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COMPUTER-AIDED METHODS FOR
REDESIGNING THE STABILIZED PITCH
: CONTROL SYSTEM OF A SEMI-ACTIVE
‘ TERMINAL HOMING MISSILE

L. S. Sxien and M. DATTA-BARUA

. Department of Electrical Engineering, University of Houston, Houston, TX 77004, U.S.A.
1 and
' R. E. Yates and J. P. LEONARD
Guidance and Control Directorate, U.S. Army Missile Research and Development Command, Redstone

y Arsenal, AL 35809, U.S.A.

Qm:):d S November 1979)

Abstract—An unstable pitch control systemiof a terminal-homing missile was formerly stabilized using a

high order stabilization filter that was realized using active elements. A new dominant-data matching

method is presented to redesign the high-order stabilization filter for obtaining reduced-order filters. As a

result, the implementation cost is reduced and the reliability increased. An algebraic method is also applied

3 to improve the performance of the redesigned pitch control system. In addition, the proposed dominant-

data matching method can be applied to determine a reduced-order model of a high-order system. Unlike

most existing model reduction methods, the reduced-order model has the exact assigned frequency-domain 1
specifications of the original system. Computer-aided design methods can also be applied to design general ;
control systems.

I. INTRODUCTION

The pitch control system of an unstable terminal homing missile[1] was formerly stabilized
using a fourth-order series compensator. The compensator had two pairs of complex poles that
were realized using active elements. The objective of this paper is to develop a computer-aided
method for redesigning the compensator such that the implementation cost of the compensator
can be reduced and the performance of the redesigned pitch control system improved. The
block diagram of the existing stabilized system is shown in Fig. 1, and its over-all transfer
function is

n(S)Go(s) — Ge(s)

& = T ()G ) ~ T+ Guls)

"‘ = bo+ b|$ +-- 4 b9s°+ bmsm é ﬂ&_‘_) (1a)
ot ayS+-+as0+ a..s" D(s)
where
ao =8.802158509% 10" b, = 8.80215809 x 10'®
' a, =2419047424x 10" b, =4.610004670 x 10
‘ a, =2911920560% 10" b, =2.926344345 x 10"
g . ay =2.420405431 x 10" b, =5.017212044 x 10"

as = 6667397031 x 10 b, =2.563396371 x 10
as =9.74923212x 10 b, = 1494523312 % 10"
ag =9.360329977x 102 b, =0.

a; =6.231675318x 10 b, =0. »
ay =2.976950696 x 10° by =0. ‘

g, =9.316239040x10° by = 'i
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106 L. S. SHIEN ¢f al.

Ris) * Tt 6',(3) Yis)

H‘(s) L]

Fig. 1. The block diagram of the existing controt system.

and

T.(s) = The transfer function of the existing series stabilization filter

) ”’(25"‘)(125 ‘) 3 Nyts)
8-y )

H,(s) = The transfer function of the gyro = 1 (Note that a rate gyro is not available) (1d)

(1¢c)

Go(s) = The transfer function of the actuator and air frame dynamics of the missile
system—The plane transfer function

= The open-loop transfer function of the original pitch control system with T,(s)=1
and H,(s)=1
324332.316(s + 0.1933)s + 65X s + 1500)

= (s = 2921Xs + 3.175Ks + 8.9« J95.5Ks + 112,55 + 1385) (le)
G (5) = The open-loop transfer function of the existing stabilized system
= T($)Gs)H, (s). an

For ease of presentation, we define the dominant data

(a) The real and imaginary parts of the transfer function when w = 0.
(b) The gain margin.

(c) The phase-crossover frequency.

(d) The phase margin.

(e¢) The gain crossover frequency.

Nyquist plots of G,(s) and G(s) are shown in Fig. 2. The dominant frequency-response data of
G,(s) are defined as follows

(1) The real (R,) and imaginary ([, ) parts of G,(s) at s = jw = jO are

RG(j0) = ~ 2.103817 and 1.G,(j0) = x (a)

(2) The gain margin G,,, of this system is

-l ] -
™ "G, (w)l  IRG, (o)l |- 1.8

where the phase-crossover frequency w,, is

ZG,(jw,.) = - 18" or w,, = 19rad./sec.
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188 L. S. SHIENH ef al.
The equivalent real and imaginary parts of G,(jw,,) at w,, = 1.9 are

