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SUMMARY

This Memorandum presents the autior's opinion that the conventional use of

the dB in studies of acoustic noise can obscure and complicate simple relation-

ships and lead to the possibility of error because of misunderstandings of the

nature of logarithms and because the order of the numbers involved is concealed

by the compressed scale. Examples of errors and inaccuracies are given, and some

cases where consideration of noise in terms of rms pressure would be simpler, or

would lead to better understanding of the processes involved, are discussed. It

is suggested that, although the dB may be a convenient unit for many purposes,

more emphasis on the physical nature of noise would help in the interpretation of

phenomena and prevent some of the confusions that arise, especially in dealing

with the general public. AoslaPi
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] INTRODUCTION

One of the first tasks that faces the newcomer to the study of acoustic

noise is learning to understand and manipulate the decibel (hereinafter written

'dB'). Once this task is thoroughly accomplished, and we begin even to think in

dB, we may be tempted to regard ourselves as part of an elite band of cognoscenti,

entitled to despise the ignorance of the common herd. Whether the understanding

of noise gained through our hard-won knowledge of the dB is worth the trouble of

learning is a question that may intrude occasionally - at least, it has on me.

But the urge to suppress it is powerful. We have struggled to gain the art of

dealing with the dB, we understand it, it is part of the mystique of acoustics.

Moreover, if the experts over the years have apparently derived inestimable

benefit from using the dB, who are we, newcomers to the subject, to doubt its

utility?

Well, the fact that we are going against expert opinion need not deter us.

Experts can be mistaken; even in science, today's heresy may become tomorrow's

orthodoxy.

But is it worth the effort? Even if we could show conclusively that the

use of the dB is prejudicial to the understanding of noise, could anything be

done about it? The dB has been in use for so long, there is so much elaborate

measuring equipment calibrated in dB, there are so many national and inter-

national standards expressed in dB, that to eliminate its use would be a very

long process, and a very expensive one. But not impossible. There must be

many more instruments in Britain calibrated in Imperial units than were ever

calibrated in dB, and they are rapidly being phased out of use. So, if it were

shown to be eminently desirable to get rid of the dB totally, it could be done.
II
ii In fact, I don't advocate the abolition of the dB, all I am suggesting in

this paper is that we should adopt a more critical approach to its use. To

anticipate my argument a little, I believe, and shall attempt to show in this

paper, that the dB can obscure and complicate simple relationships, and lead to

the possibility of error and misunderstanding because the order of pressure

involved is suppressed and the arithmetic required for some calculations is

cumbersome and of a kind where small slips can lead to large errors. I think

that, though it may be too late in the day to expect acousticians to talk and

think in other terms, a little more stress on the fact that we are concerned

with pressure oscillations would encourage clearer thought and benefit newcomers

to the subject - and the general public - by allowing them to understand without

-V tl
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having to cope with logarithms. I would hazard a guess that not more than 20

per cent of the population of this country has any understanding at all of the

nature of logarithms, and, in these days of modern maths and pocket calculators,

even fewer have any practical experience of their use.

This paper then, is a short and somewhat discursive enquiry into some

aspects of the use of the dB in noise studies. I shall discuss the meaning of

the dB in general and in relation to various applications, methods of manipulat-

ing the dB, and some cases where the use of the dB may hide important physical

relationships

Taken together, I believe that these considerations demonstrate that the

dB ought to be used with greater care than it commonly is, and that there are

many cases where it would be more efficient to work in pressure directly,

either from the point of view of reducing the quantity of calculations required

or of understanding the processes involved.

2 THE dB AND NOISE MEASUREMENTS

2.1 Why do we use the dB?

The reasons for using dB in noise measurements have been stated many times

by many authors. I reproduce one such statement, that given by Broch I in a

handbook published by Messrs Bruel and Kjaer. Broch says: "The weakest sound

pressure to be detected by the 'average' person at 1000 Hz has been found to be

0.0002 Pbar (2 x I0- N/m2 )*. On the other hand, the largest sound pressure per-

ceived without pain is of the order of 1000 Pbar, ie the scale of sound pressures

covers a dynamic range of 1:1000000! The use of sound pressures in pbar directly

as a measure of sound measurements is therefore not too convenient. Also ...

the hearing mechanism responds to changes in sound pressure in a relative rather

than in an absolute way." Broch goes on to define the dB thus: "The decibel

is defined as ten times the logarithm to the base 10 of the ratio between two

quantities of power. As the sound power is related to the square of the sound

pressure, a convenient scale for sound (noise) measurements is defined as
~2 2

sound pressure level = 10 log(p /po) 2 20 log(p/po) dB ."

