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Estimating a Distribution Function

When New is Better Than Used

Francisco J. Samaniego and Russell A. Boyles

University of California, Davis

Abstract

Let F be a distribution function on (0,w), and let S = - F be its

corresponding survival function. F is ,said to be New Better than Used

(NBU) if S(x)S(y) > S(x+y) for all x and y . Let Sn (x) be the empirical

survival function based on a random sample of size n from an NBU distri-

bution function F . This paper is dedicated to the study of the estimator

AAS (x) defined as suptS (x +y)/S (y)), where the supremum is taken overn n n

all y for which S (y) > 0. It is shown that S is an NBU survival curve,

and that it is relatively easy to compute. While Sn is not consistent in
A

general, it is shown that S is strongly uniformly consistent for S whenn

the underlying distribution has compact support (for example, when sampling

is subject to type I censoring). Moreover, in such problems, the rate of

convergence of S is shown to be optimal.
n

1. Introduction and Sumnmary. A variety of nonparametric classes of life

distributions have been introduced into the literature of statistical

reliability theory over the last decade and a half. The appeal of such

classes is that they directly model a qualitative characteristic of com-

ponents or systems without additional (and often unnatural) constraints.

The difficulty and the challenge that such nonparametric models pose is
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that inference results tend to be more difficult to develop. This paper

is dedicated to the estimation of a particular nonparametric class, the

class of distributions with the "New Better than Used" (NBU) property.

Let F be the distribution of a nonnegative random variable X. Let

S(x) =_ 1-F(x) represent the corresponding survival function. F is said

to be NBU if the inequality

S(x)S(y) > S(x+y) (1.1)

obtains for all nonnegative x and y. From a modeling viewpoint, the

inequality (1.1) simply formalizes the notion that the residual lifetime

of a used item tends to be shorter than the lifetime of a new item. A

good deal is known about the class of NBU distributions. Much of Chapter 6

in Barlow and Proschan (1975) is dedicated to their study. In particular,

it is well known that the class contains all distributions whose failure

rate is increasing on the average (IFRA) and the still smaller class of

distributions with increasing failure rate (IFR). By far, the major portion

of the literature on NBU distributions deals with their stochastic proper-

ties rather than with inference questions. An inference paper worth noting

is that of Hollander and Proschan (1972) which studies the problem of

testing exponentiality against NBU alternatives.

-;The problem we study in this paper is the estimation of the distribu-

tion function F under the assumption that F belongs to the class of NBU

distributions. Without the NBU restriction, the empirical distribution

function )converges to F in several senses and at the best possible rate.

However, 7 need not beNBU, and, in fact, it is not difficult to show that
n) , .

P(7n.is NBU) 4 O when sampling from some NBU distributions (for example,

the exponential distribution). Our goal here is to construct a sequence
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(Fh of NBU distributions which achieve the same asymptotic optimality

as the sequence F

Consistent estimators of IFR distributions were obtained by Marshall

and Proschan (1965) and, in a somewhat different context, by Crow and

Shimi (1972). Consistent estimators of IFRA distributions are given in

Barlow et al. (1972) as a special case of their treatment of star-ordered

distributions. All of these solutions make use of the methodology of

isotonic regression. Such an approach is not useful for estimating NBU

distributions since the natural monotonicity present in these smaller

classes (IFR, IFRA) is absent in the general NBU class. llence, a sub-

stantially different approach is taken in the current study.

Let X 1.... ,X be a sample of size n from a distribution F , assumed

to be NBU. We propose to study here the properties of the function

Sn(x + y)
Sn(X) SUp Sn(Y)  (1.2)

y n

as an estimator of the survival function S(x), where S is the empiricaln

survival function, and where the supremum is taken over nonnegative y for

which Sn (y) > 0. The form of Sn is motivated from the following considera-

tions: If S were an NBU survival function, then the inequality
n

S n(X + y)
S (x) >Sn(Y) (1.3)
n - ~y

would be satisfied for all appropriate x and y. If inequality (1.3) is

violated for some x and y, then a new function is constructed in an

attempt to rectify this violation. For each fixed x, the new function

seeks to accommodate all violations of (1.3) by taking a supremum over all
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violations. It is not clear at first sight that what results is a legiti-

mate survival function. Our initial hope was that several iterations of

the transformation given in (1.2) would result in an NBU survival function

that would serve as an estimator. We have been able to show, however,

that the Sn (x) itself is an NBU survival function, that it is strongly

uniformly consistent in a class of problems of substantial practical im-

portance (the sampling from an NBU distribution under type I censoring),

and that, in such problems, it converges to the underlying NBU survival

function S(x) at an optimal rate. The general properties of Sn(x) are

given in Section 2, consistency is studied in Section 3, and rate results

are given in Section 4. In the final section, we discuss some remaining

open problems and make some concluding general remarks.

