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1. INTRODUCTION

One of the most widely used index of diversity of a

multinomial distribution, x = (x1 ,...,xn), x i 2O, Exi= 1,

is the Shannon entropy, H (x) = -Z xi log xi (Shannon '10)).

The concavity of H (x) provides a decomposition of the totaln

diversity in a mixed distribution (x+y)/2 as

Hn(X2 ) =[Hn(X) + Hn(Y)] + Jn(x,y) (1.1)

The first component 2-1 [H (x) +Hn (y)] in (1.1) is. the

average diversity within the distributions, and the second

component

Jn(x,y) = [-H(x)-H(y)]-2[-H 2 1 (1.2)

which we call the Jensen difference arising out of the

convex function -H(x) is non-negative, vanishes if and only

if x= y, and thus provides a natural measure of divergence

between the distributions x and y. (See Lewontin [6] and

Rao [9) for some applications of H nx) and J n(xy) in

biological studies). It is interesting to note that J n(x,y)

considered as a function of (x,y) is convex, which meets the

intuitive requirement that the average divergence between

(x,y) and (z,w) is not less than that between their convex

combination X(x,y) + p(z,w) where X, pjO and X+ p= 1. The

convexity of the divergence measure Jn (x,y) is an additional

attractive feature of the Shannon entropy Hn(x) as a measure

of diversity of a distribution.
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In this paper we consider the Jensen difference (1.2)

arising from a generalized class of entropy functions in-

cluding the a-order entropies due to Havrda and Charv~t [3],

which we call the J-divergence and examine its convexity.

In particular, we show that the J-divergence (1.2) based on

the a-order entropy

Hn(x)= (a-l) -  (l- Ex i ) , a~l (1.3)
na

defined on the convex set

Sn {(x1i..,xn) E i x= 1, I (0,1) (1.4)

is convex on Sn x Sn if and only if ar [1,2] for n>2 and

if and only if a E [,2 J or [3,11/3] for n=2. The last result

is surprising and the proof is rather involved.

We define two other measures called the K and L-diver-

gences (equations (2.4) and (2.5)) based on cross entropy

functions (Good [2]) and study their convexity. These are

similar to and include the divergence measure introduced by

Jeffreys [4] for providing an invariant density of a priori

probability and applied for the more general purpose of

statistical inference by Kullback and Leibler [5].

As a by-product of these results we obtain some inter-

esting inequalities (equations (4.3) and (5.7)).

We note that the J, K and L-divergences are semi-

metrics and not, in general, metrics as they may not satisfy

the triangular inequality. However, by considering these h



functions on a tangent space of a parametric space of

probability distributions, one is led to a differential

metric of a Riemannian geometry which induces a metric over

the space of distribution functions. This was done earlier

by Rao [7,8) where the differential metric is in terms of

the information matrix of a parametric family of probability

distributions. This metric has been recently studied by

Atkinson and Mitchell [1]. Some extensions of this approach

to more general convex functions along with other local

properties of the J, K,L-divergences will be presented

elsewhere. The present study is an investigation of the

global properties of these divergence measures.

2. PRELIMINARIES AND NOTATION

2_ nLet ¢ be a C -function on a domain D of IR. The

Hessian of * at xED along the direction uc n is defined by

A u (x) = d 2 (x:u) = uTM u

where M is the nxn matrix whose entries are ax 3 x (x);

i,j=l,...,n. This may also be written as

Au O(x) = uT[ax ax [u .u xxj

Sometimes it is convenient to consider a function *'as a

function on the cartestan product in Rn x Rn. In this case

we assume that fi (.,.) is a C2-function on DxD. The
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Hessian, then, of , at (x,y)e DxD along the direction

(u,v) e Rn x IRn is given by

A *(xy)=uT x ]a u +2v T [3x ay ]u+v T[a ]a v (2.1)A(u'v) (')u[xi XiX J Yit

with the obvious meaning of the expressions involved.

