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ABSTRACT

This report deals with the use of high frequency asymptotics

to evaluate and possibly facilitate, the convergence of the

transition matrix formulation of scattering. For illustrative

purposes, elastic and acoustic scattering from spherical and

spheroidal cavities is considered in some detail. References

are presented for other types of inclusions. Finally, a general

method is suggested for integrating high frequency asymptotic

solutions into the T-matrix formulation itself with the purpose

of improving convergence. The method is implemented for the

case of a spherical,-and a prolate spheroidal, cavity.

4,
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J . INTRODUCTION

The transition matrix CT-matrix) formulation of scattering is the

most recent addition to the well-known classical methods: separation of

variables, the integral equation method, and the variational method. 1 ,2

This method has been applied to acoustic, elastic, and electromagnetic
mdaand to a variety of complicated geometries.

2-6

drawback of poor convergence when the ratio D/X >> 1, where D is the

characteristic dimension of the scatterer and X is the characteristic

wavelength of the scattered field. Typically, the number of terms

required for convergence is of order 2D/A. However, "coordinate stretching"

can be used to reduce the extent of the calculations implied by this

criterion. 7While the TM method appears to be a most efficient formulation,

and consequently, the most widely studied over these last few years, it

too entails numerical difficulties at high frequencies.

For problems in steady state elastic and acoustic scattering, the

character and functional dependence of the scattered field, as well as

4 its amplitude, vary with frequency. In the low frequency or Rayleigh

region, defined by D/A < 1, the scattered field is completely defined in

terms of only the gross characteristics of the scatterer, viz, it's overall

dimensions, relative density and compressibility. 8Computationally, this

region generally involves little difficulty using any of the traditional

analytical techniques. The low frequency regime is followed by the

resonance, or standing wave, region whereby the scatterer dimensions are

comparable to the characteristic wavelength(s), i.e., D/A - 0(1-10). It

is at the upper end of this regime where numerical formulations, either

modal or integral, begin to exhibit some computational difficulty; lack

of convergence, round off errors, the existence of forbidden frequencies,

etc.
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As frequency -..aa-reasex further, or correspondingly as wavelength

decreases, the scatterer begins to measure many wavelengths. Here the

scattered field is more conveniently described in term of travelling

waves which are generated at the boundary of, and within, the scatterer.

) - These travelling waves, because of diffraction and dissipation are

attenuated as they circumnavigate the scatterer. For present purposes

this is defined as the creeping wave region.* Finally, the limitinq high

frequency asymptotic (Kirchhoff or Physical Optics) reqion is defined as

that region where ray theory applies, i.e., where the scatterer can be

considered to be locally reacting and where each scattering element acts

as if it were in an infinite baffle.

It is in these latter two frequency regimes where the computational

difficulties encountered by numerical formulations, including the T matrix,

become severe. The purpose of this study is to analyze the potential role

that high frequency asymptotic scattering formulations may play in serving

(a) as a convergence check for T matrix solutions, and (B) as a means for

improving the convergence of T matrix formulations. For discussion

purposes only elastic and acoustic media, and spherical or spheroidal

scatterers, are considered. Also, the high frequency formulations are

limited to the Kirchhoff and creeping wave type.

In Section 11 the problem of elastic scattering from spherical

inclusions is reviewed, together with the corresponding T-matrix and

wave harmonic formulations. The corresponding high frequency asymptotic

solutions are also discussed in Section 11. In Section III a general

formalism for using these high frequency solutions to complement the

T-matrix formulation is presented together with illustrative examples.

A specifically, the examples are scalar scattering from a spherical, and a
prolate spheroidal cavity.

*it is noted that this definition of the creeping wave region is more

restrictive than need be since, in theory, creeping wave solutions can'
be as general as is the corresponding wave harmonic series from which
they are derived.

