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Ahiract-An unstable pitch control system a terminI-hoailng missile was formerly stabilized using a
high order stabilization filter that was realized using active elements. A new dominant-data matching
method is presented to redesign the high-order stabilization filter for obtaining reduced-order filters. As a
result, the implementation cost is reduced and the reliability increased. An algebraic method is also applied
to improve the performance of the redesigned pitch control system. In addition, the proposed dominant-
data matching method can be applied to determine a reduced-order model of a high-order system. Unlike
most existing model reduction methods, the reduced-order model has the exact assigned frequency-domain
specifications of the original system. Computer-aided design methods can also be applied to design general
control systems.

1. INTRODUCTION
The pitch control system of an unstable terminal homing missile[lI was formerly stabilized
using a fourth-order series compensator. The compensator had two pairs of complex poles that
were realized using active elements. The objective of this paper is to develop a computer-aided
method for redesigning the compensator such that the implementation cost of the compensator
can be reduced and the performance of the redesigned pitch control system improved. The
block diagram of the existing stabilized system is shown in Fig. 1, and its over-all transfer
function is

T(S) 1 T,(s)Go(s) G,(s)
I + T(s)G(s)HK,(s) - I + G,(s)
bo + b,s + - +bs'+ blos'0 a N(s)

ao + a,s +.•. + aloS1 + a,,is = D-) (la)

where

ao = 8.802158509x 10"1 bo = 8.80215809x l011
a, = 2.419047424x 10"9 b, = 4.610004670x 1019
a2 = 2.911920560 x 10"8 b2 = 2.926344345 x 10"9
a, = 2.420405431 x 10"8 b, = 5.017212044 x 1016

a, = 6.667397031 x 1016 b4 = 2.563396371 x 1014
as =9.749923212x 10"1 b5 = 1.494523312x 10"
a6 = 9.360329977 x 1012 b, = 0.
a7 = 6.231675318 x 1010 b7 = 0.
a, = 2.976950696 x 10' b, = 0.
a, = 9.316239040 x 1O' b,=0. 0
aio = 1.923554000 x 10' blo = 0. A 1 1 I
a, =o 80 12 V? 31
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Fig. 1. The block diagm of the existing coohot sYstem.

and

T,(s) = The transfer function of the existing series stabilization filter

, , )a ,s (Ic)
0.6(s +(+ D(s)

H,(s) =The transfer function of the gyro = I (Note that a rate gyro is not available) (Id)

GOs) =The transfer function of the actuator and air frame dynamics of the missile
system-The plane transfer function

i
= The open-loop transfer function of the original pitch control system with T,(s)= !

and H,(s)= I
324332.316(s + 0.1933$ + 65Xs + 1500)

ss - 2.9210$ + 3.175Xs + 87.9:tj95.5Xs + 112.)s + 1385) (le)

G,ts) = The open-loop transfer functiov of the existing stabilized system

= T(s)69(s)H,(s). (if)

For ease of presentation, we define the dominant data

(a) The real and imaginary parts of the transfer function when o = 0.
(b) The pin margin.
(c) The phase-crossover frequency.
(d) The phase margin.
(e) The ain crossover frequency.

Nyquist plots of G,(s) and Go(s) are shown in Fig. 2. The dominant frequency-response data of
G,(s) are defined as follows

(I) The real (R,) and imaginary (.,) parts of G,(s) at s = jw = jO are

R,G,(jO) = - 2.103817 and I.,G,(jO) - (2a)

(2) The gain margin G,. of this system is

= IR,G,(j,,,) 1 . (2h)

where the phase-crossover frequency a, is

,= - i0 or w,, = 1.9radlsec. (2c

., "7
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The equivalent real and imaginary parts of G,(jo,) at w,, = 1.9 are

RG,(jw,.) = - 1.507944 (2d)

.G,(jo,) = - 0.006490205. (2e)

(3) The phase margin 46,,. of this system is

6, = 180 + 5G.,.) - .7787* (2f)

where the gain-crossover frequency w, is

IG,(j .)l = I or , -a 3.2 radlsec. (2g)

The equivalent real and imaginary parts of G,(jujff) at ,, = 3.2 are

RG,(0,)= -0.9939143 (2h)

I.G-(jk,) 0.09547478. (2i)

The frequency-response data at ow = 0 in (2a) indirectly indicates the steady-state value of the
unit-step response of T,(s). The data at o = o,, and o = o, in (2) represent two control
specifications 12): gain margin and phase margin that characterize the relative stability and the
transient response of the existing stabilized system. The dominant frequency response data of
the plant GO(s) and others are as follows

(I) The real and imaginary parts of G0(ja) at , = 0 are

R,GP(j) = - 1.304841 and IGo(IO) = a (3a)

