
A-O-A093 44 UHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 V~2
A CODASYL INTERFACE FOR PASCAL AND ADA. EU)
NOV 80 P O4IEMAN, L MENTEN, 0 ROOT NOOOIS-T5-C-42

IDICLASSIFIEO 80-11-07 N

IND

_ _ lilt --J~lIHI O I. HI I!
24 111112.

1IL 5 1.4=_ 11.6

MICROCOPY Rt % O T(N It: ,l tHATd?

.4. REPORT DOCUMENTATION PAGE 1IJ 0C14, YP hJ
i. 9 UgLG VT AC £ V .5 3 kECVP)Lht$ CA'- ALOe, N.W "bLR

i TLLE4 szuS.LJ9 5. TVFE: OF kECRT & PERIOD COVERED

A CODASYL INTERFACE FOR PASCA~LAND ADA Technical/ 4/80-3/81
\ /

_ _ _ _ _ _ _ _ _ _

E. PERFOrING ORG. REPORT NUIbER

7. AUTHOR(q) S. CONTRACT OR GRANT NUMBER(w)

Peter Buneman, Larry Menten, David Root N&0014-75-C- 462

2. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK(C) Department of Decision Sciences
The Warton School Task NR049-272
University of Pennsylvania, Phila.. PA 191f4.

.. CONTROLLING OFFICE NAME AND ADDRESS 12... RL ,CAT oA-r

Office of Naval R ch - j NovP& 480
SA. NUMBER OF PAGES

-- 4. " dine) is. SECURITY CLASS. (of thie ,.part)

ESiCW~fclfld lnclassified
ic JC r IS., cIECL ASSI FJ CATIONt OON GRAOING1Be. C H E DO'I.7=. .-

16. DISTRIBUTION $TAT.MENT-foidhI&,. T)-." I-

APPROVED FOR PUBLIC RELEASE;

17. DISTRIBUTION STATEMENT (of fI. ab-tref aeIdin Block 20, It different f ham p.e i.J

DISTRBUTION UNLIMITED

IS. SUPPLEMENTARY NOTES v.

1S. KEY WORDS (Conli ce art revere* aide if noce.w amid identify by block . . be)

codasyl interface, Pascal, ADA, codasyl applications, coding;data currencyglobal data areas, checks at compile-time.

"", 20. ABSTRACT (C mtine an roweree side it neceeeay mand Idenify by block Pnm~bet)

"A Codasyl interface has been constructed for Pascal and
0designed for Ada that exploits the data type systems of these

languages. We believe that the form of this interface will simplifythlwriting of Codasyl applications and. greatly reduce errors in coding.In particular, it relieves the user from the need to consider data
currency and global data areas and uses the host language-s type system
to perform niany checks at conlile-time that in other interfaces can at best

D D FORM , o r 0 0I as is 03,. !
JI7143 EDITIONOFINvm sOSLT , aI

SECURITY CLSISIFICATION QF IM S PAC l > WOO

801230 007

A Codasyl Interface for Pascal and Ada

Peter Buneman, Larry Menten

University of Pennsylvania

David Root

International Data Base Systems

Abstract

'A Codasyl interface has been constructed for Pascal and

designed for Ada that exploits the data type systems of these

languages. We believe that the form of this interface will

simplify the writing of Codasyl applications and greatly reduce

errors in coding. In particular, it relieves the user from the

need to consider data currency and global data areas and uses the

host language's type system to perform many checks at compile-time

that in other interfaces can at best be done a.t run-t-meS-

------ -------------------------------
Authors' adresses: Larry Menten and Peter Buneman, Department of
Computer Science, University of Pennsylvania, Philadelphia, Pa
19104
David Root, International Data Base Systems, 2300 Walnut Street,
Philadelphia, Pa 19103

A Codasyl Interface for Pascal and Ada Page 2

1. Introduction

While the title of this paper may suggest a topic whose

practical importance is undeniable but whose technical content is

at best mundane, there are a number of advantages that result from

building an interface between "strongly typed" languages and a

Codasyl system in a fashion that deviates somewhat from that

suggested by the DBTG [2] specifications. The interface that is

described here, and that has been implemented for Pascal, will, we

believe, greatly simplify the process of writing complicated

applications programs against Codasyl systems, both by making them

more compact and by exploiting those features of Pascal and Ada

that are intended to be of assistance in writing correct programs.