-2-
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II. ELASTIC SCATTERING FON SPHERICAL INCLUSIONS

A. Governing Equations of Notion

The harmonic response of a three dimensional linearly elastic

solid can be fully defined in terms of a scalar and a vector potential

which satisfy a scalar and vector wave equation respectively. In

spherical coordinates (Fig. 1), the vector wave equation is itself

separable and one is left with the following governing equations of

motion

Cd2 2
cdV2+ W 2 0 (la)

c2V2* +W 2 -0 (lb)

c22X 2
+4 X "+W2 0 (lc)

from which the associated displacement field may be calculated. Using

spherical coordinates
9

u .it + a2(rx_ 2 (2a)
r r 2

1 W i 1 a(r +a 2(rx) (2)6 r 3 rsinO 8I r aear

u - I (j) + aa 1 (rX) (2c)
B rsine 38 r ae rsinO .(r

In the above equations w is the circular frequency and c and c represent
Cd s

the dilatational and shear wave speeds, respectively. The corresponding
9

stress field can also be explicitly determined. For an axisymmetric,

i.e., $ independent, problem such as is considered in this report, 0 - 0.

In the case of a cavity of radius a centered at the origin the boundary

conditions to be satisfied are
a rr la,e,B) - or8(a,6,B) - ar (a,8,B) - 0 (3a)

For a rigid and immovable inclusion, also of radius a and centered at the

origin, the boundary conditions are

-3-
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u (a,e,8) - u.(a,8,8) - 0 (3b)

A dilatational source may be represented by the potential

* (r,e) = 0oexp(ikdR)/R

(4)

- -i okd E (2n+l)h (kdr s ) (kdr)Pn(CO)
o dn n dsn d ncs)

where k d = W/cd and r and r refer to source and receiver locations

respectively, with rs > 1. The spherical Hankel and Bessel functions are

denoted by hn (x) and j n(x), and P n(x) is the Legendre function. For

kdr s >> I the large argument asymptotic expression for the spherical

Hankel function may be used and Eq. 4 reduces to the expansion for an

incident plane wave

0 (r,'e) - 0o E (2n+injn(kdr)Pn(cose) (5)
on jn d n

with

00 = oexp(ikdrs)/rs

Alternatively, a distortional (axisymmetric) source may be specified.

X (r,e) - Xok 2rssin~expliksR)/R

(6)
- -iXsk Z (2n+l)h (ks r )  (k r)dP (cose)/de

where k. = w/c.• For this source the vibration is transverse, and in the

incident plane at large distances.

B. Formulations for Solution

1. Wave Harmonics

Using spherical wave harmonics, the potentials which define

the scattered field for the (axisymmetric) problems posed above are given

in series form

-4-

f . . . iil-- -. . ., . . . .. . . i.. . . .. . ..



CAMBRIDGE ACOUSTICAL ASSOCIATES. INC.

Z - n A h (k r)P (cose)
n n n d n

(7)
x- Bnh (ksr) dPCose)/d

n n n s i

The unknown coefficients A and B are determined from the appropriaten n
boundary conditions and source configuration. For example, in the case of

a dilatational source incident on a spherical cavity
9

D= a -a1a (9)

11 n 22 12 1

and where

12= n(n- (n-l)ns-nn a  d

B a11 a 21 ad 1 1  (k a)

a2 1 = (n-l)h (kda) (kda)h+ (kda)
2 1 [~-l-ksa 221hn(d)(kah+kea 121nl(n-1Olksa)( ~ nl( )

a22 = n2_1-(ksa) 2/2]h n(k sa)+(k sa)h n+ l (k s a)

2bI = [n(n-l)-(k a) /23j (k a)+2(kda)J ( k a )
s n d +(da~ (l a)

ii b2 = (n-l)jn(kda)-(kda) Jn+l (kda)

Substituting Eqs. 10 into Eq. 9

D = 1hn (kda)h n (ksa)+$ 2 hn (kda)hn+l (k5a)

(11)
3 h d(ka)h n(ksa)+0 4 h +l(k a)h (k a)

w+ d n n+l a

with

-5-
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01 = (k a) 2/2{(2n+l) (n-l)-(k a) 2/2 - 4n(n-1) (n2-1)/(k a) 2

2

0 3 = (k da) [(n2_1) (n+2)-(k sa) 2]

4 = -(k da) (ksa) [(n-1) (n+2)]

using the recursion relation

hn+ ( x) = hn(x) - d(h (x) 21/dx (13)

The quantity D can also be expressed in the following form

D = h n (k da)h n (k sa)+2 hn (kd a)h n (ks a)

(14)

h h(kda)h (Ic a)+ h (kda) h (ksa)
3n n s +4n n s

with

n(n -1) (n+2)+(k sa) 4/4 - (ks a) 2(2n(n+l)-l]/2

2 = (ksa) [(ksa) 
2 /2 1

(15)
- 2

S= (ka) [(k a) -(n+2)(n-l)]

