
AD0A093 439 ROYAL AI RCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND) F/6 B/2
CARTOGRAPHIC COMPUTER DATA FORMAT AND ASSOCIATED PROGRAMS.(U)

MAR 80 A H BENNY
UNCLASSIFIED RAE-TR-80037 DRIC-BR-TN346 NL

Eh/lil/lE/llEI

I N-8

.T7

11111-" 111*2 .5

I1111.112.2
IIIIIII'81.0 ,= 111112.0I

IIIIL25 111 n1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU O STANDARDS]9b3 A

"Z-

RA RAD MRSS$T

by'

I byJ

447

S.~~~~~ DRCCbfr0*o

Sa.Spousaftgmw)Nvedo
abowmmtbet

(Ctogr m COI- byvi 4"-

7. DFr1CoddortwIgtp M.Ma=1WOok*f

SAuto . S a me , 18mnc'u~sLA o

I/A
15. istrutio dstwat

A~ ~~~~~~Ait vottbi o~t~ a ~m* ~ .~

(b) .(Prrmai)thmowLq U- (i

* j 7b~~1. orofm ac OWIP0pe) h, u4 sw(sm.

A fo~rf4

A to"It

WS Ufatrgo awUm I
(Oerbdb-bd pRt~~

UDC 526.8 681.3.07 : 519.688 531.7.084.2 : 629.19

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 80037

Received for printing 10 March 1980

A CARTOGRAPHIC COMPUTER DATA FORMAT AND ASSOCIATED PROGRAMS

by

A. H. Benny

SUMMARY

This document explains the need for a new computer data format, not

previously available, for the storage of cartographic informatio _

K-A suitable format is described, together with a set of computer programs

which have been written to enable data files in this format to be created, manipu-

lated and displayed in various ways. 3

Departmental Reference: Space 578

4Copyright

Controller HMSO London
1980

6..

2

LIST OF CONTENTS

Page

I INTRODUCTION 3

1.1 The 'image' data format 3

1.2 The 'map' data format 4

2 THE MAP DATA FORMAT 5

2.1 The header record 5
2.2 Data records 9

3 DESCRIPTION OF PROGRAMS FOR CARTOGRAPHIC DATA FILES 12

3.1 Brief description of the programs 12
3.2 Detailed description of the programs 14

4 SUBROUTINE LIBRARY 22

4.1 Subroutine groups 23
4.2 Subroutine descriptions 24

Acknowledgment 24

Appendix A Exchange format 25

Appendix B Subroutine specifications 28

Table I Header record allocation 35

Table 4 Recognised words for program MAP.HDRED 36

References 37

Computer listings: Programs 38

Subroutines 60

Report documentation page inside back cover

Accession For

NTIS GRA&I

DTIC TAB
IUnannounced
Justificatio

By--
Distribution/ _

Availabilitir Codes
s Avail aid/or

Special

-4 -4

3

I INTRODUCTION

Computer data can be stored in a y of ways and each method is likely

to have its own advantages and limitations. This document is concerned with the

storage of data representing some form of 'picture' of the Earth's surface, as

viewed almost vertically downwards from one of the 'Landsat' series of orbiting

satellites, using its multispectral scanner,(MSS).

The Landsat MSS is described in detail in Ref 1. A simplified description

will suffice to convey the information needed here. As the satellite moves above

the Earth, its surface is scanned by means of an oscillating mirror, which

deflects light, via an optical system onto a sensor system. The mirror oscilla-

tion is perpendicular to the path of the satellite, so that a raster-scan is

made, and during each west to east scan the output of the sensor is digitized at

regular intervals of time. Simplifying somewhat, the result is that a swath of

land is imaged, to form a raster-scan of radiometric values with a constant

number, L of values per scan. If the process is stopped after M scans have

taken place, the result is a series of V data values, where V - L x M

1.1 The 'image' data format

It is convenient to store these V values in the sequence in which they

were obtained, to form a data file. Provided that the number of values per scan

is known it is then possible to reconstruct the picture by a suitable raster-scan

display, with each picture element (pixel) having a brightness corresponding to

its measured value. This illustrates a simple and useful form of data storage -

a sequence of values, which is known to represent a raster-scan. It should be

noted, however, that the number L of values per scan must be known (otherwise

the picture cannot be reconstructed) and preferably M also, so that the size

of the file (and picture) is known in advance. It is therefore usual to have some

form of information - a 'header record' - before the main body of the data, so

that the latter can be properly handled.

A format as described is now in use in Space Department of RAE. In detail

each data file consists of a continuous sequence of 8-bit values. The first.1 88 such values constitute the header information, and include a value L for the

number of pixels per scan line. (In practice the number M of scan lines is

also included.) The following data consist of M sets of L values, the 'bright-

ness of the pixels of the scene. Such data files are conventionally referred to

as image files or images, and the programs which handle them are conventionally

4

prefixed by the code IM . Thus, for example, program IM.LOOK is used to 'look

at' an image file in a certain way.

The data storage method described above has several advantages; in parti-

cular it is simple to use and economical of storage space. However, it also has

some limitations, such as:

(a) Each pixel is located, by implication at a specific place, an integer

number of pixels along and down the picture. Fractional locations cannot be

referred to.

(b) It is not easily possible to establish any relationships between

pixels, beyond their obvious sequential nature. For example, pixels in adjacent

scan lines are not obviously related. Any feature on the original scene which

extends over more than one scan line is not recognisable as such from the data,

(though it may be readily observed by human beings from the resulting picture

display).

1.2 The 'map' data format

Considerable work is being done worldwide on the interpretation of Landsat

data. Sometimes the resulting information can be conveniently stored in an
2

image file. Some recent interpretation work done at RAE has been concerned

with the extraction of cartographic features, eg coastlines, and these are not

suitable for storage in image files, in particular for the two reasons mentioned

in (a) and (b) above. Consequently, it was necessary to establish a more suitable

data storage format.

I Briefly, the new data format, referred to as a 'map' format, consists of a

header record, followed by a number of 'features', each feature consisting

principally of either one coordinate value (to represent a single location -

a 'point'), or a string of coordinates (to represent a continuing 'line'). Such

a map data format is capable of storing much of the diagrammatic information

extracted from a Landsat image.

This document describes the map data format in detail, together with a

description of a suite of computer programs and subroutines which has been

written to handle such data files. Programs which handle map files are conven-

tionally prefixed by the code MAP., eg the program MAP.LIST is capable of o

listing the coordinates of a map file.

The expression 'line' or 'linear feature' of a scene is here used to refer

to a sequential set of coordinates (x, y pairs). If the commencing and final

5

coordinates of a line have the same coordinate values, in both x and y , then

the line is closed, ie it forms a loop. Because the connections between each

coordinate pair can only be considered as straight lines, a loop is in fact a) polygon. If the individual coordinates are sufficiently close together, the

linear feature, when displayed on some suitable device, such as an X-Y plotter

or a graphics visual display unit, appears to the eye as an acceptable representa-

tion of a terrestrial feature, that is to say, the display resembles a map etc.

2 THE MAP DATA FORMAT

A map data file consists of a header record followed by the body of the

data, in sequence. For convenience, and with the objective of maximising the

reading and writing speed, the file is divided into 'blocks', each of 1024 words,

since that is the number of data words per storage block of the disc unit of the

host computer (Prime) on which the file is to be stored. Should files be written

to other machines, the block size should be changed suitably, and provision has

been made for such a change to be done with the minimum of work.

The header record is therefore 1024 words in length, and the body of data

is divided into similar sized blocks, although individual data features may be

larger or smaller than 1024 words. The Prime computer uses 16-bit words, and

the map format has been designed accordingly.

2.1 The header record

The header record has 1024 words available to it, and this is considerably

in excess of the amount normally needed. This space is allocated as shown in

Table 1, the details of which are as follows.

2.1.1 'Permanent' header description

Programs which create a map file normally call the subroutine PERMHD which

requests from the user the permanent header details, these being the general

project name IPROJ , up to 12 characters, plus the description of the project,

IDESCR , up to 32 characters. These details are not changed by subsequent pro-

cessing of the file, but are permanently available for reference.

2.1.2 Map projection details

Since the map format is capable of holding (and does on occasion hold) data

which is the computer description of a map, it is useful to have the facility to
record some information relating to the cartographic projection used.

6

Some or all of the following information may be recorded:

(a) IPRJCI: a code number which indicates the type of projection being

used. Codes so far allocated are:

IPRJCI Projection

I British National Grid

2 Universal Transverse Mercator

99 Image file units.

The code 99 is not strictly a map projection, since it is not cartographically

defined. It is related to the movement of the Landsat satellite. Methods exist

for transforming 'maps' in this pseudo-projection into accepted cartographic

projections however, so it is useful to label a file with the projection code 99.

(b) IPRJC2: a projection subcode. This number may be used to qualify

the main code. The only meaning so far allocated is for the case when

IPRJC| = 2 , ie UTM. In such cases it is necessary to specify the zone, (I to

60) and this value is held in IPRJC2

(c) SCALE: this real number is the scale of the map. For example, for a

one-inch to the mile map, SCALE would have the value 63360.0.

(d) XSCALE, YSCALE: not at present in use. If it should be necessary to

adjust the size of a map to fit its known corners, the X and Y adjustment

factors would be stored in these locations. Normally their values would be close

to unity.

(e) SCLLNG, SCLLAT: these numbers are available for holding longitude and

latitude values, usually stored as degrees. For example, in a UTM map, SCLLNG

could contain the value of the central meridian of the zone; for a Mercator map,

SCLLAT could contain the value of the latitude at which the SCALE is accurate.

(f) RADEA, RADEB: the Earth's semi-major and semi-minor axes in metres.

These values are not at present in use, but are needed if map projections are to

be considered in detail, or if maps are to be transformed from one projection to

another.

2.1.3 Map file statistics

This set of values holds statistics about the map file, which are useful o
for various purposes.

(a) NLIN: the number of line items in the file.

7

(b) NPT: the number of point items in the file. Since a map file should

always contain four corner points or 'fiducials', NPT should never be less than 4.

(c) NSTEPS, NSTEPZ: the total number of line 'steps' in a file is held

in these two values. Any one line may have N coordinate values, including

its start and finish, and thus has N-I 'steps'. The number of steps for each

line is totalled, and the value stored. Since this value may be too large to

hold in the 16-bit integer available, it is stored as two integers, modulus

1O000. That is to say, if NTOT is the total number of steps, then

NTOT = (NSTEPZ x 10000) + NSTEPS

It would have been possible to use a REAL word or an INTEGER*4 to

store this information. The chosen method allows larger numbers to be handled,

and more conveniently, than a REAL . INTEGER*4 is not available as a standard

FORTRAN facility (though it is becoming commonly available).

(d) MNFC: each item of the map file can carry up to 17 'feature codes',

which give information about the type of feature the item represents. MNFC

records the largest number of such codes carried by any item in the file.

(e) NDIFFC: a file may contain many items, and each item may carry

several codes. The total number of different feature codes in a file is

recorded by NDIFFC . Usually NDIFFC is larger than MNFC

2.1.4 Corner points

A map is a representation, on say a sheet of paper, of a portion of the

surface of the Earth. Two sets of corner points exist therefore: the corners

of the map and the corresponding locations on the Earth's surface. The eight

ji real words of array CNR(2,4) hold the x and y coordinates of the four

corners of the map, reading from the south west corner in a clockwise direction.

CNR(1,1) x coordinate of SW corner

CNR(2,]) y coordinate of SW corner

CNR(,2) x coordinate of NW corner

CNRj2,4) y coordinate of SE corner.

As a convention, the SW corner is taken as the origin of the map, so its

coordinates are 0, 0 . Also, the map is defined as a rectangle. With these

restraints, considerable redundancy exists, and in fact all of the required

information may be derived from the NE corner.

8

The CNR values are stored as millimetres. Arbitrarily, a maximum map

size of 2000 um square may be defined.

Corresponding to the four corners on the map are four geographical locations

on the Earth's surface. These locations are stored in the array GCNR(2,4), and

they correspond with the CNR values, ie GCNR(a,b) corresponds with CNR(a,b)

If the map is in British National Grid, the GCNR values are in kilometres

on that grid. For other map projections GCNR values are held as the relevant

longitude and latitude, expressed in radians. For IPRJCI = 99, ie the pseudo-

projection based on image file units, GCNRs have no defined meaning at present.

2.1.5 Program logging information

The header record has a logging facility to allow a record to be made of

all processing done to a map file. Some programs are available to modify exist-

ing files, and it is useful to keep a log of what has been done. All such

programs, together with the program which initially created the file, use a

subroutine UPDATE , which keeps a log in the header record.

Subroutine UPDATE gathers information, some from the user, but mostly

from the computer itself and from the program in use, and places this information

into a 40 word portion of an array (only 29 of these words are at present in use).

There is space in the header record for 15 such sets of 40 words. After a 40 word

set has been assembled, UPDATE moves all the preceding sets one place 'down',

and then places the latest set at the top of the available space. Thus, if

15 sets of log data had been in use prior to this operation, the oldest one would

have been lost, as the others moved down. In practice, it is not expected that

there will be as many as 15 UPDATES on most data files, with the suite of pro-

grams at present available.

Within each 40 word set of data, the information recorded is:

(a) the name of the current program - up to 8 characters;

(b) the version number of the current program. From time to time program

changes may be made sufficient to justify a new version number;

4i (c) the version number of the data file. Each time UPDATE operates, it

increments this value by one;

(d) the current date and time. This information is extracted by the 0

computer system from its own records. The method of storage of these values is

seen by a study of the listing of the subroutine UPDATE

9

(e) the user's code name. As with (d), this is provided by the computer

system;

(f) details of the current program operation. Up to 32 characters of

description may be supplied by the user, in response to a request for "details

of this run".

2.2 Data records

The cartographic data in a map file follows the header record, and is

stored in similar sized data records. The data consists of a sequence of map

'features', these being of three types; corner points, points, and lines. The

two types of point contain a relatively small amount of information and each is

stored as one 'item', but lines can contain an indefinitely large amount of

information, so they are broken down into a number of items, one for each

coordinate pair of the line, the first and last coordinate pairs being in rather

different types of item from each other and from the 'internal' ones.

Map data is thus broken down into items, which may be from 2 to 21 real

words in length, though the average item size is probably under three words for

a typical map. These items are stored within data records of length 512 real

words (1024 integers), and each type of item may carry an indicator word (denoted

by MK) according to its type (see Table 2).

Table 2

Meaning of MK numbers

MK Meaning

0 'Internal' line coordinate pair

I Last coordinate pair of a line

2 Not used

3 Start of a line, including first coordinate pair
4 Map point
5 Corner point or 'fiducial'

A 6 End of data indicator

7 Fill word

Since items are stored without being broken, there is often one or more

words unused at the end of a data record. In such cases the first or only emptyI 0 word has a 'fill' word (MK 7) placed in it, to distinguish it from a zero.

10

The condition MK = 7 is written and read by subroutines NSTORE and

NFETCH respectively. It is not used in the calling program, nor need its

existence be considered by the writer of calling programs, for it is to him an

illegal condition. It is included in Table 2 for completeness only.

When the last map item has been written, a MK = 6 item is placed after

it, to indicate that the end of the data has been reached.

