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are studied. These systems include classes of stochastic integro- '»'
differential systems. Existence, uniqueness, and stabinty of solutions
to such systems are investigated using contractor theory. Im particular, §
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1. Introduction

g e

Stochastic equations are important in stochastic systems theory as

E B well as in other areas of science and engineering [{9]). Existence, unique-

s
[
€
3
i
&

ness, stability, and approximation of solutions to such equations have been
studied by several authors, for example, Bharucha-Reid (2], Blankenship [3],
Lee and Padgett [4], Padgett and Rao [6], Padgett and Tsokos[7) , to name

a few. 1In this paper, a general stochastic integral systes vhich includes

classes of stochastic integro-differential systems is otudicd.. In particular,

this paper genera;izes the work of Padgett and Tsokos [7] and of Rao and

Tsokos [8) on integro-differential systems and yields frequency-type conditions for
the stability of a class of stochastic systems, extending the work of

Blankenship [3]. -

Consider the stochastic integral system
t
x (t50) = x, (@) + [ by(8:x(830) s0)ds

P
+j§1 Jo T145 (00 J§ KyygyCtumio)ty y (s,x(s50))dz, (ss0)de

+ 3 g-l ]; rZijl(t'T) f;xzijl(r,s;u)f21jz(s,x(o;u)dzj(s;w)dzl(s;m)dt.

IR

1=1,2,...,n, ' : 1.1)
where
(1) te ﬁ+ z [0,»), v € 2, the supporting set of a complete probability
measure space (Q,A,P);
(1) bR x B x 0+ Rz (=);
j : (111) rlij(t,t), tzijl(t.f) are continuous real-valued functions defined

for 0 STt St < =




(iv) xlij(t,l;u) and ‘2131(""”) are real-valued functions defined
for 0 Sssst<e anduw e f;
(v) fiij‘sijz: R x "+ R;
(vi) z(t;w) with subscript is s real-valued stochastic process satis-
fying certain conditions; and
(vii) x(t;w) is a vector stochastic process with components

xi(t;u), i=1,2,...,n.

The integrals involving the process z(s;w) in the equntioﬁ (1.1) are
to be understood as McShane integrals [5]). Throughout the paper we consider

sums involving subscripts'i,j and L. For notational simplicity, we let

2 z 2 and Z ] E unless otherwise stated.
i=] J. 3,2=1

2. Preliminaries

Let (2,A,P) be a complete probability measure space. We shall assume
that there is a family of sub-o-algebras At.t € l+. such that for s < t,
As < At' We shall further assume with respect to equation (1.1) that
(Hl) every process denoted by z(t;w) with subscript is a real-valued
stochastic process adapted to At. vith almost surely (a.s.)
continuous sample functions,and satisfies the condition
EL(2(t;w) - 2(3;0))"|A_] S K(t-s), vhere 0 S s st <=, = 1,2,4

and K is some constant;

‘113(t";") and x21jl(t.c;u) are adapted to A. forallt 28 and

are continuous as maps from 4 = {(t,8): 0 S s St <o} 4ntolL,,

xo(u) is measurable with respect to A and is mean-square continuous;




the set of all P-essentially bounded random variables (define the

norm || |K(t,8;w)||] = P - ess aupll(t.l;w)l); and
we
(H‘) for any n-dimensional mean-square continuous process x(t;w) adapted

to A, h(t,x(t;w);w), flij(t.x(t;u)) and fzij‘(t.x(t:w)) sre adapted

to At and are mean-square continuous.
Under the above assumptions, it is known [S,pp. 61-70, 138-139] that for
an n-dimensional wmean-square continuous process x(s;w) adapted to A.. the
McShane integrals in equation (1.1) exist, are adapted to At' shd satisfy the

following inequalities:

[E{f; Klij(t.s;u)flij(s,x(s;m))dzj(s;w)}zlk

< ZKI; CE{K,, , (t,8;0)f (s.x(a;u))}zlsds

3 143

+ E{I; Klij(t,a;u)flij(u,x(o;u))dzj(s,m)}z

< czfz E(Klij(t,l;w)flij(o.x(l;u))}zds 2.1)
and

E{I; Kp1gp (Eo850)f, ) (8,x(850))dz (-;w)dzl(-;w)lz

2132 3

< czf; E{Kzijl(t.l;u)f21j£(l,!(liﬁ))}2ds (2.2)

—— m———

vhere ¢ = 2K vt + /YK, K is the constant defined in (lll). and E denotes
expectation.