AA

2. Properties of Sn(x). The properties we wish to establish for S (W)

follow from general properties of the transformation T S -. T o S defined

by

To S(x) sup S(x+y) (2.1)(y >01S (y) > 0) S(y)

For simplicity of notation, we will usually delete the index over which

suprema are taken; unless otherwise stated, the index should be understood

to be the set of nonnegative y for which the denominator of the fractional

expression is positive.

Theorem 2.1. Let F be distribution function on (O,m), and let

S(x) - 1-F(x) be the corresponding survival function. Then, the function

TO S(x) defined by (2.1) has the following properties:
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(a) To S(x) is well defined, and 0 < To S(x) < I V x, with To S(O) I.

(b) To S(x) is nonincreasing.

(c) To S(x) is right continuous.

(d) If S(x) = 0 for x > M, then To S(x) = 0 for x > M.

(e) For all nonnegative x and y ,[To S(xSro S(y)]> To S(x+y)

(f) To S(x) > S(x) for all x

(g) If S is NBU, then To S = S.

Proof.

(a) By hypothesis, S(O) = I. Thus the set (y > OIS(y) > 0] is non-

empty, and To S(x) is well defined IV x. Moreover, To S(x) is the supremum

of a set of fractions, each of which is nonnegative and less than or equal

to one. Thus,

0 <To S(x) < 1

Also,

1 > To S(O) " sup S(y) > S(O)=

(b) Suppose u < v. Then for all y,

S(u+y) > S(v+y).

This implies that

S(u+y) S(v+y) - To S(v).
To S(u) sup S(y) sup T(y)

•~~ ~ ~~~ ~ Y . -. .S":- .. .. ( .. :-q -7-) --- ll l
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the(c) Let e > 0 be arbitrary, and let x be fixed but arbitrary. By

the definition of To S(x), we can find y* such that

S(x+y*) > TO S(x) - 6.S (y*)

Then, for any 6 > 0, we have by part (b)

To S(x) > To S(x+)

> To S(x+8)

S(x+ 6+y*)
> S(y*)

where TO S(x+) = lira TO S(z). Since S is right continuous, we have

z- X+

S(x ++y*) _. S(x+y*)
s(y*) S(y*)

as 8-'0. Thus

TO S(x) > To S(x+)

S (x + )
s(y*)

> To S(x) - .

Since c is arbitrary, we have To S(x+) - To S(x)

(d) Suppose S(x) 0 0. Then by (a), S(x+y) = 0 V y > 0, and thus

To S(x) = sup (x Y)

y S(y)

* 0
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since the fraction S()is veil defined for y sufficiently small.

S((z)

S (x+y ) S) y(y+ Z
z S(y z) S(P Z z

z S(y+z) z SZ

z S(y+z) S(z)

-To S(x+y)

(f) S(O) -1 by hypothesis. Thus,

-(X S(c)

S (0) Y

< s~ y
y S(Y)

< To S(x).

(g) If S is NBU, then for each fixed x and all appropriate y ,

S~x) ~ (y)

Hence

S (x) : sup (y)
y SY

=To S (x) .

This inequality, together with part (f) proves the claim. This completes

the proof of the theorem.
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Remarks. (1) While Theorem 2.1 does not deal with distributions F having

ja point mass at 0, such distributions cause no essential difficulty. If

a distribution is degenerate at zero, then T o S(x) is undefined; we can

deal with this situation by simply defining To S(x) - 0 when S = 0 on

[0,-). With this understanding, To S is well defined for any distribution

on C0,-), and all properties in Theorem 2.1 apply to the extension of TO S

with the exception of the equation To S(O) = 1. If F has a point mass

at 0, then the empirical c.d.f. F is degenerate at zero with positiven

probability, and the above extension of the transformation T is necessary.

