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FOREWORD

The problem of predicting the deepening of a turbulent, weakly-

stratified fluid has significant applications in oceanography and

meteorology. Both the atmospheric boundary layer and the upper ocean

can deepen due to convective penetration. The action of the windstress

on the ocean can deepen the mixed layer. The literature in these problems

is vast and complicated.

In this Ph.D. dissertation, an unusual but fruitful approach is

adopted. Two interacting fluids are envisioned. This formulism allows

the analytical interpretation of the penetrative convection problem and

the wind mixing problem. The comparison of the results with laboratory

experiments is very encouraging. The detailed profiles of turbulent fluxes

need to be compared to actual field measurements. Some data are available

but were not accessible to us. The theoretical results in this report are

a major advance in understanding the physics of the ocean.

Ocean modellers have continually ignored the influence of horizontal

structure on the dynamics of convective fluids. A small step forward has

been accomplished in the final problem where the wind mixing occurs in the

vicinity of an oceanic front. The conclusions are useful for understanding

ocean variability due to wind mixing on ocean fronts.

Finally, the reader will find a tremendous amount of redundancy in

this report. This was my decision. The report is written such that each

major chapter is written as a separate paper for subsequent submission to

a journal.

James J. O'Brien
Director
Mesoscale Air-Sea Interaction Group
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ABSTRACT

MIXING, CONVECTION, AND ADVECTION

IN THE UPPER OCEAN

Convection, mixing and advection in the upper ocean may be

thought of as the motion of two interacting fluids of different

properties: the sinking fluid parcels generated near the sur-

face and transmitting surface information downward, and the

compensating rising return flow. A general theory based on

this concept is developed and applied to various cases, in-

cluding deepening of the wind-mixed layer, penetrative

convection due to surface cooling, and upper-ocean frontogensis

due to horizontal advection.

Equations of the general theory are written for two inter-

acting Boussinesq fluids in a rotating frame. Interaction terms

are parametrized in order to apply the theory to geophysical

situations. Considerable simplification is obtained by assuming

that the response time of turbulence is much less than the time

scale of evolution of the overall system. This assumption is

realized in all geophysical situations and is a generalized

statement based upon approximations invoked previously by
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various authors. The study of deepening of the wind-mixed

layer and of penetrative convection due to surface cooling are

straightforward applications of the general theory. The analy-

tical treatment of the equations is simplified using the

observations that the mixed layer is quasi-homogeneous in its

physical properties and that the thermocline is a thin layer

of large gradients. The solution is analytical and simple.

Its agreement with observations is excellent and comparable to

sophisticated numerical models capable of resolving small-scale

turbulence. Advection and its interaction with mixing are

studied in a case of frontogenesis. Interactions result in

important cross-front asymmetries in properties such as mixed-

layer depth, thermocline strength and/or mixed-layer density.

Results also show that there exists a critical time scale

within which mixing dominates and beyond which advection con-

trols the upper ocean. For a mixed layer about one hundred

meters thick, this time scale is of the order of one month. In

the presence of strong mixing, frontolysis can ensue.

Although the applications focus on the upper ocean, the

theory is general and also applies to the lower atmosphere.
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CHAPTER ONE

INTRODUCTION



|

Air-sea interactions cannot be successfully modelled without

a deep knowledge of the upper-ocean dynamics and thermodynamics.

The currents and variations of temperature and salinity in the upper

ocean are induced and controlled bV surface atmospheric conditions,

oceanic lateral advection, and deep oceanic conditions. The com-

plexity of the situation can, however, be somewhat simplified by

classifying the various processes which take place in the upper

ocean. They are: turbulent mixing by wind stirring or mean current

shear, convection, penetrative convection, entrainment of stratified

fluid, and re-stratification. All these processes involve small-

scale turbulent motions, in space as well as in time. In this work,

the resulting fine structure is studied in order to achieve a better

knowledge of the dynamics and thermodynamics in the upper ocean.

Upper-ocean processes can be thought of as the relative motion

of two interacting fluids: the sinking fluid parcels generated near

the surface and transmitting surface information downward and the

rising fluid parcels forming the return flow. The former play the

active role in mixing and convection, and are called thermals. The

latter play the alternate passive role and are called anti-thermals.

A general theory based on this concept is developed and applied to

various cases, including deepening of the wind-mixed layer, penetra-

tive convection due to surface cooling, and upper-ocean frontogenesis

due to horizontal advection.

2



3

The work is divided into several chapters (Chapters 2 to 5),

each of them being a discrete and independent entity. As an advan-

tage, the reader interested in one specific topic may limit his/her

reading to a particular chapter without facing problems understanding

symbols or basic ideas. Despite advantages, this presentation leads

to some unavoidable repetition, for which the author apologizes.