In addition to the coordinate pairs, where appropriate, the item may also

carry some information about the feature, and this is done for start-of-line and

map point items. Both such features may carry up to 17 feature codes, so the

item includes NFC , the number of feature codes for this item, followed by

NFCreal words containing the relevant feature codes. Additionally the start-of-

line item has provision to record the number of steps in that line (ic the number

of coordinate pairs less one). The number of steps is broken down into two

integer values, NPTS and NPTZ such that the total number of steps is

NPTZ x 10000 + NPTS . In practice, lines vary in length from I to about 50000

steps, so NPTZ seldom exceeds say 5. If the number of steps is not known,

zero should be inserted in NPTS and NPTZ

In the case of 'internal' line coordinate pairs, the inclusion of the MK

word would lead to a 50% increase in item size, and since a map often consists

mainly of such items, almost a 50% increase of data file size. Thus, for inter-

nal points, the MK word is not stored. However, it is necessary to supply

MK = 0 when internal coordinates are to be written by subroutine NSTORE , and

after the retrieval of such data by NFETCH MK = 0 is returned.

The constitution of the various types of item is shown in Table 3

(section 2.2.).

Since the data storage method is almost entirely encompassed by the sub-

routine NSTORE (and correspondingly the recovery of the data by NFETCH) the

former will now be described in some detail.

2.2.1 Subroutine NSTORE

The file data must be stored in such a manner that it can be recovered

unambiguously, and this is done by subroutine NSTORE . This subroutine communi-

cates with the other portions of the program via two COMMON blocks, the first

of which, COORDS , must be supplied with all the information necessary for the

storage operation, and the second, OUTCOM , contains the output buffer and its

pointer together with other details necessary for the output operation of writing

to the storage medium.

i W . . .I I'

The COMMON block COORDS contains the values:

(a) MK: an indicator of the type of item etc being stored.

(b) Two real values, the x and y coordinates of the item.

(c) Two integers, representing the number of steps in the line. These

are only used if the item is the start of a line.

(d) One integer NFC representing the number of feature codes for the

item.

(e) Up to 17 real values, the actual feature codes.

(d) and (e) are only supplied if the item is a map point or the start of a

line. The number of codes supplied in (e) should be consistent with (d), as

NSTORE stores NFC values, irrespective of whether these have been deliberately

supplied or not.

The COMMON block OUTCOM contains in particular a buffer pointer which

points to the next free word in the output buffer.

The items placed into the buffer by NSTORE are made up as shown in

Table 3.

Table 3

Types of item stored

MK R X Y NFC Feature codes Item size (words)

0 / / 2

S / / / 3

2 Illegal

3 NFC codes 4 + NFC

4 / / / / NFC codes 4 + NFC

5 J V / 3

6 -

The only legitimate MK values which may be supplied to NSTORE are

0, , 3 to 6, and all others cause an error message to be output. NFETCH

recognizes MK = 7 as a fill word.

Subroutine NSTORE starts by using MK , and if necessary NFC , and

0 calculates the size of the item, as shown in the last column of Table 3. It

12

then uses the buffer pointer and buffer size to determine whether sufficient space

remains to write the item to the buffer. If insufficient space remains, it

'closes' the buffer and writes it to the output device. Closing the buffer con-

sists of examining it to see if any empty space remains, and if so, an R value

corresponding to MK = 7 is placed in the first or only empty space. R is a

real number, made up of the addition of MK + 1048576.0 . After writing the

buffer to the output device, the buffer is cleared and its pointer reset.

In the event that sufficient space remains in the buffer, or a buffer has

just been written and cleared, the item, as described in Table 2, is then loaded

into the buffer. Much of this operation is straightforward, but two points need

elucidation.

(a) It is necessary for NSTORE to write R (MK + RMARK) rather than

merely MK , to avoid ambiguity when the data is later recovered by NFETCH .

If only MK were used, the possibility of confusion would occur when line-points

were being recovered. At any time, it will not be known whether the next item is

another line-point (in which case the next word will have the value x) or the

end of the buffer (MK = 7) or the end of the line (MK = 1). Since 1.0 and 7.0

are legitimate values for x , confusion could arise. Hence MK has RMARK

added to it, RMARK being large enough to exceed any allowed value of x yet

small enough for the addition of MK (I to 7) to allow subsequent recovery of MK

by NFETCH.

The user of subroutines NFETCH and NSTORE need not be concerned with the

details of the construction of R since it is handled internally by these two

subroutines and no others.

(b) The values of the three integers NFC , NPTS and NPTZ are combined

into one real word. This is done for reasons of economy; as NFC cannot exceed

*17, and NPTZ is in practice seldom greater than say, 5 to 10, these two small

* integers can conveniently be packed into one 16-bit word, which in fact allows

NPTZ values up to 1023.

3 DESCRIPTION OF PROGRAMS FOR CARTOGRAPHIC DATA FILES

3.1 Brief description of the programs

Map files must first be created; they may then be modified in various ways;

they can be transformed into other forms of file; and they can be examined in

several ways. Programs have been written to perform a number of these operations.

This section describes the programs briefly; a fuller description and program

listing appears later.

- -- -

13

3.1.1 Programs to create map files

(a) MAP.FAB This program allows the user to create a map file manually,

by keying all the details into a VDU . Its main use is for such purposes as to

form an 'empty' map - ie merely four corner points, or to create a grid of hori-

zontal and vertical lines, although one could, laboriously, key in a whole map

if the data were available in coordinate form.

(b) MAP.IN This program creates a map file from an external 'exchange

file' produced elsewhere and stored on magnetic tape.

(c) IM.CONTOUR This program is named in the 'IM.' series, because it

uses an image file as its starting or input material, extracts cartographic lines

from it, and forms a map file. The program is to be described in a separate

document, and has been described in a general way in Ref 2, so will not be

detailed in this document. However, it is at present one of the mainksources of

map files.

3.1.2 Programs to alter or transform map files

(a) MAP.HDRED It is sometimes necessary to inspect, alter or add to the

information contained in the header record, ie edit the header, and this may be

done by use of MAP.HDRED

(b) MAI'.TRANS Map files created by IM.CONTOUR are in the pseudo-

projection of image file units. With the aid of a suitable transformation matrix,

MAP.TRANS can be used to transform such a map file to one in a known map pro-

jection, such as British National Grid.

(c) MAP.OUT This program uses a map file as input and creates an

'exchange file' on magnetic tape, which may then be despatched elsewhere, or

could of course be re-read by MAP.IN

3.1.3 Programs to examine map files

(a) MAP.LIST This program displays to the user, on a VDU , some details

of the header, and the data, item by item, all in alphanumeric form. To avoid

the display of large quantities of data, the user may make some degree of

8 selection of what is to be displayed.

.11 (b) MAP.TEK A map file may be graphically displayed on a Tektronix 4014

device by means of program MAP.TEK
0

(c) MAP.HPLOT This program allows a map file to be plotted on a Hewlett-

II Packard X-Y plotter. Both MAP.HPLOT and MAP.TEK allow the user some degree
of control over the material displayed and the size of the display.

--.-.-T-..-.----.-----...-- -.-.-..

14

3.1.4 List of programs

In alphabetical order, the programs above are:

Name Section Description

IM.CONTOUR 3.1.1c Ref 3
MAP.FAB 3.1.1a 3.2.1
MAP.HDRED 3.1.2a 3.2.2
MAP.HPLOT 3.1.3c 3.2.3
MAP.IN 3.1.1b 3.2.4
MAP.LIST 3.1.3a 3.2.5
MAP.OUT 3.1.2c 3.2.6
MAP.TEK 3.1.3b 3.2.7
MAP.TRANS 3.1.2b 3.2.8

The above list of programs is not intended to be exhaustive, but includes

all of those so far written. There may be a need for including additional

features in these programs or writing of new ones for other tasks. For example,

it may soon be useful to be able to create map files by digitization from a map

or other diagram using the graphics tablet at present available.

3.2 Detailed description of the programs

With the exception of IM.CONTOUR , which is to be described elsewhere, the

programs are next described in more detail, the aim being to aid potential users

in understanding how to operate them. The program listings are provided at the

end of this document, and these may be referred to whilst studying the following.

The programs make use of a number of subroutines which have been placed

into a 'library', and are described in section 4.

3.2.1 Program MAP.FAB

Program MAP.FAB allows the user to create a map file, by supplying data
I I from a keyboard.

From the user's viewpoint, its operation is as follows:

* The program name and writing date is output.

* An output filename (ie the file to be created) is requested.

* Permanent header detail is requested.

* Description of the current run is requested. The header record is then

written to the storage medium. If further header detail is to be supplied,
this is done by subsequent use of program MAP.HDRED 0

A 'MK' number is requested. Subsequent action depends on the reply given.

(a) MK - 6 causes the output file to be closed and the program terminates.

15

(b) Illegal MK numbers invoke an appropriate message, and a further

request for a MK number.

(c) Legal MK numbers are followed by requests for the data needed to

create an item appropriate to that MK number. When the necessary

answers have been provided the item is written by NSTORE and a

request for another MK number is made.

It is thus seen that this program creates a map file, with the header

i record in place and partially completed, and followed by data items, each checked

for internal correctness, and terminated by a MK = 6 item. There is however no

check that the sequence of the data as a whole is correct: for example, fiducials

may be written at any time, and a line may be ended before it has been started.

Checks could be made for such errors, but it is thought desirable to allow the

user to include deliberate mistakes, to test other programs.

3.2.2 Program MAP.HDRED

The header record is seen (Table 1) to consist of a number of values, some

integer, some real and some characters, in the first 132 (integer) words. Words

201 to 800 contain the history of the file.

The program MAP.HDRED allows the user to examine, and if desired change,

any of the information contained in words I to 132. If any change is made, the

history is updated to include this fact. The name of the file is not changed.

The operation of the program is as follows:

* The program announces its name and version date.

ji * The name of the data file is requested.

* The question 'HEADER?' is asked. If answered YES the project and descrip-

tion are listed, together with the history of the file, as stored in

header words 201 onwards.

Next an 'ITEM' is requested. Thirty-six different answers are acceptable

as shown in Table 4, otherwise the request will be made again, after a

message stating that the item is not recognized. If the user replies

HELP , the 36 recognisable options will be listed for inspection. If END

is typed, or merely a carriage-return, the program closes down, updating

the header and writing it back into the data file if necessary (if any

change has been made). If any of the recognised names are typed, the value0
of that quantity will be displayed, and the question posed: CHANGE IT?

16

If NO is replied, no action is taken, and the program asks for another

ITEM . If YES , then NEW VALUE is requested, and the value provided

is written into the header buffer. No check is made by the program con-

cerning the validity of the value provided, so the user must take care to

ensure that the required value is entered correctly. If there is doubt, or

a mistake is known to have been made, it is possible to re-examine and alter

the altered value.

* When the user has replied END to the query 'ITEM' the program checks

whether any change has been made (a change is said to have been made when
the reply YES is given to the query CHANGE IT? even if the same value

is given as existed before) and if so, it updates the header and writes

it back to the storage medium. The file is then closed.

Finally the program r quests MORE FILES? to enable the user to edit the

header of another file should he so wish.

3.2.3 Program MAP.HPLOT

Program MAP.HPLOT is used to plot a map file on a Hewlett-Packard X-Y

plotter. The interface software to drive that plotter has been obtained from

elsewhere and is therefore not described here. The various subroutine calls,

eg HPINIT, HPMOVE , and so forth, are noted in the program listings with

comment to indicate their functions.

User operation is described below. Before running the program, the user

must assign the plotter to the current VDU , by the instruction: AS AMLC 15

* Program name and date is output to the VDU

* The pen number (I to 4) is requested. The user may insert pens with

coloured ink into some or all of the four positions available.

The cross size N is requested. Corner and other points are drawn as

crosses, the arm length of which will be N units, each one-eighth of a

millimetre. Hence the reply 10 would produce crosses of arm length

11 mm, ie 21 mm from tip to tip.

A request is made for the name of the input map file.

* An enquiry is made; 'SPECIFY CORNERS?' If the reply is YES , then

requests for x and y coordinates of the south west and north east

corners (ie lower left, upper right) will follow, and the plot will be

adjusted so that the map, based on the corners in the header (CNR), fits

the numbers provided.

17

* If the map file has IPRJCI = 99 , ie it is in image file units, the pro-

gram moves to the enquiry FRAME? below. Otherwise, if the above question

were answered NO , the next request would be 'SPECIFY SCALE?'. If this

is answered YES the program will refer to the SCALE in the header and

if it finds no value there (actually SCALE less than 10) a suitable

message will be output. Provided that a suitable SCALE is available, the

program will request an 'OUTPUT SCALE' . A check will then be made to

ensure that the map, when drawn to this scale will fit the size of the

plotter and if unsuitable, a fresh value will be requested. The scale

should be provided as a real number, as shown in section 2.1.2(c).

If the answer to the question 'SPECIFY SCALE?' had been NO , then the

program would calculate the necessary factor, such that the output map

would just fit the height or width of the plotter, whichever is the limit-

ing factor.

Thus the user has a choice of three types of map size, or two if there is

no value for SCALE in the header.

* An enquiry 'FRAME?' is made. If the response is YES , the plotter will

draw a frame round the map, ie a line joining the four corners, in sequence

and returning to the starting corner.

Following these questions, the X-Y plotter will then draw the map, under

computer control, using the data from the input file. When the plot is

complete;

* the query 'ANY MORE FILES?' is made. If YES , a return is made to the

first question; if NO , the program stops.

3.2.4 Program MAP.IN

For purposes of data exchange or transfer between users in different

establishments, a data 'exchange format' has been defined, and this is described

in Appendix A. One or more maps may be contained on such a magnetic tape. The

program MAP.OUT converts data files into exchange format data on magnetic tape,

and MAP.IN correspondingly creates one or more map format data files from an

exchange format magnetic tape.
Before the program MAP.IN is run, the user must first allocate or 'assign'

a magnetic tape drive unit for his use, and load the magnetic tape containing the

exchange format data onto that drive unit. The program may then be run:

The program announces its name and asks for the magtape drive unit number.
The user must supply the unit number previously allocated.

Th rga nnucsisnu.adak.. temgaediv ntne.. .

18

The first ten magnetic tape records are read by the computer, interpreted

as alphanumeric characters and displayed on the VDU . These ten records

usually give some descriptive details of the map to follow.

The usual filename, permanent header data and run description, are

requested. The user is able to provide suitable replies, often based on

the ten records just supplied.

Following these questions, the computer then reads the magnetic tape,

converting the data into a suitable form for the map file being created on

the storage medium (usually a disc), until the first (or only) map has been

completed.

If no more files exist on the magnetic tape (and this is recognized by the

presence of a MK = 30 or an end-of-file) then the tape is rewound and the

program stops. If, however, another file (or files) is present, the ten

character records are displayed on the VDU , and the program continues

from that location.

Thus, one magnetic tape in exchange format may result in the formation of

several data files. Each of these data files will have only a small amount of

header record detail, consisting of the file descriptive character words, the

update information, and the map corners (CNRs) derived from the corner points.

If it is desired to include further header information, eg the geographical

corners, or the scale, which may have been provided by the ten lines of text

message, then MAP.HDRED may be used to enter this.

The exchange format allows one or more records per magtape block. Both

MAP.IN and MAP.OUT have been written for the case of one record per block,

* which has been suitable for the data transfers so far performed. Should it be

necessary to use multi-record blocks, some program modification would be necessary.

3.2.5 Program MAP.LIST

The contents of a map data file may be inspected in the form of characters

and numbers on a VDU by means of program MAP.LIST . When run:

* The program announces its name and date.

1 * A map filename is requested and the file opened.
* The question HEADER? is posed. If the user replies NO , the program

proceeds to the data, but if YES , a number of header details is displayed

on the VDU . Only the more commonly inspected details are shown, but the

less frequently used details may be seen with the aid of MAP.HDRED *

I-

r ' ..- __.. . .

19

The question DATA? is asked. If the reply is NO , the program moves on

to a later question, but if YES the question INTERIOR LINE POINTS?

follows. If this is answered YES , then all of the map data items are

displayed, in sequence, on the VDU . The reply NO would cause the

interior line point items (MK = 0) to be omitted, which is often convenient.