The most important feature of this interface is the complete

disappearance of the notion of data currency. According to the

Codasyl standard, a program communicates with the DBMS through a

fixed global area of storage known as the User Working Area (UWA),

an area which contains storage for one member of each record type

in the database. The DBMS also maintains a global set of currency

pointers, physical addresses through which storage and retrieval

of records is controlled. The data manipulation routines, which

transfer data to and from the database, operate by examining and

modifying the UWA and the currency pointers. A programmer who

does not completely understand the effects of these routines is

likely to find that a record in the UWA has been accidentally

overwritten or that an iteration goes wrong because a currency

pointer has been reset. Olle [6] gives a good account of the

A Codasyl Interface for Pascal and Ada Page 3

difficulties involved in manipulating the UWA. For readers

unfamiliar with the problems of data currency, they are nothing

more than the problems of writing subroutines that communicate

with one another through a limited set of global variables; a

familiar example may be found in assembly language programming

where one must frequently save and restore the registers at the

entry and exit of a subroutine.

The other goals we had in building such an interface were to

achieve a natural representation of Codasyl structures within the

type system of the host language and to exploit, as far as

possible, the compile-time type checking that is available. The

second point is particularly relevant for the Ada interface, where

it is possible to detect during compilation many errors that in

conventional Codasyl programming environments do not appear until

run-time.

Our decision to investigate Pascal [3] and Ada [1] was

motivated for purely practical reasons. It is possible that

similar, and perhaps cleaner interfaces could also be designed for

other languages with sophisticated type constructs. We are also

aware of an effort to design a database extension to Ada based

upon DAPLEX [7], and some such extension is clearly needed.

However, an interface for existing database management systems is

also needed and our current implementation for Pascal amounts to a

few hundred lines of code. This interface operates with the

SEED [41 database management system, but could readily beI

rewritten for any other Codasyl system; and only minor changes

will be required to create the Ada interface.

L l |.. r ll....

A Codasyl Interface for Pascal and Ada Page 4

2. The Pascal Interface

The Pascal interface consists of two components. The first

is a program, an extension to the program that compiles sub-schema

definitions, that takes Codasyl data definition language as input

and converts it into the appropriate Pascal type declarations,

which may then be incorporated in the user's program. The second

is a set of database access routines that are declared as external

and provide the "data manipulation language" for Pascal. The

operation of the database access routines may be described through

some simple examples that operate on a database containing

information about students, courses and enrollments. Leaving

aside, for the moment, the details of the type declarations, the

program to print the NAMEs and GRADDATEs of all STUDENTs would

be:

1. var S: RECSTUDENT; D: DBREF{STUDENT};
2.
3. begin
4. D:=FINDFA(STUDENT);
5. while D <> 0 DO
6. begin
7. GETSTUDENT(D,S);
8. WRITELN(S.NAME, S.GRAD_DATE);
9. D:=FINDNA(STUDENT,D)

10. end
11. end.

Figure 1. A simple traversal of a record class

On line 1 of this example, S is declared to be a STUDENT record,

and D is declared as a database reference (DBREF), a physical

database address. The (STUDENT) comment following the DBREF

declaration indicates our intention to use D as a physical address

for a STUDENT record. Line 4 sets D to reference the first

student in the database (FINDFA stands for find-first-in-area).

A Codasyl Interface for Pascal and Ada Page 5

Line 8 instantiates S as the record referenced by D; and line 9

(find-next-in-area) generates the DBREF for the next student in

the database. Note that in line 9, the DBREF of the previously

found student is a parameter for the function FINDNA. it is this

simple technique that largely avoids the data currency problem and

allows several procedures to traverse the same record class

simultaneously and without interference.

