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INTRODUCTION

The charge of AFOSR Grant F49620-79-C-0066 was the study of a new class

of memory intensive digital arithmetic units based on modular algebra. The

new class of arithmetic units, developed under this grant, operate at very
high speeds, admit YLSI and bit-slice realizations, and can be integrated

into digital signal processing systems.
Numerous authors have demonstrated the potential of residue arithmetic
for re~1izing high speed sigral processing and computational systems.[]’s]

These methods are memory intensive in that the table Tookup operations are

used to perform modular arithmetic. However, there is a possible flaw in

this contemporary residue arithmetic work and it is our dependence on high

speed memory. Admittedly, memory is becoming avaiiable with higher densities

and access speeds. However, they present 2 non-trivial power demand on the
system and are very exsensive. For example, Intel's HMOS 1K x 4 memory, having
access times of 55, 70, and 80 ns cost on the order of $82, $76, and $62 per
copy. INMOS 16K (4k x 4) static RAM is available at 35 ns and Fairchiid markets
a 1K ECL (high power dissipation) RAM at higher per unit costs[i]. Our research
has determined that by using K x 1 HMOS memories, an equivalent 12 x 12 RNS
multiplier couid be configured which has a pipelined throughput of 35 ns, but

it would require 9.9 watts of active pover and 1.65 watts standby. Furthermore,

the cost per moduli would exceed $1,000. Therefore, high performance residue

based signal processing systems may carry a high price tag as well. It may

therefore be wise to rethink our dependence on memory intensive arithmetic.

Footnote [i]:

This condition will be strongly influenced by the results of
DOD's VHSIC Program.




It would seem advantageous to architect future residue arithmetic

based systems on those technologies which will provide the highest performance

in terms of:

speed

cost

power dissipation
packaging
availability

[« NN 5 ST~ S S A B
. . . . . .

system compatability

parameters. The last two parameters are unfortunately often neglected in

exploratory research efforts. It would reflect poor engineering practice

to develop a technologv dependent theory which is incompatable with it's

electronic environment. The technology which seems to yield the greatest

promise is the VLSI.[i] High performance arithmetic units are already

available in VLSI. For example, the TRW-VLSI carry-save 2's complement

multiplier Tine breaks down as follows:

TABLE 1
uiliT SIZE PINS SPEED(ns) POKER (watts)
 MPY8HJ-1 8 x 8 40 45 1.5
MPY-121J 12 x 12 64 80 2.7
MPY-16HJ 16 x 16 64 100 4.0
MPY-24i1J 24 z 24 64 200 5.0

By comparison, the 12 x 12 35 ns RNS multiplier is more than twice as fast

as the VLSI unit but consumes more than 3.5 times the power. However, the

above VLST multiplier units are designed to work in 2's complement and

Footnote [i]: Small Scale Integration [SSI] = 50 gates, MSI = 50-100 gates
VLSI = 4000 gates/chip

WA AN,
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therefore do not support residue arithmetic directly. 3Since these basic
fixed point 2's complement VLSI multipliers offer outstanding performance
tor the price, it is desirable to integrate them into a residue number

system (RNS) structure.

RESIDUE ARITHMET1C

Before a mcaningful dislog on residue arithmetic units and systems
can be esiablished, the fundamental properties of this numbering system
should be reviewed.

Pocidue number system (RNS) is mature mathematical study. A serious
study of the RNS was offered by Gauss in the 19th century. In 1968 Szabo
and Tanaka published the book "Residue Arithmetic and Its Applications to
Computer Techno!ogy".[7] Due to the technological Timitations of the period,
the book did not receive wide-spread recognition and was soon out of print.
However, due to the recent availability of high density high performance
Read Only Memory (ROM) and Random Access Memory (RAM), the RNS is being re-
investigated for the application in digital filter design, implementation
of fast transforms, convolution, and optical computation.

Let P=(p],p2,...,pL) be a set of relatively prime intege{s, and Jet x«
be any integer in [0, M-1] (called dynamic range) where M = [ p.. Then

=1
by the Eucledian algorithm, there exists ki,xisl(integers), such that

X = kipi+xi i=1,2,...,L 1.

The quantity X; is called the ith residue of x, and is usually denoted as

]xlpi or x mod p;.




- ——— ———

It is easy to show that x and Mix have the same residue representation.

In this case denote §=(x],x2,...,xL).

Another signed encoding scheme can als¢ be used. In this case, the

dynamic range is [-(M-1)/2, (M-1)/2] with a negative number -lx| coded as
M-|x]. There is a trivial the isomorphism wnich maps [0, M-1] onto [-(M-1)/2,
(M-1)/2]. This second coding scheme has the advantag: tiiat sign detection

is not required during arithmetic operations and the sign of the result will

take care of itself providing that no overflow (out of dynamic range) had

occurred.
The following ire some identities which wiil be used later. The proofs
are straight forward and will not be presented.
+ = H + 2-
x4yl Imp_!ylp!p
Ixyl, = [ Il 11, 3.
-X = - 4,
[-x], = [p-x]

Let Zp be the set of integers x such that O<x<p (ie:. residue class).
It is well known that Zp is an abelian ring under addition and multiplication
modulo p. For any integer xsZp, the inverse of x is the integer yeZp such
that {xy!p = 1. It is also known that if x is relatively prime to p, then x
has an unique inverse, denoted x“{p]. For example in 26’5—][6]=5'
Arithmetic operations in RNS are defined in a straightforward manner.

Let x, yeZ, x, ye[0, M-1] and xE(x},xz,...,xL), y=(y],y2,...,yL). Then

z=ioy=(z],22,.g.,zL) where zi=(xioyi) mod p., for i=1,2,...,L, and "o" denote

Only if xe[0, M-1], can x be uniquely determined by the L-tuple (x],xz,.. ’XL)'

A0 O MR AR 5




the operation x, + or -.

It is clear that the sub-operation within each modulus is independent

to each other. That is, no carry information is necessary between moduli.

The arithmetic is also exact and therefore free of round-off error. The z

is exact if 0<z<M-1, however if xoy>M (overflow} then the answer will be

incorrect. Hence it is critical to know beforehand that the result will

not exceed the finite RNS dynamic range. Division in RNS is known to be
4ifficult. Therefore RNS is considered to be best applied to system where

division is not the dominant operations.
Another RNS induced scheme is called the mixed-radix numbering system

(MRNS). Given the moduli set P={p1’92""’pL)’ any integer xe[C, M-1] can
be expressed uniquely as

x=2]+§2P]+§3P]P2+...+XL(p1p2...pL_l) 5.
i-1
Tet g,=1 and qi=_H]Pj, eq. (5) can be written as
J:
X=Rq Qr¥RpQp*X 057 - 4 G 6.

or equivalently, x can be represented uniquely by the L-tuple x=<§],§2,....,iL>.

The X;'s are called the mixed radix digits with 0<X,<p.-1. The mixed-radix

number system is a weighted number system. Therefore carries between digits
are necessary in arithmetic operations.

is that magnitude comparison is trivial.

It is often necessary to compute the M.R. digits <i],§2,....,i,>

from given set residue digits (x],xz,....,xL}. Here

W

A property of a weighted number system

by




o

L-1
X2 %+ Xopyt PP /
Hence,
. . . L-1] _
;x{p]=x}=!x]+x2p]+....+xLiE]pi!pi=lx]!p?=x] 8.

After subtracting Xy from both sides of eq. (7}, one obtains

[x-%, ] =%
1 p2

Upon multiply both sides by p]'][pz] which exists by the relatively prime

. progerty of py and Py, one obtains

- -1 ~ -1 < -
!(X“X])P} [szlpz=]xzp]P] [P2]]p2=,x2)pz=x2 10.

This process can be carried out successively until all ii‘s are
cbtained. Actually, the iterate process can be realized in paraliel form
due to the independence of residues. An algoritkm found in Szabo and
Tanaka[7] can be used.

It was noted that division is difficult in RNS. However, in the case
that the divisor is a fixed constant ¢ (where ¢ is relatively prime to
P;»1=1,....1), there is known to exist some simplification of the scaling
task. The scaling operation is formly defined as follows: Given

:§:= P=(p},p2,....,pL) and x5(x1,x2,....,xl), what is the residue representation




o

X

of | E{ ? (where | | denotes the rounding to the closest integer cperation.)

From the tucledian Algorithm, namely

=i£"‘-§; in
X gciv gX‘C iU,
it follows that
x-1x}
gii = }ic 11
ct od )

which is of inteyer value. The residug representation ¢f this integer is

giver in terms of a "scaling kernel" satisfying,

! H ‘] H £y -} -
=i{x-Ixide Ipgdi, =10xs-Ixlcie "Iyl 2.
1

Thus, if %x]c i3 known, then the residue representation of | %% can be
obtained using one subtraction and one multiplication. Since ¢ are relatively
prime, c'][pi] exists w.r.t. p.. Usually §xlc will not be given and nave to
be found by a base extension algorithm.

The integer value of a residue representation can aiso be obtained
through the use of Chinese Remainder Theorem.

Given P = (p1,p2,....,pt); where p., p; are relatively prime for i # j,
the CRT states;

1 3 [ 1 i .
I""x.'"“' p‘] p *H l3

where

iy




_ M
mi"' E"

-1
[mm.” [p.]]. =1 13.
i ilp,

n
-—H—H =1

"O

o

=

(o5

Proof: Since a residue number represents an integer uniquely in the dynamic
range [0, M-1]. It is enough to show that the right-hand side of eq. (13)

has residues (x],xz,....,xL). Since

[ Hzmlx,m, i3lp, Il ]Zmlx 0iTlg o,

-]m [x ][p 1] =lx.|o=x,  ¥.=1,...,L

|
2 T 1 P B

The claim follows.
*Notice that the left-hand side of eq. (13) is in the form of lle. That is,
the resulting integer will be unique if 0<x<M.

There is yet another method which may be used to decode a residue tuple.
This method has been independently reportea by Jenkin[s] and Julian.[gj
Starting from the residue representation (x],xz, ,xL), <%],§2,....,§L>

is obtained through a M.R. conversion. Then eq. (5) will be used to recon-

struct x. This method is called M.R. reconstruction.

RNS CAPABILITIES

Interest in the RNS is due to its ability to perform high-speed arithmetic.

Speed is achieved through the use of a high degree of parallelism and an

absence of carry information requirements. Recall that the arithmetic composi-

tion of two integers, say x+(x1,...,xL) and y+(y],...,yL), given by x y (where

)




o denotes addition, subtraction, or multiplication) satisfies xay*(xloyl,
"’XL°yL)‘ It can be seen each residue digit, namely X;°¥; can be computed
independent of all others (ie: no carry information requirements). In
practice, the mapping of x; and y, into X;°¥; is accomplished using table
lookups where the table residue on rardomly accessed read-only memory. Typical

high-speed memory modules, which are currently available, are:

TABLE 2
Device Type Technology Configuration Access~-Speed
10149 ROM ECL 256x4 20 ns
SN54S ROM TTL 1024 x4 35 ns
2147H-1 RAM HMOS 4096x1 30 ns
2125H-1 RAM HMOS 1024x1 20 ns
12167 RAM HMOS 16384x1 45 ns
IMS1400 RAM MOS 16384x4 30 ns

The product of two residues modulo Py pigzn, can be precomputed and
stored in a 2"xn-bit memory unit where m=2n. Using a large existing high-
speed memory (4Kx1 at 30 ns), residues having up to six bit integer values
can be used (ex: P = {64,63,...}). Thus, fixed-point multipliers having a
dynamic range of [-M/2,M/2) can be architected which have execution rates
in the low nanoseconds.

The disadvantages of the residue number systems are manifold. Since
the RNS possess no most significant digit, decimal to residue conversion,
division, magnitude comparison, and arithmetic shift operations are cumber-
some and should be avoided. Register overflow, due to its finite dynamic
range, impose a severe constraint on the RNS operations. Unlike weighted
numbers (decimal, binary, etc.) where rounding or truncating least significant
digits can control overflow, such is not the case in the RNS. Since there

is an absence of least significant digits, the more general and inefficient
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operation known as scaling must be used. Since scaling is a form of division,

its use should be discouraged. To gain insight into this problem, consider

the inner product of two 31-dimensional real vectors ¥ and y whose entries

are encoded as residue digits with respect to P = {32,31,29,27}. Without

scaling, the worst-case value of x and y would be Timited to V-5
V= (M/2)/31 = 25056.

where

Therefore, to insure that no worst case overflow

can occur, a 7.3-bit (ie: V-5 = 158 # 27‘3) dynamic range limitation must

be imposed on x and y. With scaling, larger input ranges can be used at

the expense of statistical accuracy in the output space (analogous to

roundoff errors).

Due to the dynamic range limitation of RNS systems, one is generally

forced to accept one of the following two overflow prevention strategies.

1. Increase the dynamic range to a sufficiently large value

by adding more moduli to P, ar

2. Make scaling a more efficient operation.

The first option represents a brute force attack to the problem. Such
an approach will increase to cost and complexity metrics of a fiiter. In

addition, the moduli set P must be tailored to unique filter. The other

approach appears to be the most popular at this time. Szabo and Tanaka,

and others, have concentrated on the scaling efficiency through the choice

of the three-tuple moduli set P = {2"-1, 2", 2™1}. This moduli set has

the ability to efficiently scale a residue number by any one of the chosen

moduli. However, there is an intrinsic limitation plaguing this method and

it is its dynamic range. Using a large high-speed memory unit, say 4Kx1,

the input addressing space is Timited to 2]2. This means that a moduli P;
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is technically limited to pigzﬁ (ie: Xi'yi<212)' Therefore, the dynamic

range of any modular operation is given by M=(2"-1)(2”)(2"+])“23"=218,

In many applications, an 18-bit resolution is insufficient resolution.

LARGE MODULT AU

It is desirable to keep the previously discussed three moduli structure

for purposes cof potential scaling needs. However, in order to overcome the

existing disadvantages of this system, that of dynamic range, a new archi-

tecture is called for. Since it is unrealistic tc assume substantially larger

density high-speed memories will continue to become available, it is incum-
bent that more memory efficient residue arithmetic unit be designed. An

efficient algorithm, which is ideally suited for this applicaticn, is known

as the quarter-square mu1t‘ip]ier.[m’]2J

xy> = <¢(s+)-¢(s-)>p 14,

where ¢(s) = <52>p with st = (x+y)/2 and s'=(x-y)/2.

The quarter-squared multiplier has been studied by J.M. Pollard (1976)

in a Galois field. Questions of hardware implementation were not considered

and, due to the Galois field limitation, only prime moduli could be considered.

H. Nussbaumer (1976) studied the quarter-square multiplier over reai fields

for use in ROM intensive digital filters. Soderstrand and Fields (1977) made

brief reference to this multiplier for residue arithmetic but offered rio

satisfactory hardware realization. Our research has produced a practical

residue arithmetic quarter-squared modular multiplier in commercially available

hardware.

oy
ﬂ

| s i v
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A problem that would seem to plague the quarter-square multiplier is

the need to realize the division by two the sums and differences.

], suck that <N']N>p=1, can only be guaranteed if N

In general,
the existence of an N~

is relatively prime to p. Since one of the chosen moduli is p=2n, multi-
plicative inverse of 2 cannot be guaranteed to exist. Therefore, the quarter
cannot be directly interpreted as the equation <<]/4>pi<(x+y)2-(x-y)2>pi>pi.
The potential problem of dividing the sum of differences, found in equation 4,
by 2, will be explicitly and efficiently treated for the first time later in
this paper. For a 2™ word memory unit, the direct product architecture (ie:
xy) would 1imit the maximal moduli to be bounded by 2", n=m/2. 1In fact, this
claim can be extended to the case where p = 241 through use of the following
modification. Observe that if X; = 0, then it automatically follows that
<x1.y1.>pi = 0. Therefore, if x,=0+0,0...0 (which is detectable condition in
that the (n+1)st bit and remaining n-bit block is zero (O+OA00...O)) the out-
put register would be automatically cleared. Therefore, the lookup table need
not be accessed for this case. Instead, the all zero n-bit portion of the

table address, allocated to X;» can be used to represent xi=2n where X

n

2“+1A00...0. Here, the table would be programmed to map Y3 into <2"y1.>p
- i
using only a 2™ word memory .

The memory requirements associated with the quarter-square multiplier
are substantially Tess than those of direct mechanizations. First, it should
be apparent that the integers st and s , found in equation 14, are bounded

from above by 2"+]. Therefore, only a (n+1)-bit table addressing space is
+

required to realize (s~ ) versus the 2n-bit space needed for direct architectures.

It would appear however, that there is an exception to this rule. Since one
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of the moduli chosen is p = 2"+1. Here the maximal value of stor s7) is M
which would technically require a (n+2)-bit address. However, by using the
protocol found in Figure 2, which is an adaptation of the network found in

Figure 1, the table size can be reduced to 2"+1 words for all moduli. Here,

the nverflow bit serves to differentiate st=0 from 2n+7

-

The quarter-squared architecture is abstracted in Figure 3. It uses a
2n+1 word high-speed memory for modular arithmetic lookup operations. Using,
for example, the previously referenced 4K-30 ns device, moduli having an 11-bit
dynamic range (vs. 6-bit in the direct form) can be mechanized. This would
yield a three-moduli dynamic range on the order of 23(]]):8’6'109. That is,
without an increase in memory size (and therefore access time), the dynamic
range of the quarter-squared is 233/2]8=2]5 times larger than that obtainable
through direct means! This Targe increase in dynamic range makes the RNS a

viable alternative to traditional filter design methods. Both improved pre-

cision and throughput (through the reduction or absence of traditional scaling
operations) can be achieved.