We shall nov define some specific function spaces that will be used
in this study. Let y(t;w) be a second-order scalar process adapted to At'

Denote

B Hycesll, = Cety(esn®s%, (2.3)
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Definition 2.1, C = C(R+,L2(Q,A,P)) will denote the space of scalar mean-
square continuous functions y(t;w) adapted to At' We shall induce a topology
on C by the family of semi-norms

Hyteid[]e = sup Ily(tzw)ll2

n t‘[o.n] 'n - 1’2000. . (2.6)

It is known [9) that this topology is metrizable and the resulting metric

space is a Fréchet space.

Definition 2,2. Cl will denote the set of functions y(t;w) in C such that

sup ||y(esw) 1], < =.
t20
Then, C1 is a Banach space with norm |||} c. defined by
1

[y(es) | lo = suplly(ezw)|l,.
1 €20

Definition 2.3. Let B and D be Banach spaces in C and let T be an operator

on C. Then the pair (B,D) is said to be admissible with respect to T if TBcD,

Definition 2.4. A Banach space B in C is said to be stronger than C if

every sequence which converges in the norm of B also converges in the topology

of C.

Definition 2,5. C_ will demote the space of continuous real functions

u(t) (t20) with norm ||u|]_ defined by

full, = sup lu(e)].
t20

Definition 2.6. Let x(t;w) be a vector process with components

xi(t;w)(i = 1,2,...,n). Then x(t;w) € c® (Bn or Dn) if and only 1if
xi(t;u) ¢ C(B or D).




Lemma 2.1. Let T be a continuous linear operator on C, Let B and D be

The following lemma is well-known [9].

Banach spaces stronger than C such that (B,D) is admissible with respect

i
i
{
';[

to T, Then T is continuous from B to D.
We shall now introduce the concept of a bounded integral vector con-

tractor for a set of vector valued functions., Let B and D be Banach spaces

stronger than (. Define the linear operators T, Tij’ and Tijl on C by
t .
(Ty) (t;0) = [o y(s;0)ds, 2.5) f
3
(T, ) (t0) = I rygy (6 J§ Ky (amiody (si0)dz, (ssu)dn (2.6) i

. - t T ] . 3 . .
(Tyy,¥) (t50) fo Tp1qe(Es™) [o Kyg 5 (To830)y(850)dz, (850)dz, (35u)dt.
(2.7)
Assume that the pair (B,D) is admissible with respect to each of the operators

I’Tij’ and Ti Let h(t,x;w), f,,, (t,x;w), and f21jz(t,x;w) be real-valued

je’ 11ij

functions such that h(t,x(t;w);w), flij(t,x(t;m);m), fzle(t,x(t;w);w) are

in B whenever x(t;w) e D", Let fl denote the nx p matrix with elements flij

and let f2 denote the nx px p three-dimensional matrix with elements fz 132

Definition 2.7. The set of functions (h,f

1,fz) is said to have a bounded

integral vector contractor (r,rl.rz) with respect to (Bn.Dn) if

(1) T = r(t,x) is a bounded linear operator from D to B for each t € Rf
and x € R°. The function ||F(t,x)|| s continuous in (t,x) and
Ir(t,x)|]| s Q(t) where Q(t) is a bounded continuous function;

(2) T, is an (n xp) matrix of operators I . .(t,x) such that for each

11]

te §+ and x ¢ Rn, (t,x) is a bounded linear operator from

T113
D to B. The function '|r1ij(t”)|' is continuous in (t,x) and




3)

(4)

y ||rlij(t.x)|| S Q,(t), vhere Q(t) is bounded and continuous;
b

rz is a three-dimensional matrix of operators (t,x) such that

Ta158
for each t € R+, x € RP, r21jz(t,x) is a bounded linear operator

from D to B, The function I]r21jz(t,x)]] is continuous in (t,x)

and )
i’j l!'
and

|‘r21jn(ttx)‘l < Q,(t) where Q,(t) 1s bounded and continuous;

for x(t;w), y(t;w) € D®, the following inequalities hold:

| |h(t,xttsw) + y(tsw) + (TFy)(t;w)

