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in a convex set of an n-dimensional real vector space have
been defined in terms of certain types of entropy functions,
and their convexity property studied. Among other results,
a classification of the a-order entropies is obtained by
the convexity of these measures. These results have appli-
cations to the measurement of diversity of a discrete prob-

ability distribution and divergence between two distributions.

*
Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, Pennsylvania, 15260,

The work of the second author is sponsored by the Air
Force Office of Scientific Research under Contract

F 49620-79-0161. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

7 AMS (MOS) Subject Classification: 94A17, 94A24 .

Key Words and Phrases: Cross entropy, Divergence, Entropy,
Jensen difference.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC

This technical repert has been reviswed and 15\
approved for putlic release IAW AFR 150-12 (7b

pistribution is unlimited.

A, D. BLOSE
Technical Information Officer

B p—y—

—




1. INTRODUCTION

One of the most widely used index of diversity of a
multinomial distribution, x = (xl,...,xn), xizo, in=1,

is the Shannon entropy, Hn(x) = -F X,

4 log x; (Shannon f101).

The concavity of Hn(x) provides a decomposition of the total

diversity in a mixed distribution (x+y)/2 as

D = $n,0 + 5,0 + 3,009 @

The first component 2'1[Hn(x)+-Hn(y)] in (1.1) is. the
average diversity within the distributions, and the second

component
3 (x,y) = [-H(x) ~H(y)] - 2[-H £x49) 4 (1.2)

which we call the Jensen difference arising out of the

convex function -H(x) is non-negative, vanishes if and only
if x=y, and thus provides a natural measure of divergence
between the distributions x and y. (See Lewontin [6] and
Rao [9] for some applications of Hn(x) and Jn(x,y) in
biological studies). It is interesting to note that Jn(x,y)
considered as a function of (X,y) is convex, which meets the
intuitive requirement that the average divergence between
(x,y) and (2,w) is not less than that between their convex
combination A(x,y) + u(z,w) where A, y>0 and A+u=1. The
convexity of the divergence measure Jn(x,y) is an additional
attractive feature of thé éﬁaﬁhonlentrob§’ﬁn(x)‘as a measure

of diversity of a distribution.

:
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In this paper we consider the Jensen difference (1.2)
arising from a generalized class of entropy functions in-
cluding the a-order entropies due to Havrda and Charvat [3],
which we call the J-divergence and examine its convexity.

In particular, we show that the J-divergence (1.2) based on

the a-order entropy
H (x)= (cz—l)_l (L-2x), afl (1.3)
n,a i’ .

defined on the convex set

A g b i e iai e e

Sy = {(xy, . eux) € "z x;=1}, 12(0,1) (1.4)

is convex on Sn><Sn if and only if ae [1,2] for n>2 and
if and only if a €[1,2 ] or (3,11/31 for n=2. The last result
is surprising and the proof is rather involved.

We define two other measures called the K and L-diver-
gences (equations (2.4) and (2.5)) based on cross entropy
functions (Good [2]) and study their convexity. These are
similar to and include the divergence measure introduced by
Jeffreys [4] for providing an invariant density of a priori
probability and applied for the more general purpose of

statistical inference by Kullback and Leibler [5] .

PP WY

As a by-product of these results we obtain some inter-

esting inequalities (equations (4.3) and (5.7)).
We note that the J, K and L-divergences are semi-
metrics and not, in general, metrics as they may not satisfy

the triangular inequality. However, by considering these




functions on a tangent space of a parametric space of

probability distributions, one is led to a differential
metric of a Riemannian geometry which induces a metric over
the space of distribution functions. This was done earlier
by Rao [7,8] where the differential metric is in terms of
the information matrix of a parametric family of probability
distributions. This metric has been recently studied by
Atkinson and Mitchell [1]. Some extensions of this approach
to more general convex functions along with other local
properties of the J, K,L-divergences will be presented
elsewhere. The present study is an investigation of the

global properties of these divergence measures.