R.G,(jw.,) = ~ 1.507944
1.G. (jwe) = — 0.006490205.
(3) The phase margin &, of this system is
bem = 180° + Z G (jw,) =5.7787°
where the gain-crossover frequency w,. is
|G, (jwe ) = 1 or @, = 3.2 rad/sec.
The equivalent real and imaginary parts of G,(jw,.) at w,. = 3.2 are
R.G.(jw,) = —0.9939143 (2h)
I.G.jw,.) = — 0.09547478. (20
The frequency-response data at w =0 in (2a) indirectly indicates the steady-state value of the
unit-step response of T,(s). The data at w = w,, and @ = w, in (2) represent two control
specifications{2]: gain margin and phase margin that characterize the relative stability and the
transient response of the existing stabilized system. The dominant frequency response data of
the plant Gy(s) and others are as follows
(1) The real and imaginary parts of Gyljw) at w =0 are
R,Go(j0) = — 1.304841 and 1,,G(j0) = =
(2) The phase margin ¢y, of the plant is
dom = 180°+ ZGo(iw.k) =-5.58°
where the gain-crossover frequency wy, is
|Goljwec )] = 1 oF wg, == 1.6 rad/sec.

Other frequency-response data at w,, and w, are

R.Goljuwes) = —0.9370766 )
O 1 Goljo,.) = 006716120 } for w,, =1.9 (3d)
R.Geljo,.) = - 0.6181657 )
B e 01949691 } for w, =3.2. Gy

Comparing the dominant data of G,(s) in (2) and Gfs) in (3d) and (3e) yields the dominant
data required of the stabilization filter T,(s) as

(D R T(jw)=16and ,T,(jo)=0atw =0 (4a)

(2 R,T,(jw,,) = 1.600492 and I, T.(jw,,) = 0.1216316 at w,, = 1.9 (4
or

|T,(evpe )| = 1.605107127 and / T, (jov,, ) = 4.345918198° at w,, = 1.9 (4c)
(3 R,T.(jw,) = 1.601402 and I, T, (jw,.) = 0.2049554 at w,, = 3.2 (44




Computer-aided methods for redesigning the stabilized pitch control system

|T.(owe )| = 1614464333 and _/_ T,(jo, ) = 7.293349493° at w,. =3.2. (4¢)

From (le) and (1f) we observe that Gy(s) and G,(s) are non-minimum phase functions. From
the Nyquist plots in Fig. 2 and the Nyquist stability criterion, we can conclude that: the original
missile system (without the stabilization filter) is unstable, the existing stabilized system is
asymptotically stable and its time response is oscillatory due to the small positive phase margin
in (2f). The purpose of this paper is to develop computer-aided design methods for redesigning
the stabilization filter to reduce the implementation cost and improve the flight control
performance of the missile system.

Two computer-aided methods are developed in this paper and subsequently used to redesign
the pitch control system. In Section II a dominant-data matching method for modeling a
transfer function (called a standard transfer function T,(s)) that matches the assigned
specifications shown in (2) is developed. The obtained standard transfer function T,(s) is a
reduced-order model of the existing stabilized system T,(s) in (1a). The time and frequency-
response curves of T,(s) and T,(s) will be compared to verify that the data in (2) are dominant.
The dominant-data matching method is then applied to obtain the reduced-order model of the
existing stabilization filter T,(s). Also, the method is used to fit a low-order model that satisfies
the specifications shown in (4). Thus, two low-order stabilization filters are obtained. In Section
II1, we apply the dominant-data matching method and the algebraic method due to Shich[3) and
Chen[4) to redesign the pitch control system. In order 1o simplify the design process, the
dominant-data matching method is first applied to obtain an unstable reduced-order mode! of
the original unstable high-order system Gols). Then. the algebraic method is applied to redesign
the pitch control system that has a series filter in the feed forward loop and a parallel filter in
the feedback loop. Thus, the advantages of a compensator in the feedback structure can be
fully used.

Hl. THE DOMINANT-DATA MATCHING METHOD

The design goals and/or the nature of the transient response of a control system are often
characterized by a set of control specifications[2]. These specifications are commonly classified
as: (1) time-domain specifications, e.g. rise time and overshoot; (2) frequency-domain
specifications, e.g. gain and phase margin; (3) complex-domain specifications, ¢.g. damping ratio
and underdamped natural angular frequency. Rules of thumb that represent the relationships
among the above three control specifications have been proposed by Axelby{S] and Seshadri ef
al.[6). Given the above guidelines, it is obvious that the gain margin, phase margin, phase-
crossover frequency and gain-crossover frequency are the most important specifications. These
data are called the dominant frequency-response data and shown in (2b) through (2i). Other
important frequency-response data is the steady-state value of a closed-loop system that is
indirectly represented by the value of G,(jo) at @ = 0 in (2a). These dominant data in (2) may be
considered as the design goal. In order to verify that the data in (2) are dominant ones we need
to construct a transfer function 7,(s) that is the reduced-order model of T,(s) and has the exact
assigned specifications shown in (2). The time response curve and the corresponding time-
domain specifications of this practical system T,(s) are dificult to obtain because T,(s) is a
high-order transfer function with large coeflicients. Furthermore, it is a stiff function. The latter
can be verified from its small coefficient a,o (the sum of all poles of the system) and its large
constant a, (the product of all poles of the system) in (1a). As a result, many numerical
integration methods (for example, the Runge-Kutta method (7)) require large data size and high
precision calculation for time response determination. However, the frequency response curve
and the corresponding frequency-domain specifications of this system can be easily determined
by a digital computer. Thus, a frequency-domain approach or a dominant-data matching method
is proposed to determine the reduced-order model T,(s) and to redesign the pitch control
system. There exists several frequency-domain methods for mode! reductions[8-10]. However,
the reduced-order models obtained from the proposed method gives the exact assigned
frequency-domain specifications in contrast to other techniques which do not.