Several versicns of the multiplier algorithm can be considered. They are
summarized in Figure 4. The first, called the sequential form, would have an
estimated throughput rate of 240 ns based on a 60 ns lockahead adder and memory
having an access time of 30 ns with a cycle time of 60 ns. The second archi-
tecture, called the paraillel form, would run at a 180 ns rate. The parallel
architecture is preferred because its higher speed, simpler control. A 60 ns
pipelined execution rate can be purchased at a small hardware cost.

Upon closer investigation of the table Tookup data base, a potential

nuisance can be found. It can be examplified by observing that if si-is,

by
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odd and p=2", then ¢(si)=<52/4>32=x.25. Therefore, it may be required that
two additional fractional bits may need tc be added to the table's output

wordiength. However, this is not the case as suggested by the following

theorem:

Theorem: Let || v|| denote the integer value of v, Then z=<{l¢(s+)!l~lb(s')]l>p.

That is, only the integer value of ¢ need be used and the fracticnal bits of

o(s2) can be ignored.

Proof: For x, y and k integers, one may define two rational numbers, namely
(xty)/28v4k/2; (x-y)/22q+b/2 where k=0 or 1. Then z=<<(x+y)2/4>p-<(x-y)2/4>p>p
<<v+kv+b2/4> -<q+dv+k2/4> > =<<y+kv> +k2/4-q+k> -b2/4> =<¢(s+)-¢(s')> .
p pp p p p p

As a resuit, the parallel architecture is equivalent to that shown in
Figure 5. Furthermore, by deriving the above theorem over a rztional field,
and showing that the results pertain to the integers, several classical pro-
blems are overcome:

1. The quarter-squared multiplier is not restricted to the

Galois fields suggested by Pollard.

2. The question of the existence of the multiplicative

inverse of 4 is now moot.

MODULG p ADDER

The quarter-square multiplier requires a modulo p adder be used to com-
bine the two component parts of the solution (namely ¢(s+) and ¢{s”)). Modulo
p adders pose an interesting design problem. Unless a fast modulo p adder
can be fabricated, the overhead associated with addition will offset any gain
in throughput achieved through table lockups. For the moduli chosen, 2"-1, 2",

and 2n+1, only the modulo 2" adder can be realized directly. (n-bit adder with

P
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ignored overfliow).

realize the modulo 2"-1 and 2"# adder as well.

let s be defined to be the sum of &(s') and #(s”).

then follows:

1t would however, be desirable to use a n-bit adder to
For the purpose of clarity,

The following observation

TABLE 3
_ Dynamic Integer { Moduloj 2" Adder | Modulo|p. Adder | Example:H=3
Case § Range of S s>, | QVF-BIT P .!s>pi s <S>”~;
1 s=0 0 e 2aloo 0o 0
2 1es<2M-2 s 0 s 4 4
3 s=ol-] s 0 B 70
4 s=2" U I Mot |s-2Mh g8
5 M1 5-2" 1 st Lo 3
6 $=0 0 0 M 0 0o 9
7 s s 0 Moo a4
8 s=2M 0 1 2 0 8 0
9 M2 5-2M 1 M| st 10 2
10 5=0 0 0 M| oo 0 0
n hsel s 0 M os a4
12 s=2N 0 i M| 8 8
13 sy | st l s e
| (Ssmz‘:’;] ey | O 0 Mads-ay |16 7

Using n-bit AND gates to sense the zero condition of <s>2N, the overflow

bit OVF the sign bits of ¢(s+) and ¢(s”), combinationa? logic can be defined

which will <s>2N into <s>

. It can be noted from the data found in Table 1

i
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that the mapping reguiremerts are:

=
—
v
i
W

1. forp= 2“-3, map s t0 s or s-2 +1=<<s>

2. forp= ZN, map s te s-2“=<s>

N

A 5
2"+1, map s to s or s-2“-1=<<s> -1>

3. forp

Mapping two is trivially satisfied with an n-bit adder. The other two
mappings require that s remains unchanged or it is decremented or incremented
by unity. There are several ways to apprcach this problem. Bioul, pavis,
and Quisquater have presented an unorthodox architecture for a modulo {2"-1)
adder using two-input gates. Modulo (anﬂ) adders can also be realized
through the use of end-around-carries. However, compared to modulo 2" addi-
tion, this approach would almost double the addition delay. This extendad
delay problem can be overcome through added cemplexity (ie: time multiplexing
two erd-around-carry adders). Mapping one and three can be efficiently
realized in the manner suggested by the example fTound in Appendix A. The
functional operation of adding cne (mapping 1) or subtracting one (mapping 3)
from the sutput of an n-bit adder is performed by a PLA. The PLA will provide

an overlay mask which accomplishes the required task. The derivation and

Py S iy o

—

utility of the mask can be understood in the context of tha following example.
Example: Suppose s is an 11-bit word having a decimal value of S19 = 92 or
5,00001011100.  If s;5-1 = 91 or (s75-1) 00001011 ‘011: is desired, one notes
that only the 3-LSB's of Sy need be altered. In general, for n=12, only the

following 13 distinct birary masks are required to fora (510-7)2.
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M58 Pattern LSB Hotation

XXXXXXXNX LXK

X
AXXXAXAXXXXXO location of s, unchanged 1(or 0)

KXXXXXXXXXO0 ! = change corresponding bit

X = leave corresponding bit

. location of to 1 ¢
EEBEEREEERE s2 to 1 {or 0)
o1 1111111011

<

Table [1. MASK

Suppose the moduli p = 2"+1, n = 12, is to be implemented. By using two

commercially available 16x9 PLA's in parallel, the 12-bit output of an n-bit

adder (shown as <s> "
2
bits, can be converted to 13-bit mask. The mask would transform the output

in Table I) and the four previously specified control

cf a high-speed n-bit adder to s or s~2n-1, depending on the state of the 4
control bits. Based on a 25-ns 12-bit Schottky lcokahead adder, a 20-ns
16x9 PLA, and 10-ns FET mask switches (in notation comments of Table II) a

65-ns modulo p adder, for p=2n-1, 2", and 2™1 can be realized. The presence

of a 65-ns modulo p adder will now allow a 140-ns large moduli residue multi-

I § M oy

plier based on 35-ns 4kx1 HMOS memory units. (See Figure 5) For a moduli set ;
{2]2-1, 212, 212+1}, a fixed pcirt multiplier, having an output dynamic range ;
of 236-2]2, can thus be fabricated having a word rate >f 7.143 M multiplications
per -second. This compares favorably with new 16x16 VLSI multipliers. Using a
pipelined architecture, which requires the insertion of the storage registers
found in Figure 5, a ve.y impressive throughput figure of 28.5 M multiplica-

tions per second. It is important, and fortunate to realize that the Intel

HMOS memory unit, used in this analysis, has a cycle time equal to the access
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time. If, as is often found in practice, a memory unit has a cycle time
approximately twice the access time, then pipeline delay would increase

from 35-ns to 70-ns.

VLST RNS MULTIPLIERS

As previously noted, 16-bit three-moduli 35 ns pipelined multiplier is
more than three times as fast as the VLSI unit but consumes more than four
times the power and is significanily more complex. However, the above VLSI
multiplier units are designed to work in 2's complement are therefore do
not support residue arithmetic divectly. 1In this paper, the algebraic
elegance and speed of the RNS is combined with the technological advantages
of VLSI to achieve high-performance modular multiplier.

Since the RNS is an exact numbering system, the nesting of modular
arithmetic operations can result in register overflow. Register overflow
occurs when the result of an arithmetic operation exceeds the admissible
dynamic range M. For a set of relatively prime moduli set P={p],...,pL},
M=Hpi,i=1,2,...,L. Overflow prevention in the RNS is accomplished through
the use of a relatively inefficient operation referred to as scaling. This
can be mechanized using the mixed-radix conversion algorithm or the Chinese
Remainder Theorem.[s] To insure that there will be some degree of efficiency
in the scaling operation, the moduli set must be carefully chosen.[6] A '
particularly useful moduli set is p={2"-1, 2", 2™1}. Based on this choice
of moduli, a VLSI based residue multiplier can be realized in commercially

available hardware.

VLSI-RNS MULTIPLIER STRUCTURE

This structure will be presented as three special cases.
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Moduli p=2"

For the purpose of discussion, consider p=2n to be a moduli and x,

vap, to be the composite number

. m_
x> =X 2K X Xur O XLge 0<xps2-l 16.
where m=n/2. Here Xu1 and X g are m-bit positive integers and Zp is the

residue class of integers modulo p. For a y having the same format, it

follows that z=<xy>p is given by
z=<xy>p=<2na+b+2m(c+d)> 17.
where:
: - . m 2/ n_
a=Xy 1Yy 0<a<(2"-1)"<2"-1 18.
_ . m_1y2_o0_
b-XLOyLO, 0<b<(27-1)"<27-1

— v . Mm_ 112 of_
C=xy ¥ o3 0<c(27-1)"<27-1

)2c2"1

- . m..
d=x, Yups 0<d<(27-1
m y2

v=c+d; 0<V<2(2"-1)

Under the hypothesis that p=2", and noting 2m=2"/2m, z computes to be
0

7=¢<2" a>2n+<b>2n+2n(c+d)/2m>2n>2n 19.

The last term in equation 19 may seem to pose a potential hardware realiza-

tion difficulty. However, this need not be the case in 1ight of the follow-

ing interpretation. Suppose that the (n+1)-bit binary representation of the

Wl




positive integer v=(ctd) has the form xx...x (x=0 or 1). Then V/2" can he

formed by simply defining the binary point to precede the mth LSB. That is,

V/2™ = IV+.XV where IV is the integer part of v/2™ and XV the fractional
0
part. Thus <2"V/2m>2n = <2n(IV+.XV)>2n = <2q”’T3>2n+<2"(XV)>2n. Computing

<2"(XV)>2n could promise to be an inefficient operation if conventional

digital methods are used. However, this need nut be the case since XV is

known to be a m bit word where m is n/2. For example, if a 24-bit moduli is

desired (which represents a substantial improvement over the 5-bit moduli
typically found in the literature), then m=12, and a 4K x 1 high speed (35ns)
memory can be used to implement the mapping <2"(XV)>2n as a table lookup

operation. The partial product terms could then be combined by a moduli 2"

adder to form z=<xy>p.

Moduli p=2"-1

Equation 16 can be rewritten in terms of the foliuwing set of relation-

ships
i: 2"=(2"-1)H
ii. 2M=272M=(2".1) 2"y 2M 20.
with
z=<((2"-1)a+a)+b+((2"-1)(V/2"‘)+V/2"‘)>p 21.

From the previous analysis, one notes that <a>p=a, <b>p=b and V/2m=IV+.XV,
with

<(2"-T)V/2m>p=<(2"—})(IV+.XV)>p=<(2n~1).XV>p. 22.

Using lookup operations and a 2™ word memory unit the modular mapping can

again be implemented directly. The term v/ 2" is, as previously stated, is
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simply reassignment of the binary point of V. Again the partial product

terms would be recombined using a moduli p adder.

Moduli p=2"+]

This case requires special attention since it is not completely
analogous to the previous case considered. In particuiar, not all the
residues in the residue class Zp can be encoded into an n-bit word and
represented as X=2mxHI+XLO' In other words, the admissible residue x=2"
does not conform to the accepted data format. However, x=2" is an easily
detected case since it is represented by x+1000...0 (ie: test MSB for |
and AND with n-LSB's of 0's). If x is detected to have a value of 2",

then only the following events are admissible

TABLE 4
X y z=<xy>p; p=2n+1 exampie, n=6
2"\ <2n 4(2“»{-] )y—y 2n”=(_y;.2n+] <64(y=5)>65
=65-6=60
2N 2" <22n>21’1+1
=<(2"1)%-2(2") M5 =1 | 0965 ]
2N+

These two possibie events can be separately programmed without reducing

7
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throughput. That is, upon receipt of x (or y} = 2", the output will be

immediately set to <-y>p (or 1).

An architecture capable of realizing the proposed large moduli multi-

plier in VLSI is suggested in Figure 5. This system is composed of four

commercially available VLSI multipliers, one custom VLSI Quad moduli p adder,

and memory units for table lookup use. More will be said on the structure

of the modulo p adder in the next section. For values of n=24 or 16-bits,

and based on commercial multiplier specifications, a three moduli multiplier
system can be built having a dynamic range on the order of 72 to 48-bits.

Furthermore, based on these parameters, a multiplier can be partitioned into

four 100 ns operations. This translates into a real-time throughput of 2.5 M

multipliers per second for a serial realizaticn or 10 M multiplier per second
when pipelined (a most impressive 72 to 48-bit multiplication rate).

plier, suggested in Figure 5 performs the following ~erations.

The multi-

[
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TABLE 5
Lperation p=2n p=2“-1 p=2n+1 l.evel | Remarks
{ JR—
( n . .o
S1:<2 XHIyHI>p" 0 3 -a 1 VLST multiplier
< S2:<xL0yL0>p» b b b ] VLST multiplier
T]:x”IyLO+ c C c 1 VLST multiplier
T2 XL oYHT d d d 1 VLST multiplier
. R R N
U:<atb> - b <a+b>p h-a 2 mod p adder
V:ctd» v Iv IV 2 adder-shift register
v 0 +1v/2% -1v/2™ | 2 | adder-shift register
kX‘J: XV XY XY 2 adder-shift register
Wl dj+y> W vy v 3 mod p adder
\N2:<p.xv>p wz W, Wy 3 table lookup
Z:<w]+w2>p 2 2 2 4  lmod p adder -
txample: n=6, m=n/2=3, p=26=64 (xy\64=<558>64=46
Let x = 18 = 2(8) +2 2:2 (111:LD) «yyz63—<558>63—54
y = 3V = 3(8)47 3:7 (H1:1.0) = 38

a=6, b=14, c=14, d=6

b o W S S S S D ot
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TABLE 6
Operation p=64 p=63 p=065
St:a "64(6)>,‘=0 <63(6)Fﬁt-p=6 ) -65(6)-6*{;-6
S2:b <]4>p=14 "14>p=\4 ul4>p=14
Tl:c 14 14 14
T2:d 6 6 6
U:u 14 20 8
Vv 200010100 20’00]0]00. 200010100
V' SET=0 20/8-+0010.100 -20/8--0010.100
XY 100 100 100

’— ———————— }‘ ——————————————————————————————
Nl:w] 140001110 22.5-0010110.100 5.5+000011.100
WZ:w2(1ookup) 320100000 31.520011111.,100 32.5-+0100000.100
1:z 14432=406 22.5+431.5=54 5.5432.5=38

RNS TO DECIMAL CONVERSION _
One of the major disadvantages of the residue numbering system (RNS)

is its inability to efficiently perform magnitude comparison.

Magnitude

coﬁpar1sons are critical to general purpose RNS operations since they are

h o v e o - A s M e o

generic to the management of dynamic range (register) overflow and conditional
branching. Unlike wefghted numbering systems, where overflow can be efficiently

handled by comparing data fields starting at ﬁhe,most significant-digit, RNS
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procedures are complex and time consumxng.[ 4 Various versions of these

RNS-to-decimal routines have been published which make use of modular table

150k-up operations and distributed (bit-slice) arithmetic.[]3’}4] However

the methsds reported in the literature require a significant hardware invest-

ment and consume a disaproportionate amount of run-time compared to other

RNS computational operations {viz: addition

In the AFQSR program, a three new RNS-to-decimal has been developed which ijs

significantly more efficient than existing technigues.

With respect to tie moculi set P = {p1,p2,p3} there exists, for O<x<M,

three unique mixed radix conversion (MRC) digits x MRC (?},ié,fé) such that

X =Xy + XoPy + X3P5Py 23.

where x RNS (x,,xz,x3) with

=x2

-1 .
Xy = <p, [P3]*<x3-il>p3>p3 24.

=i
u

=1 o ~lpos ~1 N
37 <Py [p]j Po [P;]*[<X]'X2>p]‘<92 [p3]*<x3-x2'p3>p3923>p1

More specifically, for the choice of moduli P={2"-1,2",2"+7}, it follows that

- - % -1
pz ][p]]=]; Py 7[P3]=Zn; 93 '[P1]=2n 25.

Upon substituting these multiplicative inverses into equation 2, one obtaijns

17X,

X, = <@Mex x> > = X=X, )> 26.
2 372 2™ 2Ny 372 241

» subtraction, and multiplication).

S
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X3

[}

<2n']*(<x}~x2> ~<XymXo> 1> .

2" 2417 2" !
Functionaliy, it can be seer. that
Xy = f](xz); x2=f2(x},x3); ié(x],xz,x3) 27.

The MRC algorithm can of course be realized sy usirg sequertial methods. Here,
nexted modulo i adders, and p;1[j] multipliers would be used to compute
i&,?é,?g. The three-tuple of mixed radix digits would be used to compute
x {equaticn 23) using these multiplications and additions. The disadvantage
of the direct appinach is execution speed due to the sequential complexity
of the algorithm. Throughput improvements and a reduction in complexity can
be achieved by using memory based table lookup operations to replace some
arithmetic. If high speed is to be achieved, high-speed menory units must be
empioyed. Such memorios have a fairly restrictive input addressing space (5
to 12-bits). If mapping f3 is to be realized, by presenting all three
residues to a 4K-35ns RAM or ROM, then n=4, and M<2]2.