Chapter two is the development of the general theory of mixing

and convection, based on the concept of a two-fluid system. It is

an application of the dynamical theory of interacting continua oro-

posed by Kelly (1964), developed by Green and Naghdi (1965), and

generalized by Truesdell (1969). The equations are written for two

interacting Boussinesq fluids in a rotating frame. Interaction terms

are parametrized for the purpose of geophysical situations. Pairs of

governing equations are derived for thermals and anti-thermals. Each

pair meets an Invariance Principle as a consequence of reciprocity in

the roles played by thermals and anti-thermals. Considerable sim-

plification is obtained by assuming that the response time of tur-

bulence is much less than the time scale of evolution of the overall

system. This assumption is realized in all geophysical situations.

Each pair of governing equations is transformed into an average

equation for which interaction terms cancel, combined with a very

simple equation linking the two fluid properties. An important

parameter of the model is the fraction, f, of area occupied by

thermals. Since a closure assumption is needed, a dynamic satu-

ration equilibrium between thermals and anti-thermals is assumed.

This implies a constant value of f throughout the convective layer.
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Chapter three is the application of the theory to the deepening

of the wind-mixed layer. In view of simple algebra, the model

one-dimensional, frictionless, and neglects the turbulence produc-

tion by the mean-flow shear in the thermocline. Hence, the increase

in potential energy required for deepening is supplied by the tur-

bulence input at the surface. The analytical treatment of the

equations is simplified using the well-known facts that the mixed

layer is quasi-homogeneous and that the thermocline is a thin layer

of large gradients. The vertical structure throughout the mixed

layer and thermocline is given by an analytical solution. Vertical

profiles of mean velocity components, mean temperature, and vertical

fluxes of momentum and heat are then plotted. The solution also

yields bulk formulae predicting the rate of deepening, the thermo-

cline thickness, and the mean surface temperature. As the mixed

layer deepens, the thermocline shallows, vertical profiles, there-

fore do not remain similar to themselves in time. The analytical

solution is not self-similar.

Chapter four is the application of the theory to penetrative

convection due to surface cooling, as it occurs past mid-fall and

during winter. The model is still one-dimensional, but includes

dissipation. Wind stirring plays an important role when the con-

vective layer is shallow, but rapidly convection dominates the

process. Thermal instability itself supplies the kinetic energy

required for stirring and deepening. Wind stirring is therefore

ignored in that section. Assuming a quasi-homogeneous mixed layer

and a sharp thermocline, a single non-similar analytical solution

is found. Vertical profiles of mean values and vertical fluxes
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are plotted for the mixed layer and the thermocline. The solution

also yields bulk formulae predicting the rate of deepeni,,g, the

mean surface temperature, the heat flux at the bottom of the mixed

layer and the thermocline thickness. Although the results

presented here focus on convection in the upper ocean forced by sur-

face cooling, they also apply directly to convection in the atmo-

spheric boundary layer above a heated ground.

Chapter five is a study of advective effects and their inter-

actions with wind-mixing effects. A case of frontogenesis is

chosen in order to include lateral variations in advection and

mixing and in order to understand better frontal dynamics of the

large-scale oceanic fronts in the central North Pacific. Inter-

actions between advection and mixing result in important cross-

front asymmetries in properties such as mixed-layer depth, pvcno-

cline strength, and/or mixed-layer density. Two cases are treated

separately: the case of convergence (when the water masses downwell

at the front) and the case of confluence (when the water masses

form a long-front current),



CHAPTER TWO

A GENERAL THEORY OF MIXING AND CONVECTION:
MODELLING BY TWO BUOYANT INTERACTING FLUIDS
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i1. INTRODUCTION

Convection may be caused by either an initially unstable

situation or by a continuously-applied external forcing. In

most geophysical convective situations, convection is of the latter

kind and is maintained by a forcing which is almost invariably

applied along one boundary rather than within the fluid. The theory

developed here attempts to model convection when convective motions

are driven under such circumstances. Convection of air above a

heated ground, mixing of the upper ocean under the action of wind

stress and/or surface cooling, and penetrative convection in stars

are some examples.

Along the boundary where the forcing is applied, fluid par-

ticles coming from the interior are altered; their velocity

components and/or .temperature are modified. The same particles

thus leave the boundary with new properties. As a consequence of

this mechanism, convection can be thought of as the relative motion

of two different fluids: the fluid particles coming from the

interior toward the boundary, and the altered fluid particles leav-

ing that boundary with different properties. The latter play the

active role in convection and will be called thermals. This name

was adopted by glider pilots for masses of warm air rising from

hot ground. Ever since, this word has been widely used in the

field of convection. The other fluid parcels play an alternate

passive role and will be called anti-thermaZs.