2. PRELIMINARIES AND NOTATION

let ¢ be a Cz—function on a domain D of R". The

Hessian of ¢ at xeD along the direction ue R" is defined by

_ 42 ooy o LT
Au¢(x)= d” ¢(x:u)=1u M¢u .

where M¢ is the nxn matrix whose entries are ax ax ¢(x);
s

i,j=1,...,n. This may also be written as
A, o(x) = ulra, 3. ¢lu
u X: X -
i3
Sometimes it is convenient to consider a function Y as a
function on the cartestan product in R" x R". In this case

we assume that Y= y(+,*) is a Cz-function on DxD. The




Hessian, then, of ¢ at (x,y) ¢ DxD along the direction

n

(u,v) e R" x R" is given by

A(u,v)w(x,y)=uT[3x 3, w]u+2vT[3x 6lv  (2.1)

T
3. vJu+v[3d
i*y i y y
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with the obvious meaning of the expressions involved.
Let D be a convex domain of R". A function ¢ of class
Cz(D) is said to be convex on D if for every (x,u) € DxtRn,
Au¢(x)30 . The smoothness assumption ¢ ¢ Cz(D) can be, of
course , weakened by only requiring that ¢ be continuous on D
with %\u¢(x)30, where the partial derivatives are taken in
the distributional sense. Alternatively, one may apply a
standard regularization process. We briefly recall this
concept. We choose a c” - nonnegative function K whose

compact support is inside the unit ball of ®" and such that

IK(x)dx= 1.
For € >0 we define

K_(x) = e k(e 1x).

Suppose f is locally integrable in the domain D of R® . wWe
may assume that f=0 outside a compact set and thus f ¢ Ll(tRn) .

We define
fe(y) z (f*KE) (y) = Jf(x)KE(y—x)dx = JK(x)f(y-ex)dx .

As is well known, fs € C°°(D). Moreover, if in addition f is

continuous on D, then it is uniformly continuous on compacta

of D and, 1lim f=f uniformly on compacta of D.
0




For a function ¢ which is continuous on a convex
domain D, but not necessarily of class Cz(D), to be convex
(in the generalized sense) in D, we may only require that
its regularization ¢€, defined above, be convex in D, in the
previously described restrictive sense. It is said to be
concave if -¢ is convex. Thanks to the above process of
regularization we may always assume that the functions in
question are sufficiently smooth.

let ¢ be a Cz-function on an interval T of R and consider

the ¢-entropy

n
_ n
Hn,‘b(x) = _121 o(x;), xel (2.2)

AR T sy IR

as a function defined on I1®. The Jensen difference (1.2)

based on (2.2), which will be referred to as the J-divergence

between x and y, is

n
Iy oy = izl{¢<xi)+-¢<yi)-2¢[(xi+yi)/2]},(x,y)eI"xln. (2.3)

When the interval I does not contain the origin, we consider

ka2

alternative measures which may be calied the K and L-divergences,

bx)  0(yy)

n
Kn’¢(x,y)==izl(xi-yi) [~xi v, (2.4)
and
_ B Yy Xy (2.5)
Ln’¢(x’Y) "iZl [xi ¢(;{_i') + Yi ¢(-ST;)]

The Hessians of (2.3)-(2.5) can be computed using the

formula (2.1). However, it is of some practical interest to




consider the divergence measures (2.3)-(2.5) as acting on
the convex set Sn defined in (1.4). In this case, (2.2) can

be written as

Hn’¢(x:X) = Hn_1’¢(x)-+ﬂl'¢(X) (2.6) ‘
n-1 ncl §
X = (Xg,000,%; 1) eI , X==1--.Z1 x; € I. 2.7) .
Then (2.3) may be written as
Ty oK, YY) = 0y W06 y) + T (X, (2.8)

where y,Y are defined in the same way as Xx,X. Similar
expressions for the K and L-divergences (2.4) and (2.5) are

also available.
Note that
Au Hn’¢(x:X) = Bu Hn_1’¢(x) + AU H1’¢(X) (2.9)

and the Hessian of (2.3) subject to (2.7) is

A

u,vﬁJn’¢ (x: X, y: Y) = Au

Jn_1,¢(x,y)+AU;le’éX,Y)
(2.10)