Let the desired reduced-order model of T,(s) or the standard model that represents the

BT s R S T




190 L. S. SHieH ef al.
design goal in (2) have the following form

ot bys+ 8,52 GJAs)

T()=2-7 astasi+ss 1+GJ(s) (5a) §
b where the open-loop transfer function G,(s) is §
; G(S)= ao+b|s+b;s2 (5b)

sl(a, - b)) +(ay— by)s + s°T

The unknown constants a; and &, are to be determined from the conditions in (2). Following the
basic definitions and knowing the required values from (2) yields a set of nonlinear equations
flag.ay. ay, b, b))=0fori=1,2,...,5 as follows

T R N TR A (PR

(1) The requirement of (2a), or R,G,(jO) = - 2.1, gives

[i(ao. ay. a3, by, b)) = a\by - b - aoa; + agh, + 2.1(a, - b, = 0

(2) The requirement of (2b), or R.G,(jw,,) = 1.5 at w,, = 1.9 gives

[Aao. ay, a2, by, by) = (a;— br)Xag — 3.61b,) — by(a, - b, - 3.61)

f;(ao. a,. @y, b|. bz) = 3.6|b|(az - b;) + (ao - 3.6|b2)(a. - b| - 36') =0

- 1.5(3.61(a; - b,)* +(a, - b, - 361)] =0 (6b)
(3) The requirement in (2c), or ZG,(ju,. = - 180° at w,, = 1.9, gives * 3

(4) The requirement of (2f), or ¢m = 5.7° at w, = 3.2, yields

f‘(ao. a,. 4, b|. bz) = 1024b.(az - bz) + (ao_ |024b2)(a, - b| ~10.29)
—0.31940224{(a, - b,Xa, — 10.24b,)

- "](a| - b| - l0.24)] =0

(5) The requirement of (2g). or |G,(jw, )| = 1 at w, =3.2, gives

f(@o. @\, a3, by, by) = (a5 — 10.24b,)* + 10.24b, - 104.8576(a; - b,
- |0.2«0| - b| - |0.24)’ =0.

(6e)

The above set of high-order, nonlinear, algebraic simultaneous eqns (6) are difficult to solve.
The Newton-Raphson method[11] that is available as a library computer program package
(called the Z system(12] in many digital computers can be used to solve these nonlinear
equations. However, it is well known that the Newton-Raphson method will only converge to a '
desired solution for a small range of starting values or initial estimates. In order to improve the
convergent speed. the following methods are suggested for good initial estimates.

(1) Initial estimate by using the model reduction method due to Shieh and Chen|3, 8}.

Shieh[3} and Chen(8] have proposed a continued fraction method for model reduction. The
method is as follows. The N(s) and D(s) in (1a) are arrayed into ascending order and expanded
into the continued fraction of the second Cauer form by performing repeated long divisions, i.c.

Ts)= N ot byst -4 bys

D(s) ag+ays+---+a,s
1

h+ s
h+

$
3

M+_L_

h_\"’
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where h, =1, hy=—-0.401749, hy = —0.475321, h,=25.1998, hs;=—0.0322195, h, = —24.1061,
hy=--+, -+ and hy=--- for the example problem. The reduced-order can be obtained by
retention of the first several dominant quotients (k) for i = 1,2,... as follows

1 h,
T(s)= = (7b)
'll +Fs_ ’l]hz+ s
2
- 1 _ ’lzhg +s
o3 Rkt (R ths (7c)
! hz + S”lg
~ hzhg’u + (hz + h‘)s (7d)
- R hyhsh+ (hhy+ hyhy+ hsh)s + st
= hyhshahs + (hohs + hyhs + hehs)s + s° (e)
= hohohshyhs + (hyhohs + hyhshs + Bhohs + hahyh)s + (hy+ by + ho)s*
- hzh;’hhshg + (hohsh+ hz’l;’k + hzhshg + Iuh,h(.)s
T hyayhshhsh + (hyhshshy + hyhohshe + hihohshe + hyhahshg + hshahshe)s
+(hy+ hy+ he)s’
F (A, + hR+ hihg+ hshy + hyhe + hshe)s? + §° (7f)

