
AO-A093 442 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 5/2
DATA BASE DESIGN FOR DECISION SUPPORT.(U)
OCT 80 E K CLEMONS NO014-5-C-0462

UNCLASSIFIED 80-10-02 NLIIE/I///EEEEE
EEEEEEEEL

111111= .0 :I 8 35

MICROCOPY RESOLUTION TEST CHART
NA11INAi LIRALl (If IANDARO 161 A

'II

C L &!I$I I . A I ;) O HI h 0 1AL (-r-1- I -' -I -.d)-

REPOR DOCMENTTIONPAGEI-LALj 1N*'ThU.CTIOS
REPOT DCUWETAT~t~ AGEFiEfOihE COMI'LLTINC FORM

1. tL 0 MBER 2. GOV8 E RL&SION NO, 3. RLCIPINT'S, CATALOr. NUAYYLR

4. 8-- - -0D. S. TYPE OF REPORT A PERIOD COVER

DA~h ASED SIG I FO DF~ S~a ,~up o~~RMING ORG. REPORT wUM&9I

7 T1"fo 7 ACT OR GRANT N SLR(4

S Eric K. 14 -T5ce ' 62"

S. PERFORmiNG ORGANIZATION NAME ANID ADDRESS 10. PROGRAM ELEMENT. PROJECT. Tri
Department of DeCisincede *** AREA & WORK UNIT NUMBERS

The Whartoni Schxol, u. of PA Task NR049-272
Phila., PA 19104

II. CONTROLLING OFCNAEANT) ADDRESS *NEOct PAG

owes 24
14. MITORING AGENCY-.NAME &ADORES dl ~ 1 9t. SECURITY CLASS. (of this. w~eso)

#iclassified

IS. DIST RIOUTIO041 STAVT MEN'T(*hf.pE).

- APPROVED FOR PUBLIC RLEASE; DISTRIBUrICtI t1LImMLD

17. DISTRIBUTION STATEMENT (of L.. abstracte ntered to. Bloth 2 It diflo.,mV froi At \ i

DISTRIBUrIMI. tNLl4Et1ED

18. SUPPLEMENTARY NOTIES

IS. KEY WORDS (Continue nFtPOeD 0I f n~c*0941 ad Idi.II1' OF black NumnbW)

database managemenlt; 1)55; index selection;

20. ATRACT (Cote . e , se I necessary and IeEofl& bp block anuime

Q>* A satisfactory user interface is essential for a decision support
L~t SYstell to gain acxcePtance, and system perforimance iLs an irqortanta caiponent of the user interface. Several suggestions for

LA aabase deinaepeetdto iqrpove sybtem perfr ne and
response time, and thus to inprowve the user interface.

DD 1473 9DITION or I NOV as is OUSOtLV U

W-6 e NITYCLASIFIATI NTS41 PASSt~mbt

Z-/005

Data Base Design for
Decision Support

Eric K. Clemons

80-10-02

Department of Decision Sciences
The Wharton School

University of Pennsylvania
Philadelphia, Pa 19104

Data Base Design for
Decision Support

Eric K. Clemons

ABSTRACT

A satisfactory user interface is essential for a

decision support system to gain acceptance, and system

performance is an important component of the user interface.

Several suggestions for data base design are presented to

improve system performance and response time, and thus to

improve the user interface.

t~

:,vC% i nd/0r

Data Base Design for
Decision Support

Eric K. Clemons

1. Introduction

Information is required for decision making. This is true

whether the information is quantitative or qualitative, and

whether the decision is subjective and based on intuition, highly

structured and model-based or algorithmic, or somewhere in

between. The nature of both the decision and the decision maker

will vary, thus nature of the information used will varyr still,

some contact with the surrounding reality will be required.