* The units used for pressure have been highly variable over recent years. The
rms pressure at the nominal threshold of hearing has been variously defined as
0.0002 bar, 2 x 10-4dyne/cm2 , 2x 10- 5 Newton/m2 and 20 Pa (micro Pascal).

0The last is now the accepted form, but in this paper the forms originally used
in quotations will be retained.

-f-
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Thus, there are two reasons put forward for using a logarithmic scale:

(1) the range of pressure to be covered is too large to be dealt with

easily using linear pressure units, and

(2) the human hearing mechanism responds to audio stimuli in a logarith-
mic manner.

The first reason is made to sound even more striking by some authors who

talk about intensity instead of sound pressure, which they define, often merely

by implication, as proportional to pressure squared, thus obtaining a ratio
12 6of 10 2 instead of 106. Broch is more cautious, he says merely that power is

'related' to the square of the sound pressure, and as he says (see above) the

dB is basically a unit of power ratio. We shall return to this point later

(section 2.2).

2.1.1 Range of perception

It is said to be necessary to compress the sound measurement scale

because of the large range of perception. Consider the following argument. The

smallest dimension which can be perceived by the human eye is of the order of

0.2 mm. On the other hand, distances as great as several km can be easily

observed. That is, the range of distances perceptible by the human eye is of the
6order of 1:10 or, if we think of the areas which can be seen, of the order

12
of 1:10. The use of metres directly for measurements of distance is therefore

not very convenient. We therefore define the dB for length or area as ten times

the common logarithm of the ratio of the area to the area generated by the

smallest perceptible distance (do = 0.2 nn), that is

2 2the distance level 10 log(d /d 0) = 20 log(d/d 0)

Using this reference length, I nun becomes 14 dB, I m becomes 74 dB, and I km

becomes 134 dB re 0.2 mm.

One has only to state it in these terms to see the illogicality of the

argument that a logarithmic scale is needed because of the range of values
involved. By this argument, if we need the dB for sound, we also need it for

every other quantity that is perceptible or measurable - the human is only one

form of measuring instrument. But we know this is not so. The average man, and

even more the average scientist, can manage perfectly well with linear units,
cusing those appropriate to the size of the thing he is measuring - in the metric

Csystem he merely selects the most suitable prefix for the unit. Is the range

between 20 PPa and 20 Pa really too much to cope with along the same lines?
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After I had written this paragraph, I came across an author 2 who had used

very nearly the same analogy, and deduced frpm it that the dB was necessary for

sound measurements "... because we are just as interested in measuring small

pressures as large ones and it would be impossible to construct a single linear

rule to measure inches and miles." But, when miles are in question, no-one is

interested in inches, neither when sound pressures of the order of Pa are in

question are we concerned with pPa. And if we were, we should need an instru-

ment with a dynamic range of 120 dB to measure both without changing the scale.

If such instruments exist for any applications, these certainly do not include

acoustics where the dynamic range is commonly 60 or even 40 dB.

2.1.2 Human perception and the dB

Broch's statement that "the hearing mechanism responds to changes in

sound pressure in a relative manner" is explained later by reference to the

Weber-Fechner law, which he states as follows: "The Weber-Fechner law states

that the change in response to a certain change in excitation is inversely

proportional to the absolute excitation before the change. Mathematically this

can be written dR/dE = k/E ."

Integrating this equation, we have R = k ln E , which is the way the

law is most commonly stated. The physiological sensation produced by a

stimulus is proportional to the logarithm of the stimulus.

Two points should be noted about the Weber-Fechner law. First, it affects

acoustics only inasfar as acoustics is concerned with man's response to sound -
it can have no bearing on the units used in many acoustical studies, for example,

the response of structures to air pressure vibrations. To use units for a pheno-

menon which has many effects based solely on its effects on one receptor (the

ear) does not seem to accord well with the best interests of science.

