
Bolt Beranek and Newman Inc.

I Report No. 4526

SAD A0931 64

I Combined Quarterly Technical Report No. 19
SATNET Development and Operation

Remote Site Maintenance
Internet DevelopmentI Mobile Access Terminal Network
TCP for the HP3000 b #

1 TCP for VAX-UNIX 1

* November 1980

Prepared for:
Defense Advanced Research Projects Agency

[A

so 12 2211

UNCLASSIFIED

SECURITY CL.ASSIFICATION OF THIS PACE (NWme Dae 8stsmo'

REPORT DOCUMENTATION PAGE REA COMPTIMORM
1 . REPORT JM M S.OVT ACCmawON 00: CIVICRAI CATALOG M6W

4. TITLE (and iubeeeej S. TYPE OFR PORT&EROD OEE

COMBINED QUARTERLY TECHNICAL REPORT No. 19 8/1/80 to 10/31/80
&- PERFORMuING *MG. REPORT NUMBER

AU heNe) 5~g..e~o~U4526 - -

MDA9O380-C-0 53 & 0214
R. D. Bressler N0039-78-C-0405

9. PERPORMING ORANIZAl ION NAME AND ADDRESS 10. PRoGRAM ELCMEN4T.PROJECT. TASK
Bolt Beranek and Newman Inc. AP U ORe UNoI. 32V1

50 Moulton Street ARP arerNds 321751
Cambridge, MA 02238an3157

IL. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency November 1980
1400 Wilson Blvd. tO. NUMBER OF PAGESI
Arlington, VA 22209 130

14. MONITORING AGENCY NAME & ADDRES(a diffe-ftI frw Cau,.ffej Offce) IS. SECURITY CLASS. (at this iep.A)

DSSW NAVALEX UNCLASSIFIED____Rm. 1D, The Pentagon Washington, DC UCASFE
Washington, DC 20310 20360 Its Ok-C.IICATION'oOWNmAsW~a

IS. DISTRIBUTION STATEL4MN (efthis Report)

J APPROVED FOR PUBLIC RELEASE/DISTRIBUTION UNLIMITED

J Il~~1. DISTRIBUTION STATEMENT (offf he'* laoei fe, #&Mocek 2S. 0411 affrI fme Mahpsf)

I0. SUPPLEMENTARY NOTES

to. Key WORDS (Cwheso Vero Rw io& of 80aeend 1~10U~ by mesh 'Mae)
Computer networks, packets, packet broadcast, satellite communication
gateways, Transmission Control Program, UNIX, Pluribus Satellite IMP,
Remote Site Module, Remote Site Maintenance, shipboard communications,

- - Terminal Access Controller, VAX.

20. ASTRACT (Caftelaws do ceem old. t N esemre and iJffp for Week mrn~e)

This Quarterly Technical Report describes work on the development of and
experimentation with packet broadcast by satellite; on development ofA Pluribus Satellite IMPs; on a study of the technology of Remote Site
Maintenance; on the development of Inter-network monitoring; on shipboard
satellite communications; and on the development of Transmission control
protocols for the HP3000, TAC, and VAX-UNIX.

I DOAN, 717 SWO PIMWO S0S4t UNCLASSIFIED0 0 1 7 3 c 'n o w o r 1 m o v e l l N O L I Z W U M T w C L A S S I V I C I O O P T W o s P A G E (N w D o m t E a e e s

9NCLA SI FIED
SECURITY CLASSUFICAflau OF TmIS PAGC rmWee Da enrw*dj

secotrwCLSSIPIAF4 lprMI PGZ(4of CA* f~-11f

Report No. 4526 Bolt Beranek and Newman Inc.

MBINED QUARTERLY TECHNICAL REPORT NO. 19 -

RAIV RVELOPMENT AND QPERATIONq95 ATEL LITE _L&JVELOPME'4T4
MOTE &-TE I ITL"
MERNET 2PEOPMENT

BIL SC.ESS TRMINAL NETWORK4

OfeVAX-UNIX

Noof- -*

This research was supported by the Defense Advanced ResearchI Projects Agency under the following contracts:
Ni MDA903-:7-c-0252, PA Order No. 3214

I N39- 78-C-fi4 5 PA Order No. 3175.17

MDA903-80-C-0353, ARPA Order No. 3214
MDA903-80-C-0214, ARPA Order No. 3214
N00039-80-C-0664

Submitted to:

Director
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Attention: Program Management
1'

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarilyIi representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.
Government.

L 7

[

Report No. 4526 Bolt Beranek and Newman Inc.

Table of Contents

1 INTRODUCTION 1
2 SATNET DEVELOPMENT AND OPERATION...................o.. 2
2.1 Minimal Host-SATNET Protocol for Loader/Dumpers..... 2
2.2 Software Problems Fixed 5
2.3 Hardware Problems Fixed 8
3 PLURIBUS SATELLITE IMP DEVELOPMENT 12
3.1 Evaluation of Microcoding Enhancements to the PSAT. 15
3.2 Low-Cost PSAT Study................................ 19
3.2.1 MBB Emulation of a Pluribus 21
3.2.2 MBB C-Machine Based Node. 23
3.2.3 Butterfly Multiprocessor Based Node.............. 25
3.2.4 Reconfigured SuperSUE PSAT....................... 29
3.2.5 Commercial Minicomputer Based Node............... 33
4 REMOTE SITE MAINTENANCE o... 35
4.1 Further Explorations into a Definition of RemoteMaintenance 35
4.2 General Maintenance Services............... 36
4.3 Things That Make Remote Maintenance Easy........... 39
4.4 Multi-system and Multi-site Maintenanc in ResearchSystems....oo-000 43
4.5 Improving Remote Maintenance Incrementally 48o4o5o1 General..•.oe o o oo o o 00 0 * 00 0 0 0 48
4.5.2 A System Dump Analysis Tool...................... 51
4.5.3 A Preliminary System Data Base and Control

4.5.4 An Active Programming Environment................ 58
4.5.5 Documentation: On-line and Paper................. 59
5 INTERNET DEVELOPMENT 63
5.1 Summary of Past Quarter's Work..................... 63
5.2 CMCC Development of Catenet Performance Measures.. 65
6 MOBILE ACCESS TERMINAL NETWORK 71
6.1 Summary of Past Quarter's Work 71
6.2 Microcode Design of Event Triggers in the C/30..... 73
6.3 MATNET Satellite Channel Packet Formats 77 Accession
7 TCP FOR THE HP3000... •. 827 .1 I n t r o d u c t i o n• • o 8 2 s G A I
7.2 Philosophy of HDLC Host Interface... 83 DTIC TAB%
7.3 Host/IMP Protocol........... 84 Uznnour.ced

* 8 TCP-TAC.......o.... 92 Juotification.
8.1 Introduction........ 92
8.2 Overall Data Flow..... 93 Y____
8.2.1 Receiving Data................................... 93 2antributiont8.2.1.1 1822 Module.. 94 -- Av~lebtlity C
8.2.1.2 NCP Module. 95 i' Avz,-.i1b mad/
8.2.1.3 Internet Module..••.......•.......•.....• 95 A c,1nad

--).ia,

I ._ .._
- **

Report No. 4526 Bolt Beranek and Newman Inc.

8.*2.*1.*4 TCP Module..*. 96
8.2.1.5 Telnet Module.o................ 97
8.2,2 Sending Datao.s........ eec..... 98
8.2.2.1 Telnet Module.o............................... 98
8.2.2.2 TCP Module... e..... . 99
8o*2 *2o*3 Internet Modulee*.. oo..... 100
8.2.2o4 1822 Module.. .. *............................ 100
8.3 Control and Priorit........e................. 101
8.4 Data Structures...o...... * e. . . 102
8.4.1 Message Blc. ~~.. ~... ~~.102
8.4.2 Protocol Data Bok...........ec...104
8.5 1822 Protocole ,.. c...... eec.... 107
8.6 Internet Protocol. ccc......eeo...... ge.. 107 -

8.6.1 Identifier Assignment.......... oec....eoooc... 107
8.6.2 Option Support.oo.. 108
8.6.3 Reassemblyo.....o................ 108
8.6.4 Ruig.cc. ccc.ece..eec..e. 110
8.6o5 Gateway to Gateway Messages 0...00.0..0..0111
8.6.6 Timeouts.. ... c..ec. * e c c cc.c c. cc...0 111l
8.7 Transmission Control Protocolo.0*00*0. *0.. .. 0,,,. 112
8.7.1 Connection Opening and Coig.........112
8.7.2 Initial Sequence Number Assignmentooo........... 113
8.7.3 Option Supto...... oo... oooo.... oo.. 113
8.7o4 Urgent Daa...................113I
8.7o5 End of Letter Handling.......................... 114
8o7.6 Retransmissionso.ccc..o...oeoec...... .. c.... .. 114
8.7o7 Acknowledgement and Window Strategyo............ 115
8.7o8 Sequencing.o. cccc0c..cc...000e..ccecc..cc...ee0c 116
9 TCP FOR VAX-UNIX.o *o*ee*ooooo. 118
9.1 Introduction.. ee, c..eooo.oote 0*c....01900 lie....... 1
9.2 Features of the Implementationo................... 119
9.2.1 Protocol-Dependent Features. 119
9.2.1.1 Separation of Protocol Layers................. 119
9.2.1.2 Protocol Functions.. 120
9.2.2 Operating System-Dependent Features*... *o,,,.. 120
9.2.2.1 Kernel-Resident Networking Software..o....... 120
9.2.2.2 User Interfaceoe.............................. 1219.3 Design Goalso.. e* 123

9e4.1 Control Flow.. co.e.ceccceeceoeececoeoceccecccc 124
9.4.2 Buffering Strategy. cc....e~ooeoc...... cc.... cc 127

9. References.. cc eoeoc... 130

Report No. 4526 Bolt Beranek and Newman Inc.

FIGURES

Butterfly Multiprocessor PSAT 27
M/I Bus--SuperSUE PSAT 30
HDH Frame Formats.. 85
Data and Control Flow.................................. 94
Message Block Format 103
Protocol Data Block Format 000 106

Ii

!

II

-iii-

1
(Report No. 4526 Bolt Beranek and Newman Inc.

1 INTRODUCTION

.- This Quarterly Technical Report is the current edition in a

series of reports which describe the work being performed at BBN

in fulfillment of several ARPA work statements. This QTR covers

work on several ARPA-sponsored projects including (1) development

and operation of the SATNET satellite network; (2) development of

the Pluribus Satellite IMP; (3) Remote Site Maintenance

jactivities; (4) inter-network monitoring; (5) development of the

Mobile Access Terminal Network; (6) TCP for the HP3000; (7) TCP-

TAC; and (8) TCP for the VAX-UNIX. This work is described in

this single Quarterly Technical Report with the permission of the

Defense Advanced Research Projects Agency. Some of this work is

a continuation of efforts previously reported on under contracts

DAHC15-69-C-0179, F08606-73-C-0027, F08606-75-C-0032, and

MDA903-76-C-0213.

L

I

Report No. 4526 Bolt Beranek and Newman Inc. I
!

2 SATNET DEVELOPMENT AND OPERATION

2.1 Minimal Host-SATNET Protocol for Loader/Dumpers

The search for a mechanism for loading the UCL gateway, once

the ARPANET trunking line via SATNET to the London TIP has been

removed from service, has led to renewed interest in a gateway

loading access path via SATNET directly. This requires a

loader/dumper be written for the gateway which implements XNET4,

Internet Protocol, Host-SATNET Protocol, and ARPANET VDH I
Protocol. Clearly, given the number of functions involved, it is

essential that the implementation contain only minimal subsets of

all protocols involved. Towards that goal we have extracted the

minimal subset of the Host-SATNET Protocol necessary for

communicating with a device which is assumed to have implemented j
the full the Host-SATNET Protocol. This subset, which has been

implemented in the stand-alone Honeywell 316 VDH loader/dumper

currently in use for loading the Etam and Tanum SATNET Satellite

IMPs, is detailed below.

A loader/dumper implementing a minimal subset of the Host- '

SATNET Protocol need not respond to the entire list of message

types defined in the protocol. In particular, of the 10 message

types available in the protocol (shown in the following table)

1
-2

Report No. 4526 Bolt Beranek and Newman Inc.

.9,MESSAGE FUNCTION
TYPE

1 Data
2 Accepted
3 Refused

4 Status RequestV
5 Status
6 Hello
7 Data with Errors

13 Format Error
14 Restart Request
15 Restart Complete

only message types 1, 14, and 15 need be recognized among the

received messages; all other received message types are

discarded, including Hellos, status reports, and error reports.

Furthermore, of all the packets encompassed by the Data message

type (type 1), only datagrams with internet headers are accepted;

stream data packets and packets without internet headers are

discarded by the program, although a Refused message response is

sent to indicate that a packet is discarded. In response to a

Reset Complete, the line is marked up. In response to a Reset

Request, a Reset Complete is sent, and the line is marked up. If

the line is detected to be looped, the line is marked down. In

background, the line is checked once every second; if up, then a

* Hello is sent; if down, then a Reset Request is sent.

The above is essentially a complete description of the

minimal Host-SATNET Protocol. Clearly this subset violates basic

jelements inserted into the protocol for flexibility and

efficiency, but this is irrelevant. All totaled, the SATNET VDH

-3-

Report No. 4526 Bolt Beranek and Newman Inc.

loader/dumper requires fewer than 200 lines of code in Honeywell

316 assembly language to implement the Host-SATNET Protocol, an

indication of its simplicity. The following two flow charts

depict this implementation, where the first indicates action done

upon receipt of every message and the second indicates action

done every second to ensure that the line-up procedures are

maintained.

message received

V yes
Ii.line looed-----> mark line down

Ree no ye

V yes m i

Ree andet?... mark line upInoI
V yes

Reset Request? > send Reset Complete
I and mark line up
Ino
I
V yes yesData? ... >datagram with ----- > send Accepted

Iinternet header? and
II hand to loader
I Ino

no I
Isend Refused "

~i
I'

-4- 2i aft

Report No. 4526 Bolt Beranek and Newman Inc.

yes yes
1 second elapsed?- --- line up?---> send Hello

InoI

Ino send Reset RequestI
II I
I I
I VI
----------------------- >wait< --------------

2.2 Software Problems Fixed

A change was made to the software such that whenever the

Satellite IMP is out of frame synchronization, the indicators of

Hello packets received are reset for interpretation as no Hello

packets whatsoever being received. Thus, the composite Satellite

IMP Hello reception quality indicator, which is displayed in the

B-register when sense switch 1 is reset, assumes the value zero.

Furthermore, Hello packet MONITOR reports display a row of all

16's, meaning a failure to hear all Hello packets. This change

reduces confusion between particular kinds of problematic

Satellite IMP operation and correct operation.

The transition late last spring of the NORSAR-SDAC ARPANET

* - circuit from a commercial satellite circuit to a military

controlled satellite circuit has been accompanied by a severe

* deterioration in service and availability to users of the NORSAR

TIP. In addition, one particularly vexing problem is that

whenever the circuit is down, load splitting among the gateways

-5-

LMo

Report No. 4526 Bolt Beranek and Newman Inc.

results in half the internet packets originating from the far

side of the UCL gateway being discarded in the NDRE gateway.

Although the preferable solution to this problem entails that the

gateway routing algorithm make intelligent decisions based on

information available regarding fractured networks, the choice

was made during the October 1980 internet meeting for the

expedient solution of having the communication path between the

NDRE gateway and the UCL gateway permanently broken.

Originally, we undefined the NDRE gateway access path in the

Tanum Satellite IMP, inasmuch as this action could be implemented

very quickly by changing a parameter. The disadvantage of this j
approach, however, is that the NDRE gateway access path is

removed completely from service. Any failure in the 50 Kb/s

circuit between the NDRE gateway and the Tanum Satellite IMP

during the time the circuit is undefined remains unknown to the

Monitoring and Control Center until the circuit is needed due to

a malfunction in the BBN Gateway or the Etam Satellite IMP.

Subsequently, we created a patch in the Host Access Protocol

at Tanum which recognizes and discards any traffic specifically

destined for Host 1 at Goonhilly, the UCL gateway. This

effectively breaks the pathway from the NDRE gateway to the UCL

gateway; the reverse path, however, is still operational.

Nevertheless, this is sufficient to prevent any internet data

traffic between the two gateways, since the gateway routing

-6- i

Report No. 4526 Bolt Beranek and Newman Inc.

algorithm requires two-way communication. A monitoring andr control path from and into SATNET through the NDRE gateway

continues to function with this scheme, allowing us both to

monitor the circuit and to make use of the circuit for SATNET

specific operations. Upon request, special accommodations will

be made for people who require that the gateway-to-gateway

operation be temporarily restored.

We modified the Satellite IMP so that upon initialization of

the satellite channel interface, a sequence of table-driven

J commands will be issued to the CMM module of the PSP terminal.

Inserted commands at this time include one to reset the

interface, three to enable the transfer of T&M data from the PSP

terminal to the Satellite IMP, and two to eliminate the carrier-

sync bits in the modem preamble. (Carrier-sync bits are no

longer required following the removal of SPADE modems from SATNET

usage.) Thus, whenever the primary modem in the PSP terminal is

removed from service, we can conveniently program the Satellite

IMP to switch to the backup modem simply by adding the

appropriate command to the table.

We changed the TENEX programs RECORDER and EXPAK to use only

one special TENEX queue each for both sending and receiving

traffic; originally, a sending queue and a receiving queue were

allocated by each program. Since TENEX assigns up to a total of

eight queue numbers, program operation is subject to queue

-7--

Report No. 4526 Bolt Beranek and Newman Inc.

availability. Only recently with the operation of several

versions of RECORDER and EXPAK for the Wideband Satellite

Network, for MATNET, and for SATNET had the necessity for this

change been made apparent, as queues became unavailable. The

Satellite IMP program was modified as well to recognize single

queues for transmit and receive.

2.3 Hardware Problems Fixed

Below are summarized several hardware problems which were

manifested in the operation of SATNET during the last quarter.

In cases involving the Honeywell 316, we not only diagnosed the

problems, but also corrected them. In the other cases, we were

involved primarily in the detection of the problems and helped

with diagnosis.

A severe power glitch at Tanum crippled the Honeywell 316

Satellite IMP, such that the machine would not remain in a run

state. Site personnel under direction from BBN service personnel

swapped voltage regulator boards among the drawers in the

Honeywell 316 and were able to neutralize the problem. Further

examination revealed that the power-down circuitry on the voltage

regulator card in the CPU drawer failed. Inasmuch as this

circuitry is not used in the other drawers, board swapping

succeeded in fixing the problem. ii
.I'

-8-

Report No. 4526 Bolt Beranek and Newman Inc.

Substantial performance problems with SATNET during the last

five months emanated from a 1 dB reduction in transmit power

levels on June 1. Over the lifespan of SATNET, Intelsat has

reduced transmit power levels in the net by 4 dB, to the extent

that SATNET is without margin. Consequently, net performance has

severely deteriorated, as is very much evident in the MONITOR

statistics; even after power adjustments are made at all sites,

Hello packets are routinely missed at the rate of a few percent.