It should be noted that, as a result of our natural* desire

not to modify the Pascal compiler, the intention of the user that

D should be a DBREF for a STUDENT record is not checked at

compile-time. An error will however be generated by the database

interface at run-time if GETREC attempts to instantiate S with

something other than a STUDENT record. In the Ada interface

described below, the use of generic routines permits a much

greater degree of compile-time checking.

A more interesting use of the Pascal interface is based upon

the standard "academic" schema in figure 2.

* Although this desire may be justly attributed to the authors'

indolence, there would be a serious problem of transportability
were such modifications to be made. The present implementation
should work against any Pascal system that allows a linkage to
external subroutines.

A Codasyl Interface for Pascal and Ada Page 6

STUDENT: I I COURSE: I
I NAME I I CNAME I
I GRAD-DATE I I ROOM I

SE \ CE/
\ - - /

I ENROLL: I
I GRADE I

FIgure 2. The STUDENT - COURSE schema.

The Pascal code in figure 3 is a (not neccessarily efficient)

function that determines whether or not two students are enrolled

in the same course. The functions that control Codasyl set

traversal are FLNDFS (find first in set), FINDNS (find next in

set) and FINDOS (find owner).

1. function SAMECOURSE(S1, S2: DBREF(STUDENT}):BOOLEAN;
2. var El, E2:. DBREF(ENROLL);
3. C : DBREF(COURSE);
4. FOUND : BOOLEAN;
5. begin
6. FOUND:-FALSE;
7. EI:=FINDFS(SE, SI);
8. while (El <> 0) AND NOT(FOUND) do
9. begin

10. C:-FINDOS(CE, El);
11. E2:=FINDFS(SE, S2);
12. while (E2 <> 0) AND NOT(FOUND) do
13. begin
14. if C - FINDOS(CE, E2) then FOUND:=TRUE;
15. E2:-FINDNS(SE,E2)
16. e nd;
17. EI:-FINDNS(SE,E1)
18. end;
19. SAMECOURSE:-FOUND
20. end

Figure 3. Traversing Codasyl sets.

For example, line 7 of figure 3 establishes the first ENROLL

record "owned by" S1. The iteration of lines 8 to 18 repeatedly

finds the "owning" COURSE in the set CE (line 10) and then finds

- 01

A Codasyl Interface for Pascal and Ada Page 7

the next of Si's enrollments (line 17). Note that 0 is returned

to indicate that a set is exhausted.

Anyone who has written conventional Codasyl routines with

explicit manipulation of the UWA will be aware that these examples

are considerably shorter and more "structured". Writing the

function SAMECOURSE in a conventional Codasyl programming system

would, for example, call for the set currencies to be saved after

each use of the routines FINDFS and FINDNS and restored for the

next corresponding FINDNS. Moreover, all the currencies that

could be affected by this function would have to be saved on entry

to the function, and restored on exit. Another benefit of this

interface is that the not uncommon problem of recursive traversal

of Codasyl structures is greatly simplified because the programmer

may write recursive Pascal programs rather than build explicit

stacks.

In order to represent database update, we should first

examine in more detail the type declarations generated for the

Pascal interface. Figure 4 shows the data definition language

that would be used to define our academic data base, and figure 5

shows the Pascal type and procedure declarations that are

generated from it.

-J|

A Codasyl Interface for Pascal and Ada Page 8

1. Schema name is SCHOOL.
2. Record name is STUDENT
3. key is using NAME.
4. NAME type is character 30.
5. GRADDATE type is character 6.
6. Record name is COURSE
7. key is using CNAME.
8. CNAME type is character 30.
9. ROOM type is character 5.

10. Record name is ENROLL.
11. GRADE type is fixed.
12. Set name is SE
13. owner is STUDENT
14. member is ENROLL
15. set selection is thru locaion mode of owner.
16. Set name is CE
17. Owner is COURSE
18. member is ENROLL
19. set selection is thru current of set.

Figure 4. Part of the Data Definition
Language for figure 2.

