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PRACTICAL METHODS FOR THE COMPENSATON

CONTROL OF MULTIVARIABLE SYSTEMS /gf6S -72 /-

RESEARCH OBJECTIVES

The primary objective of this research is the development of

practical methods for the compensation and control of multivariable

systems. Success in this area would facilitate the ,design of

controllers for complex Air Force systems. A variety of different

approaches have been employed to accomplish this objective.

In particular, we were most successful in developing a new

parameter adaptive control scheme for linear multivariable systems.

The design algorithm employs an adaptive Luenberger observer which

automatically adjusts the poles of a given system. It is felt that

such an adaptive controller could be used in a variety of aerospace

applications.

We were also able to show that "multi-purpose" controllers can

be designed which simultaneously perform a variety of control functions.

In particular, we constructively demonstrated how to build a controller

which simultaneously decouples, places poles arbitrarily, rejects

disturbances, insures zero error tracking, and is robust with respect

to parameter variations. We also presented a new and straightforward

method for obtaining simple low order models of systems whose dynamical

behavior approximates that of more complex, higher order systems.

Such low order models can be used in the design of low order compensators

for the more complex systems.

A complete new resolution was also presented to the question of

what changes occur to the individual transfer matrix elements of a

linear multivariable system under local, scalar oukv l& . " n
system61 r TA1ut on wl iited.
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particular, it was shown what poles become controllable and observable

via any input/output pair when constant gain output feedback is applied

between any (i-th) output and any (j-th) input. The changes which

simultaneously occur to the numerator elements of the transfer matrix were

then determined through the employement of some new relationships derived

from an appropriate relatively right prime factorization of the system

transfer matrix.

Another research objective is the study of parameterized system

models with a view towards developing compensation and control techniques

which are particularly crucial; namely, (i) the question of parameter

variation and the development of compensators which are insensitive to

that variation; and (ii) the question of system structure and qualitative

properties for parameterized models. The techniques considered involve

the methods of algebraic geometry and revolve around three key questions:

(i) can the orbits in the space of linear systems under equivalence via

the action of an algebraic group be described and classified?, (ii) what

spectral structures can be achieved through the use of compensation?,

and, (iii) what are the essential elements required in extending results

to domains other than the real and complex numbers? Question I has been

resolved for the feedback group and is being studied for systems with

parameters. Results have been obtained for the pole-assignment problem

involving parameters using intersection theory and some preliminary work

has been done on the realization, coprime factorization and trace assignment

problems for systems defined over the polynomial ring in n-variables over

the integers.
FC)

is
.. (7b).
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STATUS

Adaptive Control

Although considerable progress has been made in designing globally

stable adaptive control schemes for unknown continuous time single input-

single output (scalar) systems, little progress has been made toward the

extension of these ideas to the multiple input-multiple output (multi-

variable) case. In [11 an equation is derived that can be used to identify

a set of controller parameters which completely assign all poles and zeros

of a linear multivariable systems represented by a (pxm) strictly proper

transfer matrix T(s) when p > m and only input-output data is available

for measurement. This equation is used to derive a parameter adaptive

control system for linear multivariable systems.

The control structure contains an adaptive Luenberger observer which

assigns as poles of the closed loop system the zeros of the unknown system

(plant), and possibly some additional poles specified by the designer. The

new overall system zeros and the remaining poles are obtained by use of a

fixed precompensator which can be arbitrarily specified by the designer.

Since the incorporated parameter identifier directly estimates the control

parameters without explicitly identifying a parameterized model of the

unknown plant the structure can be classified as a "direct adaptive controller."

Since the plant zeros are assigned as closed loop poles, to construct

the controller one must be assured that the plant's open loop zeros lie

strictly in the left half plane. In addition, to complete the design one

must know, a priori, an upperbound on the plant's observability index, as

well as the structure of the "interactor matrix" associated with T(s). In

many cases, this latter requirement is essentially equivalent to knowledge

of the smallest relative degree in each row of T(s). To assure proper
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performance, additional information about the plant transfer matrix structure

is needed. This information is analogus to information on the high frequency

gain necessary for adaptive control of scalar systems. It might be noted that

the design presented in [I] is generally applicable to a large class of

multivariable systems.