Consider again the three moduli case where P={2"+],2n,52-1} which
specifies an RNS dynamic range M=p]p2p3. Based on a 4X-word high-speed
memory model, the previous medium moduli RNS-to-decimal converter was

18).

practically limited to a size of six-bits per moduli [ie: M2 The

method presented in this research targets a 12-bit moduli for practical use
(ie: Mm236). The developed large moduli scheme can be easily motivated by

the data found in Fiéures 6a and 6b plus Table 7. The data found in these
figures and tables are based on the moduli set P={5,4,3} and M=60. The first
three entries found in Table 7, namely X3:Xo and Xy, are the residues digits
of x for x monctonically increasing over [0,59]. The fourth and fifth entries
namely J1 and J3, are hybrid parameters. Since jpz—p,l=lp3-p2]=1, the values

of J1 and J3 will increase by unity (in a moduli P; sense) for monotonically
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increasing values of x. The important observation is that J1 and J2 naturally
decompose into a system of cyciic patterns which shall be denoted 512 and 532

over a subcover of M, say SZ' More specifically,

w
——t
f

three sets of five subsets of four elements each and 0(51]2)=60

five sets of three subsets of four elements each and 0(532)=60

In general, for P={2n+1,2”,2"—1}={P1,p2,p3}1

w
1

1 =P sets of P subsets of Py elements each and 0(5]2)=M=wp1
537 = py sets of py subsets of p, elements each and 0(532)=M=ﬂpi

Using more traditional algebraic terminology 512, 532 and 52 are ideals

in the ring of integers modulo M (ie: ZM). It is well known that in general

the mapping

x RNS (x1,x2,...,xL), X53<X>y 28.

1

is an onto homomorphism with kernel j'Ij' For Iﬁ={kpi} (as is this case
here) , jIj:O and Maher has shown the mapping to be isomorphic.[]6] 1t should
also be apparent that due to the cyclic nature of J1 and J2, that any X

belonging to the subcover 52 has the block representation

% = {(py11431)%p,; 0<I1<pgs 0J1<p;es,? 29.
or

X = {(pgI3+03)*py; 0<I3<py; 0<I3<py)eSy” 30,

_;1)

i
| et com
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where I1,13,J1, and 3 are integers. Equating equations 12 and 13, one

obtains

p3I3-p, 11 = (31-93) 3.

which is of the form axtby=c. Equation 14 possesses a very important pro-
perty which will now be derived.
Lemma 1:[‘7] If a, b, ¢ are integers and at least one a, b is nonzero,

set d=gcd(a,b), then a solution to the Diophantine equation
ax + by = ¢ 32.

exists for integer values of x and y if and only if d/c.

Lemma 2: If b is relatively prime to a, then the congruence by = ¢
mod a has an integral solution x. Any solutions X and x, are cengruent
modulo a.

From these two lemmas, the following theorem can be stated:

Theorem: Given the Diophantine equation 14

p111-p313 = (J1-J3) = ¢ (see Figure 3b) 33.

the solution two-tuple (i1,13) is unique.

The proof is straightforwarded and is based on the fact that Py and P3
are relatively prime, ITe[O,p3-1], and I3e[0,p}-l]. Therefore, by specifying
c, the block indices (I1,I3) can be uniquely determined. Observe that §é52

can be derived from knowledge of the two-tuple (I1,I12). However, (I1,I3) is

[T

" uniquely determined by c¢=J1-33. Therefore, upon presenting a (n+1)-bit word
c to a (n+1)-bit high-speed RAM or ROM, the orecomputed value of Sl=P2P1I1

or S3=p2p313 can be outputted. The corresponding value of ?ész can be

UL OO, b A oo

realized by adding to s, the integer p2J1 to S1 or p2J3 to S3. Lastly, if

G 4
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xe(0,M), one only needs to add x, to X. The decimal value x can therefore

be computed in the composite form
X = x2+p2J1+Ilp1p2 34.

where, due to uniqueness, the mixed radix digits ¢re (xz,dl,Il).

In gereral, for P={2n+1,2n,2n-1}, the routine would proceed as follows:

1. Accept x RNS (Xl’XZ’x3)

2. Form J1=<x2—x]>p] and J2=<x3-x2>p2

3. Form J1-d3 = ¢
4. Map ¢(c)=p1p211=51 or pap,I3=53
5. FORM §5p2J1+S] or‘§5p2J3+S3; ihsz

6. FORM x=§4x2;

These steps are nrumerically examplified in Table 7 and diagrammed in Figure 7

for the {5,4,3} system.

Compared to conventional RNS-to-decimal conversion algorithms, the
derived algorithm possesses the following attributes:

1. no modulo M addition required as in the case of CRT or MRC methods

2. practical realization of very large moduli RNS systems

3. simple architecture anﬁ reduced complexity.

Additional rafinements in the proposed method can also be obtained. First,
observe that c, the hybrid parameter which defines the argument of the mapping
¢ (item 4) is a signed integer such that ce[-(2"-2),2"]. Technically, to do

the mapping ¢(c), a (n+1)-bit high-speed RAM or ROM would be needed. This
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suggests that the largest acmissible moduli is 11-bits (using a 4K-memory

model). Furthermore, since C;ax=2n’ it would appear as though the output

register for the signed-adder found at sten 3 would have (n+2)-bits if a
standard binary weighted code is to be used (eg: 2's complement). This pro-

blem can be overcome through the foliowing modifications.

1. Using an (n+1)-bit (at least) sign-magnitude adder, the sum c=J1-J3

The sum ¢ can be partitioned into two sets V and Z given by:
xeV if MSB of x = "0Q"

xeZ if MSB of x

nyn
More specifically, V is a set of 2"-1 elements determined by
V=1{y |y-=x for xe[0,2"-17}. Also, z is a set of 2"-1 elements
determined by Z={z|z=x if xe[-(2"-2),-1]1, z=0 if x=2"}. It can be
seen that the sets Y and Z are defined by the magnitude digits of
the signed magnitude value of ¢ with the membership to Y and Z
determined by the MSB (sign-bit location) of c¢. The importance of
this partition is that two 2" word tables can be used to map ¢ into
¢(c). The device select line would be tied to the MSB of ¢ as
suggested in Figure 8.

2. Another efficiency can be reaiized by using data packing. More

specifically, the term p2J1+x2, for the considered choice of moduli,

AT T

can be rewritten to read 2"J]+x2. Since 05XZ<2", and 059152", the
the term 2"J]+x2 can be directly, and uniquely encoded into a (2n+1)-
bit register. This is suggested in Figure 8.

5 3. The proposed architecture, as in the direct realization ¢f the mixed

Xm S

can be represented as a (n+1)-bit word having the format MSB:xx---x.LSB.

K]
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pression will be required.

in the previous section.

an RNS representation x

x (fer xu(xq,%5.x3)).

been reported in reference 18.

OVERFLOY TOLERANT RNS MULTIPLIERS

Any integer over [0,M) has the unique RNS representation x

RNS

operation is that of data compression.

X] = XZ"XZ
Xy = x2—x2=0
X3 = X2'X3

quarter-square algorithm has bezen reported in an earlier section.

RNS

mixed radix conversion, requires moduli P; for pi=2 -1 or 2™41.

Several such modulo adders have bren reported in the open Titerature.

A very efficient 40nsec mecdulo 2"41 and 2"1 adder, fer n<12, has

In order to extend the dynamic range of the autoscale multiplier to a
more useful size (say 12 to 16 bits), based on a 4K memory model, data com-

A suitable compression algorithm, based on the

Further-

more, the theoretical foundation of a compression scheme has been motivated
Here, data compression will be studied in the con-

o)
text of the popular three-moduli system P={2n+1,2n,2n—1} such that M=p]p2p3=2“"-2".

(X] ,X2 ,Xs) .

Consider now a subcover of the range [0,M) generated by all numbers X having
(E},O,ié). Obviously X is defined over a
subcover of [G,M), say S, where S, = {kp2}05k<p]p3}. The utility of this
More specifically, only 2n-bits of
data are needed to uniquely quantify xv(ie: ié{i},;é)) versus 3n-bits for

The digits of x can conveniently be defined to be:

35.

As a point of interest, this is also an operation found in the residue to
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mixed radix conversion algorithm used to determine the mixed radix coeffi-

cients of the weighted representation
o +’b +). , 3,
X - X-l XZPZ K-j) “:93 O.

ERROR ANALYSIS

The mean and error variance for the extended range autoscale multi-
plier is a function of the chosen moduli set. Even the simplest analysis

becomes burdened with nested sums and binomial coefficients. Iastead, the

error statistics of the multiplier was studied using numerical simulation.

A general purpose FORTRAN program, written on a PDP 11/60 under RSX-11, is

reported in Figure 9. In Figure 10, the product of x=16 and ye[0,29], for

P={3,4,5} is reported. The parameter 21 is the autoscaled product over

52, Z2 is the theoretical autoscaled product, with the last column exhibiting

the error. The test software operations in either a deterministic or statis-

tical mode. 1In either mode, the user specifies the choice of moduli (ie:

P={p],p2,p3}) and the number of fractional bits used to define the table

lookup data. That is, the output wordlength is given by [1092M]+ number of

fractional bits. In the deterministic mode, all pessible values of x and y

over [0,N) are tested. However, if N is large, long execution delays can

result. To overcome this problem, a statistical approach may be used where

the integer value of x and y is randomly chosen from a uniformly distributed

process over [0,N). The test is repeated M times and the statistics analyzed.

The software presents to the user both error mean and error standard deviation.

For example, for P={7,8,9} and zero fractional bits of accuracy, the determin-

istics error mean and standard deviation was determined to be e=-.00011476 and
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0,=-00379230. In tke statistical mode, the results were e=-.00023643 and
oe=.00396498, which can be seer to be in close agreement. Table 8 and
Figure 11 summarizes the results of severa! experiments. They are:

T. Deterministic for P={3,4,5}

2. Statistical for P={7,8,9}

3. Statistical for P={15,15,17}

4. Statistical for P={31,32,33)

for varicus choices of fractional-bit accuracy (denoted MN). The error
standard deviation data has been interpreted in graphical form in Figure 6
and comparad to usual theoretical model given by 092=Q2/12 or oe=Q/¢T?.
Here Q is the quantization step size which, cover 52, is given by Q=1/p]p3.
The data is shown to be in close agreement with the theoretical model.
Lastly, it can be observed that the multipliers performance is more-or-less

invariant to the number of fractional bits used to generate the tables.

o
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PART TI ~ SYSTEM DESIGN IN THE RNS

Under the AFQOSR grant, new residue erithmetic units were conceptualized,

researched, and tested. Key breaxthrnughs were an efficiznt RNS to decimal
converter and an avtoscale multiplier. [In this section, thecz Luiiding blocks

will be put to use in designing nigh speed digital systems.

Tne utility of the ZNS in digital filtering was ferwarded by Jenkins and
Leon {1] through their work in non-recursive filtering (FIR: finite impulse
response). In :nis case the problem of register overflow, in the RNS, was
overcome through the use of a %, norm argument. Giver a FIR, satisfyirg
y{n)=£aix(n—i), i=1,...,0, with [x(3)]<]1, it follows that ]x(n)ilfﬁiai§=v
over all i. I order to insure that dynamic range overflow will not occur,

the RNS dynamic renge M=ﬁpi would be chosen so0 that M>Y. However, the dasign

of recursive filters (FIR: infinite impulse resporse) is significantly mor

L1}

complex. Soderstrand [4] approaches 4l problem through base-extension mathods.

Other authors have used the Chirese Remainder Theorem ({RT) or mixed radix

conversion algorithm to control dynamic range. This has been strongly

criticized because of the cserhead nowmally associated with these operations.

The RNS concepts, deveioped in "art I, overcome many of these objections.
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The classic digital filter architecture, often referred to as the
Jackson-Kaiser-McDonald (JKM) filter, realizes a filter in terms of general
purpose multipliers, adders, and shift-registers. In the mid-1970's, several
new memory-intensive iinear shift-invariant digital filter architectures were
introduced. First, the distributed filter [Peled-Liu], or PL filter, was
introduced in 1974.[10} Next, the Monkewich-Stunaart, or M-S, filter was
reported in 1975.[203 A1l three architectures are summarized in Figure 12.
Compared to conventionai architectures, this class of memory intensive filters
offer the potential for high throughput. Execution speed is ach.eved by
replacing the relatively slow process of general digital multiplication with
table lookup scaling operations. Jenkins and Leon, in 1977, studied a memory
intensive filter architecture based on residue [modular] arithmetic.[]} By

exploiting the parallel nature of the residue numbering system, and using

table lookup operations to mechanize modular arithmetic, ultra-high speed

digital JKM filters were realized (see Figure 13). In most reported cases,

a residue arithmetic filter is organized into a decimal to residue encoder
stage, arithmetic-filter section, and residue to decimal converter stage.[4’6]
In this work, the fundamental structure of the residue arithmetic-filter sec-
tion will be developed and new results presented.

One of the principal Tlimitations to the residue concept is its intolerance
of reaister overflow. This is a consequence of finite ring theory. Specifically,
for a set of relatively prime moduli, say P = {p1,p2,...,pL}, the residue
representation for a signal integer i, is given by i+(i],i2,...,iL), where

i mod P if i>0

S

(M-]i | )mod P if i<0
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k
and Ogjj<pj,M=Hpk, k=1,2,...,i.. The integer i will have a unique repre-

sentation if and only if -M/2<i<M/2.

In order to insure the satisfactory performance of a residue arithmetic
filter, dynamic range overflow cannot be tolerated. If for example, a shift-
invariant filter of the form y(k+])=Zaiy(k—i)+2bix(k-l) is considerad, the
20 bound on y(j) (ie: max (y(j)) for all j) must be less than M/2 otherwise
uniqueness can be guaranteed. As a result, the JKM residue arithmetic filter

suffered from a severe dynamic range restriction. For example, in order for

z=ax+by to be correctly represented in a residue system z must be bounded by M.

For O<a<h, 0<b<B, O0<x<X, O<y<Y, then AX+BY<M. If A,B,x,y are on the order of
r-bits of precision, then M must be on the order of 2r+l-bits in range. How-
ever, this is not the only constraint. If highspeed RAM or ROM is to be used
to perform the algebra (in a lookup sense), then for n=14, a table addressing
space of 29-bits would be required. Suppose, for the sake of discussion,
Mi33-bits and rv16 bits. Using a 16K highspeed memory unit (30-50 nsec) as

a model,{]] the maximum value of a moduli P is 27=128. In order to achieve
the 33-bit system dynamic range (ie: M), at least 5 (ie: [33/7]) moduli, on
the order of 7 bits each, must be used. This means that five parallel paths,

complete in memory and logic, must be configured and integrated into a complete

system.

Footnote 1: 16Kx1 units: INTEL 2167: access 1ine=40ns, enable time=40ns,
cycle time=40ns, active power 500mW, standby power=75mi:
INMOS 1400, access time=30ns, enable time=35ns, cycle time
30ns, active power=375ns, standby power=35ns.

R
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M-S RESIDUE ARCHITECTURE (MSR)

The algebraic operations found in a linear shift invariant filter are
data delays, additions, and scaling (in lieu of general multiplication).
Replacing general multipliers with residue scalars has been prcposed by

several authors.[]’2’14’]8’]9] A residue multiplier would present a 2r-bit

.) to a 2r word memory unit and respond with the precomputed

two tuple (ai,x1

value of (aixi) mod p; . Using the same 2r-word memory unit, a scalar would
accept a 2r-bit representation of X; - The table would respond with the
precomputed value of (aixi) mod P; where a, is known apriori. For example,
using three 16K NMOS 30 nsec static RAMs and three moduli of the form
p={2"-1, 2", 2"41), a scalar having a dynamic range on the order of 42-bits
can be realized. Using such scalars, the M-S filter architecture found in

Figure 12 can be realized.
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FINITE WORDLENGTH EFFECTS

Generally, a digital filter is a finite precision approximation to some
user defined dizcrete filter defined over a real coefficient field. The
errors, due to finite wordlength effects, are w- 1 documented. It is
generally assumed that the expected truncation error variance, per multi-
plier, is given by (/2 and 02/12 recpectively (0 represents quantization
level}. However, in a residue arithmetic filter must be defined over a ring
of integers. Real numbers cannot be tolerated. For example, suppose

a=3.251 and x=10, then ax-32.51. Rounding this results would yield an
estimated product 33. In a residue sense, with respect to a moduli set

p=(3,4,5); M=60, x-gﬂ§-»(x],xz,x3)(1,2,0), one may make two sets of calcu-

lations, namely (i) and (ii).

i) a

= 3.251 ii) [a] = 3

ax = 32.51 ax = 30
<axy>y = <3.251>3 = .251; [251]} =0 axy>3 = <3>3 =0
<axy>y = <6.502>4 = 2.502; [2.502] = 3 <axy>, = <6>4 = 2
<ax3>5 = <0>5 =0; [0]=0 <ax3>5 = <0>5 = Q

The calculations found in column i use the decimal value of a in forming
product (ax) modulo P; - The resulting products are then rounded. The final
residue digits are (0,3,0) which is equivalent to a decimal value of 15. 1In
column ii, the integer value of a is used to form the product ax in the usual
residue arithmetic sense. The result is seen to produce the correct truncated
value of product, namely (O,2,O%J§§L>30, Therefore, since all filter para-
meters are to be integer value over [0,M], traditional finite wordlength

error modeling and analysis techniques apply.

by

-
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If a large dynamic range is required, in limited RNS hardware, magnitude
scaling is required. A similar strategy is used in designing filters using
weighted fixed point arithmetic where rounding or trunication is used to
control the growth of dynamic range. In a RNS system, the probiem is com-
pounded by the fact that the magnitude of a number must be known, if it is
to be scaled, and magnitude determination in the RNS is difficult. That is,
in order to support scaling in the residue number systen, some sort of residue-
to-decimal conversion is required. Most existing residue scaling routines
makes use of base extension or mixed radix conversion schemes.[3] It has
been shown in reference [15] that in a realistic RNS system, a ten to twenty-
fold increase in computational overhead can be expected if scaling is present.
As a result, the overall throughput of an IIR-RNS filter would be compromised.