A Codasyl Interface for Pascal and Ada Page 9

conat
STUDENT - 'STUDENT
COURSE = 'COURSE
ENROLL - 'ENROLL
SE - 'SE
CE - 'CE

type
DBREF = INTEGER;
DBID - PACKED ARRAY [I..301 OF CHAR;

TYPNAME - PACKED ARRAY [1..301 OF CHAR;
TYPGRADDATE = PACKED ARRAY [1..6] OF CHAR;
TYPCNAME - PACKED ARRAY [1..30] OF CHAR;
TYP ROOM - PACKED ARRAY [1..5] OF CHAR;
TYPGRADE = INTEGER;

RECSTUDENT RECORD { Student Records }
NAME : TYPNAME;
GRADDATE TYPGRAD_DATE;

END;

RECCOURSE = RECORD { Course Records }
CNAME : TYPCNAME;
ROOM : TYP_ROOM;

END;

RECENROLL = RECORD { Enrollment Records }
GRADE : TYPGRADE;

END;
ENVENROLL - RECORD {Environment record for update)

NAME: TYP_NAME;
CE: DBREF;

END;

{ EXTERNAL PROCEDURES FOR DBMS INTERFACE }
function FINDFA(N: DBID): DBREF; EXTERNAL;
function FINDNA(N: DBID; D: DBREF): DBREF; EXTERNAL;
function FINDFS(N: DBID; D: DBREF): DBREF; EXTERNAL;
function FINDNS(N: DBID; D: DBREF): DBREF; EXTERNAL;
function FINDOS(N: DBID; D: DBREF): DBREF; EXTERNAL;
function FFC STUDENT(K: TYPNAME): DBREF; EXTERNAL;
function FFC COURSE(K: TYPCNAME): DBREF; EXTERNAL;

procedure GET STUDENT(D: DBREF; VAR R: REC STUDENT): EXTERNAL;
procedure GET COURSE(D: DBREF; VAR R: RECCOURSE): EXTERNAL;
procedure GET ENROLL(D: DBREF; VAR R: REC ENROLL): EXTERNAL;

function STO STUDENT(R:REC STUDENT): DBREF;
function STO COURSE(R:REC COURSE): DBREF;
function STO ENROLL(R:REC ENROLL; E: ENVENROLL): DBREF;

Figure 5. Pascal Declarations

A Codasyl Interface for Pascal and Ada Page 10

The declarations in figure 5 are generated automatically from

the data definition language of figure 4. They are to be

incorporated into the user's programs by whatever mechanisms

(editing, "include" statements etc.) are appropriate. Several of

the declarations needed to provide for update and other esoteric

features of Codasyl have been omitted from this figure. A few

comments are in order:

1. The constant declarations are all for objects of type

DBID (database identifier). The database management

system for which the interface is implemented is able to

use a character string, the name of the record class or

set, as such an identifier. In general these identifiers

should be whatever is required, often an integer, by the

database management system at run-time.

2. The TYP_... declarations are useful for writing further

procedures that operate on items in the database. If the

item names are not constrained to be unique, some other

lexical mapping will be required.

3. The ENV_... record is necessary to establish the

appropriate set linkages when storing records. Since

STUDENT and COURSE are not members of any sets, they do

not require ENV_... records. The ENVENROLL record is

set up to contain the appropriate information to relate

each ENROLL record being stored to a STUDENT record and

to a COURSE record. Note that the STUDENT record will be

identified by a value for NAME, while the COURSE record

A Codasyl Interface for Pascal and Ada Page 11

will be identified by a currency value. This currency

value could point to either a COURSE record or an ENROLL

record (as it then points indirectly to a COURSE record,

the one that owns the ENROLL record).

4. The functions FFC_ ... are for calc key access to

records. They return the DBREF for the first record (if

any) with the given key. There is also a set of FNC_...

functions (not listed) that find other records that have

the same key.

5. The STO_... functions are record storing functions.

They take an ENV_... record where appropriate and return

the DBREF for the stored record. The latter is often

useful for subsequent stores.

Figure 6 shows an example of a procedure which stores an

ENROLL record. The procedure takes as arguments the name of the

student, the name of the course, and the grade.