Secondly, the law relates not only to sound but also to all stimuli

which produce human sensations. Hence, if the law demands the use of the dB for

sound, dB units should also be used for all other such stimuli. Not so very

long ago one could have said with confidence that no such other units existed;

but of recent years attempts have been made to introduce a dB scale for
3

vibration and dB have also been introduced into optics and other sensory topics.

In the case of vibration, since the full range of human perception is at the
most about 10000, the first reason for using the dB for noise cannot apply, and

the case must rest solely on the Weber-Fechner law. In fact, the real reason

for this introduction is probably that the inventors of the vibration dB were
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accustomed to using dB in noise, and extended it to vibration by analogy. This

must also be the reason why some writers on noise (eg Barry 5) have extended the

dB to other factors such as time involved in their experiments - not always with

perfect consistency (see section 2.3).

2.2 Is the dB used correctly in noise studies?

As Broch says (see section 2.1), the dB is a unit for power ratio, and is
4

so defined in technical dictionaries, for example, Chambers gives for the bel:
e A non-dimensional unit, ten times the size of the more frequently used decibel,

expressing ratio of power units (P1 and P2)

N = log 10 (PI/P 2) bels

(One wonders, incidentally, how the dB has managed to survive the introduction

of SI units, which eliminate the prefix deci! We ought, surely, to use either

bels or millibels - but then we should no longer have the advantage of having to

deal generally only with smallish integers!). The ISO terminology for mechanical

vibration and shock 6 extends the definition somewhat, speaking of the ratio of

'power-like quantities', and includes among quantities that qualify as power-

like, sound-pressure squared, sound intensity and sound energy density. In fact,

of course, the dB as usually used in acoustics is related to the sound pressure,

simply because that is what microphones respond to.

It is true that, in a given situation and for a given frequency, the power

is proportional to the pressure squared, but changing the frequency or the con-

ditions will change the power for the same sound pressure. If we really require

the power, something else must be measured as well as pressure, pressure

gradient or particle velocity for instance.

Thus the dB as used in acoustics is not always strictly comparable with

the dB of communications theory or electrical engineering. The distinction is

not generally important, so long as workers in noise remember that what they are

measuring is usually simply pressure squared.

2.3 Advantages and dangers of using dB in sound measurements

The cynic may feel that there are two primary advantages in the use of

dB in acoustics:

(1) it is not easily understood by the laity, so the acoustician's

mystique is preserved,
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(2) it gives an air of accuracy to a very inexact science:

'94± 6 dB re 20 pPa' sounds much more accurate than '1 Pa+ I or -0.5 Pa'!

The real advantages are, perhaps

(3) a scale of manageable (mostly 2-digit) numbers can be used for all

normal measurements,

(4) ratios of pressures or of the powers associated with the pressures

are expressed by the same number, since

20 log(p/po) = 10 log(p 2 /p)

(5) amplification, attenuation etc can be obtained by addition and sub-

traction - simpler arithmetical processes than multiplication and division, and

the shapes of spectra and frequency responses are independent of the level -

but this could be achieved, as it is in other disciplines, simply by plotting

pressure or pressure ratio on a log scale.

The dangers are associated with the advantages:

(1) the general public does not understand the dB, and cannot be expected
to,

(2) inaccuracies and variations of an order which would make workers in

almost any other field abandon their measurements as meaningless are accepted

in acoustics because,

(3) the real variations in the order of sound pressures are disguised by

the compressed scale. As a speaker on 'acoustic mythology' said7

"The glib use of the decibel often leads to a misplaced sense of propor-

tion. Acoustics involves an immense range of magnitudes and the decibel scale

provides a system of measurement that corresponds with the way the human hearing

system behaves. It is easy to become so confused by the decibel scale that the

size of the numbers being dealt with is forgotten - which can lead to expensive

mistakes."

The glib use of the dB can also lead to loss of accuracy. People work-

ing on noise do not say "we doubled the sound power" or "the sound pressure

varied inversely with frequency". They say instead "we increased the level by

3 decibel" or "the level decreased by 6 decibel per octave". The first forms

are straightforward expressions which can be understood by anyone with elementary

mathematics and tell you a lot about the physical conditions. The second forms
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are not only more obscure, they are not even precise equivalents, since 3 dB

actually represents a power ratio of 1.995. The difference hardly matters in

experimental work; but it is incorrect - and very distasteful to a mathema-

tician - to see exact theoretical forms described, inexactly, in terms of dB.