Comsat is currently examining procedures to have the power

increased.
-4

Transmit power adjustments, which normally should be routine

and require under an hour, have on occasions consumed

considerable time, causing lengthy disruptions to SATNET

activities and London TIP connectivity. In one such example, a

spurious, unidentified interference source corrupted the

measurement of the transmit power levels and thereby reduced the

accuracy of the adjustments.

On many occasions, the PSP terminals at Etam and at

Goonhilly entered into undefined states, with the result that the

attached Satellite IMPs were unable to receive satellite channel

information. Correction required site personnel to press manual

resets on the PSP terminals. On one occasion at Goonhilly,

manual resets failed, and we reconnected the Satellite IMP to the

SPADE modem in order to restore site operation and ARPANET

M

Ii -9-

........- II

Report No. 4526 Bolt Beranek and Newman Inc.

connectivity to the London TIP. Comsat discovered that a power-

off/power-on sequence was needed to reset the PSP terminal. On

another occasion, a steady deterioration in the PSP terminal

operation at Goonhilly eventually developed into a total

isolation of Goonhilly from SATNET, and we again reconnected the

Satellite IMP to the SPADE terminal. Subsequent maintenance on

all the PSP terminals by Comsat personnel seems to have

alleviated the problem.

We supported Comsat in their field modification of all PSP

terminals for performing a l's complement transformation on the

first three T&M words. Effectively, a mismatch between DLE and

the first six bytes in the T&M data is created by converting the I-
inserted O's to inserted I's in the least significant bit of each

byte. This is a temporary measure to allow T&M data to be

processed in the Satellite IMPs; the permanent solution requires

new software and ROMs in the Linkabit interface.

Comsat restored the SPADE modem equipment to its original

state and thereby removed its capability to serve as a backup to

the PSP terminal for SATNET operation. Hence, we must now rely

on the redundancy in the PSP terminal to overcome equipment

failure. Comsat also calibrated the T&M data functions in the

modems at all sites.

A cable fault developed in the 9.6 Kb/s circuit between

London and Goonhilly, causing packets to arrive at Goonhilly from

3. i -o- 1I

Report No. 4526 Bolt Beranek and Newman Inc.

London with checksum errors at a sufficiently high packet error

rate to prevent the ARPANET protocols from bringing the line up

reliably. After an outage of several days, the British Post

Office succeeded in repairing the circuit. A fault developed in

the 50 Kb/s circuit between the NDRE gateway and the Tanum

Satellite IMP. After an outage of almost a week, the Norwegian

Telecommunications Office succeeded in repairing this circuit.

The 4.8 Kb/s circuit between ARPANET and the Clarksburg

Satellite IMP failed several times. We believe the Bell 208

modem at BBN is the culprit; placing the modem into a looped

state and then removing the loop seems to clear the problem. We

are keeping the modem under observation.

A squirrel, which entered a Clarksburg power substation,

caused an explosion, disrupting all power to Comsat Labs

including the Satellite IMP. After five hours of outage, power

was restored.

i ...

Report No. 4526 Bolt Beranek and Newman Inc.

3 PLURIBUS SATELLITE IMP DEVELOPMENT

The major areas of activity during the quarter were support

of the continuing integration of the PSAT with other elements of

the Wideband Packet Satellite Network and documentation of the

PSAT algorithms and implementation which have evolved over the

last several years.

During August and September, integration of the PSAT and the

ESI was accomplished in San Diego. This work was carried out

both by Linkabit personnel interacting with BBN via telephone and

by BBN personnel at the Linkabit facility. During the PSAT/ESI

integration, several minor bugs in the PSAT hardware and software

design were identified and corrected: (1) an error in the PSAT

round-trip time calculation resulting from improper processing of

the ESI burst delay word, (2) an improper terminating resistor on

the Satellite Modem Interface (SMI), and (3) an extra byte being

emitted by the SMI hardware. At the end of September, the PSAT

was shipped from Linkabit and installed at the Information

Sciences Institute in Marina Del Rey.

The integration of the PSAT and miniconcentrator at Lincoln

Laboratory was aimed primarily at permitting checkout of the

UMC-Z80 interface hardware. By the end of October, software

running on the Lincoln equipment was able to successfully bring

up the PSAT host access link and exchange datagrams as well as

status messages. Two minor PSAT bugs related to the timing of j

-12- I

I
Report No. 4526 Bolt Beranek and Newman Inc.

status messages and the handling of queue overflow conditions

were corrected as a result of this integration activity.

Documentation of the PSAT has focused on the development of

two major documents. A draft PSAT Technical Report was produced

during the quarter. This report describes the basic algorithms

incorporated in the PSAT to manage the use of the satellite

channel as well as specifying the details of the interfaces

presented by the PSAT to subscriber hosts and the ESI. The Host

Access Protocol (HAP) has been undergoing continual design and

development over the past several years. The section of the PSAT

Technical Report which describes HAP, however, is the first

formal specification of the protocol to date. This section was

also prepared as a separate document for distribution at the

Wideband Network meeting at ISI in November. An introductory

section of the PSAT Technical Report summarizes basic concepts

and definitions relevant to understanding the operation of the

PSAT.

The second major document prepared in draft form during the

quarter is the PSAT Software Report. Although the heavily

commented PSAT code structured by RATMAC control constructs

remains the ultimate source of documentation, the PSAT Software

Report was developed to provide a hi4her level of software

t documentation. Information on the Pluribus hardware management

function implemented by STAGE and the application support

fl -13-

IIli

Report No. 4526 Bolt Beranek and Newman Inc.

functions of SATOPS are included, in addition to information on

the PSAT application processes, strips and routines themselves.

Basic process interactions and data flow through the system as

well as detailed descriptions of individual routines and data

structures constitutes the major portion of the PSAT Software

Report. A final section of the report discusses the TENEX-based

network management and control support software which operates in

conjunction with the Pluribus-based routines.

One of the facilities provided as part of the PSAT is the

basic instrumentation required to carry out experiments related

to speech transmission. The internal speech generation host is a

key element of this instrumentation. During the quarter the

speech host was modified to be compatible with the internal PSAT

service host which supports the management of host streams.

Initial experiments were run using the speech host aimed at

verifying the speech predictor model developed by Lincoln Labs.

As the Wideband Network expands from its initial

configuration to support growing user requirements, it will

become increasingly important to have a reduced-cost replacement

for the current Pluribus-based PSAT. During the quarter, a study

of such reduced-cost PSAT implementations was completed. The

recommendation resulting from the study is that a PSAT based on

the Butterfly Multiprocessor system currently being developed for

DARPA by BBN is probably the best choice for supporting the low-

-14-

.........

Report No. 4526 Bolt Beranek and Newman Inc.

cost PSAT application while at the same time offering

expandability to support next-generation packet satellite

throughput requirements. The five candidate approaches we

considered are discussed in section 3.2 below. Several of these

candidate approaches analyzed involved the implementation of new

microprogrammed instructions optimized for the PSAT application.

To understand the impact of these new instructions

quantitatively, analysis of the PSAT application processing

requirements based on instruction counts was carried out. The

results of this work are summarized in the following section.

3.1 Evaluation of Microcoding Enhancements to the PSAT

This section presents a numerical basis for the estimate of

throughput enhancement achievable by microcoding key PSAT

functions. To simplify the analysis, we have focused on only the

speedup potentially achievable by microcoding the ENQUEUE and

DEQUEUE operations. These two operations are known to consume a

large fraction of PSAT CPU cycles. Other operations that are

candidates for microcode implementation are expected to affect

throughput to a lesser degree. ENQUEUE/DEQUEUE alone, therefore,

should give a minimum estimate of the speedup achievable.

We proceed by counting the total number of uplink and

downlink instruction cycles executed per PODA frame

L(approximately 20 ms) by the Host Protocol Module (HPM), and

l -15-

Report No. 4526 Bolt Beranek and Newman Inc.

Channel Protocol Module (CPM) for an assumed steady-state traffic

scenario, both before and after microcoding. The difference

between those two counts can be applied, for a fixed

computational power, to support greater PSAT throughput.

Our analysis is based on steady state uniform flows in a

four-SAT network. The following assumptions are made:

- All stream and datagram messages are 1 buffer or less in
length (a buffer holds about 3000 bits of user data).

- Each PSAT originates 1 datagram message per frame to a
remote host.

- Each PSAT supports 2 host streams aggregated into a single
channel stream.

- One stream message exists per host stream per frame.

- No datagram aggregation is carried out.

- No group addressing is used.

- Steady-state flows are in progress; no setups are being
processed.

- Acceptance/Refusal mechanism has been disabled.

- PSAT considered is not the leader PSAT.

- Poller task is ignored (this is and will be handled by a

dedicated processor).

- ESI filters the PSAT's own transmissions on the downlink.

The current implementation for queuing operations involves
the following macrocode:

ENQUEUE -- 50 instructions

DEQUEUE -- 30 instructions

,, -16- !

Report No. 4526 Bolt Beranek and Newman Inc.

The execution time of the microcode to implement these same

instructions (assuming the SUE semiconductor memory fetch and

store times dominate the time expended in logic operations) is:

ENQUEUE -- 27 microseconds,
14 equivalent SuperSUE instructions

DEQUEUE -- 20 microseconds,
10 equivalent SuperSUE instructions

We define the instruction count Nwxyz as follows:

•W= c for CPM
h for HPM

x = u for uplink
d for downlink

y - f for fixed (traffic independent)
t for traffic dependent

Z =e for ENQUEUE instruction cycles
d for DEQUEUE instruction cycles
o for other instruction cycles.

Thus, for example, Ncdte is the number of instructions

associated with ENQUEUE that are traffic dependent on the CPM

downlink. For the assumed scenario the following instruction

counts apply:

ii -17-

Report No. 4526 Bolt Beranek and Newman Inc.

HPM

Nhute 900
Nhutd = 360
Nhuto = 2370
Nhut = Nhute + Nhutd + Nhuto 3630
Nhdte = 900
Nhdtd = 270
Nhdto = 1599
Nhdt - Nhdte + Nhdtd + Nhdto = 2769
Nhu = Nhut, Nhd = Nhdt
Nh = Nhu + Nhd = 6399

CPM

Ncufe = 0
Ncufd = 150
Ncufo = 987
Ncuf = Ncufe + Ncufd + Ncufo 1137
Ncute =1750 -
Ncutd = 1020
Ncuto - 2935
Ncut = Ncute + Ncutd + Ncuto = 5905
Ncdfe = 100
Ncdfd = 60
Ncdfo - 302
Ncdf = Ncdfe + Ncdfd + Ncdfo = 462
Ncdte = 2100
Ncdtd = 1410
Ncdto = 7045
Ncdt = Ncdte + Ncdtd + Ncdto 10,555
Ncu = Ncuf + Ncut = 6842
Ncd = Ncdf + Ncdt = 11,017
Nc = Ncu + Ncd - 17,859

Total

N Nh + Nc = 24,258
Nf= Ncuf + Ncdf = 1599
Nt N -Nf = 22,659

Now with new microcoded instructions, the following will

hold:

Report No. 4526 Bolt Beranek and Newman Inc.

N'wxyd = (5/30)Nwxyd

N'wxye = (7/50)Nwxye

Applying this we compute:

N'hut 2742
N'hdt - 1941
N'h = 4683
N'cuf = 1037
N'cut = 3765
N'cdf = 350
N'cdt = 8103
N'c = 13,255
N' = 17,938
dN = N-N' -6320
N't = 16,551
dN/N't f .38

This implies that one should expect 38% throughput increase

due to microcoding of ENQUEUE and DEQUEUE for the assumed traffic

scenario. The total microprogramming improvement that is

achievable depends not only on the accuracy of the above analysis

but also on the actual traffic conditions which exist and the

impact of microprogrammin - other key PSAT operations in addition

to ENQUEUE and DEQUEUE. Because of the difficulty in accounting

for these factors, we shall use 50% as the nominal throughput

improvement achievable using enhanced instruction sets

implemented in firmware.

3.2 Low-Cost PSAT Study

A ground rule for this evaluation was that the low-cost

design must be at least equivalent in terms of functionality and

L-19-

- . 3

Report No. 4526 Bolt Beranek and Newman Inc.

performance to the current PSAT. In general, this implies that

the low-cost PSAT must be capable of providing integrated PODA

control on a 3 Mbps satellite channel and must support multiple

interfaces to hosts at megabit rates. In particular, we assume

that the low-cost PSAT should be sized to support a sustained

user throughput of at least 1.5 Mbps simplex. That is, the PSAT

should be able to support at least 1.5 Mb/sec of datagram/stream

traffic sent from a local host to a remote host in addition to

dealing with up to 1.5 Mbps of additional channel traffic flowing

among other network stations. This requirement eliminates the

class of reduced capability solutions that might otherwise be

considered (e.g., a PSAT implementing only centralized control

for datagrams and streams; or a PSAT capable of receiving only at

a rate below 3 Mbps). Although we assume that the low-cost PSAT

should provide high system availability, we do not require a

redundant multiprocessor configuration such as provided by the

Pluribus.

We identified five implementation approaches for the

development of a low-cost PSAT:

1. MBB Emulation of a Pluribus

2. MBB C-Machine Based Node

3. Butterfly Multiprocessor Based Node

4. Reconfigured SuperSUE PSAT

5. Commercial Minicomputer Based Node

2I
-20-

. -w ,- -

II
Report No. 4526 Bolt Beranek and Newman Inc.

Each of these approaches is described briefly below.

3.2.1 MBB Emulation of a Pluribus

The Microprogrammable Building Block (MBB) is an economical,

general-purpose computer system developed by BBN that is

optimized for the emulation of other machines. One approach to

developing a low-cost PSAT is MBB emulation of a single processor

Pluribus running existing PSAT software. It is hoped that this

approach will best preserve the investment in existing software.

Although direct emulation of the current PSAT (including

emulation of all I/O performed by the satellite and host

interfaces) is possible, a mixture of emulation plus hardware

enhancement is probably more attractive. Of the several

approaches which fall into this class, the following specific

implementation was selected:

1. Basic MBB processor with 160K words of memory

2. MAR daughter board to implement Pluribus memory mapping

3. MIR daughter board to support op code dispatching and

I/O device handling

4. Word-oriented hardware interface (ESI) to the Earth

Station Interface

5. Word-oriented hardware interface for a high speed host
-21-

-21-

Report No. 4526 Bolt Beranek and Newman Inc.

6. Byte-oriented 1822 interface for a medium speed host

7. Firmware implementation of selected PSAT operations

(e.g. QUEUE/DEQUEUE, PACK/UNPACK, Multiple Word

Arithmetic)

8. Modifications of the existing PSAT software for

operation in the MBB hardware environment (primarily

recoding of particular STAGE functions).

This configuration is expected to fit on 3 or 4 large MBB PC

boards (the number depending on the availability of 64K RAM

chips). The standard MBP and MBM boards are piggybacked with

It'ilored MIR and MAR daughterboards respectively. Two host

interfaces and the satellite interface should fit on a single I/O

interface board which would be specially designed for this

purpose.

The Pluribus has a 20-bit physical address space and deals

with 20-bit pointers by packing and unpacking them into 16-bit

words. This activity is implemented via macros called PACK and

UNPACK. Similarly, the MBB supports 20-bit addressing directly

through its 20-bit word width. However, our approach to dealing

with the Pluribus's need for 20-bit addresses on the MBB is to

microcode the existing PACK and UNPACK operations. This is

viewed as a compromise between simply leaving these operations in

macrocode and modifying the existing PSAT software to take

-22-

1A4

Report No. 4526 Bolt Beranek and Newman Inc.

advantage of the 20-bit addressing supported by the MBB.

The maximum throughput of this design is constrained

largely by the processing capability of an MBB uniprocessor

relative to a 6 SUE PSAT. To compare the two we note that

(1) microcoding SUE instructions on the MBB will lead to about a

factor of 2 increase in raw execution speed, and (2) firmware

execution of ENQUEUE/DEQUEUE and other common PSAT operations

will give another 50% speedup (see Section 3.1). Therefore,

ignoring I/O, the MBB is equal to approximately a 3 SUE processor

PSAT. We now assume that the I/O of the Satellite Modem Interface

(SMI) and megabit host requires 4 microcycles per 16-bit word.

Assuming 1.5 Mbit/sec host-to-host traffic and 3 Mbit/sec on the

channel downlink, the high-speed I/O load on the PSAT is 6

Mbit/sec or a 16-bit word every 2.67 microseconds. Each of these

words consumes 540 ns (135 ns MBB cycle time X 4), therefore the

I/O load on the MBB processor is .54/2.67 or about 20%. The

equivalent number of SUE processors available for non-I/O tasks

is (.8 X 3) or 2.4. This is inadequate to provide the same

performance as the existing PSAT.

3.2.2 MBB C-Machine Based Node

The MBB hardware described above has been the basis for the

development by BBN of a machine, the C/70, optimized for

execution of the C programming language. Programs written in C

L -23-

• --- i-F *I

Report No. 4526 Bolt Beranek and Newman Inc.

are compiled into an intermediate language which is directly

executed by the C/70. A C/70 processor can potentially provide

the foundation for the development of a low-cost Wideband Packet

Satellite Network Node. The underlying attraction of this

approach is its use of existing familiar hardware to support a

higher level language implementation.

As in the Pluribus emulation approach described above, a

MBB-C based PSAT should be configured with word-oriented I/O

interfaces to support high speed hosts and the ESI in order to

conserve MBB processing cycles. Of course, this approach

involves a complete rewrite of the PSAT software and associated

Pluribus support functions from SUE assembly language and RATMAC

to C. We expect that after establishing operation of the PSAT

written in C, we could identify selected portions of the code to

commit to microcode in order to enhance the system throughput.

This procedure has proved quite successful in the implementation

of UNIX on the C/70.

Our original thinking was that this approach would result in

a greater throughput than the MBB emulation of the Pluribus due

to direct execution of intermediate C-language instructions by

the hardware. However, this may not be the case. Although a

reduction in the I/O load on the processor will result from the

use of 20-bit rather than 16-bit words, this effect will be

relatively small. We expect that the nodal throughput of the

-24-- * . .- '. - *..*.]

!

Report No. 4526 Bolt Beranek and Newman Inc.

4.

MBB-C PSAT would not be considerably greater than the

MBB/Pluribus PSAT, which was shown to be inadequate in section

3.2.1 above.

3.2.3 Butterfly Multiprocessor Based Node

The Butterfly Multiprocessor is a next generation general-

purpose multiprocessor computer system currently under

development at BBN for support of the Voice Funnel and other high

bandwidth applications. A unique hardware switch provides for

high speed, general purpose, low-cost communication between

microprocessor-based processor nodes. The heart of each

processor node is a Motorola MC68000 microprocessor with 128K to

IM bytes of memory. Additional bit-slice microprocessors and

logic on each processor board support internode communication,

memory mapping, protection and other special functions. Since a

Butterfly Multiprocessor is designed to be configured with many

processor nodes, tremendous computational power can be made

available. The ability to configure Butterfly systems with only

few processor nodes as well suggests that the Butterfly is a

reasonable candidate for supporting the low-cost PSAT

application.

A limited function operating system is currently being

developed to facilitate system development in the Butterfly

hardware environment. Software written for the Butterfly will be

-2S-
-- - ..

Report No. 4526 Bolt Beranek and Newman Inc.

written in the C programming language.