1. function STOREENR(STUNAME: TYP_NAME;
2. CRNAME: TYPCNAME;
3. CRRGRADE:TYPGRADER): DBREF;
4. var E: RECENROLL;
5. EV: ENVENROLL;
6. C: RECCOURSE;
7. begin
8. EV.NAME :- STUNAME;

10. EV.CE :- FFCCOURSE(CRNAME);
I1. E.GRADE := CRGRADE;
12. STOREENR := STOENROLL(E,EV)
13. end;

Figure 6. A record storing example.

Line 9 of this figure locates the desired COURSE record using a

value for CNAME as a hash key. To pass FFCCOURSE a value for

A Codasyl Interface for Pascal and Ada Page 12

CNAME we are passing an entire COURSE record. This was done to

avoid having to declare a structure for each hash key which would

be made up of a dummy item type followed by the hash key item

type.

The profusion of procedure names (there must be a STO_...

and a GET ... function for each record class) is a problem that

can be neatly solved with overloading. It would be possible to

have similarly created a different set traversing function for

each set. Doing so would permit a greater degree of compile-time

checking since the DBREFs could be typed by the record type to

which they refer. The problem is that Codasyl exploits the

run-time availability of type information. For example, it is

possible to ask for the first record (of any type) in a given

area; it is also possible to have a set in which the member

records are of more than one type. To cope with this we have

added

procedure DBTYPE(D: DBREF; VAR N: DBID);

that sets N to be the DBID for the class of the record to which D

refers. Our Pascal representation is therefore a compromise in

which we have given the user the full power of the Codasyl

run-time system while trying to map Codasyl structures as

naturally as possible into Pascal data types.

A Codasyl interface for Pascal and Ada Page 13

3. The Ada Interface

The Ada interface is designed upon similar lines to the

Pascal interface but there are some important differences. In the

first place, access to the database is through a package. This

both simplifies the use of the database since it may now be a

separately compiled unit and provides the appropriate visibility

restrictions on the identifiers used in the construction of the

interface. A greater degree of type checking is also provided.

The type REFSTUDENT is a database reference that is constrained

to refer to a STUDENT record; and the Ada compiler will check, as

far as is possible, that the correct types have been used. For

example, a compile-time error would be generated on line 4 if the

argument and result of GET were not REF_... and REC_..o types

for the same record class.

1. S: REC STUDENT;
2. D: REF._STUDENT:=FINDFA;
3. while D not NULLREF(D) loop
4. S:=GET(D);
5. PUT(S.NAME & S.GRAD DATE & NEWLINE);
6. D:-FINDNA(D);
7. end loop

Figure 7. A simple Ada program fragment.

Figure 8 also illustrates this point. The set traversal

functions FINDFS, FINDNS and FINDOS are checked at compile-time to

make sure that the REF_ types they are given are consistent with

the sets being traversed. We believe that this degree of type

checking will prove of considerable advantage in writing

applications programs against Codasyl sy.stems. In the authors'

experience, the run-time availability of type information is

A Codasyl Interface for Pascal and Ada Page 14

seldom exploited, and the Codasyl programmer usually implicitly

types his currency variables. There are of course exceptions to

this. Building a general-purpose interactive query language would

call for interpreted type information. Another problem lies in

Codasyl sets that can contain more than one record type as member.

The correct approach here is to construct the appropriate variant

record type, discriminated by the name of the record class, an

object of type DBID.

function SAMECOURSE(SI, S2: REFSTUDENT)
returns BOOLEAN is

El, E2: REFENROLL;
C : REFCOURSE;
begin
El:=FINDFS(SE, S1);
while not NULLREF(El) loop

C:-FINDOS(CE, El);
E2:-FINDNS(SE, S2);

-- etc.

end SAMECOURSE;

Figure 8. Traversing Codasyl sets.

For convenience, the database access routines are all overloaded

by the types of their arguments and results. For example, there

are three internal deiflnitions of the function FINDFA, one for

each record class that may be returned. Overloading and the

mechanism for passing parameters by association may be used to

simplify storage and update. In figure 9, for example, the call

to STORE is given with parameters named by the appropriate field

names.

