AD-A093 439 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND) F/6 8/2
A CARTOGRAPHIC COMPUTER DATA FORMAT AND ASSOCIATED PROGRAMS, (U)
R 80 A H BENNY
UNCLASSIFIED RAE'TR'3°°37 DRIC-BR-T4346

.'q

L

—
—

.
- g
R
=
=
|
33

= Iz
=t s
||||| A
= I

N
O
B
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1963 A

d

RAPHIC

CARTOG

TR,

Lf
¥

R T

e —

WA e
—_— D

N

8. Author 1. Surname, [nitials

Benny, A.H.

I1.

Contract Number
N/A

1S.

Distribution statespent
() Controtled by —

(b) Spocia Bentations (f amy) -

' Haad of 1

16.

UDC 526.8 : 681.3.07 : 519.688 : 531.7.084.2 : 629.19 3

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 80037

Received for printing 10 March 1980

A CARTOGRAPHIC COMPUTER DATA FORMAT AND ASSOCIATED PROGRAMS
. by

A. H. Benny

SUMMARY
D
This document explains the need for a new computer data format, not

previously available, for the storage of cartographic inforgifiggl_)

<3A suitable format is described, together with a set of computer programs
which have been written to enable data files in this format to be created, manipu-

lated and displayed in various ways. _ ., ?13

P

Departmental Reference: Space 578

Copyright
©

T it e G A

Controller HMSO London
1980

B it B0 R~ LR A S

-
-

i LAt A . S S

e N

L&c"~—-< J

LIST OF CONTENTS

] INTRODUCTION

1.1 The 'image' data format
1.2 The 'map' data format

2 THE MAP DATA FORMAT

2,1 The header record
2.2 Data records

3 DESCRIPTION OF PROGRAMS FOR CARTOGRAPHIC DATA FILES

3.1 Brief description of the programs
3.2 Detailed description of the programs

4 SUBROUTINE LIBRARY

4,1 Subroutine groups
4.2 Subroutine descriptions

Acknowledgment
Appendix A Exchange format
Appendix B Subroutine specifications
Table 1 Header record allocation
Table 4 Recognised words for program MAP.HDRED
References
Computer listings: Programs
Subroutines

Report documentation page

NTIS GRAXI

Accession For

DTIC TAB
Unannounced O
Justification ———

By
Disﬁribution/ __J

Availubilityv Codes
JAvail ana/or
Dist Special

A

60

inside back cover

L£0

037

1 INTRODUCTION .

Computer data can be stored in ;\:;Fféfy of ways and each method is likely
to have its own advantages and limitations. This document is concerned with the
storage of data representing some form of 'picture' of the Earth's surface, as
viewed almost vertically downwards from one of the 'Landsat' series of orbiting

satellites, using its multispectral scanner,(MSS).

The Landsat MSS is described in detail in Ref 1. A simplified description
will suffice to convey the information needed here. As the satellite moves above
the Earth, its surface i5 scanned by means of an oscillating mirror, which
deflects light, via an optical system onto a sensor system, The mirror oscilla-
tion is perpendicular to the path of the satellite, so that a raster-scan is
made, and during each west to east scan the output of the sensor is digitized at
regular intervals of time. Simplifying somewhat, the result is that a swath of
land is imaged, to form a raster-scan of radiometric values with a constant
number, L of values per scan., If the process is stopped after M scans have

taken place, the result is a series of V data values, where V=1L x M,

fol The 'image' data format

It is convenient to store these V values in the sequence in which they
were obtained, to form a data file. Provided that the number of values per scan
is known it is then possible to reconstruct the picture by a suitable raster-scan
display, with each picture element (pixel) having a brightness corresponding to
its measured value. This illustrates a simple and useful form of data storage -

a sequence of values, which is known to represent a raster-scan. It should be
noted, however, that the number L of values per scan must be known (otherwise
the picture cannot be reconstructed) and preferably M also, so that the size

of the file (and picture) is known in advance. It is therefore usual to have some
form of information - a 'header record' - before the main body of the data, so

that the latter can be properly handled.

A format as described is now in use in Space Department of RAE. In detail
each data file consists of a continuous sequence of 8-bit values. The first
88 such values constitute the header information, and include a value L for the
number of pixels per scan line. (In practice the number M of scan lines is
also included.) The following data consist of M sets of L values, the 'bright-
ness' of the pixels of the scene. Such data files are conventionally referred to

as image files or images, and the programs which handle them are conventionally

s e ey WP =y -

A~

e~ -

prefixed by the code IM . Thus, for example, program IM,LOOK 1is used to 'look

at' an image file in a certain way.

The data storage method described above has several advantages; in parti-~
cular it is simple to use and economical of storage space., However, it also has

some limitations, such as:

(a) Each pixel is located, by implication at a specific place, an integer
number of pixels along and down the picture. Fractional locations cannot be

referred to.

(b) It is not easily possible to establish any relationships between
pixels, beyond their obvious sequential nature. For example, pixels in adjacent
scan lines are not obviously related. Any feature on the original scene which
extends over more than one scan line is not recognisable as such from the data,
(though it may be readily observed by human beings from the resulting picture

display).

1.2 The 'map' data format

Considerable work is being done worldwide on the interpretation of Landsat
data., Sometimes the resulting information can be conveniently stored in an
image file. Some recent interpretation work done at RAE2 has been concerned
with the extraction of cartographic features, e¢g coastlines, and these are not
suitable for storage in image files, in particular for the two reasons mentioned
in (a) and (b) above. Conseéuently, it was necessary to establish a more suitable

data storage format,

Briefly, the new data format, referred to as a 'map' format, consists of a
header record, followed by a number of 'features', each feature consisting
principally of either one coordinate value (to represent a single location -

a 'point'), or a string of coordinates (to represent a continuing 'line'). Such
a map data format is capable of storing much of the diagrammatic information

extracted from a Landsat image.

This document describes the map data format in detail, together with a
description of a suite of computer programs and subroutines which has been
written to handle such data files. Programs which handle map files are conven~
tionally prefixed by the code MAP., eg the program MAP,.LIST is capable of

listing the coordinates of a map file.

The expression "line' or 'linear feature' of a scene is here used to refer

to a sequential set of coordinates (x, y pairs). If the commencing and final

LE0

-
e

«

S o e ey g =

e

e ——————

PR O T TR TN

Y EAAS 4

037

coordinates of a line have the same coordinate values, in both x and y , then
the line is closed, Ze it forms a loop. Because the connections between each
coordinate pair can only be considered as straight lines, a loop is in fact a
polygon. If the individual coordinates are sufficiently close together, the
linear feature, when displayed on some suitable device, such as an X-Y plotter

or a graphics visual display unit, appears to the eye as an acceptable representa-

tion of a terrestrial feature, that is to say, the display resembles a map etc.

2 THE MAP DATA FORMAT

A map data file consists of a header record followed by the body of the
data, in sequence. For convenience, and with the objective of maximising the
reading and writing speed, the file is divided into 'blocks', each of 1024 words,
since that is the number of data words per storage block of the disc unit of the
host computer (Prime) on which the file is to be stored. Should files be written
to other machines, the block size should be changed suitably, and provision has

been made for such a change to be done with the minimum of work.,

The header record is therefore 1024 words in length, and the body of data
is divided into similar sized blocks, although individual data features may be
larger or smaller than 1024 words. The Prime computer uses 16-bit words, and

the map format has been designed accordingly.

2.1 The header record

The header record has 1024 words available to it, and this is considerably
in excess of the amount normally needed. This space is allocated as shown in

Table 1, the details of which are as follows.

2.1.1 'Permanent' header description

Programs which create a map file normally call the subroutine PERMHD which
requests from the user the permanent header details, these being the general
project name IPROJ , up to 12 characters, plus the description of the project,
IDESCR , up to 32 characters. These details are not changed by subsequent pro=-

cessing of the file, but are permanently available for reference.

2.1.2 Map projection details

Since the map format is capable of holding (and does on occasion hold) data

which is the computer description of a map, it is useful to have the facility to

record some information relating to the cartographic projection used,

1o SO Lt b G it S b Aaae

Some or all of the following information may be recorded:

(a) IPRJCl: a code number which indicates the type of projection being

used., Codes so far allocated are:

; IPRJICI Projection
1 British National Grid
2 Universal Transverse Mercator
.: 99 Image file units.
The code 99 is not strictly a map projection, since it is not cartographically ‘

defined. It is related to the movement of the Landsat satellite. Methods exist
for transforming 'maps' in this pseudo-projection into accepted cartographic

projections however, so it is useful to label a file with the projection code 99.

(b) TIPRJC2: a projection subcode. This number may be used to qualify

the main code. The only meaning so far allocated is for the case when

. e e m——

IPRICl = 2 , Z¢ UIM. 1In such cases it is necessary to specify the zone, (! to
60) and this value is held in IPRJC2 ,

(c) SCALE: this real number is the scale of the map. For example, for a
one-inch to the mile map, SCALE would have the value 63360.0.

[P SRS

(d) XSCALE, YSCALE: not at present in use. If it should be necessary to
adjust the size of a map to fit its known cormers, the X and Y adjustment

factors would be stored in these locations. Normally their values would be close

| - to unity.

¢ (e) SCLLNG, SCLLAT: these numbers are available for holding longitude and

latitude values, usually stored as degrees. For example, in a UIM map, SCLLNG

could contain the value of the central meridian of the zone; for a Mercator map,

— - -

SCLLAT could contain the value of the latitude at which the SCALE is accurate.

(f) RADEA, RADEB: the Earth's semi-major and semi-minor axes in metres.

These values are not at present in use, but are needed if map projections are to

be considered in detail, or if maps are to be transformed from one projection to

ey WP

another,

-
i

2.1.3 Map file statistics

This set of values holds statistics about the map file, which are useful

o
w
~

for various purposes. .

(a) NLIN: the number of line items in the file.

e e . T TITTTATINTI ITT T e e e e © v e . IR U O . Y

1\«4'.

037

(b) NPT: the number of point items in the file. Since a map file should

always contain four corner points or 'fiducials', NPT should never be less than 4.

(c) NSTEPS, NSTEPZ: the total number of line 'steps' in a file is held
in these two values. Any one line may have N coordinate values, including
its start and finish, and thus has N-1 ‘'steps'. The number of steps for each
line is totalled, and the value stored. Since this value may be too large to
hold in the 16-bit integer available, it is stored as two integers, modulus
10000. That is to say, if NTOT is the total number of steps, then
NTOT = (NSTEPZ x 10000) + NSTEPS .,

It would have been possible to use a REAL word or an INTEGER*4 to
store this information, The chosen method allows larger numbers to be handled,
and more conveniently, than a REAL . INTEGER*4 1is not available as a standard

FORTRAN facility (though it is becoming commonly available).

(d) MNFC: each item of the map file can carry up to 17 'feature codes',
which give information about the type of feature the item represents. MNFC

records the largest number of such codes carried by any item in the file.

(e) NDIFFC: a file may contain many items, and each item may carry
several codes. The total number of different feature codes in a file is

recorded by NDIFFC . Usually NDIFFC 1is larger than MNFC .

2.1.,4 Corner points

A map is a representation, on say a sheet of paper, of a portion of the
surface of the Earth. Two sets of corner points exist therefore:- the corners
of the map and the corresponding locations on the Earth's surface. The eight
real words of array CNR(2,4) hold the x and y coordinates of the four

corners of the map, reading from the south west corner in a clockwise direction.,

CNR(1,1) X coordinate of SW corner
CNR(2,1) y coordinate of SW corner
CNR(1,2) x coordinate of NW corner

CNR(2,4) y coordinate of SE corner.

As a convention, the SW corner is taken as the origin of the map, so its
coordinates are 0, O . Also, the map is defined as a rectangle. With these
restraints, considerable redundancy exists, and in fact all of the required

information may be derived from the NE corner,

. . A - ——— —

The CNR values are stored as millimetres. Arbitrarily, a maximum map

size of 2000 mm square may be defined.

Corresponding to the four corners on the map are four geographical locations

on the Earth's surface. These locations are stored in the array GCNR(2,4), and

f they correspond with the CNR values, 7e GCNR(a,b) corresponds with CNR(a,b) .

If the map is in British National Grid, the GCNR values are in kilometres
on that grid. For other map projections GCNR values are held as the relevant
longitude and latitude, expressed in radians. For IPRIC! = 99, Ze the pseudo-

projection based on image file units, GCNRs have no defined meaning at present.

e e e

2.1.5 Program logging information

The header record has a logging facility to allow a record to be made of
all processing done to a map file. Some programs are available to modify exist-
ing files, and it is useful to keep a log of what has been done. All such
programs, together with the program which initially created the file, use a

subroutine UPDATE , which keeps a log in the header record.

Subroutine UPDATE gathers information, some from the user, but mostly
from the computer itself and from the program in use, and places this information
into a 40 word portion of an array (only 29 of these words are at present in use).
There is space in the header record for 15 such sets of 40 words. After a 40 word
set has been assembled, UPDATE moves all the preceding sets one place 'down',
and then places the latest set at the top of the available space. Thus, if

15 sets of log data had been in use prior to this operation, the oldest one would

have been lost, as the others moved down. In practice, it is not expected that

there will be as many as 15 UPDATES on most data files, with the suite of pro-

«

grams at present available.

Within each 40 word set of data, the information recorded is: 1

- — -
PONEI- ey

- — .

(a) the name of the current program - up to 8 characters;
(b) the version number of the current program., From time to time program

changes may be made sufficient to justify a new version number;

oy —

(¢) the version number of the data file. Each time UPDATZ operates, it

-

increments this value by one; E

(d) the current date and time. This information is extracted by the S
~
computer system from its own records, The method of storage of these values is i
seen by a study of the listing of the subroutine UPDATE ;

= — o\ |~

.
—

s - - —_——
4 — S N -

- —— -

L e e ey W -
S a = B s e ———- * e P e

- -

037

(e) the user's code name., As with (d), this is provided by the computer

system;

(f) details of the current program operation., Up to 32 characters of
description may be supplied by the user, in response to a request for "details

of this run",
2.2 Data records

The cartographic data in a map file follows the header record, and is
stored in similar sized data records. The data consists of a sequence of map
'features', these being of three types; corner points, points, and lines. The
two types of point contain a relatively small amount of information and each is
stored as one 'item', but lines can contain an indefinitely large amount of
information, so they are broken down into a number of items, one for each

coordinate pair of the line, the first and last coordinate pairs being in rather

different types of item from each other and from the 'internal' ones. é
Map data is thus broken down into items, which may be from 2 to 21 real
words in length, though the average item size is probably under three words for é

a typical map. These items are stored within data records of length 512 real
words (1024 integers), and each type of item may carry an indicator word (denoted

by MK) according to its type (see Table 2).
Table 2

Meaning of MK numbers

MK Meaning

0 'Internal' line coordinate pair

{ Last coordinate pair of a line

Not used

Start of a line, including first coordinate pair
Map point

Corner point or 'fiducial'

End of data indicator

Fill word

bt I~ A ¥ L I - S OV B

Since items are stored without being broken, there is often one or more
words unused at the end of a data record. In such cases the first or only empty

word has a 'fill' word (MK = 7) placed in it, to distinguish it from a zero.

e~ W W =
et

P—
o ———m -

S L

i W

The condition MK = 7 1is written and read by subroutines NSTORE and
NFETCH respectively. It is not used in the calling program, nor need its
existence be considered by the writer of calling programs, for it is to him an

illegal condition. It is included in Table 2 for completeness only.

When the last map item has been written, a MK = 6 1item is placed after

it, to indicate that the end of the data has been reached.

In addition to the coordinate pairs, where appropriate, the item may also
carry some information about the feature, and this is done for start-of-line and
map point items. Both such features may carry up to 17 feature codes, so the
item includes NFC , the number of feature codes for this item, followed by
NFCreal words containing the relevant feature codes. Additionally the start-of-
line item has provision to record the number of steps in that line (Z¢ the number
of coordinate pairs less one). The number of steps is broken down into two
integer values, NPTS and NPTZ such that the total number of steps is
NPTZ x 10000 + NPTS . In practice, lines vary in length from | to about 50000
steps, so NPTZ seldom exceeds say 5., If the number of steps is not known,

zero should be inserted in NPTS and NPTZ .

In the case of 'internal' line coordinate pairs, the inclusion of the MK
word would lead to a 507 increase in item size, and since a map often consists
mainly of such items, almost a 507 increase of data file size. Thus, for inter-
nal points, the MK word is not stored. However, it 1s necessary to supply
MK = 0 when internal coordinates are to be written by subroutine NSTORE , and

after the retrieval of such data by NFETCH MK = 0 is returned.

The constitution of the various types of item is shown in Table 3

(section 2.2.1).

Since the data storage method is almost entirely encompassed by the sub-
routine NSTORE (and correspondingly the recovery of the data by NFETCH) the

former will now be described in some detail.