A three processor node Butterfly configured for the low-cost

PSAT is illustrated in Figure 1. One processor node is used to

handle hosts while the other two nodes are assigned the tasks of

satellite channel uplink processing and satellite channel

downlink processing, respectively. The instruction counts in

Section 3.1 indicate that this assignment of functions divides

the host and uplink load among two of the processing nodes

approximately evenly. The more CPU intensive downlink processing

should still be well within the power of the third processor

node. The host processing node uses the standard Butterfly I/O

board for interfacing with users. This board supports up to 4

synchronous bit-oriented interfaces (in addition to 4

asynchronous interfaces) at speeds up to 2 Mbit/sec each (4

Mbit/sec aggregate maximum). These interfaces can be used either

individually or in pairs (as in the current PSAT) to provide

multi-megabit host access. The lack of mechanisms to support

precise timing on the standard I/O boards necessitates the

development of a special satellite I/O board for interfacing to

the ESI. As illustrated in the figure, some form of control line

will be required between the two halves of the ESI interface in

order to guarantee synchronization of uplink and downlink local

time clock registers.

-26-
i]

Report No. 4526 Bolt Beranek and Newman Inc.

FROM SATELLITE
ESI 1/O BOARD

(UPWLINK)

FRO STNDARD
ES1 1/O BOARD _

-27

- I. .-.- ,STANDARDV.
HOSTS.,.-.

Report No. 4526 Bolt Beranek and Newman Inc.

The processor nodes (PNs) of the Butterfly multiprocessor

each contains an MC68000. Macroinstruction execution times for

common operations on the MC68000 range from about 1 to 2.5

microseconds, depending on the particular operation. To be

conservative, we assume that the average PN instruction execution

time is 2 microseconds, twice the speed of the SUE processors;

thus 3 PNs should be nominally equivalent to the current PSAT

configuration. Since the Processor Node Controller provides

Enqueue and Dequeue functions as standard firmware, another

factor of 1.38 should be included, bringing the processing f

capability up to the equivalent of about 8.3 SUE processors. To

account for operating system overhead, this number should be

reduced by about 10%. A further reduction should be included to

account for degradation due to I/O operations. As a worst-case

analysis, consider the satellite downlink processor which must

handle the full 3 Mbit/sec on the satellite channel. At the

destination, this PN will also have to pass 1.5 Mbit/sec on to

the Host PN for an aggregate I/O load of 4.5 Mbit/sec on the

memory. Since the memory bandwidth is 32 Mbit/sec, I/O consumes

about 15%. Being conservative, this could degrade the speed of

the processor by 15% as well. Therefore, the total degradation

in processing due to the operating system and I/O could be as

much as 25%. The number of equivalent SUE processors available

for PSAT processing is therefore (.75) (8.3) or 6.2. Taking into

account the inefficiencies of the C-compiler and the quality of

.-
-28- 3.

........... .~~~~~~~~~...:.. . :
* -°-

,l , -'....... - - :. .. ,9.
'

-',.11.,.,. --,

I
Report No. 4526 Bolt Beranek and Newman Inc.!r
the MC68000 instruction set relative to the SUE instruction set,

one expects the current Pluribus configuration and the proposed

Butterfly configuration to provide roughly the same computational

power for the PSAT application.

3.2.4 Reconfigured SuperSUE PSAT

The SuperSUE is a next generation replacement for the

standard SUE processor used in the Pluribus. Based on a

microprogrammed hardware design, the SuperSUE executes the basic

Pluribus instruction set approximately twice as fast as the

standard SUE processor and fits entirely on one PC card. The

off-the-shelf SuperSUE microcode can be augmented to implement

key PSAT operations (QUEUE/DEQUEUE, PACK/UNPACK, etc.) to effect

a significant increase in raw computational power when applied to

the PSAT function (see Section 3.1).

The Reconfigured SuperSUE PSAT approach consists of two

processor busses with a single common M/I bus to support all

common memory and I/O interfaces as shown in Figure 2. To be

consistent with the previous low-cost PSAT designs, we do not

configure this Pluribus node with redundant hardware. Redundancy

could, of course, be added for improved reliability at an

additional cost. All of the existing PSAT software would

continue to run without modification on this low cost

configuration except where macro calls were replaced by op codes

Li -29-

_3.__r, .._ ,-,,,....

Report No. 4526 Bolt Beranek and Newman Inc.

SSU E PAPER TAPE READERV
SK WORD

8K WORDS 8K ORD OPERATOR PANEL
ALD

128K WORDS HIGH SPEED
HOST INTERFACE MEDIUM SPEED

CRT HOST INTERFACE

SMI

M/u Bus--SuperSUE PSAT
Figure 2

-30-3

-- MAN"

!
!

Report No. 4526 Bolt Beranek and Newman Inc.

for the special microcoded operations mentioned above.

@begin(Multiple) We expect that two SuperSUE processors with

extended instruction sets based on firmware enhancement should be

nominally equivalent in processing power to a 6 SUE PSAT system.

Each SuperSUE is approximately twice the speed of a standard SUE

and another 50% can be obtained via special microcode. The

primary question related to the M/I Bus PSAT configuration is the

ability of the single common bus to support the combination of

processor references and I/O references imposed. We consider

each of these loads separately below and sum them to determine

total bus loading.

To determine the processor loading on the M/I bus we first

make several observations:
1. The nature of the PSAT program is such that about 50% ofi

the instructions are fetched out of local memory and 50%
are fetched out of common memory*. On the average,
each of these instructions (whether fetched out of local
or common memory) will require one operand fetch out of
common memory.

2. Each instruction fetch requires 2 one-word memory
references.

3. Instruction times are essentially dependent only on
memory speed, since the SuperSUE overlaps instruction
execution with instruction and operand memory
references.

* One would like to execute a larger fraction of instructions out
of local memory to speed up the processor and reduce common bus
loading. Unfortunately, the PSAT currently uses all the local
memory available [8K words per processor]. In addition, module
positions have already been optimized for maximum local memory
references.)

jj-31-

Report No. 4526 Bolt Beranek and Newman Inc.

4. Time to do a local memory reference is 700 ns, which is
the memory cycle time.

5. Time to do a common memory reference is 1.84
microseconds due to delays through the bus coupler added
to the memory cycle time.

For instructions executed out of local memory, the nominal

instruction time is 3.24 microseconds. Since this involves one

common memory reference which ties up the M/I bus for 700 ns, the

M/I bus utilization due to a processor executing only local

instructions is .7/3.24 or 22%. For instructions executed out of

common memory, the nominal instruction time is 5.52 microseconds.

Since this involves 3 common memory references, the M/I bus

utilization due to a processor executing only common memory

instructions is 3 X .7/5.52 = 38%. Furthermore, since the

proposed configuration has 2 SuperSUE processors, each

referencing common and local memory half of the time via a single

M/I bus, we can sum these two utilizations to get 60% M/I bus

utilizations as the total due to processor references.

To compute the I/O device loading on the M/I bus, we proceed

in a similar manner. The SMI is the highest speed device on the

bus so we consider it first. The SMI must be able to send and

receive simultaneously at a rate of 3 Mbps, giving an aggregate

burst load of 6 Mbit/sec or .375 words/microsecond. Since each

of these references also consumes 700 ns of M/I bus time, the SMI

alone loads the bus (.7)(.375) or 26%. The high speed host

interface running at 1.5 Mbps imposes one fourth of the SMI load

-32-

I

Report No. 4526 Bolt Beranek and Newman Inc.

or 6.5%. To this we need to add the M/I bus load due to a

microprogrammed poller which supports the SMI and high speed

host. This device is expected to use about 6 memory references

at 600 ns every 50 microseconds or 7.2% of the bus bandwidth.

The total bus loading due to support the high speed I/O devices

is therefore 39.7%. Without even considering the lower speed

devices on the M/I bus, we are already up to 99.7% total bus

utilization and this is only the average, not a worst-case

analysis (i.e., both processors can be executing for brief

intervals out of common memory). Therefore, the Reconfigured

Pluribus M/I Bus Approach does not appear adequate to support a

low-cost PSAT implementation.

3.2.5 Commercial Minicomputer Based Node

A final approach considered is the possibility of

reimplementing the PSAT from scratch on a commercially available

minicomputer. This approach would involve not only development

of new hardware interfaces for connections to the ESI and hosts

but would also require a complete rewrite of the PSAT software,

potentially in assembly language to achieve the required

efficiency. Both 16-bit and 32-bit processors are possible

candidates. In the 16-bit category, the Digital Equipment

Corporation PDP-11/70 or PDP-11/44 are typical high performance

machines. There is an ever-increasing number of possibilities in

U -33-

Report No. 4526 Bolt Beranek and Newman Inc.L

the 32-bit category including the VAX-ll/780, the Perkin Elmer

3240, and the System Engineering Labs 32/77. From a programi

development standpoint, the 32-bit machines are preferred since

the address map switching required to support the PSAT

application on 16-bit machines will almost certainly introduce

inconvenience or inefficiency.

Maximum throughput depends upon the particular minicomputer

selected. Although it is difficult to evaluate throughput

accurately for any particular selection based on the data

currently available, several general conclusions can be drawn.L

High performance 16-bit processors like the PDP-11/70 and 11/44

with cache memory probably cannot support an instruction

execution rate greater than about one million instructions per

second. Even if these instructions are individually more

powerful than those of the current SUE processors, the difference

is probably not sufficient to make up for the fact that the PSAT

with six 4 microsecond per instruction processors is nominally a

1.5 MIPS machine. Some of the high performance 32-bit processors

such as the Perkin-Elmer 3240 may achieve the required

instruction execution rate. These systems are quite expensive,

however, and achieve baseline performance with top of the line

processors suggesting limitations on expandability.

-34-I

Report No. 4526 Bolt Beranek and Newman Inc.

4 REMOTE SITE MAINTENANCE

4.1 Further Explorations into a Definition of Remote Maintenance

The Remote Maintenance Experiment (RME) is part of the

Remote Site Module system for the Advanced Command and Control

Architectural Testbed (ACCAT). The RME represents research in

the general area of maintenance of distributed systems. The

first requirement of this research is to understand the basic

problems of system maintenance, then to extend this understanding

to the multiple processor case, where the processors may be a

heterogeneous collection of host systems connected by some

network. In some measure, the overall project has two

components, one the research into the remote maintenance of

systems, the other the actual doing of system maintenance at the

various ACCAT sites. These two components are intended to

interact so that the ACCAT RSMs can serve as a testbed for the

Remote Maintenance Experiment.

In the following sections various aspects of the remote

maintenance problem are discussed. These include:

a description of the general problem of system
maintenance;

a brief analysis of things which make system
maintenance easy;

a discussion of multi-system and multi-site maintenance
in a research or development environment;

a description of facilities which would simplify remote
maintenance; and

-35-

- .. A -. ,, '

Report No. 4526 Bolt Beranek and Newman Inc.

an outline of research topics in maintenance of
distributed systems.

4.2 General Maintenance Services

What is remote maintenance? What is the purpose of the

Remote Maintenance Experiment of the ACCAT project? What other

tasks must be carried out at the same time as the experiment?

It is first necessary to establish what a successful remote

maintenance system (RMS) would accomplish. The initial model of

an RMS is the ARPANET model. Almost all normal software

maintenance functions can be performed from the ARPANET Network

Control Center (NCC); it is virtually never necessary to go to a

site to deal with a software fault. The NCC can examine the

contents of any IMP or TIP, can cause it to be reloaded from a

master copy or from an adjacent IMP or TIP, and so on. The NCC

also monitors the activity of each element of the network, and

has a reasonably complete model of normal activity.

As attractive as this model is, it overlooks some important

aspects of the remote iaintenance problem. In the first place,

the sub-net consists entirely of systems containing no moving

parts. In the second pldce, the system is entirely under control

of the NCC; no one else introduces software, and any malfunction

which exists is entirely due to the hardware and software which

they control, or to the traffic which affects only tables

-36-

I

I
Report No. 4526 Bolt Beranek and Newman Inc.

controlling the network. Finally, the sub-net has no direct

human users.

The Remote Maintenance Experiment is concerned with the

general operational maintenance problem for a distributed set of

(relatively) homogeneous hosts on the network. This means that

all of the the following tasks, which are included in the actual

operational maintenance of a system, must be considered:

(1) correction of program errors in controlled
software, especially the operating system kernel;

(2) on-going monitoring of software behavior and data
system integrity;

(3) analysis of hardware and software error reports;

(4) immediate patching of serious software errors;

(5) correction of disk directories and similar data
structures after crashes or other software
malfunctions;

(6) coordination of hardware maintenance services, as
required;

(7) on-going distribution of documentation;

(8) on-going operator and user training;

(9) site visits (in the case of remote maintenance) for
general hand-holding and special support for
demonstrations and major system changes;

(10) check-out and distribution of software from other
sites;

(11) analysis of controlled software for weak spots,
inconsistencies, and other problems needing correction;
and

(12) installation of new and improved software, and its
subsequent debugging and maintenance.

SU -37-

7..

Report No. 4526 Bolt Beranek and Newman Inc.

These tasks form the core of any maintenance system; a few

of them (as noted) are slightly modified when the maintainer is

not co-located with the system. Many of these tasks can be

handled as easily from remote locations, but the importance of

documentation and training (among other things) is increased by

the physical separation.

It appears that, under present circumstances, site visits

cannot be eliminated entirely if the software or hardware system

changes significantly. Such visits are also probably necessary

at other psychologically important times, like major

demonstrations, important changes in overall project staff, and

the like.

It would seem that the core of the Remote Maintenance

Experiment is to determine which of these tasks can be

effectively carried out remotely using techniques which are

extensions of the current state of the art, and to examine the

prospects for significant improvement in such systems by using

novel methods. At the same time, the individual sites must be

maintained using available technology, or the new tools as they

become available.

-1

LT .-8

]
,, -38- "

- - - - -

Report No. 4526 Bolt Beranek and Newman Inc.

4.3 Things That Make Remote Maintenance Easy

Before considering the real world situation, where a

specific system is being maintained in a multi-site research

program, it is worth while to step back and think about the

things which would make the process simpler. Some of these, it

will be seen, can be adopted in most maintenance situations,

while others are ruled out by hard constraints.

In general, the greater control that the service

organization has over the system the easier its job is. The

following would contribute to this increased control:

(1) if the system has a relatively narrowly defined set
of functions;

(2) if the system was constructed initially by the same
organization;

(3) if the system can be changed at will by the
maintaining organization (subject only to internal
review, for example);

(4) if the system internals are completely hidden from
the end-user; and

(5) if the system users are not competent or allowed to
change the system.

It is quite clear that the ARPANET maintenance organization

has all of these advantages. The current RSM system is based on

a general time-sharing system, the UNIX operating system.

Perhaps the greatest advantage that this system has for most of

* its users is that the organization that created it does not

*maintain it. Its appeal lies partly in the fact that the

-39-

Report No. 4526 Bolt Beranek and Newman Inc.

operating system interface itself is fairly uniform from site to

site, and partly in the fact that any reasonably clever user can

bend it his own way. Therefore, none of these advantages is

available to the maintainer. In fact, the ease of systemr

modification makes it quite difficult to track updates very

closely; this problem will be discussed at greater length in the

next section.

An operational system based on the current RSM would not

suffer as much from these problems as the current system does,

even if it were made by simply copying the code which is runningj

at the ACCAT sites. The code copies would most likely be binary

images, absolutely controlled from the central location.

On the other hand, the better prepared the service

organization is, the more effective it is. The following would

contribute to this:

(1) really good documentation;

(2) trouble-shooting staff members available more or
less any time of day that the system user wants help;

(3) specially trained trouble-shooters; and

(4) site representatives within the service
organization.

One would think that these are all things which could be

obtained simply by spending more money. Actually, the use of the

word "really" to describe the good documentation glosses over the

fact that not too much is known about how to prepare it, and some

-40-

11

Report No. 4526 Bolt Beranek and Newman Inc.

research effort is needed here.

A user who is in some sort of trouble wants to get more or

less instant response, so the trouble-shooters should be

available whenever the normal system users are around. In the

current scheme, this is handled by providing a phone number which

can be called 24 hours a day; unfortunately the user will not

receive an immediate response from the person who answers that

phone after normal business hours. As a result, the user is

often frustrated. An alternate communication path, through an

ARPANET mailbox, is available, but this may seem to provide an

even more disembodied response to the user. It is true that this

sort of buffering does protect the service organization from

those users who abuse the system, but the perceived low level of

service for others hardly compensates for this advantage.

Good remote service trouble-shooters are quite special

people. They must enjoy the complete confidence of the person

who is in trouble, or they will not be able to do their job well.

The user may be quite rattled, because the system is doing

something terrible (for example, it just crashed). Or the user

may simply be exercising selective memory about what just

happened, not remembering or reporting all of the relevant

details; in fact, the user cannot be expected to know what is

relevant. Good trouble-shooters never get ruffled, never admit

that they were on a fishing expedition.

U -41-

Report No. 4526 Bolt Beranek and Newman Inc.

Although it is tempting to save staff by using ordinary

system programmers to do this kind of work, one quickly learns

that few of them have the right temperament to do it

successfully. For example, most programmers cannot keep the

secret that they do not know what is wrong. It might seem that

most of the time the answer would be known if the person were

really clever. Unfortunately that is not the case. Bugs tend to

get fixed as time goes on, and the ones that are left are

increasingly obscure. Problems which are induced by hardware

failures are truly random, and although these can be categorized,

the ones that are easily understood are often corrected

automatically by the software as time goes along. Other

programmers simply act and sound too nervous, and may actually

induce an already upset user to do the wrong thing. Finally one

must be especially sensitive to the person who takes a perverse

sort of pleasure out of abusing people who are not on the inside.

The site representative is a different sort of person. The

effective trouble-shooter enjoys solving puzzles, unraveling the

various threads, and fixing the system. The site representative

is concerned about eliminating problems before they arise. This

person is a sympathetic advocate who helps oversee the initial

installation, does training, visits the site on occasion, and

leans hard on the documentation people to see that everything is

clear. Again, programmers do not often make good site

representatives because they simply do not have the right kind of

-42-

Report No. 4526 Bolt Beranek and Newman Inc.

sympathies. The site representative must understand the user and

the user's approach to the system more clearly than most

programmers do. On the other hand, this person has to resist the

desire of the user to have the system endlessly tailored;

programmers are all too eager to accept this challenge.

4.4 Multi-system and Multi-site Maintenance in Research Systems

The situation in the BBN-UNIX and Remote Site Module world

is far from the ideal described in the last section for several

reasons. The most obvious difference arises from the fact that

this is a research system and, therefore, subject to continuous

modification for a variety of reasons, some of them conflicting.

This does cause significant complications in the maintenance of

the system, as discussed below.

The other clear departure from the ideal situation is that

the remote maintenance functions are being carried out by the

research staff members who are attempting to develop novel

approaches to the solution of these problems. These staff

members must, of course, be fully familiar with the current

methods, but it should be recognized that they are distracted

from the research efforts by the day-to-day operational tasks,

and, furthermore, they are not likely to be temperamentally the

best suited people to be doing this work.

-43-

________ i r.

Report No. 4526 Bolt Beranek and Newman Inc.