Following the data, the program asks MORE FILES? If YES , a return is

made to the first question in the program, but if NO the program stops.

3.2.6 Program MAP.OUT

Program MAP.OUT performs the reverse operation of that done by MAP.IN

and reference may usefully be made to the description of the latter program, in

section 3.2.4.

MAP.OUT is used to form a magnetic tape, in exchange format, containing

one or more map files.

Before MAP.OUT is run, the user must assign a magnetic tape drive unit

for his use, and load onto that unit the tape on which the exchange data is to

be written. The program may then be run.

• The program provides its name (on the VDU) and requests the magtape drive

unit number.

• The name of the input map data file is requested, and the named file then

opened.

* Ten header lines are requested. The user must supply ten lines of text,

from 0 to 120 characters per line. Since the exchange format does not

contain headers, it is usual to write out some of the header information

as text.

The data is then converted to exchange format and written onto the magtape.

When the process is completed the program asks ANY MORE FILES? If YES ,

the name of the next file is required, and the above steps continue. If

NO , MK = 30 and end-of-file markers are placed on the tape, which is

then rewound, and the program stops.

3.2.7 Program MAP.TEK

Program MAP.TEK is used (in a manner analogous to MAP.HPLOT) to display

a map file on a Tektronix 4014 graphics display unit, with hard copy capability.

As with HPLOT , the software which drives the display has been provided from

elsewhere.

4

20

For operation, the user must first assign the display to his use by making

the instruction:

AS AMLC 14 TRANHS 413

with corresponding un-assignment:

UN AMLC 14

after the program use has been completed. The assignment instruction may be

changed at some later date, eg the AMLC line may no longer be number 14.

When the program is run:

S* it provides the program name and date on the VDU,

* it asks if the user wishes to 'flash' the screen, ie clear it of its

present contents,

it requests CROSS SIZE , N . All map points are drawn as crosses, having

four arms, each of length N units. These units are related to the size

of the display screen but are approximately 0.1 mm. Hence a reply of

N = 10 would provide crosses with arms of length about I mm, ie 2 mm

from tip to tip.

* the filename is requested from the user, and when supplied the map file

is opened,

SPECIFY CORNERS? is asked. If the reply is YES the user is asked for

the x and y coordinates of the south west and north east corners.

Values should be in screen units, as mentioned above, and normally these

would be provided in the range 0 to 5000. It is possible to use specified

corners to fit a map file to a displayed image file. If the user replies

NO the program refers to the corner points (CNR) in the header record of

the file, and calculates a scaling factor such that the map is drawn as

large as possible consistent with (a) scales in the x and y direction

are the same and (b) the map fits entirely into the screen.

The program asks FRAME? If YES , four straight lines are drawn, clock-

wise from corner to corner, creating a frame round the map.

The map file is then drawn on the screen, feature by feature, until it is

complete. The file is then closed.

ANY MORE FILES? is requested. YES causes a return to the initial

'FLASH THE SCREEN?' question, ready for another map file to be displayed,

whilst NO causes the program to stop.

Ll________________S

21

If the corner (CNR) values in the header record of a file are either zero

(perhaps none has been provided) or corrupt, an error message will be displayed

and that file closed. In these circumstances it is possible to use program

MAP.HDRED to insert or correct the CNR values. The CNR values can be

selected by examination of the fiducial points (the first four data features of

the file) using program MAP.LIST

3.2.8 Program MAP.TRANS

Map data files produced from image files by means of programs such as

IM.CONTOUR are not in a cartographically recognised map projection, but are in

a coordinate system related to the initial image. This system has been referred

to as Space Oblique Mercator 4 . The program MAP.TRANS may be used, together

with a suitable transformation file, to convert the map file to a coordinate

system such as British National Grid.

The construction and use of a transformation file is described by

J.R. Williams 5 . Briefly the process is as follows. Several locations are

identified on the image and the corresponding National Grid coordinates are

obtained from maps. The program IM.MATRIX is then used to convert the relative

location data into a transformation file containing six numerical values, TI

and T2 referring to the translation of the coordinates and All to A22

referring to the shear and rotation of the scene.

The program MAP.TRANS uses a transformation file to convert a map file

in image units (IPRJCI = 99) to another map file in British National Grid

coordinates (IPRJCI = 1) . Each output coordinate-pair XO , YO is calculated

from the input coordinates XI , YI

XO = (XI - TI) x Alll + (YI - T2) x A112
I'

YO = (XI - TI) x A121 + (YI - T2) x A122

where AIll to A122 is the inverse matrix:-

AI] = A22/D

Al12 = -A]2/D

A121 = -A21/D

A122 = A||/D

and D = (All x A22 - A21 x A12)

The minus signs for Al2 and AI2I are needed because an image file has its

Y direction downwards, ie in the opposite direction to a map, or map file.

" -.... I . . 1 11 1 I.l rfi l .. I I I I I n i - I

22

It should be noted that the transformation matrix must have been calculated I
from control points whose image coordinates refer to the same portion of the

image which gave rise to the map file. It is not uncommon for a user to select

a subscene of an image (using program IM.SUB). A map file made, by means of

IM.CONTOUR , from such a subscene could not employ the matrix derived for the

whole scene. If this were attempted, the National Grid map would be displaced

in northing and easting.

Operation of MAP.TRANS is as follows: i
* The program announces its name and date.

* A matrix filename is requested. This file is then opened by the computer,

relevant values read and the file closed.

The input map filename is requested and the file opened. A check is made

that the file is in the required pseudo-projection. If it is not, the file j
is closed and a return is made for a new matrix filename. Assuming a

suitable file has been selected, an output filename is requested, and

opened; an update is made, including a request for a description of the

run; a number of calculations is made and the geographical corner points

(the corners expressed as kilometres on the National Grid projection) are

printed out, and placed into a header buffer, together with other header

data. The output header record is then written to the output medium, and

the data of the file is converted to the output projection, and stored.

When all data has been transformed, the input and output files are closed.

* }MORE FILES? is asked. If YES the program returns to the request for

a matrix filename; if NO , it stops.

4 SUBROUTINE LIBRARY

All of the programs described in section 3 call subroutines. Inspection

of the program listings reveals that some of the subroutines are called by more

than one program. In such cases it is convenient to form a 'library' of sub-

routines, which are accessible without being re-listed and re-compiled for each

program.

The subroutines used by the map file programs and placed into the library

include (in alphabetical order):

23

Subroutine name Description in section number

NCLOSI 4.2.10
NCLOSO 4.2.6
NFETCH 4.2.9
NHDIN 4.2.8
NOPENI 4.2.7
NOPENO 4.2.1
NSTART 4.2.4
NSTORE 4.2.5
PERMHD 4.2.2
UPDATE 4.2.3

Several of these subroutines are concerned with the input and output of

data, which is often done by means of routines which are not standard FORTRAN

ones. In the subroutine listings, the comment includes references to PDR 3106

and PDR 3110 together with page numbers, on some occasions when non-standard

subroutine calls are made. These PDR numbers refer to the host computer manu-

facturer's handbooks and are detailed in numbers 6 and 7 respectively in the

reference list of this document. In passing, it may be noted that if it were

necessary to modify the programs for use on a different host computer, many of

the alterations would occur in these subroutines at these input and output calls.

4.1 Subroutine groups

The subroutines listed above belong to one or other of two groups; for

'output' or 'input';

(a) subroutines used when a map file is being written or 'output':

NOPENO, UPDATE, NSTART, NSTORE, NCLOSO . Additionally, if the map file is being

created from a source which is not itself a map file, PERMHD may be used,

usually before UPDATE

(b) subroutines used when a map file is being read or 'input': NOPENI,

NHDIN, NFETCH, NCLOSI
A

The subroutines within each group are called in the sequence given above.

rI If both input and output occurs (as for instance in program MAP.TRANS) then

calls from the two groups may be intermingled, but the sequence within each
group will still be preserved. Programs, such as MAP.HDRED which edit,

ie change, an existing map file, may present certain problems. Since only one

such program exists at present, its special subroutines, for opening and closing

r files for both input and output, and for writing a header record back into an

existing file, are not included in the library.

.-

24

As far as possible the subroutines contained within group (a) and group (b)

have been designed to form self-contained sets, needing the minimum of external

information. Subroutine parameters are not used, and the transfer of information

is by means of COMMON blocks. For group (a), the output routines, the COMMON

blocks are OUTCOM, COORDS, HEADER and FILENC . The input routines use COMMON

blocks INCOM, COORDS and HEADER.

The method of use of the various subroutines can be well seen in such

programs as MAP.FAB which uses all of group (a) in a simple manner, and

MAP.LIST which uses all of the routines of group (b).

4.2 Subroutine descriptions

The subroutines are described in detail in Appendix B, being placed in the

sequence indicated by the groupings of section 4.1. These descriptions may

advantageously be studied together with the library computer listings at the end

of the Report.

The following facts are common to all of the subroutines and are therefore

not included in Appendix B for each:

all are written in Prime FORTRAN

all were written by the author of this paper

none has any parameters.

Acknowledgment

The author was for a time with the Experimental Cartography Unit (ECU)

of the Natural Environment Research Council, then at South Kensington, London.

The map format described in this document bears a considerable resemblance to

* (but is not exactly the same as) the ECU's 'Lang Format'. Some of the programs

described in this Report likewise have some resemblance to programs written by

the author whilst at ECU.

.0

Iw

25

Appendix A

EXCHANGE FORMAT

A cartographic data exchange format has been defined by the Experimental

Cartography Unit of the Natural Environment Research Council. Since no freely

available description exists, this Appendix gives full details of the format.

The purpose of the exchange format is to allow transfer of cartographic

data between different establishments, and in particular between different types

of computer. The method selected as most suitable to cover the widest range of

equipment is to write characters (not numbers) onto magnetic tape.

The format description is:

* Data to be written on magnetic tape: 7 or 9 track: any of the standard

densities; parity even or odd; any character set. This allows a wide

choice, but the options used must be defined on a separate document.

* The tape may contain one or more sets of data, ie 'maps'.

* Each map consists of a number of records, each containing 120 characters.

* Each block written t:- the magnetic tape must contain the same (integer)

number of records. Frequently one record per block is used.

* Each map consists of the sequeiice:

ten records containing text

an unspecified number of data records

one MK = 6 record (see below) to indicate the end of the map.

* After the final map has been written, including its MK = 6 record, a

MK = 30 record is added to indicate the end of the data.

* The text records may contain any message or other information, in character

form. Unused portions of records should be filled with space characters or

nulls.

Data records are of four possible types:

MK = 3 record: start of line

MK = 4 record: map point

MK = 5 record: corner point

record containing line points after the start of the line.

2 20

26 Appendix A

Table Al lists the contents of the MK records.

Table Al

Contents of MK records

Characters = 3 MK = 4 W = 5 MK 6 MK= 30
in record

1-2 03 04 05 06 30

3-4 00 (1) 00 (1) 00 (1) 00 (1) 00 (1)

5-10 x x x (2) (2)

11-16 y y y (2) (2)

17-18 NFC NFC NFC (3) (1) (1)

19-25

(4) (4) (4) (5) (5)

115-120

Notes:

(1) Two zero or space characters.

(2) Six zero or space characters.

(3) For MK = 5 NFC would normally be zero.

(4) Up to 17 six-character feature-codes, followed by space or zero
characters. Codes in the range -99999 to 99999.

(5) This portion of the record to be filled with zero or space characters.

(6) For all integers, leading zeros may be replaced by spaces.

(7) All numbers are integers.

(8) x and y coordinates may be expressed in any units but should
preferably be defined in an accompanying document.

* If MK = 5 records are supplied (corner points) there must be four of them,

representing respectively the SW, NW, NE and SE corners of the map, and

they must appear before all other data records, but after the ten lines of

text.

* For lines, after the first point has been defined by a MK = 3 record, the

remaining points are stored as changes of x and y from the preceding

value. The change must never exceed the range -49 to +49 units, and

should a larger change occur, extra points must be interpolated. Each o

change then hasthe value 50 added to it, to bring it into the range

I to 99, the value zero being reserved to indicate that the end of the

line has been reached.

9 _ _i - -,-...-----

Appendix A 27

Line point records consist of 30 sets of four characters, two numeric

characters for the x change and two for the y change. After the last point

of the line, there must be a set of four zeros to indicate the end of the line,

even if this necessitates a new record. The remaining unused portion of a record

may contain any character.

I

28

Appendix B

SUBROUTINE SPECIFICATIONS

B.1 Subroutine NOPENO

Summary - NOPENO is used to open a new map file for output.

Use of COMMON - uses /OUTCOM/. Output arguments:

IOTDEV output device line or unit number

IOTSZ size of output buffer in integer words.

Local storage used - 21 integers; I logical variable; 11 bytes for characters;

Prime ASKEYS list.

Subordinate subprograms - Prime Applications Library routine OPVP$A

Operation - the COMMON values IOTDEV = 6 and IOTSZ = 1024

are provided for use by following subroutines. The applications library OPVPA

is called, operating in the mode A$OVAP , the effect of which is as follows. The

user is asked for a filename which may be a Prime 'tree name'. OPVP$A attempts to

open a new file of this name, for output. If the opening operation is not success-

ful, for example an illegal tree name is provided, a fresh name is requested, and

this is repeated until a successful operation is achieved. If the name of an

existing file is provided, the user is asked if he wishes to alter it. If NO

a new name is requested, but if YES the user is asked whether he wishes to over-

write the existing file or to extend it. The correct usage for map files is either

to choose a new filename or else to overwrite an existing but unwanted file.

, B.2 Subroutine PERMHD

Summary - the subroutine PERMHD clears the header buffer,

obtains the permanent header details from the user and

places them in the header buffer.

Use of COMMON - uses /HEADER/ and /OUTCOM/

Input argument IOTSZ in /OUTCOM/ is used.

*All words in /HEADER/ have values output.

Local storage used - I integer, 30 characters in FORMAT statements.

Subordinate subroutines - none

Operation - The value IOTSZ is used to determine the number of

words of the COMMON block /HEADER/ , and these are all cleared to zero. The
I, user is then asked to supply the permanent header details, which consist of the

"%J project name, IPROJ , up to 12 characters and the project description, IDESCR,

up to 32 characters.

PERMHD is usually only called when a map file is being created. Subsequent

alterations to the map file do not necessitate a call of PERMD

B.3 Subroutine UPDATE

Summary - UPDATE is used to maintain the file log in the header buffer.

Appendix B 29

Use of COMMON - uses /FILENC/ and /PEADER/

Input arguments: /FILENC/

NPROG(4) name of the program calling UPDATE

NVERS version number of that program

Output arguments: modifications to /HEADER/ words

201 to 800.

Local storage used - 17 integers, 25 characters in FORMAT statements

Subordinate subprograms - Prime file system subroutine TIMDAT

Operation - Map files contain a log in the header.

Each log entry is 40 words long, and there is space for 15 log entries in header

words 201 to 800. Each time UPDATE is called it moves the existing 14 most

recent entries (words 201 to 760) into the positions for entries 2 to 15

(words 241 to 800) and the 15th entry, if it existed, is overwritten and hence

lost. A new entry is then provided in heauer words 201 to 240 as follows. The

name and version number of the calling program (which must be placed in

COMMON/FILENC/ by that program) are moved into header words 201 to 205. The log

sequence number, in header word 206 is obtained from the sequence number of the

previous log, in word 246, incremented by one. For the first UPDATE call

word 246 is zero so the first log number is made I , as required. The Prime sub-

routine TINDAT is then called, and this moves information about the date, time

and user-code into the dimension IARRAY , from which it is moved into the appro-

priate header words. A request is then made to the user for details of the

computer run being performed and up to 32 characters can be stored.