2.2.1 Subroutine NSTORE

The file data must be stored in such a manner that it can be recovered
unambiguously, and this is done by subroutine NSTORE . This subroutine communi-

cates with the other portions of the program via two COMMON blocks, the first

LEOQ

of which, COORDS , must be supplied with all the information necessary for the
storage operation, and the second, OUTCOM , contains the output buffer and its
pointer together with other details necessary for the output operation of writing

to the storage medium,

U R

17

Ak vo SRNG5S PTcpas s 1 51 i

The COMMON block COORDS contains the values:

(a) MK: an indicator of the type of item etc being stored.

(b) Two real values, the x and y coordinates of the item.

(c) Two integers, representing the number of steps in the line. These
are only used if the item is the start of a line.

(d) One integer NFC representing the number of feature codes for the
item,

(e) Up to 17 real values, the actual feature codes.,

(d) and (e) are only supplied if the item is a map point or the start of a

line. The number of codes supplied in (e) should be consistent with (d), as

NSTORE stores NFC values, irrespective of whether these have been deliberately
supplied or not.

The COMMON block OUTCOM contains in particular a buffer pointer which
points to the next free word in the output buffer.

The items placed into the buffer by NSTORE are made up as shown in

Table 3.
Table 3

Types of item stored

MK R X | Y | NFC Feature codes Item size (words)
0 SV 2

1 " V|V 3

2 Illegal

3 v/ Vv Y NFC codes 4 + NFC

4 "2 A I NFC codes 4 + NFC

5 " V|V 3

6 v 1

7 1M (n

The only legitimate MK values which may be supplied to NSTORE are
0, 1, 3 to 6, and all others cause an error message to be output. NFETCH
recognizes MK = 7 as a fill word.

Subroutine NSTORE starts by using MK , and if necessary NFC , and

calculates the size of the item, as shown in the last column of Table 3. It

i
b
i
i
4
)

hi ¢
A n R Jntar o oo ame o 3

12

then uses the buffer pointer and buffer size to determine whether sufficient space

remains to write the item to the buffer. If insufficient space remains, it
'closes' the buffer and writes it to the output device., Closing the buffer con-
sists of examining it to see if any empty space remains, and if so, an R value
corresponding to MK = 7 is placed in the first or only empty space. R 1is a

real number, made up of the addition of MK + 1048576.0 . After writing the

buffer to the output device, the buffer is cleared and its pointer reset.

! In the event that sufficient space remains in the buffer, or a buffer has
just been written and cleared, the item, as described in Table 2, is then loaded

i
% into the buffer. Much of this operation is straightforward, but two points need
elucidation.

(a) It is necessary for NSTORE to write R (MK + RMARK) rather than
merely MK , to avoid ambiguity when the data is later recovered by NFETCH .

' I1f only MK were used, the possibility of confusion would occur when line-points
‘ ‘ were being recovered. At any time, it will not be known whether the next item is
another line-point (in which case the next word will have the value x) or the
end of the buffer (MK = 7) or the end of the line (MK = 1). Since 1,0 and 7.0

are legitimate values for x , confusion could arise. Hence MK has RMARK

added to it, RMARK being large enough to exceed any allowed value of x yet
small enough for the addition of MK (I to 7) to allow subsequent recovery of MK

; by NFETCH.

Q The user of subroutines NFETCH and NSTORE need not be concerned with the

details of the construction of R since it is handled internally by these two

o subroutines and no others.

(b) The values of the three integers NFC , NPTS and NPTZ are combined

into one real word. This is done for reasons of economy; as NFC cannot exceed

17, and NPTZ 1is in practice seldom greater than say, 5 to 10, these two small

integers can conveniently be packed into one 16-bit word, which in fact allows
NPTZ values up to 1023,

——— . W

[pp—
o e L Wt = cas i—————

3 DESCRIPTION OF PROGRAMS FOR CARTOGRAPHIC DATA FILES

3.1 Brief description of the programs

—
it

Map files must first be created; they may then be modified in various ways;

they can be transformed into other forms of file; and they can be examined in

JAXY)
ek

-

several ways. Programs have been written to perform a number of these operations.

This section describes the programs briefly; a fuller description and program
listing appears later,

¢ s T ——

. C-—— -y
POl RS- S

- -

[—

-
— -

N

037

3.1.1 Programs to create map files

(a) MAP.FAB This program allows the user to create a map file manually,
by keying all the details into a VDU , 1Its main use is for such purposes as to
form an 'empty' map - 7e¢ merely four corner points, or to create a grid of hori-
zontal and vertical lines, although one could, laboriously, key in a whole map

if the data were available in coordinate form.

(b) MAP,IN This program creates a map file from an external 'exchange

file' produced elsewhere and stored on magnetic tape.

(¢) IM.CONTOUR This program is named in the 'IM.' series, because it
uses an image file as its starting or input material, extracts cartographic lines
from it, and forms a map file. The program is to be described in a separate
document, and has been described in a general way in Ref 2, so will not be
detailed in this document., However, it is at present one of the main‘sources of

map files.

3.1.2 Programs to alter or transform map files

(a) MAP.HDRED It is sometimes necessary to inspect, alter or add to the
information contained in the header record, te edit the header, and this may be

done by use of MAP,HDRED .

(b) MAP.TRANS Map files created by IM.CONTOUR are in the pseudo-

projection of image file units, With the aid of a suitable transformation matrix,

MAP.TRANS can be used to transform such a map file to one in a known map pro-

jection, such as British National Grid.

(¢) MAP.OUT This program uses a map file as input and creates an
'exchange file' on magnetic tape, which may then be despatched elsewhere, or

could of course be re-read by MAP,IN .

3.1.3 Programs to examine map files

(a) MAP.LIST This program displays to the user, on a VDU , some details
of the header, and the data, item by item, all in alphanumeric form. To avoid
the display of large quantities of data, the user may make some degree of

selection of what is to be displayed.

(b) MAP.TEK A map file may be graphically displayed on a Tektronix 4014
device by means of program MAP,TEK .

(c) MAP.HPLOT This program allows a map file to be plotted on a Hewlett-
Packard X-Y plotter. Both MAP.HPLOT and MAP,TEK allow the user some degree

of control over the material displayed and the size of the display.

- - e - N TR B Y

e . e et

i miam

e ——— . -

. e

|
|
§
R
¥
.r‘
§
v‘é
i

3.1.4 List of programs

In alphabetical order, the programs above are:

Name Section Description
IM.CONTOUR 3.1, Ref 3
MAP.FAB 3.1. 3.2.1
MAP ,HDRED 3.1. 3.2.2
MAP .HPLOT 3.1.3¢c 3.2.3
MAP, IN 3.1.1b 3.2.4
MAP.LIST 3.1.3a 3.2.5
MAP.OUT 3.1,2 3.2.6
MAP.TEK 3.1.3b 3.2.7
MAP.TRANS 3.1.2b 3.2.8

~ The above list of programs is not intended to be exhaustive, but includes
all of those so far written. There may be a need for including additional
features in these programs or writing of new ones for other tasks. For example,
it may soon be useful to be able to create map files by digitization from a map

or other diagram using the graphics tablet at present available.

3.2 Detailed description of the programs

With the exception of IM.CONTOUR , which is to be described elsewhere, the
programs are next described in more detail, the aim being to aid potential users
in understanding how to operate them. The program listings are provided at the

end of this document, and these may be referred to whilst studying the following.

The programs make use of a number of subroutines which have been placed

into a 'library', and are described in section 4.

3.2.1 Program MAP,FAB

Program MAP.FAB allows the user to create a map file, by supplying data
from a keyboard,

From the user's viewpoint, its operation is as follows:

The program name and writing date is output.
An output filename (Ze the file to be created) is requested.

Permanent header detail is requested.

* O X X

Description of the current run is requested. The header record is then
written to the storage medium, If further header detail is to be supplied,

this is done by subsequent use of program MAP.HDRED .,

LEOD

A 'MK' number is requested. Subsequent action depends on the reply given.

(a) MK = 6 caﬁses the output file to be closed and the program terminates,

- - B . - . I SO N

yr.© L 1]

.+ st o - ot U

~

-
e —

L~ e ey o

037

(b) Illegal MK numbers invoke an appropriate message, and a further

request for a MK number,

(c) Legal MK numbers are followed by requests for the data needed to
create an item appropriate to that MK number. When the necessary
answers have been provided the item is written by NSTORE and a

request for another MK number is made.

It is thus seen that this program creates a map file, with the header
record in place and partially completed, and followed by data items, each checked
for internal correctness, and terminated by a MK = 6 item, There is however no
check that the sequence of the data as a whole is correct: for example, fiducials
may be written at any time, and a line may be ended before it has been started.
Checks could be made for such errors, but it is thought desirable to allow the

user to include deliberate mistakes, to test other programs,

3.2.2 Program MAP,HDRED

The header record is seen (Table 1) to consist of a number of values, some
integer, some real and some characters, in the first 132 (integer) words. Words

201 to 800 contain the history of the file.

The program MAP.HDRED allows the user to examine, and if desired change,
any of the information contained in words 1 to 132, If any change is made, the

history is updated to include this fact. The name of the file is not changed.

The operation of the program is as follows:

* The program announces its name and version date,
* The name of the data file is requested.
* The question "HEADER?' is asked. If answered YES the project and descrip-

tion are listed, together with the history of the file, as stored in

header words 201 onwards.

* Next an 'ITEM' is requested. Thirty-six different answers are acceptable
as showm in Table 4, otherwise the request will be made again, after a
message stating that the item is not recognized., If the user replies
HELP , the 36 recognisable options will be listed for inspection. If END
is typed, or merely a carriage-return, the program closes down, updating
the header and writing it back into the data file if necessary (if any
change has been made). If any of the recognised names are typed, the value
of that quantity will be displayed, and the question posed: CHANGE IT?

e e e ——————

Cd

- - ey W - -
N e PP A e i s o e s un A B

-
— -
o

s, W~

16

If NO 1is replied, no action is taken, and the program asks for another
ITEM . If YES , then NEW VALUE is requested, and the value provided

is written into the header buffer. No check is made by the program con-
cerning the validity of the value provided, so the user must take care to
ensure that the required value is entered correctly. If there is doubt, or
a mistake is known to have been made, it is possible to re-examine and alter

the altered value.

* When the user has replied END to the query 'ITEM' the program checks
whether any change has been made (a change is said to have been made when
the reply YES is given to the query CHANGE IT? even if the same value
is given as existed before) and if so, it updates the header and writes

it back to the storage medium. The file is then closed.

* Finally the program r Juests MORE FILES? to enable the user to edit the

header of another file should he so wish,

3.2.3 Program MAP,.HPLOT

Program MAP.HPLOT is used to plot a map file on a Hewlett-Packard X-Y
plotter. The interface software to drive that plotter has been obtained from
elsewhere and is therefore not described here. The various subroutine calls,
eg HPINIT, HPMOVE , and so forth, are noted in the program listings with

comment to indicate their functions.

User operation is described below. Before running the program, the user

must assign the plotter to the current VDU , by the instruction: AS AMLC 15
* Program name and date is output to the VDU ,

* The pen number (! to 4) is requested. The user may insert pens with

coloured ink into some or all of the four positions available.

* The cross size N 1is requested. Corner and other points are drawn as
crosses, the arm length of which will be N wunits, each one-eighth of a
millimetre. Hence the reply 10 would produce crosses of arm length

1} mm, Z7e 24 mm from tip to tip.
* A request is made for the name of the input map file.

* An enquiry is made; 'SPECIFY CORNERS?' If the reply is YES , then
requests for x and y coordinates of the south west and north east
corners (Ze lower left, upper right) will follow, and the plot will be
adjusted so that the map, based on the corners in the header (CNR), fits

the numbers provided.

N I W

LEO

Tt e e

———— e

- —

—r ——

-

LT R

-

17

* If the map file has IPRJC] = 99 , Z¢ it is in image file units, the pro-

gram moves to the enquiry FRAME? below. Otherwise, if the above question
were answered NO , the next request would be 'SPECIFY SCALE?'. If this

is answered YES the program will refer to the SCALE in the header and
if it finds no value there (actually SCALE less than 10) a suitable
message will be output. Provided that a suitable SCALE is available, the
program will request an 'OUTPUT SCALE' . A check will then be made to
ensure that the map, when drawn to this scale will fit the size of the
plotter and if unsuitable, a fresh value will be requested. The scale

should be provided as a real number, as shown in section 2.1.2(c).

* If the answer to the question 'SPECIFY SCALE?' had been NO , then the

program would calculate the necessary factor, such that the output map
would just fit the height or width of the plotter, whichever is the limit-
ing factor.

Thus the user has a choice of three types of map size, or two if there is

no value for SCALE in the header.

* An enquiry 'FRAME?' is made. If the response is YES , the plotter will
draw a frame round the map, Ze a line joining the four corners, in sequence
and returning to the starting corner.

Following these questions, the X-Y plotter will then draw the map, under
computer control, using the data from the input file. When the plot is

complete;

* the query 'ANY MORE FILES?' 1is made. If YES , a return is made to the

first question; if NO , the program stops,

3.2.4 Program MAP,IN

For purposes of data exchange or transfer between users in different
establishments, a data 'exchange format' has been defined, and this is described
in Appendix A, One or more maps may be contained on such a magnetic tape. The
program MAP.OUT converts data files into exchange format data on magnetic tape,
and MAP.IN correspondingly creates one or more map format data files from an

exchange format magnetic tape,

Before the program MAP.IN 1is run, the user must first allocate or ‘assign'

a magnetic tape drive unit for his use, and load the magnetic tape containing the

5 exchange format data onto that drive unit, The program may then be run:
* The program announces its name and asks for the magtape drive unit number.
The user must supply the unit number previously allocated.

R == e =« - T e T e e

- C e = - . e . - J eN

———r— -

- =y - -
SRS S U S

- s e - ey W "
eta, AT~ S A s e N P———

—

it 30, ¥ A

18

* The first ten magnetic tape records are read by the computer, interpreted
as alphanumeric characters and displayed on the VDU . These ten records
usually give some descriptive details of the map to follow.

*

The usual filename, permanent header data and run description, are
requested., The user is able to provide suitable replies, often based on
the ten records just supplied.

Following these questions, the computer then reads the magnetic tape,
converting the data into a suitable form for the map file being created on
the storage medium (usually a disc), until the first (or only) map has been
completed.

If no more files exist on the magnetic tape (and this is recognized by the
presence of a MK = 30 or an end-of-file) then the tape is rewound and the
program stops. If, however, another file (or files) is present, the ten
character records are displayed on the VDU , and the program continues

from that location.

Thus, one magnetic tape in exchange format may result in the formation of
several data files. Each of these data files will have only a small amount of
header record detail, consisting of the file descriptive character words, the
update information, and the map corners (CNRs) derived from the cormer poiats.
If it is desired to include further header information, eg the geographical
corners, or the scale, which may have been provided by the ten lines of text

message, then MAP.HDRED may be used to enter this,

The exchange format allows one or more records per magtape block. Both
MAP.IN and MAP.OUT have been written for the case of one record per block,
which has been suitable for the data transfers so far performed. Should it be

necessary to use multi-record blocks, some program modification would be necessary.

3.2.5 Program MAP.LIST

The contents of a map data file may be inspected in the form of characters

and numbers on a VDU by means of program MAP.LIST . When run:

* The program announces its name and date.
* A map filename is requested and the file opened.
* The question HEADER? is posed. If the user replies NO , the program

proceeds to the data, but if YES , a number of header details is displayed

on the VDU . Only the more commonly inspected details are shown, but the

less frequently used details may be seen with the aid of MAP.HDRED .

L£0

19 !

* The question DATA? 1is asked. If the reply is NO , the program moves on -
to a later question, but if YES the question INTERIOR LINE POINTS? .
follows. If this is answered YES , then all of the map data items are
displayed, in sequence, on the VDU . The reply NO would cause the

interior line point items (MK = 0) to be omitted, which is often convenient.

* Following the data, the program asks MORE FILES? If YES , a return is
made to the first question in the program, but if NO the program stops.
3.2.6 Program MAP,OUT

Program MAP.OUT performs the reverse operation of that done by MAP.IN ,
and reference may usefully be made to the description of the latter program, in

section 3.2.4.

MAP,OUT 1is used to form a magnetic tape, in exchange format, containing

one or more map files.

Before MAP.OUT 1is run, the user must assign a magnetic tape drive unit '

for his use, and load onto that unit the tape on which the exchange data is to

be written, The program may then be run,

* The program provides its name (on the VDU) and requests the magtape drive

unit number.

* The name of the input map data file is requested, and the named file then
opened.
* Ten header lines are requested. The user must supply ten lﬁnes of text,

from O to 120 characters per line. Since the exchange format does not
contain headers, it is usual to write out some of the header information
as text.

The data is then converted to exchange format and written onto the magtape.