(2) The phase margin 4. of the plant is

= IO +/Go(io)= 5.58* (3b)

where the gain-crossover frequency wo, is

IGo(iUa) = I or o, 9E 1.6 rad/sec. (3c)

Other frequency-response data at ow, and w, are

(3) RG(jo,,) = - 0.93707661 for w, = 1.9 (3d)
3 ,Go(k,,)=0.06716120 J

R Go(ji.,) = - 0.6181657 'f
I.Go(w,) = 0.01949691 j for 0of =3.2. (3e)

Comparing the dominant data of G,(s) in (2) and G(s) in (3d) and (3e) yields the dominant

data required of the stabilization filter T.(s) as

(I) RT,(j) = 1.6 and 1m T,(jw) = 0 at w = 0 (4a)

(2) R,,T(jw,.) - 1.600492 and ImT,(je,,,) 0.1216316 at w,, 1.9 (4b)

of

IT,(im,,)I= 1.605107127 and -(j.,)=4.3459181W9 at w, = 1.9 (40)

(3) R,T(Jw,,) = 1.601402 and I.T,(j,,) 0.2049554 at e. = 3.2 (4d)
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or

IT,(jw,)l = 1.614464333 and/r,(jw,) 7.293349493 at wf = 3.2. (4e)

From (e) and (If) we observe that Go(s) and G,(s) are non-minimum phase functions. From
the Nyquist plots in Fig. 2 and the Nyquist stability criterion, we can conclude that: the original
missile system (without the stabilization filter) is unstable, the existing stabilized system is
asymptotically stable and its time response is oscillatory due to the small positive phase margin
in (2f). The purpose of this paper is to develop computer-aided design methods for redesigning
the stabilization filter to reduce the implementation cost and improve the flight control
performance of the missile system.

Two computer-aided methods are developed in this paper and subsequently used to redesign
the pitch control system. In Section 11 a dominant-data matching method for modeling a
transfer function (called a standard transfer function T,(s)) that matches the assigned
specifications shown in (2) is developed. The obtained standard transfer function T,(s) is a
reduced-order model of the existing stabilized system T,(s) in (la). The time and frequency-
response curves of T,(s) and T,(s) will be compared to verify that the data in (2) are dominant.
The dominant-data matching method is then applied to obtain the reduced-order model of the
existing stabilization filter T(s). Also, the method is used to fit a low-order model that satisfies
the specifications shown in (4). Thus, two low-order stabilization filters are obtained. In Section
11, we apply the dominant-data matching method and the algebraic method due to Shieh [31 and
Chent4] to redesign the pitch control system. In order to simplify the design process, the
dominant-data matching method is first applied to obtain an unstable reduced-order model of
the original unstable high-order system Go(s). Then, the algebraic method is applied to redesign
the pitch control system that has a series filter in the feed forward loop and a parallel filter in
the feedback loop. Thus, the advantages of a compensator in the feedback structure can be
fully used.

II. THE DOMINANT-DATA MATCHING METHOD
The design goals and/or the nature of the transient response of a control system are often

characterized by a set of control specifications [2]. These specifications are commonly classified
as: (I) time-domain specifications, e.g. rise time and overshoot; (2) frequency-domain
specifications, e.g. gain and phase margin; (3) complex-domain specifications, e.g. damping ratio
and underdamped natural angular frequency. Rules of thumb that represent the relationships
among the above three control specifications have been proposed by Axelby[51 and Seshadri et
al.(61. Given the above guidelines, it is obvious that the gain margin, phase margin, phase-
crossover frequency and gain-crossover frequency are the most important specifications. These
data me called the dominant frequency-response data and shown in (2b) through (2i). Other
important frequency-response data is the steady-state value of a closed-loop system that is
indirectly represented by the value of 0,(J) at w - 0 in (2a). These dominant data in (2) may be
considered as the design goal. In order to verify that the data in (2) are dominant ones we need
to construct a transfer function T,(s) that is the reduced-order model of T,(s) and has the exact
assigned specifications shown in (2). The time response curve and the corresponding time-
domain specifications of this practical system T,(s) are difficult to obtain because T,(s) is a
high-order transfer function with large coefficients. Furthermore. it is a stiff function. The latter
can be verified from its small coefficient ale (the sum of all poles of the system) and its large
constant al (the product of all poles of the system) in (Ia). As a result, many numerical
integration methods (for example, the Runge-Kutta method[17) require large data size and high
precision calculation for time response determination. However, the frequency response curve
and the corresponding frequency-domain specifications of this system can be easily determined
by a digital computer. Thus, a frequency-domain approach or a dominant-data matching method
is proposed to determine the reduced-order model T,(s) and to redesign the pitch control
system. There exists several frequency-domain methods for model reductionsI-10. However,
the reduced-order models obtained from the proposed method gives the exact assigned
fequncy-domain specification in contrast to other techniques which do not.