Lt

+ ((§ T34 1440 (50)

+ (CY T, 0Ty )Y) (E50)50) ‘
5%; 2148 2142
- h(t,x(t;0)w) - (Tyi)(t;w)||3 s o lIvll o
D

18y, (Eax(ts0) + y(Esw) + (TTY)(E50)

+ ((§ Ty 447 11)9KE )

+ ((j§2T21jzr21j,)y)(t;u>)

- £qq(Eax(E50)) - (r113y1)(t;”)lls < “lijlly‘lnn‘
18555 (Eox(Es0) + y(Eiw) + (79 (E50)

+ (I T, ,Ty,.9)(t50)
3 113 11)

+() 7 r y) (t;w))
ng 2140 2438

- f21jz(tox(t;u)) - (TZij!-yi)(tm)”Bs“lely”Dn’

S e a e b el Ak o D R



vhere Try, (gtlijrlij)y’ and (§ lTZijlrzijl)y are n-vectors with
»
components Iryi. (grlijrlij)yi’.nd (§ £T21jlr21jl)y1' respectively.

Let o denote n-vector with components Gy °1 the nx p matrix of

constants a4 3 and ay, the three-dimensional nx p x p matrix of

constants a « Then the triplet (u.al.cz) will be called the

2432
vector of contractor constants.

We remark that from equation (2.5) and the assumption (335 on K. and K

1 2
and from the inequalities (2.1) and (2.2), it is readily demonstrated that

the operator T, Tlij’ and T are continuous on C, Hence, if a pair of

2132
spaces (B,D) are both stronger than C and admissible with respect to T,

Tlij and TZijl’ it follows from Lemma 2.1 that these are bounded linear

operators from B to D, Therefore, there are constants k, klij and k21j2 such
that
Hrhl < x, (2.8)
IITlij'I < klij’ and (2.9)
“TZijlll s kZijl (2.10)

Definition 2.8. The random function x(t;w) will be called a solution of the

equation (1.1) 1if x(t;w) € C® and satisfies (1.1) a.s.

3. Existence of Solutions

In this section the concept of a bounded integral vector contractor, as
defined in the previous section, will be used to obtain the existence and
uniqueness of solutions of the general stochastic integral system (l1.1).

The conditions under which the existence and uniqueness will be proven are




very general, and as a specific application, Theorem 3.3 will be used in

Section 4 to study stability of stochastic systems under frequency-type
conditions.
In the following theorems, B and D will denote Banach spaces stronger

than C and B" and D® will be the corresponding product spaces.

Theorem 3.1 Let the system (1.1) satisfy the following conditions:
(1) xo(w) e D";
(2) the pair (B,D) is admissible with respect to each of the

operators T, and T

T144 21423

(3) the set of functions (h,fl,fz) has a bounded integral vector

contractor (r.rl,rz) with the vector of contractor constants

(°’°1’°2) .

Then, if kai + 2 k <1, there exists a solution to

113%13 ¥ jzzk21j£°21j£

equation (1.1) in Dn.
Proof. Consider the sequence {x(m)} defined by

x (m+1)(t;w) = xim)(t;w) ~ [yim)(t;m) + (Tryim))(t;m)

i

(m))(t

* § (Tyagagg 4 ) (E50)
* jgz(T21jlr21jl ™) (5w,
m=0,1,2,...; 1=1,2,...,0, (3.1)
where
() = 1™ () - x W)

(m)

- (Th(s,x

(s;w) ;w)) (t;w)

i A 1 At




- 4 Ty £144x™ (8300 (t50)

(m)
- (jz 21j'- 21.12“." (S.W))(t.w) (3.2)

and

(m) (x(m) , x(m) x‘Em)) ,

2 ¥ty xo(m) € Dn.

It is clear from the definition of the operators I, rlij' and T and

2442
from the admissibility of (B,D) with respect to T,
(m), y(m) ¢ D°.

, and T that

T113 2132

x We shall now show that ||Y§E)I|D +0 asm+ e, Fron

equations (3.1) and (3.2), we have

y* (t30) = (Mis,x™ (s50)0) (£30)

+ I (5, (830))) (t30)

1158143
+ Z (r (5,x™ (83)) (£30)
213282432 (8> ; :

- (Try(“’)<t s0)

() (.