When the process is completed the program asks ANY MORE FILES? If YES ,
the name of the next file is required, and the above steps continue., If
NO , MK = 30 and end-of-file markers are placed on the tape, which is

then rewound, and the program stops.

3.2.7 Program MAP.TEK
Program MAP,TEK is used (in a manner analogous to MAP,HPLOT) to display i

a map file on a Tektronix 4014 graphics display unit, with hard copy capability.,
As with HPLOT , the software which drives the display has been provided from
elsewhere.

e e —a— — ————

- -———

T .

L ap e ey W -

.

-

e BN

20

For operation, the user must first assign the display to his use by making
the instruction:
AS AMLC 14 TRANHS 413
with corresponding un-assignment:
UN AMLC 14
after the program use has been completed. The assignment instruction may be

changed at some later date, e¢g the AMLC 1line may no longer be number 14,
When the program is run:
* it provides the program name and date on the VDU,

* it asks if the user wishes to 'flash' the screen, Ze clear it of its

present contents,

* it requests CROSS SIZE , N . All map points are drawn as crosses, having
four arms, each of length N units. These units are related to the size
of the display screen but are approximately 0.l mm. Hence a reply of
N = 10 would provide crosses with arms of length about | mm, Z¢ 2 mm

from tip to tip.

* the filename is requested from the user, and when supplied the map file

is opened,

* SPECIFY CORNERS? 1is asked. If the reply is YES the user is asked for
the x and y coordinates of the south west and north east corners.
Values should be in screen units, as mentioned above, and normally these
would be provided in the range 0 to 5000, It is possible to use specified
corners to fit a map file to a displayed image file. If the user replies
NO the program refers to the corner points (CNR) in the header record of
the file, and calculates a scaling factor such that the map is drawn as
large as possible consistent with (a) scales in the x and y direction

are the same and (b) the map fits entirely into the screen,

* The program asks FRAME? If YES , four straight lines are drawn, clock-
wise from corner to corner, creating a frame round the map.
The map file is then drawn on the screen, feature by feature, until it is

complete. The file is then closed.

* ANY MORE FILES? is requested. YES causes a return to the initial
'"FLASH THE SCREEN?' question, ready for another map file to be displayed,

whilst NO causes the program to stop.

—-— e WY W

- e

LEO

21

If the corner (CNR) values in the header record of a file are either zero

(perhaps none has been provided) or corrupt, an error message will be displayed
and that file closed. In these circumstances it is possible to use program
MAP.HDRED to insert or correct the CNR values. The CNR values can be

! selected by examination of the fiducial points (the first four data features of

the file) using program MAP,LIST .,

3.2.8 Program MAP,TRANS

Map data files produced from image files by means of programs such as

IM.CONTOUR are not in a cartographically recognised map projection, but are in

a coordinate system related to the initial image. This system has been referred
to as Space Oblique MercatorA. The program MAP.TRANS may be used, together
with a suitable transformation file, to convert the map file to a coordinate

system such as British National Grid.

The construction and use of a transformation file is described by
,‘ J.R. Williamss. Briefly the process is as follows. Several locations are

identified on the image and the corresponding National Grid coordinates are

obtained from maps. The program IM.MATRIX 1is then used to convert the relative
location data into a transformation file containing six numerical values, TI
and T2 referring to the translation of the coordinates and All to A22

referring to the shear and rotation of the scene.

The program MAP.TRANS uses a transformation file to convert a map file

in image units (IPRJCl = 99) to another map file in British National Grid

coordinates (IPRJC]1 = 1) . Each output coordinate-pair X0 , YO is calculated

from the input coordinates XI , YI :-

!

]

!

1.

|

g X0 = (XI - T1) x ALl + (YI - T2) x AIl2
¥ YO = (XI - T1) x AI21 + (YI - T2) x AI22
‘f where AIll to AI22 1is the inverse matrix:-

! AIlIl = A22/D

| AT12 = =A12/D

! AI21 = =-A21/D

4

'? AI22 = All/D
K and D = (All x A22 - A21 x Al2) .

The minus signs for AIl2 and AI21 are needed because an image file has its

037

Y direction downwards, Ze in the opposite direction to a map, or map file.

T el W

AT

L. - - P LA N

22

It should be noted that the transformation matrix must have been calculated
from control points whose image coordinates refer to the same portion of the
image which gave rise to the map file, It is not uncommon for a user to select
a subscene of an image (using program IM,SUB). A map file made, by means of
IM.CONTOUR , from such a subscene could not employ the matrix derived for the
whole scene. If this were attempted, the National Grid map would be displaced

in northing and easting.
Operation of MAP.TRANS 1is as follows:
* The program announces its name and date.

* A matrix filename is requested. This file is then opened by the computer,

relevant values read and the file closed.

* The input map filename is requested and the file opened. A check is made
that the file is in the required pseudo-projection. If it is not, the file
is closed and a return is made for a new matrix filename. Assuming a
suitable file has been selected, an output filename is requested, and
opened; an update is made, including a request for a description of the
run; a number of calculations is made and the geographical corner points
(the corners expressed as kilometres on the National Grid projection) are
printed out, and placed into a header buffer, together with other header
data. The output header record is then written to the output medium, and
the data of the file is converted to the output projection, and stored.

When all data has been transformed, the input and output files are closed.

* MORE FILES? 1is asked. If YES the program returns to the request for

a matrix filename; if NO , it stops.

4 SUBROUTINE LIBRARY

All of the programs described in section 3 call subroutines. Inspection
of the program listings reveals that some of the subroutines are called by more
than one program. In such cases it is convenient to form a 'library' of sub-
routines, which are accessible without being re-listed and re-compiled for each

program,

The subroutines used by the map file programs and placed into the library

include (in alphabetical order):

037

23

Subroutine name Description in section number
NCLOSI 4,2.10
NCLOSO 4,2.6
NFETCH 4,2.9
NHDIN 4.2.8
NOPENI 4.,2.7
NOPENO 4,2.1
NSTART 4.2.4
NSTORE 4,2.5
PERMHD 4.,2.2
UPDATE 4,2.3 ,

Several of these subroutines are concerned with the input and output of
data, which is often done by means of routines which are not standard FORTRAN
ones. In the subroutine listings, the comment includes references to PDR 3106
and PDR 3110 together with page numbers, on some occasions when non-standard
subroutine calls are made. These PDR numbers refer to the host computer manu-
facturer's handbooks and are detailed in numbers 6 and 7 respectively in the
reference list of this document. In passing, it may be noted that if it were
necessary to modify the programs for use on a different host computer, many of

the alterations would occur in these subroutines at these input and output calls.

4.1 Subroutine groups

The subroutines listed above belong to one or other of two groups; for

"output' or 'input';

(a) subroutines used when a map file is being written or ‘'output':
NOPENO, UPDATE, NSTART, NSTORE, NCLOSO . Additionally, if the map file is being
created from a source which is not itself a map file, PERMHD may be used,

usually before UPDATE ;

(b) subroutines used when a map file is being read or ‘input': NOPENI,

NHDIN, NFETCH, NCLOSI .

The subroutines within each group are called in the sequence given above.
If both input and output occurs (as for instance in program MAP,TRANS) then
calls from the two groups may be intermingled, but the sequence within each
group will still be preserved. Programs, such as MAP.HDRED which edit,
1Z¢ change, an existing map file, may present certain problems., Since only one
such program exists at present, its special subroutines, for opening and closing
files for both input and output, and for writing a header record back into an

existing file, are not included in the library.

24

As far as possible the subroutines contained within group (a) and group (b)

have been designed to form self-contained sets, needing the minimum of external

information., Subroutine parameters are not used, and the transfer of information

is by means of COMMON blocks, For group (a), the output routines, the COMMON

blocks are OUTCOM, COORDS, HEADER and FILENC ., The input routines use COMMON

blocks INCOM, COORDS and HEADER,

The method of use of the various subroutines can be well seen in such
programs as MAP.FAB which uses all of group (a) in a simple manner, and

MAP.LIST which uses all of the routines of group (b).

4.2 Subroutine descriptions

The subroutines are described in detail in Appendix B, being placed in the
sequence indicated by the groupings of section 4.1. These descriptions may
advantageously be studied together with the library computer listings at the end

of the Report.

The following facts are common to all of the subroutines and are therefore

not included in Appendix B for each:

all are written in Prime FORTRAN
all were written by the author of this paper

none has any parameters.

Acknowledgment

The author was for a time with the Experimental Cartography Unit (ECU)
of the Natural Enviromment Research Council, then at South Kensington, London.
The map format described in this document bears a considerable resemblance to

(but is not exactly the same as) the ECU's 'Lang Format'. Some of the programs

described in this Report likewise have some resemblance to programs written by
the author whilst at ECU.

LEO

PR

AEEendix A

EXCHANGE FORMAT

A cartographic data exchange format has been defined by the Experimental

Cartography Unit of the Natural Environment Research Council. Since no freely

available description exists, this Appendix gives full details of the format.

The purpose of the exchange format is to allow transfer of cartographic

data between different establishments, and in particular between different types

of computer. The method selected as most suitable to cover the widest range of

equipment is to write characters (not numbers) onto magnetic tape.

%

037

The format description is:

Data to be written on magnetic tape: 7 or 9 track: any of the standard
densities; parity even or odd; any character set. This allows a wide

choice, but the options used must be defined on a separate document.
The tape may contain one or more sets of data, 7¢ 'maps'.
Each map consists of a number of records, each containing 120 characters.

Each block written t~ the magnetic tape must contain the same (integer)

number of records. Frequently one record per block is used.
Each map consists of the sequence:

ten records containing text
an unspccified number of data records

one MK = 6 record (see below) to indicate the end of the map.

After the final map has been written, including its MK = 6 record, a

MK = 30 record is added to indicate the end of the data.

The text records may contain any message or other information, in character
form, Unused portions of records should be filled with space characters or

nulls.

Data records are of four possible types:

MK = 3 record: start of line
MK = 4 record: map point
MK = 5 record: corner point

record containing line points after the start of the line.

Rl U s < e T s S e e

26 Appendix A

Table Al lists the contents of the MK records.
Table Al

Contents of MK records

Characters - _ _ _ -
in record MK = 3 MK = 4 MK = 5 MK = 6 MK = 30
1-2 03 04 05 06 30
: 3-4 00 (1) 00 (1) 00 (1) 00 (1) 00 (1)
t 5~10 x x x 2) (2)
11-16 y y y (2) (2)
17-18 NFC NFC NFC (3) (1) QD]
19-25
E (4) (4) (4) (5) (5)
P
i 115-120
Notes:

(1) Two zero or space characters.
(2) Six zero or space characters.
(3) For MK = 5 NFC would normally be zero.

(4) Up to 17 six-character feature-codes, followed by space or zero
characters. Codes in the range -99999 to 99999.

(5) This portion of the record to be filled with zero or space characters.
(6) For all integers, leading zeros may be replaced by spaces.
(7) All numbers are integers,
(8) x and y coordinates may be expressed in any units but should
preferably be defined in an accompanying document.,

* If MK = 5 records are supplied (corner points) there must be four of them,
representing respectively the SW, NW, NE and SE corners of the map, and
they must appear before all other data records, but after the ten lines of

text.

* For lines, after the first point has been defined by a MK = 3 record, the
remaining points are stored as changes of x and y from the preceding
value. The change must never exceed the range -49 to +49 units, and

should a larger change occur, extra points must be interpoclated. Each

LEO

change then has the value 50 added to it, to bring it into the range

I to 99, the value zero being reserved to indicate that the end of the

line has been reached.

e T -

- -

e ey W
e WA B . e — * 1 BTV B e it i

.
- S

g Ve

Appendix A 27

Line point records consist of 30 sets of four characters, two numeric
characters for the x change and two for the y change. After the last point
of the line, there must be a set of four zeros to indicate the end of the line,

even if this necessitates a new record. The remaining unused portion of a record

may contain any character.

e e -

. —— - me—— i —

JRIRNER VR

- w——

—— - —— W
e s . o % e ine - et E—— o SN e e

-

.
-

W

28

Appendix B
SUBROUTINE SPECIFICATIONS

B.1 Subroutine NOPENO

Summary - NOPENO is used to open a new map file for output.
Use of COMMON - uses /OUTCOM/. Output arguments:

IOTDEV output device line or unit number
IOTSZ size of output buffer in integer words.

Local storage used - 21 integers; | logical variable; 11 bytes for characters;
Prime ABKEYS 1list.

Subordinate subprograms =~ Prime Applications Library routine OPVPgA

Operation - the COMMON values IOTDEV = 6 and IOTSZ = 1024

are provided for use by following subroutines. The applications library OPVPgA

is called, operating in the mode ABOVAP , the effect of which is as follows. The
user is asked for a filename which may be a Prime 'tree name'. OPVP$A attempts to
open a new file of this name, for output. If the opening operation is not success~
ful, for example an illegal tree name is provided, a fresh name is requested, and
this is repeated until a successful operation is achieved. If the name of an
existing file is provided, the user is asked if he wishes to alter it. If NO ,
a new name is requested, but if YES the user is asked whether he wishes to over-
write the existing file or to extend it. The correct usage for map files is either
to choose a new filename or else to overwrite an existing but unwanted file.

B.2 Subroutine PERMHD

Summary - the subroutine PERMHD clears the header buffer,
obtains the permanent header details from the user and
places them in the header buffer,

Use of COMMON - uses /HEADER/ and /OUTCOM/

Input argument IOTSZ in /OUTCOM/ 1is used.
All words in /HEADER/ have values output.

Local storage used - | integer, 30 characters in FORMAT statements,

Subordinate subroutines - none

Operation - The value IOTSZ is used to determine the number of

words of the COMMON block /HEADER/ , and these are all cleared to zero. The
user is then asked to supply the permanent header details, which consist of the

project name, IPROJ , up to 12 characters and the project description, IDESCR,
up to 32 characters.

i80

PERMHD 1is usually only called when a map file is being created. Subsequent
alterations to the map file do not necessitate a call of PERMD .
B.3 Subroutine UPDATE

Summary - UPDATE 1is used to maintain the file log in the header buffer,

© amnen

S

Appendix B 29

Use of COMMON - uses /FILENC/ and /HEADER/
Input arguments: /FILENC/
NPROG(4) name of the program calling UPDATE

NVERS version number of that program
Output arguments: modifications to /HEADER/ words
201 to 800,

Local storage used - 17 integers, 25 characters in FORMAT statements

Subordinate subprograms - Prime file system subroutine TIMDAT

Operation - Map files contain a log in the header.
Zperation

Each log entry is 40 words long, and there is space for 15 log entries in header
words 20! to 800, Each time UPDATE is called it moves the existing 14 most
recent entries (words 201 to 760) into the positions for entries 2 to 15

(words 241 to 800) and the [5th entry, if it existed, is overwritten and hence
lost. A new entry is then provided in heauer words 201 to 240 as follows. The
name and version number of the calling program (which must be placed in

COMMON /FILENC/ by that program) are moved into header words 201 to 205. The log
sequence number, in header word 206 is obtained from the sequence number of the
previous log, in word 246, incremented by one. For the first UPDATE call

word 246 is zero so the first log number is made 1, as required. The Prime sub-
routine TIMDAT 1is then called, and this moves information about the date, time
and user-code into the dimension IARRAY , from which it is moved into the appro-
priate header words. A request is then made to the user for details of the

computer run being performed and up to 32 characters can be stored.

B.4 Subroutine NSTART

Summary - NSTART 1is used to write the header record of a map
file, and prepare the output buffer and pointer for
data,

Use of COMMON - Uses /HEADER/ and /OUTCOM/

Input arguments - all of /HEADER/ ; IOTDEV and
IOTSZ (set by subroutine NOPENO)
Output arguments - IOTBUF and IOTPTR , the output

buffer and its pointer

Local storage used - 1 integer, 25 characters in FORMAT statements

Subordinate subprograms - Prime file system subroutine PRWF$8

—— - B e T N —

30 Appendix B

Operation - The entire contents of the COMMON block /HEADER/ are transferred i

to the output buffer and written to the output file, from its start, by Prime

- .-._;

subroutine PRWF$3 . The output file is on device line IOTDEV and the buffer

size is IOTSZ . 1If a system failure occurs whilst the write operation is taking

m._.‘(“,,

place, an error message 'PRWF$$ FAILURE IN NSTART' 1is sent to the terminal and
the program stopped. All values in the output buffer are then cleared (set to
zero) and the output buffer pointer, IOTPTR is set to 1 , ready for data '
to be placed.

B.5 Subroutine NSTORE !

Summary - NSTORE 1is used to place one data item to the output buffer,

and when the latter is full to write it to the map file.

Use of COMMON - Uses /COORDS/ and /OUTCOM/

Input arguments (a) in /COORDS/

MK item type indicator

X,Y coordinate pair

NPTS, NPTZ number of 'points' in the item
NFC number of feature~codes in the item
FCODE(17) up to 17 feature-codes I
(b) in /OUTCOM/ |
IOTDEV output file line number - set by NOPENO
I0TSZ output buffer size ~ set by NOPENO
Output arguments in /OUTCOM/

IOTPTR output buffer pointer
IOTBUF output buffer

- '4 A

R
e e ————. 3 s PO .