A Codasyl Interface for Pascal and Ada Page 15

procedure STOREENR(STUNAME : in TYP NAME;
CRNAME : in TYP CNAME;
CRGRADE : in TYPGRADE;
STUREF : out REF_STUDENT) is

ER :- REC ENROLL;
CREF : REFCOURSE;

begin
ER.GRADE :- CRGRADE;
STORE(REC :- ER; NAME :- STUNAME;

CE := FINDFC(CRNAME); REF := STUREF);
end STOREENR;

Figure 9. A record storing example.

The package declaration for this database is quite lengthy

and has been relegated to an appendix. Much of this bulkiness

results from the definitions needed to overload the database

access functions. The amount of nomenclature is considerably

reduced in comparison with the Pascal declarations. For the most

part the declarations follow those of the Pascal type and

procedure definitions given earlier, but a few points should be

noted.

1. In the Ada specifications, there is a statement that

function subprograms should not do i/o. Strictly

speaking, the database access functions will read from

the database and should therefore be defined as

procedures. However, since data currency has been

successfully hidden from the user, there will be no

logical side effects resulting from any of the access (as

opposed to update) subprograms. We feel that the

database should be viewed as a single global structure,

and that a database access may correctly be viewed as a

function that returns some component of this structure.

A Codasyl Interface for Pascal and Ada Page 16

2. The creation of the ID... subtypes is a device to

create a set of data types each of which contains only

one object. For example the only object of type

ID STUDENT is STUDENT. This allows us to pass in the set

name as an argument and to have the appropriate compile

time checks made. Only occasionally do two Codasyl

record classes have more than one set connecting them.

Therefore, a call of the form FINDOS(MEMBER:-...) is

usually sufficient to specify which set is involved. In

such cases some extra economies might be achieved by

further overloading FINDOS as a single argument function.

3, The generic functions defined in the package body are not

neccessary; each access subprogram could have been

defined by a call to the external database subroutine.

However, the use of generic instantiation may improve

readability in cases where the database schema is large.

4. Discussion

An attempt has been made to represent Codasyl structures

within the type system of two strongly typed languages. While we

believe the representation described here has certain advantages,

we cannot claim that it is entirely natural. One problem is

created by the run-time availability of type information in

Codasyl. Another is the profusion of names needed to specify the

various types. If Ada had some method for specifying generic

types, we could have defined REC(...) and REF(...) as

A Codasyl Interface for Pascal and Ada Page 17

parameterized types that operate on a DBID such as STUDENT to

create the appropriate record and reference types. To some extent

this is possible in languages [5,8] in which types can be

parameterized. However, one would ideally wish to parameterize

not Just by the names of the types but also by the relationships

among them (such as the relationship between a set and the owner

class), and we know of no language that allows this to be done in

any generality.

4

A Codasyl Interface for Pascal and Ada Page 19

Appendix

Ada package definition

package SCHOOLSUB is
type DBID is private;
subtype ID STUDENT is DBID;
subtype IDCOURSE is DBID;
subtype IDENROLL is DBID;
subtype IDCE is DBID;
subtype IDSE is DBID;
STUDENT : constant IDSTUDENT;
COURSE : constant IDCOURSE;
ENROLL : constant ID ENROLL;
CE : constant ID CE;
SE : constant IDSE;

type DBREF is private;
subtype REF_STUDENT is DBREF;
subtype REF_COURSE is DBREF;
subtype REFENROLLMENT is DBREF;

type TYP NAME is STRING(I..30);
type TYP_GRAD DATE is STRING(I..6);
type TYPCNAME is STRING(1..30);
type TYPROOM is STRING(1.•5);
type TYPGRADE is INTEGER;

tye RECSTUDENT is
record

NAME: TYPNAME;
GRADDATE: TYPGRAD DATE;

end record;
type RECCOURSE is

record
CNAME: TYP CNAME;
ROOM: TYP_ROOM;

end record;
type REC ENROLL is

record
GRADE: TYPGRADE;

end record;

function NULLREF(REF: DBREF) returns BOOLEAN;
function FINDFA: REF STUDENT;
function FINDFA: REFCOURSE;
function FINDFA: REF_ENROLL;
function FINDNA(REF: REF_STUDENT) returns REFSTUDENT;
function FINDNA(REF: REF._COURSE) returns REFCOURSE;
function FINDNA(REF: REF_ENROLL) returns REF_ENROLL;
function FINDFS(SET: ID SE; OWNER: REFSTUDENT) returns REF ENROLL;
function FINDFS(SET: IDCE; OWNER: REF_COURSE) returns REF ENROLL;
function FINDNS(SET: ID.SE; PRIOR: REFENROLL) returns REFENROLL;
function FINDNS(SET: ID.CE; PRIOR: REFENROLL) returns REFENROLL;