However, when the true distribution function F is NBU, we must have

S(0) 0 or 1, since S(0)2 > S(O). Thus, F will either be degenerate at

zero or give no mass to zero, and these properties are inherited by Fn

(2) In general, To S need not be a survival function, that is, it need not

be true that TO S(x) - 0 as x -' . For example, if F is the Pareto

distribution with survival function

1
S(x) - for x i,x

it is easy to see that To S(x) r I . However, part (d) of Theorem 2.1

shows this. cannot happen when F has compact support.

Now, let S be the emprirical survival function. Parts (a)-(d) ofn

Theorem 2.1 prove that Sn (x) - To Sn (x) is a survival function. Moreover,

S n(x) is NBU. Since NBU distributions are precisely the fixed points of
A

the transformation T, S (x) is the empirical survival function whenever
n

Sn(x) is itself NBU.

nnWe close this section with some remarks on the computation of Sn (X).

For a given S , the computation of To S(x) can involve uncountably many

maximization problems, each of which can be difficult analytically. It

is therefore obvious that for some survival curves, the computation of

To S(x) is intractable. Fortunately, such is not the case for the

6 L -- . .. _III



9

estimator S (x). The following result reduces the computation of S (x)
n n

to a simple programming problem.

Theorem 2.2. Let x < x be the order statistics from a
I _ x2 < - xn

random sample of size n from the distribution F on (O,co). Let Sn(X)

be the empirical survival function, and let Sn (x) be as in (1.2). Then

Sn (x) has the following characteristics:

(a) For any x > 0,

Sn (x +xi)
S n(X) = sup

i Sn(Xi)

A A

(b) Sn (x) is a step function, and if Sn(X) has a jump at x, then

x - xr - for some r and s , where 0 < s < r :< n , with x 0 defined as

zero.

Proof.

(a) Since Sn is a step function, the ratio

S n(x+Y)

Sn(y)

will change values only when y - x i for some i or when x+y = x. for

some i. Now suppose the latter equation obtains for some y that is not

an order statistic.. Then, for some positive c , we have

Sn(x~y-e) S n(x+y)
S n(y -€) S n(y)
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since, for e sufficiently small,

S n(y -C) -Sn(y)

while

S n (x+Y-) > S (x+ Y).

This shows that for the purpose of defining S n(x), we need only consider

ratios of the form

S (X+Xi

(b) We show that unless x -x - x for some r,s such that
r s

0 < s < r < n, there exists a positive number C for which S (x) =S (x-I+C).
n n

Suppose x E (0,-) is such that x #Xr - x for 0 < s < r < n From

part (a), we know that

Sn (x) sup Sx)

Since no x-4x. is equal to an order statistic, it is possible to find
L

e > 0 such that

S n(x+g+x Sn (X+X d

But then

S n(X+s+x i) S (X +)

Sn iXdSn(

so that

S(x+s) SWx.
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* t An

Thus, x is not a jump point of S (x). This argument shows, in fact, thatn

Sn is a step function whose jump points may only occur at numbers in the

finite set (x IE (O,-)j-Xr-X , 0 < s < r < n). U

The result above shows that the computation of S involves checkingn

at most (2l) points for possible jumps. At each potential jump point x,

the comparison of the numbers

Sn(x+xi)

S (xi)

* A

reveals the value of S . Writing a program for computing S is thusfl n

entirely elementary. The computation is in fact even simpler than indi-

cated, since a fair number of potential jump points may be eliminated from

consideration by arguments exemplified in the following result.

Theorem 2.3. Let x 0 = 0, and let x 1 < x 2 < ... < X be the order statistics

from a random sample of size n from a distribution F on (0,-). Then

Sn(X ) - 1 V x < max(x i - x i )

Proof: If x < xj -xj. 1 for some J , then

Sn (Xj I ) - Sn (x+Xj.)

so that

A Sn (x +xj 1 )
Sn(x) > n K. J- nnj I
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Besides being relevant to computation, the result above is useful in our

discussion of the consistency of Sn

3. The Question of Consistency. In spite of its appealing stochastic

and computational properties, the transformation Sn (x) = To Sn (x) does not

provide the complete answer to the problem of estimating an NBU distriP -

tion. Indeed, S is not in general a consistent estimator of S . Suppose,n

-Xxfor example, that S(x) = e , the survival function of the exponential

distribution. The exponential is of course a boundary case in the family

of NBU distributions, being the unique continuous distribution for which

S(x)S(y) = S(x+y). One can demonstrate the inconsistency of Sn(x) when

sampling from the exponential distribution as follows. Fix x. Since

(Sn(x) ] are bounded random variables, it suffices to show that, for all n,

ES (x)>M >e .