(4) Confusion between pressure and pressure squared (so-called power),

and between either and ratio is common.

The first kind of confusion is worst when the dB is used with quantities

p other than sound pressure. For instance, one author5 wished to obtain a linear

equation for a plot of dB against the logarithm of time. He therefore used a

symbol t which he defined as 'the time expressed in dB re I hour'. Close

investigation showed that t was ten times the log of the time in hours - from

the definition it might as easily have been 20 times. In any case, such a use

of dB is quite indefensible - time, even time squared, is nothing like power.

The second kind of confusion can arise between the dB as a pure ratio,

for instance as an amplification or attenuation factor, and dB as a ratio to a

reference pressure, in which case it represents a quantity of sound. Qualifica-

tions such as A, B or lin imply the second case, for instance, 94 dB(A) means

the level of a sound which after passing through an A-weighting filter has an

rms pressure 94 dB above 20 PPa. That is, the A-weighted rms pressure is
94/2020 PPax 10 = 1.002 Pa.

If we attenuate such a noise by 20 dB, we multiply the rms pressure by
L020/20 = 0.1 , and we then have an rms pressure of 0.1 Pa, corresponding to

74 dB(A). But some people say they attenuate a noise by 20 dB(A). Such a

phrase can have no meaning, unless we read 'attenuate' in its non-scientific

jI meaning of 'reduce'. And then it means that the noise is reduced by removing

20 dB(A) from 94 dB(A). As a simple sum shows, this would leave not 74 dB(A)

but 93.9999998 dB(A) - not much of an attenuation!

(5) Since amplification and attenuation are obtained by adding or sub-

tracting dB, and since one measures, apparently, microphone outputs in dB, it

is easy for the beginner to forget that dB are in fact ratios, and that the

unprocessed signals coming out of microphones are not like the dB readings.

A young experimenter of my acquaintance, after several months work on

acoustics, attempted to measure the attenuation afforded by a hearing protector

Cby measuring the difference between the unprocessed outputs from microphones

positioned inside and outside the protector! Another, trying to measure the

I I I
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distortion in a system, recorded the levels of the fundamental and harmonics

in dB. He then inserted the figures he obtained in the well-known formula -

distortion is the square root of the sum of the squares of the harmonic ampli-

tudes divided by the fundamental amplitude - and found that he had nearly 100

per cent distortion, although a glance at his cathode ray oscilloscope showed

that the reproduction was nearly perfect.

Such kinds of confusion would be at least reduced if those familiar with

the subject would avoid the use of such words as 'add' and 'subtract', 'sum'

and 'difference', unqualified, in connection with dB. Some handbooks do not

help by such confusing statements as the following (I quote literally from a

source that shall be nameless):

"If SI and S2 are two sound pressures, the difference between them is

db = 20 log(S/S Y1

(6) Another cause of confusion is the habit that has grown up, especially

in relation to impulse noise, of marking dB as scales on the recordings of

microphone outputs. Fig la&b show two examples of how this is sometimes done.

Example a is just defensible, as indicating the level of the peak in relation

to 20 iPa. If the reference is omitted, however, it would seem to imply that

the peak, in this case, is at 140 dB referred to the zero line which represents

ambient pressure. This would often mean that the negative pressures went well

below zero pressure, which is clearly absurd. Example b is quite indefensible.

It implies that the range from zero pressure change to the peak is 140 dB.

But zero pressure change is --dB, referred to any pressure whatever, so the range

from zero change to any pressure whatever is -°dB! The dB scale re 20 pPa rms

(which is 28.28 wPa peak) would have to look as shown in Fig Ic, with the range

from to 120 dB compressed into 10 per cent of the scale and the entire range -

from -"' to 100 dB squashed into the bottom I per cent of the scale. Presumably

it should also be repeated on the negative pressure side, as shown. Such a

scale looks very strange, and there could be argument as to whether it is

correct to denote a transient pressure in this way.

Two reasons have been advanced for marking transient pressure in the ways

shown in Fig la&b. The first reason is that calibrations are performed using

instruments calibrated in dB. But it is only necessary to do a simple sum once

to determine the peak pressure produced by a calibrator, for example, 124 dB

re 20 1Pa gives peak pressures of ambient i44.83 Pa. The scale may then easily

be marked off as shown in Fig Id.