In order to achieve high data rates, over realistic dynamic ranges, in
limited hardware, a new low-overhead RNS arithmetic unit must be developed.

In the next section, such a unit will be presented.

M-K RNS FILTER ARCHITECTURE
In order to insure the uniqueness of a modular product of two numbers of

2>M).

dynamic range V, the modular dynamic range must be bounded by V2 (ie: V
This can be achieved through the use of a newly developed auto-scale policy.
The auto-scale arithmetic units will be shown to support memory intensive
filtev architectures. Assumed that there is a practical memory wordsize
constraints. For high-speed (V30 ns) applications, memory size is presently
limited to 4 to 16K words (ie: 12 to 14-bits).

For reasons that will become self-evident later in this section, the

three moduli system, given by P={p]=2n-1, p2=2", p3=2"+i}, will be considered.
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Using such a moduli choice, signed integers Xe[[L-M/2], [M/2]] arc uniquely
represented by the three-tuple (x],xz,x3) where X5=%3 mod p.. In order to
scale x, using memory table Tookup operations, the magnitude of x aust be
known. That is, the KNS three-tuple (x],xz,x3) must be simultaneously
presented to a memory module which is programmed to output (cx) mod pj

where cx[[1-M/2], LM/2]]. For high-speed application, the limiting 16K =

2]4 memory units require H?pim23ng2]4.

That is, the design would be con-
strained to consider moduli on the order of 4-bits each. Also, the dynamic
range is limited to 14-bits. Referring to Figure 7, it can be observed that
an integer xe[L-M/2], LM/2]], satisfying iékpz, O<k<p;p3-1, has the unique
RNS description
§'—5ﬂ§——-((x1-x2)mod Py» (x2~x2)mod Pps (x3—x2)mod p3) 37.
= ((x]-xz)mod Py 0, (xz-xz)mod p3)

Observe that X is defined over a subcover of [L-M/2], LM/2]], and it can be

uniquely represented as the two-tuple (?}, §é). The two tuple approximation

of x, namely x, establisnes a memory size constraint given by 22"<214 or
n<7. Now 7-bit (vs. 4-bit) moduli are admissible) with the dynamic range

extended to 3n or 21-bits. The memory units can be programmed to output

[cxmod P; where ¢ is a user specified constant. Overflow prevention can
be achieved by introducing a scale factor K so that [cx/K]=[c'x] will not

exceed the permitted RNS dynamic range. For the application under study

(viz: ITR-RNS filtering), it shall be assumed that all system variables and
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constants belong to the integer range [-M/2, M/2) where M=p,p293=23n-2.~‘}

Therefore, the scale factor K needed to insure the absence of arithmetic
overflow, is K=M/2.

The error statistics associated with each auto-scaled multiplication
can be shown to be bounded in mean by p2c/2M and in variance by 02=p22/36M2.
This has been experimentally verified: For example, for P = (15,16,17) and
(255,256,257), the error variance for the integer valued product y=cx, for
ce[0, M] given and xc[C,M] randomly choosen, is plotted in Figures 14 and
15. The error is defined ta be e=(cx/M-[cX/M]) where iékp:, k€{0’9193‘]3'

A M-S recursive RMS filter can be architected using the -~.-o0-scale
arithmetic unit. A dedicated auto-scale unit must be configured for each
unique filter coefficient. Each unit, in the three-moduli case, would
require three memory devices eacn. For example, a 9 ccefficient 21-bit
resolution filter, based on 4Kx1 RAM/ROM, would require

N= 9 3 6 = 162 (16Kx1) memory units

coef. modul i wordlength per moduli
A detailed description ¢f an autoscaled arithmetic unit is found in Figure 16.’
The modulo 2"-1 and 2™+1 adders can be realized in the manner suggested by
Taylorglgl This architecture uses PLA's to augment a conventional n-bit
integer adder. Other realizations have been reported in the open 1iterature.[13]

For example, a modulo 2"_1 adder can be realized in a simple straightforward

Footnote i: Unlike a 2's compliment system, where partial sum overflow
can be tolerated if the complete sum of products is bounded,
each partial sum must be bounded to [-M/2, M/2) in the PNS.

N ——
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manner. Consider the term (x]-xz) mod 2"-1 with x3222n-1 and xzezzn. For
(x}~x2} positive, (x]-xz) mod 2"-?=(x]-x2} but for (xj-xz) negative,
(x]-xz) mod 2n-}=§x]—x§%2} where gx1-ngE2] denotes the complement of the
binary representation of 1X1'X25- For example, -5 mod 7 = TGT[ZJ=O]O[23=2.

If a real-time, or pipelined architectyre is required, then it's
desired to design the modular adder which have identical propogation delay.
Using the PLA-supported architecture, modulo 2“%1 adders can be realized in
commercially available hardware, for n<12, having a 30 nsec delay.

A second arithmetic operation found in the three modul; namely the
computation of v=(2n']A) mod 2"-1, where A={(x1-x2)mod 2"y - {(xz—x3)mod 2M413,

can be simply comcuted. It is directly verifiable that ae[-2",2"-2]. Consider

26y i 220 ]

-
!

: 38.
(-25, -A if A<0)

where AOeZZ and A]EZ n-1° For £>0,v can he computed using the following

2
scheme: n-1 1
Example 4=6, n=3, (4-6) mod 7=3.
L‘ 1 1 0 — 0 n =3
For A<0, v is giveg by [c %enotes complement]
n-1
. f'\..A.—-—\

o c

}
A %. 4 8, — v ={ A 4 }

t——— phantom sign-bit
Example: =-6, n=3, (-6-4) mod 7=4
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or 1 0 0 =4

As a result, v can be computed with negiigable overhesad and hardware.

then

A (2" A)mod2"-1 A(binary) A (binary) A'(decimal)
6 <24>_=3 110 01 3

5 <20> =6 101 110 6

4 <165,=2 100 010 | 2

3 <12>,=5 011 101 5

2 <8> =1 010 001 !

1 <4> =1 001 100 1

0 <0>7=0 000 000 0

The discussed parmutation, from a modulo 2"-1 adder to a buffer register,

can be realized by a hardware mapping. Here the LSB of the adder is

RO o PN Oy

connected to the MSB of the buffer. The other (n-1)-bits are mapped to the

buffer with shift of one bit location.

RNS FILTER DESIGN

MK Architecture

In a M~K architecture, eacn filter coefficient ¢; is realized with a

Wy B e

E dedicated RNS table lookup unit. Based on the three moduli MRC algorithm

and a given Ci» @ MRC rultiplier unit similar to the one detailed in Figure

would have to be configured. Here, for convenience, the multiplier 2""1

o




is imbedded ints a lookup tabie.

- 5 . . . n .
Fach unit would consist ¢f nine 2 xn-bit

memory units. It must be stated that in ovder to use a 2Msen memory in a

moduiu (2”+1\ operation, some form of data compressise is required. The
simplist compression rcutine would differentiate beiween the two sxternal

number in Z , namely 0O and 2", Those two numbers have a (n+1)-bit (ie:
2"+

common n-bit data bus plus 1-bit control line} representaticn of 00...00

and 10...09 respectively. By AMDing the n LSE's and sensing the MSB, the

two conditions can be easily identified. For x=0, it follows that {cx/M]=0

and the output registers would be zeroed without any memory (table lookup)

action. This means that one of the 2" memory addresses, namely x=G, is super-

fluous and can be assigned to x=2"+1.

It follows directly from the MKC representation that

XC; §'c X,C- D} 3c‘p} 3
DTTJmod B; = ([ M Vimod p; + [—g—Jmod p; + [«——————~Jmod

)wod p 39.

That is, the outputs of modular tables (viz: [Eici/M]mod P, .,[—3c p]p3/v]
mod p.) must

From a design standpoint, it is desired to configure a system which has

minimum complexity. The 3!=6 possibie permutations of a three moduli set are

summarized in Table 9 in general and for the specific example x=100 for

P=(7,8,9). A key feature of the general architecture are the propogation

delay paths dt (total delay), d] and d2 (see Figure 17). For sequential

operation, the MRC digits will be available for use after td seconds. The

lengh od delay is due primarily to the nesting of four multipliers. In

addition, td is a function of the multiplication philosophy used (bit-serial

Wbl
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dy
e e
PIPLINED
d, d,
: i
X,{0) X,(0)
d I 1,(0)
e
d, n
X, () X,(1)
] 2 .
Xy(2)
d
% (2) Xy(2)
froe——
i
X](3) 000

MRC DIAGRAM AND TIMMING

FIGURE 17
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lookup, general purpose, etc.). If high throughputs and low compiexity is

desired, td should be minimized. One could alzo consider a pipelined

architecture of depth two having an effective throughput rate of t2 second

per MRC. The design of an efficient pipelined MRC processor is promised cn

the condition that t2 is small and t] and t2 are comparable. Referring to

the data summarized in Table 9, it would appear as though the first ordering

admits the best design. Therefore, this ordering will be used as the model

throughout this section. Based on this model
§5=x2 40.
X,=(x)=X5) mod (2"+1)

;3=(2n—1 {(x]-xz)mod(zn-l)-(xz-x3)mod(2"+1)})mod(2n—1).

The 2"+1 adders found in this architecture have been previously discussed.
In a M-K architecture, each filter coefficient <, is realized with a
dedicated RNS table lookup unit. Based on the three moduli MRC algurithm

and a given C;» @ MRC multiplier-scalar can be configured as suggested in

Figure 18. Here, for convenience, the multiplier 2""] is imbedded onto a

lookup table. Each unit would consist cf nine 2"xn-bit memory unit. It

must be stated that in order to use a 2"xn memory in a modulo (2"+1) operation,

some form of data compression is required. The simplist compression routine

would differentiate between the two externai number in Z noe namely 0 and
2 +1
2",

Those two numbers have a (n+1)-bit (ie: common n-bit data bus plus 1-bit

control line) representation of 00...00 and 10...00 respectively. By ANDing

and n LSB's and sensing the MSB, the two conditions can be easily identified.

bl by o
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(X;-X,)mod2"-1 cx module
X] +
X A | 24 ) mod2™1]c —
2 M o modpi
modp?
X3 + 4 - 1
(XZ-X3)mod2n+1 l VE _
vy '—'modpi modp;
=
" modpi
MS FILTER
(X;-X,)mod2"-1 on-1 -
X + - ‘Jrz ca/M p— ——
a -
%o 1 cosm |
b
Xy + -
- 2 o —
(X5-X)mod2"+1 ] o
|1
COEFFICIENT
RAM/ROM
c
KAISER FILTER
L (cd/M) . (cb/m) . (ca/M) . (cd/M) 000

AUTOSCALE FILTER ARCHITECTURES
p=(2"-1,2",2M+1)

FIGURE 18
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For x=0, it follows that [cx/M]=0 and the output registers would be zeroed

without any memory (table lookup) action. This means that one of the 2"

. . n
memory addresses, namely x=o0, is superfluous and can be assigned to x=2 +1.

It follows directly from the MRC representation that
XoC: Py |

27171
"—M—“i"“’d i

X] Ci

|XC,
| W

X3CiP1P3

mod pj;( o

mod Pit

.ymod p.
moa pJ,mo pJ

That is, the outputs of modular tables (viz: }?jci/Mlmod Pyseees §3cip]p3/Ml
mod pj) must be recombined, in an additive modulo pj sense. Again, a

sequential or pipelined architecture can be realized.

Example

Using an MS architecture, a 4th order Chebyshev filter was realized.

The response is reported in Figure 19. It has been experimentally determined

that it requires a 16-bit moduli three-tuple to achieve satisfactory

performance.
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JKL-RNS Architeciure

The disadvantage of the MRC-RNS-MK filter is the rapid growth of
hardware as a function of filter order. 1In order to reduce hardware com-
plexity associated with RNS-FIR filtering, reusable (undedicated) overflow-
free RNS arithmetic units may be considered. Again, if overflow scaling is
imbedded the table Tookup operations, the magnitude of RNS coded numbers
must be known. As previously noted, this has been the historical obsticatl
to IIR filtering in the RNS. The architecture which can achieve this goal
is detailed in Figure 18. The multiplier 2"’1, as previously noted, is a
zero-overhead operation. A timing diagram is offered in the referenced
figure. It is assumed that the modular addition delays are less than the
Tookup table access times (say tM). The difficulty with this proposed
architecture are the delays associated with reprogramming the tables, for
each Csi from high-density low-speed (comparatively) main memory or mass

storage. As a result, the overall throughput of this architecture will be

unattractive.

Distributed RNS Filter

A powerfull linear constant coefficient fiiter policy is distributed
arithmetic {alias: bit-serial, bit-slice, or Peled and Liu filter). In a
B-bit radix-2 binary weighted, the output of a discrete filter, satic¢fyiny

n n
y(n)= T a,y(n-i)+ T

biX(n-i) 5!.
i=] i=0

-

is given




B-1
y(n)=  (
j=1 i

i . n
aiy(n—i;j)+ b bix(n—i;j)}2‘~( aiy(n-i.B)- X
1 i=0 3=0 37 =0

w e~ o
Lt B ]

fa_i gYob
bix\n—1j8)d

with j denoting bit Tocation. An equivalent statement for RNS systems can

be made in the RNS using the MRC. Here, a system variable would be given in

MRC form as
Z7212,p1+2301P,

There is a minor structural between a distributed filter using a MRC and
radix-2 format. For a three-moduli system, distributed partia’l products
must be recombined modulo PyPos and P3 Table requirements, for this
architecture, are correlated directly to n, the order of the filter.
Bit Slice

Example: A 2nd order discrete Chelyshevy filter was designed in the
usual way. The infinite precision response used double pracision floating
point arithmetic. It can be noted, from the data displayed in Figure 20
that three -8 bit moduli filter performs better than a 12-bit fixed point

filter and closely approximates 16-bit precision using a 4th order model,

8-bit moduli can aqain be seen to offer acceptable performance (see Figure

21).
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PART II1 APPLICATIONS

The RNS arithmetic, developed under this AFOSR grant, has been tested
in a MS, JKM, and distributed architecture. Several applications were
considered. The uniqueness of these applications, are on to themselves,
worthy of special treatment. Therefore, have been included in this
report in appendices. Appendix A treats the problem of realizing a
real-time Kalman filter. The development filter (submitted for publica-
tions) represents an original approacﬁ to this class of problem. In
Appendix B, ¢ linear adaptive noise canceller is presented. Appendix C
contains other papers published, or under revicw, which contain an AFOSR

credit line.

PART 1V  SUMMARY

Under an AFOSR grant, RNS arithmetic, hardware, and architectures
have made major strides. Using a three moduli system, practical ultra-
high speed RNS units have been developed. The major problem of RNS-to-
deciinal conversion plus magnitude scaling has been successfully treated.
In addition, new filter architectures were derived and analyzed.

The future of the RNS is considerably brighter as a result of this
study. In particular, the RNS techniques deveioped during this grant

period, will be further inhanced with the advent of VLSI.
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APPENDIX A

THE REALIZATION OF ADAPTIVE KALMAN FILTERS
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ATSTRACT:

An adantive Ralman filter is considered for which the

“input noise covariance and the output covariance are uni=

nown. A new nroeedurn is presented for the identification
R

of the unlinevm covarianeces. The proposed identification al-

~orithm uses the autocorrelation information containad in

the innovation error scquence to determine the ratio of the

unlinown noise covariancaes and to obhtain the optimal Kalman

filter geoin. The proposed nathod can he easily implementedd

throush the use of hizh speod limital autocorrelation al~or-

fethne chieh onarate ot raal tine data rntes,

1.0 INTAARUCTION

he dalnan=Suey formulation of the minimal  variance
fFilt.rins aroslan aseainsas conpleatn a priori tnouvled~e of the
input and output nolse coverlances, say O and . In st
nractical applications N and R are eithar assunnd to be unli-
nowun or anprozimated, Saveral an;hors have presentod
schrmns  for the ldcntif!cation of the unknovn covariances
vith sone sucenss (2), (), (7) and (11) with the use of the

innovation sequence in the idantification of the untnown co-

varianees, introducad Ly ‘alirn,

s napar clina
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aan of the Tirst Jdnlovad value of the autocorralation Tuna-

tion of tha innovation sequence to detecrmina the ratio of

- the an'inon covariancen, " Thae onthad prosented is apnlicable

for thoase aystens vhiich axhinit a ahift=-invoariant  (constant

coxfficiont) proparty,

A Nhirh speed real=time alt~orithm for the conputation of
thr  Autocorralation Tunction hnﬁ naen presented by Pheaifer
and Slankenship (12), (1%). Tha speend of the a2lrorithm can
he further Trproved throush tha use of apeainl codes (1,
in=line, threadad, hnntted) vuihieh nolie nossidle the conpute-

tion of’thn autocorrelation function in raal tine (14).