Now it is well known that the spacing between the two largest order

statistics from an exponential sample has the same distribution as the

original observables; that is,

X n - Xn 1 - Exp(X).

Now define

I if x < Xn - X n .

Rn(x) (Sn(x) if x X -X 1

nX>X
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By Theorem 2.3 and part (f) of Theorem 2.1, we have

n n (x) >

Thus,

ESn (x) > ER n(x)

> I 1 P(X n - x n -1 > x)
+ ESn(x) n P(X n - x < x)

= p + (l-p)e "),x

, > e - ) .x

where p inP(Xn -Xn - > x) > O.

It is easy to pinpoint the reason for the inconsistency demonstrated

above. It is clear that the tail behavior of S plays a crucial role inn

the asymptotic behavior of S n . This leads us to investigate the con-
An

sistency of Sn in problems in which the tail behavior of Sn is controlled.

We establish in the following two theorems the strong uniform consistency
* A

of S when sampling from an NBU distribution with compact support.
n

Theorem 3.1. Let F be an NBU distribution on (0,-), and let S - I-F.

Suppose the constant T i inf[MI(M) 1] is well defined and finite. Then

for all x,

s n(x) -. s(x)

with probability one.
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* IProof. By the Glivenko-Cantelli theorem, there exists a null set ?Z such

that IVw E LfIM,

suPIF (z) - F(z)j - 0.
z n

Our notation suppresses the fact that the sequences we will consider depend

on w Since S (0) -1 and S(T)in0 for all n, we need only establish con-

vergence of S (x) for x E (0,T). Let such an x be fixed. For any

w E/7?, we have

S (x+y)
sup >S(x)

y Sn (y) -n

which implies that

Lim S (X) 1 Urn S (x)
n n

= (x).

In order to obtain an upper bound for lim S n(x), we note that IV y for

which S(y) > 0,

S n(x +Y) S(X+y)
lim - a

n. Sn (y) S(y)

5S(x)

s ince F is NBU.

We wish to show that for any a > 0 ,

lie' sup S n( ) S(X) +C.(3)
n-9w n
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Suppose (3.1) fails for some fixed e0" Then there exists a sequence

[yn I such that

> S(x)+g 0 gi. (3.2)
Sn i(Yn )

The sequence (yn is bounded; indeed y < T-x if i. We will assume,
ii

without loss of generality, that

Y*
Yni Y,

for otherwise, we could extract a convergent subsequence satisfying (3.2).

We now consider two cases: either (Yn 3 contains a subsequence converging

to Y* from above, or it contains a subsequence converging to y* from below.

Again, without loss of generality, we will assume first that y increases

to y* and then that y decreases to y*. We will derive a contradiction

to (3.2) in either case.

Case 1: If yn - y* from below, then

S n (X+Y ) S(x+Y* -)

Sn (yn " S(y.-)

where S(a-) lia S(z). But

S(X+Y < s(x),
S(y*)

for otherwise, > g> 0 such that
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S(X+X-) > s (x)

S(y* - C)

contradicting the fact that F is NBU. Thus, for sufficiently large ni,

S (X+yn)
Si(Ynl < S(X) + cot
Sn (y)

contradicting (3.2).

Case 2: y - y* from above. In this case
*ni

S (X+yn) S(x+y*)
n n

S i - S(y) S(x)

by the right continuity of S and the fact that F is NBU. As in the

preceding case, this contradicts (3.2), proving (3.1).

In conclusion, we have shown that for every e > 0,

S(x) < Lr S (x) < lim S (x) < S(x) + e
n -- co --n-.w fl-'

o
-

with probability one. Thus,

S n(x) a S(x) for all x E (0,.). U

If S is continuous, the uniform convergence of Sn follows immediately

from Theorem 3.1. However, the reliability applications of interest to us

will typically involve survival functions with at least one discontinuity.

We therefore establish the following general result.
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Theorem 3.2. Under the hypotheses of Theorem 3.1,

suplSn(x) -Sxl - 0
x

with probability one.