7
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The model presented here does not require interpreting thermals

and anti-thermals as discrete elements. Particles will not be

numbered nor will they be assigned a volume. The two fluids may

be considered like plumes, puffs or other forms (Scorer, 1978).

However, the terminology of thermals and anti-thermals is used for

convenience because discrete elements are more easily perceived.

As a formal extension, the word thermal will be even assigned

arbitrarily to non-buoyant fluid having an excess of momentum.

Priestley (1959) has shown how one can obtain information

about the mean properties and the fluctuations in air over a heated

ground by considering it as the superposition of many closely-spaced

convecting elements. However, his approach is limited to environ-

mental lapse rate constant with height and does not allcw the

elements to grow or decrease as they migrate vertically.

The model developed here is an extension of the dynamical

theory of interacting continua proposed by Kelly (1964) and Green

and Naghdi (1965), and extended by Truesdell (1969). For the

present purpose, equations are written for a two-fluid continuum

in a rotating frame. The Boussinesq approximations are made

(Spiegel and Veronis, 1960), and interaction terms are parametrized

in view of geophysical situations.

The forcing along the boundary generates thermals at the

expense of anti-thermals, whereas interactions between the two

fluids in the interior progressively transform thermals back to

anti-thermals. Thermals are directly driven by the external

forcing, while anti-thermals are driven by reaction to the thermals
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(continuity of mass, conservation of momentum and heat). The two

fluids have different properties; their relative motion is thus

a mechanism capable of transferring heat, momentum, energy, or any

other constituent, through the convective layer.

2. FRACTION OF AREA OCCUPIED BY THERMALS

At a given level, any horizontal surface is crossed by thermals

and anti-thermals. At a given time, a given horizontal area A is

occupied partly by thermals and partly by anti-thermals (Figure 1).

From a hypothetical instant infra-red picture detecting warm and

cold regions, one may compute the fraction of area occupied by ther-

mals for that surface at that time. That value inevitably varies in

a certain range, and a theoretical ensemble average yields, in a

statistical sense, a local instantaneous mean value. If one evokes

the hypothesis of ergodicity, this averaging process is equivalent

to an average over horizontal distances and time intervals short

compared to lateral and temporal scales of variation characterizing

the whole system. The resulting quantity, noted as f, is dimension-

less, positive and less than unity (Manton, 1975). As a direct result,

the fraction of area available to anti-thermals is (1-f). Although

it is anticipated that f will be assumed to be a constant, the govern-

ing equations derived hereafter are written in a general framework,

allowing local and temporal variations of f.

The observed mean value of any quantity is a combination of

contributions due to the two fluids in the ratio of their respective
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Figure i. The fraction of area occupied by thermals at any level

is the instantaneous local value, averaged over horizon-

tal distances and time intervals short compared to lateral

and temporal scales of variation of the overall system.
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available areas:

horizontal velocity u = fu' + (1-f)u", (1)

v = fv' + (l-f)v", (2)

vertical velocity w = fw' + (l-f)w", (3)

pressure p = fp' + (1-f)p", (L4)

density p Z fp' + (l-f)p", (5)

temperature T = fT' + (l-f)T", (6)

where primed and double-primed quantities refer to thermals and

anti-thermals, respectively. The bar thus represents an operator

averaging over short horizontal distances and short time intervals

in tre sense defined previously. It indirectly assumes that each

fluid is characterized by single values rather than by distribution

functions of their properties.

The above relations, rather than a definition of mean values,

constitute the mathematical expression of the average operator:

a = fa? + (l-f)a",

where a represents any physical quantity. The application of this

operator may also define momentum, heat and energy fluxes. In the

context of Boussinesq approximations, the vertical fluxes of hori-

zontal momentum (Reynolds stresses divided by p0 , the reference den-

sity) are:

-uw = -fu'w' - (l-f)u"w", (7)

-vw= -fv'w' - (l-f)v"w", (8)
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the kinematic vertical convective heat flux (heat flux divided by

poCp) has the form:

w = fw'T' * (l-f)w"T", (9)

and the vertical flux of turbulent kinetic energy reads:

w((u-) 2 +(v-V)2(w-)
2

: fw' (u'-u)2+(v'-v) 2+(w'-w )

+ (l-f)w" u . (10)

Other fluxes may be defined in an analogous way but are not of

primary importance to geophysical convection problems.

