of MASCOT and POSER, two new programs were
written, one in ALGOL-68 MASCOT and the other using the POSER
simulation. In both programs, two parallel processes were set
up, each process sending a stimulus to the other and then
waiting for the stimulus to be returned.

In MASCOT this was done by having two activities and two
control queues, one for each activity. The activity, when
scheduled, "stim"s the other ones queue and then waits for its
u)wn queue to be stimmed.

In the POSER program, a process and a channel were set up
on a single computer. When scheduled, the process emptied its
input parameter and filled its output parameter. The
s heduling conditions and connectivity used meant that the
c iannel shell was now runnable and the process not. The
ci-annel then emptier! its input and filled its output making
tie process runnable and the channel not.

The results obtained were:

MASCOT
Average time between schdules 820 micro-seconds.

POSER
Average time between schedules 560 micro-seconds.

5.3) Conclusions.

The old POSER scheduler was very slow if the application
programmer wrote long, complicated runnable procedures since
it act itlly called 4ach procedure as it tried to schedule a
p'oces;. By only calling the procedure when a shell parameter
h id ch inqed , the .cheduI I nq overhead was substantially
rcduced . ff the proqram i s wr itten so that there are only a
f. w pr(,ces, sheI Is runnbil, at each schedule time, the
Sk Hedul ing ,verhcj-d will incr ise. Neither scheduler will give
qou)d r(sult. in this caso, but the modified one will waste
Ie.;s time s,,arching.

I The comparison between the ALGOL 68 implementations of
MASCOT and POSER is not a very usefui one because the
mpchanisms used are so different. The MASCOT implementation
koeps lists of activities and adjusts these lists at each
"schedule with the result that the schedule time is largely
indeotendent of the number of activities. Since the POSER

9 9

scheduler searches through all processes and channels for a
runnable shell, more work will have to be done before a shell
can be activated. The fact that MASCOT moves items which are
not currently availiable for running off the main scheduler
list means that for a large number of activities, the time to
select one to run will be much smaller than the corresponding
time using POSER. However, for programs with only a few
processes, the search time will probably be less than the time
to manipulate the lists. This probably explains why the POSER
program gave the faster schedule time.

6) GENERAL CONCLUSIONS.

In the present, experimental, state it is difficult to
make valid comparisons between POSER and MASCOT. The areas of
difference allow some general observations to be made.

1) The well organised data flow in a POSER program should
result in better overall clarity. Since each Process is a
self-contained unit, it should be possible to see how each
process works by simply studying the process code, the
running condition and the interconnections to other
processes. Thus a clarity at the process level is achieved.

2) At present there is no mechanism provided by POSER for
attaching a priority to a process so certain types of
process synchronisation are more difficult to achieve.

3) There is no provision for interrupt handling or interactive
input - output on the simulation so the real time aspect of
some programs may be lost.

To write a large program using POSER presents little
difficulty provided the operation of the individual processes
is well thought out. Since this problem is common to all real
time programs the fact that POSER is being used makes little
difference.

If the guidelines of single output channels and, where
possible, single input processes are used then process

* synchronisation will be easy to achieve. This will make
running conditions straioihtforward and give each Process only
a small number of possible, ways of being activated. Thus the
process cod, bcons Elati ively simple and the nimber of data

)" ~checks ait eaich act ivt Iion s~mal] OS.R.'nnlanmes 1o rtn eltm

POSH is :n leoan t man s f or writing r eaI-time computer
programs w t t h orovision for ch,,ckPoiit inq and error
recovery. In its present state, the imulomertatlon is largely
-xp,riment-al .and a) littleo unt idy bu' this does sot hinder the
programmer too much. The FLEX proqram, when completed, will
give a simpler ,nd more secure basis from which POSER can be

* • .' studied.

10

7) REFERENCES.

[71 "POSER - A Process Organisation to Simplify Error Recovery."
RSRE memorandum 3249, J.A. McDermid, 1979.

[2) "MASCOT - A Modular Approach to Software Construction,

Operation and Test."
RRE technical note 778, K. Jackson, H.R. Simpson, 1975.

[31 "Reliable computer systems."

B. Randell, P.C. Lee, P.A. Treleaven.

Lecture notes in computer science No 60: Operating Systems -

An advanced course.
G. Goos, J Hartmanis Eds., Springer Verlag, 1978.

[4] "Fault Tolerant Computing."
RSRF memorandum 3197, J.A. McDermid, 1979.