Let the desired reduced-order model of T,(s) or the standard model that reprewent% the

1, 4
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design goal in (2) have the following form

T,(s) = ae+Ills + b;S' G.(s) (a
a0+als+a~s +s" 1+G,(s) (a

where the open-loop transfer function G,(s) is

G,(s) ao +bIls +b2s2  (b
st(al - b,) + (a2 - b2)s + s'J Sb

The unknown constants a, and Ili are to be determined from the conditions in (2). Following the
basic definitions and knowing the required values from (2) yields a set of nonlinear equations
fjao. a,. a,, Ill. b2) =O0for i = 1.2,.., as follows

(1) The requirement of (2a), or RG,(jO) = - 2. 1, gives

f,(ao, a,. a2. Ill. b2)= alb, - b -a0a + a0b, + 2. ](a, - bl)2= 0 (Ca)

(2) The requirement of (2b), or R,(jot4,) = - 1.5 at w. = 1.9 gives

f,(ao. a,. a, Ill. b?) =(a2 - b2)(40 - 3.61 b2) - bal - b, - 3.61)
-1.53.6(a - b,)2 + (a, - b, - 3.61f] = 0 (6b)

(3) The requirement in (2c0. or/,j) IV 1 at ai1. = 1.9. gives

fj4ao, a,. a2, Ill. b2) = 3.61 b,(a2 - b2) + (all- 3.61 b,(a, - Ill - 3.61) =0 (6c)

(4) The requirement of (21). or ,., = 3.r at wd = 3.2. yields

f 0 o. a,. a2. bl, b2) = l0.24b,(a2 - b2) + (a. - 1O.24b,)(a, - Ill - 10.24)
-O.31940224(a - b2Xa. - 10O22b)

- b,(al - b, - 10.24)) 0 (6d)

(5) The requirement of (2g). or IG,(j.,)J = 1 at i, - 3.2. gives

fq(ae. a,. a, Ill. b2) -(a, - 10.202,)' + 10.24b,l - 104-8576(d2 b,9
- 10.24(al - b, - 10.24? = 0. (6e)

The above set of high-order. nonlinear. algebraic simultaneous eqns (6) are difficult to solve.
The Newton-Raphson method 1111 that is available as a library computer program package
(called the Z systemll21 in many digital computers can be used to solve these nonlinear
equations. However. it is well known that the Newton-Raphson method will only converge to a
desired solution for a small range of starting values or initial estimates. In order to improve the
convergent speed. the following methods are suggested for good initial estimates.

(1) Initial estimate by using the model reduction method due to Shieh and Chen 13, 8).
Shieb 131 and Chen 3 have propsed a continued fraction method for model reduction. The

method is as follows. The N(s) and D(s) in (I a) are arrayed into ascending order and expanded
into the continued fraction of the second Cauer form by performing repeated long divisions, i.e.

T(s) Ns , iD(s) ao+als+... +ails"

mI

k4 + 's

(7a)

'I ~Jul!
Ol16 !,..
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where h1 = , h2 =-0.401749, h13= -0.475321, h = 25.1998, h5 =-0.0322195, h6 =-24.1061,

h= .',--, and h22 .. for the example problem. The reduced-order can be obtained by
* retention of the first several dominant quotients (hi) for i 1. 12.... as follows

I h2 (7b)

1h2 ~ h+
I h~h + s(70)

h s hih2h3 +(h, +h3)s
T+ s/h,

h~~~4 h2h~h4 + (h2 + h4)s (7d)h hh4+ (h, h2 + h1,h4 + h,h4)s + s'

h2h~h4h5 + (h2h3 + h2h5 + h4h5)s + s2  (e
hi~,h~hs+ (h~h 2h3 + h1h2h5 + hjh4h5 + h~h4hs)s + (h, + h3 + h5)s2  7e

h2h~h4hsh6 + (h~h~h4 + h2h~h6 + h2h~h6 + h4h~h6)S
Al Ih2h~h4h~h6 +(h, h2h~h4 + h Ih2h~h6 + Ih hh 6+ h, h4hsh 6 + hlh4h~h6)S

+ (h2 +h4 + hs'
+ (h~h2 + hh4 +h,h6 +h3h4 + hh 6 + hh 6)s 2+Sy" (7f) *

where (7f) is the 3rd order approximate model of the original 11th order system, or in our
problem