2.7 PRFEIFCN/DLANIELNGIIP (BR) AUTOCARTITLATION ALGORITHA

(R ]

M discrate autacorrelation funatien r(il), is =iven bLHv:

N

Y }) £(n) fln+l) "
-
nes1

If r(lz) ts dasirnd for Ik on the order of !1/2, then
neine FETa to ecorputae PET™V(xCFY=*(F))ur(l) s coaputation=
plly optimal, A total of I Jar,(il+l) conplex miltiplies nre

requl red (n coiplay multlnly anuals & raal mult!plles).
o g , "

Ey

» il . :.&\ . - N
Niract computation of tha abova raquires |
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The, 3P version of the autocorrelation alrorithm satis-

fies:
P-1 K
3 "
r(t)= 2? ?'f(23&+i+k)(f(23k+i)+f(25h+i+2k)) 2.2
=0 =1
= i=
k=1,2,...,p !

For !D>P the op aIZOrithm.cssnntially halves the number
of multiplications normally associated with direct computa-
tion, The multiplication count for iID>P can also be consid-

eraaly less than the 2ssociated with FFT mechanizations.

The speed of the alzorithm can be further improved bv
eliminating  the time consumnd to compute data invariant in-

dices (ic: (Zji+l), (Zik+i), (2jt+i+2) ). This can bhe
J

I
o

achieved throurh the use of so called in-line code. In an

in-line code, the code is arranged in 2 top-down fashion.
liere entry is made at the top and without leopinz, run to
complation. The desired in-linc code havinz all data invar-
iant paraieters, an he properly computed and propzarly se-

quencerd throush the use of AUTOSGE! methodolony (14).

another alternative is possible throuzsh the use of

threaded code. 1t renlaces a standard prosram with a series

- -

of medules which are thread:d torcther. A thread is a pre-

-

~ -

comduted  data  array in which all preroouist information is

founs'.  Tha Srray Jds serialiy séanned &t fFun time and thero-
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A

fore removes the overheasn assoaciated with

putation of the paramnters. Compared

to

the ori~inal com-

the iIn-line code

the threaded code is twice ac fast and occunies less mrmory

(1a),

Anotuer option is available

and is

Lnotn ns A

knotted

code. nots will be tied in the thread indicatin~ that the

csrocram will move down the thraad,

knot for a while then continun

knot. The knot represents a subprogram in vhich  there mav
nxist elementary loosin~, lisin~ the knotted codde the

requireminnts ro-juced considerably (14).

dovin

run-«arouns:

the thrand

in refareace 1L that a 128-point time series can be

related,

computer the Tfollowing time intervals:

PP 11/55 PAP 11/79=

—— . -y - -~ - - A - —

Conventional 9.693 9,72
In-linn 5.25 L h2
notted 6.70 7.35

* (Lache ‘achines
tords

-, -

Nealizinz that the coputation of

function can ha performed at

.

raal

procrned to tha analusis of the problem.

{up to a delav of 11 samples) usint a FRP 11

to the next

merory

shown

the autocorrelation

we can

it
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§ that the ontimal steady state ~ain can bhe defined in terms
H )
g of the ratio of thn true statistics (RI/ND)=(*/"). In this
% case PE(-) is directly proportional to PT(-) bv a factor A
] vhere:
% .
£
4
H A= (/R21) = (n/01) L.5
: 3
§ % By expandin~ the definition of PT(~) in (3.7) ur ~nt:
% )
H , - Y I
PT(=) = FPT(~)F + N - L.G
- - ey O 1751 T Vf),iT f.
Pf(+) = (!"-\H)IT(")(l“h.%) + dean *:.7
’ The Followine obscorvations can be made resardine  equa-
1 © tions (L.G), (%.7) and (3.5).

1. P7(-) :enends explicitly unon the outnut apriori

statistics of the system rnodel (viz: Xalman enin),

arid the trué noise covariances R and 7

2. PE(-) depends upon apriori statistincs onlv.

Consider the case in whigh=RI=X and DN, - 1t ¢éan be

séan elgarly  from  cquations (3.9),

i f) and (5.7) that

. PE(=)>PT¢-). Considar also thé

pRmem——e R
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The crossover point of the curves is the

case in which woe obtain the optimal KalmAan

‘The tReoratical covariadnce 5 ineréasine aft

c¢rossover point.s It can be pxplained by fhe

filter =ain vhich is decreas in cach ite

Tharefore, the innovation error is wasnifie

It should he mentioned that in a real svstesy
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APPENDIX B

ADAPTIVE NOISE CANCELLING

Adaptive Noise cancelling is a method of estimat~-
ing signals corrupted by additive noise or interference.
This method uses a 'Primary' input contalning the corrupted
signal and a 'Reference' input containing Noise which is
similar to the primary noise, . The reference input Is adap~-
tively filtered and subtracted from the primary Input to ob~
tain the signal estimate. .

Adaptive filtering before subtraction allows the
treatment of inputs that are deterministic or stochastic,
stationary or time variable. When the reference Input Is
free of signal and when certain other conditions are met,
the noise in the primary input can be eliminated without
distortion. . It 1{is further shown that in treating periodic
interference, the adaptive noise canceller acts as a notch
filter with narrow bandwidth and the capability of tracking
the exact frequency of interference. .

Nolse cancelling is a variation of optimal filter-
ing that 1is highly advantageous in many applications. It
makes use of a reference input derived from one or more sen-
sors located at points in the noise flield where the signal
is very weak or undetectable, . This input 1is filtered and
subtracted from the primary input containing both the signal
andthe noise. . As a result, the primary noise attenuated or
elliminated by cancellation, .

If done improperly, subtracting noise from a re-
celved slignal, would result in an increase in the output
noise power. . However when the filtering and subtraction are
controlled by an appropriate adaptive process, noise reduc-

tion if not complete noise elimination, can be acomplished. .

Adartive filtering may not be applicble in all of the
filtering situations. . This adaptive filtering would not be
possible when, for example, the reference noise input is
unavailable. . In circumstances where the adaptive noise can-
celling. is applicable, the 1levels of noise reduction are
often attainable, that would be difficult to achieve in di-
rect fllitering, .
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In the noise cancelling systems, the system output
Z25+n0-Y should be a best fit in the least squares serise to
the signal S, This is acomplished by feeding the system
output back to the adaptive filter and adjusting the filter
through an LMS adaptive algorithm to minimise the total sys-
tem output er, Thus the system output serrves as the
error signal - r the adaptive process.,

THE LMS ADAPTIVE FILTER:

The LMS adaptive filter is the basic element of
the adaptive noise cancelling systems., . The principal compo-
nant of most adaptive systems is the adaptive linear com-
biner shown in figl.1l. . The combiner weighs and sums a set
of input signals to form the output signal. The input sig~
nal vector X is defined as:

 %o;

o= |

X5 )

The input signal componants are assumed to appear
simultaneously on ail input lines a discrete times indexed
by the subscript ';'., The componant X is a constant nor-
mally set to 1 unless biasing is desired. The weighting
coefficients WO,W1,W2...Wn are adjustible as shown In fig
1.1. The weight vector is:

(W,

Where WO is the bias weight. . The output Y Is
the innerproduct of W and X o

That is: v(j)=x§w=w7xj

Error e(j) is defined as the difference between
the desired résponse d(j) and the actual response Y(j). In
the nolse cancelling systems, d(j) is the primary Input it-
ge’f. .

e(j)éd(j)-x§y=&(j)-u7xJ
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The adaptive algorithm has to adjust the weights
of the adaptive linear combiner to minimise the least mean
square error. The adaptive linear combiner aong with the
tapped delay 1line forms the adaptive fllter shown in fig
1.2. As before, the input signal vector is:

j-n+l

The componants of this vector are delz2yed versions
of the input signal X . This filter permits the adjust-
ment of gain and phase at many frequencies simultaneously.
The total length of the delay line is determined by the re-
ciprocal of the desired filter frequency resolution.

ADAPTIVE NOISE CANCELLER AS A NOTCH FILTER:

The notch filter is required in the situation
where the primary Input is corrupted by an additive unde-
sired sinusoidal interference. . A notch filter can easily
realised by an adaptive noise canceller. . The advantage is
that it offers easy control of bandwidth and the <capability
of tracking the exact frequency of interference.

Fig 2 shows the single frequency nolise canceller
with two adaptive welights. . The primary input is assumed to
be any kind of signal-- periodic or transient or stochastic
or the combination of these. The reference input assumed to
be a pure sine wave € cos(w0+g ). . The primary and the
reference inputs are digitised at 2+pi/T rad/sec sampling.
The reference input is also phase shifted by 90 deg and
again digitised. .

Fig 3 is the flow diagram. It shows :he:operat}on
of the 1LIMS algorithm. The weights are updated as shown in
the diagram by,

wil(j+1)=wT1(j) r2ue(j)A(j}
wT2(j+1)=wT2(j)+2ue(;)B(j)
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where e(j) is the error

The reference inputs are:

A(j)=Cecos(w0 j T +tg)
B(j)=Cxsin(w0 j T )

The isolated impulse response from the error e(j)
to the filter output is obtained with the feedback loop from
poit 'D' to point 'B' being assumed to be broken. .

Let an impulse of amplitude 'a' be applied at the
point of error signal that is at point 'C' at a discrete
time j=k.

S Gl A

That is: at i=0, e(j)=a;
i.e. e(j) =a = dli);
and (i) = i for | = 0;
dCir=0 for i = o;

A i R

Therefore e(;) =a+ 4G - k) --(3)

The response at point 'E' is then: lgff,

e(j)*A(j) = a » C cos(w0 kT+g ) for j=k

0 for j = k

This is the input impulse scaled in amplitude by

the Instantaneous value of A(j) at j = k,

_-The signal flow path from the point 'E' to point
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'F'Y is that of a digital integrator with transfer function
of 2u/(z-1) and the impulse response 2*}:* U{j-1) where U(J)
is the discrete unit step function.

The response at point 'F' is obtained by convolv-
ing 2u = U(J=-1) with e(j)A(j).

i.e. . A(j) = 2}: 3 C cos(wlC kT+ 2 ) where j>k+l -{5)

This step function which was scaled at 't' and de-
layed at 'F' is now multiplied by A(j)to yieid the response
at 'G' as

y1(j)=2uaCcos(w0;jT+ # ) cos(wOkT+ g) -(6)

where i 2= kel

~ the response at point 'K' is also obtained. The
signal flow path from point 'H' to point 'I' would show an
impulse response of 2u U(j-1) with U(j) being the step func-
tion. The response at point "1' is then

Bi=2p a C sin(wd kT+ g) -=(7)
where j 2 k+l

This again is muitiplied by Bj to obtain the response at °‘K'
as

¥2(3) = 2p a Csintwd jT+ §) sin(wo kts ) -=(8)
where i 2= kel

The combination of Y1(j) and Y2(j) yields the response at
the filtter output point ‘D' as

Y{(;) = 2}1‘ ‘a czcos wOT(j=-k) -=-(9)

=2paC’ U(j-k=1)cosWOT(5 k)  ==(10)

This is a time invariant iﬁg;sfg; response which is
proportional to the input !Mb&!sé.»—. The Linear transfer

= ) gfi ;‘i

i
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WY, W i

g, 0

P
Wt




O

A iy W

PAGE 12

function for the noise canceller can now be derived as fol-~
jows. If the time k is set to zero, the unit impulse res-
ponse from the point 'C' to 'D® is

2
Y(3) = gp C U(j~-1) cos (wD 37) --(11)

The transfer function of this path is

G(z)=2uC2(z(z—C°s{wOT) _ l}

(22—22cos (on) +1
=2uc2{'zcos(wo'r) -1 }

2

z —chos{wo'r) + 1

This function can be expressed in terms of radian sampling
frequency L2 = 2 pi/T as

5 { 2 cos(2Ww .Q.-l) -1
G(z) = 2uC o
22 - 22 cos(Z‘H‘wo.Q.—l) + 1

if the feed back point from 'D' to 'B' is now closed, the
transfer function H(Z) is obtained from the formulae H =
G/(1+G) as

22 + 22 cos (2w .Cfl) -1
H(z) = o

(22 -2z cos(ZTwo.ﬂ.-l) + 1

Equation 15 shows that the single frequency nolse canceller
has the properties of a notch filter at the reference fre-
quency w0 .This is also shown experimentally. .

APPLICATIONS:

There are a variety of practical applications such
like the cancellation of Noise in speech signals, cancella-
tion of antenna sidelobe Interferenceé cancellation ¢f sev-
eral kinds of interferencz in Electrocardiography etz.. . The

simulated experiments and their results will now bYe shown..

Thesé would indicate the use of the adaptive noise canceller
in various environments. .
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Filter 1 is the hypothetical case where varlous
fixed frequencies are present and the undesired frequency is
to be cancelled. Consider an input of fixed signals at
60c/s, 350c/s, 400c/s and 450c/s. . If the 60 ¢/s signal Is
to be elliminated, the program for Fiiter 1 is shown along
with the output plots for the filter.

Filter 2 is another form of notch filter. . This
removes the 60 hz signal from a primary input of varying
frequencies. . Signal varying frequencies in the range of 300
hz to 800 hz and 40 hz to 70 hz are generated as the primary
Input to the fitter. As before the 60 hz will be removed
edaptively. . The Filter 2 and it's output plots ae shown.

Adaptive filter is eaually applicable to filter
any type of varying signals and varying frequencies. . This
is shown by Filter 3. . The primary input has the signal In
varying freqs as before and the lower frequencies in the
rage of 40 hz to 70 hz are completely eliminaed. The res-
ponse for Filter 3 is also shown .
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FILTER 1:THIS FILTER HAS FIXED PRIMARY INPUT FREQUENCIES
AT 60HZ,35CHZ,U00HZAND u50HZ WHHICH ARE ALL
SINUSOIDAL. .THE GOHZ !S BEING CONSIDERED AS THE NOISE
FREQUENCY TO ABE REMOVED ADAPTIVELY.

THE OUTPUT IS A PLOT OF POWER SPECTRUM IN DB. .

THE FILTER /P AND O/P PLOTS ARE EXACTLY IN SAME SCALE

khkkkdkkkhhkhhkhthhhhkhkbhthhkrhhkkkhkkhhhktrrhkhrkrhktrhrrrrrtrkrrrd
COMPLEX P1,P2,X2,X3,Xl,X6,X7,X9
COMPLEX Y1(257),S(257),RF1(257),RF2(257),X1(257)
T=0. .

P1=(0.,0.).

T2=0.

P2=(0.,0.).

X2=(0.,0.),

X3=(0.,0.),

X4=(0.,0.).

X6=(0.,0.).

X7=(0.0.).

X9=(0.,0.).

‘DO 9 1=1,257

Y1(!3=(0.,0.).
RF1(1)=(0.,0.).
RF2(1)=(0.,0.).
X1(1)=(0.,0.).

CONTINUE

A=0.

F=350.0.

DO 1 1=1,256

------ PRIMARY INPUT —==~=ow=-
IF(1.GE.75) F=h09.0.
IF(I.GE.175) F=u450.0
A=15,0%SiN(T)

B=3.0*SIN(T2)

P1=CMPLX(A,0.)
P2=CHMPLX(8B,0.).

S(1)=P1+P2
T=T+2.%3.1hxF/1000.0.
T2=T2+2.0%3,14%60.0/256.0.
CONTINUE

T=0. ,

DO 2 1=1,256

- A=2.0*SIN(T)
RF1(1)=CMPLX(A,0.)
T=T+2.0%3.14%60,0/256.0,
CONTINUE

T-; * )

A=0, .

DO 3 I=1,256
A=2,0+COS(T)
RE2(1)=CMPLX(A0.)

s Aot B o

|
_§
;?;




Filier l:contd

T=T+2.Q*3.Lh*60.&/256.a

CONTINUE

==~THE FILTER~~~~

Y1(1)=(0.,0.)

DO 5 1=1,256

X1(1)=S(1)-y1(1)

X2=X1(1)*RF1(1)

A2=X2%0,125

X6=X7

X X7=X2+X6

: L2=XT*RF1(1)

X3=X1(1)*RF2(1)
X3=X3%0.125
Xg=X4

Xb=X3+X9
X3=XuxRF2(1)
Y1(l+1)=X2+X3

5 COMTINUE
{M=8
CALL FFT(X1,IM)

CALL FFTC(Y1, 1)
CALL FFT(S,IM)

c S(1) PRESENTLY HAS THE FFT OF 1/P S(1)
D0 50 1=1,25¢
GG=REAL(X1(I))**2+AIMAG(X1(I))**2
1G=GG/10060.0,

A1(1)=CMPLX(GG,0.0)
GK=REAL(Y1(I))**2+A1MAG(Y1(S))**2
GK=GK/1000.¢0,

Y1(1)=CMPLX(GK,0.)
PP=REAL(S(l))**2+AIMAG(S(l))**2
PP=PP/1000.0,

. S(1)=chpLx(prpP,0.),

§ 50 CONTIiNUE

g CALL INITT(120)

- CALL PLOTS(I1BUF1,5)

N

g i

O i g g

D e o

C CALL AX1S(0.,0.,'X AX!S',-G,IO.,D.pO.pl.L
c CALL A¥15(0.,0.,'Y AX!S',G,&.NQO.FO.pl.l
558 FORMAT(14)
WRITE (1,660) >
660 FORMAT(' ','TO START THE PLOT, HIT RETURN ')
READ (1,558) IED
X=0.

CALL PLOT (0.0,0.0,~3)
DO 303 I=1,128
Y=REAL(S(1))
X=X+6
1C=2 _
CALL FACTOR(0.01)
; CALL PLOT (X,Y,1Z)
303 CONTINUE
c P.S. OF 0/P (G(1)) 1S PLOTTED




Filter 1l:contd

X=0. ,
READ (1,558) 1zZK

: C CALL AX1S(0.,0.,'POW SPEC',8,9.,0.,0.,1.).
: c CALL AXIS(0.,0.,' ',1,8.,90..0..1.5.