M -- -- -



For the second reason, it is said that the acoustics world can only

understand noise when it is described in dB. Unfortunately, this is probably

true; but scales such as those shown in Fig Id, annotated, if necessary to give

the peak pressure in dB referred to 20 PPa should be readily understood even by

the most hidebound acoustician.

3 MANIPULATING dB

3.1 Adding up acoustic energy, and noise dose calculations

The major adxantage, in practice, of using dB is the ease with which

multiplication and division can be accomplished. But you never get something

for nothing, even in mathematics, and this simplicity entails the converse,

that real addition and subtraction are difficult. This section will therefore

deal mainly with problems relating to addition.

The first time that the difficulty of totting up dB levels strikes the

newcomer to acoustics, is probably when he wishes to determine the overall

sound pressure level, given the levels (L], L2 , ... dB) in a number of octave

or third-octave bands. The well-known formula

OASPL = 10 log or 10 log antilog(L r /10 (1)

~is, of course, not particularly complicated - when you get used to it - but it

does not immediately convey much to the mind, nor can it be used without aids,

log tables at least, or computer programs or special nomograms.

Again, the formulas for averaging acoustic energy over time

T

L = 10 log J 10L/1dt/T (2)

0

and the corresponding summations for discrete intervals, are simple in essence,
but can be very wearisome in calculation.

The literature teems with graphs, nomograms and tables for performing this

% kind of calculation (two examples are shown in Fig 2); and in specifications

for permissible noise exposure, for example, much space is taken up by the

methods of computation. For example, in the Department of Employment "Code of

4.practice for reducing the exposure of employed persons to noise , large

7 ~ l
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sections are devoted .,, ,ing up the noise energy. First, if the noise level

last ur a shorter period than the S-hour working day, or there are different

levels during the day, one has to calculate the equivalent 8-hour level, by

means of a nomogram. Second, with a statistical count, one has to add up the

periods in each class and determine the overall level. Third, if one measures

a spectrum, one has to ascertain the overall weighted level of the noise. For

each of these calculations, nomograms or tables are provided - and it is diffi-

cult to see how the novice could manage without them.

And yet, actually, the calculations are very easy, it is only the dB that

makes them seem complicated.

All that is really required is to determine the overall mean square or

root mean square pressure at a given time (equation (1)), or the mean square

pressure over an 8-hour day (equation (2)). Stated in these terms, not only do

most of the arithmetic difficulties disappear, but the physical meaning of the

process is plain.

Thus, if we measure the rms pressures p,, P2 ' " Pn Pa in n bands, the

overall rms pressure is Ila,
n• -2 2

where p = Pr (3)

It may be noticed that this equation omits the reference pressure. This

is intentional, since the usefulness of the reference pressure is confined to

the logarithmic scale - where it is essential. If actual pressures are used

there is no need of a reference pressure.

Similarly, in considering the effects of noise on hearing, the noise dose

X (Pa) 2-hours received in a time T hours, would be defined as

T

X= P2dt (4)

where pA Pa is the A-weighted rms pressure at time t •

The maximum daily dose, according to Ref 8, is equivalent to 90 dB(A) for°L4

8 hours, that is a ms pressure of 0.4 (Pa)2 or 0.6325 Pa for 8 hours, or

2_
3.2 (Pa) -hours per day
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Hence, the percentage of the permissible daily dose received in time T is

y = 100 X/3.2 (5)

This is exactly the way that noise dosemeters work, and the form of their

read-outs. According to current practice, we take this number y , and according

to what we are looking for, calculate the equivalent level during the exposure,

L dB(A), or the equivalent daily level if the noise during the exposure
T
persists for T' hours, L dB(A), by means of the equations

eq

L = 90 + 10 log(8y/100T) ; L 90 + 10 log(yT'/lOOT) (6)
T eq

or using the nomograms provided in the handbooks.

The L is then compared with the maximum figure of 90, and we say either
eq

that there is no danger of incurring a hearing loss, or else that we must reduce

the dose either by reducing the noise level by so many dB or by reducing the

exposure time - and to do this last part of the sum we have to use antilogs or

fiddle with the nomogram.

How much easier it would be if we left dB and percentages out of the cal-

culation and simply worked from the value of X in equation (4)!