Local storage used - 5 integers, 2 real variables, 38 characters in FORMAT

statements, Prime list KEYS.F

T -

Subordinate subprograms - Prime file system subroutine PRWF3$ (

- — . W

Operation -~ Map data is stored in the form of items (see the body of this
document for details of items), each of which consists of a MK number in the

range 0-6, followed by an appropriate amount of map data, In the case of MK=0,

the MK number is not itself stored, but its presence can be inferred. Items

are written to the output buffer IOTBUF , which is written to the output storage

-
-

A

LEO

medium when it has insufficient space for the next item, or following a MK=6,)

The detailed operation of NSTORE 1is as follows:

The variable ISWICH 1is set to 1, to control the normal routing of the sub-

routine flow., Only for the case MK=6 can ISWICH have any other value. The

B .

«

- -

-

. L -y
4, LN e e e paie——— TR e

-
— -

e W

R
vy
M

Appendix B 31

value of MK 1is checked, and the illegal values, Ze¢ other than 0, 1, 3-6,

cause the subroutine to output the error message MK = XX IN NSTORE and return.
The item size in integers ITEMSZ 1is calculated, from the value of MK and
where necessary NFC . A check is then made of whether sufficient space remains
in the buffer to place the item. If insufficient space exists, the buffer must
be written to the output storage device, using the Prime file systems routine
PRWF8¢ to add the data to the end of the existing data., Before the buffer is
written, it is checked for any empty words, and if one or more empty spaces
remain, the first of these has a fill-word placed into it, appropriate to MK=7,
This value of MK 1is internal to the subroutines NFETCH and NSTORE and need
not be consideréd by the user of the subroutine - indeed it is illegal external
to the routine. After the buffer has been written, all of its values are set to

zero, and the pointer IOTPTR 1is set to 1,

I1f sufficient space exists in the buffer, the next item is placed into it.
MK is not stored as such, because it could be confused with data, but has RMARK
(1048576.0) added to it. This value has been chosen as it is large enough to
avoid confusion with any possible data value, yet is small enough to allow the
MK to be extracted from it. The other words in the item are placed as required
by the MK value, and may include some or all of: X Y NPTS NPTZ NFC and
up to 17 feature codes. To aid in placing the real words, the buffer is equiva-
lenced to a real array OUTBUF and the real buffer pointer IPTR 1is used to

point to the real word locatioms.

For the case MK = 6 , which indicates that the end of the map file has
been reached, the item consists only of one word, RMARK + MK , and this word
must be placed into the output buffer and written at once to the storage device.
If there is space in the output buffer, the data can be placed and written, but
if the buffer is full, the buffer must first be written, then the MK = 6 data
placed and then a second 'write' take place, Ze¢ a second call of PRWF$$. In
the case MK = 6 , ISWICH is set to 2, and this allows the correct routing after
the PRWF$$ call, e a return is not made following a PRWF$3 call, when a

MK = 6 has been written.

B.6 Subroutine NCLOSO

Summary - NCLOSO is used to close an output map file
Use of COMMON - uses /OUTCOM/ . Input argument:

I0TDEV - output file line number
Local storage used - 1 logical variable, 25 bytes for characters,
Prime list ASKEYS

D D i STOURELU "

32 Appendix B

Subordinate subprograms - Prime applications library subroutine CLOS$A

Operation - The Prime subroutine CLOS$A is used to close the
output map file on line number IOTDEV . If the CLOS$A operation is unsuccess=— !
ful the message CLOS$A FAILURE IN NCLOSO 1is output to the terminal and the

program is stopped.

o —cv——

B.7 Subroutine NOPENI

Summary - NOPENI 1is used to open a map file for input
Use of COMMON - uses /INCOM/ . Output arguments:

INDEV input device line number

INSZ size of input buffer in integer words

Local storage used - 21 integers, | logical, 10 bytes for characters,
Prime A$KEYS 1list

Subordinate subprograms - Prime Applications Library routine OPNPEA

i R

Operation - the COMMON values INDEV = 5 and INSZ = 1024 are
{ provided, for use by following input file subroutines. The Prime Applications
% Library routine OPNP$A 1is called. This outputs the request for an input file~
name at the terminal, accepts a Prime tree name, checks it for validity and then
attempts to open an existing file of that name, If the opening operation is not

successful, the process is repeated until a satisfactory open occurs.

B.8 Subroutine NHDIN

Summary - reads one data block from the input map file, and
places it into /HEADER/

[Ty e

- (i

Use of COMMON - uses /HEADER/ and /INCOM/
Input arguments: /INCOM/ words:

- -

L mr
PRNE SRS P

- oo-

INDEV input file line number
INSZ size of input buffer

OQutput arguments: /INCOM/ word:
INPIR = input buffer pointer

All of /HEADER/

Temporary use: /INCOM/

INBUF input buffer

L0

Local storage used - 3 integers, 24 bytes for characters,
' Prime list KEYS.F

Subordinate subprograms - Prime file system subroutine PRWF$$

Appendix B 33

Operation = The Prime subroutine PRWF$$ is called to read the next INSZ

words from the input map file into the input buffer. INSZ has been set to 1024
by NOPENI , and is equal to one block of data on the Prime disc storage on which
map files are held. NHDIN 1is intended to be called before other subroutines
which read data from a map file, and it should therefore read the first 1024 words
of the file, which is the map file header. If the PRWF$8 operation is unsucess-
ful (ICODE not zero) or the number of words read IRNW 1is not equal to 1INSZ ,
NHDIN sends the message PRWF3$ FAILURE IN NHDIN to the terminal, and then stops

program operation.

Following a successful PRWF$$ read operation, the data in the input buffer
is transferred into COMMON /HEADER/ . The input buffer pointer INPTR is set
to INSZ + 1 to ensure that the following NFETCH call will be forced to start

with a read.

B.9 Subroutine NFETCH

Summary - NFETCH 1is used to retrieve one map 'item' from the
input buffer, reading more data from the input file to

the buffer when the latter needs replenishment,

Use of COMMON - Uses /COORDS/ and /INCOM/

Input arguments, in /INCOM/:
INDEV input file line number
INSZ size of input buffer
INPTR input buffer pointer
Output arguments:

Some or all of /COORDS/

Local storage used - 4 integers, 3 real words, 37 bytes for characters
Prime list KEYS.F

Subordinate subprograms ~Prime File System subroutine PRWF3$

Operation - Map data is stored in the form of 'items', the details
of which are controlled by a MK word. The subroutine NFETCH , when called,
retrieves the next item from the input map file, and places it into the relevant
words of the COMMON block /COORDS/ . Items are read from the map file in

blocks of 1024 words, each block containing many items,

NFETCH starts by setting all values of /COORDS/ to zero, so that only
newly retrieved values are available, not values left over from a previous call,

If the input pointer has a value less than the buffer size, there must still be

34 Appendix B

data remaining within the buffer, so this data is examined. The next data word
is studied to see if it contains a valid MK word, and if so, the action
appropriate to that MK word is taken. If, however, the next word does not
correspond to a valid MK word, the data must be an X coordinate, implying

a MK=0, A MK =7 indicates tha t(nere i1s no more data in the buffer, and
the subroutine path is then the same as for INPTR greater than INSZ , Ze a
new buffer of data is read from the data file by means of a PRWF$8 call. The
PRWFE8 call is followed by a check for successful operation, and if unsuccessful
the message PRWF$$ FAILURE IN NFETCH is sent to the terminal and the program
stopped. Following a successful PRWF$$ call, the input buffer contains new

data items.

If the existing data buffer contains more data or if a new buffer of data
has been read from the input file, then the next item can be retrieved, the MK
number being calculated by subtraction of RMARK , or the value MK = 0 obtained
as explained above. The MK value indicates which words are available and these
are extracted from the input buffer, and placed into the /COORDS/ words: X,
Y, NPTS, NPTZ, NFC and the feature codes FCODE(17). The input buffer pointer
INPTR and the real-word buffer pointer IPTR are used to aid this process,
pointing to the relevant locations in the equivalent integer or real buffers
INBUF and RINBUF . A detailed description of the various types of item is given

elsewhere in this document,

If the illegal MK = 2 1is fourd, the message MK = 2 IN NFETCH is

sent to the terminal, and a return made.

B.10 Subroutine NCLOSI

NCLOSI is used to close an input map file

Summarz
Use of COMMON

Uses /INCOM/. Input argument:
INDEV input file line number

Local storage used 1 logical variable, 24 bytes for characters,

Prime list ASKEYS

Subordinate subprograms ~ Prime Applications Library subroutine CLOS$A

Operation =~ The Prime subroutine CLOS8A 1is used to close the
input map file on line number INDEV , If the CLOS$A operation is unsuccessful
the message CLOS$A FAILURE IN NCLOSI is output to the terminal and the program
is stopped.

Q
w
~

037

B e

Table 1

HEADER RECORD ALLOCATION

FORTRAN format
or type

Word No. Name
1-6 IPROJ
7-22 IDESCR

23-40
41 IPRJCI
42 IPRJIC2

43-44 SCALE

45-46 XSCALE

47-48 YSCALE

49-50 SCLLNG

51-52 SCLLAT

53~54 RADEA

55-56 RADEB

57-80
81 NLIN
82 NPT
83 NSTEPS
84 NSTEPZ
85 MNFC
86 NDIFFC

87-100

101-116 CNR
117-132 GCNR
133-200

201-800 -

T

801-1024

,

\

6A2
16A2

Integer

Integer
Real
Real
Real
Real
Real
Real
Real

Integer
Integer
Integer
Intege;}
Integer

Integer

8 real

8 real

See below

5 integers
] integer

3 integers
] integer
3A2

16A2

11 integers

Meaning

General name of the project
Description of the project
Spare

Map projection code

Map projection subcode

Map scale

X and Y scale adjustments

Longitude and latitude (degrees) for
specified purposes

Earth's major semi-axis (metres)
Earth's minor semi-axis (metres)
Spare

Number of lines in the file

Number of points in the file

Number of line points in the file

Maximum number of codes per item
Number of different codes in the file
Spare

Corners of the map (mm)

Corresponding corners, on the Earth
Spare

15 sets of 40 words, to 'UPDATE'

Program name and version

Data file version number

Date

Time

User's code name

Details of the current process
Spare

Spare

RECOGNISED WORDS FOR PROGRAM MAP,HDRED

Kexed word
END

(Carriage return)

HELP

IPROJ
IDESCR
IPRJIC!
IPRJC2
SCALE
XSCALE
YSCALE
SCLLNG
SCLLAT
RADEA
RADEB
NLIN
NPT
NSTEPS
NSTEPZ
MNFC
NDIFFC

CNR(A,B)
GCN(A,B)

} The data file is closed

The list of keyed words is displayed
on the terminal

? Controls header word(s) of these names

Controls header dimension CNR(A,B)
Controls header dimension GCNR(A,B)
l or 2 B=

AL

- O I e R

, 37
i

REFERENCES

No. Author Title, etc

1 NASA Landsat Data Users' Handbook, Appendix C (1975)

2 A.H. Benny

Coastal definition using Landsat data and potential
bathymetric applications.

Sixth Annual Conference of the Remote Sensing
: Society (1979)

3 A.H. Benny RAE Technical Report in preparation

4 A.P, Colvocoresses Space Oblique Mercator. r

Photogrammetric Engineering, 921-926 (1974)

5 J.M. Williams Geometric correction of satellite imagery.

RAE Technical Report 79121 (1979)
6 Prime Computer Inc. Preliminary documentation release PDR 3106

7 Prime Computer Inc. Preliminary documentation release PDR 3110 i

REPORYTS QUOTED
AVAlLAR: = +-~
er

ARE NOY NECESSARILY
. D5 THE PUBLIC

TS

L, — e~ W

.-

,_.1‘
037

P —

38

PROGRAMS

C PROGRAM MAP _FaB

C PROGRAM MAP_.FAB

€ TO CRERTE A MAP FILE BY KEYING IN FROM A TERMINAL
DIMENSION 1C0C42)
LOGICAL @
COMMON/COORDS/MK.X.Y,NPTS . NPT2,NFC,FCODEC17)
COMMON/FILENC/NPROG(4), NVERS
COMMON/HERDER/IHDUMC(1824)
COMMON/OUTCOM/TIOTOUNMC 1827)

$INSERT SYSCOM>ASKEYS
EQUIVALENCE (MK, ICOC(1))
DATA HPROG.,NVERS/8HMAP.FAB .1/

ao.

WRITEC1,2088)
2088 FORNATC’ MAP FAB 9-JAN-88")
18@ CALL HOPEND
CALL PERNHD
CALL UPDATE
CALL NSTART
1 D0 5 Js1.42
S I1C0CJ)>3B /eCLEARS ¢COORDS/
URITEC 1, 1888)
1888 FORMATC'KK: ‘)
READC1.,18081)MK
1881 FORMAT(16)
IF (MK . GT.6 .OR. MK.LT.@ .OR. MK.EG.2) COTO 998
IF (WK.EG.6) GOTO 888
VRITEC1, 18B2)
1882 FORMATC’X:’)
READ(1, 1BB3)X
1882 FORMAT(F18.2)
. VRITEC1, 18B4)
! 1884 FORMATC’Y?1 ')
- READC1.,1083)Y
. IF (NK.EQ.B.OR.MK.EQ 1.0R MK EQ@ S) GOTO 888
o 8 VRITEC1,1885)
1885 FORMAT(’NFC:’)
READ(1,1881)NFC
IF CHFC.EQ.8)> GOTO 28
DO 18 J=1.NFC
WRITEC 1, 1888)
1888 FORMAT('FC: ‘)
READ(1,1883)FCODECJ)
i 2@ IF (WK EQ.4) GOTO 88@
' WRITEC1, 1886)
! 1886 FORNATC’NPTS: ')
| READ (1,1BE1)NPTS
WRITEC1, 18B7)
1887 FORMAT(’NPT2:)
h READ(1,1081)NPT2
' 88@ CALL NSTORE
‘ IF (MK.NE.6) GOTO |
" CALL NCLOSO
Q= SHOSAC’'MORE FILES’, 1@, ASNDEF)
b IF (@) GOTO 1d@
! STOP :123456 H

- e -
~
-]

998 WRITEC1,189@)
f 1858 FORNATC’ ILLEGAL NK’)

[t Ve

'
)
]
.