: CALL PLOT (0.0,0.0,-3)

: DO 90 1=1,123

: Y=REAL(X1(1))

: IC=2

X=X+6
CALL FACTOR (0.01)
CALL PLOT (X,Y,IC)
90 CONT | NUE

CALL ANMODE
CALL FINITT(0,0)

: STOP

: END

&
2
=
3
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FILTER 2: THIS FILTER HAS A PRIMARY [HPUT OF VARYING
FREQUEMCIES 1M THE RANGE OF 0C/S TO 70C/S AND

300 C/S TO 800C/S. THE FREQUENCY OF THE GENERATED SIGNAL
IS COHNTINUOUSLY VARYING SINUSOIDALLY.

THE AMPLITUDE VARIATION OF THE SIGNAL IS ALSO SINUSOIDAL
60C/S IS ASSUMED TO BE THE MOISE FREQ TO BE ELLIMINATED
THE OUT IS A PLOT OF POWER SPECTRUM IN DB.

THE /P AND G/P PLOTS ARE IN THE SAME SCALE

IR R A R R R A R R R R R R R R A R A R R R R R R R R R R E RS 2 A EEZ X2 E S RS R X
COMPLEX P1,P2,X2,X3,X4,X6,X7,%9

COMPLEX Y1(257),5(257),RF1{257) ,RF2{257),X1(257)

T=0.

P1=(0.,0.)

T2=10).

P2=(0.,0.)

X2=(0.,0.)

X3=(0.,0.).

=(0.,0.)

X6=(3.,0.)

X7=(0.,0.).

X9=(0.,9.)

DO 9 1=1,257

Yi(t)=(0.,0.).

RF1(1)=(0.,0.)

RF2(1)=(0.,0.)

L1(1)=(0.,0.).

CONTINUE

A=0.

u=0.

GA=0.0

U2=0.0 ;
GA2=0.9 H
------ PRIMARY INPUT (NOISE CURRUPTED)-=----

DO 1 1=1,256

U=U+4.0

GA=U/100 S
F=400.0+(SIMN(GA)Y*x100.0) C
U2=U2+1.0 s
GA2=U2/100.0.
F2=60.0+(SIN(GA)Y*10.0)
A=5,0*STHN(T)
B=3,0+*SIN(T2)
P1=CHMPLX(A,0.)
P2=CMPLX(B,0.)
S(1)=P1+P?2
T=T+2.%3.14%F/1000.0.
T2=T2+2.0%x3,.14xF2/256.0
CONTINUE

A=0. .
T=0. .




filter 2:contd
DO 2 1=1,256 !

A=2.0*SIN(T)
RE1(1)=CMPLX(A,0.)
T=T+2.0%3,14*60.0/258.0
CONTINUE

------ PHASE SHIFTED REFERENCE INPUT------

<y N

0 3 1=1,256
A=2.0%COS(T)
RF2C1)=CMPLX(A,0.)
T=T+2.0+3.14%60.0/256.0
CONTINUE
----- THE FILTER--=-~
Y1(1)=(0.,0.).
DO 5 1=1,256
X1TCHY=s(1)-y1(1)
X2=X1(1)=RF1(1)
X2=X2+0.125
X6=X7
X7=X2+X6
- X2=X7+*RF1(1)
X3=X1(1)*RF2(1)
X3=X3%0.125
X9=Xh
Xb=X3+X9
X3=Xu4*RF2(1)
YI(1+1)=X2+X3
5. CONTINUE
iM=8
CALL FFT(X1,iM)
CALL FFT(S, M)
C S(1) PRESENTLY HAS THE FFT OF /P S(1)
DO 50 1=1,123
i GG=REAL(XI(I))**2+AIMAG(X1{1))*%?
PP=REAL(S(1))**2+AIMAG(S(]))*#2
- 520 FORMAT(?® ','lNPUT=',UX,E1&.5,10X,'0UTPUT=',QX,E1Q.5)
S(1)=CMPLX(PP,0.)
X1(1)=CMPLX(GG,0.0)
50 CONTINUE
CALL INITT(120) )
CALL PLOTS(IBUF,1,5)
CALL PLOT (1.0,1.0,-3)
WRITE(1,660)
READ(1,558) I1ED

YN

M

c CALL AX1S(0.,0.,'tHPUT POW SPEC IN pg',~20,9.,0.,0.,100.).
c CALL AXiS(0.,0.,.! ',1,7.,90.,0.,1.).
558 FORMAT( 1)
660 FORMAT(' ','TO START THE PLOT, HIT RETURN ')
) X=0. .
c CALL PLOT (1.0,1.0,-3)
1C=2

DO 303 1=1,128
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Filter 2:contd

PP=REAL(S(1))
PP=20.0+LOG10(PP)

Y=Pp

X=X+3

CALL FACTOR(0.02)

CALL PLOT (X,Y,IC)

COMT I NUE

P.S. OF 0/P (G(I)) IS PLOTTED

X=0. .

READ (1,458) 1ZK

FORMAT(14)

CALL PLOT (1.0,1.0,-3)

1C=2

CALL AX!S(0..0.,'POW SPEC IN DB',-14,9.,0.,0.,1.)

CALL AX1S(0.,0.' ',1,7.,90.,0.,1.)

CALL PLOT (1.0,1.0,-3) -

DO 90 1=1,128

GG=REAL(X1(1))

6G=20.0*xL0G10(GG)

Y=GG

X=X+3

CALL FACTOR (0.02) 1
CALL PLOT (XY,I1C) i
CONTINUE ]
CALL ANMODE

‘CALL FINITT(0,0)

sToP

END

e MR
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90

PP=REAL(S(1))
PP=20.0+L0G10(PP)

Y=PP

X=X+3

CALL FACTOR(0.02)

CALL PLOT (X,Y,IC)
CONTINUE

P.S. OF O/P (G(1)) IS PLOTTED
X=:. .

READ (1,658) 17K
FORMAT (1)

CALL PLOT (1.0,1.0,-3)
1C=2

Filter 2:contd

CALZ AX1S(0..0.,'POY SPEC IN bB',-14,9.,0.,0.,1.)

CALL AXIS(0.,0.". ',1,7.,90.,0.,1.)

CALL PLOT (1.0,1.0,-3)
DO 990 1=1,128
GG=REAL(X1(1))
GG=20.0*L0G10(GG)

Y=GG

X=X+3

CALL FACTOR (0.02)
CALL PLOT (XY,IC)
CONTIHUE

CALL ANMODE

‘CALL FINITT(0,0)

STOP
END

§§
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CALL AX1S5(0.,0.,. ',1,7.,90.,. erll)

00 303 1=1,128

filter 2:contd
DO 2 1=1,256 ! “reon

A=2.0+SIN(T)

REICH)=CMPLX(A,0.)
T=T+2.0*3,14%60.0/256.0

CONTINUE

------ PHASE SHIFTED REFERENCE INPUT-—=-—w

A=0.

DO 3 1=1,256

A=2.0%COS(T)

RE2(1)=CHPLX(A,0.)

T=T+2.0%3.14%60,0/256.0,

CONTINUE

----- THE FILTER-~~~

Y1(1)=(0.,0.).

DO 5 1=1,256

X1C1)=SC1)-Y1(1)

X2=X1(1)Y+RF1(1)

X2=X2%0,125

X6=X7

X7=X2+X6

X2=X7<RF1(1)

X3=X1(1)*RF2(1)

X3=X3+0.125

X9=X5

Xb=X3+X9

X3=X4xRF2(1)

YI{}1+1)=X2+X3

CONTINUE

IM=8

CALL FFT(X1,IM)

CALL FET(S,iM)

SC1) PRESENTLY HAS THE FFT OF 1/P S(I)

DO 50 1=1,128

GG=REAL(XT(I))**2+ATMAG(XI(1) ) #%2 _
PP=REAL(S(1))*+2+AIMAG(S(]))#2 _
FORMAT (' ';'lNPUT=',hx,Elu.3,1ox,'OUTPUT=',ux,Elu.5) =
SC1)=CMPLX(PP,0.) o
X1(1)=CMPLX(GG,0.0) £
CONTINUE i
CALL INITT(120) )
CALL PLOTS(IBYF,1,5) -
CALL PLOT (1.0,1.0,-3) '
WRITE(1,660)

READ(1,558) IED

CALL AX1S(0.,0.,'IHPUT POW SPEC IN DB',-20,5.,8.,0.,100

o

«

Y
FORMAT( 1)

FORMAT(' ','TO START THE PLOT, HIT RETURN ')

X=0. .

CALL PLOT (1.0,1.0,-3)

c=2
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FILTER 2: THIS FILTER HAS A PRIMARY HIPUT OF YARYING
FREQUENHCIES Il THE RANSE OF E0C/S TO 70C/S AlD

300 C/S TO 800C/S. THE FREQUENCY OF THE GENERATED SIGNAL
IS CONTINUOUSLY VARYING SIHNUSOIDALLY.

THE AMPLITUDE VARIATION OF THE SIGNAL 1S ALSO SINUSOIDAL
60C/S IS ASSUMED TO BE THE HOISE FREQ TO9 BE ELLIMINATED
THE OUT 1S A PLOT OF POWER SPECTRUIA {N DB.

THE /P AND O/P PLOTS ARE IN THE SAME SCALF

**'k'ki:'.\'**'.“'k*****:‘t**i’****i‘***************i***i’***********
COMPLEX PI,PZ,XZ,XS,XQ,XG,X7,X9

COMPLEX Y1(257),S{257);RF1(257),RF2(257),X1(257)
T=0.

P1=(06.,0.)

T2=10,

P2=(0.,0.).

X2=(0.,0.).

X3=(0.,0.).

X=(0,,0.).

X6=(0,.,0.)

X7=(0.,0.)

X9=(0.,3.).

DO 9 I=1,257

Y1(1)=(0.,0.),

RFIC1)=(0.,0.),

RF2(1)=(0.,0.).

X1(1)=(0.,8.).

COMTINUE

A=0.

R

------ PRIMARY INPUT (NOISE CURRUPTED)-=-~- R
DO 1 1=1,256 . -
U=U+4.0

GA=U/100
F=h00.0+(SIN(GA)*100.0)
U2=u2+4.0

GA2=U2/100.0
F2=60.0+{SIN(GA)*10.0}
A=5.0*SIN(T)
B=3.0+SIN(T2)
P1=CHPLX(A,0.)
P2=CMPLX(B,0.)
S(1)=P1+P2 .
T=T+2.+3.14+*F/1000.0. )
T2=T2+2.0+3.16+F2/256.0
CONTINUE

A=0, .
T=. .

| SRR LR
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Appendix C

A VLSI Residue Arithmetic Multiplier, IEEE Transactions of Circuits
and Systems, W.K. Jenkins Editor, revised paper acceptea for
publication, approx. 10 pages.

Large Multiplier Multipliers, ICASSP 380 Proceedings Denver,
Colorado, April 8-11, 4 pages.

Large Moduli Multipliers, 1980 International Symposium on
Circuits and Systems, Houston, Texas, April 28-30, 3 pages.

A New Technique For WFTA Input/Output Reordering, Interratinnal
Journal of Computer and Information Scierces, J. Tou editor,
acceptad tor Vol. 10, Number 1, approx. 15 pages.

The Realization of Adaptive Kalmen Filter, pending ACTA, M. Hamza
Editor.
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LARSE HOLULE MLLTIPLIESS

f.ed J. Taylor

Jepartzent of Electrical and Computer Enginvering
Lnivarsity of Cincinnati, Cincinnati, Ohio 45221

ASTRALT

{n th:~ work .« present a new %able loCk-up
stoura,» scheme ang 3 ¢lass of taole look-up
rwltioliers capable of acrking with exact

{ qdq\ar) nuubering sysiums

“emor, savings associsted with the neu look-up
multipiie~, when compared to contemporary
netnods, are shown to Le on the grier of. 2/
shere %227 nsinput worllength. Througnput is
sucwn to be ensal =o that ootained using YLSI
and classic architectures.

ntrodyciion:

7:qita? signal pracessing 15 a study underygoing
accelerated growtn, acceptance, and applicition.
d1h the possible exception of number theoretic
t=ansforms, digital signal processing has b.en
principally advanced through technological
acnievements. These incluce the wicroprocessor,
low cost high performance mewory, and the read
only memory (ROM). The availability of the ROM
has chailenged our traditional attitude towards
performing digital arithmetic. In particular,
the art of fixed point multiplication has under-
gone a partial wetamorphosis through tne use of
ROM based table look-ups. Since muyltiplication
nas been a principal speed-cost-and complexity
lTimitation to digqital filtering, advancements

in this area have been warmly raceivad.

EXISTLAG LOOK-UP ARTTHHMETIC TECHNIQUES:

Mach of the reported work on ROM based fixed
point myltiplication has been in suppor: of

Yinear shift invariant digital fiitering. Authors
such as Jenkirs and leon, Soderstrand, etc., have
studied the cost-speed metrics of digital filtars
using the residue numbering system. The principa)
advantage of the residue nuwbering system is lhat
supporte fixed point multiplication and addityon
Archout need of preserving "carry information”.
Thus, paraliel operaticns are idnissible. In
adaition, modular multipliers were shewn to be
realizable using table jook-up methods and ROM's.

Jenkins recently questioned wnetner the perform-
ance of tne residue numoering system was due to
the intrinsic properties of the system or the use
of look-up multipiiers. 1t was concluded that “it
appears that .ner ny rounding (s5¢aling) is

roquired, the resigue structure always provides
better performance with regard to vuitiplication.
ahen a1l multiplications must be roundud, the 2°5
comolement structure provides betier performance.
Sinc~ most non-trivial filter and transform
applications requise a high plurality of multiply
and ac¢d operations (almost always insuring the
overflow 0f the limited integer dynamic ranges
¢urrently being implemented (<19 typ.)) the
tuture cf residue based digital system may apoear
iimited at first glance. ‘We shall, in tnis work,
prasent scme new results which overcome this
contemporary deficiency and i1 fant make the
potential of mrdular arithmetic systems even more
ex¢iting.

Residue ALU's

The disadvantaqges of the residue rumber systems
are manifold. Since the RMNS possess no sioni-
ficant digit, decimal to residue conversion,
division, magnitude comparison, and arithmetic
shift cperations are cumbersome and snould be
avoided. Register overflow, due to its finite
dynamic range, impose a severe cnnstraint on lne
RNS operations. Unlike weighted numbers (decimal,
binary, etc.) where rounding or truncating least
significant digits can control overflow, such is
net the case in the RNS. Since therz is an
1bsence of least significant digits, the more
veneral and wnefficient operation known as scaling
must be used. Since szaling is a form of division,
1ts yse should be discourages. To jyin insignt
1nto this problem, consider the inner product of
two 31-dimensional real vectors x ard y whose
entries are eacoded as residue digits with respect
to P={32,31,29,27}. Without scaling, the dynamic
range of x and y would be limited to V-2 where
V={M/2)/31=25056. Therefore, to insure that no
worst_cgse sverflow can occur, a 7.3-pit (ie: V7=
158327- } dynamic range limitation must be imposed
on X and y, With scaling, larger input ranges can
be ysed at the expense of statistical accuracy in
the output space {analogous to roungoff errors).

oue to the dynamic rance of RNS systems, one i3

generalls forces to accept one of the following
two overflow prevention strategies.

1. Increase the dynamic range to a sufficiently
large value by adding nore moduli to =, or

2. “ake scaling a more efficient operation.

The first nptina reprosents a hruts Farca ardaek

o0 ihe problen. Such an approacn will increase %o

£
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£05t and complaxalty ~etpics g7 A Silter. 0
addicion, tue moculi set © wust Le tarlgrad o 2
unique filter. Tne otier zjuroacn jopears to oe
the =ost popular at tmis time. Szabo and
Tanaka, and others, nave coacentrated on the
5calan efficiency through fhe choice of the
three-typle modul{ set 22(2%-1,27,2™13, This
woduli set has tne ability to efficiently scale
3 residye number by any one of the crosen moduli.
Howeve' , there is an intrinsic limitation
plaguxng this method and it is 1t dynamic
range. Using a large high-speed memory unit,
sdy 1§xl‘ the input addressing space is limited
£ 2 This means that a godulx p; is
‘ecnnrcally limited to o, =20 Lie: v, &y <2‘2)
inerefore, the dynamic rang of any Tmodular
cperatuon is given by N=(2 1)12"\:*"+1\‘43" 213,
in many apol\catnons, an 13-b3t resolution is
fnsutficient resolution.

Jlew Results

40 new mewory efficient alqorithms have been
Jerived and is Sased on 2 rovel factorization
of 4 bilinear form. Over a real frald it i;
vovious “nat

~
xy=((x+y)/2)%-((x-¥)72)° 1.
which *n modular form, becomes
<Ry > =<a(s*)-§(s')‘ 2
y p p .

where ¢(s)=<sz>o with s*=(x+y)/2 and s =(x-y)/2.

At first glance this algorithm, which shall be
referred,to as a minimal memory modular multi-
plier (M), would appear to be counterproductive
with respect to a memory conservation metric.
The memory requirements associated with the M4
#i11 be shown to be substantially less than
those of direct mechanizations. First, it should
be apparent that the integer s* and s~ fouqd

1n 2guation 2 is bounded fram above by 2°°
Therefore, only a (n+1)-bit tablg address1nq
space i3 requ\red to realize H(s-) versus the
2n-bit space needed for direct architectures.