[51 "ALGOL68R Users Guide."
P.M. Woodward, S.G. Bond, HMSO, 1974.

[61 "Parallel Processing and Simulation."
P.M. Woodward, MOD unpublished work, 1974.

[71 "An Introduction to the FLEX Computer System."
RSRE report 79016, J.M. Foster, C.I. Moir,
F.F. Currie, J.A. McDermid, P.W. Edwards,
J.D. Morison, C.H. Pygott, 179.

% 11

pro cess

channel

a op It
process

I Figure 1.1

ASimple PSRDiagram.

* IJ

IL I
'-'I) ixL

~cCL ca

000
Ul 0

00

0 CL

I n c
00

zE

UW

CL I-

Figure 4.1

Test Program: MASCOT.

F6

C;

0 0
£2

ci

I~~t 10 _ ,

Dl 0

O -~ --]
c:L E

I- - j -

I--'II-

010

0 E

K0 0]
E

43 I-

Figure 4.2

Test Program: POSER.

J ~ lm mmm~M)m(m 1•

APPENDIX.

The following program is a complete process and channel
system. To keep the example simple, only one process and one
channel have been used with the process sending messages to
itself via the channel . The program is assumed to be in a free
running state having been started by some mechanism such as an
external or software stimulus.

It must be pointed out that the example is taken from the
current state of the simulation and the general format is
therefore subject to change.

BEGIN
PROC process shell = ([IREF PARAM input, output,

INT process number,
REF MYPROCESS this process):

BEGIN
COMMENT owndata COMMENT

INT count := 0;

COMMENT process code COMMENT

PROC process = (REF PARAM in) PARAM:
(PARAM output := empty param;
print ((data OF in, newline));
count PLUS 1;
data OF output := (process number, count);
full OF in := FALSE;
full OF output := TRUE;
output

COMMENT scheduling condition COMMENT

runnable OF this process := BOOL-
(full OF inputIll AND
NOT full OF output[l]

I
initialisation complete;

DO
BEGIN outpit[l] process(input[lJ);

wait
END

EN I);

12

PROC channel = ([IREF PARAM input, output,
TNT channel number,
REF MYPROCESS this process):

BEG IN

PAPAM biffer := empty param;
BOOL buIfer full := FALSE;

PROC inccess = (REF PARAM in)
(buffer := in;
full OF in := FALiE;
buffer full TRUE

PROC out accoss = PARAM:
(buffer full : FALSE;
buffer

runnable OF this process := BOOL:
(IF buffer full

THEN NOT full OF outputl]
ELSE full OF input[l[

F1

iritial isation complete;

DC,
BEGIN

IF buffer full
THEN output Il] := outaccess
ELSE in accss(input[l1)

FI;
wa it

END

END;

COMMENT simulation set up COMMENT

TNT computer 1 -1, computer 2 = 2;
set up computers(2)
sot up process(computer 1,

INTPALR VAL (I,]),
TNTPAIR V. L (1,1),
1roce!,s s! ell)

s- t up chav nelIompufer " ,
INTPAIR VAL (1,I),

INTPAIR VAL (1,I),
hannel)

end sct up

END

€4

13

Some of the items used in the program need explanation.

1) The mode PARAM is the input /outpjt parameter to the
shells. It contains BOOL full and INTPAIR data. In a
general case, the data mode will be able to handle a wider
clasi of modes. Empty param is a PARAM with full - FALSE.

2) MYPROCESS is the kernel process descriptor. The user has
access to PROC BOOL runnable, the use of which is described
in (2.4).

3) Initialisation complete is a procedure called after the
process code, owndata and PROC runnable have been declared.
Control is returned to the simulation and another process

shell is initialisd.

4) Wait is a procedure which returns control to the scheduler.
it is called after each process activation.

5) The process shell is set up in the simulation by a call of
"set up process" and the channel by "set up channel". These
procedures take as parameters the following:

a) The number of the computer on which the shell is to be

loaded.

b) A row of INTPAIR each describing one input to the shell.
The first number is the number of the shell providing
the input, and the second the output parameter space
number. The processes and channels are numbered
separately. Thus the process input above comes from
channel 1, output 1.

c) Another row of rNTPAIR describing shell outputs as in

(b).

d) The name of the shell procedure to be loaded.

6) End set up is a procedure which sets up the kernels on the
computers and starts the simulation.

1

11