Y

with similar expressions for the K and L-divergences, where

n-1
u = (ul”"’un—l)’ v==(v1,...,vn_1) e R
and
n-1 nil
U= . V= v E'Ra
121 E i=1 *
We denote by

g &= in. = - I =
S, {(xl,...,xn)e I': I xy 1}; I (0,11, n>2,

o mrrae—
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the closure of Sn defined in (1.4). For any real number

a, we define

(a-1)"1 (x%x), a#1
¢q (x) = 9 (2.11)

. X logx

over X e 3R+ £ (0,»), and when a>0, ¢a can be extended to

x=0 with the convention OlogO0=0. Defining

Hn,oz(x) = Hn’d’a(x) » Xe S8, (2.12)
we have
Hn,l(x) = =% xi.logxi , X e Sn’ (2.13)
-1
Hy o) = (a-D7H(1-2x}), xes , ayl. (2.14)

We noté that H 4» for a>0 can be extended to the closure

H
§n » Which is the a-order entropy introduced by Havrda and
Charvat [31, and that H  , tends to H , as o-l, which is the

’

Shannon entropy Hn'

The J,K and L-divergences based on Hn are denoted by

, O

Jn,va’ Kn,cz and Ln,a respectively. Their explicit expressions

are as follows:

[Ca-1)7! 2x$ +yd - 200x,+y,/21%}, a1
Jq, (%) = (2.15)
\X{xilog X;+y logy; - (xi+yi) log [(xi+yi)/2]}’ a=1




s o

T g T e ™ "

[ (=D 20y DI y2 ), o

K a(x,y) = ¢ (2.16)
4
l b} (xi—yi)(log Xy - log yi), a=1
and
-1 a_l-a l-a _o
( a=-1) {L‘xiyi +Ix; Y- 2}, a#1l
Ly, o(%:¥) = (2.17)
E(x;-y;)(logx; ~ logy,), a=1.
Here (x,y)e S xS _, and for >0, J can be extended to
n “n - n,o
§n xS . We note that Kn,1=Ln,1’ and these expressions are
the same as the divergence measure of Jeffreys [4] and
Kullback and Liebler [51].
3. THE J-DIVERGENCE
The Hessian of Jn ¢’ in view of (2.1), is given by
n 2 o
A =
(u,v)7n, %> ¥) izl{a(xi’yi)ui+Zb(xi’yi)uivi+ a(yi’xi)vi}(s 1)

where X,y ¢ 1" with I being any interval of the line. Here,

for x,yel,

blx,y) =-7 o"I(x+y)/2) (3.2)

and

a(x,y) = ¢"(x)+b(x,y) ; x,yel. (3.3)
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This shows that Jn ¢ is convex (concave) on In><In if
and only if a(x,y) >0 (or a(x,y)<0) and
2
d(x,y) = a(x,y)a(y,x) - [b(x,y)]" > O (3.4)

for every (x,y) e IxI.

Now, using (3.2)-(3.4) we deduce that for x,ye I,

= A "o, 1 1 1
and

d(x,y) = ¢"(x) ¢" (y) ¢"[(x+y)/2]

x {

1 1 1
¢"E(x+y)/2] _§¢n(x)“ §¢u(_)'y }. 3

The expression in the last curly bracket is directly related
to the Jensen difference of (¢")—l. This with a closer
examination of these expressions leads to the following

basic result:

Theorem 1. is convex (concave) on 1" x 1" if and only

Tn, o
if ¢ is convex (concave) and (c]b")-1 is concave (convex) on I.
As an application of the theorem we consider the following

family of functions

ga(x) = afa (x)+bx+c (3.5)

where a,b,c are arbitrary constants and {fa} is a one parameter

family of nonnegative functions defined on an interval I such

that

fm e e e A e e
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fa"(x)

a(a—l)fa_z(x) : Xel, ae R. (3.6)
We shall fix a normalization
aa(a-1) > O, (3.7)

from which it follows that By is convex on I for any

ae R. An immediate consequence of Theorem 1 is the following:

Corollary l. Let the notation of (3.5)-(3.7) apply and

consider Hn and Jn g as formed in (2.2)-(2.3). Then, for
] ’Sa
any 0 € R, Hn ¢ is concave on In while Jn is never concave
s a ?
on I"x 1" . Moreover, Jn g is convex on I"xI" if and only
'Pa

. -1 .
if (fa_z) is concave on I.

This corollary is appled to the following special case

o
fa(X)=x s XelR+.

Writing R=a-2, we examine whether hBE(fs)"1 is concave on

m+. We have

hg'(x) = B(B-1)xP2 | xc R,

and thus, hB is concave if and only if Be[-1,0]. This yields

the following result:

Corollary 2. Let

I
ga(x)—ax +bx+c, xe R

where a,b,c and o are constants with ao(a-1) >0. Then Hn

'Sa

n . .
is concave on R_+ while Jn e is never concave on R2><mﬂ.
14
o




ems® ]
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Moreover, Jn g is convex on iRI_: x er_: if and only if
]
ae[1,2] in which case a>0
Instead of g, in this corollary we may take ¢a as in

(2.11), and consequently:

Coroliary 3. For any a>0, Hn p is concave on IRE and
J is never concave on R xR ., Moreover, J is
n’¢a + + n,ctsOl
convex on R:l_ x iRg if and only if ae[1,2]

Using this corollary and (2.6)-(2.10) we see that Jn o’
for n>3, is convex on §n>< §n if and only if ae [1,2]. Of
course, J, is also convex on 8,x8, for every ae [1,2]

, O 2" 72
However, J2 o’ interestingly, is also convex for other values
of o, viz., in [3,11/3]. The proof of this fact is postponed
to the next section. Meanwhile, we shall record the following

corollary:

Corollary 4. For any >0, Hn o of (2.12) is concave on

§n and Jn,a of (2.15) is never concave on § X Sn . Moreover,

for n>3, J, is convex on §n><§n if and only if ae¢ [1,2].

Also, if ae¢ [1,2] ‘then Jz,a is convex on §2><§2

4, ADDITIOWNAL PROPERTIES OF THE J-DIVERGENCF

In order to deal with J, on §2x S, we shall apply
’

Corollary 1 to the following family

£,(x) = x*+ (1-x)* ; xeI=([0,11.

A o s iy e e
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For this purpose we shall establish the following Lé&mma

which is of some interest on its own right.
Lemma 1. The function
hB(x)E [:EB(X)]—1 ={xB+(1-x)6}—1 i x eI=[0,1],

has the following properties:

(i) for Be(~»,-1) and B el[2,x) , hB has inflection points on I;
(ii) for B¢ (0,1), hB is (strictly) convex on I;
(iii) for Be[-1,01, hB is concave on I;

(iv) for B¢ [1,5/31, hB is concaveon I while for 8 ¢ (5/3,2),
hB has inflection points on I.

Proof. We have

hon o= f'3[2(fé)2 ~B(B-1)1 £

8 8 g-2

and item (ii) follows at once. To proceed with the other

items, we study the sign of the function
2(13)% - B(B-1)1 ¢
8 B"R-2
= 28%0xP o (1) 8192 - p(e-1) 1xB2h (1-0P 23k B (120 61

This function is symmetric about the point x=1/2 and it is
therefore more convenient to introduce the new variable,
y=(1-x)/x with y ¢ [0,1]. This corresponds to xe [1/2,1] and by

symmetry y may also be allowed to range in [1,»]. With this new




—

13

variable, the sign of the above function is the same as that

of

1

Fo(y) = 8(28(1-y* )2 - (8-1) (14y®) (1458723} |

This may be also written as

1

Fo(y) = 8L+ (1-y* 1% - (g-1)yP2 (14y)?). (4.1)