=

where (7f) is the 3rd order approximate model of the original 11th order system, or in our
problem

Tasy = 37376+ 1946925 +0.69205”
) =37376+ 10.1661s + 0.948857 + 5~

(8a)

Using the coefficients in (8a) as initial estimates: a$ =3.7376, at=10.1661, a%=0.9488,
bt =19.4692 and b3 =0.6920 and applying the Newton-Raphson method {12] to solve the
nonlinear equations in (6) yields the desired solution: 4, = 6.37807, a, = 10.46222, a, = 1.259008,
b, = 20.55661 and b, = 0.243466 at the 8th iteration with the error tolerance of 107, The desired
reduced-order or the standard model is

6.37807 + 20.55661s +0.243466s> _  G,(s)

o= 6.37807 + 10.46222s + 1.2590085s° + s° 1+ G,(s) (8b)
where
G,(s) = The open-loop transfer function of the standard model
_ 6.37807 + 20.55661s +0.243466s° ' (8¢)
s(- 10.09439 + 1.015542s + s°)

The Nyquist plot of G,(s) is shown in Fig. 2, the unit-step responses of T,(s) in (1a) and T,(s) in
(8b) are shown in Fig. 3. The approximate results are satisfactory. Thus, we verify that the data
in (2) are dominant. It is obvious that aithough the T*(s) in (8a) may have a good overall
approximation of T,(s), only T,(s) in (8b) has the exact assigned frequency-domain
specifications as required in (2) that is essential in the design of a control system in the
frequency domain. It may also be noticed that the T%(s) obtained by the continued fraction

ot
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Existing system 7,(s)as weli os the
i systom using [, is}
~0—0—0~ The redesigned system using T, (s)

<& -&--8-- Srondard model T, 1s)

LTI > ~0-0-0- Redesigned system using Gis)and G, (s)

00 20 40 60 a0 0.0 120
1,%0¢
Fig. 3. Time response of various models.

method (7) may be unstable even if the original system T,(s) is stable. The following mixed
method is suggested for obtaining a stable reduced-order model.

(2) Initial guess by using the mixed method.

The mixed method has both advantages of the continued fraction method([3,8], the
dominant-pole method[13} or the equivalent dominant-pole method{9). It can be applied to
determine a stable reduced-order model from which a good initial estimate can be determined.
The mixed method is as follows. The relationship between the quotients A; and the coefficients
a; and b; in (7a) can be expressed in the following matrix equation(3, 4):

[b)=[H]a] 9
where

[a]T = [ﬂo» ay, ..., an-l]
[b]f = [bOv blv b!v LR} bn—l]
[H] =[H)"'(H))
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T in (9) designates transpose. The desired reduced-order model may be

do+ d|S + e +d,-|s’—l
otes+ - te s +es"”

T.(s)= e =1 10)

The coefficients ¢; in (10) can be determined from the coefficients of the polynomial that is the
product of the dominant poles of T,(s) in (7a). Replacing a; in (9) by ¢, in (10) and solving the
matrix equation in (9) vields the desired coefficients d; in (10). The obtained T,(s) has the
dominant poles and quotients of T,(s) and is always stable. When the roots of D(s) in (7a) are
not available, the approximate equivalent dominant poles and the resulting coefficients ¢; can be
determined from the Routh table as suggested by Hutton and Friedland[9]. Because the method
uses the dominant quotients of the original system and the equivalent dominant poles from the
Routh table, this method may be conveniently called the mixed method of the continued
fraction approximation|[8)} and the Routh approximation[9). Using the mixed method we can
obtain another stable reduced-order model. Thus, a good initial estimate can be determined.

Since the transfer function of the existing stabilization filter T.(s) is available, we will use
the proposed dominant-data matching method for determining the reduced-order of T,(s). The
T,(s) in (I1¢) can be considered the closed-loop transfer function of a control system

Tis)= Nd(s) __Gds) _ 46080052 + 691200005 + 144 x 10 (11a)
: D.(s) 1+G/(s) s*+250s" +76900s%+ 72 x 10°s + 9 x 10*
where the open-loop transfer function G.(s) is
Guis) = 4608005 + 691200005 + 144 x 10 (11b)
! s*+2505% — 38390057 - 619200005 — 5.4 x 10* 3
The dominant frequency-response data of this system are .f
(M G,(jO)= - 2.667 (12a)
) RG.(jw,,) = - 1.032833 (12b)
1.6, (juw,,) = 0.002017351 (12¢)
where w,, = the phase-crossover frequency = 140 rad/sec.
(3) R,Gs(ja’:() = - |.w294l (IZd)
1.G. (jw,.) = ~0.03668759 (12e)
where o, = the gain-crossover frequency = 200 rad/sec.
The reduced-order stabilization filter T,,(s) is assumed to be
__boths _ Gy(s)
T"(s)'aﬁ as+s 1+G,(s) (13a)
where .
Gu(s) = bt bys (13b) ‘