,4 = (ksa) (kda) [2-n(n+l) ]

2. Creeping Waves

In general and including the results above, the wave harmonic

formulation for elastic scattering can be shown to yield convergent series

for the potentials as well as for the associated displacement and stress

fields. However, it is the nature of the formulation that the number of

terms required for convergence increases with frequency. In order to

-6-
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transform such series into ones which converge rapidly at high frequencies,
10

the Watson transformation is employed. A key ingredient in this trans-

formation is the formula

nZf(n+1/2) = (1/2) f (v)exp(-irv)/cosrvdv (16)

C

where f is a reasonably well behaved function and C represents an

appropriate contour. This contour is then deformed such that the integral

can be evaluated in terms of a set of pole contributions, each representing

a creeping wave. Specifically, for the class of problems considered here,

this approach leads to the following identity

E (2n+l)P (cose)f(n)/D(n)
n= 0 n

(17)

= 27r {vP (cos(,r-) )f(v-i/2)/[cosvwaD(v-i/2)/av] I
I v-1/2 V=V.

where the (creeping wave) roots v. satisfy the equation)

D(vj-i/2) = 0 (18)

(It should be noted that Eq. 17 may also be obtained by means of the

Poisson summation formula.i11

For example, we again consider the case of a dilatational source

incident on a spherical cavity. The solutions to Eq. 18, for k a >> 1, are

of three types.1 2'1 3 An infinite set of shear type

as+2-1/3 5/37ri -ir 1/2
± vj( s)~ (e z)f , j = 1, 2, 3, .... (19)

An infinite set of dilatational type

v2j()-%d+2 1/3e 5/3i(ei aj) , j = 1, 2, 3, ... , (20)

and a single pair of the Rayleigh type

± vR  (cs/CR)Q s (21)

-7-
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where the imaginary part of vR vanishes exponentially as %S' . The z.
R 14 3

are the roots of Ai(z)=O which are real and negative, Ai(z) is the Airy

function and cR is the Rayleigh wave speed. It is interesting, as well

as reassuring, to see that for high frequency scattering from a cavity

there is a root v R - wa/cR which corresponds to the Rayleigh surface

wave on a (planar) half space.

The corresponding potentials (for 00) are given by
13'1 5

CW.= 2iri exp(-iT/4)4 O Z (-l)s 7v.Ij(kdr)

+(ni/2)exp(iirvj ) (a 2 2bl-a 1 3 b2 ) n (22)

h_(kdr)]/(aD/v) _ P_(cos)exp[iv (27s+t/2)]
V ln=v V

Xcw = 27Tiexp(-i r/4) O 4E (_i)2 EV.(ni/2)exp(iTv) (allb 2 -a 2 1 b I)

(23)

h (ksr)/(3D/a\v) dP (cosf)/dO

with v = v.-1/2 and 0 # 0. The travelling, or creeping, wave nature of the)
above potentials is evident if one substitutes the large order asymptotic

expressions for the Legendre functions in Eqs. 22 and 23.

P (cosO)~(2Trv.sin) -1/2fexp[i(ej6-r/4)]+exp[-i(j6-7/4)]} (24)
V

It can be shown that for large Q and 0 the above series, as well as
d S -N

those for the corresponding displacements, converge as v. with N > 1 for

0 < 0 < w/2 when s=0, and for 0 < 6 < w when s # 1.13 Thus, unlike the

wave harmonic series given earlier the convergence of the creeping wave

series actually improves with increasing frequency within their domain of

validity. Also, convergence, improves with increasing 0. In other words,

it improves as one moves away from the illuminated zone. This is a general

phenomenon which in some cases limits the utility of creeping wave

solutions to the shadow zone therefore providing a convenient supplement to

physical optics solutions (Section II.B.3).



! _CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

Creeping wave solutions exist for inclusions of other than spherical

geometry and zero impedance as well as for other types of incident waves

both harmonic and transient. Cylindrical cavities have been studied by
Miloit 16  17

Miklowitz and Peck1 . Gaunaurd and Uberall have obtained solutions to

many different scattering problems including fluid filled spherical cavities

embedded in a viscoelastic as well as elastic medium.1 8 '19  (In their

approach the contributions of creeping waves are represented in terms of

Regge poles.) They have also considered incident waves of the distortional
..20

type.