B.4 Subroutine NSTART

Summary - NSTART is used to write the header record of a map

Afile, and prepare the output buffer and pointer for

]data.

Use of COMMON - Uses /HEADER/ and /OUTCOM/

Input arguments - all of /HEADER/ ; IOTDEV and

IOTSZ (set by subroutine NOPENO)

Output arguments - IOTBUF and IOTPTR , the output

buffer and its pointer

Local storage used - I integer, 25 characters in FORMAT statements

Subordinate subprograms-Prime file system subroutine PRWF$$

30 Appendix B

Operation - The entire contents of the COMMON block /HEADER/ are transferred

to the output buffer and written to the output file, from its start, by Prime

subroutine PRWF$. The output file is on device line IOTDEV and the buffer

size is IOTSZ . If a system failure occurs whilst the write operation is taking

place, an error message 'PRWF$ FAILURE IN NSTART' is sent to the terminal and

the program stopped. All values in the output buffer are then cleared (set to

zero) and the output buffer pointer, IOTPTR is set to I , ready for data

to be placed.
I

B.5 Subroutine NSTORE

Summary - NSTORE is used to place one data item to the output buffer,

and when the latter is full to write it to the map file.

Use of COMMON - Uses /COORDS/ and /OUTCOM/

Input arguments (a) in /COORDS/

MK item type indicator

X,Y coordinate pair

NPTS, NPTZ number of 'points' in the item

NFC number of feature-codes in the item

FCODE(17) up to 17 feature-codes

(b) in /OUTCOM/

IOTDEV output file line number - set by NOPENO

IOTSZ output buffer size - set by NOPENO

Output arguments in /OUTCOM/

IOTPTR output buffer pointer

~IOTBUF output buffer

ji Local storage used - 5 integers, 2 real variables, 38 characters in FORMAT

statements, Prime list KEYS.F

Subordinate subprograms - Prime file system subroutine PRWFU

Operation - Map data is stored in the form of items (see the body of this

document for details of items), each of which consists of a MK number in the

range 0-6, followed by an appropriate amount of map data. In the case of MK=0,

the MK number is not itself stored, but its presence can be inferred. Items

are written to the output buffer IOTBUF , which is written to the output storage

medium when it has insufficient space for the next item, or following a MK- 6

The detailed operation of NSTORE is as follows:

The variable ISWTCH is set to I , to control the normal routing of the sub-

routine flow. Only for the case MK- 6 can ISWTCH have any other value. The

Appendix B 31

value of MK is checked, and the illegal values, ie other than 0, 1, 3-6,

cause the subroutine to output the error message MK = XX IN NSTORE and return.

The item size in integers ITEMSZ is calculated, from the value of MK and

where necessary NFC . A check is then made of whether sufficient space remains

in the buffer to place the item. If insufficient space exists, the buffer must

be written to the output storage device, using the Prime file systems routine

PRWF$ to add the data to the end of the existing data. Before the buffer is

written, it is checked for any empty words, and if one or more empty spaces

remain, the first of these has a fill-word placed into it, appropriate to MK-7.

This value of MK is internal to the subroutines NFETCH and NSTORE and need

not be considered by the user of the subroutine - indeed it is illegal external

to the routine. After the buffer has been written, all of its values are set to

zero, and the pointer IOTPTR is set to 1.

If sufficient space exists in the buffer, the next item is placed into it.

MK is not stored as such, because it could be confused with data, but has RMARK

(1048576.0) added to it. This value has been chosen as it is large enough to

avoid confusion with any possible data value, yet is small enough to allow the

MK to be extracted from it. The other words in the item are placed as required

by the MK value, and may include some or all of: X Y NPTS NPTZ NFC and

up to 17 feature codes. To aid in placing the real words, the buffer is equiva-

lenced to a real array OUTBUF and the real buffer pointer IPTR is used to

point to the real word locations.

For the case MK - 6 , which indicates that the end of the map file has

been reached, the item consists only of one word, RMARK + MK , and this word

must be placed into the output buffer and written at once to the storage device.

If there is space in the output buffer, the data can be placed and written, but

if the buffer is full, the buffer must first be written, then the MK = 6 data

placed and then a second 'write' take place, ie a second call of PRWF$$. In

the case MK = 6 , ISWTCH is set to 2, and this allows the correct routing after

the PRWF$$ call, ie a return is not made following a PRWF$$ call, when a

MK = 6 has been written.

B.6 Subroutine NCLOSO

Summary - NCLOSO is used to close an output map file

Use of COMMON - uses /OUTCOM/ . Input argument:

IOTDEV - outpiut file line number

Local storage used - I logical variable, 25 bytes for characters,
Prime list A$KEYS

32 Appendix B

Subordinate subprograms - Prime applications library subroutine CLOS$A

Operation - The Prime subroutine CLOS$A is used to close the
output map file on line number IOTDEV . If the CLOS$A operation is unsuccess-

ful the message CLOS$A FAILURE IN NCLOSO is output to the terminal and the

program is stopped.

B.7 Subroutine NOPENI

Summary - NOPENI is used to open a map file for input

Use of COMMON - uses /INCOM/ . Output arguments:

INDEV input device line number

INSZ size of input buffer in integer words

Local storage used - 21 integers, 1 logical, 10 bytes for characters,

Prime AKEYS list

Subordinate subprograms - Prime Applications Library routine OPNP$A

Operation - the COMMON values INDEV = 5 and INSZ = 1024 are

provided, for use by following input file subroutines. The Prime Applications

Library routine OPNP$A is called. This outputs the request for an input file-

name at the terminal, accepts a Prime tree name, checks it for validity and then

attempts to open an existing file of that name. If the opening operation is not

successful, the process is repeated until a satisfactory open occurs.

B.8 Subroutine NHDIN

Summary - reads one data block from the input map file, and

places it into /HEADER/

Use of COMMON - uses /HEADER/ and /INCOM/

Input arguments: /INCOM/ words:

INDEV input file line number

INSZ size of input buffer

Output arguments: /INCOM/ word:

INPTR - input buffer pointer

All of /HEADER/

Temporary use: /INCOM/

INBUF input buffer

Local storage used - 3 integers, 24 bytes for characters,

Prime list KEYS.F

Subordinate subprograms - Prime file system subroutine PRWF$$

Appendix B 33

Operation - The Prime subroutine PRWF$$ is called to read the next INSZ

words from the input map file into the input buffer. INSZ has been set to 1024

by NOPENI , and is equal to one block of data on the Prime disc storage on which

map files are held. NHDIN is intended to be called before other subroutines

which read data from a map file, and it should therefore read the first 1024 words

of the file, which is the map file header. If the PRWF$ operation is unsucess-

ful (ICODE not zero) or the number of words read IRNW is not equal to INSZ

NHDIN sends the message PRWF$ FAILURE IN NHDIN to the terminal, and then stops

program operation.

Following a successful PRWF$ read operation, the data in the input buffer

is transferred into COMMON /HEADER/ . The input buffer pointer INPTR is set

to INSZ + 1 to ensure that the following NFETCH call will be forced to start

with a read.

B.9 Subroutine NFETCH

Summary - NFETCH is used to retrieve one map 'item' from the

input buffer, reading more data from the input file to

the buffer when the latter needs replenishment.

Use of COMMON - Uses /COORDS/ and /INCOM/

Input arguments, in /INCOM/:

INDEV input file line number

INSZ size of input buffer

INPTR input buffer pointer

Output arguments:

Some or all of /COORDS/
'I

Local storage used - 4 integers, 3 real words, 37 bytes for characters

Prime list KEYS.F

Subordinate subprograms-Prime File System subroutine PRWF $

Operation - Map data is stored in the form of 'items', the details

of which are controlled by a MK word. The subroutine NFETCH , when called,

. retrieves the next item from the input map file, and places it into the relevant

words of the COMMON block /COORDS/ . Items are read from the map file in

blocks of 1024 words, each block containing many items.

NFETCH starts by setting all values of /COORDS/ to zero, so that only
0

newly retrieved values are available, not values left over from a previous call.

If the input pointer has a value less than the buffer size, there must still be

34 Appendix B

data remaining within the buffer, so this data is examined. The next data word

is studied to see if it contains a valid MK word, and if so, the action

appropriate to that MK word is taken. If, however, the next word does not

correspond to a valid MK word, the data must be an X coordinate, implying

a MK = 0. A MK =7 indicates tha Lnere is no more data in the buffer, and

the subroutine path is then the same as for INPTR greater than INSZ , ie a

new buffer of data is read from the data file by means of a PRWFM call. The

PRWF$ call is followed by a check for successful operation, and if unsuccessful

the message PRWF$ FAILURE IN NFETCH is sent to the terminal and the program

stopped. Following a successful PRWF$ call, the input buffer contains new

data items.

If the existing data buffer contains more data or if a new buffer of data

has been read from the input file, then the next item can be retrieved, the MK

number being calculated by subtraction of RMARK , or the value MK = 0 obtained

as explained above. The MX value indicates which words are available and these

are extracted from the input buffer, and placed into the /COORDS/ words: X,

Y, NPTS, NPTZ, NFC and the feature codes FCODE(17). The input buffer pointer

INPTR and the real-word buffer pointer IPTR are used to aid this process,

pointing to the relevant locations in the equivalent integer or real buffers

INBUF and RINBUF . A detailed description of the various types of item is given

elsewhere in this document.

If the illegal MK = 2 is foud, the message MK = 2 IN NFETCH is

sent to the terminal, and a return made.

B.10 Subroutine NCLOSI

Summary - NCLOSI is used to close an input map file

Use of COMMON - Uses /INCOM/. Input argument:

INDEV input file line number

Local storage used - I logical variable, 24 bytes for characters,

Prime list A$KEYS

Subordinate subprograms - Prime Applications Library subroutine CLOS$A

Operation - The Prime subroutine CLOSM is used to close the

input map file on line number INDEV . If the CLOS$A operation is unsuccessful

the message CLOSA FAILURE IN NCLOSI is output to the terminal and the program

is stopped.

35

Table I

HEADER RECORD ALLOCATION

FORTRAN formatWord No. Name or Meaning
or type

1-6 IPROJ 6A2 General name of the project

7-22 IDESCR 16A2 Description of the project

23-40 Spare

41 IPRJC1 Integer Map projection code

42 IPRJC2 Integer Map projection subcode

43-44 SCALE Real Map scale

45-46 XSCALE Real X and Y scale adjustmenrq

47-48 YSCALE Real

49-50 SCLLNG Real" Longitude and latitude (degrees) for

51-52 SCLLAT Realj specified purposes

53-54 RADEA Real Earth's major semi-axis (metres)

55-56 RADEB Real Earth's minor semi-axis (metres)

57-80 Spare

81 NLIN Integer Number of lines in the file

82 NPT Integer Number of points in the file

83 NSTEPS Integer Number of line points in the file

84 NSTEPZ Integer

85 MNFC Integer Maximum number of codes per item

86 NDIFFC Integer Number of different codes in the file

87-100 Spare

101-116 CNR 8 real Corners of the map (mm)

117-132 GCNR 8 real Corresponding corners, on the Earth

133-200 Spare

201-800 See below 15 sets of 40 words, to 'UPDATE'

5 integers Program name and version
I integer Data file version number
3 integers Date
I integer Time
3A2 User's code name
16A2 Details of the current process
II integers Spare

801-1024 Spare

0

36

Table 4

RECOGNISED WORDS FOR PROGRAM MAP.HDRED

Keyed word Effect

END The data file is closed

(Carriage return) I
HELP The list of keyed words is displayed

on the terminal

IPROJ
IDESCR
IPRJCI
IPRJC 2
SCALE
XSCALE
YSCALE
SCLLNG
SCLLAT Controls header word(s) of these names
RADEA
RADEB
NLIN
NPT
NSTEPS
NSTEPZ
MNFC
NDIFFC

C B C

CNR(A,B) Controls header dimension CNR(A,B)
GCN(A,B) Controls header dimension GCNR(A,B)

A = I or 2 B = I to 4 allowed.

I

- C, -- .. -,. -,

37

REFERENCES

No. Author Title, etc

I NASA Landsat Data Users' Handbook, Appendix C (1975)

2 A.H. Benny Coastal definition using Landsat data and potential

bathymetric applications.

Sixth Annual Conference of the Remote Sensing

Society (1979)

3 A.H. Benny RAE Technical Report in preparation

4 A.P. Colvocoresses Space Oblique Mercator.

Photogranmnetric Engineering, 921-926 (1974)

5 J.M. Williams Geometric correction of satellite imagery.

RAE Technical Report 79121 (1979)

6 Prime Computer Inc. Preliminary documentation release PDR 3106

7 Prime Computer Inc. Preliminary documentation release PDR 3110

REPORTS OUOTED ARE NOT NECESSARILY

AVAILA c'- 7" r T H PUBLIC

I.

;.

't

I-

• I mI i , I 0I I

38

PROGRMS

C PROGRAM MAP.FAB

C PROGRAM MAP.FAB
C TO CREATE A MAP FILE BY KEYING IN FROM A TERMINAL

DIMENSION ICO(42)
LOGICAL Q
COMON/COORDS/MKXY,NPTS.NPT2.,NFC.FCODE(1?)
COMMON/F ILENC/NPROG(4). MyERS
COMMON/HEADER/IHDUM(1924)
COMMON/OUTCOM/IOTDUM(182?)

$INSERT SYSCOM)ASKEYS
EQUIVALENCE (MK, ICO(I))
DATA HPROG-NVERS/8HMAP.FAB Ir'

C
C
C

VRITE(1,20BB)
2111 FORMAT('MAP.FAB 9-JAN-89')
100 CALL NOPENO

CALL PERMHD
CALL UPDATE
CALL NSTART

I DO 5 J - ,4 2
5 ICO(J)=B /*CLEARS e/COORDS/

WlRITE(1, 1990)
1l80 FORMAT('HKI'

READ(1,1931)MK
18l1 FORMAT(Ifi)

IF MK.GT.6 OR. MK.LT.0 OR. HK.EQ2) 0TO 990
IF (MK.EQ.6i) GOTO 898
WRITE(1,1882)

1112 FORMATQ'X:')
READ(1,1983)X

t983 FORMAT(FIG.2)
WRITEC 1.1884)

1114*FORMAT('Y,')
REAO(1,1883)Y
IF (MK.EQ.0.OR.MK.E.I.OR.MK.EQ 5) GOTO 880

6 URITE(1.1803)
11B5 FORMAT('NFC:I'

READ(1.1891)NFC
IF (IEFC.Ea I) GOTO 28
DO 18 J=1.NFC
WRITE(1, 1098)

1im0 FORMAT('FC:')
18 READ(1.h883)FCODE(J
21 IF (MK.EQ.4) GOTO 860

WRITE(1. 186)
1116 FORMAT('NPTS,'

READ (1.1801)NPTS
WRITE(1,189?)