Multi-Purpose Controllers

Frequency domain methods have always dominated control system design

in the scalar (single input/output) case, when compared to the more "modern"

state-space or differential operator methods, due to the relative simplicity

of the resulting controllers and their ability to function acceptably over a

rather wide range of plant parameter variations; i.e. their robustness. It

is not surprising, therefore, that numerous studies have been made to

"extend" various frequency domain techniques to the multivariable case in

order to simply and reliably achieve a diversity of desired design goals.

In most cases, however, direct extensions of scalar frequency domain

procedures, such as the Nyquist stability criteria or the root locus, are

not possible and often rather complex modifications have to be made to

existing theories in order to achieve appropriate design objectives.

Further complicating the picture is the fact that noninteraction (or decoupl-

ing) is often an additional design objective in the multivariable case, and

a completely decoupled, stable system cannot always be achieved by the

relatively simple feedforward controllers obtained by multivariable,

frequency domain methods.

On the other hand, the so called "modern" methods which have generally

relied on exact knowledge of the plant, are continually being improved upon

and extended to take into consideration parameter uncertainty and/or variations;
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i.e. robustness is becoming increasingly important in designs based on

state-space or differential operator methods. Although these "modern"

methods generally imply more complex controller configurations, than those

associated with frequency domain methods, they are less heuristic to

implement and can generally achieve more than is possible with the simpler

controllers designed by frequency domain methods. Moreover, with the ever

increasing utilization of computers in the control loop, it may be argued

that controller simplicity is no longer as important as it once was, and

one might therefore expect to see more complex controllers being used in

future applications.

In the light of these observations, a new procedure has been developed

for designing controllers which simultaneously achieve a variety of desired

design goals-in deterministic, unity feedback, linear multivariable system.

More specifically, in [21 a new algorithm is presented for the systematic

design of a "three part" multivariable controller which simultaneously

insures

(a) a noninteractive or decoupled closed loop design,

(b) complete and arbitrary closed loop pole placement, which

implies desired (single loop) transient performance as

well as closed loop stability,

(c) zero steady-state errors between the plant outputs and

any nondecreasing deterministic inputs,

(d) complete steady-state output rejection of nondecreasing

deterministic disturbances, and

(e) robustness with respect to stability, disturbance rejection,

and zero error tracking for rather substantial plant parameter

variations.
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Our development in [2] employs the more "modern" (Laplace transformed)

differential operator approach for controller synthesis, which involves

transfer matrix factorizations and the manipulation of polynomial matrices

in the Laplace operator s.

Low Order Models

The problem of finding reduced order models for high order systems,

sometimes referred to as the "model reduction problem", is an important one

to the practicing engineer since it is difficult to apply the design procedures

of modern and classical control theory to high order systems. Numerous

solutions to the model reduction problem have been proposed during the past

two decades. Many of these are based on first deriving transfer function

or state-space models for the high order systems and then simplifying these

models. Other methods use time or frequency response data to directly fit

low order models. Our procedure falls into this latter category, since it

determines a model which matches the frequency response of the original

high order system at a certain set of prespecified frequencies. Its primary

advantage lies in the simplicity of implementation. In particular, no

intermediary high order model need be calculated, only one test input need

be used, and the calculation of model parameters only requires the solution

of a simple set of linear equations. The model parameters can also be

obtained as the output of an analog adaptive network, since the algorithm makes

use of the generalized equation error identification scheme due to Lion.

Most importantly, our algorithm readily generalizes to the multiple input-

output (multivariable) case where classical frequency and time domain

procedures become cumbersome to apply.
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More specifically, in [3], we present a new method for obtaining simple

low order models whose dynamical behavior approximates that of more complex,

higher order, stable linear systems. The low order model is determined by

applying an identification procedure to input-output data obtained by

"driving" the original system with a special periodic test signal. We

prove that in the scalar case a Lion-type model adjustment identifier will

determine a constant kth order model of an nth order (k < n) system provided

the system input consists of exactly k distinct sinusoids. This Kth order model

will approximate the higher order system in the sense that its frequency

response matches that of the model at the k input frequencies (provided

the model obtained is stable). We then show that this result can be extended

in a very natural way to the multivariable case. We finally demonstrate

by example that this procedure can produce excellent low order models when

such models exist.