TFs=3.36+ 19.4692s + 0,6920s2  (8a)
3.36 0.1661 s +0.9488s' + s3*

Using the coefficients in (8a) as initial estimates: aS =3.7376, at = 10.1661, a? = 0.9488,
b= 19.4692 and bj = 0.692 and applying the Newton-Raphson method 112] to solve the

nonlinear equations in (6) yields the desired solution: a0 = 6.37807, a, 10.46222, a2 = 1.259008,
b,= 20.55661 and b2 = 0.243466 at the 8th iteration with the error tolerance of 10'. The desired

reduced-order or the standard model is

T() 6.37807 +20.55661 s + 0.243466s' G,(s) (b
T()=6.37807 +10.46222s +1I.259008s 2 +s' -I +G,(s) (b

where

G,(s) =The open-loop transfer function of the standard model

=6.3787+ 20.55M661s + 0.234668 2 (8c)
s(- 0.09439 + .015542s +s2)

The Nyquist plot of G,(s) is shown in Fig. 2, the unit-step responses of T,(s) in (Ia) and T,(s) in
(8b) awe shown in Fig. 3. The approximate results are satisfactory. Thus, we verify that the data
in (2) wre dominant. It is obvious that although the T*,(s) in (8a) may have a good overall
approximation of T1(s), only T,(s) in (8b) has the exact assigned frequency-domain
secifcations as required in (2) that is essential in the design of a control system in the
frequsuy domain. It may also be noticed that the T'1(s) obtained by the continued fraction

4=4~
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Fig. 3. Time response of various models.

method (7) may be unstable even if the original system T,(s) is stable. The following mixed
method is suggested for obtaining a stable reduced-order model.

(2) Initial guess by using the mixed method.
The mixed method has both advantages of the continued fraction method[3,8], the

dominant-pole method[13] or the equivalent dominant-pole method[9]. It can be applied to
determine a stable reduced-order model from which a good initial estimate can be determined.
The mixed method is as follows. The relationship between the quotients hi and the coefficients
ai and b, in (7a) can be expressed in the following matrix equation [3, 4):

[b) = IHIlal (9)

where

[a]' = (ao, a,, a, a. ,
[bIT = lbo, hl, b2,..... b._,
[H) = [H2]-'[H,]

and

FAl0 0 0 0 000 -1 0 00
1 0 h2 0 00 0 0 h, 0 0 0000

(1Hz1= 01 1 h)0, 001 h "00 1 0 0
0 01 0 0 00 00 000 00

0 0 0 0 00o 1 0 0o 0oo

01 20 00 01 0 00 01 0 00H" 01k 00 0 0Lo0 014 ......0 0 0 0 0 0 00 0 0 0 0

[ioJLooo~ooo
000 h L 0 0 1h., L 0 0

4....,

r . . . .... ... '
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T in (9) designates transpose. The desired reduced-order model may be

T()= do+ dis + - -+ d,_tsO-j e =-I. (10)TA)eo+es+.. .+e,_,s''1+e,sr" r

The coefficients ej in (10) can be determined from the coefficients of the polynomial that is the
product of the dominant poles of Ti(s) in (7a). Replacing a, in (9) by ej in (10) and solving the
matrix equation in (9) yields the desired coefficients di in (10). The obtained Tr(s) has the
dominant poles and quotients of T,(s) and is always stable. When the roots of D(s) in (7a) are
not available, the approximate equivalent dominant poles and the resulting coefficients ej can be
determined from the Routh table as suggested by Hutton and Friedland [9). Because the method
uses the dominant quotients of the original system and the equivalent dominant poles from the
Routh table, this method may be conveniently called the mixed method of the continued
fraction approximation 181 and the Routh approximation(9]. Using the mixed method we can
obtain another stable reduced-order model. Thus, a good initial estimate can be determined.

Since the transfer function of the existing stabilization filter T,(s) is available, we will use
the proposed dominant-data matching method for determining the reduced-order of T,(s). The
T,(s) in 00c can be considered the closed-loop transfer function of a control system

T()=N,(s) .G,(s) 460800s 2 + 69120000s + 144 x l0 (lals +G,(s) s'+250s'+76900s'+72x1O's+9xW0 Ia

where the open-loop transfer function G,(s) is

+460800s2 +69120000s +144 x 167
S4+250s 3 - 383900s' - 61920000s - 5.4 x 10' 1 b

The dominant frequency-response data of this system are

(I) G,(j) 2.667 (12a)

(2) RG 3(jo,) =- 1.032833 (12b)
ImGW(Itd.) = 0.002017351 (12c)

where &),. = the phase-crossover frequency = 140 rad/sec.