Let D be a convex domain of . A function € of class

C2 (D) is said to be convex on D if for every (xu)c DxWRn

Au0(x)> 0 . The smoothness assumption E C 2(D) can be, of

course, weakened by only requiring that d be continuous on D

with A u(x)>O, where the partial derivatives are taken in

the d3stributional sense. Alternatively, one may apply a

standard regularization process. We briefly recall this

concept. We choose a C0 - nonnegative function K whose

compact support is inside the unit ball of n and such that

J K(x)dx= 1.
For e>0 we define

K (x) = e-nK(c-1x).

n
Suppose f is locally integrable in the domain D of (R We

may assume that f= 0 outside a compact set and thus fE ln)

We define

f (y) (f*K) (Y) = Wf(x)K (y-x)dx fK (x)f(y-ex)dx

As is well known, f E C(D). Moreover, if in addition f is

continuous on D, then it is uniformly continuous on compacta

of D and, lim f =f uniformly on compacta of D.E :=

... .. k
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For a function * which is continuous on a convex
domain D, but not necessarily of class C 2(D), to be convex

(in the generalized sense) in D, we may only require that

its regularization *, defined above, be convex in D, in the

previously described restrictive sense. It is said to be

concave if -€ is convex. Thanks to the above process of

regularization we may always assume that the functions in

question are sufficiently smooth.

Let * be a C 2-function on an interval 1 of iR and consider
the f-entropy

nHn  (x) = - ¢(x.), x E n (2.2)

Si=l 1

as a function defined on In. The Jensen difference (1.2)

based on (2.2), which will be referred to as the J-divergence

between x and y, is
n

J (x,y) {,(x) + (y1 )-2 [.(xi+yi)/2]J,(x,y)cIn ×XIn. (2.3)

When the interval I does not contain the origin, we consider

alternative measures which may be calied the K and L-divergences,

n *(Xi) ¢(yi)
Kn, (x,y)= Cix. -y) I ] (2.4)

and

n Y, X 1(25

L (x,y) = L [xi *x") + Yi V(-)] (2.5)

The Hessians of (2.3)-(2.5) can be computed using the

formula (2.1). However, it is of some practical interest to

'_ I;
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consider the divergence measures (2.3)-(2.5) as acting on

the convex set Sn defined in (1.4). In this case, (2.2) can

be written as

H (x:X) =H 1 (x)+ HlM (2.6)

n-l
x = (xip**Xn E In X-i X. C 1. (2.7)

Then (2.3) may be written as

J n, (x*X~y:Y) = J n.... (XY)+i ,l (XY) (2.8)

where y,Y are defined in the same way as x,X. Similar

expressions for the K and L-divergences (2.4) and (2.5) are

also available.

Note that

A~ H ,(x:X) = A H 1  (x) + Au H1  MX (2.9)

and the Hessian of (2.3) subject to (2.7) is

A uv in (x: X, y: Y) = A uv J n-1, (X' Y)+ AU, VJi, 0MY)

(2.10)

with similar expressions for the K and L-divergences, where

and

n-I n-i
= u. V= V. vC IR .

We denote by

9~~ ~ n (l*.P n: E x =1; [0,11, n>2
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the closure of Sn defined in (1.4). For any real number

a, we define

(aJL-'(x '-x), a1
Q(x) = (2.11)

k X Qg x a= I

over x E IR+ =(O,oo), and when ao>O, * can be extended to

x=O0 with the convention 0OlogO0=O0. Defining

Hn,a ()EHn,O a (X -Sn(2.12)

we have

H nj(x) =-Z x ir og xi X ES, (2.13)

H (x) Xa ES(.4n,a 1 nEf ~I.(.4

We note that H n,a , for a>O can be extended to the closure

S 'which is the a-order entropy introduced by Havrda and

Charva't [3], and that H natends to H nlas CL-q, which is the

Shannon entropy Hn

The J,K and L-divergences based on H naare denoted by

J ,K and L respectively. Their explicit expressionsn,4a n, a n, a

are as follows:

r~alY- jx' 4 ya - 2[(x +yi/2]a}, f
1 i

J na(x,y) =/ (2.15)
E{X.log x.+ yilogyi (xi+yi)log [(x+y)/2F1 a=l



raI- Ex X c- at-I)