The evolving discipline of data base management does have

something to offer to the implementor of decision support

systems. Its forefront or leading edge of theory need not be

considered yet: data dictionary/directory systems, information

resource management, or semantic data models for conceptual

schemas will be of importance to decision support systems in the

future but are not yet ready for export outside the data base

community. Data base design, however, is an important component

of decision support systems.

.Page 3

Unsuccessful DSS implementations are frequently defeated,

not by technical failure, not by use of the wrong models or

algorithms, not by software development errors on the part of the

development team. Rather, DSS implementations that fail are

often killed by a poor user interface, leading to poor reception

by the user of the system or reluctance of the user to conclude

that his personal performance using the DSS will improve enough

to justify his commitment of time. This belief that use of the

DSS will improve performance sufficiently to compensate the user

for his investment in time to learn and to use the system is one

of the rationales for DSS development (see Keen, "Decision

Support and the Marginal Economics of Effort* (5]). In the

absence of this perception of the DSS as worthwhile, it will

ultimately be rejected.

While good system performance and good response time do not

guarantee a good user interface, intolerable system performance

and intolerable response time are sufficient to preclude an

acceptable interface, and thus to preclude user acceptance. Here

data base design enters. Quite simply, when data and supporting

auxiliary structures such as indices are properly designed,

performance improves.

As is well known, it is extremely difficult to predict the

information requirements for the unstructured analyses and

unanticipated requests of strategic decision making (3].

Fortunately, the average DSS imposes some structure: It Is for

advertising budget preparation or ambulance and fire service

Page 4

redistricting or portfolio management; it is not for all three

plus the study of mergers and acquisitions. We offer here some

guidelines for designing decision support data bases, exploiting

this structure. We also draw on experience with file design for

machine peformance, with interactive systems, and with clients'

solutions to their problems. Some recent data base research is

incorporated where directly applicable. Common sense is also

enthusiastically endorsed.

2. An Overview of Five Guidelines

Five guidelines for data base design for decision support

are presented below in summary. They are treated in greater

detail, with examples, in the subsequent section.

1. Exploit knowledge of traditional, file-based inquiry

systems

2. Design for the specific nature of DSS use

3. Keep auxiliary data for DSS use

4. Note when the auxiliary data become obsolete

5. Recalculate auxiliary data rapidly

Page 5

Traditional, file-based sytems use auxiliary data structures

to permit rapid access to subsets of the file that are of

interest, that is, records that are required to respond to a

specific query or generate a specific report. These structures

are usually inversions or indices and lists threaded through the

principal file. They are useful when the approximate

distribution of requests -- what is being requested, by whom, and

how often -- is known in advance. They are most useful when the

approximate distribution of data values is also known.

But decision support systems are not inquiry systems and

have different requirements. Each DSS will impose some structure

upon the decision maker and upon his requests. The implementor

should design for the requirements of the DSS being built. In

particular, the data base should be designed for the verbs

supported by the DSS: e.g., PLOT for MONTH, HISTOGRAM, SEARCH

for MAXIMUM. Don't design the data base to support a general

inquiry facility unless this will also be provided.

Keep auxiliary, derived data in summary form for use by the

DSS. The transaction processing data base will frequently be

enormous. This full detail is almost never required by a DSS for

strategic planning; rather, averages, totals, maxima, or rates

of change are needed. Where possible, extract these interesting

data items in off-line, off-hours runs using the transaction data

base. These derived data are available for DSS use without the

slow, time-consuming, and expensive scan of the full data base.

Wherever possible, keep the DSS away from the transaction

Page 6

processing data base.

Unfortunately, while this separation of decision support and

transaction processinq permits improved response time by the DSS,

it does so at a cost: some of the derived data computed off-line

and available to the DSS will be rendered inaccurate or

out-of-date by the updates of the transaction processing system.