(3) R,AIw,1 ) = - 1.002941 (12d)
LW,G~~ 5 ) = - 0.03668759 (12e)

where w,,~ = the gain-crossover frequency = 200 radlsec.
The reduced-order stabilization filter 17,i(s) is assumed to be

TA)= bo+bls GAS) 1a
T,()ao+als+s2  + -G'1(S)(1

where 
a S Q+b s( 

b
(ao -b0) +(a, -b)s + sl1b

and a, and b, are unknown constants to be determined.
Using the coefficients a, and b1 of G31(s) and following the basic definitions of the data

* shown in 012a), 012b), (02c0 and (12d) results in the following nonlinear equations. respectively

(1) (12b)
f1 (a., a1,b,) I .AQ(-0.6..- 1960) + MM60b(al - b,)+ 1.0328331(0.6av

+ 19600)+ 1960(a, - b1)210 (14a)

CAU VoL 7. M. 3-

4<r ~ ~ ~ **.***~ - - *_4-
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(2) 0120
f4ao, a,, b1) =140b1( - .6a0 - 19600)- 224a0(al - b,) -0.002017351

(.6ao + 19600)2 + 19600(a, - b,91I = 0 (14b)

(3) (12d)
f3(ao. at, b,)= l.6a ( -O.6a0-- 40000)+40000b,(aj - b,)+ 1.002941

t(0.6a + 400009 + 40000(a, - b,2  0 (14c)

where b0 = I .6a0 as obtained from (12a).
The initial estimates can be obtained from the reduced-order model of T,(s) in (1c) using the

mixed method of the continued fraction approximation and the Routh approximation. The
reduced-order model is

T~r,(sj 1281.40525s + 29937.62994 (5sT+ 52.4375 s + 19711.0197115

Using the coefficients in T,(s) as initial estimates and applying the Newton-Raphson
method [121 we have the desired a, and bi in (13) for the 7th iteration with an error tolerance of
10'. The desired low-order stabilization filter is therefore

TA)=957.2600 14s + 33467.93525 (6
S2 +29.981293s +20917.459536' 16

The unit-step response of the existing stabilized pitch control system in (la) and the redesigned
pitch control system using T,,,(s) in (16) and GO(s) in (le) are shown in Fig. 3. The result is
considered to be satisfactory.

An alternate approach is proposed for redesigning the stabilization filter as follows. Because
the function of a stabilization filter is to convert the dominant data at w = 0. W, = 1.9 and

w,= 3.2 of the original unstable system GO(s) in (3) to the assigned dominant data of Ge(s) in
(2), we can directly apply the dominant-data matching method to fit a low-order stabilization
filter that satisfies the specifications assigned in (4). Assume the desired low-order model is

a0 +~ss
2  

(17a)

From the definition of (4a) we have Ito = .6a0 , and (I 7a) can be rewritten as

1.6aO+ b~s(17b)

When s = fto,~ = jI.9 the respective values of I T,2(jw',)l and T32 (j,,) in (17b) match the values
of IT(ja,,jI and/T,(iu,) in (4c), or the corresponding non-linear equations are

fl(att. at, bt) = 2.56a0
2 + 3.61b12 

- 2.576368MI9(ao - 3.61)2 + 3.61 aJ]1 0 (18a)

and

f2(ao. a,. b,) = 1 .9b,(ao - 3.61) - 3.04aoa, - 0.075996381 If I.6ao(a0 - 3.61)
+ 3.61albJ 0. (18b)

When s = jfi,~ = j3.2 the value ofTjO) in (17b) matches the value of/~~~t in (4e), or the
nonlinear equation is

to4aat, a,, b,) = 3.2b,(ao - 10.24) - 5.1 2aoa, - 0.12798497821 .6ao(ao -10.24)
+ 10.24a,bJ = 0. 080c

Applying the Newton-Raphson method(121 and using the initial estimates obtained in (15) we

, an~
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have the desired solution of the nonlinear equations of (18) at the 9th iteration with the error
tolerance of 10-'. The desired low-order stabilization filter is

856.6285%s + 21283.19886
T52(s) = s' + 3.318051s + 13301.999297 (19)

The unit-step response curves of the existing stabilized pitch control system T,(s) in (1a) and
the redesigned system that uses the low-order filter T,2(S) in (19) and the Go(s) in (le) are
shown in Fig. 3. The result is practically identical. From the response curves in Fig. 3 we
observe that T 2(s) in (19) is a better filter than the T5 (s) in (16) as far as duplicating the
performance of the original pitch control system is concerned. This implies that the existing
stabilization filter Ti(s) in (1c) might be overdesigned since we can duplicate performance with
a lower filter. Obviously, the implementation cost of the filter T52(s) is less than that of T,(s) in
(lc).