K (x.y) =(2.16)

and

Ln (x ,y) =(2.17)

Here (xiy)cS n xS n and for ct>O0, 1J~ can be extended to

gn X9n We note that K .t=L n,1and these expressions are

the same as the divergence measure of Jeffreys [4] and

Kuliback and Liebler [5].

3. THE J-DIVERGENCE

The Hessian of J ,'in view of (2.1), is given by

n 22
A (uvJn,(x,y) = {a(X.,y.)u.4-+2b(x.,y.)u iv.i+ a(yi,x 2 v

where x,ye I n with I being any interval of the line. Here,

for x,yE I,

b(x,y) =- 1 *[(x+y)/2) (3.2)

and

a(x,y) = 4"(x)+b(x,y) ;x,y c 1 (3.3)
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This shows that J is convex (concave) on Inx I n if

and only if a(x,y)>0 (or a(x,y)< 0) and

d(x,y)=Ea(x,y)a(y,x)- [b(xy)]2 > 0 (3.4)

for every (x,y) E IxI.

Now, using (3.2)-(3.4) we deduce that for x,ye I,

a(x,y) = r"(x) ¢" (x+y)/2]{[x /_ I -

and

d(x,y) = 4"(x) 4" (y) *"[(x+y)/2]

4"[(x+y)/2- 201-(x) 25"(y "

The expression in the last curly bracket is directly related

to the Jensen difference of (4)")-1 This with a closer

examination of these expressions leads to the following

basic result:

Theorem 1. J is convex (concave) on In xI n if and only

if * is convex (concave) and (4,")-1 is concave (convex) on I.

As an application of the theorem we consider the following

family of functions

g W)= af a (x) +bx+c (3.5)

where a,b,c are arbitrary constants and {f } is a one parameter

family of nonnegative functions defined on an interval I such

that
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fa"(x) = a(a-l)f a 2 (x) XEI, aE I . (3.6)

We shall fix a normalization

aa(a-l) > 0, (3.7)

from which it follows that g a is convex on I for any

a E R. An immediate consequence of Theorem I is the following:

Corollary 1. Let the notation of (3.5)-(3.7) apply and
consider Hn'ga and J n,ga as formed in (2.2)-(2.3). Then, for

any aE R , H is concave on In while J is never concave

n nMr n n
on InI. Moreover, J n,ga is convex on InXI if and only

if (f is concave on I.

This corollary is appled to the following special case

f a(x) = x , x . B+R

Writing =a-2 , we examine whether h (f) is concave on

a+. We have

ha"(x) = 0(6-1)x - 2  , x c RE +

and thus, h is concave if and only if WE[-1,0]. This yields

the following result:

Corollary 2. Let

g9(x)=ax +bx+c, xe cR+

where a,b,c and a are constants with aa(a-l)> 0. Then Hn ,~~

is concave on R nwhile J is never concave on R nx d+.+ n'g+



Moreover, J is convex on Inx ER n if and only if
n,g a + +

a [1,2] in which case a>O 

Instead of g in this corollary we may take 0 as in

(2.11), and consequently:

Corollary 3. For any a >O, H n, is concave on 4R n and

nn

convex on Rx IR if and only if aE [1,2]

Using this corollary and (2.6)-(2.10) we see that Jn,a'

for n> 3 , is convex on n xg n if and only if aE [1,2]. Of

course, J2,, is also convex on S2 X9 2 for every ot [1,2] .