(ap— bo) +(a,— by)s + 5*

and a, and b, are unknown constants to be determined.
Using the coefficients a, and b; of G,\(s) and following the basic definitions of the data
shown in (12a), (12b), (12c) and (12d) results in the following nonlinear equations, respectively

o e

e e

(1 (12b)
[i(as, ay, b)) = 1.6aq — 0.6a, - 19600) + 19600b,(a; — b,) + 1.032833{(0.6a,
+ 19600) + 19600(a; ~ b,)?] = 0 (14a)

CABE Vol 7, No. 3--D
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2 (120)
[Aae, a,, b)) = 140b,( — 0.6a, — 19600) — 224a4(a, — b;) — 0.002017351
[(0.6a, + 19600)* + 19600(a; - b,)*] = 0 (14b)
3) (12d)
fj(ao. ay, b[) = l.ﬁao ( - 0-600""%) +mb|(a| - b[) + 1.002941
[(0.6a, + 40000)* + 40000(a, — b,)*) = 0 (14¢)

where b, = 1.6a, as obtained from (12a).

The initial estimates can be obtained from the reduced-order model of T,(s) in (Ic) using the
mixed method of the continued fraction approximation and the Routh approximation. The
reduced-order model is

1281.40525 s + 29937.62994

* -
Ths) = T 52 0755 + 180187

(15)

Using the coefficients in T*,(s) as initial estimates and applying the Newton-Raphson
method[12] we have the desired a; and b; in (13) for the 7th iteration with an error tolerance of
107, The desired low-order stabilization filter is therefore

957.260014s + 33467.93525
52+ 29.9812935 +20917.459536"

Tu(s)= (16)

The unit-step response of the existing stabilized pitch control system in (1a) and the redesigned
pitch control system using T,(s) in (16) and Gi(s) in (le) are shown in Fig. 3. The result is
considered to be satisfactory.

An alternate approach is proposed for redesigning the stabilization filter as follows. Because
the function of a stabilization filter is to convert the dominant data at w =0, w,, =19 and
we = 3.2 of the original unstable system G(s) in (3) to the assigned dominant data of G,(s) in
(2), we can directly apply the dominant-data matching method to fit a low-order stabilization
filter that satisfies the specifications assigned in (4). Assume the desired low-order model is

bo+ b]S

Ts)= .
A= as+ 5

(17a)

From the definition of (4a) we have by = 1.6a,, and (17a) can be rewritten as

1.6a,+ bs

T,z(S)= ao+a|S+S,.

(17b)

When s = jo,, = j1.9 the respective values of |T;jw,,)| and/T,:(jw.,) in (17b) match the values
of | T, (jwex )| andZT,(jw,,) in (4c), or the corresponding non-linear equations are

fi(aq. ay, by) = 2.56a,> + 3.61b,> — 2.576368889((a, - 3.61)* + 3.614,2} =0 (18a)
and
faq, a,. b)) = 1.9b,(a, — 3.61) — 3.044a, — 0.0759963811[1.6axa, — 3.61)
+3.6la,b]1=0. (18b)

When s = jo, = j3.2 the value of/T,(jw.) in (17b) matches the value of /T, (jw. ) in (4¢), or the
nonlinear equation is

fx(ao, ay, b)) = 3.2b\(ay - 10.24) - 5.12a5a, - 0.1279849782[1.6ae(a, ~ 10.24)
+10.24a,5,) = 0. (18¢)

Applying the Newton-Raphson method[12) and using the initial estimates obtained in (15) we
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have the desired solution of the nonlinear equations of (18) at the 9th iteration with the error
tolerance of 10°%. The desired low-order stabilization filter is

T.(5) = _356.628596s + 21283.19886
28 = T3 3180515 + 13301999297

19)

The unit-step response curves of the existing stabilized pitch control system T.(s) in (1a) and
the redesigned system that uses the low-order filter T.,(s) in (19) and the G(s) in (le) are
shown in Fig. 3. The result is practically identical. From the response curves in Fig. 3 we
observe that T,,(s) in (19) is a better filter than the T;,(s) in (16) as far as duplicating the
performance of the original pitch control system is concerned. This implies that the existing
stabilization filter T,(s) in (1c) might be overdesigned since we can duplicate performance with
a lower filter. Obviously, the implementation cost of the filter T,,(s) is less than that of T(s) in
(Ic).