037

39

C PROGRAM MAP. FAB

——————— -

G070 5
END

C PROGRAM MAP HORED 1

C PROGPRAM MAP HORED
€ TO EDIT THE HEADER RECORD OF A MAFP FILE
LOGICAL Q,CHANGE
DOUBLE PRECISION DITEMNS(36),DUORD
DIMENSION HDR(?78), IPTR(3I3)
COMMON/FILENC/NPROG(4), NVERS
COMMON/HERDER/IHDR(4B), IPRJCT, IPRJC2,SCALE, RSCALE, YSCALE,
¢ SCLLNG,SCLLAT,RRALEA,RADEB,IHOUNMB(24),
® NLIN,NPT,NSTEPS.HSTEPZ . MNFC,.HDIFFC, IHDUNC(14),
* CNR(2.,4),GCHRC2.4), IHDUND(68), IHDUME(824)
COMMON/INCOM/INDUMC1B27)

$INSERY SYSCOMO>RS$KEYS

EQUIVALENCE C(IHDR(1),HDRC1))

DATA DITEMS /BHIPRJC! -BHIPRJC2 .BHHNLIMN s BHMNPT .
BHNSTEPS ,BHNSTEFZ ,8HMNFC sBHHOIFFC ., BHSCALE .
BHXSCALE ,BHYSCALE ,8HSCLLMG ,BHSCLLAT ,B8HRADEA .
BHRADEB +BHCNRC1, 1), 8HCNRC2,1),BHCHNRC1,2), BHCHR(2,2),
BHCNRC(1,3),8HCNRC2,3),8HCNRCE , 4),BHLHR(2.,4), BHGCNC1, 1),
SHGCH(2.,1),8HGCNCL,2),BHGCNC(2,2).8BHGENC1,3),BHGCNC2,3),
BHGCHC(L,4),8HGCN(2,4),8HIPROY +BHIDESCR ., BHHELP .
SHEND . 8H /

DATA IPTR/41.42,81.82.,83,84,85.86,22,23.24,25,26.27.29,

* 51,52,53.54,55,56.57.,58,59,68.61.62.63,64.65,66.1.,7/
DATA NPROG/SHMP . HDRED/,NVERS/1/

L R R S N B B

o000

WRITEC1,1880)
188@ FORNAT(’MAP HDRED 9-JaN-88")
188 CHANGE=.FALSE .
CALL NOPENB /%OPEN INPUT FILE FOR READ/WRITE
CALL NHDIN /«READ /HEADER/ FROM FIRST FILE BLOCK
Q=YSNOSA(’ HEADER’, 6, ASNDEF)
IF ¢ NOT.Q) GOTO 284
WRITEC1,1B@2)CIHDR(J). J=1,22) /«IPROJ AND IDESCR
1802 FORMATC’PRIJECT: ’,6A2.°; DESCRIPTION: ’.16A2)
Ja=-39 ;
8@ JA=JA+48
IF (IHDUMECJA).EQ. B> GOTO 284
JB=JR+28 |
WRITEC L, 1BB3I)CIHDUNECJ). JuJA.JB) ~eUPDATE LINE
1883 FORMAT(4R2,12.13,1X.A2,°17,42,":"A2,15,2X.1942)
covo s@

208 WRITE(t, 1806)

1886 FORMATC’ITEM: ')
READC1,1182)DWORD

1182 FORMATCAB)
00 218 J=1,36
ITNO=ay
IF (DWORD EQ.DITEMS(J)) GOTO 228

21@ CONTINUE
WRITEC1,1B87)

18B7 FORMATC(’ ITEM NOT RECOGNISED. TYPE “HELP“’)

GOoT0 204
228 1F (1TNO EQ.35 .OR I1TNO.EQ 36) GOTO 688 /*END OR <CR>
IF CITNO . EQ 34) GOTO S@8@ /e“"HELP"
ISWal /#DITEMS 1 TO 8 - INTEGERS
IF CITNO GT 8) ISW=2 /#DITENMS 9 TO 31 - RERLS

IF CITNO GT 31) 1SW=3 /+DITENS 32, 33 - CHARWCTERS

- -

Ly - ey -

*J‘.f

A.Q_-c—-.-;‘-«.‘

40

C PROGRAM MAP_HORED

- NS=IPTRCITNGO)
GOTO (221.222,223).,18W
221 WRITEC1,1221)>01 TEMSCITNO), THDR(NS)
1221 FORMATCASG.,'=’',118)
GOoTOo 238
222 WRITECL, 1222)DITEMSCITNO), HDRCHS)
1222 FORNATC(AS, =’ ,F28.18)
GOTo 238
223 IF C(ITNO .EQ.32)> HE=6 /»END WORD OF IPROJ
IF CITNO .EQ.33> NE=22 /#IDESCR
WRITEC1,3223>DITEMSCITNOY, CIHDR(J), J=HS, NE)
1223 FORMAT(AB,’a’ ,16RI)
238 Q=YSNOSAC’'CHANGE IT’.,9,AR$NDEF)
IF (. NOT.Q) GOTO 288
CHANGE= . TRUE.
WRITEC1, 1888)
1888 FORMATC’NEW VALUE:’)
GOTO (231,232.,233>,1IS4
231 READ(1,1231)IHDR(NS)
1231 FORMATC(I1B)
GOTO 2828
232 READ(1,1232HDR(NS)
1232 FORMAT(F28.2)
GOoT0 288
233 READ(C1,1233)CIHDRCJ), J=NS,NE)
1233 FORMATC(16A2)
GoTo 284

388 WRITEC(1.,150@)DITEMS
158@ FORMATC(’ ITENS AVAILABLE ARE:~-'/8(2X,A8))
GOoTO0 2@8

688 1F(NOT.CHANGE) GOTO 61@
CALL UPDATE /+«ONLY UPDATE IF A CHANGE HAS EEEN MADE
CALL NHDOBAK /=WRITE HERDER BACK TO FILE. [F CHANGED
618 CALL NCLOSI
Q@=YSNOSAC’'MORE FILES’ .18, ASNDEF)
IF (@) GOTO 188
STOP 1123456
END
M T R Ry R Y N N R Y Y R T)
SUBROUTINE NOPENB /«OPEN R MAP FILE FOR BIHARRY INPUT OR OUTPUT
DIMENSION IFILEIC2@)
LOCICAL @
CONMON/INCOM/INDEY.INPTR, INSZ, INBUF(1824)
S$INSERT SYSCOMIASKEYS

€

c
INDEV=S
INSZ=1824
NLEN=4 @

188 Q=0PNPS$AC’ INPUT FILE' , 1B, ASRONR.IFILETI,.HLEN, INDEV)

IF C.NOT .Q) GOTO 1@8
RETURN
END

Croctostttestnteodinesdt sttt tdedstdatdssetet s tedtsdtstedtad ittt eesessens viy
SUBROUTINE NHDBAK /«URITES THE FIRST BLOCK [NTO /HERDER/
COMMON/HEADER/IHOR(1B24)
COMMOH/INCOM/INDEV,INPTR, INSZ, INBUF(1B24)

$INSERT SYSCOMO>KEYS .F

i

c

(e X x N v

41

PROGRAM MAP.HORED

D0 188 Jat,INSZ
188 INBUF(J)sIHDR(J)

CALL PRUFSSC(KSURIT+KS$PREA, INDEV,LOCCINBUF), INSZ,INTL(B),

e IRNV, ICODE)

IF CICODE.EQ.B .AND. IRNW.EQ .INS2) RETURM

WRITECL, 1828 IRNY, ICODE

1828 FORMAT(’PRUFS$$ FAILURE IN NHOBARK:’,218)
RETURN
END

C -

e

np e - W
R R e ———————

C PROGRRAM MAP HPLOT

C PROGRAM MAP. HPLOT
C 70 PLOYT A MAP FILE ON A HEWLETT-FACKARD PLOTTER
LOGICAL @.0QC
INTEGER=4 DPOS
COMMON/COORDS/MK. X, Y, NPTS,NFTZ2.NFC,FCODE(1?7)
COMNMON/HERDER/IHDUM(48),IPRJICL., IHDUNY,
¢ SCALE.IHOUMA(SE), CNRC(2.4),1HDUMNB(I0B8)
SINSERT SYSCOMIRSKEYS
¢
c
c
WRITEC1, 18808)
1888 FORMAT('MAP HPLOT 22-JAN-8B")
188 CALL HPINIT /¢INITIALI2E PLOTTER
118 WRITE(1,1882)
1802 FORMATC(’PEN NUMBER: ')
READ(1.,1188)J
1188 FORMRTC(IS)
IF (J.LT. 4 OR. J.GT.4) GOTO 118
CALL HPENCJ) /«SELECT PEN J
116 @=RNUMSA(’'CROSS SIZE (16)>’'.15,R80EC.DPO5)
If C.NOT.Q) GOTO 116
NCROSS=INTSC(DPOS)
CALL HOPENI /+DPEN INPUT FILE
CALL HHDIN /«IHPUT THE HERDER BLOCK
131 WaCHR(1,3)>-CNRC1,1) /«WIDTH OF FRAME
HaCNR(2,3)-CNR(2.,1)> /*HELIGHT OF FRAME
IF (H.LE.@ .OR. ¥ LE . B) GOTO 958
QC=YSHOS$AC'SPECIFY CORNERS’,15.,AS$DNO)
IF (.NOT .QC) GOTO o8
1352 Q@=RNUMSAC’S W. X’,6,A$DEC.DPOS)
IF (.NOT . @) GOTO 152
If (DPOS.LT.B .OR. DPOS.GT.388@) GOYO 152
‘SUX=FLOATC(DPOS)
133 Q=RNUNSA(C’S . ¥. Y’,6,ASDEC,DPOS)
IF (_NOT.Q)> GOVTGC 1953
IF (OPOS . LT.B .OR. OPOS.GT.288@) GOYO 1S53
SWYsFLOAT(DPOS)
154 Q=RNUMSAC'N.E X’,6,R$DEC.DPOS)
IF (.NOT.Q) GOTO 154
IF (DPOS LE TFIX(SWX)> OR. DPOS GT 3008> GOTO 154
RNEX=FLOATC(DPOS)
193 Q=RNUHSAC(’N E. Y’,6,RS$DEC.DPOS)
IF (.HOT .Q@) GOTO 1S5
IF (DPOS LE IFIX(SWY) .OR. DPOS GT 2@80> GOTO 155
RNEY=FLOAT(OPOS)
PUsRNEX~SWX
PH=RNEY~-SUY

Covo 78
c :
58 IF (SCALE.LT 18 8> GOTO 948
39 Q=RNUMSA(’OUTPUT SCALE <(19)’ .17 .R$DEC.DPODS)
IF C(.NOT.Q)> GOTO 59
IF (DPOS .LT 188 OR. DFOS.GY 100080080 GOTO 39
KSCoSCALE/FLORT(DPOS)*8.0 ~+PLOTTER UNITS ARE 1/8 NN
IF (WeXSC.GT 3880.8 .OR MH#xSC GT 2@@0 0) GOTO 913@
GOYO 79
c
60 SWX=@ B

SWy=p. 8

i£0

037

C PROGRAN MAP HPLOT

1F (1PRJCI .EQ.99)
Q=YSHOSAC’ SPECIFY
IF ¢Q) Goro 36

63 PW=3008.0
PH=2808.8

78 XSCs=PuW/¥ /+X SCAL
YSCaPH/H /*Y SCAL
IF (QC)> GOTO 88
XSC=ANINB(XSC,YSC)
IF (SCALE.LT.14.8>
O0SCALE=SCALE*8 . B/X
WRITEC1,1884)0SCAL

1884 FORMATC('SCALE PLOT

79 YSC=XSC

BB U=YSNOSA(’'FRAME’ .,
IF C.HOT . Q) GOTO 9
CALL MPMOVE
DO 98 J=1,3 /*DRA
JA=J
IF (JR.EQ.T5) JAs1
IXsIFIX(CNR(1.,JA)e
I¥=IFIXCCNRC2,JA)e
CALL HPOSPTCIX.1Y)

98 COMTINUE

95 ITEN=0 /#COUNTS

288 CALL NFETCH

IF (WK.GE. 6 .OR. n
IF (KK €EQ.3 .OR. H
IXP=IFIX(XeXSC+B S
IYP=IFIX(YsYSC+B .5
GOTO (258,258,388,

C MK2B OR MK=l. INTERIOR

258 IF (INP-IXPO_EO.B
CALL HPOSPT(IXP,1Y
Goro 3i@

C MK=3. START OF LINE

388 CALL HPMOVE /eSET

CALL HPOSPTCIXP,1Y
318 IXPO=IXP /#PREVIO

IYPO=1YP

GOoTO 289

C MK=4 QR 5. POINT OR FI

480 CALL PLOTCRCIXP,1Y
GOoTo 2a8

C MK=é. END OF THE MAP

6808 WRITEC1,1883)MK. 1T

1883 FORHAT(' MK=’', 16,

638 CALL HPEND /»PURG
CALL NCLOSI /eCLO
QaYSNOSAC’' ANY MORE
IF (@) GOoTO (@8
STOP :1234%56

938 WRITEC(1,1822)
1822 FORMAT('MAP TOO L4
GOTO 59

948 WRITEC(),1828)

GOTO 65 /»IMAGE-FILE UNITS
SCALE’, 13, ASHDEF)

ING FACTOR TO FIT PLOTTER
ING FACTOR

/+#CONVERSION FROM FILE (MM) TO TEKTRONIX UNITS
GovTo 79
sC
13
TED=',Fl16.2)

sASNDEF)
3

W THE FRAME

XSC+8.5+S54X)
YSC+B .5+SUWY)

ITERS C(LINE, POINT) IN A SHEET

K LT.8> GOTO 688

K.EQ@.4 OR. NK.EQ . 5) ITEN=ITEN+]

+SWX)

+SUY)

480.,488),. MK /»DUNNY FOR MK=2

POINT OF A LINE OR EHD OF LINE

AND. IYP-IYPQO . EQ 0O) GOTO 288 /+«SRNE POINT
P) /Z#DRAW TO X.¥Y

VECTOR
P> /+NOVE TO X.Y
US POINT

buCIAL.
P, HCROSS) /*PLOT POINT AS A CROSS (MY SUBR)

EM

AFTER ITENM’,16)

E BUFFER, 1E DRAM EVERYTHING
SE INPUT FILE
FILES’.14,ASNDEF)

RGE AT THIS SCALE')

1828 FORMAT(' INPUYT SCALE HOT SPECIFIED’)

GoTo 13!

43

PP

C PROGRAM MAP.HPLOT

c
938 WRITEC1,1821)CNRCE,1),.CNRC2,1),CNR(1,3),CNRL2,3)
1821 FORMAT(’ FIDUCIALS IHCORRECT’,2(/2F1@.2,)

GOTO 638

END
c...“.‘.‘.."‘..“‘.‘..““.‘.‘.“i.*’*“i*l PEERIIERVPESERVE IR P AR VR R SE R &

SUBROUTINE PLOYCRCIX,IY.N) /«PLOTS R POINT AS A CROSS, FOR FIPLOT]
¢ :
c

CALL HPMOVE
CALL HPOSPTCIXeN.IY)
CALL HPOSPTCIX~-N.IY)
CALL HPMOVE

CALL HPOSPTCIX,IY+H) }
CALL HPOSPTC(IX.IY-N)
RETURN
END .
{
P4
Ay
s
!
i
{
{
}

e g o ey~ e T g e A e 0 2 naams |y e s it g SRS o -

45

e ——————

C PROGRAM MNAP.IN

| C PRQGRAM MAP . IN

i C Y0 REWD AN "EXCHANGE FORMAT" MAGTAFE INTO #n MwP FILE
LOGICAL NOCORN
DIMENSION 1BUF2(2088)
COMMON/COORDS/MK. X, Y. NPTS,.NPTZ,NFC,FCODECL?)
COMMON/FILENC/NPROG(4), NVERS
COMMON/HEADER/IHDR(1BE).CNRC2,4), [HDUNA(C908)

, COMMON/INTROC/IBP., IBUFC280)

COMMON/QUTCONM/IOTDUMC 1827)

DATA NPROG/BHMAP .IN /,NVERS/L/

OO0

UNIT=B .82 /«CONVERTS EXCHANGE UNITS TO MM, |
WRITECL, 1808@)
1088 FORMAT(’ MaP.IN 9-JAN-88"'/" TAPE UHIT HO:!’) 1
READC1,11BB)MTUNIT :
1108 FORMAT(I6)
CALL REW(MTUNIT)
NBLOCK28 /#COUNTS BLOCKS ON MAGTAPE
NFILE=@ /+COUNTS FILES FROM THIS MY
C START NEXT OUTPUT FILE
98 LINE=8 /%COUNTS BLOCKS WITHIN OHE MuP
I1TEN=8 /#COUNTS ITENS C(LINE, POINT) INH A SHEETY
NOCORH= FALSE. /«FOR FIDUCIAL CHECK
1 NFILE=NFILE+]
108 IND=68 /*EXPECTED NO OF WORDS (128 CHaRS)
CALL MTREADCMTUNIT,NBLOCK.IND) /»INCREMENTS NBLOCK AS WELL
LINE=LINE+}
IF CIND E@.4)> STOP :18BB /+EOT
IF C(IND. EQ.3)> GOTO 998 /*«EQF
IF (LINE .GY.18> GOTO 110
i " IF (LINE NE.1 .OR. NBLOCK EO@ . 1) GOTO 182
MK=INTRDC2)
, IF (MK . EQ.38) GOTO 988
! WRITEC1,1806)
' . 1886 FORMATC(’ ANOTHER FILE ON TRAPE TYPE $ TO CONTINUE’)
‘ PAUSE /<TYPE "S" TO CONTINUE
: 182 0O 183 J=1,128 /+PREPARE IBUF FOR PRINTING
183 IBUF2CJ)=LSCIBUF(J),8) /«SHIFT INTO CORRECT BYTE
> WRITEC1,1882)CIBUF2(J),J=1,120) /+oB-UYORD BLOCK
1882 FORMAT(128A1)

]
[
bi IF CLINE.NE.18> GOTO 188

y CALL NOPEND /«OPEH THE OUTPUT FILE

f IF (NFILE.EQ.1)> CALL PERMHD /+«GET PERMANENT HEADER DETAILS C
’ DO 188 Jaél,1024 i
r 188 IHDR(J)I)=B //«CLERR HEADER EXYCEPT FOR PERM DETAILS
! CALL UPDATE /eDETAILS OF THIS RUN

GOTO 1088

| 118 TTEN=ITEN+1
o HKs INTRDC2)

. IF (MK.GT.6) GOTO 904
v IF CITEM LE.4 .AND. MK.NE.S) GOTOU 8¢3

i IF CITEM GT.4 .AND. MK.EQ.S) COTO 88E

186 J=INTRDC(2) /eSHOULD BE ZEROD
IF (J.NE B) MRITEC1,1883)>J
? 1083 FORMAT(’' ICOR=',16,' IN ITEN’,18)
IX=INTRDCE)
IY=INTRDC(6)
KesFLOATC IX)SUNIT