It would appear however, that there is an
»xceptlon to thlS rule. Since one of the moduli
cnosen is p= =2M+1_ Here the maxiwal value cf
s*(or 57) is 2" which would technicilly
require a (n+2)-bit address. Howaver, by using
tne orntecsl found in figure 1, the table size
can be reduced to 2™ words for all moduli.
Here, the 0vgr*low biv serves to differentiate
s-=0 from 2"

The o system arch\tectuse is abstracted in
Figure 2. This uses 2""' yrd high-sneed memory
for modular arithmetic look-up cperations. Ysing,
for example, the previously referenced 4K-20ns
davice, moduli having an 11-bit dynamic range
{vs. 6-bit in the direct form) can be mechanized.
This would yield Lhrnn-mgdul1 dynamic ranga en
the order of 2°\} «a 6+10" That is, without

an increase in memory size {and ¢ ernforn arcesi
tims), the dynamic range of the W' is 233/218:215
times larger than that obtainable through direct
reans! This larg2 increase in gynamic range
wakes the RHNS a viable altermative to traditional
filter d2sign methods. 3otn improved precision

nd trrny gy "'!r“u‘h the rzduction or oabsence
%€ wraditieral 3caiing gperations? can be
achiaved. finally, several versions of tne ad
ilaorithm can be congidered  They ire surmarized
in figure 3,

upon ¢loser insestigation of the table look-up
33t3 base, a Fn:mzr:tin nyizance can be found. It
can be ewmplifiad 3] obsersing that if <-=9,
p=32, then b\:‘) <9¢/d> «-20 23. Therefore, it
may be required that t«d“additional fractional
bits Tay need to be 3dded to the table's output
word length. However, this is not the case as
suggested by the following thecrem:
Theorat: L2¢ ":vil de"ctﬂ the integer value of v.
Tren 2‘<ij${s Y-its{sT) s

That is, only ‘ne integer value of » neod Se ysed
and the fractioral bits of 4(s-) can be ignored.

Proof: Let [x+y)/23vk/2; (x -y)/24q+b/2 where
k=0 or 1. Then z=<<(xty) /4» -
<lyey }‘f4>psei <vrky+b /;>3-<Q#kvtk)/4>p>p
ERATE S ~ T -+ - H -
rx.'ak,u q<q>pb,’>p<¢.(s
s )>9

As a result, the carallel architecture is equiva-
lent to that shown in figure 4.

Modulo p Adder

The e multiplier requires a modulo p adder te
used to combine the two component parts of the
solution (namely &{s*) and »(s”)). Modulo p
adders pose an interesting design problem

Unless a fast modulo p adder can be fabricated,
the overhead associated with addition will offset
any gain in throughput achieved through table
look-ups. For the mcdulv chosen, 2%-1, 2%, and
2041 oniy the modulo 2% adder can be realzzed
d\rnctly {n-bit adder with ignored overflow). It
would however, be desirable to use a n-bit adder
to realize the modula 27-1 and Z"+1 adder as well.

Using n-bit AND gates to sense the zero condition
of <s>,M, the overflow bit OVF, and the sign bits
of ¢(§+) and 3(s7), a combinational logic
routine can be defined which will convert <s>24
into <s> It can be noted that the mapping
requ.remgﬂts are

1. for p= 2 .1 map s to 5 or S- ZJ+] <<S>2N+‘)2f
2. for p=2", map s to s-2"=<s> .

3. for p=2'+1, map s to s or s-2112¢cs> w1,
2“ 7-‘

Supbose the woduli p=2 "e1, n=12, ¥5 to be ruple-
mented. Dy using bwo co%merci¢i1y availadle
1553 PLA's in sarallel, the 12-bit outcome of an
n-bit adder and the four control bits, can te
converted to 13-bit mask., The mask would trans-
form the utput of g hiah-speed n-bit adder to

5 or s-2"-1, depending on the state of the 4

. control btts. Based on § 25-ns 12-bit Schottky

look-ahead adder, a 20-ns 16x9 PLA, and 10-ns
CET ~a5k switches 1 £5-n3 icdulo 5 adder, for
pe2"-1. 20, and "¢l can be realized. The

o ot Wb ek ¢ o A | e B 0
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orasence of a 55-a5 modyisg 2 1daer 4ill ngv alle
a4 128-ns lirge modult residue ~ultipiier %3 te
based on 35-n d/xl ?305 *n*or/ gnits. far 3
roduli set 1212.y, 21¢ 2u1: v 3 fized point
.4ltzﬂ$1 » having an :u:put J/ﬂamic range ¢
230212 "¢3n taus be famricated having 3 word
rate of 7.1431 multiplicatinns oer second or
23.54 multiplications per second if 3 pipe-
lined architecture is used.

Summary:

The residue number system offers the polential
for high speed paralle! aritimetic. This class
of arithmetic has been demonstrated to be useful
in designing recursive 3ljoritims, t-ansforms,
and digital filtars. Cne of the principal
limitations to it5 yue is its limited practical
dynanic rance. To overcore this problen, 3
large modul\ multiplier, for the moduli set
(2721, 2", 2™1}, was desiqned. 1nts high-spead
large mcdu11 system was the product of Lhe new
i algorithm and new technologies {RAI and PLA's)
The practical resioue multiplier is capabl: of
suppcrting 8 pigelined execution ratz of 28,54
nyltipliers par second.
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LARGE MODULY MULTIPLIERS

Fred J. Taylor

Department of Electrical and Computer Engineering
University of Cincinnati, Ciacinnati, Ohio 45221

ABSTRACT

In this work we present a new table look-up
storage scheme and 3 class of table look-up
multipliers capable of working with exact
{modular) numbering systems.

Memory savings associated with the new look-up
multiplier, when compared to contemporary
methods, dre shown to be on the order of 2/N
where N=2", n=input wordlength. Throughput is
shown to be equal to that obtained using VLSI
and classic architectures.

Digital signal processing is a study undergoing
accelerated growth, acceptance, and application.
With the possible exception of number theoretic
transforms, digital signal processing has been
principally advanced through technological
achievements. These include the microprocessor,
low cost high performance memory, and the read
only memory (ROM). The availability of the ROM
has challenged our traditional attitude towards
performing digital arithmetic. In particular,
the art of fixed point multiplication has under-
gone a partial metamorphosis through the use of
ROM™ based table look-ups. Since multiplication
has been a principal speed-cost-and complexity
limitation to digital filtering, advancements

in this area have been warmly received.

EXISTING LOOK-UP ARITHMETIC TECHNIQUES:

Much of the reported work on ROM based fixed
point multiplication has been in support of

linear shift invariant digital filtering. Authors
such as Jenkins and Leon, Soderstrand, etc., have
studied the cost-speed metrics of digital filters
using the residue numbering system. The orincipal
advantage of the residue numbering system is that
supgorts fixed point multiplication and addition
without need of preserving "carry information"”.
Thus, parallel operations are admissible. In
addition, modular multipliers were shown to be
realizable using table look-up methods and ROM's.

Jenkins recently questioned whether the perforni-
ance of the residue numbering system was due to
the intrinsic properties of the system or the use
of look-up multipliers. It was concluded that "it
appears that when no rounding (scaling) is

CHISSY - SIBAKRKY O7928KL.7S « 19R0 1P E T

required, the residue structure aiways provides
better performance with regard to multiplication.
When all multiplications must be rounded, the 2's
complement structure provides better performance.
Since most non-trivial filter and transform
applications require a high plurality of multiply
and add operations (almost always insuring the
overflow of the limited integer dynamic ranges
currently being implemented (<2'® 4yp.)) the
future of residue based digital system may appear
limited at first glance. We shall, in this work,
present some new results which overcome this
contemporary deficiency and in fact make the
potential of modular arithmetic systems even more
exciting.

Residue ALU's

The disadvantages of the residue number systams
are manifold. Since the RNS possess no signi-
ficant digit, decimal to residue conversion,
division, magnitude comparison, and arithmetic
shift operations are cumbersome and should be
avoided. Register overflow, due to its finite
dynamic range, impose a Severe ceastraint on the
RNS operations. Unlike weighted numbers (decimal,
binary, etc.} where roundiang or truncating least
sigrificant digits can control sverflow, such is
not the case in the RNS. Since there is an
absence of least siynificant digits, %he more
genzral and in¢cfficient operation known as scaling
must be used. Since scaling is a form of division,
its use should be discouraged. To gain insight
into this problem, consider the inner product of
two 31-dinensional real vectors x and y whose
entries are encoded as residue digits with respect
to P={32,31,29,27}. Without scaling, tge dynamic
range of x and y would be limited to V- where
v=(M/2)/31=25056. Therefore, to insure that no 5
worst_case overflow can occur, a 7.3-bit (ie: V-
w&g7-)dwmﬁcrmmelmﬁutwnmutbehwowd
on x and y. With scaling, larger input ranges can
be used at cie expense of statistical accuracy in
the output space (analogous to roundoff errors).

Due to the dynamic range of RNS systems, one is
generally forced to accept one of the following
two overflow prevention strategies.

1. Increase the dynamic range to a sufficiently
large value by adding more moduli to P, or
2. Make scaling a more efficient operation.

The first option represents a brute force attack
to the problem. Such an approach will increase to

[
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. the protocol found zn figure 1,

cost and complexity metrizs of a filter.

in
addition, the moduli set P must be tailored to a
unique filter. The otner approach appears to be
the most popular at this time. Szabo aad
Tanaka, and others, have cancentrated on the
sca!:ng efficiency through the chowce of the
three-tupie moduli set P={2"-1, 2P 2%+1).  This
moduli set has the ability to eff\caently scale
a residue number by any one of the chosen moduli.
However, there is an intrinsic limitation
plaguing this method and it is its dynamic
range. Using a large high-speed memory unit,
say ?ﬁxl. the input addressing space is limited
to 2 This means that a moduli pj is
rechntcal!y limited to p.<2° {ie: x, &y <2‘2)
Therefore, the dynamic rﬁnge of any nm&ular 3
operation is given by M=(2R-1)(2") (2"6!)»2«" 7' .
1n many applications, an 18-bit resolution is
insufficient resolution.

flew Results

Two new memory efficient algorithms have been
derived and is based on a novel factorization
of a bilinecar form. Over a real field it is

obvious that

xy=((x+y)/2)2-((x-y)12)? 1.
which in modular form, becomes
<xy>p=<¢(s+)-¢(5')>p 2.

where ¢(s)=<52>p with s*=(x+y)/2 and $"=(x-y)/2.

At first glance this algorithm, which shall be
referred,to as a minimal memory modular multi-
plier (M), would appear to be counterproductive
with respect to a memory conservation metric.

The memory requirements associated with the lﬁ
will be shown to be substantially less than
those of direct mechanizations. First, it should
be spparent that the integer st and s~ fou?d

in equation 2 is bounded from above by 2n*',
Therefore, only a {n+1}-bit tabl addresswng
space is required to realize $(s-) versus the
2n-bit space needed for direct architectures.

1t would appear however, that there is an
exceptlon to this rule. Since one of the moduli
chosen is p= 2“+ll Here the maximal value of
s’(or s7) is 2" which would technically
require 3 (nt+2)-bit address. However, by using
the table size
can be reduced to 2"*! words for all moduli.
Here, the ovgyflow bit serves to differentiate

. $==0 from 2"

“Tne 1® system archltectgse

o

-£an increase in memory Size (and

2 filter design methods.

is abstracted in
figure 2. This uses 2 word high-speed memory
for modular arithmetic look-up operations. Using,
for example, the previously referenced 4K-30ns
device, moduli having an 11-bit dynamic range
(vs. 6-bit in the direct form) can be mechanized.
This would yies? ? three-mgdu‘i dynamic range on
the order of 23(11)r8.6-10%. That is, without
ereforg acces§
time), the dynamic range of the M? s 23372182215
times larger than that obtainable through direct
means: This large increase in dynamic range
makes the RNS a viable alternative to traditional
Both improved precision
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throughput {thrcugh the reduction or absencs
3% traditional scaling operat:ons) can be
achieved. Tfinally, several versions or the ud
algorithm can be considered. They are summarized
in figure 3.

Bi

Upon closer investigation of the table look-up
data base, a potential nuisanca can be fognd.
can be exampii{ied y observing that if s-=9,
p=32, then 3(s-)=<3%/4> 2=20.?5. Therefore, it
w3y be required that ldg additional fractional
bits may need to be added to the table’s output
word length. MNHowever, this is not the case as
suggested by the following theorem:

Theorem:

it

Let ||{vl]| denote the integer value of v.
Then 2=<}fo(s")}]-11e(s7)] 1>,

That is, only the inteyer valug of ¢ need be used
and the fractional bits of ¢{s-) can be ignored.

Proof: Let (x+y)/28+k/2; (x-y)72%q+b/e where
k=0 or 1. Then z=<<(x4y)’/4>_-
<(x-j)2/4> >p <<u¥kv0b2/4>p-<2!kv+k2/4> >p
-<<vﬂw>p+k /4 <q+kq> ~b /4> -q»(s }-
os7)>,

As a result, the parallel architecture is equiva-
lent to that shown in fiqure 4.

Modulo p Adder

The M4 multiplier requires a modulo p adder be
used to combine the two component parts of the
solution {namely ¢(s*) and ¢(s”)). Modulo p
adders pose an interesting design problem.

Unless a fast modulo p adder can be fabricated,
the overhead associated with addition will offset
any gain in throughput achieved through table
look-ups. For the moduli chosen, 2%-1, 2", and
2"+, only the modulo 2" adder can be realized
directly (n-bit adder with ignored cverflow). It
would however, be desrrable to use a n-bit adder
to realize the modulo 2%-1 and 2™+1 adder as weil.

Using n-bit AND gates to sense the zero condition
of <s»,N, the overflow bit QVF, and the sign bits
of ¢(st) and ¢{s”), a combinational logic
routine can be defined which will convert <s> R
into <s> It fan be noted that the mapoing
requiremBts are

1. for p=2N-l, map s to 5 or s-2N+!=<<s> +1>

N N
N N 2 2
2. for p=2°, map 5 to s-2 =<s5> N

3. for p=2“vl, map s to s or s-2MN1=cess N-l> N
2 2
Suppose the moduli p=2“41, n=12, is to be imple-
mented. By using two comercially availabie
16x9 PLA's in parallel, the 12-bit outcome of an
n-bit adder and the four control bits, can be
converted to 13-bit mask. The mask would trans-
form the output of a high-speed n-~bit adder to
s or s-2"-1, depending on the state of the 4
control bits. Based on a 25-ns 12-bit Schottky
look-ahead adder, a 20-ns 16x9 PLA, and 10-ns
FCT mask switches.a 65-ns modulo p adder, for
p=2"-1, 2%, and 2"+1 can be realized. The
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presence of 3 65-ns modulo p adder will now allow
a 140-ns large moduli residue multiplier to be
based on 35-n? TKx1 H0S memory units. For i o pe—
moduli set {212-1, 2V¢  21211), a fixed point L/
myltiplier, having an output dynamic range of :
230-21¢, can thus be fabricated having a word
rate of 7,143 myitiplications per second or

28.5M multiplications per second if a pipe-
lined arzhitecture is used.

PELs z

ael
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Summary:

The residue number system offe:s the potential
for high speed parallel arithmetic. This class
of arithmetic has been demonstrated to be useful

in designing recursive algorithr,, transforms, SHUGAY COMPLSHION TR 3
and digital filters. One of the principal
limitations to its use is its limited practical Figure 1

dynamic range. To overcome this problem, a

large moduli multiplier, for the moduli set
{2n-1, 2", 2"+1}, was designed. This high-speed
large moduli system was the product of the new

M3 algorithm and new technologies (RAM and PLA's).
The practical residue multiplier is capable o/
supporting a pipelined execution rate of 28.5K
multipliers per second.
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REGISTZRS USED IN PIPLLINE CONFIGURATION

LARGE MODUL! MULTIPLIER




LARGE HODUL T MULTIPLIERS

FOR SIGHAL PROCESSING

by

F.J. Taylor

Universily of Cincinnali

Mbs trace

The residue number system has recently been shown to be a
viable signal processing media. However, it does possess limita-
tions. One of the most serious is overflow prevention through
magnitude scaling. One method of overcoming this defect is to
increase the dynamic range of the nuwbering system. To this end
a new high-speed large moduli multiplier has been developed. The
myltiplicer, which is the result of conbining the quarter squared
algorithm with recent breakthroughs in device technology. As
a result, equivalept 18-bit full precision products can be obtained

at a pipelined rate of 28.5M multipler per second.