Ill. AN ALGEBRAIC METHOD

The original fourth-order stabilization filter T,(s) may be replaced by two second-order
filters, T,,(s) and T,,(s), using the dominant-data matching method. It is observed that all three
stabilization filters have complex roots and that all are placed in the feed forward loop.
Therefore, they are sensitive to external disturbances. If alternate filters can be designed and
placed in both the feed forward and feedback loops, then (a) the designed filters may result in
simple transfer functions with positive real roots that may be easily synthesized using RC type
passive elements, and (b) the reliability and cost of the designed system may be improved. The
compensators in the feedback loop enable the designed system to be less sensitive to parameter
variations and modeling errors. In addition, it will reduce the effects of many externai
disturbances[14).

The algebraic method given by Shieh[3) and Chen[4] is extended and modified to redesign
this pitch control system. The steps of the algebraic method are summarized as follows:

Step 1
Assign the design goals using frequency-domain specifications and model a standard transfer
function using the dominant-data matching method.

Step 2
Expand the obtained standard transfer function into the continued fraction expansion shown
in (7) to obtain the dominant quotients and to formulate the matrix equation in (9).

Step 3
Assume the fixed configuration compensators with unknown parameters and determine the
overall transfer function that consists of the unknown parameters.

Step 4
Substitute the coefficients of the obtained over-all transfer function in Step 3 into the vectors
[a) and [b] in (9) and expand the matrix equation to obtain a set of equations.

Step §

Solve the set of equations to determine the unknown constants assigned in the compen-
sators.
The designed system using the algebraic method has the exact dominant quotients of the
standard models and is a good approximation of the standard model.

Before we design the pitch control system using the algebraic method we apply the
dominant-data matching method to determine a reduced-order model of the original unstable
system Go(s) in (1e) which had a transfer function with large coefficients. The unstable transfer
function G(s) in (le) can be decomposed into a stable portion and an unstable portion as
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follows

S N
Gy(s) = s —2.921) Tols) (20a)

where the stable portion is

_ 324332.316(s +0.1933)(s + 65)s + 1500) 3
Tods) = (5 3.175)(s + §7.9.= J95.5s + 112.5s + 1385) (20b) 1

The pole at the origin and the unstable pole at s =2.921 are considered as dominant poles.
Therefore, they are retained in the simplified model Gy*(s), or

Gls)= GHs) = s=— 57575 TH6) (200)

where T§(s) is the reduced order model of Ty(s) using the dominant-data matching method. The
frequency-response data of the gain margin, phase margin, phase-crossover frequency, gain-
crossover frequency and the final value at @ = 0 are used as the dominant data for the transfer
function fitting. The resulting T3(s) is

Ti(s) = 96.85489757 + 197897 961011 + 3710333375 00
7+ [17.07373357+ 16552.3000035 + 50595.685093

The desired T3(s) is a low-order model with small coefficients. Thus, the design process has
been greatly simplified.

Following the steps in the algebraic method we assign the series compensator G,(s) and the
parallel compensator G(s) with unknown parameters X;, i=1,2,...,7 as

_ ng + X7
Gs) =55 21a)
and
- X;sz + X4S + Xz
=" X5 ¥ X, @)

The block diagram of this redesigned system is shown in Fig. 4(1). The overall transfer function ' |

Kys+ X,
Ris) < G,(I) . e v

Glis) res)
+ X. .

e A

Xt X+ x ' i
ren | |

ﬁ“_’__o?_ G, (8) Gyls) Gots) c,:a) 1[ =

Fig. 4. The block diagrams of the redesigned system using algebraic method.
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T;(s) of this feedback system is

b+ bys+-- -+b7s’

Qo+t ays+---+ ﬂ.? Q1c)

T(s)=

where

ao = 37103.33375 X, X,

a, = 192897.961011 X,.X; + 37103.33375( X, X, + X, X7) — 147789.9961 X, X,

a; = 496.854897 X, X; + 19289796101 1( X X, + X X5) + 37103.33375(X X,
+ XaX) + 2246.41679X;X; - |477899961(X, + X, Xy)

M= 496‘854897(X3X¢. + X4X7) + 192897.96101 l(X.Xb + X X7+ 37103.33375
« XaXo — 147789.9961( X, + X} + 2246.41679(X; + X X,) + 16210.32763 X, X