3. Physical Optics; Kirchhoff

The physical optics, or Kirchhoff, high frequency asymptotic

approach to scattering has been used extensively for radar 21 and acoustic
2 2,2 3

applications. The method is applicable to the illuminated zone and is most

useful when applied to the specular return. The basis for this formulation

is that each differential scatterer acts as though it were located in a

planar infinite baffle. For the problem of elastic scattering, this

assumption allows one to express the scattered potentials in terms of a

Green's function which satisfies Neumann boundary conditions at the

boundary of the scatterer.

2 ) G G(R,R a (R )/an dSO

S
0

(25)

XR) =- 2 f GX(R,R) ax()/3n dS

S
0

with G (Rk 0 exp(ikdlk- j)/[4 0 11

(26)

G (U, exp(ik JRi J)/[41riR-i I]26
x 00

and where S is the surface of the scatterer, n represents the normal to0

the surface and R denotes a vector quantity. The integrals in Eqs. 25

when evaluated asymptotically for large kda (or k a) by means of stationary
-9

-9-
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phase, yield the specularly scattered field for either bistatic or mono-

static conditions. The values for the normal derivatives of the potentials

evaluated at the surface are obtained from reflection coefficients

associated with the corresponding planar scattering problem. For example,

for the problem at hand, consider a plane dilatational wave incident on a

free surface at angle 0. from the normal.

i 0exp[ikd(xsineizcosei)] (27)

Both a dilatational and a distortional wave are scattered24

ss Aoexpfik d(xsin8i + zcosei) H

(28)

s
x= Boexp[ik s(xsin6 + zcos6)]

with k dsinO = k ssin6 (29)

and

c cosOitan 26 - cdCOS6

A-2
c cosO.tan 26 + c dCOS6

c sin26. 2c cos6S 1 5

CdCOS2 6  cosS.tan226 + c CoS6

Therefore, from Eqs. 28

!i 0S/Dn = 30S/az = ikCOSei0 s

d s
and (30)

ik cos6 Xs
axS/an -ik s OS

Thus, under Kirchhoff approximations, although mode conversion is accounted

for (and neglecting multiple scattering), the scattered potentials can be

-10-
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considered independently. Actually, if one limits oneself to back

scattering, then symmetry considerations dictate that the exact solution
25

as well yields no coupling.

For the problem of a plane dilatational wave incident on a spherical

cavity the dilatational component of the (bistatic) scattered field is qiven by*

s -ikd acosy ikdp
SK= 0acosysinye e (31)

i22

where p = IF a 22aRcos(y-0)]l/2

= pRsinysin6[cosy+(a/R)sin3y/sin(y-8)-siny/tan(y-8)
I /2

and

(R/a)sin(2y-0) = siny

In the far-field, i.e., for a/R << 1, Eq. 31 reduces to the well known

result for specular scattering (both bistatic and monostatic)

s (a/2R)eik(r-acosO/
2) (32)

K

or

R K/i = a/2R (33)tK
It is the nature of this formulation that it is easily constructed for

arbitrary geometry and (locally reacting) surface impedance.

4. T-Matrix

The T-matrix formulation of scattering has significant

computational advantages over other, more traditional, matrix formulations.

These advantages relate to the nature of the elements of the matrix which
3

turn out to be surface integrals exhibiting regular integrands. The first

step in the formulation is to express the incident and scattered fields in

*This result was obtained by my colleague Dr. W. T. Ellison and represents
an extension of his previous work on monostatic scattering.

26

-11-
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terms of the appropriate eigenfunction series for incoming and outgoing

waves, viz. cylindrical harmonics for two dimensional scattering problems

and spherical harmonics for three dimensional problems. Then, a set of

functions, f., is introduced which is complete but may or may not be

orthogonal, on the scattering surface. This set of functions is not

necessarily unique and may be chosen for analytical or computational
4

considerations. Finally, the incident and scattered fields are expanded

in terms of these functions f. on the surface of the boundary and the

appropriate boundary conditions are satisfied term by term. The T-matrix,

which relates the unknown coefficients of the series representing the

scattered field in terms of the known incident field, is thus derived.

For completeness the procedure for scalar scattering is outlined below.