II1. AN ALGEBRAIC METHOD

The original fourth-order stabilization filter T,(s) may be replaced by two second-order
filters, T,1(s) and T,2(s), using the dominant-data matching method. It is observed that all three
stabilization filters have complex roots and that all are placed in the feed forward loop.
Therefore, they are sensitive to external disturbances. If alternate filters can be designed and
placed in both the feed forward and feedback loops, then (a) the designed filters may result in
simple transfer functions with positive real roots that may be easily synthesized using RC type
passive elements, and (b) the reliability and cost of the designed system may be improved. The
compensators in the feedback loop enable the designed system to be less sensitive to parameter
variations and modeling errors. In addition, it will reduce the effects of many external
disturbances [14].

The algebraic method given by Shieh[3] and Chen [4] is extended and modified to redesign
this pitch control system. The steps of the algebraic method are summarized as follows:

Step I
Assign the design goals using frequency-domain specifications and model a standard transfer

function using the dominant-data matching method.

Step 2
Expand the obtained standard transfer function into the continued fraction expansion shown

in (7) to obtain the dominant quotients and to formulate the matrix equation in (9).

Step 3
Assume the fixed configuration compensators with unknown parameters and determine the

overall transfer function that consists of the unknown parameters.

Step 4
Substitute the coefficients of the obtained over-all transfer function in Step 3 into the vectors

[a) and [b] in (9) and expand the matrix equation to obtain a set of equations.

Step 5
Solve the set of equations to determine the unknown constants assigned in the compen-

sators.
The designed system using the algebraic method has the exact dominant quotients of the

*standard models and is a good approximation of the standard model.

Before we design the pitch control system using the algebraic method we apply the
* dominant-data matching method to determine a reduced-order model of the original unstablet system Go(s) in (le) which had a transfer function with large coefficients. The unstable transfer

function GO(s) in (t) can be decomposed into a stable portion and an unstable portion as

' -..- .,-.

-- . .- _ , .
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follows

Go() = ;(s- 2.9 2 1) To(s) (20a)

where the stable portion is

324332.316(s + 0.1933Xs + 65Xs + 1500)
TO(s) (s + 3.175Xs + 87.9 ± j95.5Xs + I 12.5Xs + 1385) (

The pole at the origin and the unstable pole at s = 2.921 are considered as dominant poles.
Therefore, they are retained in the simplified model GO*(s), or

Go(s) - GS(s) ss-2.291) TS(s) (20c)

where Tg(s) is the reduced order model of To(s) using the dominant-data matching method. The
frequency-response data of the gain margin, phase margin, phase-crossover frequency, gain-
crossover frequency and the final value at wi = 0 are used as the dominant data for the transfer
function fitting. The resulting TS(s) is

T(s): 496.854897s 2 + 192897.961011 s + 37103.33375
s3 + 117.073733s2 + 16552.300003s + 50595.685093 (20)

The desired TI(s) is a low-order model with small coefficients. Thus, the design process has
been greatly simplified.

Following the steps in the algebraic method we assign the series compensator GI(s) and the
parallel compensator G2s) with unknown parameters X, i = I, 2, ... , 7 as

GI(s) X6s+7 (21a)

S+X 5

and

X3s2 + X~s+X 2
GA s) s2+Xs+X 2  (21b)

The block diagram of this redesigned system is shown in Fig. 4(1). The overall transfer function

Fig. 4. The block diams of the redesigned system using algebraic method.

lei
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T,(s) of this feedback system is

Tf"bo+bls+"'.+bs 7  2cfs = ,,o + ,,is + - + ,'
an +als - -- + gso(210)

where

ao = 37103.33375XX.,
a, = 192897.961011 X,X, + 37103.33375(X2X, + X4X) - 147789.996lX2Xs
a2 = 496.854897X 2X7 + 192897.96101 I(X2X6 + X4X) + 37103.33375(X 4X,

+ X.X) + 2246.41679X2X, - 147789.9961(X + X1XN)
a) = 496.854897(XX 6 + X 4X) + 192897.961011(X4X6 + X3X) + 37103.33375

.XjX 6 - 147789.9961(Xi + X4) + 2246.41679(X, + X1Xj) + 16210.32763XXs
a4 

= 496.854897(X 4X, + XIX7) + 192897.A 1011XX, - 147789.9961 + 2246.41673
* (XI + X) + 16210.32763(X2 + XX,) + 114.152733X,X,

a. = 496.854897X X, + 2246.41679 + 16210.32763(Xi + X )
+ 114.152733(X2 + X1X4) + X2X5

a6 = 16210.32763 + 114.152733(X + X%) + X! + X1 X,
a, = 114.152733 + X, + X,
as= I
b, = 37103.33375XX,
b, = 192897.961011X2X, + 37103.33375(XX 6 + XX7)
b2 = 496.854897XX7 + 192897.96101 l(X,X6 + XX?) + 37103.33375(XX, + X7)
b, = 496.854897(X2X, + XX,) + 192897.961011(X X, + X,) + 37103.33375X,
b4 = 496.854897(XX, + X.,) + 192897.961011X,
N = 496.854897X,
b= 0
b-,=o.