At one time, there was a plan to make the configuration of

each Remote Site Module (except for the one at BBN, which serves

other purposes) conform to some standard. While this can help,

it is by no means essential. The differences in usage at the

different sites also cause some complications, but do not present

insuperable difficulties.

A few statistics about the BBN-UNIX system will give some

perspective to the complexity of the system and the magnitude of

the variations which it has undergone. I

The system sources (including the kernel portion of the
Network Control Program (NCP)) are stored in 5
directories; there are 153 files, containing
approximately 40,000 lines of text. There are
relatively few comments in the text.

There are 528 conditional assembly switches in the code
(#ifdef and #ifndef statements); these are are
controlled by 44 distinct variables.

The installation document for the kernel and network
code is 50 pages long.

There have been 33 "frozen" versions of the operating
system since BBN installed the 11/70 in June 1978
(approximately 1 per month).

The history files describing the changes to the system
contain 1900 lines of very short comments, averaging
about 5 lines per revision; this means that there have
been about 400 revisions made to the system in the same
period, or one about every three days.

Modification to the system is often quite difficult because

of the kernel space crowding which is endemic in PDP-11/70

operating systems. The operating system kernel (including the

portion of the network code that is in the kernel) has 64K of

-44- j

Report No. 4526 Bolt Beranek and Newman Inc.]

instruction space and 64K of data space available. The current

BBN-UNIX systems are completely full.

The user community expects all of the standard Bell

utilities (nearly 200 of them) to work on any UNIX system. In

addition there are dozens of other commands which have been

developed for the system. Certain weaknesses in the original

system have been corrected or compensated for by introducing new

system calls. These include the RAND port() and empty() calls,

and the await() and capac() calls, which have been included to

improve interprocess communication. The ordinary file and

terminal handling code has been extended to handle the network,

and there is a raw message interface as well as the Network

Control Program (NCP) facility.

The control of the system and utility software is based on

simple manual disciplines, which work relatively well because

only a few individuals are involved in the system development.

The situation becomes more complex when development is going on

at more than one site; some of the graphics code is being

developed at Naval Ocean Systems Center, and BEN recently

* received a shipment from RAND. Fortunately most of this is user

level code, and therefore is easier to check out.

The following questions must be asked about the kind of

service which is provided to the remote sites:

[1 -45-

Report No. 4526 Bolt Beranek and Newman Inc.

(1) Is there a central development site which has ti
configuration control over all other sites, including
other development sites?

(2) How closely should the remote site software track
the software in use at the central site?

(3) How do changes developed at one site get
incorporated into the systems at the other sites?

(4) How great an effort should be made to get all sites
to run the same software?

It might be noted that the same questions really apply to

the software running in any multi-machine facility, and even to

the software running on any single machine which is used for

development. In the latter case, the questions apply to the

"normal" software which is run daily. For example, should it

usually be some basic system, or should experimental software

with all sorts of specialized features be used in an operation

like the one at BBN?

The first question has been answered with a qualified "yes"

in this project. The central site (BBN) nominally has

configuration control over the software, and there is a long list

of the names of controlled software modules. The operating

system itself leads the list, and is the most fully controlled

element.

The optimum frequency of distribution appears to be quite

situation dependent. In this project, the time between

installations is between 6 and 12 months. It would seem that low

-46-

Report No. 4526 Bolt Beranek and Newman Inc.

frequency changes like this are particularly desirable in non-

development sites. Perhaps more frequent changes would be better

for NOSC, but this would make it quite difficult to keep the same

software at all the sites, since it is not likely that they would

all like to be uprooted every three months or so. Virtually all

of the approximately 400 variants to the system have run at BBN;

most of the time these changes are invisible to the user, since

they are normally upwardly compatible, and generally do not cause

significant disruption. Some of the changes have been serious

enough that they have csused discomfort through frequent crashes

or other bizarre behavior.

Currently, new things get distributed primarily from BBN.

They are first incorporated in the main stream of development,

then sent out to the sites. At first glance, there might be an

argument for more mutual distribution, especially of utility

programs. There are several drawbacks to this approach. In the

first place, unless there is a highly sophisticated system

control system in place, the maintainer never knows what must be

fixed when a new version comes out. Second, the maintainer who

is called in to work on a broken program would need the same sort

of sophisticated control system to determine what was in fact

being repaired. Third, it is hard to guarantee the compatibility

of a particular m~dification with the operating system kernel in

use at the site. Finally, there are difficulties in assuring

that there is adequate testing and documentation with central

L -47-

Report No. 4526 Bolt Beranek and Newman Inc.

distribution; these become worse as the number of actors

increases.

Because UNIX system code is easy to modify, there are very

few duplicate systems in the world. In the RSM project, there is

an attempt to have the same programs running at all the sites

(other than BBN). This has not been completely successful, since

it takes a great deal of time to perform an installation over the

network. In fact, until better tools are available, as describedI

in the next sections, it would seem wiser to do major

installations during routine site visits. This would achieve L
greater synchronization of sources. Between major installations,

smaller changes, in the order of patches to running programs, or

the provision of new utilities, could be done over the network.

4.5 Improving Remote Maintenance Incrementally

4.5.1 General

If one assumes that part of the Remote Maintenance

Experiment is providing service to the current users, and that

the effort which can be made on research depends, at least in

part, on the efficiency of the service, then it is plausible to

k&pend some time investigating available incremental improvements

to the system. In doing so, the following criteria seem to help

in deciding what to do first:

-48-

-" =-77

Report No. 4526 Bolt Beranek and Newman Inc.

Whatever is done should be consistent with the current
system requirements. That is, if a short cut is
chosen, it should not decrease needed system
capabilities, but may add or subtract features which
are not fundamental.

Whatever is done should be consistent with the best
maintenance research activities.

Since the systems which are part of this experiment are
used for research, the improvements should not
noticeably decrease their value as research tools.

When practical, the changes should be aimed at
simplifying tasks which must be performed repeatedly.

Among the most attractive short-term improvements are tools

which simplify debugging and repair of programs which have failed

and tools to repair damaged file systems. The latter improvement

has been described (QTR 18) and is under development. There will

be many specialized program debugging tools; one of these, a

core dump analysis tool called 'udb', is described below.

The discussion in Section 4 demonstrated the complexity of

controlling the software in a multi-system, multi-site research

facility. Several of the tasks in system maintenance (fixing

programs, monitoring performance, analyzing software,

distributing programs) require some sort of control if they are

to be carried out efficiently. The fundamental importance of the

control function is further described in *Toward a Theory of

Remote Maintenance."

-49-

Report No. 4526 Bolt Beranek and Newman Inc.

System control consists of two major elements: a data base

describing the system and a set of programs which give the user

access to that data base. In an initial implementation, the data

base would probably be quite limited in the variety of

information which it contains; for example, it would contain

lists of dependencies, pointers to documents, and installation

procedures. In the future, however, the data base would contain

a wide range of information, such as performance data, for the

various parts of the system.

Another potentially interesting area is the development of

programs which make the user community more self-sufficient. For

example, a bug reporting system which depends on the

aforementioned system data base could contain a two or more level

referral procedure. This would allow the community at the RSM to

have some help when the central maintenance site is unavailable.

Over the past two years, various monitoring probes have been

inserted in the kernel of the operating system; additional probes

have been suggested. At this time, it would not seem that

further development is warranted, pending the development of a

performance model which would depend on the monitored

information.

-50-

I
Report No. 4526 Bolt Beranek and Newman Inc.

4.5.2 A System Dump Analysis Tool

Often a system problem must be diagnosed from no more than a

system dump and a vague description of the behavior of the system

just before the crash. The UNIX debugger, 'adb', is sufficient

for many user-level programs, but is inadequate for crash dump

analysis, because:

(1) the format of crash dumps differs from that of
ordinary UNIX core dumps,

(2) the format of the executable file from which UNIX
is booted differs from that of ordinary UNIX executable
files, and

(3) 'adb' is unable to handle C structures (records)

symbolically.

Structures are used very heavily in the kernel, and

calculating the offset of each member of every structure is a

tedious, error-prone process, as is entering such offsets to

explore the contents of a structure.

Several modifications and extensions were made to 'adb' to

solve these problems. First, options were added to adb which

would automatically set up the internal storage map for kernel

files and system dumps. Second, predefined formats were devised

for all kernel structures. Each member of the structure is

displayed in the appropriate format (octal, decimal, etc.) and

labeled. The formats are defined as macros suitable for use by

the general UNIX macro preprocessor, "m6.1 The new command,

j'udb', invokes 'adb', but pipes the user's input through this

-51-

_ _ _ _ _ _P

Report No. 4526 Bolt Beranek and Newman Inc.

preprocessor. This combination gives the user the full power of

'adb' (since the preprocessor transparently copies its input to

its output when it does not find a macro), plus the ability to

call on predefined macros in order to print out the contents of a

kernel structure.

It is necessary to recalculate structure member offsets by

hand any time the definition of the structure changes, and change

the predefined format string appropriately. A future change to

the compiler could make this information available directly to

the debugger.j

4.5.3 A Preliminary System Data Base and Control System

A preliminary data base for the remote maintenance system

would include the following elements:

source elements, object versions, and documents for the
system;

locations and version information for all source
elements;

locations and version information for documents;

locations of corresponding object files;

descriptions of sites; and

current and planned releases to each site.

The organization of the file system in RSY4 has been used to

contain this information. In most cases, the person using the

-52-j

I

Report No. 4526 Bolt Beranek and Newman Inc.

file system needs to know where to look in a general sense; only

the main portion of the manual has sufficiently patterned names

to allow a program to find the correct file most of the time.

The current system does not support the presence of multiple

versions in a single hierarchy. The following solutions have

been proposed:

multiple copies of the file, each complete, within a
single directory which represents the file in the
current system;

a single file with imbedded 'deltas" or changes to the
text (this is the approach taken by the Source Code
Control System); and

a baseline file with a parallel "delta" file, either in
the same directory or in another directory (this is
similar to the approach taken in the current manual
page management system).

The first of these solutions is the simplest extension of

the present method, but is unsatisfactory because the storage

space demands quickly become unreasonable. The SCCS approach is

quite compact but has the disadvantage that retrieving the most

recent copy of the file can require significant processing.

The correct identification of a source or object element

must be based on some non-ephemeral information. In the UNIX

file system, the creation date of a file is not a fixed quantity,

but may be changed by touching the file, moving it from one file

system to another, or touching some of the elements of its inode.

In the Version 6 system, there is no creation date. The creation

-53-

* W - : -.- - - - - ~ ~ - -- nn n - - -- -

. |NN --,

Report No. 4526 Bolt Beranek and Newman Inc.

date of a copy is the current date, not the date of the

original. Clearly, this is not a satisfactory record keeping

quantity. The system control system (SCS) must enter some

information into the file; ideally this information should be

available (in the case of a source file) for transmission to the

object representation. The easiest way to accomplish this is to

have the SCS maintain certain lines containing symbol definitions

at the beginning of each module. In order to guarantee

uniqueness of these symbols, the compiler should be extended to

allow an additional character (for example, the commercial at

sign '@') to be used in symbols. Whenever an element is entered

into the system, the symbol definitions would be added or updated

automatically. The SCS would, of course, check first to see that

some change has been made whenever the file is updated. These

conventional names then can be used within the file to identify

the source.

At the same time, whenever any element is entered into the

data base, the overall directory of locations will be updated as

necessary. The actual locations of 'current' versions (those

which are accessible, including the most recent version entered)

should be more or less invisible to the user; there should be a

tool available for extraction of elements, and a corresponding

tool for the return of elements.

-54-a

'BIG

Report No. 4526 Bolt Beranek and Newman Inc.

A pre-prototype of the data base directory has been

constructed within the framework of a Version 7 system. This

system, rather than BBN-UNIX, was selected because certain text

processing programs, notably the stream editor 'sed' and the

report generator 'awk', were available, along with the more

advanced Bourne version of the shell (command processor). This

pre-prototype system now consists of four main commands (all

implemented as shell files):

mkcont, which analyzes a complete directory tree and
constructs a sorted list of lines consisting of element
names and complete pathnames, the list being augmented
with the names of corresponding Makefiles and
Build.info files;

fileloc, which accesses the directory and produces a
list of elements matching the input line specification;

getfile, which extracts copies of the elements which
correspond to the input line specification, generates a
control file for the return operations, and places a
journal entry in the central control file; and

storefile, which uses the local control file to return
the elements, making backup copies if they have been
modified.

The original pre-prototype data base directory has been

mechanically constructed. In some cases, this will be

inadequate, and individual modifications will be needed. The

required information will be captured as part of the storefile

operation.

The construction (and installation) of any particular

command is controlled, in most cases, by either a Build.info or a

-55-

Report No. 4526 Bolt Beranek and Newman Inc.

Makefile. In many cases, these files, which have been

header files are often omitted from the Makefiles which accompany

the Bell distribution. The current version of 'make' does not

support the construction of archives, while the current version

of 'build' requires the production of long, repetitious

Build.info files even for the simplest directory. A merging of

the facilities of these two programs is underway, using the

syntax of 'make' as the starting point, on the assumption that

this will be more widely understood. Additional tools are

required to assure that the header file dependencies are properly

recorded, and that the versions of the headers corresponding to

the entered version of any source element are recorded as well.

A more complete list of the SCS functions which allow

programs, subroutines, and documents to be entered, extracted,

and identified follows:

display - retrieves the code and associated
documentation for examination. This command is not
intended for use when the code is to be modified and
returned to the system under the same name, but may be
used when a new element based on a old one is being
prepared.

extract - retrieves the code and checks the program out
to the user. In order to enforce this, the real user
id must not be on the short list of anonymous users
(root, bin, daemon, and any others which a parameter
file contains). Only one user at a time may have an
element checked out.

install - receives the new code segment and the
associated documentation files, transfers them to the
appropriate files, generates object code when

-56-

Report No. 4526 Bolt Beranek and Newman Inc.

appropriate, saves old copies, and installs new ones.
These operations may be performed only by the person
who has checked out the old version.

nevermind - a null case of install, used when, for one
reason or another, the user decides to leave the

current version intact.
fallback - replaces the current version with a previous
one.

delete - equivalent to installing a null program in theI
sense that no historical versions or documentation are
removed, but only the current version (in /in or in a
library).

rename - equivalent to extract - install - delete, but
neater, or at least less cumbersome.

annotate - allows the addition of notes to the logs,
indicating current problems, future modifications, or
any other reasonable information.

document -generate various forms of documentation.

chdocs -modifies documentation files only. This
command is particularly important in the maintenance of
definition, design, and reference materials.

purge - transfer old versions to the archive, or to a
backup file system.

In addition, there are command functions which allow the

manipulation of site information. Sites may be added and their

software described. These commands also generate distribution

tapes/disks, or cause the transmission of updated information

over the network.

site - defines a site or processor which receives
information, and records essential information which
describes the software at the site and the software
which will be maintained.

~*transmit - gathers the information together and
1.. transmits it to the site.

0 -57-

_________'V

Report No. 4526 Bolt Beranek and Newman Inc.

4.5.4 An Active Programming Environment

Interactive programming environments include such facilities

as smart editors, advanced testing tools, spelling correctors,

and the like. A system with a comprehensive version of the data

base which was described in the last section could extend the

programming environment in other ways.

The ability to locate useful information could be extended

to include the identification of standard building blocks which

could, in turn, be used in the development of new programs. The

UNIX system and its hundreds of utilities contain a wealth of

potential building blocks; more effective methods of identifying

these elements, extracting them from their current contexts,

generalizing them, and making them available are needed if the

full value of the previous work is to be realized.

It is often difficult for an individual programmer to avoid

errors simply because of blind spots in the approach to design

and debugging; users have similar difficulties in the way input

data is constructed. The system data base can become the

repository for other types of information about program

performance, patterns of errors, and frequency of use. The error

pattern data could be used, in some cases, to help the programmer

identify some of the blind spots; in other cases, the programmer

could build in references to this data to help the user in the

prompt identification of errors.

Report No. 4526 Bolt Beranek and Newman Inc.

4.5.5 Documentation: On-line and Paper

One of the watchwords in the computer community is that

documentation is never prepared, or at least that useful

documentation is very rare. The situation is, in some ways,

better, and in other ways worse. The UNIX system, for example,

has fairly good user documentation. Every command has some sort

of entry in the user manual, and the more complicated ones have

reference manuals and some sort of tutorials.

On the other hand, experience shows that many people do not

agree with the statement that the documentation is good. Most

users learn how to do things by word of mouth. The first

question one might ask is whether the user has enough access to

the documentation. At BBN, most regular users have at hand a

paper copy of the manual. Further, the entire user manual is

on-line, and can be referenced by typing a simple command,

usually 'man commname', where 'commname' is the name of the

command of interest. The few exceptions are annoying to the

users, and should be rectified (by using the index, which is a

part of the system data base directory, as the primary access

path, rather than the file name).

Early in the project, it was thought that the lack of an

index was a factor, and a rather good hand-constructed index was

made available for the commands. There is no evidence that

anyone actually uses this index, except for the people who

-59-

Report No. 4526 Bolt Beranek and Newman Inc.

prepared it. At about the same time, it was thought that some of

the manual pages, especially those which describe system calls,

should be reworked on more logical grounds. It appears that

these more logical groupings have not been more successful,

especially if the manual entry is larger than a couple of pages.

There are some things which seem to be true about good

documentation. One of them is that English should be written in

a fluent style. Another is that technical writers with no

personal technical competence seem to be able to produce better

user documentation than people who really understand the

programs, although there are some notable exceptions to this. It

would be interesting to examine this problem in order to find

other characteristics of good documentation.

Ever since the beginning of time sharing, there has been an

interest in on-line documentation, yet there seem to be few, if

any, examples of successes in this area. Many of the more

successful examples prove to be successful only for small user

communities. Among the large number of attempts, the follow

general sorts of on-line documentation have been tried:

Entire manuals are made available directly in some way.

Manual searching procedures, using either hand-
generated or machine-generated indexes, are available.
The hand-generated index has been discussed briefly
above. The Version 7 UNIX system has a machine-
generated index which needs to be evaluated in this
context.

More extensive descriptions written especially for on-

-60-j. '

Report No. 4526 Bolt Beranek and Newman Inc.

line use have been prepared. These are sometimes
retrieved by keyword, sometimes by moving around on a
tree.

User crutches, such as command completion, are included
to support the occasional user.

One can speculate about things which might improve the

usefulness of on-line documents; some ideas include:

The documentation must be written especially for on-
line use, with care taken to see that the text appears
in certain ways on the face of the display.

The user would like to have tools to reach into larger,
more comprehensive documents as needed. The index
should include references to all levels of
documentation in a uniform way.

The documentation should not make unnecessary
distinctions. For example, the documentation for a
formatter operation should probably be available in the
same way that the information about invoking the
formatter is made available.

The availability of a documentation editor, to allow
the user to cut and paste the original docuntent to suit
an individual view of the world, without requiring the
user to take overt action to make a copy, and without
destroying the system copy.

Some method to slip easily from the document to try
something, and to return to the document without
difficulty. Even in a system like UNIX which allows
one to create processes quite cheaply, one does not
have a sense of moving easily from active process to
documentation and back.