Decentralized Control

In the control of linear multivariable systems, constraints are often

imposed on both the complexity of the controller as well as its placement

relative to the system's inputs and outputs. An interesting question

relative to this observation is what changes occur to the dynamical relations

between any input/output pair as the result of applying constant gain output

feedback between any (i-th) output, Yi and any (J-t h) input, uj This

question is clearly related to that of decentralized control; i.e. of

determining the conditions under which one or more "local" output feedbacks

can be applied to insure complete state controllability of the system

through a selected input or set of inputs. The solution to the rather

general question which is posed in [41 contains the elements for resolving

the decentralized control question, as well as other "constrained" control
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questions, in a new and efficient manner.

The particular treatment employed in [4] assumes knowledge of the

(pxm) rational transfer matrix, T(s), which characterizes the dynamical

behavior of the system under investigation. By then employing a relatively

right prime factorization, R(s)P(s) - I, of T(s) with P(s) in unique (upper

right triangular) Hermite form, significant new insight is obtained relative

to the changes which occur in all of the pxm elements of T(s) when any

output Yi is fed back to any input, uj through a constant gain element gji.

Algebraic Geometry

A portion of the research under the grant has focused on understanding

and applying the methods of algebraic geometry in system theory in the

context of the three key questions noted in the research objectives. A

summary of various results and problems is given in [A] together with a

fairly extensive bibliography.

The increasing application of the methods of algebraic geometry to

systems problems (see, for example, the bibliographies in [A], [B]) has

created, in the opinion of Falb, the need for a book which provides, in a

motivated context, both the basic mathematical material and the relevant

system theoretic results. While there is no lack of excellent mathematics

texts on algebraic geometry, these books are not oriented to system theoretic

applications and do not provide the applications motivation for studying

the very difficult results of algebraic geometry. In essence, Falb believes

that, just as optimal control in the early to mid-sixties was ready for a

book combinding certain control and mathematical ideas (cf. (C]) so too is

system theory ready for a book providing a combination of the relevant ideas

of systems and algebraic geometry. A detailed outline (which follows) has been
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developed and several chapters written. The book is a blending and extension

of [A] and [D] and the basic approach is to relate the mathematical and systems

ideas in such a fashion that the system theoretic motivation is apparent.

OUTLINE

I. Introduction

A. System

Internal, External Representations

B. Qualitative Properties

Key Questions

1) Orbits Under Equivalence

2) Spectral Structures Under Compensation

3) Essential Algebraic Elements

C. Routh-Hurwitz Theory

Rationality of a Proper Meromorphic Function

Stability of a Real Rational Function

D. Invariants

Basic Concept

II. Linear Systems

A. Notion of Linear System

B. External Description

Input-Output

Transfer Matrix

Algebraic Map

Mapping on a Riemann Surface

Pencils
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C. Internal Description

State Representation

Polynomial Matrix Representation

Factorization

System Module

D. The Connecting Link

Space of Hankel Matrices

E. Equivalence

Unimodular Transformations

Linear Groups

F. Qualitative Properties

Controllability, Observability, Stability

III. Classical Groups of Symmetry and Moduli for Linear Systems

A. Theory of Invariants

Concept of Invariant

Ideas from Algebra

Polynomial Invariants

Some Algebraic Geometry

Hilbert-Mumford theory

B. Moduli for Linear Systems

Construction of the Moduli Space

Properties of the Moduli Space

Obstructions
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IV. Stabilization and Feedback Groups