However, J2,t, interestingly, is also convex for other values

of a, viz., in [3,11/3]. The proof of this fact is postponed

to the next section. Meanwhile, we shall record the following

corollary:

Corollary 4. For any a>O, Hn,a of (2.12) is concave on

n and J of (2.15) is never concave on Sn × Moreover,
n n,a n nl

for n >3, J n, is convex on 9n X 3n if and only if ac [1,2].

Also, if ac [1,2] then J2,, is convex on S2 x 2i" i
4. ADDITIONAL PROPERTIES OF THE J-DIVERGENCE

In order to deal with J 2,a on $2 X $2 we shall apply

Corollary I to the following family

fa(x) x xL+(l-x) a x 1 [0,1].
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For this purpose we shall establish the following Lbnina

which is of some interest on its own right.

Lemma 1. The function

hx a - (x)I-1 = a +(-x) 1  x E I = 1[O,],

has the following properties:

(i) for aE(-c,-1) and B6E[ 2 ,-) , h has inflection points on I;

(ii) for 6E (0,1), ha is (strictly) convex on I;

(iii) for $E[-1,O], hB is concave on I;

(iv) for a6E [1,5/31, h is concaveon I while for OE (5/3,2),

h has inflection points on I.

Proof. We have

h " = f3 3[2(f'3) 2 -((-)f($f$- 2 ]

and item (ii) follows at once. To proceed with the other

items, we study the sign of the function

2(f') 2 _ ( 6-1)f 6f6

= 2a2 [Ex-- (l-x) -1 ]2 _ B(6-l) [x$- 2 +(l-x) -2 ][x+(l-x)a]

This function is symmetric about the point x=1/2 and it is

therefore more convenient to introduce the new variable,

y=(1-x)/x with yE [0,1]. This corresponds to xE E1/2,13 and by

symmetry y may also be allowed to range in [1,-3. With this new

----- ---
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variable, the sign of the above function is the same as that

of

F a(y -=0{a~ly -1) 2 (-1)l~ a) (l+y 8-2

This may be also written as

F(y 01~(0+l)(l-Y a 1 ) 2  0(-1 )y 0 2 (l+y) 2 1(4.1)

When Oc E[-1,0] it follows from (4.1) that F a(Y)<O0 and there-

fore item (iii) follows. As for item (i), we see from (4.1)

that

F B(0=+o ()= (- <Ofor E(,l)

F2 (O) =4 F21=-

and

F B(0) 6(a+l)>O0, F (1) = -46(a-l)< 0, for 6,E (2,-)

Consequently, item (i) follows. We turn now to item (iv).

Here F I(7,)=- and we shall therefore assume that OE (1,2). A

differentiation of (4.1) gives

Fly=OfalB{2fa+l)y B 2_4$y+ 2- .

The sign of this derivative is determined by

Now,
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and hence G a(ya)=O0 for some y aE (0,1). Next, we have

G (y) = 2 {(B+l)ya- -y-2)

However, by Bernoulli's inequality

y +2 (B+Jy _1y + 2- 0B+1)rl-BI-y)(la-1

=(2-0 )y + (l)

The last expression describes a straight line passing through

the points MaB2 _ a) and (1,2-6) and therefore

y+ 2 -(+l)y a >0 for yt~(O,1)

Consequently, y is the only root of G a(y)= 0 in (0,1) and,

moreover, F (y) has a single maximum at yE (0,1). The root

Ylies in the variety.

2(a+l)yB a =a2+ 2 (4.2)

We replace y 6in (4.1) by the quadratic expression in (4.2).

This, after some manipulations, results in

H~ ' ()=401y2 F (y) =(0-2 )y 4+8(a-I)y 3+2(7B-6)y 2+8(0-1)y+a-2

and, hence, we seek B for which H (y)> 0 However, we can

factor H (y) in the form of

H a(y)= (a-2)(l+y) 2[y-B(0)J[y-B(a)- IJ

where

B($)=-______ (2 a -I{ a 2k[a O l 1
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Since 8E (1,2),we clearly have O<B(8) < 1 <B(8) - . Hence,

Hs(ys)>O if and only if

Y__> B( 8).