- -

A Codasyl Interface for Pascal and Ada Page 18

References

1. Ada Preliminary Reference Manual and Design Rationale,
SIGPLAN notices, vol 14, 6 (June 1979).

2. Data Base Task Group April 1971 Report. ACM, New York
(1971).

3. Jensen, K. and N. Wirth, Pascal User Manual and Report,
Springer (1977).

4. Gerritsen, R., Seed Reference Manual, International Data
Base Systems, Philadelphia (1978).

5. Liskov, B., A. Snyder and R. Atkinson, "Abstraction
Mechanisms in CLU" Comm. ACM, vol 20, 8, pp.654-576
(August 1977).

6. Olle, P.W. The Codasyl Approach to Database Management,
Wiley (1978).

7. Shipman, D. "The Functional Data Model and the Data
Language DAPLEX". ACM Transactions on Database Systems
(to appear).

8. Wulf, W.A., R.L. London, and M. Shaw, "Abstraction and
Verification on Alphard...", Technical Report, USC, Los
Angeles (1976).

3I

A Codasyl Interface for Pascal and Ada Page 20
Appendix

function FINDOS(SET: IDSE; MEMBER: REFENROLL) returns REFSTUDENT;
function FINDOS(SET: ID_CE; MEMBER: REFENROLL) returns REFCOURSE;

function FINDFC(NAME: TYPNAME) returns REF STUDENT;
function FINDFC(CNAME: TYPCNAME) returns REFCOURSE;

function GET(REF: REF STUDENT) returns REC STUDENT;
function GET(REF: REFCOURSE) returns REC COURSE;
function GET(REF: REFENROLL) returns REC ENROLL;

procedure STORE(REC: in REC STUDENT;
REF: out REF STUDENT);

procedure STORE(REC: in RECCOURSE;
REF: out REF COURSE);

procedure STORE(REC: RECENROLL;
NAME: TYPNAME; CE: REFCOURSE;
REF: out REFENROLL);

private

type DBID is STRING(1..30);
STUDENT : 'STUDENT
COURSE : 'COURSE
ENROLL : 'ENROLL
SE :'SE
CE . 'CE
type DBREF is

record
KIND: constant (NIL, NOTNIL);
when NIL -> null,
when NOTNIL =>

constant DBTYPE : DBID;
constant VALUE : INTEGER;

end record;

end SCHOOLSUB

.....1

A Codasyl Interface f or Pascal and Ada Page 21
Appendix

package body SCHOOLSUB is

function XFINDFA(ID: DBID) return DBREF is
begin

pragma INTERFACE (CODASYL);
end XFINDFA; I

generic (type T; ID: DBID)
function GFINDFA return T is
begin

return XFINDFA(ID);
end GFINDFA;

function FINDFA is new CFINDFA(REFSTUDENT, STUDENT);
function FINDFA is new GFINDFA(REFCOURSE, COURSE);
function FINDFA is new GFINDFA(REFENROLL, ENROLL);

-elaboration of FINDNA

function XFINDFS(ID: DEID; REF: DBREF) return DBREF is

pragma INTERFACE(CODASYL);
end;

generic (type IDTYPE; typ OWNERTYPE;
typ MENEERTYPE; ID: DBID)

function GFINDFS(SET: IDTYPE; MEM: MEMBERTYPE)
return OWNERTYPE is

begin
return XFINDFS(ID, MEM);

end GFINDFS;

function FINDFS is new GFINDFS(IDSE, REFSTUDENT, REFENROLL, SE);
function FINDFS is new GFINDFS(ID-CE, REF COURSE, REFENROLL, CE);

-- etc

end SCHOOLSUB;