In order to match the seven unknown parameters X in (21) for this type "I" system we need
eight quotients. h in (9). Therefore, the third order standard model in (8b) that has six
quotients: hi = I. h2 = - 0.631845015, h, = -0.476189214. h4 = 14.799589050., = - 0.102867450,

6= - 13.924278040 should be increased to a fourth order model by inserting h, = IMO and
h=0.1 where the values of h, and h, are selected based on rules developed in(151. The
resulting amplified model is

,S 6.37807 + 20.55661 s + 0.243466s'
(s) = 6.37807 + 10.46222s + 1.259008s 2 + s'

I 1
S S

Sh,+ h ,+
A, + s

1,4h2 + s S _,5 h +
h, + s + S

h6 h,+ s

=T.(S) =6 63.78098007 + 211.8989926s + 22.87561717s'+ 0.34346s' )

63.78098007 + 110.9545225s + 23.0091755 Is2 + 1.301 10515s'+s" (22)

ItlI15] has been shown that (22) is a good approximation of the original model in (Sb).
Substitutingthe a,i= I . . 7 and b,, i - 0...., 7 in (21)and usingthe quotients , i - I.._8
in (22) into (9) yields the following set of high-order nonlinear simultaneous algebraic equations.

I X(X..... X7) - X:X7 + 0.6318422396[X(X 4 - X) - 3.98319992X2Xi1 -0 (23a)I
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f'*1X .. X)=X48.22822291 X2 +8.522553136X 4 - 6.939879587XI + X1 - I)
+ X(I.582676549X 6 - 13.17807554X,)+ X(X 4- XI)
- 3.983199922(X, + XX,) = 0 (23h)

.f(X. ..... X) = X2( - 12.71361621Xf- X0+ X0(13.58355291X, + 1.820964317X,
- 26.29716913X 4) + 10.79844539(XiX, + X7) - 13.31248704(X 4X,
+ XX,) + 6.327224282(X i + X,) + 1.588477708X,.(I - X)
+ 20.03527143(X., + XXJ = 0 (23c)

f4(X,.....X) =XX + 668.4670071 X4 -281.48094X,) + X(386.9860673X 2
+ 362.767005 - 456.258273X.) - 647.2403649(X4XE + X1X,)
- 57.53603068X.,Xs - 548.5188427(X2 + XIX,) + 235.861385(XX,
+ X7) + 235.2945185 + 590.5096275(X + XJ = 0 (23d)

/..X. ..... X7) 2357.408023(X X, + X7) + X,, 1598.839931 X., + 17096.15228
- 32881.95043X,) + X7(4.16745091X2 + 1599.83991X, - X4)
- 472.6735322(X 4X, + XIX7) + 24996.98242 - 939.0287936(Xi
+ X) - 2765.323026(X, + X1Xs) - 52.07771943X2X = 0 (23e)

.. (X...... X7) = XI( - 99.4209415X + 11132.91981 X, - 57256.87822) + X 7(Xi
- 100.4209415X,) + 411.4274907(X 4X, + XIX 7 ) + 67006.93001(Xi
- X) + 1234.567433(X2 + XX,) + 42.69011171X.X% + 23203.5.455
- 39112.69694(X1X 6 + X7) = 0 (23f)

f(X... X7) = 496.854897(X.,X6 + XX,) + 198512.9704(X|X 6 + X7)
+ 2228495.695X6 - 170.6497831(X 4X, + XX7) - 77618.5%17XX.
- 3442861.087 - 195845.4335(X, + X4 - 8390.812346(X, + XX)
-62.08251489X,Xs = 0. (23g)

Equation (23) is a high order nonlinear equation which is difficult to solve. The Newton-
Raphson method[ 121 is applied to determine the unknown parameters X,. The following method
is suggested for obtaining the initial estimates.