1987 FORMAT(&NPTZ:')
READ(1 1081)HPTZ

91l CALL NSTORE
IF (MK.NE,6 GOTO I

% Cal L NCLOSO
Qs SNOSA('MORE F ILES' .19. ASNDEF)
IF (9) GOTO 198
STOP ;1234 56

f998 WRITE(1, 195)

1150 FORMAT('ILLEGAL MK')

39

C PROGRAM MAP.FAB

COTO 5
END

C PROGRA~M MAP HDRED

C PROGRA~M MAP NORED
C TO EDIT THE HEADER RECORD OF A MAP FILE

LOGICAL QCHANGE
DOUBLE PRECISION DITEMS(36),DbORD
DIMENSION NDR(70),IPTR(33)
COMMON/F ILENC/NF'ROG(4), ?4VERS
COMMON/HEA)ER/IHDR(4),IPRJCI,IPRJC2,SC~iLE,XSCALE,YSCALE,

" SCLLNG,SCLLAT,RADjEARADE0.,AHDUMiBc24),
" NLINNPT,N4STEPSNSTEPZ',NNFC.NlDIFFCIHDUMC(14),
" CNR(2.,4).GCCNR(2,4),IHD'JMD(68),IHDUME(824)

COMMON/IHCOM/INDUM(102?)
$INSERT SYSCOM>A$KEYS

EQUIVALENCE (INDR~ 1),HDR(1))
DATA DITEMS i8NIPRJCl .8HIPRJC2 SHNNLIN .8HHPT

" 8NNSTEPS BHNNSTEPZ BHMNFC ~8HNDIFFC BHNSCALE
" GNXSCALE ~8HYSCALE ~8HSCLLNG ~8HS~CLLAT ~8HRADEA
" 8HRADEB ,BHCNRI.1,I),8HCNR(2,I),8HCNR(1,2),8HCHR(2,2),
" 8NCNR(1,3),8HCNR(2,3),8HCNR'1,4),ONHtR(2,4),8NGCN(1,1),
0 SHNC(2.1),8HGCN(1,2),9HGCN(2,2),BNGCN(1I 3).8NGCN(2,3),
" GHGCNL14),8HGCN(2,4),BHIPROJ ~8HIDESCR ~8HHELP

DATA IPR4,2818,38,8 62,324,25,26,2?.28,

DATA NPROG.'SHMP.HDRED/.NVERS/k/'
C
C
C

WRITE(1,1900)
1909 FORMATE 'MAP NORED 9-JAN-80')
109 CHANGE-.FALSE.

CALL NOPENO /*OPEN INPUT FILE FOR READ/'WRI TE
CALL NNDIN /*READ /HEADER/ FROM FIRST FILE BLOCK
Q=YSNOSA(HEADER'S 6.ASNDEF)
IF (NOT 0) COTO 288
WRITE(I,1002)(INDR(J),J-1, 22) /*IPROJ AND IDESCP

1002 FORMAT('PR3JECT: 1,6A2,1; DESCRIPTION: 1,16A2)
JAs-39

08 JAwJA+40
IF (INOUME(JA).EQ.B) COlD 200
JB-JA+29
&RITE1,I003)(IHDUME(J),J.JAJB) t/*UPDATE LINE

19933 FORNAT 4A2, I2,13I3X.A2, '2',A2, 'A2, I5,2X,19A2)
H COTO 80

200 WRITE(1, 1006)
1996 FORMAT' ITEM'I

READ Ip1182)DWORD
1192 FORMAT(AG)

DO 210 J-t,36
I TNO-J
IF (DWORD EO.DITEMS(J)) COTO 229

211 CONTINUE
WRITE 1, 1807

1187 FORMAT(' ITEM NOT RECOGNISED. TYPE "HELP"')
COTO 200'I2291 IF (ITNO EQ.35 OR ITNO.EG.36) COTO 600 /oEND OR (CR>
IF (ITNO.EQ 34) COTO 500 /o"HELP'
ISU21 ,'*DITEMS I TO 8 - INTEGERS
IF (fINO CT 8) ISW-2 i'*DITEMS 9 TO 31 - REALS
IF (ITNO CT 31) ISW-3 /*DITEMS 32, 33 CHAIRNCTERS

40

C PROGRAM IAP.HDRED

NS=IPTR(ITHO)
GOTO (221. 222,223),ISW

221 WRITE(1,t221)DITEt1S(ITHO),IHDR(HS)
1221 FORMAT(A9,'-',IlB)

COTO 230
222 WRITE(1, 1222)DITEMS(ITNO),HDR(HS)

1222 FORMAT(A8,'=',F2a.10)
GOTO 238

223 IF (ITHO.EQ.32) HE=6 /*END WORD OF IPROJ
IF (ITNOEQ.33) NEs22 /*IDESCR
WRITE(1,1223)DITEtS(ITO)A(IHDR(J).J~tSNE)

1223 FORMAT(AB '=' , 16A2)
230 GoYSHOSA('CHAHCE IT',9,ASNDEF)

IF (.HOT.9) GOTO 280
CHANGE-. TRUE.
WRITE(1, 1088)

ills FORMAT('NEW VALUE:')
GOTO (231. 232.233). 15W

231 READ(1 1231)IHDR(HS)
1231 FORMAT(1U)

COTO 288
232 READ(1.1232)HDR(NS)

1232 FORMAT(F28.2)
COTO 299

233 READ(1.1233)(IHDR(J),JsNS.NE)
1233 FORMAT(16A2)

GOTO 289
C

58 URITE(1,1500)DITEMS
1588 FORMAT('ITEMS AVAILABLE ARE:-'/68(2x,A8),

GOTO 288

600 IF(.NOT.CHANCE) COTO 618
CALL UPDATE '/*ONLY UPDATE IF A CHANGE HAS CEEN MADE
CALL NHDBAK /*WRITE HEADER BACK TO FILE, IF CHANGED

610 CALL NCLOSI
Q=YSHOSAU'MORE FILES'.18,ASNDEF)
IF (9) COTO 180
STOP j 123456
END

SUBROUTINE NOPENB /*OPEN A MlAP FILE FOR BINARY INPUT OR OUTPUT
DIMENSION IFILEI(20)
LOGICAL 0
CO"MON/INCOM/INDEV.INPTR,INSZ,INBUF 11124)

$INSERT SYSCOM)ASKEYS
C'*1 C

INDEVn5
rMSZn 1824
NLENx4g

1ll 0=OPNP$A('INPJT FILE'.18.A$RDUR.IFZLElI.HLEN.IHDEV)
IF (NHOT.9) GOTO 169
RET URNH
END

%* **t4***4~*e'4

SUBROUTINE NNDSAK /*WRITES THE FIRST BLOCK INTO /HEADER/
COMMON/HEADER/IHDR(1824)
COMflOfI/INCM/IHDEVIHPTR.INSZINBUF 2824)

$INSERT SYSCOM)KEYS.F

C PROGRAM HAP.NDRED

C
C
C

DO 188 Jm1,NSZ
198 INBUF(J)uIHDR(J)

CALL PRUF$S(KSURIT+KSPREA,INDEV,LOC(INBUF),INSZ,INTL(U),
*IRNW,ICODE)
IF (ICODE.EO.I AND. IRMbJ.EQ.INSZ) RETURH
WRITE(I, 189)IR4U4 ICODE

1129 FORNAT('PRWFSS FAILURE IN NHDBAK:'.218)
RETURN4
END

ICD

42

C PROGRAMN MAP.HPLOT

C PROGRAM MAP.NPLOT
C T0 PLOT A MAP FILE ON A HEWLETT-PACKARD PLOTTER

LOGICAL Q.OC
INTEGER*4 DPOS
COMMON/COORDS/MK,X ,Y, NPTS, NPTZ. NFC F CODE(t I?)
COPMON/HEADER/INDIJH(49),IPRJC1.IHDUMJ,
SCALE,IHDUMA(56),CNR(2,4),INDUMB(908)

$INSERT SYSCOM)ASKEYS
C
C
C

URITE(V. 199)
1990 FORIAT('MAP.HPLOT 22-JAN-88')
180 CALL NPINIT /*INITIALIZE PLOTTER

1812 FORMAT('PEN NUMBER:')
READ(1,1 189)J

119, FORMATU6f)
IF (J.Lt.1 OR i.CT.4) GOTO 110
CALL NPEN(J) /*SELECT PEN J

116 O2RHUMSA('CROSS SIZE (16).,15,ASDEC.DPOS)
IF (.NOT.0) GOTO 116
NCROSS=IHTS(DPOS)

CALL 11OPENI /*OPEN 11NPUT FILE
CALL HHDIN '*INPUT THE HEADER BLOCK

H=CNR(2,3)-CNR(2,1) /*HEIGHT OF FRAME
IF (N.LE.I OR. W LEOR) GOTO 959
OCr-YSNOSA('SPECIFY CORNERS'.15.ASDNO)
IF (.NOT.QC) GOTO 69

152 Q-RNUMSA('S.U. X',6. ASDEC. OPOS)
IF (.NOT.0) GOTO 152
IF (DPOS.LT.0 OR. DPOS.GT.3800) COTO 152
SIJXwFLOAT(DPOS)

153 GaRHUMSA('S.W Y'.6,ASDECDPOS)
IF (-NOT.0) COTO 153
IF (DPOSLT.9 OR. DPOS.GT.2080) G010 153
SUYuFLOAT(DPOS)

154 OsRNUM$A('N .E 4' .6.ASDEC.DPOS)
IF (.NOT.0) GOTO 154
IF (OPOS LE.IFIX((SUX) OR. DPOS GT 3000) GOTO 154
RNEX-FLOAT(OPOS)

155 Q*RNUMSA('N.E. Y'.6,A$DECDPOS)
IF (NHOT.0) GOTO 155
IF (OPOS.LE.IFIX(SUY) OR. DPOS CT 290.0) COTO 255
RNEY-FLOAT(OPOS)
PW=RNEX-SUX
PH=RNEY-SUY

COTO 79

58 IF (SCALE.LT.19 9) G010 949
59 QsRNUMlSAC'OUTPUT SCALE (19)'.17.ASDEC.DPOS)

IF (.NOT.Q) GOTO 59
IF (DPOS.LT.189 OR. DPOS.GT 1000002130 COTO 59
XSCoSCALE/FLOAT(DPOS)*..o '*PLOTTER UN4ITS ARE 1/8 MM
IF (U.XSC.GT 389.9 OR H*XSC GT 2000 0) GOTO 930
GOTO 79

CQ
6, SUXxo a

SUYWu8

43

C PROGRAM MAP.HPLOT

IF (IPRJCI.EC.99) COTO 65 ,*IMAGE-FILE UNITS
Q=YSNOSA('SPECIFY SCALE.,13,ASHDEF)
IF (9) COTO 56

65 Pu3UII

?I XSCuPU/U I*X SCALING FACTOR TO FIT PLOTTER
YSC=PN/H ,'*Y SCALING FACTOR
IF (QC) COTO 80
XSC=AMIH9B(XSC..YSC) /*CONVERSION FROM FILE (MM) TO TEKTRONIX UNITS
IF (SCALE.LT.18.8) COTO 79
OSCALE-SCALE*8. B/XSC
URITE(1 10134)OSCALE

1114 FORMAT('SCALE PLOT7ED=',Flfi.2)
79 YSC=XSC
80 9=YSNOSA('FRAME' ,5,A$NDEF)

IF (.NOT.9) COTO 95
CALL HPMOVE
DO 90 J=1,5 /*DRAWJ THE FRAME
JA-J
IF (JA.EQ.5) JAml
IX=IFIX(CNR(1 JA)*XSC+8 .SSWX)
IY=IFIX(CNR(2.JA)OYSC*8.5*SUY)
CALL NPOSPT(IXIY)

99 CONTINUE
95 I'TEMmB /*COUNTS ITEMS (LINE, POINT) IN A SHEET

2819 CALL NFETCH
IF (#IK.GE.6 OR. MK LT.I) GOTO 699
IF (MK EQ.3 OR. MK.EG.4 OR, MK.EQ 5) lTEflITEP9+I
IXP-IFIX(X*XSC+I 5*SWX)
IYP=IFIX(Y*YSC+9.5+SWY)
COTO (25I..25l.3U9,48O,400),MK /*DUMMIY FOR MK=2

C MK-B OR MKxl. INTERIOR POINT OF A LINE OR END OF LINE
250 IF (IXvP-IXPOEOB AND. IYP-IYPO.Eg .) COTO 201 /OSAME POINT

CALL NPOSPT(IXP..IYP) /*DRAW TO XY
COTO 310

C MKm3. START OF LINE
388 CALL NPMOVE /*SET VECTOR

CALL NPOSPT(IXP..IYP) /*MOVE TO XY
319 IXPO=IXP o/*PREVIOUS POINT

I YPO I YP
COTO 209

C MKm4 OR 5. POINT OR FIDUCIAL.
489 CALL PLOYCR(IXPRYP.NCROSS) ,'*PLOT POINT AS A CROSS (MY SUIR)

COTO 208
C MK*6. END OF THE MAP

681 WRITE(l.1803)MKITEM
1133 FORMAT('MKm',16,' AFTER ITEM',I6)
659 CALL HPEND /*PURGE BUFFER,. RE DRAW EVERYTHING

CALL NCLOSI /*CLOSE INPUT FILE
Q-YSNO$A('ANY MORE FILES',14,ASNDEF)
IF (0) COTO 189

* STOP 1l23456
C

*931 WRITE(1, 1022)
1022 FORMAT(MAP TOO LARGE AT THIS SCALE')

GOTO 59

943 WRITE(1,1U2U)
1021 FORMAT('INPUT SCALE HOT SPECIFIED')

COTO 151
0n

44

C PROGRAM HAP.NPLOT

C
950 URITE(1,1921)CNR(1-1),CNR(2,I),CNR L,3),CNR(2.3)

1121 FORMAT(' FIDUCIALS IHCORRECT',2'/2F1D.2))
GOTO 658
END

SUBROUTINE PLOTCR(IXIY.N) /*PLOTS A POINT AS A CROSS, FOR FIPLOT

C

CALL HPMOVE
CALL NPOSPT(IX+NIY)
CALL NPOSPT(IX-NIY)
CALL NPMOVE
CALL HPOSPT(IXIY.N)
CALL NPOSPT(IX.IY-N)
RETURN
E ND

45

C PROGRAM "AP IN

C PROGRAM "AP.IN
C TO REA4D AN "EXCHANGE FORMAT" MAGTAPE INTO A I1kP FILE

LOGICAL NOCORN
DIMENSION IBUF2(208)
COMMNH/COORDS/MK,X,YNPTS.NPTZ,NFC,FCOOE(Ii)
COMMON/F ILENC/NPROG(4). MERS
CO"MOII/HEADER/IHDR(IZO),CNR(2,4). IHDUMR(988)
COMIION/INTRDC/IBP. IBUF(285)
COMIION/OUTCOM/IOTDUM(1927)
DATA NPROG.'8HMAP.IN /,NVERS/11/

C
C
C

IJNIT-B.02 /*CONVERTS EXCHANGE UNITS To MM.
URITE(1,1000)

100 FORMAT(O MiP. IN 9-JAN-00OW' TAPE UNIT NO0'
READ(1,110BU)MTUNIT

11180 FORMAT(16)
CALL REW(MTUNIT)
NBLOCKmB /*COUNTS BLOCKS ON MAGTAPE
NFILE=U3 /*COUNTS FILES FROM THIS MT

C START NEXT OUTPUT FILE
98 LINESI /*COUNTS BLOCKS WITHIN ONE M1AP

ITEM-U /*COUNTS ITEMS (LINE, POINT) 114 A SHEET
NOCORH=FALSE. /*FOR FIDUCIAL CHECK
NFILE-NFILE.1

1019 IND=68 /*EXPECTED NO OF WORDS (120 CHARS)
CALL MTREAO(MYUHIToHBLOCK.IND) '*INCREMENTS HILOCK AS WELL
L INEL IEt 1
IF (IND.EQ.4) STOP :1000 /*EOT
IF (IND.E9.3) GOTO 990 /*EOF
IF (LIHE.GT.1) GOTO 119
IF (LINEHNE.1 OR. HBLOCK.EQ 1) GOTO 102
NK-I"TRD(2)
IF (NK.EG.38) G070 988
WRITE(1, 1006)