(m)
L (Tpy4aTaggeyy ) (Eiw)

32
- Th(s,x(M)(s;w) ( )(s.w)

- ary™®) (50 - [Z(r @) 3(s30)

11371147

- ()5 g.0)-
[j§£T2131r21j!y 1(s;uw) ;u)

- ZTlijflij(s.x(")(o:u) - y(')(s;w)
3

e e S i g 4 T, PN

At D e * 7

PN —r P




10

- ary®e) - 11y, ™) i
3

(m),,., . j
- [leT21jzr2131y 1(s;w)) (830) i

(8,x™ (850) - y™ (s50)

T f
j§2 213272432

®) 1 (s5u)

- ary™)yes0) - 1y, 0y
3

R W o -

(m) :
= (L T iaToiany V) (850). : (3.3)
gl , 2180 215

Equation (3.3) together with equations (2.8) and (2.9) enable us to conclude

(m+l)
Hyg Hp s Ckay + § k)13%143

]
+ § k213£°21jz]|ly1|lp < °1||Yim)||9, (3.4)

*
vhere a, < 1. It therefore follows that ||y§m)||D +0 as m+e, Also

from equation (2.1) we have

D ™ s 1y + k] iy

lp B

%f (m)
& + § OTPLILITR Aag I M

‘ ' (m)
B +3§1k21j1||r21j£y1 |1

* *
s1+Qk+Q ] k)
]

d (m)
+Q, 3Iz kygqedllyg 1y (3.5)

wvhere Q*.Q;. i=1,2 are upper bounds on Q(t), Qi(t)' i=1,2.

# ey e L ‘ i aciat




11

It follows from (3.4) and (3.5) that the sequence (xi')} is & Cauchy

sequence in D. Hence, there exists an x, € D such that lim x:') -x,.
- i ad

In view of the continuity of operators and the functions involved in equation

(3.2), it follows that x, is a solution of equation (1.1) and this completes

1
the proof. /11

We next prove a theorem concerning the uniqueness of solutions of

equation (1.1).

Theorem 3.2. Let the hypotheses of Theorem 3.2 be satisfied. Assume in

addition that the linear integral system
ni(t;w) =y, (t;w)

+ { Io 11360 [; l(lij(t,s;w)(I‘lij(s,x(s;w))yi(l,u)dzj(l;m)dt

+ Z IO Zijl(t") IB Kzijl(t.s;u)P21jl(u.x(-an»yigl;w)dzj(c;w)dzl(c;u)dr
(3.6)
has a solution yi(t;w) in D for every x(t;w) ¢ D" and ni(t;u) ¢ D. Then

i equation (1.1) has a unique solution x(t;w) e b .

@),

Proof. Let x{l)(t;w) and xg ;w) be two solutions in D of (1.1) corresponding

; to two initial random variables x(l)(m) and x(z)(u). «1,2,...,n. Then

xil)(t;w) - xiz)(t;w) = x(l)(w) (2)(0)4-[]0 hi(l,x(l)(l,d),ﬂ)

i - hi(s,x(z)(a;w);u)ldl

+ § f; rlij(t.t) f; Klij(t.l;u)[flij(o.x(l)(.;u))

E: 113('.8 )(O;u)) dzj(l;u)dt




B "f",‘!_’vm 4

SYONNINN

12

+ i o T13 &0 J§ Kpygp amiad ey, (ox M (in))

f21jl(‘-x(2)('3@))]dlj(';ﬂ)dll(ﬂiﬂ)dt

1=1,2,...,n. (3.7)

Letting ni(l;u) = xil)(t

w) - x ;w) we can conclude from the fact that

:2)(:
(3.6) has a solution for every z and x, that there is a yi(t;u) ¢ D such that

@,

w) = X

xil)(t ) +y, (t50)

+ § rlij(t,t) I; “113(""”)(r115"-‘(2)("“)71)("“)" (s;w)dr

3

+ ji Zijl(t'T) IO 213('"‘”)(rzijg('°‘(2%b‘“»yf('3“)4‘3('3“)d't('3“)¢1-

(3.8)
From (3.7) and (3.8), and upon using the contractor condition and simplifying,

we obtain

lyy sl iy s Hagpw - xZ@lly
+ (ak + g ulijklij + 12‘ °2ijlk21jt)llyi(t‘“)||n‘

from which we get

iy lly s @ - ok - § a)ygkrqg " g.. °2tjtk2131) x ,l,(x) u)“n
3.9)
1f xif% - xizz , 1t follovs that y, 2 0, vhich in view of (3.8) tmplies
that x: ) = ':2)' .