When Be [-1,0] it follows from (4.1) that FB(y):go and there-
fore item (iii) follows. As for item (i), we see from (4.1)
that

FB(0)=+w , FB(1)=4B(1—B)<O for Be (-=»,-1),

Fo(0) = 4 , F,(1)=-8

and

FB(0)=B(B+1)>0. FB(1)=-4B(B-1)<0, for Be (2,») .

Consequently, item (i) follows. We turn now to item (iv).
Here Fl(y)so and we shall therefore assume that B¢ (1,2). A

differentiation of (4.1) gives
F' - 8’3 B 2 }
B(y)— B(B-1)y" " {2(B+1)y"-By“-4By + 2 - B}.
The sign of this derivative is determined by
- B 2
GB(Y) =2(B+1)y - By -48y+2-8 .

Now,

GB(O)=2-B>0 ) GB(1)=—4(B—1) <0,




ﬁ~———-mm
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and hence GB(yB)==0 for some Vg€ (0,1). Next, we have
L _ B_l
GB(y)-ZB{(BH)y -y-2}
However, by Bernoulli's inequality

g-1

y+2-(8+D)yP =y + 2o (B+1)11-(1-y)1B-1

2 y+2-(B8+1)[1-(B-1)(1-y)]

(2-82)y + B(B-1).

The last expression describes a straight line passing through

the points (0,62-3) and (1,2-8) and therefore

-1

v+2 - (B+1)y >0 for ye(0,1)

Consequently, y, is the only root of G,(y)=0 in (0,1) and,
B8 B

moreover, FB(y) has a single maximum at yBe (0,1). The root

yB lies in the variety.
B _ 2
2(B+1)y"” = By” + 4By + B-2 . (4.2)

We replace yB in (4.1) by the gquadratic expression in (4.2).

This, after some manipulations, results in

Ho(y)=-4 B3 v%re(5) < (-2)y+8(8-137%42(78-6)3 M48(5- 1y +8-2

and, hence, we seek B for which HB(yB)z 0. However, we can

factor HB(y) in the form of
2 -1
HB(y) = (B-2)(1+y)” [y-B(B)1ly-B(B) 1]

where

B(B) = (2-8)"1(3p-2-2r28(8-1) 1%}.
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Since B¢ (1,2), we clearly have O0<B(B) <1 <B(B)'1. Hence,

HB(yB)_?_O if and only if
szB(B%

This condition is equivalent to the requirement that
FB[B(B)]ZL0~ This requirement is determined by the region
of non-negativity of the function K(B) defined below. This

interesting function is defined as follows:

K(8) =2(8+1)B(B)" - BB(8)? - 48B(B) +2 -8 ; Be (1,2).
We have

K(1)=K(2)=0 ; K'(1l)=+« , K'(2)=0.

' é Moreover, a direct calculation shows that K(5/3) =0 and that
B=5/3 is the cut-off point of the region of non-negativity.
Thus K(8) >0 for all B¢ (1,5/3), K(5/3)=0 and K(B) <0 for
all Be (5/3,2), (see Figure 1). The proof of the lemma is
now complete.

Before proceeding any further we shall record an inter-

esting consequence of this lemma, or rather from the proof of

RN

the lemma.

Corollary 6. For any ye [0,2/3] the following inequality

holds for all t e (-»,®)

1 2
: sinhyt
| (m—) 2w o (4.3)

PO RIS SO




0.25

K(8) = 2(8+1)B(8)P-8 B(8)2-48B(B)+2-8

BB) = (2-)"Y (3p-2-2r28(8-1)1%)

0.00

1.0
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Proof. From (4.1) we know that FB(y)io for Bel1,5/3]

and, therefore,

B-1,2

(8+1)(1-y8" 12 < (a-1)yP-2(14y)2.