Consider three-dimensional scalar scattering and a scatterer that

satisfies Dirichlet boundary conditions. The incident wave is given by

i
0 (r,O,0) = Z Ann (r,6, ) (34)

The scattered wave is represented by

SS(r,O, ) = E B n (r,8,O) (35)
m mm

For example, for axisymmetric problems

n(r,6, ) -j (k )P (cose)
n n r n

I and

n n (r,0,) = h n(kr)Pn (cos e)

where j and h dencte the spherical Bessel and Hankel functions respectively
n n

and Pn is the Legendre function. The Dirichlet condition on the boundary SO

is given by

I S" +l .s 0,+ 5- (36)
i is

0 0

-12-
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Expanding Eqs. 34 and 35 in term of the functions f and satisfying Eq. 36

yields the set of equations

f[A + BnCf ,rn)] - 0 nj - 0, 1, ...- (37)
n~f n nj Jn

(r,O,#) on S

where (u,v) -f u*vdS°  (37a)
• J S o

Using the usual notation, Eqs. 37 (truncated) may be written in matrix

form

[Q]i + [Q0I - o (38)

where A - [AlA 2 ,--AN]

B- [BIB 2 ,---BN]

[Q] - Q. " (f'.f
jn n

IQ) = Qjn j (fj'nn)

Solving Eq. 38

B I [Q]I[ l TA (39)

where T defines the T-matrix which in turn defines the scattered field as

given by Eq. 35.

-13-
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III. THE USE OF HIGH FREQUENCY ASYMPTOTICS TO EVALUATE AND FACILITATE THE

CONVERGENCE OF T-NATRIX SOLUTIONS

A. General Formulation

As indicated above, in many cases high frequency scattering solutions

share the simplicity often found in low frequency formulations. For example,

while in the low frequency, or Rayleigh, region only the volume, density

and compressibility of a complex scatterer may be needed, in the high

frequency regime, often only the local radii of curvature and reflection

coefficient need be known to calculate the specular return. Thus, as is

the case for low frequencies the nature of the solution to a variety of

complex scattering problem tends to coalesce yielding a large number of

scattering problems which is bounded at both the low and high frequency

ends by known solutions. These solutions can benefit T-matrix formulations

in a number of ways. First, they can provide convergence checks. These

checks need not necessarily be in terms of matching amplitudes but also in

the case of creeping wave solutions, the checks may be in terms of phase

velocities (Eqs. 22 and 23) or, for transient problem arrival times.

Also, although only separable geometries have been considered in

Section II, the asymptotic results can be extrapolated to other more

complex geometries. This is straightforward for the specular return since

it is a local phenomenon. However, as stated above, it is also the case,

albeit somewhat more limited, for the creeping wave results by proper inter-

pretation of the functional dependence of the creeping waves on the spatial

coordinates.2

Additionally, another use for these solutions is being proposed

here. In particular, it is suggested that there may be computational
* advantages to be gained by integrating these solutions into the T-matrix

formulation itself.

one possibility would be to use the high frequency solutions as an

aide in choosing appropriate base functions, f. An mentioned earlier,

F the base functions, f , can be chosen for analytical considerations,

e.g., consistency with the Helmholtz integral formulation, as well as for

computational considerations, e.g., minimization of the mean square

-14-
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deviation from the prescribed boundary conditions. 3 In terms of this

latter consideration, it would be reasonable to expect that knowledge of

the nature of the high frequency behavior at the boundary should allow

one to develop base functions, either in part or the complete set, which

would yield computational benefits at high frequencies. Unfortunately,

this approach would generally lead to frequency dependent base functions

and it is not clear to the author how this could be conveniently accumilished
in a general fashion. Thus, this possibility is not pursued further.

However, what is suggested for further study is the following.

Consider the T-matrix formulation as presented in the previous

section. Let s represent the (known) high frequency asymptotic solution

for the scattered field which, like the actual field, can be expanded in

terms of two or three dimensional harmonics for outgoing waves.

s " Cm(r8,*) (40)

with

Cm " f sp ml/Inm nml 141)

Thus, since n m are complete over all space V, Eq. 35 may be written as

a (r,8,*) = 4odlr,8,0 * a (r,8,*) (42)

with

* od(r,6,o) - J(5m-Cm)rnm(r,e,#) (43)

The matrix equation (Eq. 37) becomes

R[AnlfJ n n) + Dnl fnnl - ) (r,e,#) on S°  (44)

where D = Bn-C
n n n

In matrix notation

D-TA - Q j (45)

-15-
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with ¢ (fi) (46)

What is accomplished by the above manipulations is that the (unavoidable)

computational difficulties that are associated with the series expansion

of the scattered field at high frequency have been isolated and extracted

from the T-matrix. (It should be noted that this approach is equally

applicable to the wave harmonic formulation for soparable geometries.)