037

o — -
- P

=
ip e e W
e R e — <

46

C PROGRAM MAP.IN

Y=FLOATCIY)SUNIT
NFC=INTRD(2)
IF (NFC.LT.1) GOTO 138
IF (NFC.GT.17) NFC=1?
DO 126 J=1.,NFC
JA=INTROC(S)
126 FCODPE(J)=FLOAT(JA)
138 1F CITEM.LE . 4) WRITEC1,1884>ITEN, MK, IX,IY . NFC
1084 FORMAT(IG6,’:’.14.218,14)
1888 FORMAT(16,"t’,14,2F8.8,14)
COTO (988,900.3088,400.5088,688), MK

308 CALL NSTORE /eNK=3 ITEN
MK=@ /+INTERIOR LINE POINT
NPTS=1 /¢FIRST POINT WITH MK=3
NPTZ=8
NFC=8
318 IND=68
CALL MTREAD(MTUNIT, NBLOCK, IND)
IF CIND.NE.1)> WURITEC1,1B83)IND,NBLOCK
1883 FORMAT(’ INDs=’,16,° IN BLOCK’.16)
b0 328 J=1.,38
IDX=INTRD(2)-38
IF (IDX.EQ.-58)> GOTO 348 /«END OF LINE
IDY=INTRD(2)-58
IF CIDY.EQ.-38> GOTQ 348
NPTS=NPTS+1
IF (NPTS LT .31B0BA) GOTO 316
NPTS=8
NPTZeNPT2+1
316 IF (NPTS.EQ.2 .AND. NPTZ2.EQ.8)> GOTO 318
X=X0
Y=Y0
'CALL NSTORE /«PREVIOUS POINT., NKa=@
318 XKO=X+FLOATCIDX)IUNIT
YOuY+FLOATCIDY)®UNIT
J2@ CONTINUE
GOTO 318
348 IF (NPTS EQ.1 .AND. NPTZ2 . EQ.@)> GOTO 350
MK=1 /«END OF LINE
N=X0
Y=YO
CALL NSTORE /¢END POINT OF LINE
GOTg j0@
358 WRITEC1,18@7)ITEM
1887 FORMART(’ITEN’.,16,’ IS A ONE-POINT LINE’>

GOTO 108
[
488 MK=4
CalLL HSTORE
GOoTO 108
c

588 CNRCL, ITEN)aX

CNRC(2,1TEN)=Y /oFIDUCIALS

IF (HFC.NE.B) WRITECL,1BBI)ITEM,NFC
1889 FORMATC(’ ITEMW’ ,16,' HAS NFC=’,14)

IF CITEN LT 4) GOTO 148

IF C(NOCORN)> GOTO 9380

CALL HSTART /ePLACE /HEADER/ INCL CNRS

NK=S /«FIDUCIAL

.- R B AR A I Y

037

C PROGRAM NAP.IN

NFC=8

00 S28 J=i.4

X=CNRC1.,J)

YaCNRC2,J)
528 CALL HSTORE

GOoTOo i@8

688 MK=6
CALL NSTORE
CALL NCLOSO
WRITEC1, 1B2AOMK. ITEN
1828 FORMAT(’'MK=’,16,’ AFTER ITEN’,l6)
GOTO0 98

878 NOCORN=. TRUE.
GOTO 885

8E@ MK=4 /e«MK 5 IN BODY OF DATA, CHANGED YO MK 4

865 NRITEC1, 1898)MK, 1TEN

1898 FORMATC’ WARNING. MKk=’,13,’ IN I1TEM’.16)
GOTO 186

209 WRITE(1,1898)>HK,1TEN
GOTO 188

c

958 WRITE(1,1821)

1821 FORNMATC(’ FIDUCIALS INCOMPLETE’)
CALL NCLOSO /*USE MDELET WHENH AVARILABLE
GOTO 99@

988 WRITEC(, 1B22)MK, NBLOCK

1822 FORMATC’ MK=’,13.,’ IN BLOCK’,I6)

998 CALL REW(AHTUNIT)
STOP :123456
END

Cetetesdtrtt it tEtdetE Rttt AR ORREERER LRk EREIEENEREXPANROSEPEPBEREERERERRERES ¥

SUBROUTINE MTREAD(MTUNIT,NBLOCK,IND)

C SUBR TO RERD OHE BLOCK FROM MY AND PLACE EACH CHAR INTO A WORD OF I[BUF
C IND=1: 0K 2t NW WRONG 31 EOF 4 EOT 51

LOGICAL EOF,.EOV,ERR
COMMON/INTRODC/IBP, IBUFC1)

CALL MTRECMTUNIT.IBUF.288,E0T.EQF,ERR, NW)
NBLOCK=NBLOCK+1
IF C(_NOT .EOF)> GOTO 18
WRITEC1,18BBONBLOCK
1888 FORMARTC(’ EOF IN BLOCK’.16)
IND=3
RETURN
18 1IF { . NOT.EOT) GOYO 28
WRITEC1,1881)NBLOCK
1881 FORMAT(’ EOT IN BLOCK’,Ie)
IND=4
RETURN
2@ JF (. NOT ERR)Y GOTO 38
WRITEC?, 1882)NBLOCK
1802 FORMATC(’ ERROR 1IN BLOCK’.I16)
IND=5
RETURN
3B IF C(NV.EQ.IND) GOTO 48
WRITEC1, 18B3)NW,NBLOCK
1883 FORMATC(I6,* WORDS IN BLOCK’,16)

47

ERR

J«MTIOLIB SUBR

- e e ———

Ay . .y W -
D owm .

ca —el

48

C PROGRAM MAP.IN

IND=2
RETURN

48 00 3@ Js=1i,NU /*UNPACK CHARS TO WORDS, BRCKUWARDS
KuNU-J+1
KA=K+K
N=IBUFCK)
H1=RT(N,?) /e¢RIGHYT TRUNCATE. OR USE: AND(N,127)
N2=RS(N., 8> /eRIGHT SHIFYT 8 PLACES
N2=aRT(N2,?7)
IBUF(KA-1)=N2
IBUF(KA)aN}
58 CONTINUVE

IND=1}
18P=1 /eREADY FOR USE
RETURN
END

COHIENROEIEIBINNGRAIPRNEANEREPRE PR BRI E R IR AE RN E AL PIERE D IESE S PRI RN RIS P PR E R SN K8 b ¢
FUNCTION INTRD(N)

C CONVERTS NHEXT N (1 TO 6) CHARS TO AN INTEGER.
LOGICAL NUMST.NEG.ERROR
DIMENSION ISTRNG(6)
COMMON/INTRDC/IBP, IBUF(1)

ERROR= FALSE.
IF (N.LT.1 .OR. N.GT.6) RETURN
NUMe=B
HUMST= FALSE. /SNUWBER NOT STARTED
NEG= FALSE. /e«NO MINUS SIGN SEEN YET
00 188 Ja=1,N
NHEXCH=RT(IBUFCIBP+J-1),7) /*LAST 7 BITS ONLY
IF (HEXCH.EQ.32 .OR. NEXCH .EQ.43 .OR. NEXCH.EQ 45) GOTO 3@ /eSP + -
NEXCH=NEXCH-48 /«CONVERT TO NUMBER
IFf (NEXCH.LT.B .OR. NEXCH.GT.9) GOTO 9@8
IF C(NUM.GY .3276) GOTO 98B /+0UTPUT MUST NOT EXCEED 32768
NUNsHUN® 18+NREXCH
GOTO o8
S8 IF (NUNST) GOTO 988
IF (NEXCH.EQ 43) GOTO0 68 /+ PLUS SIGH
IF (HEXCH.ME.43) GOYO 188 /¢ MINUS SIGH
NEG=. TRUE.
68 NUNST= TRUE.
188 CONTINUE
IF CNEG) NUM=-NUN
INTRO=NUM
158 18P=18BP+N
RETURN

988 00 9t8 Jei1.N
918 ISTRNGCJ)=LSCIBUF(1IBP+J-1),8) /+«HOVE TO LEFT BYTE
WRITEC1,188B)XCISTRNG(JI,I=1,N)
1888 FORMAT('ILLEGAL INTRD STRING: ’.,6ARl)
INTRD=8
ERROR= . TRUE.
CoT0 138
END

037

C PROGRAM MAP.LIST

C PROGRAM MAP.LISTY
C T0 LIST A MAP FILE

LOGICAL 4, INTPTS

COMMON/HEADER/IHDRCLBB)I,CNR(2,.4),GCNR(2,4), 1HDUNACGEB), IHDUNB(824)

CONMON/INCONZINDUNCLIB27) /«NOT HECESSARY?
COMMON/COORDS/MK, X, Y, NPTS, NPTZ,.NFC.,FCODE(17)

SINSERT SYSCOMIRSKEYS

1012

16811

82
18108

1813
20

180

118
1820

112
116

120

138

132

WRITEC1,188@8)

FORMATC' MAP .LIST 9-JAN-88’)

CALL NOPENI /sOPEN TINPUT FILE

CALL NROIN /eRERD /HEAVER/ FROM FIRST FILE BLOCK
Q@aYSNOSAC' HERDER ', 6, ASNDEF)

IF (.NOT.@) GOTO 98
WRITEC1,1812)>CIHDORCY), JI=1,22)

FORMATC’ PRDJECT: ‘,6A2.° DESCRIPTION: *',16R2)
JA= -39

JABJA+48

IF CIHDUMBC(JA).EQ.8A)> GOTO 82

JB=JA+28

WRITEC1,1811)CIHOUMB(J).InJR,J4B) /*UPDRTE LINE
FORMATC4R2,12,13,1X,R2,%17,R2,"':'R2.,15,2X,19A2)
COTO 8B

WRITEC1,1818>C(CNR(1,J),CNRC2,J),dm=1,4)
FORMAT(’CNRS’ ,BF9. 2>
WRITEC1,1@813)CGCHRCL,J),GCHR(2,4),d=1,4)
FORNART('GCNRS'’,8F9.23)

0aYSNOSAC’ DATA’ . 4, ASNDEF)

IF (. NOT.@) GOVO 988

INTPYS=YSNOSAC’ IRTERIOR LINE POINTS’,20,ASNDEF)
HK=3

‘NLIN=B /¢NO OF LINES IN THE FILE

NPT=@8 /NG OF POINTS IN THE FILE
NKO=HK

CALL NFETCH

GOTO C118,12@8.125,138,148,158,168), NK+1
IF (WKD.EQ.B .OR. MKO.EQ.3) GOTO 112
WRITEC1, 1B2B)IMK . NKO

FORMATC' MK’ ,12,* AFTER MK'.12)

PAUSE 111

IF CINTPTS) WRITEC1, 18@3)MK, X, ¥
NPTSA=HPTSH+]

IF (NPTSA.LE.9999) GOTO 188
NPTZA=NPT2A+1

NPTSR=0

GoTo 108

1F (MKO EO B .OR. MKO E£Q 3) GOTU 122
WRITEC],1828)NK. NKO

PHUSE 111

WRITE« 1, 1BBIOAK, X Y. HPT2ZA NPTSH

GOTO 1te

WRITEC 1, 1B28)ONK, NKO

PRUSE 111

GoTo 180

If «WKO EG.1 OR NKO.EG 4 OR MKO E@ S GOTO 132
WRITECL, 1028)MK. NKO

PAUSE :111

NLIN=NLIN®1

N -

0

50

C PROGRAM MAP.LISTY

IF (NFC.LE @) WRITE(1.1883) MK, &,V . HPTZ . HPTS, HFC
IF (NFC GT B> WRITEC1,1BO3INK, K.V, NPTZ . HPTS.HFL, (FCODECJ), =1 HFC "
1803 FORMAT(I2,2F18.2,13,14,13,17F18 1)
NPTSA=2 /»THIS POINT AND END POINT (Mi=1)
NPTZA=0
GOTO 1@8
148 IF (MKO.E@.1 .OR. MKO .EQ 4 OR. MKO EQ 5> GOTO 142
WRITEC1,1828)HK. HKO
PRUSE :111
142 IF (NFC.LE . B) WRITE(1,1884)MK, X, Y, NFC
IF (HFC.GT . @8> WRITEC1.,1BB4) MK, K, Y, HFC.(FCODECJ), J=1,.NFC)
1884 FORMATC(I2,2F18 2,7X,13,17F18.1)
GOTO 1S4
158 IF (MKO.EQ.5) GOTO 152
WRITEC1, 1B82B)MK, HKO
PAUSE 1111 i
152 WRITEC1, tABIOMK, X. ¥ :
154 NPT=NPT+1 '
GOTO 188
168 IF (MKO EQ.1 OR. MKO.EQ.4 .OR MKO EQ 5> GOTO 142
: WRITEC1, 1828 MK, NKO ,
' PRUSE :111 !
162 WRITEC1, 1BB3)IMK
WRITEC1, 18@5)NPT, HLIN
1805 FORMATC’FILE CONTAINS’.I6.’ POINTS. ', 16.’ LINES ’)
988 CALL NcLoOSI
! Q=YSNOSAC' MORE FILES’,1@, ASNDEF)
IF (8) GOTO 1@
STOP :1234%6
END

- e~ W

LEO0

C PROGRAM MAP. OQUT

C PROGRARM MAP OUT

C TO OUTPUT A MAP FILE TO A MAGTRPE IN "EXCHWHGE FORHAT"
LOGICAL ERROR.Q
CONMOH/COORDS/MNK,X.Y,NPTS, HPT2,NFC,.FCODEC 17
COMMON/ERR/ERROR
COMMON/HERDER/IHDRC(1B24)
COMMON/IRCON/INDUMC1B27)
COMMON/INTROC/IBP, IBUFC2HA)

$INSERT SYSCOM>ASKEYS

c

C

C
UNIT=58B B /«COHVERT MM TO EXCHAMGE UHITS
WRITEC],10888)

1888 FORMATC’® MAP OUT 9-JaN-88" /" TAFE UHIT NO:’)
READC 1., 11BBIMTUNIT
11008 FORMATC(IG)
CALL REWCHTUNIT)Y /«MTIOLIB CALL
HMBLOCK=8 /»COURTS BLOCKS ON MAGTAPE
188 CaLL NOPENI ~/«0PEN INTVERNAL FILE

CALL HHDIN /#REWDS FIRST BLOCK

WRITEC1,1@01)
1881 FORMATC(’UWRITE TEN HERDER LINES:’)
DO 118 J=1.,18
READC1,11B1)CIBUFC(IY,1=1,128)
1181 FORMATC(128R1)
00 184 K=1,128
184 IBUF(K)=RSCIBUF(K)>,8) /#SHIFT T0 RIGHT
CALL MTURITCMTUNIT, NBLOCK)> /=MTIOLIB SUBROUTINE
I1F CERROR)> GOTO 999
118 CONTINUE

C
28@ DO 281 J=1,128
281 IBUF(J)=:248 /%FILL 1BUF UWITH SPACES
1BP=1
282 CALL NFETCH /#GET NEXT [TEM
MKIND=MK +1
GOTO (210,218.218,248.,248, 248, 268), MKIND
C

218 X=XsUNIT+B S
IF (X LE . 32767.8 AND. X . GE.-327?68) GOTO 212
WRITEC 1, 1083)X
XK= 4
212 IX=1FIX(X)
YaysUNIT+B 5
IF (Y LE 32767. 8 AND. Y GE -32763) GOTO 214
WRITE(C1,18B3)Y
v=9.0
214 IY=IFIX(Y)
IDX=IK-1X0 /+CHRNGE SINCE PREVIOUS POINT

IDY=1Y-1Iv0
IX031X /«SAVE PRESENT POLINT, FOR PREVIOUS
1Y0=1Y

IAKalABSCIDX)
IAaY=1ABSCIDY)
IF CIAX LT .58 _AND 1AY.LY 58> GOTO 22@
C FOR 10X OR IDY MORE THAH 49
NUM=MAXBCIAX, IAY)
HUM=CHUM-1)/49+1 /+DIVIDE INTO NUM PIECES

52

C PROGRAM MAP_ OUT

RNUM=2FLOAT(NUR)
DX3FLOARTC(IDX)>/RNUM
DYSFLOATCIDY)/RNUM
DO 216 J4=1,HNUM
KaFLDAT(J)*DX /*EXACT LOCARTIOH
IXaIFIX(X+8 .5) /»NEAREST INTEGER
IDX=1X-1X0 /*CHANGE SINCE PREVIOUS POINT
IXD=1X /#»NEW PREVIOUS POINTY
YaFLOATCJ)I»DY
IY=aIFIX(YeB S)
10Y=]IY-1Y0
Ivo=1Y¥
GOTO 224

216 CONTINUE

217 1F (MK EQ.8) GOTO 282

218 CALL INTWRT(B.4) /*PACK REST OF BLOCK WITH ZEROS
IPCTR=IPCTR+!
IF CIPCTR LT 38) GOTO 218
CALL MTWRIT(MTUNIT,NBLOCK)
IFf (ERROR) GOTO 999
GOTO 288