This condition is equivalent to the requirement that

Fa[B(8)]> O. This requirement is determined by the region

of non-negativity of the function K(8) defined below. This

interesting function is defined as follows:

K(8) -2(8+l)B(8) 8 - 8B(8) 2 - 48B(8) +2 -8 ; 8E (1,2).

We have

K(1)=K(2)=O ; K'(l)=+- , K'(2)=0.

Moreover, a direct calculation shows that K(5/3)=O and that

8=5/3 is the cut-off point of the region of non-negativity.

Thus K(8)> 0 for all 8E (1,5/3), K(5/3)=0 and K(8)<0 for

all Oc (5/3,2), (see Figure 1). The proof of the lemma is

now complete.

Before proceeding any further we shall record an inter-

esting consequence of this lemma, or rather from the proof of

the lemma.

Corollary 5. For any yE [0,2/3] the following inequality

holds for all t (

(sinhyt 2 (43)W< (43

cIht
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Proof. From (4.1) we know that Fa(y)<O for Se[1,5/3]

and, therefore,

(8+1)(1-yB-) < 06-1)y -(lt+y) .

This was proved for yE 10,1]. However, this inequality is

invariant under the substitution y-y-1 and, therefore, it is valid

Stfor all ye (0,-). Setting y=e and S=Y+l concludes the proof.

Corresponding to Theorem 1 and Corollaries I and 2,

Lemma I leads to

Theorem 2. Let

go(x) = afa(x) +bx+c , xE I= [0,]

where a,b,c and a are constants with aa(-1) > 0 and

fa(x) = xa +(l-x) .

Then Hng a is convex on In. Moreover, Jn,g a is never concave

on In xI n . It is convex there if and only ifad[1,21 or

ae [3,11/3], in which case a >O.

Theorem 2 enables us to strengthen the result of

Corollary 4 on the Jensen difference of the a-order entropy

with the following additional feature:

Corollary 6. J2 ,a is convex on 92X92 if and only if

a e CL,2 ] or ac [3,11/3.

In correspondence with (2.11) we define

(4.4)
ax x log x+ (l-x)log(l-x) ,a-l
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for xeI -[0,1]. We also define

G na(x) H H n~ L(x) , xe Sn *(4.5)

andcal Gn,a (xXSn' te paired entropy of order a.

Using (2.11) - (2.14), we clearly have the following

relationships:

G~ (x) H na(x) iH na(l-x)-(cx-lf 1  a,1i, XSn

G ni(x)=H 1nj(x) + H nil(l'x) x XE R

We shall write

I n(x,y)EJi~ (x, y) ; (x, y) f Sn X Sn 46

for the Jensen difference of gof (4.4). From Theorems

1, 2 and (2.6)-(2.10) we conclude:

Theorem 3. Let the notation of (4.4)-(4.6) apply with a >0.

Then:

Mi G nMis concave on n;

(ii) I n is never concave on S Sn

(iii) I nais convex on 9 xg if and only if ot cI, 2 ) or
a n31/31

In particular,

(iv) G ni is concave on S n and I nlis convexon9nxn

Item (iv) of this theorem is a limiting case of the

previous items as a-1. It could also be directly deduced from

Theorem 4.Indeed, from (4.4), g (x)=[Ex(l-x) 1 > 0 which
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shows that g. is convex on (o,1). Furthermore, F= (g1 )_1

2
is given by F(x)= x-x and thus F"(x)= -2 <0. Therefore,

(gl") - 1 is concave on [0,1) and Theorem 1 applies.

It may be noted that we could base our analysis of

sections 3 and 4 on a more generalized form of the Jensen

difference

a),y) = 2E a (x) + 6 (y) - 0(x+By) ] (4.7)

with a,B >O, a+8=l , so that (4.7) reduces to J when

a-$. However, this does not constitute a major generalization

and the results obtained for J can also be derived for

j(a,O) after a minor modification of the argument.