This was proved for ye¢ [0,1]. However, this inequality is

invariant under the substitution y->y—1 and, therefore, it is valid
t

o hen i s T TS

for all ye (0,»). Setting y'&= e and B=vy+1 coneludes the proof.

Corresponding to Theorem 1 and Corollaries 1l and 2,

Lemma 1 leads to :
Theorem 2. Let
ga(x) = af (x)+bx+c , XxelI=[0,11,
where a,b,c and a are constants with aa(a—l)z_o and J
£,(x) = x%+ (1-x)% .

Then Hn g is convex on I". Moreover, Jn & is never concave
s H
a

on 1" x I1®. It is convex there if and only ifaell1,2) or

ae[3,11/31, in which case a > 0.
Theorem 2 enables us to strengthen the result of
Corollary 4 on the Jensen difference of the a-order entropy

with the following additional feature:

Corollary 6. J, is convex on §2x §2 if and only if

aell,2] or ae[3,11/3].

In correspondence with (2.11) we define

[ e-1)7lx% 4 (1.2, apd
ga(x) = (" (404)

b

l xlogx+ (1-x)log(l-x) , a=l
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for xeI 2(0,1]. We also define
Gn,a(x) = Hn,ga(X) ,y Xe€ Sn , (4.5)
and call Gn a(X)’ xeS, the paired entropy of order a.
H
Using (2.11) - (2.14), we clearly have the following
relationships:
- -1
Gn,a(x) = Hn,a(x)+Hn,a(1—x)_(a—l) ;o afl XESn
Gn,l(x)=: Hn,l(x) + Hn,l(l-x) i Xe Sn
Ve shall write
In’m(x,y)EJn,g (x,y) ; (x,y) e S x 8§, (4.6)

o

for the Jensen difference of g, of (4.4). From Theorems

1, 2 and (2.6)-(2.10) we conclude :

Theorem 3. Let the notation of (4.4)-(4.6) apply with >0,

Then:
- G ] — .
(i) n,o is concave on Sn’
K3 o X o 3
(ii) .In,a is never concave on Sn Sn'

(iii) 1 is convex on § xS§ if and only if ae¢ll,2] or
n,a n °n
ael3,11/37.
In particular,
(iv) Gn,l is concave on § and In,l is convex on §nx§n.
Item (iv) of this theorem is a limiting case of the

previous items as o+l. It could also be directly deduced from

Theorem 1. Indeed, from (4.4), gI(x)= [x(1-x) ]-1 >0 which
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shows that g, is convex on (0,1). Furthermore, F= (g;)-1

is given by F(x) = x-x2 and thus F"(x)=-2<0, Therefore,
(g‘l")-1 is concave on [0,1) and Theorem 1 applies.

It may be noted that we could base our analysis of
sections 3 and 4 on a more generalized form of the Jensen

difference
3B (x vy =20a e (x) + 8 o +8y) ] 4.7
Iy 4 ad (x 8¢ Y)"¢(0.X BY) (4.7)

with a,8>0, a+B8=1, so that (4.7) reduces to Jd> when
a=B. However, this does not constitute a major generalization

and the results obtained for J, can also be derived for

¢
Jia’e) after a minor modification of the argument.

5. THE K-DIVERGENCE

We briefly discuss the K-divergence K defined in (2.4)

n,¢

and its relationship with the J-divergence Jn ¢ To do this
H

we define

W(x) = ¢(x)/x ; xe R, . (5.1)

We start with the following simple proposition:

Proposition 1. Kn ¢ is non-negative on sz tR: if and only

if ¢ is increasing on R, .

Proof. This is equivalent to the specialized statement with

- e

A S AT 4 . U T

< or s
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n=1 which in turn is straightforward.
The following theorem establishes a comparison between

Kn,¢ and Jn,¢

Theorem 4. Assume that § is increasing and concave on I.