228 IF (IDx EQ @ .AND. IDY.EQ.@ .AaND. MK EU d) GUTQ 282
NUM=1
C OUTPUT AN INTERIOR LINE POINT, MK=8 OR 1
224 1DX=1DX+38B
CALL INTWRTCIDX,2)
I10Y=1DY+58
CALL INTURTCIDY.2)
IPCTR=1PCTR+1
IF (IPCTR.LT.38) GOTO 228
CALL MTURITC(MTUNIT,.NBLOCK)
IF CERROR)> GOTO 999
I1BP=1}
: IPCTR=@
) 226 IF (HUM.GT 1) GOTO 216
! GOT0 217

. 248 CALL INTURTC(MK,2) /#POINT, FIDUCIAL OR STWRT OF LINE HME=3.4.5
CALL INTWRT(B,2) /+"1COR"
. XaX#UNIT+8 95
v IF (X LE 32767 8 _AND. X GE -32768) GOTO 24u
, WRITEC), 1BB3)>X
) 1883 FORMATC’COORDINATE TOO LARGE T0 OUTPUT’ . F1B 8. UNITS')
X8
N 242 IXIFIX(X)
i CALL INTURTCIX,6)
! Y=YSUNIT+8 S
} IF (Y LE 32767 8 AND Y GE -32768) COTU 244
H URITEC1, 18@3)Y
=8
: 244 IYSIFIXCY)
, IF (MK NE 3) GOTO 245 /+FOR A LINE
- 1X0aIX /e SAVE FREVIOUS POINT ‘
' IYoaly
% IPCTR=8 /+FOR FOLLOWING POINTS
243 CALL INTWRTCIY,6)
S IF (AK.EQ $) GOTO 248
r IF (NFC . GT 17) NFC=17
¥ CALL INTWRTU(NFC,2)

53

C PROGRAM MAP OUT

IF (NFC.LY 1) GOTO 248
DO 246 J=1,NFC
I=sIFIX(FCODECJ)I+D 5)
CALL INTURTCI.6)

246 CONTINUE

248 CALL MTYRITCHTUNIT, NBLOCK)
IF CERROR> GOTO 999
GOTO 2B8 /+FOR NEXT ITEM

268 CALL INTWRT(MK.2) Z#END OF FILE
CALL MTURITCMTUNIT . HBLOCK)
IF CERROR) GOTO 929
CALL HCLOSI
Q=YSHOSAC’ ANY MORE FILES'.,14,ASNDEF)
IF ¢0) GoYD 198
18P=1
MK=230
CALL INTURT(MK,2)
CALL MTURITC(HMTUNIT,NBLOCK)
IF (ERROR) GOTD 999
CALL MTWFUNTUNITY,ERROR,ERROR) /«UWRITE FILE MARK TO TAPE
IF (ERROR) GOTO 999
CALL MTWF(MTUNIT.ERROR,ERROR) /«TW0 HEEDED
IF CERROR) GOTO 999
' CALL REWCMTUNIT)
SYOP 123456

999 WRITEC1,1@98>
tB90 FORMATL FATAL MAGTAFPE ERROR’)
CALL NCLOS1 /¢«CLOSE ANY OPEN INPUT FILE
STOP 77777 /«DONT REWIND MT - IT CAH BE INLFCTED FOR DAMAGE
END
R R L R Y T L N N R R I I L Y R A AL L
SUBROUTIKE MTURIT(MTUNIT,NBLOCK
C TRKES 128 CHAKS IN IBUF, FORMS 60 INTEGERS AND WRITES THEM TO MAGTARPE
i LOGICAL EOF .EOT.ERROR
. COMMDH/ERR/ERROR
COMMON/INTROC/IBP, IBUF(1)

c
" c
‘ 00 18 J=1.68
' JB=m g+
JA=JB-1
INTaLSCIBUF(JUR), 8)#RTCIBUF(JB), B
1BUF(J)IsINT |
18 CONTINUE /#*ALL 128 CHARS NOW PACKED ﬁ
C

ERROR= FALSE.
CALL NTURCNTUNIT,IBUF.68,.EOQT . ERROR)
HBLOCK. =NBLOCK +1
IF (EOT) GOTO 98¢
IFf CERROGR) GOTO 928
RETUKRHN F
90D WRITE« §,1BBBONBLOCK
1880 FORMAT'MAGTAPE EOT WY BLOCK’.,18) ;
ERKkOR= TRUE
RETUKRN
920 WRITE(1,10801)>NBLOCK
10081 FORMWTC MAGTAPE ERRUOR IN BLOCK’.lw)
RETURN

:
i
!

C PROGRAM MAP.OUT

END
COEsNEsNstNaPEABINEREIRRRE AR BN E R A E R AL I A PR AP R E NI B SR ARSI RIS R R BT R E R kO T & 0
C VERSION OF INTURT USED UNTIL HOU. BUT COMMENTED OUT AT 11-JHN-80
c SUBROUTINE INTWRTC(I,N)

CC CONVERTS AN INTEGER TO N (1 TO 6) CHARRCTERS IN IBUF
CC NEGATIVE NUMBERS NOT YET AVAILABLE

c LOGICAL ERROR

c DIMENSION ISTRNG(@&)

[COMMON/ERR/ERROR

C COMMON/INTRDC/IBP.IBUFC(1)
cc

cc

c ERROR= FALSE .

IF (N.LT.1 .OR. H.GT.6) GOTO 998
IF (1.LT.8) GOTO 998 /*NEGRTIVE INTEGERS WOT YET AVAILABLE
INT=1
D0 188 J=1,N /«PLACE N CHARS, BACKUAHRDS, INTO I[STRNG
1A=INT/ 18
IR=INT-1Aet8 /#REMAINDER
INT=1A /+READY FOR NEXT ITERATION
ISTRHG(JD>=IR+:126B /#PLACE BITS 5-8 (1811XXEX)
188 CONTINUE
IF CINY . NE . @) GOTO 998 /#INTEGER TOO0 LARGE FOR N CHARS

DO 1358 J=1.N /sPLACE ISTRING., BACKWARDS, INTO [BUF
IBUF(IBP)>=ISTRNG(N-J+1)

158 18P=1BP+|
RETURN

998 URITEC1,18RB8)I.N
1888 FORMATC’ERROR IN INTURT('’,216.,°)’)

ERROR=. TRUE.

RETURN

END
Crostamssesnttndesstaddss it st dtenisd st As it It st bttt Iattsetossdedsuetet?ay ey,
C NEW VERSION, TESTED ON VDU, BUT NOT YET ONTO MAGTAPE

SUBROUTINE INTURTCI.N)

C COHVERTS AN INTEGER TO N (1 TO 6) CHARACTERS IN IBUF
C SUITABLE FOR -32767 < N < +327e7
LOGICAL ERROR
COMMON/ERR/ERROR
COMMON/INTRDC/IBP, IBUF(1)

OO0 0000O000 0

ERROR= FALSE.
IF (N.LT.t .OR. N.GT.6) GOTO 994
NA=N /e¢NO OF CHARS FOR UNSIGHED I
INT=]
IF (1 .GE B> GOTO S@ /eHOT A NEGATIVE NUMBER
NA=NA-1
INT=-INT
IBUFCIBP)=:23F /#NINUS SIGHN
38 IF (NA.LT. 1) GOTO 998
18P=1BP+N /#POINT TO NEXY INTWRT
00 188 Je=1,NR /*PLACE NR CHARS, BRCKWHRDS, INTO IBUF
IA=INT/1D
IRsINT-IRe1B@ /eREMAINDER
INT=IA /#READY FOR NEXY ITERATION
TBUFCIBP-J)=lR+:268 /¢PLACE BITS 5-8 ¢1OB1IXKRX)
188 CONTINUE

v

e

vy

55

C PROGRAM MaP OUT

IF (INT.EQ.B) RETURN

c
998 WRITEC1,18B@8)>I1.H

18808 FORMATC'ERROR IN INTURTC(C',216,°)")
ERROR= TRUE.
RETURN
END

56

C PROGRAM NAP TEX

C PROGRAM MAP TEK
C 70 DISPLAY A MAP FILE ON THE TEKTRONIX 4014
LOGICHL Q
INTEGERe*4 DPOS
COMMON/COORDS/MNK, X, Y, NPTS,NPTZ,KFC,FCODEC1?7)
COMMON/HEADER/IHDUMC 1B@B),CNRC2,4),IHDUNRCIBB)
$INSERT SYSCOMD>ASKEYS
c
c
c
WRITEC1, 1@486)
1888 FORMAT(' MAP . TEK 1-FEB-88')
CALL TKINIT
98 Q=YSNOSAC’FLASH THE SCREEN’.16,ASNDEF)
IF (@) CALL CLRTEK /»FLASH THE SCREEN
WRITEC1.1881)
1883 FORMAT(’CROSS SI12E (led:’)
READC1,«)NCROSS
C 1188 FORMAT(I6)
CaLL NOPENI /«OPEN INPUT FILE
CALL NHDIN /Z«INPUT THE HERDER BLOCK
Q@=YSNOSAC’ SPECIFY CORNERS’ ,15,R$DND)
IF (.NOT.@) GOTO 6@
52 QGaRNUNSAC’'S . W. X’,6,AR$DEC,OPOS)
IF (. NOY . @) GOTO S2
IF COPOS LT .-1888 .OR. DPOS.GT . 5888> GOTO S¢
SWXaFLOAT(DPOS)
33 @aRNUMSAL'S . W. Y’',6,R¥DELC,DPDS)
IF (.NOT .Q) GOTO $3
IF (DPOS.LT.-1888 .OR. DPDS GT 3ADB) GOTO S3
SUY=FLOAT(DPOS)
54 Q=RNUMSAC’N.E. X', 6,A$DEC,DPOS)
IF (.HOT . Q@) GOTO 5S4
IF (DPOS .LE IFIXC(SWX) .OR. DPOS GY.5880) GOTD 54
RNEX=FLOAT(DPOS)
33 Q=RNUHMSAC'N.E. Y’.6,ASDEC.,DPOS)
IF C. NOT @) GOTOQ SS
IF (DPOS LE . IFIX(SWY) .O0R. DPDS .GT.SA@AB@>» GOTO S5
RHEY=FLOAT(DPOS)
PU=RNEX-SUX
PH=RNEY-SWY
G010 78
6@ SUX=8. 9
Suy=8.8
Puy=4@95.8
PH=3888 .8
78 WaCNRC1,3>-CNRC1,1) /sWIDTH OF FRAME
H=CNRC2.3)-CNRC2.,1) /~HEIGHT OF FRAME
IF (N LE. @ .OR. 4 LE 8) GOTO 954
HSCaPUW/W /X SCALING FACTOR TOD FIT TEKTRONIX 4814
YSC=PH/H /oY SCALING FACTOR
IF (@) GOTO 8@
RSC=AMINB(XSC.YSC) /»CONVERSION FROM FILE (MMN) TO TEKTROMIN
YSC=XSC
88 QA=YSNOSAC’ FRAME’ ,5,ASNDEF)
IF (_NOT @) GOTO 108
DO Y8 J=1.5
JAsY
IF (4a EQ S5) JA=1
IXS=IXE /eRUBBISH FOR J=1)

UNITS

57

C PROGRAM MAP. TEK

IYS=IYE
IXEsIFIX(CNR(1,JA)SXSC+B . 5+SUX)
IYEaIFIX(CNR(2,JA)*YSC+B. S+SUY)
IF (J.EQ.1) GOTO 98
CALL AaMLCOT(29)
CALL POSPTCIXS,1YS)
CALL POSPTCIXE,IYE)
98 CONTINUE
ITEN=B /%COUNTS ITEMS C(LINE, POINT)> IN A SHEET
188 CALL NFETCH
IF (MK.GE.6 .OR. MK.LT.8)> COTO ¢@8
IF (MK EQ.3 OR. MK.EQ.4 .OR. MK.EQ .5) ITEM=ITEM+}
IXPsIFIX(XeXSC+B . 5+SUX)
IYP=IFIX(YeYSC+B 5+SUY)
COTO (208.,2808.3008.408.488),MK /+DUNMY FOR MK=2
C MKaB OR MK=1. INTERIOR POINT DF A LINE OR END OF LINE
280 CALL POSPTCIXP,IYP) /eDRAW TO X.VY
GOTO 188
C MK=23. START OF LINE
388 CALL AMLCOT(29) /eSET VECTOR
CALL POSPTCIXP.,IYP) /#MOVE TO X.VY
GOTO 188
C MK=4 OR 5 POINT OR FIDUCIAL. IGNORE FOR THE PRESENT
480 CALL PLOTCRCIXP.IYP,NCROSS) ePLOT POINT AS A CROSS (MY SUBR)
GOT0 @@
C MK=6. END OF THE MAP
688 CALL AMLCOTC(-3)> /+PURGE BUFFER, 1E DRAN EVERYTHING
WRITEC1, 1883)MK., I1TEN
1883 FORMATC(’'MK=’,16.’ AFTER ITEN’.16)
98@ CALL NCLOSI /«CLOSE INPUT FILE
Q=YSNOSAC’ ANY MORE FILES’,14,A$NDEF)
IF (@) GOTO S@
STOP :123436
c
958 WRITE(L,1821)
1821 FORMAT(’ CNRS INCORRECT. FILE CLOSED’)
GOTO 988
END
Ce0C0t s FSCRIER0IRERIPIRSOEREIREREISORRERINEROEINOIERPEIEUOEItEREsOttRD
SUBROUTINE PLOTCRCIX,IY.N) /ePLOTS A POINT AS A CROSS, FOR FIPLOT
c
c
CALL ANMLCOT(29)
CALL POSPTC(IX*N,1Y)
CALL POSPTCIX-N.1Y)
CALL ANMLCOT(29)
CALL POSPTCIX,IY*N)
CALL POSPTCIX.IY-N)D
RETURN
END

i i #m

C PROGRAM NAP. TRANS }

C PROGRAM MAP.TRANS

C CONVERTS A MAP FILE FROM °"INMRGE"™ TO B.N G. USING A MATRIX
LOGICAL @ .
INTEGER=4 DNUM .
DIMENSION OCHR(Z2,4) ;
COMMON/CODORDS/HK,.X, Y, NPTS,NPTZ,NFC,FCODE(1?) '
COMMON/FILENRC/NPROG(4), NVERS
COMMON/HERDER/IHDR(48), IPRJCL, IHOUN, SCRLE . THOUMA(SE),

® CNRC2.4),GCNR(2,4), THOUNB(BI2)

‘ COMMON/INCON/INDEV.,INPTR, INSZ, INBUF(1B24)

' S$INSERT SYSCOMIASKEYS

k DATA NPROG., NVERS/BHNP .TRANS., 1/ ‘

. [T

c §
WRITECt, 188@) f

1@88 FORMATC(’ MAP .TRANS 14-FEB-8D"') ‘
188 CALL MATOPH /«DPEN MATRIX FILE \
MATDEVSINDEV+4 ‘

READ(MATDEV, 1881) INBUF(J),Ju1,48)
VRITEC), 1BB1DCINBUF(J), J=1,48)
i 1881 FORMAT(4BaA2)
RERD(MATDEV.1@82)T1,A11,A12
1802 FORMAT(3F28.6)
READ(MATDEV . 1882112, A21,A22
WRITE(1.,10883>T1,72.411,A12,R21,A422
t 1883 FORMAT(EF12.4)
~ CALL NCLOSI /«CLOSE MATRIX FILE
C CALCULATE THE INVERSE OF THE MATRIX
AmALL»A22 - A21%A12
Alt1=A22/4
Ali12=-a12/h
RIZ212-A21/4
: Al22=a11/8

118 CALL NOPENI /eDPEN INPUT FILE
CALL NHDIN /eREAD THE HERDER BLOCK
{ IF CIPRJCI . €Q.99) GOTO 12@ /+¢INAGE UNITS
- WRITEC 1, 10842 IPRICT
1684 FORMAT(’UNSUITABLE INPUT MAP PROJECTION:.I16)
] \ coTo 928
N 128 WRITEC1.1086)
, 1886 FORMAT(’SUBINAGE TOP LEFT CORNER’)
). 122 Q=RNUMSAC’ COLUKN NUMBER’. 13, A$DEC,ONUN)
: IF (.NOT.Q) GOTO 122
; Ti=sT{-FLOATCONUND+1. B
’ 124 QsRNUMSAC'RO¥ NUNBER’,1@. ASDEC. ONUM)
) IF C.NOT 0) GOTO 124
T2aT2-FLOATCONUN)+1. 8
{ CALL NOPENO /eOPEN OUTPUT FILE
S CALL UPDATE /#UPDATE THE HERDER
o C CONVERT THE CORNERS AND FIND MAX/NIN
: XMAX=-18008008 @
v YHAX=KNAX
i XNINs1080808. 8
. YHINSXNIN
: ROVSCNR(2.2)~CNRC2.1) /eHELGHT OF INPUT FILE
~ DO 148 Jai,4
? XCoCNRCS,J)-T)
N YC=ROW-CNR(2,J)-T2
X0eXC*ALLl + YCeAIl2