1986 FORMIAT(' ANOTHER FILE OH TAPE TYPE S TO CONTINUE')
PAUSE /*TYPE 'S' TO CONTINUE

192 DO 105 Jul.120 'PREPARE IBUF FOR PRINITING
195 I9UF2(J)=LS(IBUF(J),8) /*SHIFT INTO CORRECT BYTE

WRITE(1,180?)(IBUF2(J),J 1,128) /*60-UORD BLOCK
1112 FORMAT(129A1)

IF (LIHE.NE.1I> GOTO 180
CALL HOPENO /*OPEN THE OUTPUT FILE
IF (NFILE.EQ.I) CALL PERMHD /*GET PERHANENT HEADER DETAILS
DO 180 J-41,1924

1B8 IHDR(J)-B /*CLEAR HEADER EXCEPT FOR PERrI DETAILS

CALL UPDATE /*DETAILS OF THIS RUNI GOTO 18
118 l7EM1I7EMt1

MKmINTRD(2)
IF (MK.CI 6) GOTO 98
IF (ITEM LE.4 AND. NK.HE.5) GOTU 873
IF (ITEM GT.4 AND. NK.EQ.5) GOTO 880

106 J=INTRD(2) /*SHOULD BE ZERO
IF (J.NE.I) URITE(1,1003)J

1003 FOR"AT(l ICORu.1]6. IN ITEN',Ib)

IY=.INTRD(6)
XaFLOA7(IX)*UNITI

--- mw-.w-

46

C PROGRAM MAP.JN

YmFLOAT(IY)'UNIT
NFC=INTRD(2)
IF (NFC.LT.1) GOTO 130
IF (NFC.cr.17) NFC-17
DO 126 JwlNFC
JAm JNTRD(fi)

126 FCODE(J)FLOAT(JA)
139 IF (ITEM.LE.4) URITE(II8B4)ITEM,MK,IX,IY,HFC

1314 FORMAT(16.'2',14,218,14)
1l06 FORMAT(I6 16.~ 4,2FS .114)

COTO (999,998,360, 490.519. 699).MK
C

311 CALL NSTORE /*NK=3 ITEM
hKUl /*INTERIOR LINE POINT
NP1'Sw /*.FIRST POINT WJITH NI(=3
NPTZuU
NFCwU

313 INDS6U
CALL ITREAD(NTUNITH9LOCK. IND)
IF (IND.NE. 1) URITE 1,1I95)INDHBLOCK

1835 FORNAT(' INDs'.16,' IN BLOCK.,16)
DO 329 J1,138
IDX=INTRD(2)-SI
IF (IDX.EQ.-58) GOTO 349 /*END OF LINE
IDY=INTRD(2)-5I
IF (IDY.Eg. -58) GOTO 341
NPTSUNPTS. 1
IF (NPTS.LT.13991) GOTO 316
NPTS-B
NPTZ&NPTZ+ I

316 IF (NPTS.EQ.2 AND. NPTZ.EG.9) GOTO 318
K-NO

CALL NSTORE /*PREVIOUS POINT, NKIB
318 XO-X+FLOAT(IDX)*UNIT

YOwY+FLOAT(IDY)*UNIT
323 CONTINUE

GOTO 319
348 IF (NPTS.Eg.1 AND. NPTZ.EQ.I) GOTO 359

"Kni /*END OF LINE
K-NO
YRYO
CALL NSTORE ,'*END POINT OF LINE
GOTO 10I

358 WRITE(1. IU0fITEM
148? FORMAT('ITEM'.16,' IS A ONE-POINT LINE')

GOTO 1II

CALL NSTORE
GOTO 10,

C
511 CNR(1.ITENI)mX

CNR(2,ITEPN).Y o?*FIDUCIALS
IF (NFC.NC.I) WRITE(I1189)ITEMf.NFC

1119 FORMAT(QITEN',16,. HAS tFC.'.I4)
IF (ITER.LT.4) GOTO 168
IF (NOCORN) GOTO 959
CALL NSTART /*PLACE /HEADER/ INCL CHRS

MK05 /sFIDUCIAL

h'1_

47

C PROGRAM MAP.IN

.NFCUB
DO 528 J=1,4
X-CHR(IJ)
Y-CHR(2,J)

520 CALL NSTORE
GOTO 19

CALL NSTORE
CALL NCLOSO
WRITE(1. 1B2)MK, ITEM

1029 FORMAT('MK='I6,' AFTER ITEM',16)
GOTO 98

C
878 NOCORN-.TRUE.

GOTO 685
990 MK-4 ?*MK 5 IN BODY OF DATA, CHANGED TO M1K 4
865 WRITE(1,1B99)MK.ITEM

1998 FORMAT(' WARNING. tlK*',13,' IN ITEM',Ib)
COTO 196

909 WRITE(1..II98)41KITEM
GOTO 199

C
950 WRITE(1, 1021)

1921 FORMAT(' FIDUCIALS INCOMPLETE')
4 CALL HCLOSO /*USE NDELET WHEN AVAILABLE

GOTO 990
989 WRITE(I, I22)lKNBLOCK

1822 FORMAT(' MK-',13.' IN BLOCK',16)
999 CALL REW(MTUHIT)

STOP :123456
END

SUBROUTINE MTREAD(MTUNITNBLOCK.IND)
C SUOR TO READ ONE BLOCK FROM MT AND PLACE EACH CHAR INTO A WORD OF IBUF
C INDa1: OK 21 NW WRONG 31 EOF 41 E0T 51 ERR

LOGICAL EOF,EOT..ERR
COMMNH/IHTRDC/IBP, IBUF(1)

CALL fTRE(MTUNIT.IBUF,299..EOTEOFERRNW) /*MTIOLIB SUOR

NOLOCK=NBLOCK+I
IF (.NOT .EOF) GOTO 11
WRI TEiC 100199)NB1.OCJ(

1109 FORMAT(' EOF IN BLOCK.,16)
1N0=3
RETURN

18 IF i NOT ED!) GO7O 29
WRIIE(1,1961)HBLOCK

lull F-ORI4AT(' EDT IN SLOCK',16)
1ND=4
RETURN

21 IF (.NOT ERR) COTO 30
WRITE(1.1882)NBLOCK

1102 FORMAT(' ERROR IN BLOCK.I16)

RETURN
30 IF 4NW.EQ.IND) GOTO 49

WRITE(1, 108u1)NW, HOLOCK
CD 1903 FORMAT(16,' WORDS IN DLOCK',16)

48

C PROGRAM MAP.IN

1ND%2
RETURN

C
41 00 35 JuI.NU I.UNPACK CHARS TO WlORDS, BACVWARDS

KuNfd-J,1
KAuK+I(
N.E BUF(K)
NIwRTCN,7) /*RIGHT TRUNCATE. OR USE: MAID(N..I27)
N2uRS(NS*) /*RIGHT SHIFT 9 PLACES
N2.RT(N2.?)
I BUF(KA-1)uN2

I9UF(K1A)sNI
51 CONTINUE

END-I
ISPal ?*.READY FOR USE
RET URN
END

FUNCTION INTRD(N)
C CONVERTS NEXT N (I TO 6) CHARS TO AN INTEGER.

LOGICAL NUNST.NEC.ERROR
DIMENSION ISTRNC(6)
CONIION/INTRDCIDP, I9UF(I)

C
C

ERRORs.FALSE.
IF (N.LT.1 OR. N.GT.6) RETURN
NUPIBe
NUMST=.FALSE. /*NUNBER NOT STARTED
NEG=.FALSE. ?*NO MINUS SIGN SEEN YET
DO 188 J-1,N
NEXCNaRT(IBUF(IBP.J-1),7) /*LAST 7 BITS ONLY
IF (NEXCH.EQ.32 OR, NEXCN.EQ.43 OR. NEXCN EQ 45) GOTO 50 '*SP*-
HEXCNwNEXCN-48 /*CONVERT TO NUMBER
IF (NEXCN.LT.I OR. NERCH.GT.9) COTO 900
IF (NUN.GT.3276) COTO 9983 /*OUTPUT MUST NOT EXCEED 32768
NUN-NUM.1I+NEXCH
COTO 68

59 IF (NURST) COTO 999
IF (NEXCI4.EQ 43) COTO 69 /s PLUS SIGH
IF (NEXCN.NE.45) COTO 19I /0 MINUS SIGN
NEG.TRUE.

68 NUMSTm.TRUE.
100 CONTINUE

IF (NEC) NUN-NUN
INTRDwMU"

RETURN

991 00 918 1 .N
919 ISTRNC(J)oLS(I9UF(I9P+J-1),8) /*MIOVE TO LEFT BYTE

VRITE(1,1g88)(ISTRNGtJ),JsI.H)
1ill FGRMAT('LLECAL INTRO STRING; ',fiA1)

INT RDwU
ERROR.TRUE.
COTO 13a
END

49

C PROGRAM MAP.LIST

C PROGRAM MAP.LIST
C TO LIST A MAP FILE

LOGICAL QIt4TPTS
COMtON/EAOER/IHDR(1I),CNR(2.4),GCR(2,4),IHDUI A(68),IHDUMB924)
COMMON/INCOM/INDUM(I927) /*NO0T tIECESSARY'1
COMMOH/COORDS/MKX,Y,NPTS,t4PTZHFC..FCODE(1?)

$INSERT SYSCOM)ASKEYS
C
C
C

WRITEC 1,1901)
1399 FORMAT(MAP.LIST 9-JAN-99')

10 CALL NOPENI /*OPEN INPUT FILE
CALL NNOIN /#READ /HEADER/ FROM FIRST FILE BLOCK
Q*YSNOSA(HEADER'S 6, AINDEF)
IF (.HOT.0) COTO 90

1912 FORMAT('PROJECT: ',6A2,1 DESCRIPTION, ',16A2)
JA.-39

89 JAuJA#49

JBoJA+28

WRITE(1,I1l1)(IHOUMB(J)..J*JA,JB) /*UPDATE LINE
t0l1 FOMT421,3.XA .1A,:'A2,I5,2X,19A2)

COTO 89
82 WRITE(I,1010)(CNR(,J),CNR(2,J),Ju1,4)

1010 FORNAT('CNRS',8F9.2)
WRITEC 1..1013)(GCNR(l..J),CNR(2..J), J*1,4)

I1013 FQFRHAT('GCNRS', 8F9 .3)
90 Q=YSMOSA('DATA',4,ASNDEF)

IF (.HOT.0) COTO 909
IIITPTS*YSNOSAc:'INTERIOR LINE POINTS'..Za.A$NDEF)
MKuS
NLIN=8 /'*NO OF LINES IN THE FILE
NPT=8 /*NO OF POINTS IN THE FILE

190 MKOxg4K
CALL NFETCN

110 IF (MKO.EG.8 .OR. MKO.EQ.3) COTO 112
WRITE(1.1920)MK .MKO

F 1020 FORMAT('MK'..12.' AFTER MK'.12)
PAUSE 11111

112 IF (INTPTS) URITE(I.2813)MK.X.Y
116 NPTSA=NPTSA4I

IF (NPYSA.LE.9999) G070 199
NPTZA=NPTZA+l
NPrSA=8
COTO 100

121 IF ?WKO ED 0 OR MKO ED 3) GOTO 122

PmUSE :111
1212 WRITE.i.I903)MK,X Y,4PTZA.NPTSA

GUTO lib
125 W R 17E (I1, 10211)K,MKO

PHUSE :111

(iOTO 100
130 IF tHKO EO.1 OR MIKO.EO 4 OR MKO EQ 5) COTO 132

r-. U~~RITEl,1091~W

CD PAUSE :111

132 NLII4.NLIN*I

50

C PROGRAM MAP.LIST

IF (NFC .LE I) WRITE(1,1003)M, ,PZ.IlPT~,NfFC
IF (HFC CT I) WRT(,03)K PZ 4T FFOE HF

1003 FORMAT(I2,2FI0,2,13,14,I3,17F10 1)
NPTSAc2 /*TH4IS POINT AND END POINT 0(fl1
NPTZA=B
COTO 198

148 IF (MKO.Eg.1 OR. MKO.EQ 4 OR. MKO EQ 5) COTO 142
WRITE(1, 10211)IKMKO
PAUSE :111

142 IF (NFC. LE.0) bRITE(I1184)MK.XY.NFC
IF (HFC.GT.0) bRITE(1,1004)MK,X,YHlFC.(FCODE(J),J=IA1FC)

1184 FORMAT(12,2FI0.22'X,13, ?FID.1)
COTO 154

150 IF (1K0. EQ.5) COTO 152
WRITE(I, IB)MKJ1KO
PAUSE :111

152 WRITYE(I o 1083)MKX.Y
154 NPT-NPT4I

COTO 108
1683 IF (MKO EO.I OR 24KG EQ.4 OR 24KO EQ 5) COTO 162

URIr7E(1, 1020)IIKJIKO
PAUSE :1 11

162 WRITE(19803)24K
WRITE(1,18053)NPTNLIN

1095 FORMATB'FILE CONTAINS'.I6,' POIHTS.',16,' LINES3'
900 CALL NCLOSI

0=YSNO$A('MORE FILES',10,ASNDEF)
IF (0) COTO 10
STOP 1123436
END

[

51

C PROGRAM MAP.OUT

C PROGRAM MAP OUT
C TO OUTPUT A MAP F ILE TO A MACTAPE IN "E)xCHi4HGE FORMAT"

LOGICAL ERROR..Q
COMMI1ON/COORDS/MKX..YNPTS,.NPT2. NFC. FCODE 17)
C OMMO N /E RR ? ERROR
COMMOHEADER/IHDR(1824)
COMMON,'INCOM/INDUM(1927)
COMMOH/INTRDC/IBP. IBUF(290)

$INSERT SYSCOII)ASKEYS
C
C
C

UNIT=50 0 l*COHVERT MM TO EXCHANGE UNITS
WRITE(1, 1900)

1900 FORMAT(' MRP OUT 9-JAN-80'/' TAPE UNIT NO:'
READ(I.1199)MTUNIT

1109 FORfIAT(16)
CALL REh(MTUNIT) /*MTIOLIB CALL
HBLOCK=0 l*COUNTS BLOCKS ON MACTAPE

109 CALL NOPENI /*OPEN INTERNAL FILE
CALL NHDIN /*READS FIRST BLOCK~

C
WRITE(1,1901)

1901 FORMAT('WRITE TEN HEADER LINES:')
DO 110 J =1 113
READ(1.1191)(IBUF(1).1=1,1203)

1101 FORMAT(120A1)
DO 104 K=l ,128

194 1IBUF(K)=RS(IBUF(K).8) /*SHIFT TO RIGHT
CALL MTURIT(MTUNITHBLOCK) /*MTIOLIB SUBROUTINE
IF (ERROR) GOTO 999

119 CONTINUE
C

290 DO 291 J=1,120
201 IBUF(J)= :248 e'*FILL IBUF WITH SPACES

I BP=1
292 CALL NFETCH /*GET NEXT ITEM

M KI ND = MK+ 1
GOTO (210,219.219.240,249.2409.60), MKINiD

C
210 X=X'.UNIT+8 5

IF (X LE.32767.0 AND. X.GE.-32768) COTO 2L2
'JRITE 1. 1003)X
X-9 a

212 IX=IFIX(X)
Y-Y*UHIT49 5
IF (Y LE 32767.9 AND. Y GE. -32763) COTO 214
WRITE(1, 1003)Y

214 IY=IFIX(Y)
IDX-[X-IXO ?*CHNGE SINCE PREVIOUS POINT
IDV- IYV- IYO
IXO-IX /*SAVE PRESENT POINT, FOR PREVIOUS
I V 0 I
IAX=IABS(IDX)
IAY-IABS(IDY)
IF (lAX LT.50 AND IAY IT 50) COTO 22^1

rC FOR IDX OR IDY MORE THAN 49
HUM-MAXB([AX. AY)
NUM 14UM -1),14 9+ 1 .'*DIVIDE INTO HUM PIECES

52

C PROGRAM MAP.OUT

RNUM-FLOAT(NUN)
DX=FLOAT(IDX)/RHUM
DY=FLOAT(IDY)/RNUM
DO 216 J=1,NUM
X-FLOAT(J)*DX /*EXACT LOCATION
IX-IFIX'(X+0.5) /*HEAREST INTEGER
IDX-19-IXO /*CHANGE SINCE PREVIOUS POINT