Then, for any (x,y) € ng m2 ,
with equality if and only if x=y.

Proof. Again, this statement is equivalent to the specialized

case of n=1. Accordingly, we consider the function
F(x,y) = Jl’¢(X,y)—K1,¢(x,y) ; (x,y)e R xR,
This may be written as

F(x,y) _

X+y x+y v(x) + mw(y)- Wl(x+y) /2]
" ¥X X X+y
v (5t ay) - &)

= v (2F)- v(ZE) <o

The first inequality follows from the concavity of ¢ while
the second inequality is due to the fact that ¢ is increasing
on R, . The equality statement also follows and the proof

is complete,

The Hessian of K o’ in accordance with (2.1), is given
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by

n
~ 2 2
A(u,v)Kn,cb(x’y) = izl{a(xi,yi)ui + 2b(xi,yi)uivi-l-a(yi,xi)vi}

(5.2)
where x,y ¢ IR?_ and for X,yeR,_,
a(x,y) = ¢"(x) -y ¥"(x) (5.3)
and
b(x,y) = ~-[Y* (x)+¢'(y)] (5.4)
with ¢ as given in (5.1). It follows, therefore, that Kn ¢
is convex if and only if a(x,y) >0 and
d(x,y) = a(x,y)a(y,x) - [b(x,y)lzzo ; x,ye R, . (5.5)

From (5.3) we see that a(x,y) >0 whenever ¢ is convex and

Yy is concave on IR+. We have:

Theorem 5. Assume that ¢ is convex and ¢ is concave on IR+ .
Then:

(i) ¥ is increasing on R, ;

(ii) Kn,¢(x,y)2_Jn’¢(x,y)3'0 for every (x,y) ¢ Rgx mﬂ.

Equality in one of the inequalities entails equalities
in both inequalities. This occurs if and only if x=y.

If, in addition, (5.5) holds, then:

(1i1) K is convex on IR'_:X IR:’_;

n,¢

; § .
(iv) Kn,q& is convex on Snxsn.

Proof. Using (5.1) we have

VIR == 2 [9(x)=6" ()]
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and thus

PR = = STY0-4"(x)] + 3 [W(x)=0" ()

- - %[ 201 (x)-6"(x)] .
Therefore
2\1"(") = 'xw"(X)+¢"(X)zo

and (i) follows. The fact that Jn’¢(x,y)3;0 and its

equality statement is a result of ¢ being convex. Also,
Kn’¢(x,y)3;Jn(x,y) and its equality statement follows from

item (i) because of Porposition 1 and Theorem 4. This proves
item (ii). Item (iii) follows from item (i) and the preceeding
discussion. Item (iv) follows from (iii), (5.2) and formulae

similar to (2.6) - (2.10). This concludes the proof.
The following hold:

Theorem 6. Let ae [1,2] . Then:
(i) X (x,y) >J (x,y) > 0 for every (x,y) emf:x IR?_ .

n,é¢ n,¢
o o
Equality in one of the inequalities occurs if and only
if x=y. The same applies to Kn a(x,y)_>_Jn 0L(x,y)_zo
for every (x,y) ¢ Snxsn .

n

(ii) K is convex on IRE x 0R+

n,o,

and Kn,a is convex on Snx Sn .
Proof. 1In this case ¢a is convex and wa is concave on m+

and, therefore, we may use Theorem 5. To do so, we have

to validate (5.5), i.e., we have to show that the discriminant

function

d (x,y) 2 [a x2=2_ (m-z)yx°"3J[c:y‘"'z—(<:t-2)xy°"'3]-(x""'zw*y(""z)2
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is non-negative on R x R, . Here, dl(x,y) Edz(x,yJ =04
we may, therefore, assume that ae (1,2). Since da(x,x)=0
and da(x,y)=da(y,x) it is sufficient to assume that

y>x>0. In this way, we have

20-

da(x,y)=x 4 fa(t) ; tey/x,

where

£ (t) = £ 30 0t-(a-2) Ilo~(a-2)t] - (1+t2"2)2 | (5.6)