5. THE K-DIVERGENCE

We briefly discuss the K-divergence K n, defined in (2.4)

and its relationship with the J-divergence J n," To do this

we define

(x) O (x)/x ; xe t+ . (5.1)

We start with the following simple proposition:

nn

Proposition 1. K is non-negative on anx g if and only

if 0 is increasing on R+.

Proof. This is equivalent to the specialized statement with

I _ _ _ _ _ _ _ _ _ _ _ _



19

n=l which in turn is straightforward.

The following theorem establishes a comparison between

K and J
n,O n,4

Theorem 4. Assume that * is increasing and concave on I.

n n
Then, for any (x,y) E x 1R+

J n,(x,y) < Kn,O(X,Y)

with equality if and only if x= y.

Proof. Again, this statement is equivalent to the specialized

case of n=l. Accordingly, we consider the function

F(x,y) F J 14 (x,y)-K lO(x, y) ; x, y) c 1R x R+ .

This may be written as

F(x~y) =_ _ O(x) + jx
x+y x+y + - *-y"(y)- *[(x+y)/2]

xyx+y X+Y 2

yx +-X- y) -l(-<0

x+y 2

The first inequality follows from the concavity of * while
the second inequality is due to the fact that * is increasing

on 1R+ The equality statement also follows and the proof

is complete.

The Hessian of Kn,0, in accordance with (2.1), is given
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by
n

A(uv) K n, {a(xiYi)U i + 2 b ( x i . y i ) u i v i a ( y i x iO2 i }' i=1

(5.2)

where X,y E IRn and for x,yEIR,

a(x,y) = ¢"(x)-y i"(x) (5.3)

and

b(x,y) = -[*' (x)+*I (y) ] (5.4)

with i as given in (5.1). It follows, therefore, that K

is convex if and only if a(x,y)> 0 and

2
d(x,y)-- a(x,y)a(y,x) - [b(x,y)] >0 ; x,y C R+ (5.5)

From (5.3) we see that a(x,y)>0 whenever 0 is convex and

is concave on R+. We have:

Theorem 5. Assume that ¢ is convex and * is concave on R+.

Then:

(i) T is increasing on +;
n

(ii) K (x, y) > J (x,y) > 0 for every (xy) e x I +.
n, - n,4 +

Equality in one of the inequalities entails equalities
in both inequalities. This occurs if and only if x-y.

If, in addition, (5.5) holds, then:
n n

(iii) K is convex on Rn x IR;

(iv) K n, is convex on Sn xSn

Proof. Using (5.1) we have

x

~L
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and thus

1I
1) 1'(x)-V"(x)] + [ (x)-'(x)l

xxI=

x

Therefore

2q)'(x) = -xq"(x)+(x)>O

and (i) follows. The fact that J n,(x,y)>0 and its

equality statement is a result of 0 being convex. Also,

Kn,(xY) > Jn(x,y) and its equality statement follows from

item (i) because of Porposition I and Theorem 4. This proves

item (ii). Item (iii) follows from item (i) and the preceeding

discussion. Item (iv) follows from (iii), (5 .2) and formulae

similar to (2.6) - (2.10). This concludes the proof.

The following hold:

Theorem 6. Let aE [1,2] . Then:
n ni

(i) K (x,y) > J (x, y) > 0 for every (x,y) E R .
n,q ,

Equality in one of the inequalities occurs if and only

if x=y. The same applies to K n,a(x,y)> J n,a(x,y) >0

for every (x,y)ES xSn

(ii) K is convex on IRn x IRn and K is convex on S XS
n, a + + n,a n n

Proof. In this case a is convex and * is concave on I+

and, therefore, we may use Theorem 5. To do so, we have

to validate (5.5), i.e., we have to show that the discriminant

function

da(x,y) E [a xa-2 - ( a-2)yx a- 3 ][aya-2(a-2)xy a - 3 ](xXa- 2 +y a - 2 )2

________________________ I
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is non-negative on R IR. Here, d (x,y) =d2 (~)

we may, therefore, assume that ac (1,2). Since d a(x,x)=0

and d a (x,y)=d a (y,x) it is sufficient to assume that

y >x >0. In this way, we have

d a(x,y)= x 2a4fa(t) ; t CyIX,

where

-3 a-2 2
f a(t) E tC [ctt-(ci-2)J[cx-(ct-2)t] - (1+t )(5.6)