Some method of appealing to another human being in the
context of an on-line interaction with both the manual
and the command.

Some of these things could be tested by using a modified

version of available screen editors. At the same time, it is

probably worth asking if the perception of having greater

Report No. 4526 Bolt Beranek and Newman Inc.

bandwidth when reading paper copy is simply a psychological

block, or if it has some other basis.

-62-

Report No. 4526 Bolt Beranek and Newman Inc.

5 INTERNET DEVELOPMENT

5.1 Summary of Past Quarter's Work

During this quarter, we have been conducting frame-level

tests of the RSRE X.25 block-interface hardware with the Telenet

Network Engineering support personnel. The number of retries has

been higher than anticipated, due to the occurrence of unexpected

results in several cases; there is still a discrepancy between

the Telenet specification and the RSRE implementation having to

do with a FRAME REJECT state. After finishing these tests, we

began writing the special purpose software necessary for packet-

level tests with Telenet, soon to begin. The tests mentioned

here are all at 1200 baud with a dial-up line to Vienna,

Virginia.

We finished the replication and checkout of an enclosure

with power supply for the ACC DEC-11 VDH interface.

Subsequently, this enclosure was delivered to UCL for

installation of the VDH interface currently part of the PDP-11/40

serving as the UCL gateway between the SATNET Goonhilly Satellite

IMP and the ARPANET London TIP. The VDH interface eventually

will be used with an LSI-11/02 gateway replacement machine.

Below are summarized several hardware problems which were

manifested in the operation of the ARPA-sponsored gateways during

the last quarter. Normally, we are involved only in the

L -63-

4. ki;

Report No. 4526 Bolt Beranek and Newman Inc.

detection of problems with the gateways, inasmuch as maintenance

contracts with Digital Equipment Corporation (DEC) are purchased

for each PDP-ll. However, diagnosing the difficulty with the

NDRE gateway fell entirely into our hands.

A failure in the NDRE gateway circuit between the ARPANET

NORSAR TIP and the SATNET Tanum Satellite IMP was caused by

several problems. First, to correct a clearly evident

malfunction, BBN field service personnel changed cards in the

Host interface on the NORSAR Honeywell 316 TIP. Afterwards, in

spite of DEC field service personnel giving the PDP-11/40 a

maintenance check, the gateway continued to be nonfunctional.

Eventually, we traced the problem to a faulty EIS (Extended

Instruction Set) card in the PDP-II/40; the multiply operation

was demonstrably inaccurate. Apparently DEC service personnel do

not check this card during PDP-11/40 maintenance and therefore

were unable to diagnose the problem.

A failure in the BBN gateway between the ARPANET BBN40 TIP

and the SATNET Etam Satellite IMP was traced to a burned out

voltage regulator card in the PDP-lI/40. DEC field service

personnel replaced the card and three fans whose bearings had

seized.

-64-

Report No. 4526 Bolt Beranek and Newman Inc.

5.2 CMCC Development of Catenet Performance Measures

We implemented the software in the CI4CC program for

processing the new performance-measures message formats to be

used in evaluating catenet performance dynamically. These

message formats include:

_ CPU idle time (a measure of how heavily the gateway is
loaded);

- Packet delay across a gateway;

- Gateway-to-gateway delay (actually, the round trip time of a
special packet echoed from a specified gateway);

- Throughput (bits);

- Queue occupancy traps (a signal for when the occupancy of a

queue goes above or below a certain threshold value).

The initial performance-measures specification was revised to

include the minimum and maximum delay values in addition to the

cumulative delay values in the message types. We therefore

revised the code in the CMCC program to reflect the new

definitions and to display incremental rather than cumulative

delay values by default. Full testing of the code awaits a

gateway in which the new message types are implemented. The

following subsections detail these performance measures.

CPU Idle Time

CPU idle time, report type 8, gives an idea of the amount of

time the gateway machine is not doing useful processing. The

~ju -65-

Report No. 4526 Bolt Beranek and Newman Inc.

purpose of this is to find out when the CPU becomes saturated,

which will be the case if the proportion of idle time becomes

very small. The report consists of two 32-bit counts following

the monitoring header containing:

1. The amount of CPU idle time since the gateway started, in
milliseconds.

2. The time since the gateway started, in seconds.

Packet delay, report type 9, refers to the length of time a

packet stays in the gateway. The measurements of this delay and

of gateway to gateway delay are related; measurement of one

begins where the other ends. The model used here assumes that

gateway processing takes place in three parts: network I/0,

queuing, and routing. Implementation considerations will affect

just where the packets can be time-stamped on their way through

the gateway; for some gateways it may be possible to stamp a

packet at the network I/0 level, while for others it may not be

possible until the packet enters the routing processing. Thus,

this specification does not define where the boundary should lie.

It is important, however, that together the measures account for

all the delay that a packet will experience as far as the gateway

is concerned. It is recommended that the packet delay be made to

refer to as large a fraction as possible of the time the packet

spends in the gateway. The report, consisting of two 32-bit

-66- z~

I
i

Report No. 4526 Bolt Beranek and Newman Inc.

counts and two 16-bit counts with all delays in milliseconds, is

as follows:

1. The total number of packets processed since the gateway
started (32 bits).

2. The total delay for all packets processed (32 bits).

3. The minimum delay experienced by a single packet (16 bits).

4. The maximum delay experienced by a single packet (16 bits).

Gateway-to-gateway delay, report type 10, can represent the

measured one-way delay directly, provided the gateways obtain

equipment for time synchronization. Currently, however, only the

round trip delay can be determined, assuming that the gateways

will use echo packets to find the round trip delay to each of

their neighbors.

The report format is a table ordered by internet addresses,

considered as 32-bit unsigned integers. Each table entry

consists of an internet address followed by two 32-bit counts and

two 16-bit counts. The internet address is the neighbor address

for which this delay applies. Of the 32-bit counts, the first is

the cumulative total of the echo packets returned by the neighbor

since this gateway started, and the second is the total delay

experienced by those returned packets, in milliseconds. The two

16-bit counts are the minimum and maximum delays, inL

-67-

Report No. 4526 Bolt Beranek and Newman Inc.

milliseconds, for a single packet sent to the neighbor. There

will be one table entry for each neighbor address, so that if a

gateway is a neighbor on two networks then it will have two table

entries. There will be an entry for each such address for each

neighbor that replies to the echoes, whether or not that neighbor

is a routing gateway. The table size may grow as new neighbors

come up while a gateway is running, but it may not shrink; the

entry for a gateway that stops replying will simply remain

unchanged. This format is depicted below.

Internet address of first neighbor,
(lowest network number)

Total of echo packets returned by this neighbor
(32 bits) T

Total delay experienced (32 bits)
Minimum delay to this neighbor (16 bits)
Maximum delay to this neighbor (16 bits)

Internet address of last neighbor,
(highest network number)

Total echo packets returned (32 bits)
Total delay (32 bits)
Minimum delay for this neighbor (16 bits)
Maximum delay for this neighbor (16 bits)

Bit TbLQUqhpRlt

In contrast with the packet throughput report, which has its

emphasis on the number of packets a gateway can process, the bit

throughput report, report type 11, focuses on how fast a

gateway's network connections can accept or deliver data. The

report is a table of pairs of 32-bit counts ordered by interface;

the first count in each pair is the cumulative total of bits

-68

I

Report No. 4526 Bolt Beranek and Newman Inc.

processed coming in at that interface, and the second is the

output count. Interfaces are ordered as in the gateway

description message, report type 0. There are two extra 32-bit

counts at the end of the message: the first is the total of bits

dropped, and the second is the time since the gateway started, in

seconds. The counts for the interfaces include all traffic at

that interface, including control traffic and messages

originating at the gateway. This format is depicted below.

Input count for first interface
Output count for first interface

Input count for nth interface

Output count for nth interface

Dropped count
Time since gateway up

Queue QCuCanc

Queue occupancy, trap type 3, is a trap message which is

sent by the gateway whenever a queue length exceeds a threshold

percentage specified in the trap request message, or when the

occupancy falls below that threshold after having been above it

for some time. If a queue is loaded such that the threshold

occupancy is continually being passed in each direction, a large

number of these traps would be generated in a short time. To

avoid this, there should be some minimum time interval between

successive trap messages. It is left up to the individual

Lgateway implementors to decide what this time interval should be;

-69-

Report No. 4526 Bolt Beranek and Newman Inc.

experience with using this trap type will probably suggest a

reasonable value. Note that this replaces the earlier queue full

trap described in IEN 131. The percentage occupancy trap,

however, is more useful than a queue full trap; if a queue

becomes full, the gateway is probably already dropping packets,

and the latter fails to provide an early warning. In any case, a

queue full trap is just a 100% percentage occupancy trap.

The DO TRAP message for this trap type requires an extra

piece of information: the percentage occupancy of the queue which

is to trigger the trap. This is expressed as an integer in a

single byte following the report ID field in the DO TRAP message.

A gateway should only use one value of this threshold at a time,

so that a second DO TRAP message will supersede the previous one

if the threshold value is different. The DO TRAP message for

this trap type has the format:

Bits Contents

0 1
1 1

2-3 0
4-7 0

8-15 3
16-31 report identifier
32-39 occupancy threshold

The trap message has the following format:

Bits Contents

0-7 Interface number of Queue.
8-11 Input(0) or output(l) queue.

12-15 Above(0) or below(l) the specified occupancy.
16-23 The occupancy percentage used as a trigger.

-70-

!

Report No. 4526 Bolt Beranek and Newman Inc.

6 MOBILE ACCESS TERMINAL NETWORK

6.1 Summary of Past Quarter's Work

Summarized immediately below are the tasks worked on during

the last quarter in the development of the Mobile Access Terminal

(MAT) Red subsystem. Section 6.2 presents a detailed description

of an important element implemented in the microcode design of

the C/30 packet switch processor serving as the Red processor,

namely, satellite channel event triggers. Section 6.3

illustrates the satellite channel packet formats for the various

control and data packets.

We installed in the MAT test-facility rack a pre-delivery

C/30 packet switch processor with 64K words of memory,

temporarily made available to the MATNET project by the BBNCC

(BBN Computer Corporation). This unit is currently being used

for MATNET software testing and development. In particular, we

began the testing of the new macrocode and microcode software for

the I/O drivers, including the 1822 Host-to-IMP interfaces and

the Red/Black interface. Initial tests concentrated on the

integrity of the microcode software for handling the real-time

clock and the satellite channel event registers (see section

6.2).

We finished the design and implementation of the Satellite

IMP macrocode software for the 1822 Host-to-IMP interface. This

-71-

Report No. 4526 Bolt Beranek and Newman Inc.

software is necessary for interfacing the LSI-11/03 Terminal H
Interface Unit and the LSI-11/03 Gateway to the Satellite IMPs.

Insertion of the interface into the Host Protocol Module (HPM) V
was non-trivial, due to the inadequacy of the software hooks

built into the HPM. Testing of this software has already begun.

As a preliminary step to building a MATNET Satellite IMP, we

wrote the microcode software which emulates the hardware

satellite channel interface sans the T&M data interface, which

currently resides in the Honeywell 316 SATNET Satellite IMP.

This is a logical step, since it allows us to test the microcode

software with existing macrocode software known to be working

correctly in SATNET. To date, we have operated two C/30s with

64K words of memory through the satellite channel simulator, each

running the SATNET Satellite IMP program. The distributive

decision algorithm in each unit successfully processed control

packets from both units, while internal message generators were

used to load the satellite channel. Next, we began writing the

microcode software specific to MATNET, including the COMSEC

drivers and the scheduling of packet transfers from the Red

processor to the Black processor.

One of the problems that plagued us in the beginning was

that the Satellite IMP would not send MONITOR reports to TENEX

whenever CPODA (Contention Priority-Oriented Demand Assigned)

satellite channel access protocol was running. Other channel

-72-

A -- - .-- _ _ _ _ _ _ _ _ _ _ _ _f

I
Report No. 4526 Bolt Beranek and Newman Inc.

protocols presented no problem. For our earliest tests of the

microcode software, we essentially ignored the problem and simply

ran FPODA (Fixed Priority-Oriented Demand Assigned) satellite

channel access protocol. Eventually, when the problem could no

longer be ignored, we were able to exonerate the software

implementing the Channel Protocol Module and the MONITOR fake

host. This left as the most likely candidate the software for

the Reliable Transmission Protocol (VDH) which provides the

foundation for the Host-MATNET access protocol. Further

examination revealed that the microcode software was mishandling

DLE doubling. (DLE doubling is the procedure whereby extra DLE

characters are inserted into the data stream to circumvent the

hardware removal of single DLE characters naturally occurring.

Coincidentally, the bits sent to TENEX signifying CPODA operation

were interpretable as a DLE character.) Once the DLE doubling

microcode software was corrected, MONITOR reports appeared

normally when running CPODA satellite channel access protocol.

6.2 Microcode Design of Event Triggers in the C/30

In SATNET, special-purpose satellite channel interface

hardware contains a 16-bit real-time clock, incremented every 10

microseconds, which forms the reference time for initiating

events and which is read by the Satellite IMP software for time-

stamping packets upon arrival. Also implemented in the hardware

-73-

1 -

Report No. 4526 Bolt Beranek and Newman Inc.

are clocked event registers controlling the precise time when

satellite channel events occur (for example, when the transmitter

turns on). In operation, trigger pulses are generated by

comparator circuits between the real-time clock and the event

registers.

In MATNET, the C/30 packet switch processor contains

hardware clock triggering at 100 microseconds and special-purpose

microcode software implementing the real-time clock, event

registers, and comparator circuits. The direct implication of

the longer fundamental clock interval is that: (a) larger guard

bands between packet transmissions are necessary, and (b)

microcode realization of comparator circuits must rely on

comparison results including not only equality but also the

relational function leaer tban. The latter requirement reflects

that the macrocode software specifies events to a precision of a

10-microsecond clock, whereas the C/30 can implement a clock no

more precise than 100 microseconds.

In order to keep the capability of specifying events as long

as 0.65 seconds into the future, we originally wrote the

microcode software to maintain an internal clock to 17-bits

precision. The disadvantage of this approach is that the C/30

instruction cycle time must be increased from 125 nanoseconds to

135 nanoseconds, concomitant with processor operation involving

20-bit words. Subsequently we devised a scheme which allow~d us

-74-

Report No. 4526 Bolt Beranek and Newman Inc.

to specify an internal clock to 16-bits precision with no

detrimental effect on MATNET system performance. Below is the

detailed specification of this algorithm.

Let (E) with least-significant-bit (LSB) in units of 10

microseconds represent an event time in the future handed to the

microcode software by the macrocode software. It is necessary to

be able to specify events as long as 0.65 seconds in the future.

The goal is to recognize when the current time matches or just

exceeds the event time.

Let the current time {t} be kept as a 16-bit number with LSB

in units of 20 microseconds. Each clock tick requires {ti to be

incremented by 5, equivalent to 100 microseconds. Note, {t}

wraps around in 1.3 seconds, which is a period sufficiently large

that the range of positive numbers (and negative numbers as well)

is able to describe intervals as large as 0.65 seconds.

When {E) is handed to the microcode software, the following

operations are done:

Let {e) - [E) + 1] / 2

The division operation is a non-signed integer division by two

(logical shift right one). The incrementing of {E) before the

division is not a rounding operation (which makes no sense,

inasmuch as truncation and rounding have the same RMS error when

dividing by two), but is a bounding operation to prevent a

decrease in value of the representation of the event time through

-75-

Report No. 4526 Bolt Beranek and Newman Inc.

the loss of the LSB when dividing by two. In operational terms,

to prevent the wakeup timer from triggering before the event can

happen, we are using the integer upper bound for {el. The

definition of {el guarantees that it is always a positive number

with an integer range of 0-32767 in units of 20 microseconds.

Next,
If {e) - It)l > 0 then continue

< 0 then let {el { e) + sign bit on

This step maps future events into positive values of {e}-{t}.

Note, (el cannot equal {t}, because of the assumption that {el is

in the future. Finally,

{eel = {el - 1

is stored in a table of events to be checked during interrupt

processing. The reason for decrementing {el is that in the

determination of when the event has just happened, this operation

maps equality of event time and current time into the range of

minus numbers to be checked during interrupt processing with a

simple branch-on-minus instruction. Computer processing power is

saved if this operation is not done during interrupt processing.

During interrupt processing, the following operation is

done:

If {eel - ft) > 0 then continue
31 0 then continue
< 0 then do event

Although the procedure detailed above seems straightforward,

implementation and checkout consumed a significant am~ount of our

.me due to the complex interrelationship of all the microcode

-76-

Report No. 4526 Bolt Beranek and Newman Inc.

software. Contributing to the difficulty in checkout in the

beginning was our failure to recognize the possibility of the

wakeup timer causing transmissions to be aborted due to

truncation of the event time.

6.3 MATNET Satellite Channel Packet Formats

Given the low channel data rate (9.6 Kb/s) and the

considerable channel packet overhead in MATNET, one of our

concerns is that the available channel bandwidth be efficiently

used. (Included in the overhead are the software overhead

required by the MATNET PODA protocol, the Internet Protocol, and

the Transfer Control Procotol, and the hardware overhead required

by the Satellite IMP, the COMSEC equipment, the CODEC, the

interleaver/deinterleaver, and the AN/WSC-3 radios.) The

dominant mechanism for increasing channel efficiency is the use

of longer packets, since all the overheads are independent of

packet size. Not to be ignored, however, is the matching of

channel traffic with interleaver block size for providing a

potentially significant increase in channel efficiency.

Inasmuch as the transmission of only an integral number of

interleaver blocks is allowed, if a packet does not fit exactly

into a countable number of interleaver blocks, the unused space

left over in the last block will be wasted. To avoid unnecessary

reduction in channel efficiency, we have matched control traffic

L .- 77-

Report No. 4526 Bolt Beranek and Newman Inc.

size with interleaver block size. All the channel packet headers

defined in SATNET have been modified for MATNET, such that the

channel allocation request packet fits exactly into the minimum

size possible, namely, one interleaver block; the Hello packet

already fits into one interleaver block. Thus, we removed three

words in the channel packet headers; two words removed dealt with

the operation of the PSP terminal multi-rate capability (a non-

implemented feature in MATNET), while the third word provided

space for extra packet acknowledgements. An additional benefit
of our reworking packet headers is that there is now greater

commonality in the header structure of the different control

packets and the data packets. Below are displayed the new packet

formats, in which packet headers are explicitly depicted.

-78-

li l , !ll . -- - . , " 2

Report No. 4526 Bolt Beranek and Newman Inc.

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+------+----+---+---+---+---+---+---+---+---+---+---+---4---+----+

1 1 R I SRC SIMP 1 0 1 PACKET LENGTH - 2 (WORDS) I

2 IVSHIPACKET TYPE! SUB TYPE 1 0 1 STREAM OP-COUNT I

3 1 HEADER SOFTWARE CHECKSUM4 I
+---------+------+----+---+---+------- --- ------ -- +---+----4.