Finally, the averaging operator may also be used to define

root-mean-square (rms) quantities, measuring departures from mean

values. If a represents any physical quantity, the rms fluctuation

is defined as:

a - (a= - )2 (11)
vmls

i.e., a2  = f(a'-a)2+ (l-f)(a"-g)2. (12)
rms

Simple calculations yield:

- f(l-f)) (aI-a"f). (lU)

The sign is selected as to yield a positive value when the thermals

quantity a' exceeds the mean value a. The rms fluctuation is

directly proportional to the difference between thermals and anti-

thermals values, and is zero when these values are equal and do not

!~
'Ii
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differ from the mean.

3. MASS AND VOLUME EXCHANGES BETWEEN THERMALS AND ANTI-THERMALS

Thermals and anti-thermals continuously exchange mass and,

consequently, momentum, heat, and energy. At any moment and at any

location, either thermals or anti-thermals lose some of their mass

to the other. The exchange is controlled by Em, the mass exchange

per unit time and total volume of fluid (kg m-3s 1 ). However, in

the Boussineso framework, that quantity is advantageously replaced

by the voZumle exchange, E, per unit time and total volume (s
-1 )

defined as:
E

E Z , (15)
P0

where o is the reference density close to the actual densities of0

thermals and anti-thermals, p' and p", respectively. By definition,

the mass exchange, Em, is chosen to be positive if anti-thermals

lose mass to thermals and is negative if thermals lose mass to

anti-thermals.

In subsequent sections, it will be assumed that heat and

momentum are transferred exclusively through this mass exchange,

thus excluding transfer by diffusion or collision. However, this

assumption may be questionable for highly turbulent clouds, where

momentum exchange between air masses can occur without mass

exchange, as in a collision.
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4. INVARIANCE PRINCIPLE

From a semantic point of view, thermals and anti-thermals play

reciprocal roles: what is lost by one is gained by the other.

Thermals may be labelled anti-thermals and vice-versa. Their dy-

namics and thermodynamics are therefore to be governed by corre-

sponding equations and the following Invariance Principle must hold:

Principle: All the governing equations must be invariant under the

transformation:

primed quantity-.--double-primed quantity

f --- l-f

E --- E

rms fluctuation --- P--rms fluctuation.

It may easily be seen that any mean quantity such as u, -uw,

wT, ... is invariant under that transformation, and equations for

mean values will thus automatically meet the Invariance Principle.

5. GOVERNING EQUATIONS

The dynamics and thermodynamics of two interacting fluids are

parts of the mathematical theory of mixtures. This latter theory

aims to represent exchanges of mass, momentum, heat, and energy.

Particular cases are theories of diffusion and chemical homogeneous

reactions and kinetic theories of heterogeneous continua. A geneval

framework for all such theories has been laid down by kelly (19F4),

A
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Green and Naghdi (1965), and Truesdell (1969, Lecture 5) so as to

include magnetohydrodynamic and other effects. Here, the governing

equations are written for a two-fluid Boussinesq rotating continuum.

Moreover, interaction terms are parametrized in view of geophysical

situations.

a) Preliminary remark:

Thermals and anti-thermals have relatively large vertical ve-

locities. Due to these sinking or rising motions, they do not have

time nor do they go far enough laterally to be affected by temporal

and horizontal variations in the overall system. As a result, in

any equation, operators such as

a , a.

at ax(y v(

lead to terms which are negligible compared to those involving the

vertical operators applied to the same quantities:

- fw'al) -zl-f)wlla")

3zz

i.e., vertical advection is the dominant part of the substantial time

derivative. (See Appendix A for a detailed mathematical treatment.)

However, it will be seen in the treatment of the continuity

equations that, in the case of zero global vertical motion, w' and

w" almost exactly balance each other, so that, in the equations for

average variables, operators such as

a , -r4a, -4va)at 3 a ay

lead to terms comparable to those yielded by the vertical flux
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operator:

(wa).

These conclusions are equivalent to stating that the response

time of the two inte2,cting fZuids is much less than the time scale

of evolution of the overall convective system.