For those derived items for which currency is essential, it is

reasonably inexpensive to add to the transaction processing

system the capability to detect when an update to the data base

will alter the item so that recalculation is advisable. Three

options are then available:

1. recalculate immediately

2. recalculate the item if it is requested by the DSS

3. recalculate the item only if it is requested by the DSS

and the user indicates that complete accuracy is

essential and the user indicates willingness to wait for

the item to be recalculated or to return for the result

Alternatively, we may keep still additional auxiliary data

to permit the transaction processing system to recalculate the

derived data rapidly. Thus the transaction processing system can

update both the transaction processing data and the decision

support data at the same time. If the auxiliary data are

well-selected, this requires no degradation of transaction

processing performance, while providing timely and accurate data

Page 7

rapidly for DSS use. A cautionary note: as we shall see in the

following section, this can sometimes be done, and done quite

easily. However, it requires that we analyze very carefully the

data that will be useful to the DSS.

3. Some Examples of Data Base Design

for Decision Support

Five guidelines for data base design for decision support

were suggested in the previous section. Here, each is described

in greater detail and illustrated by example.

3.1. File-Based Inquiry and Decision Support

File-based inquiry techniques use auxiliary data structures

to extract rapidly subsets of a large file needed for a report or

to respond to a query. Such techniques are useful when the DSS

requires that the decision maker examine subsets of far larger

collections. They can be employed only when some predictions are

available for the distribution of requests and the distribution

of data values.

Such file-based systems rely on direct access devices, which

provide the ability to access requested records if a record key

or device address is known, and upon two data structures: list

or multi-list structures and inversions. In a conventional file,

each record comprises a list of (attribute, value) pairs, e.g.,

Page 8

LOAN:(LOAN-ID:127,542), (LOAN-OFFICER:CLEMONS),
(ORIGINAL-PRINCIPAL:l2,000,O00).. .

In an inverted file, this conventional organization is turned

upside down. Instead, for a given (attribute, value) pair, we

have a list of records that contain the pair. These records are

represented by their addresses on a storage device or, more

frequently, by an identifying attribute or key. Thus, an

inversion on loan officer might include the following.

(LOAN-OFFICER:CLEMONS): 111,202, 123,411, 123,602,

Thus, for a collection of records of interest, for example, those

accounts with Clemons as approving loan officer, we have

immediate and direct access. An example of an inverted file is

given in figures 1 and 2.

In a list structured file, an interesting subset is

identified and each record is tied to its successor by means of a

pointer. The collection of attributes used to select a list

subset is usually more complex than that used to construct an

*1 inversion. An example of a list structured file is also given in

figures 1 and 2. For example, list 1 provides large British

industrial loans for which Clemons was the original loan officer,

linked together by key values in pointer 1.

.I

Page 9

Inversions provide for efficient access to a wide variety of

queries, even those where details of the queries are not fully

known in advance. For example, it is useful to know which

attributes, or which collection of (attribute, value) pairs, will

be used to describe subsets requested. It is not always

necessary to know precisely how these attributes will be combined

to form queries. This form of retrieval support is particularly

valuable when some assumptions can be made on the distribution of

values present in the data base for each value.

Some examples should illustrate the power of these simple

techniques. Refer to the loan file shown in figures 1 and 2,

containing 50,000 entries. Consider calculations to determine

the number of records examined to retrieve the following subsets:

1. British loans

2. Large British loans for heavy industry

3. Large British loans for heavy industry with Clemons as

loan officer

The calculations are shown in figure 3.

fi

.'I

1' Page 10

LOAN PORTFOLIO FILE

I. PRIMARY DATA RECORD: LOAN DESCRIPTION
50,000 RECORDS

600 CHARACTERS EACH
6 CHARACTERS IN KEY LOAN-ID

RECORDS CONTAIN THE FOLLOWING ATTRIBUTES:
LOAN-ID, BORROWING ORGANIZATION,
ADDRESS, FINANCIAL-OFFICER,
LOAN-OFFICER, RATE, TERMS,
PRINCIPAL, BALANCE, STATUS,
INDUSTRY, NATIONALITY, POINTERS