4 1 RESERVATION MSG ID #1 1 RESERVATION MSG ID #2 1 I
+---+---+-------+---------------+---+-------+---+---+---+---+---+-

5 1 0 1 CLASS I H 1 0 1 RESERVATION MSG LENGTH (WORDS) I

6!1 RESERVATION TTG: PRI

7 1
I 2nd RESERVATION FIELD (SAME AS ABOVE 2 WORDS)

9I1EI1 0 1ICI MSG ID 1

10 1 MSG TTG:PRII

11 1 LEADER AND DATA SOFTWARE CHECKSUMI

12 1 TYPE I P I DELAY I H IRELI 01

4- -- 4- -- +---+---+---+---+---+---+---+---+---+---+---+---+---*---+-

14!1 SRC HOST IDI

I I-------------------------------

.1 DATAI

MATNET Data Packet

-79-

Report No. 4526 Bolt Beranek and Newman Inc.

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.. --------------------------------- I-------------+

2 1

31

41
(SAME AS DATA PACKET HEADER)

6 1I

7 1
781 --- r~

MATNET Channel Allocation Request Packet

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---------------------------------------+---+---+---+-

1 1
I I

2 I (SAME AS DATA PACKET HEADER) I

31 i
------------------------+------------------------+-

4 I GLOBAL SENDING TIME (VS) I
--------+4--

51

61
FILL DATA

71
8 I
-------------------+------+------+------+---+---+------+-

MATNET Hello Packet

The transfer of bits from the Red processor to the Black

processor for each packet includes additional bits representing

1 -07

Report No. 4526 Bolt Beranek and Newman Inc.

the packet start framing bits, the packet checksum, and fill bits

sent during COMSEC prep. This structure is shown below for a

channel allocation request packet; data packets have a similar

structure.

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I I-- - - - - - - -- - - - - - - - - - -- - - - - - - - - - -

I 842 BITS COMSEC PREP

0 1

I SYN II
+---------+----+---+---+---+---+ I

I CHANNEL ALLOCATION REQUEST (6 WORDS)

II CHECKSUM I

I CHECKSUM I

1 0 1
+------- --- --- ----- +-

MATNET Red/Black Bit Transfer Format

Report No. 4526 Bolt Beranek and Newman Inc.

7 TCP FOR THE HP3000

7.1 Introduction

This section of the QTR covers the third phase of an ongoing

research effort to implement TCP protocols on an HP3000 computer

system. Most of our effort during this quarter was dedicated to

coding the protocol software. At this point we have completed

the coding of the following software modules:

1. The HDH protocol layer (see description below).

2. The 1822 protocol layer.

3. The IP protocol layer. Work includes the 1822 and
Internet protocol software. -

4. The TCP protocol layer.

5. The interface between the user protocol layers (TELNET
and FTP) and the TCP protocol layer. This module was
implemented using a pre-release version of the HP3000
operating system.

Testing of these software modules is well underway and will

continue into the next quarter. While a number of bugs in the

pre-release version of the operating system are causing some

problems, these problems were anticipated and our work progress

has not been significantly affected.

In addition to our coding effort we have *.efined a new

protocol layer to support an HDLC connection between the HP3000

and an ARPANET TIP. This protocol has been implemented on the

HP3000 and is being added to the standard IMP software. The

-82-j-C -- I

- ..n

Report No. 4526 Bolt Beranek and Newman Inc.

following sections, which will be included as Appendix J in a

forthcoming revision to BBN Report 1822, describe the new

protocol in some detail.

7.2 Philosophy of HDLC Host Interface

This new kind of host interface (referred to as HDH) is

being designed and implemented on C/30 IMPs to support the

connection of hosts to the IMP using HDLC at the link level, and

the ARPANET host/IMP logical protocol at the network level. This

type of access protocol will be general enough to permit any host

• with an HDLC capability to use the ARPANET host/IMP protocol

instead of X.25 level 3. The HDH protocol itself is independent

of the data transparency used on the link (bit- or byte-

oriented), and of the type and size of the cyclic redundancy

checksum (or FCS) although the standard HDH interface will use

CCITT HDLC framing and FCS. In the future, the HDH interface may

be able to support ADCCP as well as HDLC at the link level.

The HDH interface is a close relative of the VDH interface,

in that it inserts a reliable transmission protocol underneath

the standard ARPANET host/IMP protocol. However, instead of the

VDH RTP, it uses HDLC. Each frame also carries in addition to

the HDLC header a two-byte HDH header. In order to accommodate

both present and future requirements, the HDH protocol will have

two modes, shown in Figure 3. One mode is called packet mode and

-83-

"In~~ ~ ~ ~ ~ ~

Report No. 4526 Bolt Beranek and Newman Inc.

it requires that the information part of the HDLC frame not

exceed 64 16-bit words, and that the host/IMP leader be sent in a

separate frame. In this mode, the host explicitly breaks up its

messages into packets. The initial implementation of HDH will

contain this mode only, because of the nature of the existing

H316-like I/O structure. The other mode, called message mode,

permits the entire message (up to 1007 data bytes, plus leader)

to be sent in a single HDLC frame. This mode will be implemented

when the C/30 IMP's I/O structure is revised to provide

* generalized facilities such as scatter/gather to/from buffers.

It will be decided later whether to control the mode for each

interface administratively or via negotiations between the host

and the IMP (e.g. with NOPs).

7.3 Host/IMP Protocol

The HDH host interface requires the implementation of three

layers of protocol: HDLC, HDH, and ARPANET host/IMP. The HDLC

protocol is the current CCITT standard using LAP or LAPB modes.

For ARPANET HDLC, the parameters are T1>3 seconds, T2

approximately 1 second, N2-20, K-7, and N1=1088 bits (for packet

mode) or 8256 bits (for message mode). The values of N1 exceed

the requirements of the HDH protocol but are consistent with X.25

level 3. The HDLC protocol does link level flow control, error

control, and sequencing. The ARPANET host/IMP protocol is

-84-............... V * .

II-x qlw1

Report No. 4526 Bolt Beranek and Newman Inc. t

CONTROL PACKET MODE MESSAGE MODE

HDLC HDLC HDLC HDLC HDLC

FF !SOM[+EOMJ EOM SOM + EOM

HOST/IMP 07 LAST HOST/IMP
LEADER MIDDLE PACKET LEADER

PACKETS OF DATA

10 OR 12
BYTES

(EVEN #uOF) 0 TO1007
BYTES ONLY BYTES

+ LEADER

LHDH HEADER

1 1 1 1 2 10
FOR CONTROL: [1 SEQH/I LINl 0 0 1LINE DOWN COUNTER

'1 1 1 1 1 10
FOR PACKET/ 0SQHISMEM0BTSi ETO RM
MESSAGE:0 SQH.IMEO10 13TSIRETOFAE

SEQ- 1 IF SEQUENCE BREAK
H/I =0 IF HOST ORIGINATED, 1 IF IMIP ORIGINATED
LIN - 1 IF LINE IS UP, 0 IF LINE IS DOWN
SOM - I IF START OF MESSAGE
EOM -1 IF END OF MESSAGE

HDH Frame Formats
Figure 3

LI -85-

Report No. 4526 Bolt Beranek and Newman Inc.

documented in Section 3 of Report 1822, and is the network-

level protocol for exchanging messages across the network between

hosts and locally between host and IMP. The HDH protocol is

inserted between HDLC and host/IMP and is required at the local

host/IMP connection in order to segment messages into packets,

rebuild messages from packets, perform line quality monitoring,

simulate the host/IMP ready line up/down signalling, and operate

the loopback mode. The remainder of this section describes all

the aspects of the HDH protocol. Whereas the IMP will implement

all of these aspects, there are a few that need not be

implemented by the host, and those will be so noted.

The host and IMP send each other frames (via the HDLC level)

as illustrated in Figure 3. Each HDLC frame, in addition to the

HDLC address and control bytes, contains a 16-bit HDH header.

The high order bit of the HDH header distinguishes HDH control

frames (to be discussed later) from data frames. For each data

frame, there is a bit which, when set, indicates a sequence break

in the frame stream between the previous frame and the current

one, a bit which indicates if the frame was host or IMP

originated, two bits which indicate if the frame is a start of

message, end of message, both, or neither, and a count of bytes

in the rest of the frame (exclusive of the HDLC and HDH headers).

The sequence break bit is used by the host or IMP to signal

to the other side that a discontinuity has occurred in the

-86- U

Report No. 4526 Bolt Beranek and Newman Inc.

message stream. The cause of the discontinuity might be an

internal reset within the host or IMP software, or a detected

potential data loss such as an HDLC temporary disconnect. Both

the host and the IMP should always signal a sequence break when

they first start to communicate (e.g. after software restarts,

etc.). Since the break might occur in the middle of a message,

it is important that the receiver discard any accumulated frames

of a message and continue to discard new frames until the next

start of message is reached.

The host/IMP bit is used by the IMP to confirm the loopback

condition from the IMP to itself. The host should always send

its frames with this bit zero, and the IMP with the bit set to

one. The host need not implement a loopback mode, but it is

recommended that in any case this bit should be examined in order

to detect possible inadvertent loopback conditions. The CCITT

HDLC specification does not address the issue of a functional

loopback condition, and implies looped frames will always be

discarded. In practice, however, it is possible to have a

functional loopback by exchanging the HDLC addresses A and B on

output, and this practice may be observed by various HDLC

implementations (as it is in the IMP).

The SOM and EOM bits are used to delimit messages in packet

mode. In host/IMP type 0 message of zero length, or in a non-

type 0 (host/IMP control, such as RFNM), both bits are turned on

-87-

- . -"A . - ~:. . i

Report No. 4526 Bolt Beranek and Newman Inc.

and the leader frame constitutes the entire message. Otherwise,

only the SOM bit is turned on in the leader, neither bit is

turned on in middle packets, and EOM is turned on in the last

packet. In message mode, both SOM and EOM are always turned on,

and the leader and data portions of the message are included

contiguously in the same frame.

The byte count field indicates the number of valid bytes in

the remainder of the frame. This field must always be filled in,

and may indicate fewer or the same number of bytes as the

physical frame contains. This is to provide for host word sizes

that may not always align with the desired packet size. A count

larger than the amount in the physical frame is considered a

protocol violation and on the IMP receiving side will generate an

error in data indication. In packet mode, the byte count of

leader frames must be either 10, for non-type 0 messages, or 12,

for type 0 messages. The byte count for middle packets can be

any even number from 2 to 126, and there may be up to seven

middle packets, none of which needs to be maximum length. The

reason for the restriction to even byte sizes in middle packets

is that the IMP and its serial interface can only address 16-bit

words, and cannot concatenate intermediate packets that are not

multiples of 16 bits. The byte count for last packets can be any

number from 1 to 125. This number must be less than 126 because

the IMP on input from the host uses the byte length information

to insert the "host padding" bit that signals the end of the

-88-

I

Report No. 4526 Bolt Beranek and Newman Inc.

message. At least one byte must be left in the frame to add this

padding bit. In message mode, the byte count must be at least 10

(for non-type 0 messages), and may be any number up to and

including 1019. Again, the IMP inserts the padding bit on input,

and the length must be no more than one byte less than the

maximum ARPANET message size to allow for the padding to fit in

the HDLC frame. Thus, for HDH hosts, transmitted and received

messages may not exceed 8,056 bits plus leader, or a total of

8,152 bits.

HDH control frames, distinguished by having the high-order

bit of the HDH header set to 1, are used for measuring the

quality of the link and determining its up/down status. HDH

control frames contain no additional bytes beyond the HDH header.

In addition to the previously described sequence break and

host/IMP bits, the HDH header contains a line up/down bit and a

line down timer parameter value. The control frames are used by

the following algorithm to decide when the connection between the

host and the IMP is dead or alive, and to simulate the operation

of the host/IMP ready line up/down to the host/IMP level.

Periodically, the IMP sends a control frame to the host.

Since the frame is sent by the IMP, the host/IMP bit is one. The

host responds immediately to this frame by changing the host/IMP

bit to zero and returning the frame to the IMP. These frames may

be freely intermixed with data packet frames, including between

-89-

Report No. 4526 Bolt Beranek and Newman Inc.

packets of the same message.

The IMP expects to receive the echo to its control frame

before it goes to send the next control frame or within 2

seconds, whichever is sooner, and if it does not, records a miss.

If more than K misses occur within N tries, the IMP declares the

line down. No data is sent on the line while it is down.

While a line is down, the IMP continues to send control

frames and the host responds to those it receives. The IMP will

declare the line up if it receives M responses in a row with noJ

intervening misses. The host must obey the declarations of the

IMP, taking the line down or up as instructed by the setting of

the line up/down bit in the control frame. In particular, the

host should not send data on the line while control frames

indicate that the line is down.

While the line is up the host should also maintain a timer

which is reset every time the host receives a control frame from

* the IMP. If the timer ever expires, the host will consider the

line down. in this way the host will declare a line down which

has broken so completely that control frames are not received at

all from the IMP. Since the value of the line down timer depends

* on the line speed, and since the host may not be aware of the

* line speed, the reset value for the timer is communicated to the

host in the control frames sent by the IMP. The timer is

expressed in units of one second and can have reset values

-90- j 1

4 * *:7*Z * *

'I
Report No. 4526 Bolt Beranek and Newman Inc.

ranging from 3 to 1023.

Typical values for the IMP's parameters in this protocol are

K-4, N-20, and M-60. Also, the interval for sending test

messages will vary depending on the speed of the line. The

interval will range from as much as 6.4 seconds on a 1.2KB line

to 640 milliseconds on a 230KB line.

11 -91-
"3--

Report No. 4526 Bolt Beranek and Newman Inc.

8 TCP-TAC

8.1 Introduction

Work on the TCP TAC has progressed in two areas: 1) a design

document has been written describing how the Internet and

Transmission Control protocols will be implemented, and 2) the

1822 interface and packet core protocol software has been

converted to work with the new data structures.

The existing code that was taken from the H-316 TIP for the

1822 Interface and Packet Core Protocols has been converted to

use the new buffering system. This was done in order to have a

uniform buffering system in the TAC, instead of the old one for

NCP and a new one for TCP. This will permit a uniform interface

to the buffers in the parts of the software that are not NCP and

TCP specific (i.e., Terminal handling, Network interface, Telnet,

etc.). A description of these new data structures for buffering

is included later in this section. Substantial work remains to

be done to convert the rest of the TIP software to the new buffer

system.

The design document includes sections describing Overall

Data Flow, Receiving Data, Sending Data, Control and Priority,

Data Structures, 1822 Protocol, Internet Protocol, and

Transmission Control Protocol. The design document is included

as the remainder of this section of the Quarterly Technical

-.92-%U

Report No. 4526 Bolt Beranek and Newman Inc.

Report.

8.2 Overall Data Flow

A basic premise in the design of TAC is that data should not

be moved between buffers, rather the pointers to the data should

be passed between program modules. Thus, when a message is read

into a buffer, pointers to it are passed between the different

protocol modules. When a character is read from the MLC and put

into a buffer, the protocol modules manipulate the buffer

pointers, not the data itself. This is illustrated in Figure 4.

8.2.1 Receiving Data

To receive data from the network, a message is read from

the 1822 host interface into a Message Block (MBLK). If the

message will not fit in one MBLK, the remainder will be read into

other free MBLKs until the message has been completely read in.

All the MBLKs containing the same message will be linked

together. A Protocol Data Block (PDB) will be created to point

to the MBLKs. The pointers that are passed between the protocol

modules will point to the PDBs. More details on the PDBs and

MBLKs can be found in the section on "Data Structures".

I-

I~,i

Report No. 4526 Bolt Beranek and Newman Inc.

.-----------

+ +
+------------+ Message + <---------------------
1--------+ Buffers + <(..................+ \
It .4 +\ \

VV -----------

+--- + + Tumble
I+-- + + Table +--+ +--+
It +---+ I I I I
II +>I TCP I<-->l IP 1<-+ \ \

VV ---------- + II I I II 4-------+
+++++++4 I I I+------+ +--+ I
I MLC 1<---->l Telnet 1<-+ +-->I 1822 1<-->I IMP I
+-++++ I I I +--....+ I I I ++++

II +----------+ I I I 4-- -
II +>I NCP 1< -----------+
II +----+ I III

I+-->+ + Tumble +- -+ /
+---->+- + Table //

S------------
If + + /
1---------- > + Message +- --------------------- /
+------------- > + Buffers +- ----------------------

+ +
+------------+

Control ----- > Data ----- >

Figure 4 Data and Control Flow

8.2.1.1 1822 Module

The 1822 module is given a pointer to a PDB. This module

will act directly on the message if it is an 1822 control message

(i.e., a RFNM). It will update the appropriate data structure to

initiate the action to be taken. If the PDB contains an 1822

data message, it will be passed on to the next protocol module.

-94- 9

!
I

Report No. 4526 Bolt Beranek and Newman Inc.

JThe one to which it is passed depends on the Link number in the

1822 message. The Link number is the upper 8 bits of the

"Message ID" field in the 1822 leader. The Link numbers to

protocol mapping are as follows:

Link # Protocol

0 NCP Control
2-71 NCP Data
155 Internet

8.2.1.2 NCP Module

The NCP module implements the ARPANET Host-Host Protocol.

Its function is essentially identical to the TIP's NCP. The only

difference is that it will be modified to work with the new PDB

and MBLK data structures. This will be done with a new interface

and hopefully will have a small impact on efficiency. When the

NCP module is done with a message, it will pass the pointer to

the PDB to the Telnet Module.

8.2.1.3 Internet Module

When the Internet Protocol (IP) module gets a pointer to a

I. PDB it first checks the checksum in the IP leader and then checks

[that the destination address is correct (it should be the address
of the TAC running the code). If either of these checks fails,

[then the datagram is discarded. Also, if the destination address

-95-

Report No. 4526 Bolt Beranek and Newman Inc.

was incorrect then an IP error report will be sent to the source

of the datagram. The next check is whether or not the datagram

is fragmented. If so, then the IP module will perform

reassembly. This is described in detail in the section on

'Internet Protocola. When the IP module gets a complete datagram

(either received whole or reassembled) it will pass it on to the

next protocol module. Which module it is depends on the

nProtocoln field in the Internet header. If a datagram is

received for a protocol that is not supported, it will be

discarded and an IP error report sent to the datagram source.
~7

The protocols supported are as follows:

Protocol # Protocol Name

3 Gateway to Gateway Protocol
6 Transmission Control Protocol
71 Packet Core
* Host Measurements

8.2.1.4 TCP Module

When the Transmission Control Protocol (TCP) receives a PDB

it first checks the checksum of the message and the validity of

the TCP header. If the message passes the check for a valid

connection, and its sequence number is in the receiving window,

the TCP module will set it up for the open connection. The data

will be sequenced if necessary at this point. This is described

* Number is not yet assigned.

.,,. .l

* Report No. 4526 Bolt Beranek and Newman Inc.

in detail in the section on the "Transmission Control Protocol".

The next module is then informed that there is data to be

processed.

Flow control is implemented by using the TCP Acknowledgement

(ACK) and the Window size parameters. A fixed number of

characters will be buffered for each connection. As characters

are accepted they will be ACKed until the limitation is reached.

As the ACK value is advanced, the window will be shrunk

correspondingly. When the next module takes data from the

message, buffer space becomes available. This causes TCP to

advance its window, allowing the distant host to send more data.