Proof. Let w E ()/? , the set of strong uniform convergence of S . In

order to apply a lemma in Chung (1968, page 124) we need

S (x) - S(x) (3.3)n

on a set of x dense in (0,-), which we take to be the set of rationals

Q, and

Sn(x") - S(x') (3.4)

for every jump point x of S

We have (3.3) v x E Q by Theorem 3.1. We now establish (3.4) for

a fixed jump point x. Let e > 0, and choose 6 > 0 such that x- 6 E Q

and

S(x- 6) < S(x') + e. (3.5)

Now since

S(x-) < S(-6

we have, by (3.3) and (3.5), that

lim S n(x-) < S(x-) + s. (3.6)

On the other hand,

S n(x-) > Sn(x-)

n_,n
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so that

1rm S (x-)> S(x-). (3.7)

n- n

Together, (3.6) and (3.7) imply that

S (x-) - S(x-).
n

By the aforementioned lemma in Chung (1968),

supSn(X)-s(x)j S s. 0.
x

We now examine the domain of applicability of the consistency results

established here. It is clear upon a moment's reflection that all real

reliability experiments have a finite time horizon. Thus, random sampling

or sampling subject to type II censoring from a life distribution with

unbounded support are unrealistic (though perhaps still useful) mo#Th.

It should certainly not be considered onerous, therefore, to impose the

restriction of boundedness to the support of F , first, and most importantly,

because this restriction corresponds to reality, and secondly, because the

upper bound of the support of F is unspecified and may be as large as a

particular application requires.

Let G be an NBU distribution on (0,a). Suppose a sample XI,...,X n is

taken from G, subject to type I censoring, that is, subject to truncation

at time T. Thus, the variables we observe are Y1,...,Y , where

Yi " min(XiT)

iidwhere Xl,...,x n  . Let F be the distribution of the Y's, and let

S 1 - F. It is easy to show that F is NBU. Moreover, F has compact
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support, so that Theorem 3.2 implies the strong uniform consistency of

S as an estimator of S . We note that in most problems of interest,n

F has a discontinuity at T, and thus the generality of Theorem 3.2 is

necessary.

4. Convergence Rates for S . It is possible to study rates of conver-

gence of nonparametric estimators of a distribution function in a variety

of contexts. We will study in this section the rate at which S converges

to S in mean square as well as the rate of almost sure pointwise conver-

gence of S to S . It is well known that the empirical survival curven

S converges to S in the two senses above at the best possible rates.n

Specifically, S is mean square consistent with rate O(n ) and almost
a

surely pointwise consistent with rate 0(n'k(log log n) ). We establish

below a fundamental inequality from which optimal convergence rates for

S follow. We also obtain a rate result for almost sure uniform conver-
n

gence of Sn to S under an additional regularity condition.

Throughout this section, we assume that F is an NBU distribution

function on (0,,) with S l-F, and that Tf-iinftM!F(M) l is well
A

defined and finite. Let S be as in (1.2).
n

Lemma 4.1. Let x E (0,T), and let o E (0,1). If S (T-x) >OS(T-x),

then

I Ms -(S-(x) D + 1]

where

Dn X sup IS n(z) -S (a) .0<z<o
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Proof. S ince S () S(x), we have

In W Sn WI-Sn ()-SnW

y S n (Y) o Sn(x)]

= ~[n (x+Y) -S n(x)S ny(Y1

y n

* I ~~~~S(T-x) su(~xy n SxSy)

The inequality follows fromn the fact that S nis nonincreasing, and

S (T-x) > 0 by hypothesis. Since S (T-x) > cS(T-x), which is positive
n n

by the definition of T, we have

isn X)S ~x cS T-) sp1 S(x+' -S (x+y) +S (x+y) - S W)S (y)

+ S(x)S(y)-S (x)S(y) +S (x)S(y)-S (X)S (y)]
n.n n n

1 Supli~s(X+y)-S(x+Y)) +[S(x)-S (x)lS(y)
-t C'(T-x)y

+ [S (y) - Sn(Y)Jsn(x)I

s ince S (x+y) -S(x)S (y) <5 0 V. x,y,

1(3D)
ctS (T-X) n

by the triangle inequality. Finally, we have

Is n(x)-S(x)i Is IS(x)-S n(x) r + is (x)-S(x)j

3D
+ D

0 S(T-x) n

+D 1] +

e~~~~~~ aS(T-x *)---- - _
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Our rate of convergence results for S nwill be obtained by applying

the well-known exponential inequality due to Dvoretzki, Kiefer and

Wolfowitz (1956), which we state below:

i id
Lemma 4.2. Let X. .. ox.n . - F, and let F nrepresent the empirical

cdf based on £X1, ...oX n). There exists a universal constant c* such that

-22

P(A/F D > X~) 5 C*eX

where

D n sup IF n(x) -F(x) I
< <x <C0

We first study the rate of mean square consistency of S n The

following two results supply the answer.