This work was partially supporled under AFOSR grant FA9620-79-C-0066.
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1. IHTRODUCTION

Recently, the residue number sysiem (RHS) has received renewed attention

in the literature [1-3]. This mathematically mature study was, until the

present, in the background of digital system design because of its historic in-

ability of digital hardware Lo suppert RNS arilbmelic {4]. However, recent

breaklhroughs in Lhe area of read-only memory technology has significantly
altered this case. Using high-speed bipolar ROM's, the ability of the RNS

to support ultra high-speed digital filtering has been experimentally

demonstrated {5]. The question of decimal-to-residue 1/0 operations has also

been sddressed [6]. Hlowever, a major obstical to the cause of RNS fillering

has been register overflow protection. In order to guarantee that system

registers do not overflow during run-time, an inefficient operation referred

to as scaling has to be performed. If scaling were not required, RNS fillers

was shown to possess higher throughput rates than those obtainable using

distributed arithmetic (ie: bit-slice; ref [7]) [8]. However, when scaling

is required, the RNS architecture was shown to be at a disadvantage. It
should be remembered however that the distribuled arithmetic filter is a
constant coefficient device (ie: shift-invariant) whereas the linear RNS
filter is general (ie: variable coefficient). Therefore the RNS provides
the user with the versatility needed to péerform adaptive, optimal (ex:
minimal variance in a non-stationary stochastic environment), frequency
tuneable fillering which cannot be supported in a bit-slice confiqguration.
In this work, a new multiplier archi;ccture is developed which
significantly cnhances the case for RNS fillers by significantiy reducing
scaling overhead. The high-speed residue multiplier will be shown to
increase the dynamic range of the RNS to a value which either reduées the

nunber of scaling operalions to a small fraction of lheir original number
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or make scaling unnecessary. All this is accemplished without incrcasing
the menory budget over above that found in coniempcrary RHS designs.
IT. RHNS QVERVIEW
Interest in Lhe RAS is due to its ability to perform high-speed arith-
metic. Speed is achiaved through the use of a high degree of parallelism
and an absence of carry information requirements. These two attributes are
a byproduct of the fact that therc does nof exist a most (least) significcnt
residue digit. That is, all residue digits are of equal importance. More
specifically, if P is a moduli set such that P = {p},...,ptj, and the pi‘s
are reiatively prime, then if xe [-M/2, M/2), x is uniquely represented by
the L-tuple
x+(x},...,xL) 1.
with
X if;}i )

p.

X 1
) - X > !)t h{z)",:r‘lst:

3

i
I p;. The bilincar composition of

where <x>_ demotes x modulo p. and M =
P3 ! i=1

%‘
two integers, say xw(x],...,x‘) and y+(y},...,yL), is given by xoy (where
o denotes addition, subtraction, or multiplicalion) is given by
xay-»(xzoyl,...,xLoyL . 3.
It can be seen each residue digit, namely X;°¥; can be computed inde-
pendent of ¢11 olhers (ie: no carvy information requiremeals). In praclice,

the masping of X; and ¥; intlo X;o¥; is accomplished using Lable Tookups where

the tabie residue on randomly accessed read-only memory. Typical high-speed

memory modules, which are currently available, are:-




Device Type Technolngy Confiquration Access-Speed
143149 ECL 256y 20 n3
SH54S TTL 1024dxd 35 n<
21471-1 HEOS 40906x 1 30 ns
2125H-1 A0S 1024x1 2U ns
12167 HHOS 16384%] i5 ne

The producl of Lwo residues modulo Pis by ?'; can be precomputed and
stored in a 2"xn-bit memory unil where m=Zn. Using a large exisling high-
speed memory {4Kx1 at 30 ns), residues having up te six Bit integer values
can te used {ex: P = {64,63,...}}. Thus, fixed-point multipliers having 2
dynemic range of [-M/2,M/2) can be architected which have execution rates
in the low nancseconds.

The disadvantages of the residue numbier systems are menifold. Since
the RNé possess no most significant digit, decimal to residue cenversion,
division, magnitude comparison, and arithmetic shift operations are clumber-
some and shouid be avoided. Register overflow, due to its finite dynamic
range, impose a severe constraint on the RHS operations. Unlike weighted
numbers (decimal, binary, etc.) where rounding or iruncating least significant

digits can control overflow, such is not the case in the RHS. Since there

P

is an absence of least significant digits, the more general and inefficient
operation known as scaling must be used. Since scaling is a form of division,
its use should be discouraggd. To gain insignt into this problem, consider

the inmner product of two 31-dimensional real veclors x and y whose entlries

are encoded as residue digils with respect to P = {32,31,29,27). Withoul scal-
ing, the worst-case value of x and y would be limited to V's where

V= (1/2)/31 = 25056. Therefore, to insure that no worst case overflow

.5

can occur, a 7.3-bit (je: V7 = 158 %‘27'3) dynamic éange limitation must

be imposed on x and y. With scaling, larger input ranges can be used at
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addition, the moduli set P aust be tailored to unique filter. The other

approach appears to bo Lse most popular atb this time. Sazho and Tanaka,

and oté&rs,'kavé concentrated on the scaling efficiency through the choice
of the three-tuple moduli set P = {2 ‘
the ability to efficiently scale a residue nmumber by any one ef the chosen

moduli. However, there is an intrinsic limitation plauging this method and
it is its dynamic range. Using & large high-speed memory unit, say 4xl,
the input addressing space is limited to 2}2. This means that a moduli p
herefore, the dynamic

= z - - - { =
is technically Timited to p; < 27 (ie: Xi=y; < 2

=
n

range of any modular operation is aiven by

In many applications, an 18-bit resolutior is insufficient resolution.

ITI. Principal Resull

It is desivanle lo keop Lhe previously discussed thres moduli sivuclure

for purposes of potential scaling needs. However, in order lo overcome lhe

“existing disadvantages of this system,that of dynamic range, a new approzch

is called for. Since it is unrealistic to assure substantially larger

density high-speed memories- will continue to bocome available, it is

incumbent that nore memory efficient .esidue arithmetic unit be designed.
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An cfficient alaorithm, which is ideally suited for this application, is

known as the quarter-square miltiplier [9-117.

Over a real field it is obvious that
xy = ((xty)/2)° - ((x—y)/Z)Z q.

which in modular form, it becomes

(8]

¢ -
xy> = <p(s )-¢(s )>p
where &(s) = <52>p with s* = (x+y)/2 and s'='(x~y)/2.

Fhe. quarter-squzred multiplier has been studied by J.M. Pollard (1976) in

j<3]

Galnis field. Questions of hardware implemenlation wcre not considered and,
due to the Galois field Timitation, only prime moduli could be considered,
H. Hussbaumar (1976) studied the quarter-square multiplier over real fields
for usg in ROM intensive digital filters. Soderstrand and Tields (1977) made
brief reference to this multiplier for residue arithmetic but offered no satis-
factory hardware realization., In this paper, a practical residue arithmetic
auarter-squared multiplier will be architected using commercially available
hardware.

A problem that would scem to plauge the quarter-square multiplier is the
need to realize the division by (wg the sums and differences found in Lq. 4.
In general, the existance of an N—], such that <N—&>p=], can only be guaranteed
if N is realitively prime to p. Since one of the chosen moduli is p=2", multi-

plicative inverse of 2 cannot be guaranteed to exist. Therefore, equation 4

cannol be interpreled as thh equation <<]/4‘pi((x'y)z'(x‘Y)2>pi>pi' The polen~
tial problem of dividing the sum of differences, found in equation 4, by

2, will be explicitly and efficiently treated for the first time later in this
naper, For a M word memory unit, the direct product architecture (ie.: xy)

would Timit the maximal moduli to be bounded by Zn, n=m/2. In fact, this
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claim can be extended o the case wher: p = 2" through use of Lhe following
modification. Observe that if X; = 0, then it automatically follows that
<x1-y1.>pi = 0, Therefore, if xi=0+0A0...O (which is detectable condition in
that the (n+1)st bit and remaining n-bit block is zero (O»OAOO...O)) the out-
put register would be automatically cleared. Therefore, the lTookup table need
not be accessed for this case. Instecad, the all zero n-bit portion of the
table addresss,allocated to X5, Can be used to represent xi=2" vhere X; =
2"»1A00,..0 (sce Fiqure 1). Here, the table would be programed to map
Yi into <2"yi>p. using only a M word memory.

The memory roq;irements associated with the quarter-square multiplier are
substantiaily less than those of direct mechanizations. First, it should be
apparent that the jpteqgers st and s’,found in equation 5 are bounded from

above by 2n+1’ Therefore, only a (n+1)-bit table addressing space is required

+
to realize (s~) versus the 2n-bit space needed for direct architectures., It

would appear however, that there is an exceptien to this rule. Since onc

of the moduli chosen js p = 21, Here the maximal value of s+(or s ) is ?."H
which would technically require « (nt2)-bit address. lHowever, by using the

protocol found in Figure 2, which is an adaptation of the network focund in

nt]

Figure 1, the table size can be reduced to 2 words for ail moduli. Here,

ntl

the overflow bit serves to differentiate s*=0 from 2
The quarter-squared architecture is abstracted in Figure 3, It uses a
H

2" word high-speed memory for modular arithmetic lookup operations. Using,

for example, the previously referenced 4K-30ns device, moduli having an 11-bit

dynamic range (vs. 6-hit in the direct form) can be mechanized. This would
yield a three-moduli.dynamic range on the order of 23('1) A 8.6~109: That

is, without an increase in memory size {and thercfore access time), the
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dynamic range of the quarter-squared is 2"3/2m = 2h Limes larger than that

obtainable through direct means! This large increase in dynamic range makes
the RNS a viable alternative to traditional filter design methods. Both
improved precision and throughput {through the reduction or abserce of Lradi-
tional scaling operations) can be achicved.

Several versions of the multiplier algorithm can be considered. They are
sumnarized in Figure 4. The first, called the sequential form, would have
an estimated throughput rate of 240 ns based on a 60 ns lookahead adder and
memory having an access Lime of 30 ns with a cycle time of 60 ns. The second
architecture, called the parallel form, would run at a 180 ns rate. The
parallel architecture is preferred because its higher speed, simpler control,
A 60 ns pipelined oxecution rate can be purchased at a small hardware cost.

Example: p = 2H = 2048, x = 1040, y = 352, then

z = <xy>p = 1536

Al:st = 1376 ¢(sY) = <484416> = 1088;
Al:s” = 688; ¢(s7) = <Hs336>p = 1600;
A2 = <p(8")-4(87)>, = <5125 = 1536

i

Upon closer investigation of the table lookup data base, a potential

nuisance can be found. It can be examplified by observing that if sf 9,

p = 32, then ¢(s*) = <92/4>32 = 20.25. Therefore, it may be required that

two additional fractional hits may need to be added to Lhe table's output
wordlength,  However, Lhis is nol Lhe case as suyqgested by the following
theorem:

Theorem: Let [[v]] denote the integer value of v. Then z = <ﬂ%(s+)nlﬂ}(s"XD>p.

That is, only the integer valuc of ¢ need be used and the fractional bits of

4 .
$(s=) can be ignored.
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Proof: Tor x, y and k integers, one may define two ralional numbers, namely
(x+y)/2 A vik/2; (x~y)/2‘£ gth/2 where k = 0 or 1. Then z = <<(x!~y)2/4>p
- <(x~y)2/4>p>p=<<v+kv+b2/4>p-<q+dv+k2/4>p>p « cavkks 4 K2 )0-qk >p-b2/4>p
= ap(s”) - a(sI

As a result, the parallel archileclure is equivalenl Lo that shown in
Maqure 5. Turthermore, by deriving the above theorem over a rational ficld,

and showing that the results pertain to the integers, gseyeral

classica: probiemsare overcome:
1. The quarter-squared multiplier is not restricted to the falois fields
suqggested by Pollard.

2. The question of the existence of the multiplicative inverse cf 4 is

now moot.
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fadulo_p_Adder.
The quarter-square multiplier requires a modulo p adder be used Lo conb ine
the two component parts of the solution (namely %(s') and ${s7)). HMudulo p
adders pose an interasting design problem. Uniess a fasl modulo p adder can
be fabricaled, the overhead associatled wilh addition will offsel any gain in
Lhwoughpul achieved Liwough table tookups.  tor the modul i chosen, 2"~I, 2”,
and 2n+l, only the moduls 2" adder can be realized directly (n-bit adder :
with ignored overflow). It would however, be desirable Lo use a n~bil adder f
to realize the modu)o'2n-1 and 2"s] adder as well. TFor the purpose of clarity, §
let s be defined to be the sum of ¢(s+) and ¢(s”). The following observation §
then follows:
TABLE 1 §
Dynamic Integer | Modulo 2/ Ndder Modulofp. Adder | Example:N=3 ;
Case § Range of S <s>2H OVF-BIT P; ls;pi 3 <S>pi
1 5=0 0 0 A I 0 o0 §
' 2 1<s <22 s 0 A a4 %
. 5 3 g=2M1"1 5 0 A O 70
. 4 s=2 0 1 s | s
- 5 | i<l g 5-2" 1 Am I PRV LS R IR T :
6 5=0 0 0 M 0 0 0 Lo
; 7 s s 0 Mo s 4 :
8 5=l 0 1 ok 0 8 0
9 Mrics Mo s-2M 1 Mo e o
0 5=0 0 | o M| oo 0 0
n st 0 M| s T
12 s=2" o6 | M| 8 8
13- MM | [ M fsa'y [
1 st R R N PR PO I VR
{spicial case) x -




Using n-bit AHD gates lo sense the zero condilion of <s»2N, the overflow

bit OvVr the sign bits of ¢(5+) and 4(s”), combinaticnal logic

can bhe defined which will <s>?N into <s>p . It can be noted from the
g i

data found in Table 1 that the mapping requiremenls are:

1. forp =20, map s to s or s-2MH1 = s Wy
T i o
2. forp=2", map s Lo 5-2" = <s» "
o]
3. forp-= 2”+l, map s to s or s-Zﬂ-l = Cl8> N—l> N
> 7

Mapping two is trivially satisfied with an n-bit adder. The other two
mappings require that s remains unchanged or it is decremented or incremented
by unity. There arc scveral ways Lo approach this problem. Bioul , Davis, and
Quisquater have presented an unorthodox architecture for a modulo (2“-1) adder
using gwo—input qates[]ZJ. Modulo (2"#1) adders can also be realized through
the use of end-around-carries. However, compared to modulo 2" addition, this
approach would almost double the addition delay. This extended delay problem
can be overcome through added complexity (ie: time multiplexing two end-around-
carry adders). Happing onc and three can be cfficiently realized in the manner
suggested by the example found in Appendix A. The functional operation of
adding one (mapping 1) or subtracting onc (mapping 3) from the output of an
n-bit adder is performed by a PLA. The PLA will provide an overlay mask which
accomplishes the required task. The derivation and utility of the mask can be
understood in the context of the following examp}e. Example: Suppose s is an

11-bit word having a decime) value of S = 92 or P 00001011100, If 510-1 =
-

9 or (513'])2'19Q901Q}i}0]l is desired, one notes Lhat only Lhe 3-1.58's of So

need be altered. in gereral, for n=12, only the following 13 distinct binary

masks are required to form (S]O-i)?.
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M5B Patlern 1.SB Hotalion
XXXXXXXXXXXX X = leave corresponding bit

XX XXXXXXXXXO0 iocation of 5, unchanged 1(or 0)
XXXXXXXXXXO01 = change corvesponding bil

3 E localion of s, Lo 1 (or 0)
Xo0o111 111111 ’
gortryr1ri1rnr1rirui1i11 Table 1. HMASK

Suppose the moduli p = 2”+l, n =12, is Lo be implemented, By using
two commercially available 16x9 PLA's in parallel, the 12-bit output of an
n-bit adder (shown as <s> N in Table 1) and the four priviousiy specified

2
conlrol bits, can be converted to 13-bit mask. The mask would transform Lhe

. . 1 .
output of a high-speed n-bit adder to s or 5-2'-1, depending on the state of

the 4 control bits. Based oi- ¢ 25-ns 12-bit Schottky lookahead adder, a

20-ns 16%9 PLA, and 10-ns FLT mask swilches (in notalion comments of Table 1)

. . I . .
a 65-ns modulo p adder, for p = é‘—l, Z", and 2™+1 can be realized. The
presence of a 65-ns modulo p adder will now allow a 140-ns large moduli

residue multiplier based on 35-ns 4Kx1 1IMOS memory units. (See Figure 5)

For a moduli setl {213—1, 2'2, Zszl}, a fixed point mulliplier, having an
output dynamic range of 236 - 2‘2, can thus be fabricated having a word rate

of 7.143 M mulliplicalions per second. This compares favorably with new
16x16 VLSI multipliers. Using a pipelined architecture, which requires the
insertion of the storage registers found in Figure 5, a very impressive
throughput figure of 28.5Mmultiplicalions per second. 1L is important, and

fortunate to recalize thal the Itel HMOS memory unit, used in this analysis,

has a cycle time equal to the access time. If, as is cften found in practice,

a memory unit has a’'cycle time approximately twice the access time, then

pipeline delay would increase from 35-ns to 70-ns.
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Susmary:

The residuc number system offer« the potential for high speed parallel

arithmelic. This class of arithmelic has been demonstrated to be wuseful in

designing recursive algorithms, transforms, and digital filters. One of

the principal limitations to its use is its limiled practical dynamic range.
To avercome Lhis problem, a large moduli multiplicr, for the moduli setl

S B L B | . . . - )
(2°-1, 27, 2°t11, was designed.  This high-speed large woduli system was

the product of the novel algorithm and new technologies (RAM and PLA's).

The practical residue multiplier is capable of supporting a pipelined
execulion rate of 28.5 Hmultipliers per second.

Lastly, the performance of the residue multiplier is noled to be technology

dependent. As memory densities increase and speed improve, the multiplier per-

formance will directly benefit. As a result, the higher speeds associated

with the next generation of submicron technology devices can provide a speed-up

of two to five. In Lhe more distant future, whon and if Lhe Josephsen tech-

nology becomes a viable design tool, residue multiplication rates, using the

proposed methodology, may approach 500M muitiplication pey second.
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APPENDTY A:

An example of a PLA controlled 2M+1 adder, for n=3, is
diagrammed in Figure A.1. Tn Lthis figure, the sum A=5 and B=H
modulo (2“+I) (ic: (5+6) modulo 9=2) is oullined. Also, Lhe
addition delay for p=:192. based on commercially available hardware,
is computed Lo bhe 10+20+5=65nsce¢.  Thoe general architecture of Lhe

adder is diagrammed in Figure A.2.

FIGURE CAPTIONS:
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