Normally the new ACK and window values will be sent out with

the next data message from that connection. If nothing is

pending for this connection, a message with just the updated ACK

and window values will be sent. This is described in more detail

in the section "Transmission Control Protocol".

8.2.1.5 Telnet Module

The Telnet module is given a pointer to a PDB when there is

data to be processed. This data may be from the NCP or TCP

protocol modules. It takes characters out of the MBLKs, looks

for Telnet commands, and outputs them to the MLC. This output is

L done using the existing TIP's "Tumble Tables". This will work

-97-

.. - ' '" ---CI p ii '

Report No. 4526 Bolt Beranek and Newman Inc.

using "OIs", which means that every time an "01" comes in for a

port, Telnet will look to see if there is another character to

output.

8.2.2 Sending Data

Data that is sent out to the network normally comes in from

the MLC and is received in "Tumble Table" format. This is a

block which is filled by the MLC. Its format is one word for

each character input. The low order byte of the word is the

character and the high order byte is the line number that the

character came in on.

When the block is received it is passed to the Telnet

module. This module takes the characters out and processes

them. As this is happening another block is being filled by the

MLC.

8.2.2.1 Telnet Module

When the Telnet Module gets a character for a port, it first

checks if there is an open connection for that port. If not, it

discards the character and outputs a bell character to the port.

Next, it checks to see if there is room in the MBLK for another

character. If not, then the character is discarded and the bell

rung. If there is room, the character is put into the MBLK and

-98-d

Report No. 4526 Bolt Beranek and Newman Inc.

the proper pointers are advanced. Telnet then indicates to the

next protocol module that there is data to send. Depending on

which protocol is being used for the connection, this is either

NCP or TCP.

8.2.2.2 TCP Module

When the TCP module gets a signal that there is new data

that should be sent, it first checks if there is room in the

sending window to send more data. This done by checking if the

last sent but unacknowledged data is at the right edge of the

sending window. If there is no room, then nothing will be sent.

Otherwise, the TCP module will adjust the pointers in the PDB and

MBLKs to point to the correct data and update the TCP header.

Flow control in the sending direction is done by maintaining

three pointers in the PDB. These are pointers to data in the

MBLKs. They are pointers to the last ACKed character, the last

sent but unACKed character, and the last not-yet-sent character

in the MBLK. As data is ACKed, sent, or put into the MBLK, the

appropriate pointer is advanced.

When the TCP module is ready to send the data, it checks to

see if the 1822 module can send the data (i.e., there are not

more than eight outstanding messages). If the data can be sent,

L then the TCP module will compute a checksum for the message and

1 -99-I .%. I

i.

Report No. 4526 Bolt Beranek and Newman Inc.

pass a PDB pointer to the IP module.

8.2.2.3 Internet Module

When the IP module gets a pointer to a PDB it first checks

to see if it knows where to send the datagram. If the

destination is on the same network as the TAC, the Internet

module will use that as the address. If the destination is on a

different network, then it will send it to a gateway. The

procedure to decide which gateway to use is discussed in more

detail in the section "Internet Protocol".

The IP module will then build an IP leader in the MBLK and

compute the checksum of the leader. It will then pass a pointer

to the message to the 1822 module.

8.2.2.4 1822 Module

When the 1822 module gets a pointer to a PDB, it will always

send the message it contains to the destination specified in the

PDB. The destination host will either be a server host or a

gateway. The 1822 module will keep track of the number of

outstanding (no RFNMs received) messages sent to a host. This

will be used by the NCP and TCP protocol modules to insure that

the IMP will never block the TAC's host interface due to having

more than eight outstanding messages.

-100-

I

Report No. 4526 Bolt Beranek and Newman Inc.I

When the 1822 module sends the message, it will build an

1822 leader in the MBLK. It will then send the message to the

IMP via the host interface hardware.

8.3 Control and Priority

The code in the TAC will run either at the interrupt level

or at the background loop. The interrupt routines will support

the host interface, MLC, and clock. In addition, high priority

protocol routines will run at the task interrupt level.

The background loop will contain most of the TAC code. The

protocol modules will run here. They will be executed in the

following order: 1822 Input, IP Input, TCP Input, NCP Input,

Telnet Input, Telnet Output, NCP Output, TCP Output, IP Output,

and 1822 Output.

Each protocol module will have an input queue. When it

runs, it checks for an entry on its queue. If it finds

something, it takes it off the queue and processes it. Some of

the protocol modules will be written to process all entries on

their queue before exiting; others will process one entry and

then exit. The NCP, TCP, and Telnet modules will process one

entry. The 1822 and IP modules will process all entries.

-101-

Report No. 4526 Bolt Beranek and Newman Inc.

8.4 Data Structures

A new system of buffers will be used in the TAC. It

consists of two types of blocks, the Message Block (MBLK) and

Protocol Data Block (PDB). These are used both for receiving and

transmitting messages and for buffering characters on input and

output.

The structure of these buffers is such that when a protocol

module is passed a message it is given a pointer to a PDB. The

PDB includes a link to the first MBLK. The main function of the

PDB is to save frequently accessed things in the message and to

point to the message. The MBLKs contain the actual message.

They also have fields to facilitate reassembly and sequencing.

8.4.1 Message Block

The main function of the Message Block (MBLK) is to hold

messages. It will be used for all protocols. If a message will

not fit in one MBLK, then the remainder will be put into a second

MBLK. The second will be linked to the first. The length of the

MBLK will be either 30 or 60 words. The 30 word MBLK is used for

sending data and the 60 word MBLK is used for receiving.

The header of the MBLK consists of 4 words. See Figure 5

for the format of the block. The "Link" is used to point to

other MBLKs. The "Offset" field is used for reassembling IP

-102-

Report No. 4526 Bolt Beranek and Newman Inc.

T
fragments and sequencing TCP data. During these operations it

contains the offset of where this data is relative to the data in

the previous MBLK. Zero means that there is no missing data.

This is discussed in detail in the section on "Reassembly'.

1 00 05432109876543210
5 4.3.2.1. 09.8.7.6. 4 3

4.----------------------------------
0 I Link I Pointer to next MBLK

-------------- -------------------+
1 I Offset I Used in reassembly and sequencing

+-------------- -------------------
2 I Length I Flags I Length of Data, Bit flags

-------------- ------------------- +
3 1 Pointer to Data I Pointer to current data

-------------- -------------------
4 I Area which holds message
. I Data I*. I I
•1 Area II I
n* I

+-------------- -------------------

Figure 5 Message Block Format

The 'Length' and 'Pointer to Data" fields are used to

indicate where and how much data is in the MBLK. The meaning of

these is always relative to the protocol module currently

processing the message. For example: when a message is read in

from the host interface the "Pointer to Data' will point to the

1822 leader and the "Length" will be the length of all the data

* Where 'n' is either 29 or 59, depending whether the block is
used for sending or receiving.

-103-

Report No. 4526 Bolt Beranek and Newman Inc.

in this MBLK. When the 1822 module is ready to pass the data to

the next protocol module, it adjusts these fields to refer to the

data after the 1822 leader. In this way, a protocol module need

not know what, if any, protocol preceded it.

The 'Flags" is a bit field containing such things as End of

message, I/O in progress, Read or Write, small or large block,

etc. The "Data Area" is where the actual message is stored. The

small size MBLK (30 words) is sized to contain an 1822, IP, and j
TCP leader, but no data. The large size (60 words) can contain

the leaders plus up to 60 bytes of data.

!
8.4.2 Protocol Data Block

t

The Protocol Data Block is a header block for one or more

MBLKs that make up a message. It contains pointers to the first

MBLK, pointers to specific leaders in the MBLKs, frequently

accessed items from the message, and a link to the next PDS.

As previously stated, it is pointers to PDBs that are passed

between protocol modules. When a protocol module gets a PDB, it

expects to find one PDB, which points to one or more MBLKs. The

data in the MBLKs is expected to be in sequence and non-

fragmented. This requires that each protocol module insure that

the data it passes to the next module be contiguous. This is

best described with the following example:

a> -104-

Report No. 4526 Bolt Beranek and Newman Inc.

When the Internet module gets two fragments of the same

datagram, it needs to reassemble them before it can pass them to

the next protocol module. What it does is to take the MBLKs

containing the second fragment and link them into the proper

places in the list of MBLKs of the first fragment. As it does

this, it adjusts the fields in the MBLKs to point to the correct

data. When it has linked in all the MBLKs from the second

fragment, it puts the PDB, which controlled the second fragment,

back on the free list of PDBs.

The TCP module performs a similar operation to sequence the

data before it passes it to the Telnet module. The format of the

PDB is shown in Figure 6.

The first field in the PDB, "Link to next PDB", is a pointer

to another PDB. This is used for reassembly and sequencing. The

next field in the PDB is the address field. This is either the

source of the message if it was received or the destination if it

is to be sent. The 'Identification" field is the internet

identification which is used in assembling internet fragments.

The "Flags" field is a bit array used for things like datagram

complete, EOL, Urgent, Read or Write, block free, in use, hole,

etc. The "Protocol" field is the host-to-host protocol the

message is for. The *Time Stamp" field is used for timing out

messages.

-105-

Report No. 4526 Bolt Beranek and Newman Inc.

1 0 05432109876543210
*-----------------------------------

0 1 Link to next PDB I Pointer to next PDB

1 1 Network I Host I Source / Destination
+-------------- ------------------- Address

21 I IMP
4----------------------------------

3 1 Identification I IP Identification

4 1 Flags I Protocol I Bit flags, Protocol #

5 1 Time Stamp I Time stamp for aging
-------------- -------------------

6 1 Pointer to 1st Leader I Usually 1822
+-------------- ------------------- +

7 1 Pointer to 2nd Leader I Usually IP or NCP
-------------- -------------------

8 1 Pointer to 3rd Leader I Usually TCP
+-------------- -------------------

9 1 Pointer to first MBLK I Pointer to first MBLK

10 1 Protocol I Variables used by each
+ + protocol module

11 1 Variables
+ +

121 Area
+ +

13 1
4----------------------------------

Figure 6 Protocol Data Block Format

The "Pointer Leader" fields are used to point to different

leaders in the MBLKs. This is done to make it easier to find a

particular leader in the message. They are set up by a

particular protocol message and refer to different leaders

depending on which protocols are in use.

-106-

S 7-

Report No. 4526 Bolt Beranek and Newman Inc.!
The uPointer to first MBLK" field is the pointer to the

first MBLK of the message. The "Protocol Variables Area" is a

temporary area that any protocol module can use while it is

processing the PDB. As long as it controls the PDB, no other

module will change these fields.

8.5 1822 Protocol

All 1822 data messages will be passed directly to the next

protocol module. When the 1822 module gets a control message it

will call a routine supplied to it by the next protocol module.

For example, the IP module will supply a routine to be called

when the 1822 module receives a ORFNM" on an Internet link

number. The routines will be called with a pointer to the PDB of

the message. When the routine returns the 1822 module will

discard the message.

8.6 Internet Protocol

8.6.1 Identifier Assignment

When the Internet module gets a message to send, it

generates a value for the 'Identifier" (ID) field in the internet

header. It does this by keeping a 16-bit counter called the ID

counter. When it needs a new value it increments the counter by

one and uses the result. The ID counter will not be initializedE
-107-

."A

Report No. 4526 Bolt Beranek and Newman Inc.

when the TAC is reloaded or restarted to insure that the values

are sequential.

8.6.2 Option Support

The Internet module will only actively support the "Error

Report" IP option. None of the other currently defined options

will require any action to be performed by the TAC.

8.6.3 Reassembly

When the Internet module gets a PDB which is a datagram

fragment, it must reassemble it. It first looks at the fragments

on the Internet-Reassembly queue to see if there are any other

fragments of the same datagram. It does this by comparing the

source address, ID, and protocol number of the two fragments. If

it does not find a match, it adds the new PDB to the queue. At

this point, it also puts a time stamp in the PDB. This will be

used to timeout unassembled fragments.

The actual reassembly process consists of adding the MBLKs

of the new datagram to the list of MBLKs of the datagram on the

queue. This is done using the "Offset", "Length" and the

*Pointer to Data" fields in the MBLK. At this point in the

processing of the fragment, the fragment consists of one or more

MBLKs linked together. The IP header will always be in the first

-108-

I
I

Report No. 4526 Bolt Beranek and Newman Inc.

MBLK. The "Offset" fields in the MBLKs are all zero (there is no

missing data in the new fragment itself). The "Length" fields

contain the length of the IP data (not including the IP header)

in each MBLK. The "Pointer to Data" fields point to the IP data

in each MBLK.

The MBLKs of the new datagram are added to the datagram on

the queue by comparing the "Fragment Offset" in the IP header of

the new datagram to the "Fragment Offset" in the IP header of the

datagram on the reassembly queue. This is done by taking the

first MBLK on the list and adding the "Fragment Offset" from the

IP header to the "Length" and "Offset" fields in the first MBLK.

If this sum is greater than the "Fragment Offset" in the IP

header of the new datagram, then the MBLKs of the new datagram

should go before the first MBLK of the datagram in the original

fragment. If not, then they should be added in after. In this

case, the comparative process is repeated with the rest of the

MBLKs on the list. When the proper place is found, the new MBLKs

are linked in and the fields of the new and old MBLKs are

adjusted. If the new fragment overlaps the existing, then by

adjusting the "Pointer to Data" and "Length" fields, the overlap

can be skipped. This may result in one or more MBLKs being

discarded.

When the datagram is completely reassembled, it can then be

taken off the Reassembly queue and passed to the next protocol

L

Report No. 4526 Bolt Beranek and Newman Inc.

module.

8.6.4 Routing

The decision about where to send a message is twofold. If

the destination host is on the same net as the TAC, then the

message is sent directly to that host. If not, then it must be

sent to a gateway.

The Internet module will maintain a table that will

facilitate routing messages to hosts on other networks. The

table is a list of all networks (256) and the gateways to get to

the networks. This table, called the Network-Gateway table, will

be initially loaded into the TAC and will be dynamically

maintained by the TAC.

When the Internet module needs to find an address, it looks

in the Network-Gateway table to get the gateway address for the

network it wants to send to. If it finds one it uses it. If the

entry for the network it wants is empty (i.e., no gateway address

specified), then the Internet module will use an arbitrary

gateway.

If the Internet module receives a Redirect message from a

gateway, it will update the Network-Gateway table to indicate the

correct gateway. This will insure that the Network-Gateway table

contains current information.

-110- L

I

Report No. 4526 Bolt Beranek and Newman Inc.

I
If a gateway goes down during a connection the Internet

module will clear that network's entry in the Network-Gateway

table. It will then try an arbitrary gateway. If at a later

time, the Internet module receives a Redirect message telling it

to use a new gateway to get to a network, it will set that

network's entry in Network-Gateway table to the new gateway's

address.

8.6.5 Gateway to Gateway Messages

The Internet module will support the "Gateway to Gateway*

protocol in a passive sense. If it receives a "Destination

Unreachable Packet" or a "Redirect Packet" it will take

appropriate action. If it receives anything else, it will

discard the message. In particular, if the Internet module

receives a "Source Quench Packet" it will discard the message.

This strategy is used due to the TAC's limited amount of

buffering. The buffers would soon fill up because of the data

not being acknowledged (in TCP). This will effectively limit the

transmission.

8.6.6 Timeouts

Internet fragments will be discarded if they are not

reassembled within 60 seconds. When a new fragment is

[
-11•

Report No. 4526 Bolt Beranek and Newman Inc.

reassembled into an existing one, the "Timeout" field in PDB of

the existing fragment will be updated with the current time.

This will, in effect, reset the timer for that fragment.

8.7 Transmission Control Protocol

8.7.1 Connection Opening and Closing

The TCP module will have a finite state machine which will

be used for establishing and closing connections. The procedure

to open a connection is to pass the required information

(Destination address, socket, etc.) to the TCP module. It will

then run the finite state machine, which will set up the required

data structures and open the connection. Closing the connection

will be done in a similar way. The states of the finite state

machine will be similar to what is described in "IEN-129, DOD

Standard Transmission Control Protocol".

All TCP Port numbers assigned by the TAC will consist of the

upper 8 bits set to the terminal number for the connection (1-

64.) and the lower 8 bits set to 23. All connections made to or

from the TAC will use.this format.

-112-

I -

, Report No. 4526 Bolt Beranek and Newman Inc.

8.7.2 Initial Sequence Number Assignment

The TCP module will maintain a 32-bit counter that will be

used to generate Initial Sequence Numbers (ISN). The counter

will be incremented by a constant value every time the H-316

clock ticks, which is every 25.6MS. The counter will be

incremented by 64. This will then wrap around approximately

every 4.55 hours. When the TCP module needs an ISN it reads the

counter and gets a value.

8.7.3 Option Support

The TCP module will understand the format of all TCP

options. It will support the "No-Operation" and "End of Option

List" options. It will not support the "Buffer Size" option. If

it receives a "Buffer Size" option with anything greater than

size one, it will not accept the connection but will reset it.

8.7.4 Urgent Data

When the TCP module receives a message with a valid Urgent

Pointer, it sets a bit in the "Flag" word in the PDB and saves

the offset to the end of the urgent data. When the next protocol

module takes data out of the MBLK it will get an indication that

the data it is getting is urgent.

l-113-

L! ' ; ; .. . , '':

Report No. 4526 Bolt Beranek and Newman Inc.

Likewise, when the TCP module is given data to send, the

protocol module supplying the data can include an indication that

the data is urgent. The TCP module will include this information

in all messages it sends until the urgent data is sent.

8.7.5 End of Letter Handling

The TCP module will not do anything special when it receives

a message with End of Letter (EOL) set. The TCP module always

presents all data to the next protocol module as soon as it is

available. Consequently, no special handling is necessary.

The TCP module will accept data to be sent with an EOL

indication. It will send this data with EOL set in the message.

No additional data will be sent in the message. If the data is

required to be retransmitted, it will be transmitted with EOL f
preserved.

8.7.6 Retransmissions

Data that is transmitted by the TCP module will be held

until it has been ACKed by the remote host. If an ACK is not

received for the data within three seconds it will be

retransmitted. All data in the buffer that is not ACKed will be

retransmitted (except if EOL is set; see previous section). If

the data is still not ACKed for another seven seconds,

-114-

It - - -

Report No. 4526 Bolt Beranek and Newman Inc.

retransmission will occur again. This procedure will continue

using the series 3,7,15,15,30 . If there is still no ACK, then

the user will be notified. The retransmissions will continue

every 30 seconds until either the user closes the connection or

the TCP module receives an ACK.

8.7.7 Acknowledgement and Window Strategy

The Acknowledgement (ACK) and Window parameters are used to

control how much data the remote host can send to the TAC. The
TCP module will ACK data up to the limit it is willing to buffer

for a connection. Data received after this limit is reached will

be discarded. As the data is received, but before the next

protocol module takes it out of the buffer, the window will be

closed by the amount received. When the buffer limit is reached,

the TCP module will not ACK any new data and will be advertising

a zero window. When the next protocol module takes data out of

the buffer, the indow will be opened. This will allow the

remote host to send more data.