IXO=JX /*NEW1 PREVIOUS POINT
Y-FLOAT(J)DY
IYaIFIX(Y+'B 5)
1 DY-I Y-1 YO
IYO=I V
COTO 224

216 CONTINUE
217 IF (M1K EGO0) COTO 202
218 CALL INTWRT(9..4) /*PACK REST OF BLOCK WITH ZEROS

IPCTR= IPCrR+l
IF (IPCTR LT 313) COTO 218
CALL *TWRIT(PTUNITNBLOCK)
IF (ERROR) COTO 999
GOTO 289

C
229 IF (IDXEQ 0 AND IDY.EQ.0 AND. MK1 Ed 0) GOTO 202

HUMI1
C OUTPUT AN INTERIOR LINE POINT, MK=G OR 1

224 IDX-IDX+58
CALL INTWRT(IDX,2)
I DY I DY+58
CALL INTWRT(IOY,2)
IPCTR- IPCrR+1
IF (IPCTR.LT.3a) COTO 228
CALL MTWRIT(MTUNIT.NBLOCK)
IF (ERROR) COTO 999
I BP-1
I PCTR-8

228 IF (NUM CT.1) COTO 216
COTO 21?

C
2493 CALL THTURT(MK,2) ,*.POINT, FIDUCIAL Ok STHRsT Of< LINE mi:=3,4.9

CALL INTURT(0,2) /*"ICOR'
X-X*UNIT~fl 5
IF (X LE 3276? 0 AND X GE -32768) COTO 242
WRITEC I, uilB)X

1903 FORMAT('COORDINATE TOO LARGE TO OUTPLT',FIO 0.' UNIT5S)
Xag

242 IX-IFIX(X)
CALL INTURT(IX.,6)
Y-Y*UNIT+G 5'1IF (Y LE 32767 8 AND. Y GE -32 718) GOTU 1 44

244 IY-IFIX(Y)
IF (M1K NE 3) COTO 245 /*.FOR k LINE
IXOnIX /* SAVE PREVIOUS POINT
TYOsIY
IPCTR-8 '*FOR FOLLOWING POINTS

245 CALL INTWRT(IY.6)
IF (MK.EO 5) GOTO 248

r IF (NFC.GT 17) NFC"17?
CALL INTWRT(NFC.2)

53

C PROGRHM MAP OUT

IF (NFC.LT 1) COTO 248
DO 246 J1I,NFC
I-IFIX(FCO'E(J)4D 5)

CALL INTWRT(I,6,
246 CONTINUE
248 CALL rTWRIT(MTIJHIT,NBLOCK)

IF (ERROR) GOTO 999
COTO 209 ?*.FOR NEXT ITEM

C
260 C14LL INTblRT(MkG2) /*END OF FILE

CALL MTURIT(MTUNIT,NBLOCK)
IF (ERROR) COTO 999
CALL NCLOSI
O-YStlOsA(IANY MORE FILES', 14 ASNDEF)
IF (0) COTO 190
IGP=1
MK=30
CALL INTWRT(MK.2)
CALL MTURIT(MTUNITNBLOCK)
IF (ERROR) COTO 999
CALL 1TUF hTUNITERROR,ERROR) /#WRITE FILE MARK TO TAPE
IF (FRPOR) COTO 999
CALL MTWF(MTUNI T ERROR, ERROR) /.TWO NEEDED
IF (ERROR) COTO 999
CALL REU1TUNIT)
STOP :123456

C
999 URITE(1,1098)

10913 FOF'MATt FATAL MACTAPE ERROR')
CALL NCLOSI /*CLOSE ANY OPEN INPUT FILE
STOP :711777 /*DONT REWIND MT - IT CAN BiE INtPCTED FOR DAMAGE
E N&

SUBROUT11NE MTWRIT(MTUNITNBLOCK)
C TAKES 120 CHARS IN IGUF, FORMS 60 INTEGERS AND WRITE': THEM TO MACTAPE

LOGICAL EOFEOTERROR
C OM1MO N /ERR/ERROR
COMMOH.'INTRbC/I6P,I8UF(I)

C
C

DO 113 J=1,60
J B=J+J
J A= J 8- I
INT-LS(I8UF(JA),8)+RT(18UFtJB),9)
IBUF(J)INT

119 CONTIN4UE /*ALL 129 CHARS NOW PACKED
K C

ERROR= FALSE.

CALL IITRUliTUNTIBUF,60.EOTERROR)
NBLOCr=NBLOCK.1
IF (COT) COTO 909
IF (ERROR) COTO 920

900) URITEiJ,ISB8)N8LOCX
19911 FORMATC 'MACTAPE EDT AT BLOCK'S Ib)

ERkluK- TRUE
RETURNK920 URITE(I.I9D1)148LOCK

1081 FORI14T' 'MACTAPE ERROR IN BLOCK' ,16)
RET 1J14

54

C PROGRAM MAPOUT

END

C VERSION OF INTURT USED UNTIL NOW, BUT COIMIENTED OUT AT II-JHN-80
C SUBROUTINE INTWRT(IN)
CC CONVERTS AN INTEGER TO N (I TO 6) CHARACTERS IN IBUF
CC NEGATIVE NUMBERS NOT YET AVAILABLE
C LOGICAL ERROR
C DIMENSION ISTRNG(6)
C COIMO/HERR/ERROR
C COMMON/INTRDC/IBP,IBUF(1)
CC
CC
C ERROR-.FALSE.
C IF (N.LT.1 OR. H.GT.6) COTO 990
C IF (I LT U) GOTO 990 /*NEGATIVE INTEGERS NOT YET AVAILABLE
C INT-I
C DO 1O J-1,N /*PLACE N CHARS, BACKWARDS, INTO ISTRNG
C IA-INT/IB
C IR=INT-IA*10 /*REMAINDER
C INT-IA /*READY FOR NEXT ITERATION
C ISTRNG(J)=IR.1260 /*PLACE BITS 5-8 (1811XX.X)
C 109 CONTINUE
C IF (INT.NE.B) COTO 999 /*INTEGER TOO LARGE FOR N CHARS
CC
C DO 150 J-1,N /*PLACE ISTRING, BACKWARDS, INTO IBUF
C IBUF(IBP)=ISTRHG(H-J+I)
C 159 IBP=IBP+1
C RETURN
CC
C 999 WRITE(I ,100)1,N
C 1999 FORMAT('ERROR IN INTWRT(',2I6,')')
C ERROR-.TRUE.
C RETURN
C END

C NEW VERSION, TESTED ON VDU, BUT NOT YET ONTO MAGTAPE
SUBROUTINE INTWRT(IN)

C CONVERTS AN INTEGER TO N (I TO 6) CHARACTERS IN IBUF
C SUITABLE FOR -32767 < N < +32767

LOGICAL ERROR
COMMON/ERR/ERROR
COMMON/INTRDC/IBP, IBUF(I)

C
C

ERROR".FALSE.
IF (N.LT.I OR. N.GT.6) GOTO 990
NA-N /oNO OF CHARS FOR UNSIGNED I
INT-I
IF (I.GE U) COTO 50 /*HOT A NEGATIVE 11UMBER
NAwNA- 1
INTu-INT
IBUF(IBP)m:255 /*MINUS SIGH

50 IF (NA.LT.!) GOTO 990
IBP-IBP+N /*POINT TO NEXT INTWRT
DO 190 JwiNA /$PLACE NA CHARS, BHCKWHRDS, INTO IBUF
IA'INT/IB
IRmINT-IA0I6 /*REMAINDER
INT=IA /*READY FOR NEXT ITERATION

IBUF(IBP-J)-IA+269 /$PLACE BITS 5-8 tl0I1X)XX)
II CONTINUE

55

C PROGRAN MAP.OIT

IF (INT.Eg.8) RETURN

991 WRITE(l1UUE0)I.H
tile FORMAT('ERROR IN INTURT('.216.)')

ERROR .TRUE.
RETURN
END

56 RGRMMA E

C PROGRAM MAP TEK

C TO DISPLAY A MAP FILE ON THE TEKTRONIX 4014
LOGICAL Q
INTEGER*4 DPOS
COMMOI,COORDS/MK.X,Y..NPTS,NPTZ,NFCFCODE(17)
COMMOHN 'EADER/IHDUM(10), CNR 2,4), IDUIIA' 908)

$INSERT SYSCOM)ASKEYS
C
C
C

WRITE(1, 1900)
1600 FORtIAT('MAP.TEK 1-FEB-88'>

CALL TINZT
50 QsYSHOSA('FLASH THE SCREEN',16,ASNDEF)

IF (9) CALL CLRTEK /*FLASH THE SCREEN
WRITE(1. 1801)

1381 FORMAT(QCROSS SIZE (16)1')
REAO(1..)NCROSS

C 1190 FORMAT(16)
CALL NOPENI /*OPEN INPUT FILE
CALL HHDIN /*INPUT THE HEADER BLOCK
Q.YSHOSA('SPECIFY CORNERS',15.SDHO)
IF (.NOT.Q) COTO 69

52 O=RNUMSA('S.W X'.6.A$DECOPOS)
IF (.HOTO0) COTO 52
IF (OPOS.LT.-I898 OR. DPOS.GT.5080) COTO 5,
SWXmFLOAT(DOS)

53 Qx-p4Nf$P('S. W. Y',6,~ASDECDPOS)
IF (NOT .) GOTO 53
IF (DPOS.LT.-188B OR. DPOS CT 5000) COTO 53
SUYnFLOAT(DOS)

54 G-RNUMSA('N.E. X'.6,A$DECDPOS)
IF (NHOT .9) GOTO 54
IF (DPOS.LE.IFIX(SWX) -OR. DOS G7.5900 COTO 54
RNEX'=FLOAT(OPOS)

55 QnRHUl4SA('H.E. Y'.6,ASDECOPOS)
IF (:NOT.Q) COTO 55
IF (DPOS.LE.IFIX(SWY) OR. DPOS.GT.5080 COTO 55
RNEYmFLOAT(DOUS)
PW-RNEX-SUX
PH=RNEY-SIIY
GOTO 79

60 SlWXm=9.

PH.3B89 I
?8 VUCNR(1.3)-CNR(1,1) /*WIDTH OF FRAME

NaCNR(2.3)-CNR(2,I) /faHEIGHT OF FRAMEI IF (H LE B OR. W LE.9) COTO 959
XSCuPU/U /aX SCALING FACTOR TO FIT TEKTRONIX 4914
YSCwPN/H /sY SCALING FACTOR
IF (9) GOTO 80
XSCaAMIHD(XSC,YSC) /*CONIVERSION FROMI FILE t.MM) TO TEKTRONIX UNITS
YSCONSC

90 Q-YSNOSA('FRAI1E',5,ASNDEF)
IF (NOT 9) COTO 108
DO 99 JIt,5
JAsJ
IF (.JA EQ 5) JA=1

IXSmIXE /oPUBSISH FOR Jai

57

C PROGRAM MAP.TEK

JYS.! YE
IXE*IFIX(CNR(1,JA)*XSC+l.5*SWX)
I YE=I FIX(CNR(2.JA)*YSC+9. 5+SUY)
IF (J.EQ.I) COTO 90
CALL AMLCOT(29)
CALL POSPT(IXS, IYS)
CALL POSPT(IXE. lYE)

99 CONTINUE
ITEM-U ;*COUNTS ITEMS (LINE, POINT) IN A SHEET

198 CALL HFETCN
IF (MK.GE.6 OR. MK.LT.I) COTO 600
IF (MK.EQ.3 OR. MK.EQ.4 OR. "K.EO.5) ITEM-ITEM.1
IXPoIFIX(X*XSC.U.5*SWX)
IYP=IFIX(Y*YSC.U .5+SUY)
COTO (200,200,380,491..400),MK /*DUMMY FOR #IK-2

C MKaB OR MK=1 INTERIOR POINT OF A LINE OR END OF LINE
290 CALL POSPT(IXP. IYP) /*DRAW TO X. Y

GOTO log
C MKm3. START OF LINE

311 CALL AMLCOT(29) '*SET VECTOR
CALL POSPT(IXPIYP) /*MOVE TO XY
COTO 199

C MKw4 OR 5 POINT OR FIDUCIAL. IGNORE FOR THE PRESENT
411 CALL PLOTCR(IXP.IYP..NCROSS) t'.PLOT POINT AS A CROSS (MY SUBI)

COTO 199
C MKw. END OF THE MAP

639 CALL AMLCOT(-I) /*PURGE BUFFER, IE DRAW EVERYTHING

WRITE(l1. 113)MK. ITEM
1113 FORMAT('MK=,16,' AFTER ITEM',16)

~9 CALL NCLOSI /*CLOSE INPUT FILE
Q=YSNOSA('ANY MORE FILES.,14.ASNDEF)I
IF (0) GOTO 50
STOP :123456

C

1921 FORMATtl CNRS INCORRECT. FILE CLOSED')
GOTO 999
END

SUBROUTINE PLOTCR(IX.IYN) /*PLOTS A POINT AS A CROSS, FOR FIPLOT
C
C

CALL AMLCOT(29)
CALL POSPT(IX+N.IY)
CALL POSPT(IX-N,]Y)
CALL AMLCOT(29)
CALL POSPT(IXIY+N)
CALL POSPYC IX..IY-N)
RETURN
END

58

C PROGRAM HAP TRANS

C PROGRAM MAP. TRANS
C CONVERTS A MAP FILE FROM OIMAGE" TO B.N G. USING A MATRIX

LOGICAL 0
INTECER*4 DNUM
DIMENSION OCHR(2,4)
COMMOH/COORDS/'MK.XY.NP TS. PTZ NFC,~F CODE(1I?)
COMMOH.'F!LENC/NPROG(4). HVERS
COMMON/HEADER/IHDR(48),IPRJC1,IHDUM,SCALE,lHDUMA(56),
*CNR(2,4).CCNR(2,4).IHDUMB(892)
COMMON/lNCOM/JNDEV. LNPTR. INSZ. INRUF(1924)

$INSERT SYSCOM)A$KEYS
DATA HPROGNVERS/SHNP.TRANS. 1/

C

C RIYE(1.1111)

1188 FORMAT(' MAP.TRANS 14-FEB-SI')
108 CALL HATOP14 /*OPEN MATRIX FILE

HATDEV=IHDEV+4
READ(NATDEV.1IU1)(INSUF(J).J=1,41)
VRITE(1,1jell)(INBUF(J), J-i .49)

1101 FORNAT(4BA2)
READ(MATDEV.1112)T l.A1, A 12

1012 FORMAT(3F20 .6)
READ(MATDEV.1B02)T2.A21,A22
&RITE(1,10U3)TIT2,AII.A12,A21.A22

1813 FORMAT(iFI2.4)
CALL NCLOSI /*CLOSE MATRIX FILE

C CALCULATE THE INVERSE OF THE MATRIX
A=AILeA22 - A214A12
All 1uA22/A
A112--AL 2/A
A12 ls-A2 1/A
A122zAli /A

C
118 CALL NOPaNZ /*OPEN INPUT FILE

CALL NHDIH /*READ THE HEADER BLOCK
IF (IPRJCI.Eg.99) GOTO 121 /*GIMAGE UNITS
VRITE(1. 1194)IPRJCI

1114 FORMAT('UNSUITABLE INPUT MAP PROJECTION:'.16)
GOTO 923

121 VRITE(1086U)
11I6 FORMAT('SUBIMAGE TOP LEFT CORNER')
122 IaRNUNSA(COLUMN HUMBER',13,A$DEC.DNUM)

IF (.NOT.G) GOTO 122
TisTI-FLOAT(DNUM)+.1.