We nov consider the following special case of the equation (1.1) becsuse

of its usefulness in applications:

S
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x(t;w) = h(tz0) + Jo 1 (e,1) I3 Koltsuiedty(u.x(uin))du de

(uim)de

+ § f; l’u(t.i) !; ll(t.ll;u)fu(u.a(uao))u’

+ jzl. ]; rz”(t.'!) !; lz(f.u;u)fzj‘(ll.l(luﬂ))‘lj(ll;u)dl‘(ll;.)dt.
' (3.10)

Let 'l'o be the operator

(‘rox)(t;u) - !; l’o(t,i’) f; Ko(t.\l;u)xo(ll;d)“!.

and let TlJ and sz‘ be as defined in equations (2.6) and (2.7),

respectively, with 1 = 1, rlij = '11"213! - rz“. luj - ‘1.1 and ‘2131 -
#

szl. Also, let C1 be a subspace of the Banach space Cl.

Theorem 3.3. Assume the following:

(1) h(tsw) ¢ c:.
(i1) The pair (cl.c;) is admissible with respect to each of the
operators TO'le' and 1‘2”

(111) There are positive constants and ¢ such that the

€0*c1 250
operator (I - coro) is a.s. invertible on C. and the operator
-1
(1 - (1 - ¢cyTy) Qq °13’13 + jzl cu"l'z”)) is invertible as
)

Jo
a map from (!1 to Cl.

Uv)  to(t,urv) - £,(t,0) - covl s volvl,

Ifu(t.u*v) - ‘13("“) - euvl 3 yulvl. ond
If“l(t,uﬂ) - fz”(t.u) - cu.vl < yz’..lvl

for u,v ¢ R vhere 'o"u"“‘ 723}. ave positive conetaats.
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Then, if
[]¢1 - (X - e,T )'1({ & Tt ! et ))'1l|
0'0’ % “1371y T &, 23ty
RN R A RE NI 1 v, 11 - e,T Rk I
0 00 0 j 1) 00 13
+ 5%1 Yaqu! 11 = €gTg) 112”“ <1,
the equation (3.9) has s unique solution in C; such that
sup ||x(tiw)l], s u sup ||n(eiw)l],.
t20 ta0
Proof. Using the invertibility of the operator (I - co'ro). equation (3.10)
can be vritten as
x(tiw) = Bejw) + ¥ 1 (e a(ti0))

+ § Tufu(t.x(t;u))

where
B(t,e) = (I - coro)'lu(c;.).

io(t.‘) g ‘o(tig) - co‘.

P . e(1-c1y!

13 o T

13°

i -1
4 b = 0 - cgT9™ Ty,

Prom condition (iv) of this theorem, it i casily verified that with the
[ : choice




c0 il 4 Yo! alj -y Ylj. and ﬂzj" Y yzj"l

]"1

1y "yl - § ¢35 1y - LeagaToge

r ) R (3.12)

238 = S290 (1 - § c3 Ty = I eagafagy
the set of functions (fo,flj ij) has & vector of contractor constants
where

-1
velia- § 15713 I , S2t T Ul

The existence of a solution now follows from Theorem 3.1.

To prove the uniqueness, we note that for the choice of contractors

given by equations (3.12), the equality

Tw‘rul e1- E 1:1-1 14 " 2 €qs Zjl' (3.13)

15,0, - ]
[RR IR R

holds. Thus, the invertibility of the operator (I -] ¢ T.. - ] ¢ N ¥ 2)
1 13 j 232 723

implies that the equation

nesw) = (T=-F e, T, -1 ¢ T, )y(t;w)
EE IR o e

has a unique solution for each LK C;. Therefors, by Theorem 3.2 and from

equation (3.9) the solution is unique and satisfies the condition

oup Ill(t;u)ll2 S M sup ||h(t30)||2.
t20 t20 "

4. Application to the Stability of Stochastic Systeme

In this section we shall discuss the stability of solutioms of a special
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class of feedback systems with convolution kernels, sector-bounded nonlinear-
ities, and disturbances comprised of a Brownian motion and a Poisson point
process. Using the contractor theory, we shall obtain sufficient conditions
under which the feedback system is mean-square stable [3]. The conditions N !
involve the sector parameters of the nonlinearities, the parameters of the :
stochastic disturbances and the Laplace transforms of the kernels.