II. DISTRIBUTION OF VALUES

NATIONALITY GERMAN 25%
BRITISH 15% ITALIAN 25%
FRENCH 20% SWEDISH 15%

INDUSTRY SERVICE 20%
AUTO 10% SHIP BUILDING 5%
FURNITURE 5% SMALL APPLIANCES 10%
HOUSING/CONSTR 30% STEEL 59
RUBBER/TIRES 5% TRANSPORTATION 10%

SIZE OF LOAN (IN THOUSANDS)
SMALL (I<00) 25%
AVERAGE (100-1,000) 45%
MODERATE (1,000-4,000) 25%
LARGE (4,000+) 5%

'4

III. AUXILIARY DATA STRUCTURES

INVERSIONS: NATIONALITY
INDUSTRY

SIZE

LISTS: LARGE BRITISH LOANS FOR
HEAVY INDUSTRY WITH CLEMONS
AS LOAN OFFICER

(HEAVY INDUSTRY INCLUDES AUTO,
STEEL, AND SHIP BUILDING)

Figure 1--Description of a loan portfolio file

Page 11

LOAN-ID PRINCIPAL INDUSTRY OFFICER NATIONALITY POINTER 1

0 HEAD1 123,411
111,202 40,000 SERVICE CLEMONS IT
114,653 400,000 SERVICE KEEN IT
122,404 500,000 AUTO DAVIS IT
122,515 350,000 CONSTR KEEN FR
122,800 50,000 FURN JONES GER
123,411 7,500,000 SHIP CLEMONS BRIT 123,602
123,602 4,250,000 STEEL CLEMONS BRIT 133,213
125,152 1,075,000 APPL SMITH GER
125,908 500,000 SERVICE KEEN GER
127,804 400,000 RUBBER JONES SWD
128,614 5,000,000 STEEL DAVIS SWD
131,400 750,000 TRANS SMITH BRIT
133,213 8,000,000 STEEL CLEMONS BRIT 135,434
133,667 10,000,000 SHIP KEEN BRIT
135,432 4,350,000 AUTO CLEMONS IT
135,434 4,211,000 AUTO CLEMONS BRIT 141,006
137,707 250,000 SERVICE DAVIS FR
140,876 20,000 SERVICE HARRIS GER

a.) Portion of a loan file, including a list.
Note use of loan with key 0 to identify
head of list.

NATIONALITY
BRITISH: 123,411, 123,602, 131,400, 135,434
FRENCH 122,515, 137,707
GERMAN 122,800, 125,152, 125,908, 140,786
ITALIAN 111,202, 114,653, 122,404, 135,432
SWEDISH 127,804, 128,614

* b.) Portion of the inversion on nationality,
corresponding to file sample shown in
a above. Similar inversions would be
constructed for industrial classification,
principal, and other attributes of interest.

Figure 2--A sample of the loan file described
in figure 1 and a corresponding inversion.

Page 12

It should be clear from the calculations that these

techniques offer substantial performance improvements over full

sequential scan of all records in the file. It may be less clear

that considerable analysis is necessary if the appropriate

inversions and lists are to be selected for inclusion in the

file, out of the total collection of all such structures

possible. For example, it is extremely unlikely that the list

used to respond to query 3 would actually have been identified as

useful when the file was constructed. Rather, several inversions

would be used to get large British industrial loans and the

I system would be programmed to ignore those for which Clemons was

not loan officer.

Several references are available for this material in

tutorial form [7]. Recent research in the automatic selection of

attributes on which to index will probably not be directly

applicable to the DSS designed, but will help the designer

develop his own procedures for manually identifying those

attributes [4].

I

Page 13

QUERY1= BRITISH LOANS
OPTIONI--FULL SCAN OF 50,000 RECORDS

OPTION2--USE BRITISH INVERSION

EXPECTED NUMBER OF BRITISH LOANS
15%x50,OOO = 7,500

EXPECTED SIZE OF BRITISH INVERSION
15%x50,000xl/100 = 75

TOTAL COST OF OPTION2:7,575

SAVINGS OF 85% OVER OPTION1.