Ay = 496.854897( X X, + X:X7) + 192897.961011 X, X, — 147789.9961 + 2246.41673
(X + X +16210.32763( X, + X, Xo) + 114152733 X, X

as = 496.854897 X, X, + 2246.41679 + 16210.32763( X, + X;)
+ 1452733 X, + X, Xo) + X. X

a4y = 16210.32763 + 114.152733( X, + X} + X + X, X

a,= 114152733 + X, + X,

g = |

b, = 192897.961011 X. X, + 37103.33375(X> X, + X, X7)

b, = 496.854897 X, X, + 192897.96101 1( X, X, + X; X5) + 37103.33378(X, X, + X)

by = 496.854897( X, X, + X, X7) + 192897.961011( X, X, + X7} + 3710333375 X,

b, = 496.854897(X, X, + X5)+ 192897.961011 X,

bs = 496.854897 X,

st 0
b, =0.

order to match the seven unknown parameters X; in (21) for this type “1" system we need

eight quotients. A; in (9). Therefore, the third order standard model in (8b) that has six
quotients: &; = 1, by = - 0.63184501S, h, = - 0.476189214, h, = 14.799589050, A< = - 0.102867450,

he
hy

~13.924278040 should be increased to a fourth order model by inserting h, = 100 and
=0.1 where the values of h, and hy are selected based on rules developed in{1§]. The

resulting amplified model is

6.37807 + 20.556615 + 0.2434665*
6.37807 + 10.462225 + 1.259008s" + 5

T,(S) =

§

+
<
he r

hy + W
=Ty(s)= 63.78098007 + 211.8989926s + 22.87561717s? + 0.343465"

= 6378098007 + 110.9545225s + 23.00917881s7+ 11301105185s° 4 3¢ 22

[15] has been shown that (22) is a good approximation of the original model in (8b).

Substitutingthe a;, i =0,1,...,7and b, i =0,...,7in(21) and using the quotients A, i = 1,....8
in (22) into (9) yields the following set of high-order nonlinear simultancous algebraic equations.

(23a)

filXh ... X)) = Xa X, + 0.6318422396] XA Xy - X,) - 3.98319992X,X,] = 0
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) £10, (TN X7) = X5(8.22822291 X, +8.522553136 X, — 6.939879587 X, + X, - 1)
+ X3(1.582676549X, — 13.17807554X) + Xo( X, - X))
- 3.983199922(X> + X\ X) =0 (23b)

MX.. .. X7) = XA - 12.71361621 X, - X:) + X5(13.58355291 X, + 1.820964317.X,
—26.29716913.X,) + 10.79844539%( X, X, + X7) — 13.31248704( X X,
+ X3 X;) +6.327224282( X, + X5) + 1.588477708X(1 - X))
+20.03527143(X; + X, X) =0 (23¢c)

JdX. . ... X7) = X+ X;+668.4670071.X, — 281.48094X,) + X,(386.9860673 X,
+362.767005 — 456.258273 X)) — 647.240364K X X, + X1 X7)
— 5753603068 X, X — 548.5188427( X + X, X) + 235.861385( X, X,,
+ X3) +235.2945185 + 590.5096275(X, + X) =0 (23d)

Jd(X..... X7) = 2357.408023( X, X, + X7) + X (1598.839931 X, + 17096.15228
- 32881.95043.X,) + X,(4.16745091 X; + 1599.83991 X, - X,)
~472.673532( X X, + X1 X5) + 24996.98242 - 939.0287936( X,
+ X< - 2765.323026(X; + X, Xs) — 5207771943 X, X =0 Q3e)

X ... X7) = Xo( - 99.4209415X, + 1113291981 X, - 57256.87822) + XX,
- 100.4209415.X,) + 411.4274907( X, X, + X, X,) + 67006.93001( X,
= X) + 1234.567433( X, + X, X)) + 42,6901 1171 X, X + 23203.834SS
—39112.69694(X, X + X5) = 0 (230

HAX.. ... X7) = 496.854897(X; X, + X X;) + 198512.9704( X, X, + X5)
+2228495.695 X, — 170.6497831( X, X, + X1 X7) ~ T7618.59617 X, X,
~ 3442861.087 — 395845.4335( X, + X.) — 8390.812346( X + X, X;)
— 62.08251489.X: X, = 0. (23p)

Equation (23) is a high order nonlinear equation which is difficult to solve. The Newton-
Raphson method[12] is applied to determine the unknown parameters X,. The following method
is suggested for obtaining the initial estimates.