Consider the feedback system

x(t;w) = h(t;w) - !; ro(t-r) f; Ko(t-u)io(u.x(u;u))du dt .

- [ 7y (&0 [g K, (r-u)£) (u,x(u;w))dz, (uzu)dr
- I; r,(t-1) f; K, (1-u)f, (u,8(u,u))dz, (u;u)dr. (4.1)

The process zl(t;m) and :2(t;u) in (4.1) satisfy:
1) zl(t;u) is a random process such that zl(O;u) =0 and

g(tw) - zl(o;u) - 2 v(t;w)(N(T;0) - Nt ju)).
s<Tst

The random function v(t;w) has mean y and variance 02 and,
corresponding to any finite set TyoeoesTys the random varisbles
V(Ti;w) are independent, and N(t;uw) is a Poisson process with
parameter )\ (see [5], page 88). PFurthermore, v(t;w) is inde-
pendent of all increments N(t;w) - N(s;w).

(41) az(t;w) is a standard Brownian motion process.
Under the above assumptions the following results are known [5]):

£ S (e, (ri0) = 0; BUST (e, t)dny(ri00)? = [ B L2, 0av;

(4.2)




e

E [g fit,1)dz, (ri0) = au [ £(t,0)dv; 4.3)

E(fg £(e,0dls (o) - waed? = 8 £ 20002 + oDyar. (4.4)

We shall further assume that z. and z, are independent and h is admissidle

1

and non-anticipating (3], The functioms r » and fi“ = 0,1,2) are

1’ ‘1

all continuous. The nonlinearities f g 8T sector-bounded and satisfy the

condition
[f,(t,bu+v) - f (u) ~c v| s!:'-lvl
1 i 2
vhere c-%! ({ =0,1,2), u,v ¢ R.

In vhat follows, we shall denote the Laplace transform of a function
r(t) by r(s) and the convolution of two functions f and g by £ * g. Ve will

now present a stability theorem for the systeam (4.1).

Theorem 4.1 Assume

1 -~
(1) (- s 10 ) d (V) (.)
¢ lclz-lo Ro

vhere Ro(s) = (7 (8) Ko(s) + WAE, ()X, (s)] :
and §, > 0 1s such that

- -.ot
Io ¢ 7 Urgxy(®)] + [r, (K () )at < =,

(11) Let R (s) = (1 - Ry(e)) 7, (), 1 = 1,2 and

W) = 202 + oD)(R, (OIK, ())* (R, ()K, ()]

(R, (83K, (8))4(R, (8)K,(8))

z ~
s0 that (-—,—5.10)4 v V(s).
s+ lcla-io
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2.2,
(111) swp |Q - % WY
s2-§
0
T+ 3T (v + 36
Ao |12 ;
feR (u+ J(E-Eo))( ut JEO)

+ sup "(l)% < 3%;
sZ-Bo

vhere t*(s) = (1 - R_(8))7'[xg(s) Ky(8) + 7, (s) K, ()]

and sup a(s) > 22 3
az-Bo a +b

(1V) h € Cl.

Then there exists a unique solution x(t;w) of (4.1) such that

sup ”x(t;m)”z < M sup ]lh(t;m)||2
t20 t20

for some M > O,

Before we proceed with the proof of the theorem, we shall first prove

the following lemma.