124 GuRHNMA(ROW NUMBER'.1I.A$DEC.DHUMI)
IF (.NOT.0) GOTO 124

T2nT2-FLOAT(DHNM).fi CALL NOPENO /oOPEN OUTPUT FILE
CALL UPDATE /*UPDATE THE HEADER

C CONVERT THE CORNERS AND FIND MAX/MNH
XNAXu-IUleaII
YMAXmXMAX
XMINS188BBIU. I
YMINZXMIN
RO~aCNR(2,2)-CNR(2.1) /*HEIGHT OF INPUT FILE
DO 143 J-1,4
XCuCNR(I,J)-Ti
YCoROV-CHR(2. .)-72
XONXCAli 4 YC*A112

59

C PROGRAMI MAP,.TRANS

YOnXC*A121 + YC*A!22
IF (XO.GT.XMAX) XMAX=XO
IF (XOLT.XMIN) XMINuXO
IF (YO.CT YMAX) YMAX.YO
IF (YO.LT.YMIN) YMIN=YO

149 CONTINUE
GCNR(1,1)=XMIN
GCNR(2,1)z YMIH
GCHR(1,2)-XMIM
GCNR(2 ,2)uYHAX
GCNR(1.3)=XMAX
GCNR(2.3)aYHAX
GCNR(1,4)=XMAX
GCNR(2.4)aYMIN

1WRITE(1.i95)XMIHYMIN.XMAXYMAX
1958 FORF4AT('GEOGRAPHICAL CORNERS, KM*/'S U.,2FI4.31'M.E.',2FI4.3)

ChR(2,I)wB 91
CNR(I ,2)=U
CHR(2,2)=YNAX-YM IN
CHR(1.3)=XMAK-XIIIN
CHR(2,3)-YMAX-YMIN
CNR(1.4)=XMAX-XPIIN

SCALE-1008810.l /*KM STORED AS MM
IPRJCI=1 /*BRIT. NAT. GRID. ASSUMES MATRIX IS IMAGE TO GRID
CALL NSTART ,*PLArE OUTPUT HEADER
MK-5
HFC=B
DO 169 J=1,4
X-CNR(1.J)
Y=CNR(2.J)

169 CALL NSTORE /oFIDUCIALS
ITEM'u1 /*COUNT INPUT FIDUCIALS

209 CALL NFETCH
IF (MK GE.6) COTO 999
IF (ITEM GT.4) GOTO 229
ITEMzITEM'1

* IF (MI(ED 5) COTO 218 /*GOTO 211 IF St9'S NOT WANTED
WRITE(1, 1885)MK

195 FORMATeIITEMIa3,' HAS MKo-.16)
GOTO 919

219 MK*4
NFCwI

FCODE1I)u819 I /*STORE OLD FIDUCIALS AS 619sU229 XCUX-TI
YC=ROU-Y-T2
"X-C.'Allz + YCOA112 - XMIN
YnXCOA12t # YCOA122 - YMIN
CALL HSTORE /*STORE THE CONVERTED CO-OlD
COTO 219

90 CALL HSTORE /*"STORE THE IlK-6

919 CALL NCLOSO /*CLOSE OUTPUT FILE
929 CALL MCLOST /*CLOSE INPUT FILE

Q-YS14OSA('MORE FILES',IBA$DEF)
IF (0) COTO 199

60

C PROGRAM MAP-TRANS

STOP i 123456
END

C NOTE THAT X.Y CONVERSION IS-
C XC=X-Tl
C YCmY-T2
C X=XC*AIII + YC*A112
C Y=XC*A121 + YCsA122

SUBROUTINE MATOPN /*OPEN A MATRIX FILE
LOGICAL 0
DIMENSION IFILEN(29)
CONMON/INCOM/INDEV

$INSERT SYSCON)ASKEYS
C
C

INDEVw5
NLEN.4B /*UP TO 43 CHARS IN FILENAME

180 OQOPNPSA('MATRIX FILE',11.ASREAD,IFILEM..NLEN.INDEV)
IF C.NOT.O) GOTO III
RETURN
END

SUBROUTINES

SUBROUTINE NOPENO /*TO OPEN A MAP FILE FOR BINARY OUTPUT
LOGICAL 9
DIMENSION IFILEO(20)
CO.MNON/OUTCOM/IOTDEV. IOTPTR,IOTSZ. IOTBUF(1324)

INSERT SYSCOM>ASKEYB

IOTDEVo6 /*OUTPUT FILE ON LINE i
IOTSZ-1224
NLEN=4E

III GNOPYPSA('OUTPUT FILE',11.ASURIT.ASDAMFIFILEONLEN.IOTDEV,
ASOVAPII) /oPDR 3116 P23-18

IF (.NOT.0) COTO 190
RETURN
END

61

SUBROUTINE PERNHD /*TO CLEAR HEADER ANlD OBTAIN PERMANENT HEADER DETAILS
COMMON/HEADER/IPROJ(6).IDESCP 16),1HDUM' 19932) '*PERM NDR
COMIION/OUTCOII/IOTDUM'.2).IOTSZ

DO 29 J=1,IOTSZ /*CLEAR ,HEADER/
20 IPROJ(J)-g

bIRITE(1LIBIB)
1669 FORMAT('PROJECT (12):1

READ (1,1991)(IPROJ(J),J-1,6)
1001 FORMAT(16iA2)

bIRITE(1102)
1002 FORMAT('DESCRIPTION (32):')

READ (1,1991)(IDESCR(J), J=1,16)
RETURN
END

SUBROUTINE UPDATE /*TO PLACE DETAILS OF CUR~RENT RUN INTO HEADER
DIMENSION IARRAY(16)
CONMOH/FILENC/NPROGV(5) /*PROG NAME (4) AND VERSION
COMMNON/HEADER/IHDR(1924)

DO too J-1,568
199 IHDR(BB1-J)uIHDR(761-J) /*MOVE DOWN PREVIOUS UPDAT~t

DO 118 Jw3,S
11l INDR(200+J)xNPROGV(J) /*TRANSFER PROGNAtIE AND VERSION

IHDR(206)-IHDR(246)+i /*OUTPUT VERS NO
CALL TIMDAT(IARRAY,16) /*PDR 3111 P 3-54
IHDR(207)aIARRAY(2) /*DAY OF MONTH
INDR(288)uIARRAY(1) /*MONTH NUMBER
INDR(299)UIARRAY(3) /*YEAR NUMBER 19XX
INDR(218)aIARRAY(4) /*MINS SINCE MIDNIGHT
DO 129 J.1.3

120 INDR(213..J)uIARRAY(12+J) /*USER

IBIi FORMAT('DETAILS OF THIS RUN (32)1')
READ(1,1001)(INDR(J),.J*214,229)

1681 FORMAT(16A2)
RETURN
END

62

SUBROUTINE NSTART /*STORE HEADER, CLEAR IOTBUF, SET IOTPTR
CONPION/HEA'DER/INDUI(1924)
COMNON/OIJTCON'IOTDEV. IOTPTR.'IOTSZ. IOTBUF(1)

INSERT SYSCON>ICEYS.F

DO 19l JwlIOTSZ
100 IOTBUF(J).IHDUII(J) /*TRANSFER HEADER TO OUTPUT BUFFER

CALL PRYFSS(K$URIT.IOTDEVLOC(1OT9UF).1OTSZ.1HTL(B),1RNW.ICODE)
IF (IRNY.EQ.IOTSZ AND. ICODE.EQ.) COTO 149
MRITE(1,100)IRN..ICODE

1880 FORMAT('PRUFSS FAILURE IN NSTARTt',216)

STOP '1211

DO 158 J=1,IOTSZ
150 IOTBUF(J)=fl

RETURN
END

s.*.s~e***se*****e**.~*.***.**.,*.***s~ssss..*.*.**.*..*s**4d

63

SUBROUTINE WSTORE /*TO STORE AN ITEM TO A MAP FILE
DIMENSION IR(2),OU1'BUF(1)
CONMON/COORDS/MI(,X,Y,NPTSNHPTZ,NFC.FCODE(17)
COiMON/OUTCOM/IOTDEV. IOTPtl.tlOtSZ, IOTBUF(1)

INSERT SYSCON>KEYS.F
EQUIVALENCE (R.IR(1)),(IOTBUF(l),OUTBUF(l))
DATA RMARK /1848576.0/

ISWTCH=1 /*USED FOR ROUTING THROUGH PRUFS$
IF (tIK.GT.6 OR. MK.LT.B) COTO 909
GOTO (50980,9.32,31..59.69)NK
ITEMSZ-4 /*ITENSZ IN INTEGERS. NK-9
GOTO 199

39 ITENSZ=9+NFC+NFC /*MK-3 OR 4
GOTO 190

50 ITENSZ=6 /*NK-1 OR 5
GOTO 109

691 ITEtISZ=2 /*NKU6
10I IF (IOTPTRtITEMqSZ.LE.IOTSZ+1) GOTO 209 /*SPACE FOR THIS ITEM

IF (IOTPTR.GT.IOTSZ) GOTO 129 /*NO SPACE LEFT IN BUFFER
R=RMARK+7 /**FILL" INDICATOR
IPTR=IOTPTR/2+1
OUTBUF(IPTR)-R

129 CALL PRFSKWIODVLCITUFOSNLBRUIOE
IF (IRHU.Eg.IOTSZ .AND. ICODE.EGI) GOTO 149
WRITE(1,1068)IRNU..ICODE

1008 FORMAT('PRUFSS FAILURE IN NSTOREI',216)
STOP :1111

149 IF (ISIJTCH.EQ.2) RETURN
IOTPTR~ 1
DO 150 J=1. IOTSZ

159 IOV'BUF(J)-B

299 IPTR=IOTPTR/2+1
IF (MK.EQ.9) GOTO 500
R=RMARK+FLOAT(NK)
OUTBUF.(IPTR)=R
IPTR.IPTR~i
GOTO(580,99I,3998.380,58,6BIl),MK

399 IR(l1)=NFC+32*NPTZ
IR(2)=NPTS
OUTIBUF(IPTR)-R
I'PYR=IPTR.I
IF (HFC.LE.I) GOTO 519
IF (NFC.GT.17) NFC.1?
DO 329 J1.,NFC
OUTBUF(IPTR)UFCODE(J)

329 IPTR-IPTR.1
599 OUTBUF(IPTR)uX

I PTR=I PTR+l
OUT8UF(IPTR)mY
I PTR=I PTR+1
I OTPTRa IPTR. IPTR- I

r RE TUJRN
689 ISWiTCH-2

GOTO 129

999 WRITE(1,1IU1)MK I
1991 FORMAT('PK.' ,I6, IN NSTORE')

RETURN
END

64

SUBROUTINE NCLOSO /*TO CLOSE AN OUTPUT MAP FILE
LOGICAL. O
COMMON/OUTCOM/IOTDEVIOTPTRIOTSZIOTBUF(I)

INSERT SYSCOM>ASKEYS

Q-CLOSSA(IOTDEV) /*PDR 31I6 P23-19

IF (0) RETURN
URITE(,18B9)

L96 FORNAT('CLOSSA FAILURE IN NCL')SO
STOP 1111
END

SUBROUTINE NOPENI /*TO OPEN A MAP FILE FOR BINARY INPUT
DIMENSION IFILEI(29)
LOGICAL 9
COMMON/INCOM/INDEV, INPTR, INSZ, INBUF(1924)

INSERT SYSCOM>ASKEYS

INDEVa5 /*INPUT FILE ON LINE 5
INSZ,1,24 /*INPUT BUFFER SIZE
NLEN,40 /*MAX 49 CHARACTERS IN FILENAME

189 0.OPNPSA('INPUT FILE',IB,ASREAD,IFILEINLEN,INDEV) /.31B6 23-19
IF (.NOT.Q) GOTO 1ea
RETURN
END

%p.***.** 4........**.****.*.**...**..******************************

°lC

65

SUBROUTINE NHDIN /*READS A RECORD INTO 'HEADER/
LOGICAL ERROR
CO21"ON/HEADER/IHDR(1924)
COMMON/IHCOM/INDEV..INPTR,INSZ,IHBUF(10324)

INSERT SYSCOII>KEYS.F

CALL PRWFSS(K$READ, INDEV.LOC(INBUF), INSZ, INTL(I), IRHW. ICODE)
IF (]CODE.EQ.I AND. IRHW.EQ.INSZ) COTO 50
WJRITE(1,1020)IRHMW.ICODE

1929 FORMAT('PRWFS$ FAILURE IN HHDIN:',216)
STOP '1211

59 DO 188 Jnl,IHSZ /*TRANSFER INTO /HEADER/
100 IHDR(J)nINBUF(J)

INPTRuINSZ+l /*FORCE BUFFER READ AT NFETCH
RETURN
END

66

SUBROUTINE NFETCH /*TO FETCH AN ITEM FROM A MAP FILE
D1IMENSION IR(2),RIN9UF(i),ICOORD(42)
COHMON/COORDS/MK.X.Y,PTSNPTZ,HFC,FCODE(17)
COMMON/INCOM/INDEVIHPTRINSZdNBUF(1)

INSERT SYSCOM>KEYS.F
EQUIVALENCE (R,IR(1)).(IN9UF(1),RINBUF(1)).(ICOORD(l),MK)
DATA RMARK /1048576.8/

DO 50 Jal,42
50 ICOORD(J)uG /*CLEARS ALL /COORDS/

IF (INPTR.LE.INSZ) GOTO 80
69 CALL PRUF$$(K$READ,INDEV.LOC(INBUF),aNSZ,INTL(9),IRNU,ICODE) /'s3118 3-23

IF (IRNU.EQ.INSZ AND. ICODE.EG.8) COTO ?0
IWRITEC 1,1002)IRNWICODE

1999 FORMAT('PRWFSS FAILURE IN NFETCIV.216)
STOP III11

79 IHPTRmI
89 IPTR-IHPTR/2+1

R=RINBUF(IPTR)
[PTR=IPTR~l
RMK.R-RMARK
IF (RHK.LT.B.9 OR. RMK.GT.7.1) COTO 189 /*HOT A MK

COTO (159..999,139.138,159,168,69J),MK
199 MK-8

X-R
COTO 155

139 R=RIN9UF(IPTR)
I PTR=I PTR+1
NFC=RT(IR(1),5) /*RIGHT 5 BITS
NPT2=RS(IR(1),5) /*HIGHER PART OF WORD
NPTS-IR(2)
IF (HFC.LT.1) COTO 159
DO 134 Jn1.HFC
FCODE(J)RINBUF(IPTR)

134 IPTR=IPTR,1
1519 X-RINBUF(IPTR)

IPTR=IPTR.1
155 Y=RIHBUF(IPTR)

IPTR=IPTR+l
169 INPTR=IPTR+IPTR-1

RETURN

999 WRITE(1LI99l)MK
1991 FORMAT('MK=',16,' IN NFETCH')

RETURN
END

SUBROUTINE NCLOSI /*TO CLOSE AN INPUT MAP FILE
LOGICAL 0
COIMON/INCOI/INDEV-INPTR,!-SZ,IHBUF(1)

p INSERT SYSCOM)A$KEY5

Q-CLOSSA(INDEV) /*PDR 3116 P23-19
IF (0) RETURN
URITE(1,18UI)

1999 FORMAT('CLOSSA FAILURE IN NCLOSI')

STOP 111113 END

0 1