The structure of the desired fixed configuration control system in Fig. 4(t) can be modified
as shown in Fig. 4(2). The overall transfer function is

T(s) = TA(s )- I (24a)

where

T G(s)GO)G)s)

T(s) + G,(s)G,(s)GS(s)"

The design objective is to determine GI(s) and GAs) such that the response of TI(s) is close to
that of the standard model T,(s) in (8b). Replacing the series compensator G(s)G2(s) in Fig.
4(2) by the designed stabilization filter TAs) in (19) and equating the resulting transfer function
T(s) in (24a) to the standard model T,(s) in (8b), we can solve the approximate transfer
function G?(s) of G(s). or

GI(s) = s) = T2s) 6 1(s)G2s)GI(s) T1As)GI(s)

T,(s) 1 + G,(s)G(s)G8(s)T,(s) I + T,2(s)Gt(s)T,(s)

- [5.03(A19205 x 109+ 3.46495752 x 1010s + 4.540060393 x 10's + 7.840679235 x Ms'

+ 4.363076841 x ls + 1.763524302 x l0s' + 4.256201128 x l0 s6J/[5.036619205

x IOV + 3.009227329 x 1O's + 4.613716606 x IOtas2 + 6.124169121 x 1Os'
+ 4.49849744 x 1Hs4 + 8.512494768 x 107s' + 9.935459768 x I10s' + 9.698650697 x 10's'
+ 4.91568119 x lOs' + 0.243466s'I. (24b)

. . ..',., ....
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Expanding (24b) into the form of (7a) yields a set of dominant quotients A1 = I, A2 =
-1.102755917, A= -0.1287948973, h4 = 5.593229805, h, = 0.1338916858, h = . , -. , hs
.. Substituting the first five quotients into (7e) gives a second order approximate model

G2**(s) of the approximate parallel filter GI(s) in (24b) yielding

G,*(s) = 0.99492905752 + 0.7394973923s + 0.1058245527s2 + 0.643533679s + 0.1058245527 (24)

Gj*(s) is an approximate model of the assigned parallel compensator GAs) in (21b). The
approximate series compensator (Gt(s)) of GI(s) is

Gts) = Ts) - 2252.284999 + 13787.1076s + 21834.46821s 2

Gj*(s)- 1407.678125 +9837.144919s + 13237.1051252

+ 856.628596sl

+ 4.040722745 s3 + 0.994929057s" (25a)

Equation (25a) can be expanded into the form of (7a) to obtain a set of dominant quotients
h = 0.625, h2 = 1.845828612, A3 = 0.0839039052, h4 = ***, " A, hs = **. Substituting the first
three quotients into (7c) yields the reduced-order model of Gt(s) in (25a)

GT*(s) = 1.410628426s + 0.2184671685
s + O. 1365419803 (25b)

Gj*(s) is an approximate model of the assigned series compensator GI(s) in (21a). Comparing
(21b) and (24c) and (21a) and (25b) we have a set of initial estimates as Xt = 0.643533679, Xj =
0. 1058245527, XI = 0.994929057, XT =0.7394973923, Xj = 0.1365419803, Xt = 1.410628426 and
Xj = 0.2184671685. Using these initial estimates and the Newton-Raphson method[ 121 to solve
the nonlinear simultaneous algebraic equations in (23) yields the solution X, = 0.503850,
X2 = 0.059928, X3 = 1.051503, X, = 0.580016, X5 = 4.831826, X6 = 1.885577, and X7 = 6.744450 at
the 14th iteration with the error tolerance of 10- .The desired compensators are

I 1.885577s +6.744450 1.885577(s + 3.57688) (26a)

s+4.831826 - s+4.831826

and

1.051503s2 + 0.580016s + 0.059928G()= s2 + 0.503850s + 0.059928
1.051503(s + 0.13769)-s + 0.41391)

(s+0.l9244Xs + 0.311405) (26b)

The unit-step response curves of the existing stabilized system T,(s) in (la) and the redesigned
system using the compensators in (26) and the Go(s) in (le) are shown in Fig. 3. The result is
satisfactory. Note that GI(s) and GAs) in (26) are positive real functions with positive real poles
and zeros that can be realized using RC type passive elements. Thus, the advantage of a
feedback controller system[141 may be fully utilized.

IV. CONCLUSION
Two computer-oriented methods: a dominant-data matching method and an algebraic

method have been presented to redesign an existing stabilized pitch control system I]. Thus, an
alternate method to the trial-and-error approach that is traditionally used has been given. The
resulting low-order stabilization filters that were obtained using the above methods reduce the
implementation cost of the pitch control of the missile system.

The dominant-data matching method can be applied to general control system design to
determine the reduced-order model of a high-order system. The proposed model reduction
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method is superior to most existing methods in that it provides the exact frequency-domain
specifications.

An algebraic method has been applied to determine fixed configuration filters such that the
performances of the redesigned pitch control system of an example missile has been greatly
improved. The algebraic method can be applied to design any desired control system structure.
Several methods have been given for estimating good initial guesses for solving nonlinear
equations. In summary, the proposed computer-aided design methods present an attractive
alternative to trial-and-error methods which can be used to design control systems.
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