QUERY2: LARGE BRITISH LOANS FOR HEAVY INDUSTRY

OPTIONI--FULL SCAN OF 50,000 RECORDS

OPTION2--USE BRITISH INVERSION, 7,575 RECORDS READ

OPTION3--USE BRITISH INVERSION INTERSECTED WITH LARGE
LOAN INVERSION

SIZE OF INVERSIONS:
BRITISH:15%x50,OOOxl/100 = 75
LARGE LOANS:5%x50,000X1/100 w 25

10

EXPECTED NUMBER OF LARGE BRITISH LOANS
15%x5%x50,000 = 375

'I COST OF RECORDS PLUS INVERSIONS READ IS 475

ji OPTION4--USE BRITISH INVERSION INTERSECTED WITH
LARGE LOAN INVERSION INTERSECTED WITH THE UNIONA OF (AUTO, STEEL, AND SHIPBUILDING INVERSIONS)

SIZE OF INVERSIONS
BRITISH: 15%x50,000xl/lO0 - 75
LARGE LOANS: 5%x50,000xl/100 - 25
AUTO: 10%xSO,000xl/100 - 50
STEEL: 5%xS0,000xl/100 - 25
SHIPBUILDING: 5%xSO,000xl/100 - 25

EXPECTED SIZE OF SUBSET:-
15%x5%x(10%+5%+5%)xS0.000 - 75

COST OF RECORDS PLUS INVERSIONS READ IS 275

TOTAL COST OF OPTION4s275
SAVINGS OF 99.45% OVER OPTION1.

---- -- j1

Page 14

QUERY3: LARGE BRITISH LOANS FOR HEAVY INDUSTRY
WITH CLEMONS AS LOAN OFFICER

OPTIONI--FULL SCAN OF 50,000 RECORDS

OPTION2--USE OF INVERSIONS AS IN OPTION4
OF QUERY3, COST OF 275 READS

OPTION3--USE LISTi. COST CANNOT BE DETERMINED
WITHOUT KNOWLEDGE OF DISTRIBUTION OF
LOANS BY OFFICER, BUT WORST CASE
ASSUMING ALL LARGE BRITISH LOANS
FOR HEAVY INDUSTRY ARE THROUGH
CLEMONS IS COST OF 75.

TOTAL COST USING OPTION3: AT MOST 75
SAVINGS OF 99.85% OVER OPTIONi
SAVINGS OF 72% OVER OPTION2.

Figure 3--Sample cost calculations for three
queries, using the file presented in figure 1.

i

"Ii

Page 15

3.2. Design for the Specific Use of the DSS

Design for the specific use of the verbs supported by the

DSS being constructed and not for general inquiry and reporting.

unless these facilities are also to be supported. We illustrate

this principle with a simple example. Consider development of a

DSS to compare stocks for inclusion in a portfolio. Our system

will include high resolution full color graphics display, now

available on several inexpensive micro-computers. We will

compare stocks by plotting some statistic like daily closing

price for a month or monthly high for two years.

Traditionally, the data base used to capture stock exchange

information stores the data for a single stock on a single day in

a single record7 this record contains numerous data items, such

as the following:

STOCK: (EXCHANGE CODE, NAME DATE, YEAR,
OPENING PRICE, CLOSING PRICE, DAILY VOLUME,
DAILY HIGH, DAILY LOW, 12 MONTH HIGH,
12 MONTH LOW, YEAR-AGO PRICE, DIVIDEND)

This organization was selected probably because it closely

parallels the format in which the data were originally acquired.

It has been maintained because it is adequate for the pattern of

use to which the data are put in a general inquiry system on a

high speed main-frame computer.