Lemma 4.1. Let T; and T; be operators on C_ defined by
1) v(e) = J§ (¢, * KDE(e=0)v(n)en, (4.5)
5 we) = [& (r, * K )2 (t-1)v(n)ar (4.6)
2 0 "2 2 * *
Let T, and T, be operators on C1 defined by

R S s Y




I el S R R A

Lol
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O o :’*tﬂfm

T,x(t;w) = !5 r, (t-1) ]B K, (r-u)x(u;0)d(z; (usw) - wA)du, (4.7)

sz(t;w) = I; rz(t—r) IB Kz(r-u)x(u;w)dzz(u;w)dt, (4.8)

vhere rl,rz,Kl,Kz,zl and z, are as in equation (4.1). Assume that there

exist constants CysCy > 0 such that ||c1T1 + ciizll >1 and
2  * 2 %
(1 - <, Tl - <, Tz) is invertible. Then the operator (I - cltl - csz) is

*
invertible as a map from C1 to C; (C1 = Range of T1 + Tz) and

-12 2., % 2 %<1
N = o1y - e, T |7 8 NEC I M 29 I |

Proof. The assumption that ‘lcltl + c2T2|l > 1 implies that for some

*
A(t) > 1, there is ay ¢ C1 such that

* *
||(¢1T1 +c, 1)y Il2 =a(t)]]y ||2- (4.9)
* * *
Let Az {y I ll(clT1 + ¢,T,)y ||2 =a(t)|]y ||2}- (4.10)
3 Let X,y € C1 such that y = x + clle + cszy. (4.11)

Then

2 2 2 2
||YI|2 < le”z - IlclTl}’“z - ”‘:2'1'2)'”2 + 2“7”2[“611'1? + CZTZy”Z].

(4.12)
* *
Choose y ¢ A such that ||y ||2- ||y||2. Then
2 LITY 2 w2 * 12
Nyl = 11y Has Hxllg - He Ty 13- eIy 1)
* *, 12 -1
+ 2||c1T1y +c,T,y [1ta(e)]
2 2 % 2 K 2

< ||x||2 +(c] T, *+¢c, T2)||Y||2- (4.13)

W B e - e
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Hence,

2 2% 2. % ~1 2
HY”Z s “(I - C1T1 - CZTZ) H IIxHZ ¢ (“.14)

Equations (4.11) and (4.14) allow us to conclude that

-1),2 2.k 2. % -]
Ia - e Ty = C,T,) || s Ha - )T, - €3Ty) H.

To show that (I - clT1 - czTZ) has an inverse, we note that the operator
*
is an onto map from C1 to Cl. Therefore, we have only shown that it is

« .
one-to-one. Let y € C1 such that y = (1 - ¢,T, - cz'l‘z)x1 = (1 - CIT

1N 1~ ST)%, ,

for some X, ¥ x Then

2.
2 2. * 2, * 2
E(xl-xz) - [clTl + czTZ] E(xl-xz) 0. (4.15)
2 _% 2 %
From the invertibility of the operator (I - clTl - csz) it follows that

X, = x, almost surely, which shows that the map (I - ¢,T, - csz) has an

1 171
inverse. 111/

Proof of Theorem 4.1. Rewrite equation (4.1) as

1 3
x(tw) = htso) + I T,F (ex(ti0)) + ] T £ (0,x(ti0)), (4.16)
1=0 1=2
wvhere
= -1
h= (I~ cTo- c'rl) h,

= -1
‘1‘i = (I - c¢T, - c'rl) 'l'1 . i=10,1,2,3

0

L(,® = £(t,x - ex, 10,1, and ¢ = !§! (4.17)

The operators TO,T and T, are defined as in Theorem 3.3 (with kernels

2 3

being convolution) and T, is defined by

1




Tlx(t;w) = f; !l(t-1) IB Kl(r-u)x(u;w)ul dudr. (4.18)

The existence of (I - cT, - ¢'r1)-1 follows from assumption (i) of the
theorem {3].

We shall now show that the assumptions of Theorem 4.1 imply those of
Theorem 3.3. Condition (ii) of the theorem implies that the inverse of
aI - 2 Tl* -t Tz*) exists [3]). Therefore, from Lemma 4.1 it follows that
the operator (I - c(I - c(T0+T1))-1(T1+T2)) is invertible. ?urther,

condition (1ii) [3] and Lemma 4.1 together imply that

22) |11 - @@ - eTgT ) )|

x [ - elrgrm, ) " rgerp | |
-1
+ 1@ = e@pT N (T4 |1 < 1

The other conditions are easily verified and the conclusion follows from

Theorem 3.3, ' 11/
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