3 EFFECTS OF NOISE SPECTRA ON ATTENUATION

An apparent advantage of using the dB is that we can talk about attenua-

* tion in the same terms as amplification. Thus, a noise level may be increased

by 10 dB (that is, the energy is multiplied by 10), or attenuated by 10 dB (that

is, the energy is divided by a factor 10).

But this sometimes masks the true meaning especially in relation to noise

dose. For example if the attenuation given by an ear-protector is 10 dB for one

frequency band, and -3 dB for another (by no means an unknown phenomenon), this

means that 10 per cent of the energy reaches the ear in the first band, but in the

second, the energy is doubled. The importance of these figures will depend on

the noise to be attenuated in each band; but it is clear that if the energy

outside is approximately the same in each band an improvement of the same number

*; of dB in each band will have far more effect in the second band than in the

first.

% Fig 3 shows some variations on this theme. Fig 3a shows the further

-decrease of transmitted energy if the attenuation is increased by 1, 2, 5 or 10 dB.

CFig 3b shows the increase of attenuation in dB that would be required to decrease
__4
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the proportion of the input energy transmitted by 1, 5, 10, 20 or 50 per cent.

It will be seen, eg, that an improvement of 1.0 dB from 0-10 dB will remove 90 per

cent of the energy, whereas an improvement from 20-30 dB will decrease the

energy transmitted by only about I per cent (0.9 per cent). And an increase of

attenuation from 0-3 dB will remove 50 per cent of the energy, but to remove the

further 50 per cent after an attenuation of 3 dB would require infinite

attenuation!

These are very simple and obvious illustrations, but I believe the impli-

cations are not always recognized and that enormous effort is sometimes applied

to increasing already adequate attenuation, instead of concentrating on those

frequencies where a small gain in attenuation would greatly decrease the trans-

mitted energy.

The arguments so far refer to separate bands of noise, but it is also true

that the attenuation of a band of noise by a hearing-protector (assuming that the

properties of the protector remain constant) will not be independent of the

spectrum of noise within the band unless the attenuation at all frequencies

within the band is the same. In Ref 9 it was shown by narrow-band measurements

that the attenuation of noise by the Mk 4 helmet may vary by as much as 20 dB

within a third-octave band. The possible bearing of this kind of variation on

the attenuation of a third-octave band of noise was sunmmarised as follows:

Suppose the ratio of the rms pressure inside to that outside the muff at

a frequency f Hz is t , equivalent to an attenuation of (-20 log t) dB, and

that the rms amplitude of the sound pressure density at the same frequency is

20X PPa, equivalent to (20 log X) dB. Then the attenuation of noise in the band

from f Hz to f2 Hz is A= (- 20 log T) dB,
2 f

N 2 .2

where T2 = (tX)2df x2 df (7)

Some features are obvious from equation (7).

(1) The overall attenuation of noise depends on the distribution of acoustic

energy within the band.

(2) If within the band, t is always greater than tmin and less than t CD

then T will also lie between these limits, whatever the noise spectrum.
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(3) If all the noise is concentrated in a narrow band about a frequency fk Hz,

say, the effective overall band transission will be the value of t at fk Hz.

(4) For white noise, X is constant throughout the band, hence, substituting

in equation (7), T the transmission of white noise is given by

2
T = [ t2df (f2 -f) (8)w2

For third-octave bands, the variation in level of pink noise within the

band is small, only I dB, so that, if T is the transmission of pink noise,i p

T £ T " (9)p w

Fig 4, also taken from Ref 9, illustrates the limits within which the overall

attenuation of noise within a band may vary relative to the attenuation of white

noise according to the distribution of the noise energy within the band, if there

is a step change of attenuation within the band. The maximum and minimum overall

attenuations will clearly occur if all the noise is concentrated within the part

of the band with maximum or minimum attenuation, as opposed to the case when the

noise is more or less evenly spread over the band.

4 'EXPONENTIAL' RELATIONSHIPS

4.1 General

It is common in acoustics to postulate so-called exponential relation-

ships between noise and some dependent function, using equations of the form

known in psycho-acoustic as in other psychological measurements as Stevens'

power law:

q = A(p/pr)n (0)

where q is the dependent function, p is the rms sound pressure referred to

.U P (generally 20 pPa), and A and n are constants. Such a function has the
r

great advantage that, taking logs, we have

log q = log A + n log(p/pr)

= log A + (n/20)L (11)

where L is the noise level in dB.