Page 16

However, to plot two stocks' closing price over a month we

recall approximately 40 records. On a micro-computer with

diskette or on a heavily congested main-frame with disk

contention from other users we may wait several minutes for the

full plot, which is clearly intolerable response time in a system

intended for interactive use in decision support. Worse still,

note that plotting monthly highs for the two stocks over two

years will be twenty-four times slower, requiring perhaps one or

two hours.

An alternative data structure readily suggests itself, once

the verbs of the DSS are recognized: rather than place the ten

or fifteen data items for the stock for a single day in one

record, use one record of the same length to capture three weeks

of one data item such as closing price. Plot of two stocks'

closing prices for one month will then require four or five

record accesses in place of 40, for perhaps a ten-fold increase

in speed.

We note that this is not the ideal layout for a system that

is to respond to such requests as: DESCRIBE in FULL, IBM,

9-OCT-80. However, such a request is neither required nor

permitted by the DSS being considered.

Page 18

9. average lateness, delinquent loans

Clearly, this full collection can be generated off-line in a

single pass through the transaction data base. And, equally

clearly, several other derived data items may as plausibly be

argued to be useful. The designer of the DSS should determine

what, in fact, will actually be needed.

Assuming a moderately sized loan portfolio of 50,000 loans,

queries can be answered:

1. in many minutes, using a full scan of all records in the

folio

2. in only a few minutes if the necessary inversions are

available and only a subset of the loans need be

investigated to prepare a response

3. in at most a few seconds, using derived data stored

on-line and updated nightly

There is one disadvantage of this approach: if we update

derived-data nightly, then we may introduce a one-day lag between

the time a transaction updates the main data base and the time

this update is reflected in the derived data. Is this serious?

Actually, it's usually not even significant. Since the items in

the decision support data base are aggregate, derived from

hundreds or thousands of entries in the transaction processing

system, effects of individual updates are usually lost in the

Page 19

mass. An on-line inquiry system requires up-to-date information

if it is to permit approval of, for example, Clemons using his

VISA card to purchase a ticket to Hawaii. Decision support data,

permitting bank officers to decide if the bank should continue to

offer VISA, need not be as current.

There will sometimes be a measurable effect due to the lag

in updating decision support data, particularly if the sample

used to derive them is a small fraction of the transaction base.

Still, we must consider if the loss in management performance due

to the lag exceeds the loss in performance due to early

termination of the search for solutions caused by frustration

over lengthy response time. It is the experience of some large

commercial users that improved decision making permitted by

adequate system speed more than compensates for the inaccuracies

introduced by delay in updating derived data.

Sometimes, of course, lag in updating may significantly

affect the resulting decision. Events such as prime reaching

24%, collapse of the stock market, or failure of a U.S. auto

maker would no doubt rapidly affect a bank's lending policies.

These are events that the manager would discover from other

sources long before effects started showing up in his loan

portfoliol

Page 20

3.4. Let the System Warn When the

Derived Data are Obsolete

Some updates by the transaction processing system clearly

will, or should, alter the derived data items maintained for use

by the DSS. A missed payment should affect the number of loans

delinquent, the number of loans delinquent in its specific

industry, and several other data items, yet these items are not

recalculated until the next off-line run that rederives the

entire collection. For some data and some decisions, this lag

may be important.

The transaction processing system can be designed to

determine automatically when an update to the transaction

processing data base should also modify the decision support

data. Several options are then available to the DSS designer.

First, the derived data may be recalculated when the need is

detected, without awaiting the next off-line run. Secondly, the

recalculation can be begun when the user's request of the DSS

causes it to reference derived data that are no longer current.

Thirdly, the user may be notified that a request references data

in need of recalculation; the user will then have the option of

*completing his DSS use rapidly with the existing derived data or

awaiting recalculation of affected items. Unfortunately, any

recalculation is likely to be slow and to make numerous disk

accesses.