The structure of the desired fixed configuration control system in Fig. 4(1) can be modified
as shown in Fig. 42). The overall transfer function is

N ,
Ti(s)= T’(S)__G,( 3 (24a)
where

Gy(5)GAs)GY(s)

Tz(s) = 14 G'(S)G'_-(S)Gs(s)

The design objective is to determine G,(s) and Gy(s) such that the response of T(s) is close to
that of the standard model 7,(s) in (8b). Replacing the series compensator G\(s)Gy(s) in Fig.
4(2) by the designed stabilization filter T,(s) in (19) and equating the resulting transfer function
T(s) in (24a) to the standard model T,(s) in (8b), we can solve the approximate transfer
function G(s) of Gy(s), or

GHe) = Gs) = T(s) G\(9)G)GY(s)  _ T A)GUs)

TAs) " 1+ G{NGANGHNTAS) 1+ T, )GHT,(s)
= [5.0366|9205 x 107 + 3.46495752 % 10's + 4.540060393 x 10'5? + 7840679235 x 10"s’

+4.363076841 x 10°s* + 1.763524302 x 10"s* + 4.256201128 x 10°5*)/[$.036619205

x 107 + 3.008227329 x 10"s + 4.613716606 x 10's? + 6.124169121 x 10°s*

+4.498497844 X 10°s* + 8.512494768 x 107s* + 9.985459768 x 10°s* + 9.698650697 x 10°s’
+4.91568119 x 10s* +0.2434665°]. (24b)

g, ™
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Expanding (24b) into the form of (7a) yields a set of dominant quotients h, =1, k=
- 1102755917, hy = —0.1287948973, h, = 5.593229805, hs=0.1338916858, ho= -, - -, k=
- -+, Substituting the first five quotients into (7e) gives a second order approximate model
G,**(s) of the approximate parallel filter G¥(s) in (24b) yielding

0.99492905757 + 0.7394973923s + 0.1058245527

G¥(s) = 7+ 0.643533679s + 0.1058245527

(24¢)

G%*(s) is an approximate model of the assigned paralle! compensator Gi(s) in (21b). The
approximate series compensator (G{(s)) of Gy(s) is

T,(s) _ 2252.284999 + 13787.1076s + 21834.46821s?

GH6) = Gas(s) ~ 1407 678125 + 98371449195 + 13237, 1051257

+856.6285%s*
+4.040722745 s> + 0.994929057 s

(25a)

Equation (25a) can be expanded into the form of (7a) to obtain a set of dominant quotients
hy = 0.625, h,= 1845828612, h,=0.0839039052, hy=":--, ---, hy=---. Substituting the first
three quotients into (7c) yields the reduced-order model of G1(s) in (253)

14106284265 +0.2184671685

GT*s) = s +0.1365419803

(25b)

G1*(s) is an approximate model of the assigned series compensator G,(s) in (21a). Comparing
(21b) and (24c) and (21a) and (25b) we have a set of initial estimates as X1 = 0.643533679, X% =
0.1058245527, X% = 0.994929057, X% =0.7394973923, X = 0.1365419803, X% = 1.410628426 and
X3 =0.2184671685. Using these initial estimates and the Newton-Raphson method[12] to solve
the nonlinear simuitaneous algebraic equations in (23) yields the solution X, =0.503850,
X, =0.059928, X;=1.051503, X, =0.580016, X = 4.831826, X, = 1.885577, and X, = 6.744450 at
the 14th iteration with the error tolerance of 107%. The desired compensators are

1.885577s +6.744450 _ 1.885577(s + 3.57688)
s +4.831826 5 +4.831826

Gi(s)= (26a)

and

Gs) = 1.051503s7 + 0.5800165 + 0.059928
5%+ 0.503850s +0.059928

_ 1.051503(s +0.13769)(s +0.41391)
T (s +0.19244)(s +0.311405)

(26b)

The unit-step response curves of the existing stabilized system T,(s) in (1a) and the redesigned
system using the compensators in (26) and the Gy(s) in (le) are shown in Fig. 3. The result is
satisfactory. Note that G,(s) and G,(s) in (26) are positive real functions with positive real poles
and zeros that can be realized using RC type passive elements. Thus, the advantage of a
feedback controller system([14] may be fully utifized.

V. CONCLUS'ON

Two computer-oriented methods: a dominant-data matching method and an algebraic
method have been presented to redesign an existing stabilized pitch control system{1). Thus, an
alternate method to the trial-and-error approach that is traditionally used has been given. The
resulting low-order stabilization filters that were obtained using the above methods reduce the
implementation cost of the pitch control of the missile system.

The dominant-data matching method can be applied to general control system design to
determine the reduced-order model of a high-order system. The proposed model reduction

ot
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method is superior to most existing methods in that it provides the exact frequency-domain
specifications.

An algebraic method has been applied to determine fixed configuration filters such that the
performances of the redesigned pitch control system of an example missile has been greatly
improved. The algebraic method can be applied to design any desired control system structure.
Several methods have been given for estimating good initial guesses for solving nonlinear
equations. In summary, the proposed computer-aided design methods present an attractive
alternative to trial-and-error methods which can be used to design control systems.
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