Lenina 4. 3. Let x E (0,T) and let a E (0,1). Then

A2 2[ 3 1]
EIS n(x) -S (x)jI < ED n cS (T-x) +

+ (1 -S(T-x))

Proof. Let A denote the event (S n(T-x) 2:otS(T-x)). Then

c(' - P(Sn Tx otT-)

- P(S n(T-x) - S(T-x) < - (I- ot)S (T-x))

:5 (E n(Tx)-ST-)]2 > 1-o)2 (STx)2

<S(T -x)(1 -S(T -x))

n(l -cy) 2S(T -x)2

by the Markov inequality
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1 - S (T-x)

n(1 -x)2S (T-x)

Thus, by Lemma 4.1,

ESn(X) "S(x)1 2 = I nS(X) -S(x) 2 dP + j is n(x) -S(x)IdP
E EC

3 1)2 D2 cP+P(

E D;S(T-x) + D + )

<F3 E D 2S (T-x)

We may now establish

Theorem 4.1. E (X)-S(x) O(n

Proof. By Lemma 4.3, we need only show that E(Dn2 ) 2 (n ). But

nE(D2) = E((rn D n)2)
= )2

-OP((,,/ Dn) > X)d.

= VrP(' Dn > J,)dx
0

< fc*e2dX
0

< OD
2

The rate of almost sure pointwise convergence is contained in the

following result.
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Theorem 4.2. Sn (x) -S(x) =(n (log log n) almost surely.

Proof. For any fixed a E (0,1), the inequality of Lemma 4.1 holds with

probability one for all n sufficiently large.

We may establish rates of uniform convergence under the additional

hypothesis that S(T-) > 0.

Corollary 4.1. If S(T-) > 0, then

A_2

sup Es n (x) -S(x)l O(n)
O<x<T

and

sup iSn(X) S(X) O(n' (log log n) ) a.s.
0<x<n

Proof: If S(T-) > 0, we may obtain universal bounds in Lemma 4.1 and

4.3 by replacing S(T-x) by S(T-). U

5. Discussion. We have studied in this paper the properties of an ad

hoc estimator S (x) of the survival function of an NBU distribution. We
n

have demonstrated the strong uniform consistency of S when the underlying
n

distribution has compact support, and have verified that Sn tends to S at

the best possible rate in the sense of mean square convergence and almost

sure pointwise convergence. Thus, this paper presents an asymptotically

optimal solution to the problem of estimating an NBU distribution with

compact support. An application of particular interest is that of

sampling from an NBU distribution subject to type I censoring.
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The problem of estimating an NBU distribution with unbounded support

remains open. This problem is of theoretical rather than practical

interest, since real reliability experiments have a finite horizon, even

though this fact is ignored by most models. It is nevertheless of

interest to construct a consistent NBU sequence in the general problem,

and to compare the behavior of such a sequence to that of S in problems
n

with compact support. These challenges are left to a future investigation.

The estimator Sn has the properties that Sn is NBU and Sn(X) > Sn(X)

V x. We. have therefore found the name "upper NBU-izer" appropriate in

referring to S . The motivation for the definition of S suggests othern n

possible NBU-izing transformations. An immediate candidate is the

transformation

S n(x) = inf Sn(y)Sn (x -y), (5.1)
O<y<x

an estimator which is also motivated by the inequality (1.1). It can be

shown that S is strongly uniformly consistent for S , the survival function
~n

of an arbitrary underlying NBU distribution! Emphoria over this result is

mitigated by the fact that S lacks a crucial property, namely, S needn n

not be NBU. There is, however, a "lower NBU-izer" which, while being

more complex, appears promising. We can show that the transformation

To S(x) inf 11 S(ui)

uECpX

where

k k
C x  u E (0,X]k r, u _< xk,2.., tX

-"L l, I IilI I
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transforms an arbitrary survival function into an NBU survival function.

Moreover,

To S(x) < S(x) Vx,

so that Sn (x) To Sn (x) is indeed a lower NBU-izer. We will report in

detail on the properties of Sn(X) in a forthcoming paper.
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