We must show that fa(t)flo for te (1,»). After some

simplifications, we obtain

~4
£1(t) = (2-0)t% g (t)

with

ga(t) = Ot(Ot—l)tz - 2(a—1)2t - a(3-a) + Zta-l . |

Therefore,

o~2

g&(t)=2(a-1)[a(t—1)+1+t 1>0 ; te(1l,o),ae(1,2),

Hence gy is increasing on (1,») and since ga(1)==0, we con-
clude that ga(t)>-0. Therefore, f&(t):»O or that fa is
increasing on (0,»). However, fa(1)==0 and thus fa(t) >0
for te (1,~). This concludes the proof.

From the proof of this theorem we also deduce the

following inequality:

Corollary 6. Let B¢ [0,1/2] Then, for every se¢ (-, ®), il
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cosh®gs < 6%+ (1-82) 111+ 2BUL=B)  coone, (5.7

B +(1-8)

Proof. For ae[1,2] we have shown that fa of (5.6 ) satisfies

fa(t)ilo for every te [1,»). This is equivalent to
[at - (a-2)I[at™! - (a-2)1> [£(2-®)/2, ¢-(2-0)/2 4

for every te [1,»), Since this inequality is invariant
under the transitiont-+t—1, it holds for every t ¢ (0,w),

Putting t= e® and 8= (2-a)/2 concludes the proof.

6. THE L-DIVERGENCE

The Hessian of Ln ¢(x,y) defined in (2.5), in view of

(2.1), is ;

n
_ 2 2
Beu,v) In, (%)= Z talx;,y duy +2b(x;,y,)u;vy +alyy,x;)vy )

i=1

Here

where (x,y) ele xIRE .

2
a(x,y) = 3 0" + Ly 4D
X

and

b(x,y) = - 55 ¢"D) - % "D 5 xyer,
y X

In this case, the discriminant

d(x,y) = a(x,y)a(y,x) - [b(X.y)]2
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is identically zero on R x R, . This, together with :

formulae similar to (2.6)-(2.10), leads to:

Theorem 7. The following hold:

(i) Ln ¢(x,y)30 for every n>1 and every (x,y) ¢ lex IRE
if and only if the function w(t) =t o(t™1) +o(t) is
non-negative for all t e R, ;

(ii) Ln 6 is convex on IRE x IRIJ: if and only if yY(t)=t ¢(t-1)+¢(t)

is convex on R+ .
Proof. As for item (i), we have
T
Ln,¢(x,Y)= 5 - ‘D(tl) > ti=yi/xi

. X,
i=1 7i

and L, ¢(x,y)=x_lw(t), t=y/x. Thus (i) follows. As for

item (ii), since d(x,y) =0 for every (x,y) ¢ R, x R,_we have

X n n . .
that Dn,d) is convex on IR+ X IR+ if and only if
2 x3 X
a(x,y)=§§{;§- " () +4"(PI 20 5 (x,¥)e R, x R,.

Putting t=y/x this condition becomes

t73en e ™o ()20 te R,

: This means that ¢'"(t) >0 and the theorem follows.

Corollary 7. For any >0, Ln o is a non-negative convex
3

function on Sn X Sn .

Proof. We use Theorem 7 and formulae similar to (2.6)-

(2.10) for A (x,y) on Snx Sn . We start with

(u,v)Ln,a

ey




a=1. In this case

$()=tlogt , W (t)=te (tTH)ro (t) ; tem,,

and thus

b () =(t-Dlogt>0, ()=t +t? >0, tem,.

On the other hand, for a#1,
o (t) =(a—1)’1(t°‘-t) v (t) =t¢e (t'l) +¢ (t) ; te R
a Vo T a ’ +°
Therefore, for awa>0, a#1,
v ()= (-7 e (e (%1 20 tem,

and

b () =a(t*24t™ >0 5 teR,

This concludes the proof.
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