Page 21

Alerting [2] is the process used to detect when derived data

should be modified after update by the transaction system. Quite

complex conditions can be detected, and detected very efficiently

[1]. Alerting will be more valuable to the DSS designer when

combined with the suggestion of the next section.

3.5. Keep Auxiliary Data to Permit

Rapid Recalculation of Derived Data

Keeping additional auxiliary data, in addition to the

derived data actually required by the DSS, will often facilitate

recalculation of the useful derived data when the need is

detected by alerters. In fact, this recalculation may be so

rapid that it can be performed by the transaction processing

system at the time the update is performed, eliminating the lag

between transaction data and decision data updates.it
This concept is illustrated by a single, simple example.

Let our interest be in the average size of loans in our

portfolio, by industry. Derived data are maintained that provide

these averages for each industry. And additional data are kept,

even if these are never directly referenced by the DSS: number

of loans and total value of loans, for each industry. Creation

of a new loan should, for the appropriate industrial group, alter

the average loan amount kept for the DSS. This can be done

rapidly, without reference to the transaction data base: For the

industrial group affected by the new loan the number of loans is

Page 22

increased by 1, the total value of loans is increased by the

value of the new loan, and the number divides the total value.

Comparably direct recalculation processes can be described for

totals, maxima, minima, and numerous other derived data of use to

a DSS. These processes permit recalculation of derived data by

the transaction processing system at the time transaction data

are updated, without access of the transaction data base and

without degradation of transaction processing performance; this

successfully eliminates potentially misleading loss of currency

in the decision support data.

4. Conclusions

What conclusions can we draw from the preceding material?

The user interface can kill a decision support system, and

inadequate system performance can kill a DSS. Therefore, the

tselected data base design must support system performance.
Several suggestions have been presented to guide data base

design. All require some knowledge of the applications to be run

and the problems to be solved. Thus, as always, internal

involvement and user involvement will be essential for successful

DSS implementation. No team of outside specialists, regardless

of their competence or credentials, can design and install a DSS

without considerable assistance from the ultimate users of the

system.

Page 23

Unfortunately, much of managerial work is unprogrammed and

unpredictable: for many of the problems for which DSS is the

most appropriate decision-aiding tool, accurately predicting use

and information requirements does not appear possible. This

problem is exacerbated by a sort of managerial "uncertainty

principle": The presence of a successful DSS alters the type of

problem that can be attacked and the solution procedures that can

be employed. The DSS itself alters the nature of DSS use. Thus,

even if the implementors' original data base design was ideal for

the existing work patterns and information requirements, after

the DSS has been in use it will probably be necessary for the

implementors to return for modifications.

DI

k,- ._ J . . .

Page 24

5. References

1. Buneman, 0.P. and Cemons, E.K. "Efficiently
Monitoring Relational Databases". ACM Transactions
on Database Systems, Vol. 4, No. 3, Sept. 1979,
pp. 368-382.

2. Buneman, O.P. and Morgan, H.L. "Implementing
Alerting Techniques in Database Systems".
Proc. COMPSAC 77, pp. 463-469.

3. Gorry, G. A. and Scott Morton, M. S. "A Framework
for Management Information Systems". Sloan Management
Review, Vol. 13, No. 1, pp. 55-70.

4. Hammer, M. and Chan, A. "Index Selection in a
Self-Adaptive Data Base Management System".
Proc. SIGMOD International Conference on Management
of Data, June 1976, Washington, D.C., pp. 1-8.

5. Keen, P.G.W. "Decision Support and the Marginal
Economics of Effort". Decision Sciences Working
Paper 79-03-16, University of Pennsylvania, 1979.

6. Keen, P.G.W. and Scott Morton, M.S Decision
Support Systems: An Organizational Perspective.
Addison-Wesley, Reading, Mass., 1978.

7. Severance, D.G. and Carlis, J.V. "A Practical
Guide to the Selection of Record Access Paths".
ACM Computing Surveys, Vol. 9, No. 4, pp. 259-272.

II