L' iv..
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Hence, a plot of q on a log scale against L is a straight line, and the

value of the exponent n can be determined from the slope. Thus, if measure-

ments are made in dB, there is a strong incentive to formulate theories based on

this equation.

Although equation (10) may represent some functions faithfully, the facile

assumption that all relationships in certain fields are of this kind can lead to

erroneous conclusions. For example, if there should be a constant added to

either side of the equation (10), the plot would no longer be a straight line,

but experimental points might still appear to lie on a line from which an

exponent could be deduced. Such an exponent, though it represents the form of

the function over the experimental range, can lead to a total misunderstanding

of the nature of the mechanism involved.

4.2 Ultimate TTS in steady noise

It has often been suggested (eg in Ref 10) that the ultimate threshold

shift in dB, at a given frequency, for exposure to a given kind of noise, is

given by an equation of the form

TTS = n(L - L) (12)Mc

where L is the sound level in dB, L dB is a so-called critical noise level
c

and n is a constant generally said to be about 1.7. The difficulty that TTS

can only be positive and that equation (12) gives rise to negative values for

L < L is overcome by stating that equation (12) holds only for L > Lc

Various formulas to fit results for L only a little greater than Lc , where

the plots are plainly nonlinear, have been suggested.

I have proposed elsewhere that equation (10) is incorrect for this

phenomenon, ir that, since we are looking for changes in threshold, the left-

hand side should be (q - ql) where q and q, are the rms pressure thresholds

ultimately and initially. Equation (12) then becomes of the form

TTSM = 20 logll I antilog[n(L - L )/20]l . (13)

This clearly gives positive values for any value of L , and I showed that much

% of the published data fits the assumption that n - 2. Such a value of n

makes good physical sense, since it suggests that the TTS is due to the absorbed

energy.
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4.3 Growth ot TIS in sLeady noise

Again, it is customary to ittempt to fit straight lines to plots of dB

against log time ii; ,,usilering response, for example, the growth of and recovery

from TTS. The assumiption is that

1 A + B log t (14)

where A and B arc ,-onstant-; and 1) di is the varying level.

If we write equation (14) in prossures taking p 1or the threshold pres-

sure at time t and pI the initial threshold in Pa rms, we have

(p/p 1 ) = ;tt (15)

where 20 log a = A and 20 n = B.

But such equations can hold only if all valucs c,1 1) trom -. to - are

possible, which is clearly never the case in accotstick where nei ther perfect

silence nor infinite levels art attainable. As, t,, attoiy; to lit straight

lines to plots of this kind is often made wit-hout considering whether a relation-

ship of this form is likely. For examplte, when dealing with TTS, there is no

ground for supposing, that the shift of the pressort threshold is proportional to

a power of the time. Also clearly, one always starts at zero shift and tends to

an ultimate asymptoti: v,luc i" growth, or 'i- ' Vt s, ill recovery, so that

equations like equation (W4) can only fit sect ions of response curves and give,

at best, an approxima,_ion to th, time funct ion.
~II

I have suggested , that lor TTS the true torm is given by the usual

exponential functions

in growth p - p, = - p)(l - exp(-t T) 1

in recovery P - p, (Pl - p,) exp(- /T)

where p1  and p, Pa rms are the initial and ultimate pressure thresholds

and T is the time constant.

These are simple and easily understood forms. If we turn equation (16)

into dB, however, the simplicity is lost, for we then have,

-1

r



iii growth, = 20 log(p/pl)

and n reovel, - 1)0 log I +[antilog(D'/20) - 1] [P - exp(-t/T)

it] recovery, 1) = 21) log(p/It,)

-20 log I + [anti log(l)'/20) - 1] exp(-tIT)

where D)' is the ultimate shift in growth and the initial shift in recovery.

Equat ions (16), (11) and others deduced from them seem to fit published data
11,12

reasonably well and in a physically comprehensible way . But it is difficult

to see how equations of this kind could he deduced without working in pressures.

4.4 Reverberation time

Reverberation time is an important factor in defining the acoustic proper-

ties ot rooms. For a giveni frequency it is defined as the time for the sound

level to drop 60( dB from a steady staLt. after the noise input ceases.
13

"it is assumed . t.., ( ) I()te larsen , 'that the decay rate is exponential and

therefore manifests itself as a straight line when the sound pressure level is

represented oti a logarithmic scale."