B. Illustrative Examles

1. Spherical Cavity

To illustrate the concepts discussed in Section A we first

continue our consideration of scattering from a spherical cavity and in

particular, backscattering. For simplicity, we will limit our high

$frequency asymptotic solution to the specular return given in Section

II.B.3. In other words, let * be given by Eq. 31. Further, since for a

spherical scatterer, nothing is gained by choosing the set f to be other

than the Legendre functions P (cose). Results for the backscattered
J

pressure and relative phase vs. frequency are shown in Figs. 2 and 3. The

exact solution was obtained by summing the wave harmonic series (Eqs. 7-

10), or equivalently the T-matrix series (Eqs. 35 and 37), to convergence.

Roughly speaking, for the problem at hand convergence requires N > 2(ka+l).

The dashed line connects points which represent the contribution of the

first term in the T-matrix series which was calculated using only a 2 x 2

matrix. Obviously the result is adequate only for low values of ka. The

dotted line is the corresponding result for the modified T-matrix

formulation (Eq. 42). Further improvement could be obtained by including

the creeping wave (Eq. 22), as well as the specular, contribution to

2. Prolate Spheriodal Cavity

The example of a spherical scatterer is of somwhat limited

value as an illustrative example in the sense that the T-matrix approach

degenerates identically to the wave harmonic solution. Thus, in this

section we consider (scalar) scattering from a cavity in the shape of a

-16-



CAMBRIDGE ACOUSTICAL ASSOCIATES. INC.

prolate spheroid. For convenience, we again limit ourselves to back-

scattering and consider end-on incidence (Fig. 4). The prolate spheroidal

coordinates (&,n) are related to cartesian coordinates by the transformation

x -(d/2)(1-n 2 1 )(E2 -1) 1/2

(47)
z - (d/2)r F.

with -1 _ n 1_ 1 and 1 S < =

The scattering surface is defined by the equation E - o" For the present

problem &o is taken to be 1.1547, which yields a spheroid with a 2:1 aspect

ratio. For this geometry, and assuming symetry about z, the inner product

(Eq. 37a) becomes

1 --

(u,v) - 2w(d/2) 2 (t-21) 1/2 J (ur)(E2 -n 2 ) 1 /2 d (48)

-1

Also, the local radius of curvature at (Eo81), i.e., end-on, is given by

2
a - (d/2)(E 0_)/ko (49)

Thus, the high frequency (Kirchhoff) backscattered level (equivalent to

Eq. 33 for the spherical scatterer) is given by

IjR#/l . a /2R (50)

A comparison between this asymptotic result and the exact solution29 is

shown in Fig. 5. In order to maintain a notation consistent with Reference

29 the ordinate in Fig. 5 is given in term of a backscattered cross-section

which is defined by

/ak * 12R/(d/2)Lko/(C211] /i ] 2 (51)

Also shown in Fig. 5 is the result of a T-matrix formulation using base

functions

fj= cos6) - 0. 1, ... N (52)

where

-17-
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6 tan- (x/z) = tan- 2[- )(E -1)] 1/~~ (53)
0 0

Consistent with the previous example the number of terms required for

convergence is given by

N = 2(k& d/2+1) (54)

The integration implied by Eq. 48 was performed usinq the trapezoid rule

with a mesh size equivalent to A/8.

It should be noted that, as was the case in the previous section,

the high frequency asymptotic solution is reached before the convergence

criterion (Eq. 54) becomes prohibitive. An indication of the effectiveness

of the high frequency modification for this case is shown in Fig. 6. Here

the percent error incurred by constructing the scattered fieild using only

the first N/2 terms in the T-rnatrix solution is plotted vs non-dimensional

frequency for the modified as well as the unmodified formulation.

In summary, both examples, although elementary, indicate that the

extraction of appropriate high frequency components from acoustic (or

elastic) scattering problems may represent a viable means for improving

the convergence of T-matrix formulations to more complex problems.
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