A. Feedback Groups

State Feedback

Output Feedback

B. Moduli under Feedback

Construction of Moduli Space

State Feedback

Output Feedback

C. Stabilization

Pole Assignment

Coefficient Assignment

Trace Assignment

Heymann's Lemma

Linking Maps

D. Systems with Parameters

Parameter Independent Stabilization

V. Extensions of the Domain

A. Systems over Rings

Concepts and Questions

Localization

Counter-Examples

B. Systems over the Integers

Noetherian Domains of Characteristic 0

C. The Space of Systems

Spectrum of a Ring

Functorial Treatment

Sheaves and Schemes
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Pole Assignment with Parameters

Of course, the book writing effort raises a number of research

questions on which progress has been made. Several of these questions will

be analyzed in the sequel.

The first question that has been studied extensively is the pole-

assignment problem for systems with parameters. Let A,B be nxn and nxm

matrices with entries in a field k and let *A,B be the map of kmn into kn

given by

SA,B(F) = (tr(A + BF), ..., tr(A + BF)n ) (1)

This might be called the state-feedback trace assignment map. It is well-

known that *A,B is surjective if and only if (A,B) is controllable. One

method of approach is to use the following proposition:

PROPOSITION ([E]). The system (A,B) is controllable if and only if there is

a K in kOn and a b in Col (B) such that (A + BK,b) is controllable.

This reduces the problem to the scalar input case, i.e., to the

case x = (A,b) and

i

ox(f) - (tr(A + bf)I) = j ( ) tr(A i- J (bf)J)) (2)

with i = 1, ... , n. If 0x(f) is given by

fx(f) = (tr(Ail-bf)) (3)

with i = 1, ... , n, then it is easy to see that *x is surjective if and

only if *x if is surjective. But ox is a linear map of kn into kn and hence

is surjective if and only if a x /a f is nonsingular, i.e., if and only if

det [bAB...An-lb[ 0 0. Now the problem considered is the following:

let x - x(p) - (A(p), B(p)) be a family of linear systems depending alge-

braically on a parameter p and consider the trace assignment map

*X(F,p) - (tr(A(p) + B(p)F)i) (4)

!M
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with i = 1, ... , n. In this case, x is a map of kmn x P into kn and the

issue is to determine the portion of the range of x which is independent

of P (or, in other words, how many poles can be assigned independently of

the parameter p?). The work extends and generalizes that of Eldem ([F]).

The approach used is the following: first, a lemma is established showing

that (generically, at least) the dependence on p may be assumed linear;

then a result analogous to the proposition (Heymann's lemma) is used to

reduce to the scalar input case; and, finally, the scalar input case is

analyzed by a process similar to that used in going from the map * x of

equation (2) to the map x of equation (3). The key point is to determine

the intersection of the range of *x(F,p) and the variety Dp px(F,p) = 0.

The dimension has been calculated using intersection theory.

State Feedback

Results concerning the action of state feedback were developed in (G].

If T(s) = R(s)P-l(s) is a proper transfer matrix with R(s), P(s) right

coprime, then (R(s), P(s)) may be viewed as "homogeneous coordinates" of a

point under right multiplication via the unimodular group Um. The orbits

under state feedback are represented by the action of stabilizer subgroups

U where D - aI, -.., am I are the Kronecker indices. The subgroup Ua is

the semi-direct product of a normal subgroup UN (the unipotent radical) and

a reductive subgroup UG acting on UN via inner automorphisms. A special

representation of Ua played a key role in the development. Now, the problem

studied is the following: suppose that (Rl(s), PI(s)) is a subsystem of

(R(s), P(s)) and consider the subgroup U1 of U leaving (RI, Pj) invariant;
l a (i)Rht sh reatonof

then (i) what is the structure of U1? (ii) what is the relation of U1

to U 1 (the stabilizer subgroup corresponding to (Ri, Pi))? (iii) if (RP)

splits into subsystems (Ri, Pi), does U split into the Ui in an appro-

... a ..
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priate manner? Preliminary results have been obtained by analyzing the

representation of U and its subrepresentations and by analyzing the

representation of U induced by that of U1. This work could lead to an

understanding of the action of feedback on interconnected systems.
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