.

e R

C PROGRAM MAP. TRANS

Y0=XC»RI21 + YC#Ri22

IF (X0 .GT.XMAK) XMAK=X0
IF (RO.LT.XUIN)> XMIN=XO
IF (YO .GT YMAX) YMAX=YD
IF (YO .LT.YMINY YMIN=YD

148 CONTINUE

CCNR(1,1)=4NIN
GCNR(2,1)>=YMIN
GCNRC 1,2)sXMIN
GCNR(2,2)=YMaX
GCNRC(1.,3)akNMAX
GCNR(2.3)aYNARX
GCNRC1.4)=XNAX
GCNR(2,4)=YMIN

WRITEC], 1BSBIXNIN, YHIN. XMAX, YNAK
185@ FORHMATC'GEOGRAPHICAL CORMERS, KM'/’'S W .’ ,2F14 .3/°N.E.’,2F14.3)

CNR(1.,1)>=0 @
CHR(2.,1)>=2 .8
CNRC1,2)=B.8
CHNRC2,2)=YMAX-YMIN
CNR(1, 3)>=XNAY-XMIN
CHR(2,3)=YMAX-YHIN
CHR(1,4)=XMAX-XMIN
CHR(2.4)=8.8
SCALE=10800@@ .8 /+KM STORED AS MM
IPRJCI=1 /#BRIT. NAT. GRID. ASSUMES MRTRIX IS IMAGE TO GRID
CALL NSTART /sPLACE OUTPUT HEARDER
HK=S
NFC=8
DO 168 Ja1,4
X=CNRC1.J)
Y=CNRC2.,4)
168 CALL NSTORE /eFIDUCIALS
ITEM=1 /«COUNT INPUT FIDUCIALS
288 CALL NFETCH
IF (MK GE.6) GOTD 9BR
1F C(1TEM GT.4) GOTO 228
ITEN=1TEN+]
IF (WK EQ.5) GOTO 218 /«GOTO 2d@ IfF 819’S NOT WANTED
WRITECL, 188S5)MK
1805 FORMATC/JTEN’.I3,” HAS MK=‘.16)
GOTO 918
21@ MKk=4
HFC=}
FCODE(1)>2819 @ /+STORE OLD FIDUCIALS AS 819s
228 AC=X%-T1
YC=ROW-~Y-T2
RuXCerlil ¢ YC*A112 - XMIN
YwXCeAl21 ¢ YCeAl22 - YMIN
CAlL HSTORE /«STORE THE CONVERTED CO-ORD
CoTo 289

98@ CALL NSTORE /oNSTORE THE MK=6
918 CAlLL NCLOSO /«CLOSE QUTPUT FILE
928 CALL NCLOSTI /+CLOSE INPUT FILE

G=yYSHOSAC’ MORE FILES' ., 1@, ASHDEF)
IF Q) GOTO 188

59

- —

[

|
|
s

—— N

60

C PROGRAN MAP TRANS

STOP 1123436
END
€ NOTE THAT X.Y CONVERSION IS -
c XC=X-T1
C YC=Y~-T2
c XKeXC*Alll + YCeAIl2
c YuXCeAl21 + YC®Al22
COsantettonEttsnssIssteness sttt tosnestsnesrssutissaEniodetItacettssrsstssossansy
SUBROUTINE MATOPN /«OPEN A MATRIX FILE
LOGICAL @
DIMENSION IFILEMC2B)
COMMON/INCON/INDEV
S$INSERT SYSCOMOASKEYS
c
c
INDEV=S
NLEN=4B /oUP TO 4B CHARS IN FILENANE
180 Qa0PNPSAC'MATRIX FILE’,11,ASREAD. IFILEN, NLEN. INDEV)
IF ¢.NOT.Q) GOTO 108
RETURN
ENO

SUBROUTINES

SUBROUTINE NOPENO /+TO OPEN A MARP FILE FOR BINARY OUTPUT
LOGICAL @
DINENSION IFILEDC(28)
CONMON/OUTCOM/IOTDEY, IOTPTR,IOTSZ, IOTBUF(1B24)
INSERT SYSCOM>ASKEYS

IOTOEV=6 /eOQUTPUT FILE ON LINE ¢
10782=1824
NLEN=48
180 Q=0PVPSAC’OUTPUT FILE’,11.ASURIT+ASDOANF, IFILED, NLEN., IOTDEVY,
¢ ASOVAP.B.8) /*PDR 3186 P23-18
IF (.NOT.Q@)> GOTD 128
RETURN
END
PIENUIINOPRROETEEIEP NN NNEOEINOPEIENRNENEINIRNINNERENRNRINETEIEIRERGRERS)

-

28

Lpaa

taat

1082

N S P Y P i

61

SUBROUTINE PERMHD /¢T0 CLEAR HEWDER HAHD OBTAIN PERMANENT HEADER DETAILS
COMMON/HEARDER/IPROJCE), IDESCP 16), IHDUMC1BRA2) /+PERM HDR
COMMON/QUTCOM/IOTODUM(2),10TSE

DO 28 J=1,10TS2Z /sCLEAR /HEADER/
IPROJCV)=

WRITE(1.1888)

FORMAT(PROJECT (12):’)

READ (1.,1881)C(IPROJCJ),J=1.6)
FORMAT(16R2)

WRITEC1.1@82)

FORMATC "DESCRIPTION (32):')
READ (1.,1881)CIDESCR(J),J=1.16)
RETURHN

END

EIHERE SR AN N IE RS SRR A E S AN E SRR A AP A ERSEBEEC RS AE B AU RES NSRBI RN E BB NSRBI O RE S U T

1808

118

128
1800

1ea

SUBROUTIRE UPDATE /«70 PLACE DETAILS OF CURRENT RUN INTO HEARDER
DIMENSION IARRAY(16)

COMMON/FILENC/NPROGV(S) /«PROG NAME (4> AND VERSION
COMMON/HEADER/IHDR(1B24)

00 188 J=1,568

IHDR(BB1-J)sIHDR(761-J) /=MOVE DOWN PREVIOUS UPDARTES
00 118 J=1,5

IHOR(2BB+J>=NPROGV(J) /*TRANSFER PROGNAME AND VERSION
IHDR(286)=IHDR(246)+1 /#=DUTPUT VERS NO

CALL TIMDATCIARRAY,16) /«PDR 3118 P 3-54
IHDR(2B7>=1ARRAY(2) /DAY OF MONTH
THDRC(2B8)=TARRAY(1) /*MONTH NUMBER
IHDR(2B9)>=TARRAY(3) /+YEAR NUMBER 19XX
THDRC(21B)>=IARRAY(4) /*MINS SINCE MIDNIGHT

00 128 J=1,3

IHDR(21BeJ)=JARRAY(12+4J) /SUSER

WRITE(1.,10088)

FORMAT(‘DETAILS OF THIS RUN (32):’)

READC1, 18@1)CIHDRCJ), I=214,229)

FORMAT(16A2)

RETURN

END

I AR AR R AR R RIS R RS R R 2R R 2R R R 2R R RIS RY NIRRT AR RNT 2R N 7]

e — S— r— . . - N

62

SUBROUTINE NSTART /«STORE HEADER, CLEAR IOTBUF, SET IOTPTR
COMHON/HEADER/ THDUM(1 B24)
COMMON/QOUTCOM/IOTDEV., 10TPTR.I0TSZ, IOTBUF(1)

INSERYT SYSCOMOKEYS.F

DO 188 Jy=1,10782
188 I0TBUF(J)=IHDUMC(J)> /+TRANSFER HEADER TO OUTPUY BUFFER
CALL PRUFSSCKSURIT,IOTDEVY,LOCCIOTBUF)Y,10TSZ, INTLCB), IRNU, ICODE)
IF CIRNW.EQ.IOTSZ .AND. ICODE.EQ.B) GOTO 148
WRITEC1.1088)IRNUW.ICODE
1888 FORMATC('PRUFSS FAILURE IN NSTART:'’,216)
STOP 11111
148 I0TPTR=!
0O 1358 J=3,107S2
158 I0TBUFCJ)O=0
RETURN
END
LTI Y I T R R T T I T Y Y T T T T Y

38

38

(1]

18a

128

1ega

148

158

208

3aeg

32@
Saa

6088

988
1881

SUBROUTINE HSTORE /+TO STORE AN ITEM TO A MAP FILE
OIMENSION IRC2),0UTBUFC(1)
COMMON/COORDS/MK., X, Y, NPTS, NPTZ, HFC,FCODEC17)
CONMON/OUTCOM/IOYDEY, IOTPTR.L0OYTSZ. IOTBUF(1)

INSERT SYSCOM>KEYS.F

EQUIVALENCE (R,IRC1)),C(IOTBUF(]1),0UTBUFCL1))
DATA RMARK /1848576 .8/

ISUTCH=1 /«USED FOR ROUTING THROUGH PRUFS$
IF (MK .GT.6 .OR. MK.LT.B8) GOTO 988

GOTO (58.,908,38,38,508,68), HK

ITEMS2=4 /«ITENSZ IN INTEGERS. MK=B

GOTO0 1889

ITEMS2=8+NFC+NFC /*MK=3 OR 4
GOTO t0@a

ITENSZ=6 /*MK=1 OR §

GOTO 1688

ITENSZ=2 /ZeNK=6

IF CIOTPTR+ITEMSZ .LE.I0TS2+1)> GOTO 2BB /*SPACE FOR THIS ITENM
IF CIOTPTR.GT.10TS2) GOTO 128 /+NO SPACE LEFT IN BUFFER
R=RMARK+? /#"FILL" INDICATOR

IPTR=I0TPTR/2+1

OUTBUFCIPTR)=R

CALL PRUFSSCKSURIT, IOTDEV,LOCCIOTBUF)>,IOTSZ, INTLC(B)., IRNW, ICODE)
IF CIRNW.EQ.10TS2 .AND. ICODE . EQ.B) GOTO 148
WRITEC1,188B)IRNW,ICODE

FORMATCPRUFSS FAILURE IN HNSTORE:’,216)

STOP :1111

IF (ISWTCH EQ.2) RETURN

IOTPTR=1

DO 158 J=1,10782

I0YBUF(J)=0

IPTR=I0TPTR/2+1

IF (MK . EQ.8) GOTO Sag
R=RMARK+FLOAT(MK)
OUTBUF(IPTR)=R
IPTR=IPTR+1
G0TO0C(SEA, 900,308, 3008,5808,688), KK
IR(1)Y=NFC+32»NPT2Z
IRC2)=NPTS
OUTBUF(IPTR)=R
TPTR=IPTR+1

TF (NFC.LE. @) GOTYO 588
IF (NFC .GT.17) NFC=1?
D0 328 J=1,NFC
OUTBUFC(IPTR)=FCODE(J)
IPTR=IPTR+I1
OUTBUFCIPTR)=X
IPTR=IPTR+1
OUTBUF(IPTR)=y
IPTR=2IPTR+1
IOTPTR=IPTR+IPTR-1
RETURN

ISUTCH=2

GOT0 128

WRITEC1,1@81)HK
FORMAT('MK=’,16,’ IN NSTORE’)
RETURN

END

‘,-. - .h

63

[AR A RS R A E RIS RN IR RIS R 2R AR RN R R R R R R R IR R)

P

vl

SUBROUTINE NCLOSD /«TO CLOSE AN OUTPUT MAaP FILE

LOGICAL. @

COMNON/OUTCON/IOTDEY, IOTPTR.IOTS2Z, IOTBUF(1)
INSERT SYSCOM>ASKEYS

@=CLOSSACJOTDEV) /«PDR 3186 P23-19
IF (Q@)> RETURN
URITEC(1,1888)
1888 FORMAT(’CLOSSR FAILURE IN NCLISO ‘)
STOP 11111
END
T R L R I PRI R LYY

SUBROUTINE NOPENI /«T0 OPEN A MAP FILE FOR BINARY INPUT
DIMENSION IFILEIC20)
LOGICAL @
COMMON/INCOM/INDEV, INPTR,INSZ,INBUF(10824)
INSERT SYSCOM>ASKEYS

INDEV=S /e¢INPUT FILE ON LINE S
INS2=1824 /#INPUT BUFFER SI2E
NLEN=4B /eMAX 48 CHARACTERS IN FILENANMNE
188 0=O0PNPSAC ' INPUT FILE'.18,ASRERD, IFILEL.NLEN, INDEVY) /3186 23-19

IF (.NOT.Q) GOTO 104
RETURN
END

R NEREE IO IRUI RGO NEEIEIEEIEIEIENEENENNEItENIORIttaiItiIeeteessRinststassrtRnnsy

rcn

-

SUBROUTIHE NHDIN /#READS A RECORD INTO /HEADER/
LOGICAL ERROR
COMNON/HEADER/INDR(1B824)
CONMON/INCONM/INDEV, INPTR,INS2,INBUF(1824)
INSERT SYSCOMM»KEYS.F

CALL PRUFSSCKSREAD, INDEY.LOCC INBUF), INSZ, INTLC@), IRNW, ICODE)
IF (1CODE . EQ.@ .AND. IRNV.EQ.INSZ) GOTO 548
WRITE(1,1828)IRNVW.ICODE

1820 FORMATC’PRUFS$$S FARILURE IN NHDIN:’,2186)
STOP 11111

S8 DO 188 J=1,INS2 /«TRANSFER INTO /HEADER/
188 ITHORCJDI=INBUFCJ)
INPTR=INSZ+1 /#FORCE BUFFER READ AT NFETCH
RETURN
END
CENENLTNABRS AR ESIBREP BRI AN E RSB AR ANA VIS S A BN SIS RSB IR RE S H RSN SR B r RSO RO S RE bR Y

v/

66

P

SUBROUTINE NFETCH /+T0 FETCH AN ITEM FROM R MAP FILE
DIMENSION IRC2),RINBUFC€1)>,ICOORD(42)
COMMON/COORDS/MK. X, Y, NPTS, NPT2,NFC,FCODE(17)
COMMON/INCOM/INDEV, INPTR, INS2,1HBUF(1)

INSERT SYSCOMDKEYS.F
EQUIVALENCE (R,LIRC1)»), CINBUF(1),RINBUF(1)),(ICO0RDC1),HK)
DATA RNARK /1848376 .8/

00 SB JU=1.,42
Sa 1COORD(J)>=@ /#CLEARS ALL /COORDS/
IF CINPTR .LE.INSZ) GOTO 88
68 CALL PRUFS$SCKSREAD, INDEV,.LOCCINBUF), INSZ, INTL(B), IRNW, ICODE) /#3118 3-23
IF (IRNV.EQ. INS2 .AND. ICODE.E@.®@) GOTO 7@
WRITEC1,1888)IRNV.ICODE
1888 FORMAT('PRUF$$S FAILURE IN NFETCH’.216)
STOP :1111
78 INPTR=1
88 IPTR=INPTR/2+1
R=RINBUFCIPTR)
IPTR=IPTR+{ }
RMK=R~RMARK !
IF (RMK . LT.@.9 .OR. RMK.GT.7.4) GOTO 188 /+#NOT A MK ’
AK=IFIX(RMK+8.5>
GOTO (158,999,130.,138,158,168,68), MK
18R MK=8
K£=R
GOTO 1SS
138 R=RINBUFC(IPTR)
IPTRsIPTR+{
NFCsRTCIRC1)>,5) /#RIGHT S BITS
HPT22RSCIR(1),5) /«HIGHER PART OF WORD
NPTS=IR(2)
IF (NFC.LT.1)> GOTO 158
00 134 J=1,NFC ‘
FCODEC(J)=RINBUFCIPTR)
134 IPTR=IPTR+1
158 X=RINBUF(IPTR)
IPTR=IPTR+{
135 YSRINBUFCIPTR)
' IPTR=IPTR+1
! 168 INPTR=IPTR+IPTR-1
RETURN

s gt

999 WRITEC!.1881)MK
N 1881 FORMAT(*MK=’,16,* IN NFETCH’)
! RETURN
; END

b (A R4 AL AL IS 22 d 2 2 R R E R R Y Ry P R R E R I T T I R I Y YT N TSI

| SUBROUTINE NCLOSI /eT0 CLOSE AN INPUT MAP FILE
oo LOGICAL @

; COMMON/IHCON/INDEV, INPTR, 1" S2, INBUF(1)

S INSERT SYSCOM>ASKEYS

5 Q=CLOS$ACINDEV)> /+PDR 3106 P23-19
r IF (@) RETURM
} VRITEC1,1@88)
4 1888 FORMAT(’CLOSSA FAILURE IN NCLOSI’)
| | STOP 11111
k : END
CESEIPUNRAEDRRNE L PO O ESNAIR LRI ERBERECARDE LI NN AL IC A SEICEOEEENRENN DS I ZFEIERE RN]

LEO

Ao