We must show that f at) >0 for t E (1,-). After some

simplifications, we obtain

f c",t) (2 aO-4 gt

with

gM)E a(a-l)t 2 2(ax-1) 2t -a(3-a) + 2 ta1
ga

Therefore,

g (t)= 2(a-l)[a(t-l)+l+t'_ 1>0 ; t ~,'bx(1,2 )

Hence gais increasing on (1,o-) and since g alM=O0, we con-

clude that g atM> 0. Therefore, f'(t) >0 or that ft is

increasing on (0w. However, f a(1)= 0 and thus f a(t) >0

for t E (1,o-). This concludes the proof.

From the proof of this theorem we also deduce the

following inequality:

Corollary 6. Let a [0,1/23 Then ,for every s e(.0a)
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2 2 +(1- )2

Proof. For aE [1,2] we have shown that f of (5.6 )satisfies

f a(t) >0 for every t E [1,oo). This is equivalent to

[at - (a-2)llczt -(a-
2 )] > Et (2 -0/ 2 +t( 2 -a)/2

for every tE [1,co). Since this inequality is invariant

under the transition t - t 1 , it holds for every te~(,)

Putting t= e s and a= (2-0)/2 concludes the proof.

6. TM L-DIVERGENCE

The Hessian of L (x,y) defined in (2.5), in view of

(2.1), is

n 2 2
A L (x,y)= f a(x.,Y.)u.+2b(x.,y.)u v +a(v.,x.)v.
(u'v) n,~ 1 1 1 1 1 11

n nwhere (x,y3) c 1R+ x IR + Here

1 2
a(x,y) - 1( + (Y- 0+Y

y y x

and

b(x,y) x X X) - .Lf 0"Y- ;' atyER2 y 2 x+
yx

In this case, the discrimninant

d(x,y) = a(x,y)a(y,x) - [b(x,y)] 2
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is identically zero on iR+x R+ . This, together with

formulae similar to (2.6)-(2.10), leads to:

Theorem 7. The following hold:

(i) L (x,y)> 0 for every n>1 and every (x,y)e IRn xIR

if and only if the function (t) E t 4(t - ) + (t) is

non-negative for all t E + ;

(ii) L is convex on IRn x n if and only if ip(t)Et (t- )+p(t)+ +
is convex on R+

Proof. As for item (i), we have

nLn,(x,y) = V ¢t); ti iX
i=l x i 1 1 1

item (ii), since d(x,y) _0 for every (x,y) E 'R+× IR+ we have

that D is convex on IRn x IRn if and only if
n + +

2 3
a (x, y) = Y7; {--~( + 4(Y-)} > 0 ; (X ,Y) E IR+ x IR+.

x y

Putting t= y/x this condition becomes

t-3v"(t- )+ c" (t) > ; t E R+

This means that ip"(t)> 0 and the theorem follows.

Corollary 7. For any ce >0, L n, is a non-negative convex

function on Sn X S

Proof. We use Theorem 7 and formulae similar to (2.6)-

(2.10) for A (uv) Ln,a (x,y) on Sn x S We start with

(u~v) ncv. n
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a= 1. In this case

and thus

P(t) = (t-i) log t >0 , p(=(t -1+t~- >0 ,t IR+

On the other hand, for ct 1,

Therefore, for at>0, ax 1,

and

ot-2 + -ct-I
M a (t +t )> 0 ;t E JR+

This concludes the proof.

Acknowledgement: The authors thank Robert Boudreau for
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