When data is sent on the connection, the current ACK and

Window values are always included in the same message. In the

case where no data is being sent and the ACK and/or Window values

have changed, a different strategy is used. When the ACK pointer

is advanced, the TCP module will wait one second to see if there

is data to send. If there has been no data sent for one second,

Report No. 4526 Bolt Beranek and Newman Inc.

then the ACK will be sent without data. A new window value will

not be sent until the buffer is at least half empty. This

strategy is designed to insure that the remote host sends blocks

of data and to eliminate unnecessary retransmissions.

8.7.8 Sequencing

When the TCP module gets a data message for a connection, it

must insure that the data is sequenced before it passes the data

to the next protocol module. The sequencing is done by comparing

the sequence number of the message to the current "Left Window

Edge" (LWE) and manipulation of the "offset", "length", and

"pointer to data" fields of the MBLKs that make up the message.

For each connection a list is maintained of MBLKs that are being

sequenced. The MBLKs are in order but there may be missing data.

At the point when the TCP module is ready to sequence the

data, the message consists of a PDB, followed by one or more

MBLKs linked together. The "pointer to data" field points to the

actual TCP data. The "offset" fields are all zero because the

data in the message is sequential relative to itself. The
"length" field is the amount of data in each MBLK.

The sequencing is done by linking the MBLKs of the new

message into the sequencing list for the connection for which the

data message is intended. This is done via the following steps:

-116-

Report No. 4526 Bolt Beranek and Newman Inc.

1. Subtract the LWE from the Sequence number of the
message. The result is the offset from the LWE. Then
set the "offset" field of the first MBLK to this result.
If it is zero, this means that there is no missing data.
Otherwise, the result is the amount of missing data.

2. Add the MBLKs to the existing list. If there are no
MBLKs on the list, then the new MBLKs become the list.
Otherwise, the insertion is done in the following steps:

a) Find the position in which to add the new MBLK
by adding together the "offset" and "length" of
first MBLK in the list. If "offset" of new MBLK
is less than the sum, then the new MBLK goes
before the MBLK in the list. Otherwise, add
"offset" and "length" of the next MBLK in the
list to the previous sum. Repeat this procedure
until a fit is found or the end of list.

b) Link the new MBLK into the list.

c) Subtract the ("offset" + "length") of the
previous MBLK from "offset" of the new MBLK.

d) Subtract the ("offset" + "length") of the new
MBLK from "offset" of the next MBLK.

Overlapping data will be handled by adjusting the "length" field

in the MBLKs as the new MBLKs are linked in.

The result of these operations is a list of MBLKs. The

"offset" field in the MBLKs contains the number of missing data

bytes before it. When the MBLK is at the front of the list, a

zero "offset" means the data is sequenced and can be passed to

the next protocol module. As data is taken by the next protocol

module, the "length" field of the first MBLK should be

decremented. When it is zero, the block is empty and can be

discarded.

-117-

Report No. 4526 Bolt Beranek and Newman Inc.

9 TCP FOR VAX-UNIX

9.1 Introduction

The purpose of this section of the Quarterly Technical

Report is to summarize the progress of the VAX-UNIX Networking

Support Project. The overall purpose of this project is to

provide the capability for the VAX to communicate with other

computers via packet-switching networks such as the ARPANET.

Specifically, the project centers around an implementation of the

DoD standard host-host protocol, the Transmission Control

Protocol (TCP) [1]. TCP allows communication with ARPANET hosts,

as well as hosts on networks outside the ARPANET, by its use of

the DoD standard Internet Protocol (IP) [2]. The implementation

is designed for the VAX, running VM/UNIX, the modified version

of UNIX 32/V developed at the University of California, Berkeley

[3]. This version of UNIX includes virtual paging capabilities.

In the following paragraphs we will discuss some features

and design goals of the implementation, and its organization.

.d

.1

-118-

I -..

Report No. 4526 Bolt Beranek and Newman Inc.

9.2 Features of the Implementation

9.2.1 Protocol-Dependent Features

9.2.1.1 Separation of Protocol Layers

The TCP software that we are developing for the VAX

incorporates several important features. First, the

implementation provides for separation of the various protocol

layers so that they can be accessed independently by various

applications*. Thus, there is a capability for access to the TCP

level, which will provide complete, reliable, multiplexed,

host-host communications connections. In addition, the IP level

is also accessible for applications other than TCP, which require

its internet addressing and data fragmentation/reassembly

services. Finally, the implementation also allows independent

access to the local network interface (in this case, to the

ARPANET, whose host interface is defined in BBN Report No. 1822

(41) in a "raw" fashion, for that software which wishes to

communicate with hosts on the local network and do its own higher

level protocol processing.

* In this context, the terms applicaUiQu and uaeE refer to any
software that is a user of lower level networking services.
Thus, programs such as FTP and TELNET can be considered
applications when viewed from the TCP level, and TCP itself may
be viewed as an application from the IP level.

-119-

Report No. 4526 Bolt Beranek and Newman Inc.

9.2.1.2 Protocol Functions

Another feature of the implementation is to provide the full

functionality of each level of protocol (TCP and IP), as

described in their specifications (1,2]. Thus, on the TCP level,

features such as the flow control mechanism (windows), precedence

and security levels, and "rubber EOL option processing will be

supported. On the IP level, datagram fragmentation and

reassembly will be supported, as well as IP option processing,

gateway-host flow control (source-quenching) and routing updates.

However, it is anticipated that some of these features (such as

handling IP gateway-host routing updates and IP option

processing) will be implemented in later stages of development,

after more basic features (such as TCP flow control and IP

fragmentation/reassembly) are debugged.

9.2.2 Operating System-Dependent Features

9.2.2.1 Kernel-Resident Networking Software

There are several features of the implementation which are

operating system dependent. The most important of these is the

fact that the networking software is being implemented in the

UNIX kernel as a permanently resident system process, rather than
jl

a swappable user level process.1

-120- I

Report No. 4526 Bolt Beranek and Newman Inc.

This organization has several implications which bear on

performance. The most obvious effect is that since the

networking software is always resident, it can more efficiently

respond to network and user initiated events, as it is always

available to service such events and need not be swapped in. In

addition, residence in the kernel removes the burden of the use

of potentially inefficient interprocess communication mechanisms,

such as pipes and ports, since simpler data structures, such as

globally available queues, can be used to transmit data between

the network and user processes. Kernel provided services (eeg.,

timers and memory allocation) also become much easier and more

efficient to use.

The large address space of the VAX makes this organization

practical and allows the avoidance of expedients like the NCP

split kernel/user process implementation that have been necessary

in previous UNIX networking software implementations on machines

with limited address space, like the PDP 11/70. It is hoped that

the kernel-resident approach will contribute to the speed and

efficiency of this TCP.

9.2.2.2 User Interface

Use of the "traditional" UNIX file-oriented user interface

is another operating system-dependent feature of this

implementation. The user will access the network software by

-121-

.4.AA

Report No. 4526 Bolt Beranek and Newman Inc.

means of standard system file I/0 calls: open, close, read, and

write. This entails modification of certain of these calls to

accommodate the extra information needed to open and maintain a

connection. In addition, the communication of exceptional

conditions to the user (such as the foreign host going down) must

also be accommodated by extension of the standard system calls.

In the case of open, for example, use of the call's mode field

will be extended to accommodate a pointer to a parameter

structure. In the case of exceptional conditions, the return

code for reads and writes will be used to signal the presence of

exceptional conditions, much like an error. An additional status -

call will be provided for the user to determine detailed

information about the nature of the condition.

In this way, the necessary additional information needed to

maintain network communications will be supported, while still

allowing the use of the functionality that the UNIX file

interface provides, such as the pipe mechanism.

In the initial versions, this interface will be the standard

UNIX blocking I/0 mechanism. Thus, outstanding reads for data

which has not been accepted from the foreign host, and writes

which exceed the buffering resources of a connection, will block.

It is expected that when and if non-blocking I/0 modifications to

the VM/UNIX kernel are introduced, much as the Version 6

await/capacity mechanism, this restriction will be lifted.

-122-

Report No. 4526 Bolt Beranek and Newman Inc.

9.3 Design Goals

Several design goals have been formulated for this

implementation. Among these goals are efficiency and low

operating system overhead, promoted by a kernel-resident network

process, which allows for reduced process and interprocess

communication overhead.

Another goal of the implementation is to reduce the amount

of extraneous data movement (copying) in handling network

traffic. To achieve this, a buffer data structure has been

adopted which has the following characteristics: intermediate

size (128 bytes); low overhead (6 bytes of control information

per buffer); and flexibility in data handling through the use of

data offset and length fields, which reduce the amount of data

copying required for operations like IP fragment reassembly and

TCP sequence space manipulations.

The use of queueing between the various software levels has

been limited in the implementation by processing incoming network

data to the highest level possible as soon as possible. Thus, an

unfragmented message coming from the network is passed to the IP

and TCP levels, with queueing taking place at the device driver

only until the message has been fully read from the network.

Similarly, on the output side, data transmission is only

Lattempted when the software is reasonably cebtain that the data

will be accepted by the network.U
3 -123-

.|:~

Report No. 4526 Bolt Beranek and Newman Inc.

Finally, it is planned that the inclusion of the network

software will entail relatively little modification of the basic

kernel code beyond that provided by Berkeley. The only

modifications to kernel code outside the network software will be

slight changes to the file I/O system calls to support the user

interface described above. In addition, an extension to the

virtual page map data structure in low core will be necessary to

support the memory allocation scheme, which makes use of the

kernel's page frame allocation mechanisms.

9.4 Organization

9.4.1 Control Flow

The network software can be viewed as a kernel-resident

system process, much like the scheduler and page daemon of

Berkeley VM/UNIX. This process is initiated as part of network

initialization. Its main flow of control is an input loop which

is activated (via wakeup) by the network interface device driver

when an incoming message has been completely read from the

network. (It can also be awakened by a TCP user or timer events,

as described below.) The message is then taken from an input

queue and dispatched on the basis of local network format (e.g.,

1822 leader link number). ARPANET IMP-host messages (RFNMs,

incompletes, IMP/host status) are handled at this level. For J
other types of messages, the local network level input handler

-124-

Report No. 4526 Bolt Beranek and Newman Inc.

calls higher level "message handlers." The "standard message

handler" is the IP input routine. However, handlers could be

included for other protocols at this level (such as UNIX NCP), or

for a "raw message" service.

At the IP level, the fragment reassembly algorithm is

executed. Unfragmented messages with valid IP leaders are passed

to the higher level protocol handler in a manner similar to the

lower level dispatch, but on the basis of IP protocol number.

The "standard handlerw is TCP. Another protocol handler

interprets IP gateway-host flow control and routing update

messages. Fragmented messages are placed on a fragment

reassembly queue, where incoming fragments are separated by

connection and IP identification. The reassembly software

handles fragment overlaps and duplications. A timer is

associated with this queue, and incomplete messages which remain

after timeout are dropped and their storage is freed. Completed

messages are passed to the next level.

At the TCP level, incoming datagrams are processed via calls

to a 'TCP machine.* This is the TCP itself, which is organized

as a finite state machine whose states are the various states of

the protocol as defined in 1, and whose inputs include incoming

data from the network, user open/close/read/write requests, and

timer events*. Input from the network is handled directly,

* An interesting characteristic of the TCP machine is that it is
generated from a formal specification, described in [51, using

g -125-

Report No. 4526 Bolt Beranek and Newman Inc.

passing through the above-described levels. User requests and

timer events are handled through a work queue.

When a user process executes a network request via system

call, the relevant data (on a read or write) is copied from user

to kernel space (or vice versa), a work entry is enqueued, and

the network process is awakened. Similarly, when timers

associated with TCP (such as the retransmission timer) go off,

timer requests are enqueued and the network input process is

awakened. Once awakened, it checks for the presence of completed

messages from the network interface and processes them, as

described above. After these inputs are processed, the TCP

machine is called to handle any outstanding requests on the work

queue. The network process then sleeps, waiting for more network

input or work requests. Thus, the TCP machine may be called

directly with network input, or awakened indirectly to check its

work queue for user and timer requests.

On the output side, TCP requests for data transmission

result in calls to the IP level output routine. This routine

does fragmentation, if necessary, and makes calls on the local

network output routine. Outgoing messages are then placed on a

hardware buffering queue, for transmission to the network

interface by the device driver. In data transmission, an attempt .
is made to ensure that data moving from the highest level (TCP),

- -- - - -- - -- - - ..
finite state parser generator techniques.

-126-

Report No. 4526 Bolt Beranek and Newman Inc.

will not be sent unless there is reasonable certainty that the

lower levels will have the necessary resources to accept the

message for transmission to the network. TCP messages are also

placed on a retransmission queue and resent at timed intervals

until they are acknowledged by the foreign TCP.

9.4.2 Buffering Strategy

As mentioned earlier, all data is passed from the network to

the various protocol software layers in intermediate sized

buffers. The allocation of these buffers is handled by the

network software. Buffers are obtained by "stealing" page frames

from the kernel's free memory map (CHAP). In VM/UNIX, these page

frames are 1024 bytes long, and thus have room for eight 128 byte

buffers. The advantage of using kernel paging memory as a source

of network buffers is that their allocation can be done totally

dynamically, with little effect on the operation of the overall

system. Buffers are allocated from a cache of free page frames,

maintained on a circular free list by the network memory

allocator. As the demand for buffers increases, new page frames

are stolen from the paging freelist and added to the network

buffer cache. Similarly, as the need for pages decrease, free

pages are returned to the system. To minimize fragmentation in

[buffer allocation within the page frames, the free list is

sorted.

U -127-

Report No. 4526 Bolt Beranek and Newman Inc.

The number of pages that can be stolen from the system is ;

limited to a moderate number (in practice 128-256). To enforce

fairness of network resource utilization between connections, the

number of buffers that can be dedicated to a particular

connection at any time is limited. This limit can be varied to

some small degree by the user when a connection is opened. Thus,

a TELNET user may open a connection with the minimum 1K bytes of

send and receive buffering; while an FTP user, anticipating

larger transfers, might desire up to 4K of buffering. The effect

of this connection buffering allocation is to place a limit on

the amount of data that the TCP may accept from the user for

sending before blocking, and the amount of input from the network

that the TCP may acknowledge. Note that in receiving, the

network software may allocate available buffers beyond the user's

connection limit for incoming data. However, this data is

considered volatile, and may be dropped when buffer demands go

higher. Incoming data is acknowledged by TCP only until the

user's connection buffer limit is exhausted. The advertised TCP

flow control window for a connection is set on the basis of the

remaining amount of this buffering.

Thus, the network software must insure that it has enough

buffering for 1) its own internal use in processing data on the

IP and local network levels; 2) retaining acknowledged TCP data

that have not been copied to user space; and 3) retaining data

accepted by the TCP for transmission which have not yet been

-128-

Report No. 4526 Bolt Beranek and Newman Inc.

acknowledged by the foreign host TCP. Other data, such as

unacknowledged TCP input from the network and fragments on the IP

reassembly queue, are vulnerable to being dropped when demand for

more buffers makes necessary the recycling of buffers on these

queues. Since there is an absolute limit on the number of page

frames that may be stolen from the paging system, and hence the

total number of buffers available, there is a resultant limit on

the total number of simultaneous connections.

Several data structures are required for stealing page

J frames from the kernel and maintaining the buffer free list.

These include enough page table entries for mapping the maximum

number of page frames which can be stolen from the system, an

* allocation map for allocating these page table entries, and the

free page list itself. For a 256 page maximum, this requires 2K

bytes of page tables, 1K bytes for page frame allocation mapping,

and another 1K bytes for the network freelist. The maximum page

parameter and others, including the minimum and maximum amount of

buffering that the user may specify, are modifiable constants of

the implementation.

9.5 Current Status

The design effort for this project commenced in September

1980. At this writing (early December), major design of all

modules has been substantially completed and coding has begun.

-129-

Report No. 4526 Bolt Beranek and Newman Inc.

Most of the code for the IP, local network, and storage

allocation is finished. Work on the TCP machine itself is in

progress, as is coding of the user interface. These parts should

be complete by mid-December. After that, integration of the code

with the rest of the operating system remains. Features such as

IP and TCP option handling and the direct IP and local network

level interfaces will be added in stages after testing begins.

Testing should start in late December. We are aiming for a

working system in close to final form by mid-February. This will

allow time for final debugging and tuning in advance of the

planned March 15, 1981 release date.

9.6 References

E1] Postel, J. (ed.), "DoD Standard Transmission Control

Protocol," Defense Advanced Research Projects Agency,

Information Processing Techniques Office, RFC 761, IEN 129,

January 1980.

(2] Postel, J. (ed.), "DoD Standard Internet Protocol,* Defense

Advanced Research Projects Agency, Information Processing

Techniques Office, RFC 760, IEN 128, January 1980. -I

[3] Babaoglu, 0., W. Joy, and J. Porcar, 'Design and

Implementation of the Berkeley Virtual Memory Extensions to

the UNIX Operating System," Computer Science Division, Dept.

-130-

Report No. 4526 Bolt Beranek and Newman Inc.

of Electrical Engineering and Computer Science, University

of California, Berkeley, December 1979.

(4] Bolt Beranek and Newman, "Specification for the

Interconnection of a Host and an IMP," Bolt Beranek and

Newman Inc., Report No. 1822, May 1978 (Revised).

[5] Tenney, R., J. Burruss, and G. Pearson, "Formal

Specification of the Transport and Session Protocols," Bolt

Beranek and Newman Inc., Report No. 4445, June 1980.

I

• i

- -131-

Report No. 4526 Bolt Beranek and Newman Inc.

DISTRIBUTION
[QTR 191

Director (3 copies)
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Attn: Program Management

R. Kahn
V. Cerf
J. Dietzler
D. Adams

fQatf JQ2uumPtatiQn Cenate (12 copies)
Cameron Station
Alexandria, VA 22314

Qaeasne CouM~UaicatiQn5 Engineerilag center
1850 Wiehle Road
Reston, VA 22090Attn: Lt. Col. Frank Zimmerman

Qeactment Qt eene
9800 Savage Road
Ft. Meade, MD 20755
R. McFarland R17 (2 copies)
M. Tinto 846 (2 copies)

Naval Electronics Systems Command
Department of the Navy
Washington, DC 20360
Attn: Barry Hughes

Naval Electronics Systems Command
Department of the Navy
Code 3301
Washington, DC 20360
J. Machado
F. Deckleman

BOLT BIUEE &NO NE~ INC.
1701 North Fort Myer Drive
Arlington, VA 22209
E. Wolf 1

1

Report No. 4526 Bolt Beranek and Newman Inc.

DISTRIBUTION (cont'd)
LOTR 191

BOLT O&NCE AM NEI IVC.
50 Moulton Street
Cambridge, MA 02238

R. Alter
A. Owen
G. Falk
R. Bressler
A. Lake
J. Robinson
A. McKenzie
F. Heart
P. Santos
R. Brooks
W. Edmond
J. Haverty
D . McNeill
M. Brescia
A. Nemeth
B. Woznick
R. Thomas
R. Koolish
W. MillikenIS. Groff
M. Hoffman
R. Rettberg
W. Mann
P. Carvey
D. Hunt
P. Cudhea
L. Evenchik
D. Flood Page
J. Herman
J. Sax
R. Hinden
G. Ruth
S. Kent
R. Gurwitz
Library

-133-

Repot N. 456 Blt erank ad NemanInc

-T

-134-