'hat is, it we start front a level DI dB = 20 log(p /Pr) it is assumed

Lhat the level at time t is I) dB= 20 log(p/pr)

where p - ple - (t/T)

p being Lhe refetence pressure and T a time constant.

Converting to dB, equation (18) becomes

D - D/ log - 8.686(t/T) (19)

This equation clearly represents a straight line of dB against a linear time

scale.

The reverberation time, Tr , is that time at which I) - D - 60, that is

= IT/log e = 6.908r (20)
r

If these equations represent conditions accurately, there would be no

objection to measuring the reverberation time by taking the slope of the line

at any time. But, in fact, decay curves generally exhibit some curvature, the

slope decreasing as the level falls. Larsen 13 suggests that this curvature is

r
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due to the involvement of different Eigen modes, and obtained quite good corre-

lation between theory and his experimental results except in one case: decay at

63 Hz. He explained this by saying that possibly the frequency spectrum was not

flat at 63 Hz or "As the level at 63 Hz was also low, the background noise

could have had some influence on the measured curve."

Indeed it could! Equation (18) is only an approximation, and only holds

as long as the levels are well above the background level, the true equation

must be that given by equation (16)

L -(t/T)

P P2 (pI - P 2 )e

where D = 20 log(p2/Pr) is the level of the background noise.

If the initial level is D' dB above the background level, that is

D? = D l - D2

we may re-write this equation in terms of dB and T asr

D = 20 log I + 0  
- I 10 (21)

Fig 5a shows D plotted against (t/T ) for D' = 70 . It will be seen thatr
the curve is very nearly linear, at least to the eye, until D becomes small,

when the slope decreases and apparent reverberation times become very large.

When decay curves exhibit noticeable curvature, or when the total drop is

insufficient to measure the time taken to decay 60 dB, or even 30 dB, various

other methods of estimating the reverberation time have been tried. Larsen,

for example, compared the estimates made from the slopes of the curves and those

made from best linear fits.

It is easy to show by differentiating equation (21), that the slope of the

decay curve shown in Fig 4a at a level D dB above the ultimate level is

-60(1 - 1 -D/20)/T

so that the reverberation time T' estimated from the tangent is given byr

T/T 1/(1 -D20) (22)
r r
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Curve I of Fig 5b shows the percentage increase of T over T plottedr r

against D . It will be seen that the error will be less than 5 per cent so long

as D exceeds about 26 dB, but for lower values of D increases very greatly.

The 'best fit' method over a drop from D dB to d dB is likely to give a

slope approximating to the line joining those extreme points. It can be shown

that the estimate of T from such a line will be given byr

r/T [20/(D- d)] log[(lO D/ 2 0 
- l)/(10 d /  

- )] (23)

Curves 2 and 3 of Fig 5b show the percentage increase of T' over T for
r r

drops to 10 dB and 5 dB above the ultimate level. It will be seen that the

errors always exceed 5 per cent even for initial levels as high as 70 dB. The

moral of this analysis is that plots of level against time will not give an

accurate estimate of reverberation time unless the lowest level used is well

above ambient level, probably at least 20 dB. There are other causes of curva-

ture in decay curves, as Larsen has demonstrated 13, this analysis merely explains

one simple cause which may sometimes be neglected in the investigation of more

complex and abstruse causes.

5 CONCLUSION

No general conclusion can be drawn from the somewhat disjointed discussions

presented in this Memorandum, except that I personally have grave doubts of the

universal utility of the dB in noise work and believe that I have cause for

those doubts. I do not expect that my arguments will persuade anyone that

noise should never be measured in dB, indeed, I myself do not think that. What

I do believe, and what I have tried to express and illustrate in this paper, is

that though the dB may be a useful unit in some applications, it is not absol-
utely necessary, and in many cases, for example when ;onsidering noise doses,
it complicates a fundamentally simple procedure; and in others such as the study

of the dynamics of TTS it prevents the recognition of well-known dynamic forms.

I would conclude with a plea to workers on noise that they should always

keep clearly in mind that noise consists of pressure variations and that the dB

is merely a method - sometimes convenient, sometimes the reverse - of describing

widely varying numbers. If I have persuaded anyone that he should try to write

.k so that those not steeped in dB may understand, I shall feel that my efforts

have not been wasted.
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