The system is thus characterized by two time scales: time

variations of the whole system will be resolved at the long time

scale, by assuming a quasi-instantaneous response of the fluctua-

tions at the short time scale.

b) Equation of state:

If salinity or other density variable effects are unimportant,

and if density variations do not exceed a few Dercent, the equation

of state may be adequately represented by a linear dependence upon

the temperature only:

for thermals: P' = P. (1 - c(T'-T)), (16)

for anti-thermals: " i =o (I - a(T"-T )) (17)

where a is the coefficient of thermal expansion ( a=3.5×10 -3 'C-1

for air at 15°C, x=10 - 4 OC-1 for pure water at 100 C), and T is the0

reference temperature. The mean density is related to the mean

temperature by:

p =P (1 - ct(T-T) 1 • (18)

This latter result is obtained simply by summing (16) and (17) pre-
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multiplied by f and (1-f), respectively. (If density is a linear

function of salinity , an equation similar to (18) may be derived.)

c) Continuity equation:

In the Boussinesq framework, the variations of density are

small, and the continuity equation is equivalent to the law of

conservation of volume (Spiegel and Veronis, 1960). The equations

become:

for thermals:

-f + ,(fu + --- fv') + -z- fW') E, (19)
at ax ay

for anti-thermals:

41-f) + ,+ + -E, (20)

where E is the volume exchange between the two fluids, per unit

time and volume, and is positive if anti-thermals lose mass to

thermals (positive divergence of the thermals velocity field). It

may be easily shown that the above two equations meet the Invariance

Principle.

Summing (19) and (20), an averaged continuity equation is

obtained:

t u + T v+ T w: 0. (21)

As stated in the preliminary remark, the term 3w/3z of this equation

is the sum of the dominant terms in the left-hand sides of (19) and

(20). The two other terms, 3j/ax and a-/3y, are the sum of negli-

gible terms. Therefore, the two contributions to 3w/3z almost

cancel each other, and one may write:



i.e., the mean vertical velocity is z-independent. Since, in most

cases, there is no mean upwelling or downwelling, this mean veloci-

ty ought to be zero everywhere, leading to a relationship between

W' arnd w":

w =fw' + (l-f)w" =0. (22)

To the same level of approximations, equations (19) and (20)

reduce to:

E = -(fw') - -(( -)W1. (23)

In the regions where variations of if are unimportant, Ef~w'/az,

i.e., thermals grow (E >0) when they accelerate (3w'/;z >0), and

decrease in size (E -, 0) when they decelerate (9w'/3z < 0). Note

that E has not been parametrized in any manner.

d) Heat conservation equation:

In the context of Boussinesq approximations, the heat conser-

vation equations are:

for thermals:

f t-,(fu'T') + -(-fv'T') + -(-fw'Tf) E(=+" , Zaat "x ay az
for anti-thermals:

a (l-fT")+ -L-((l-f)u"T") + -((l-f)v"T") + ± -~""

Er(T'±T"), (25)

where molecular diffusivity and internal source ot hea, are neo'lect-

ed, since they are unimportant for most geophysical convective situ-
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ations. The heat exchange between thermals and ant'-thermals is

modelled by a transfer of mass at the mean temperature (T'+T")/2. A

justification of this parametrization and a discussion of a more

general formulation is presented in Appendix B.

The above equations, which meet the Invariance Principle, could

also have been written in terms of the buoyancies

b' =-ag(T'-T o ) , b" =-otg(T"-T )

The sum of equations (24) and (25) yields the global heat con-

servation equation:

- T + 1 -y vT + - wT = 0, (26)

at ax ay azW

which expresses that the time rate of change of the mean temperature

T is equal to the negative of the divergence of the convective heat

flux. In the case of horizontal homogeneity on scales much larger

than the one of thermals, the reduced equation is:

t a wT, (27)

where the vertical convective heat flux wT is defined by (9).

Subtracting from (24) and (25) the continuity equations (19)

and (20) pre-multiplied by T' and T", respectively, and assuming

that thermals and anti-thermals do not have time to see lateral and

temporal variations (preliminary remark), one obtains:

fw T221 L E (T"-T') (28)
az 2

-Z : i E(T"-T'). (29)az 2
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By use of (22), the difference of these two equations leads to:

(T' + T") = 0 , (30)Tz

stating that vertical variations of temperatures are inversely

correlated. This last equation is remarkable by its simplicity.

As one may expect, similar results will be obtained from the

treatment of the horizontal momentum equations, and these will

greatly facilitate further computations.

e) Horizontal momentum equation:

In the context of Boussinesq approximations, th horizontal

momentum equations on a rotating fo-plane are:

for thermals:

'+ k(f'u') + !Lfv'u') + -(fw'u') - Ku'
at f ax f u ) y vz " f u ~= lV(fp,) + i1 I~'u)+(1
1 -- Eu'+u") +-(l-2f)E(u'-u"), (31)

for anti-thermals:

1 +-((l-f)uU") + +

+ (l-f)f kxu" =--- V((l-f)p,,] - i.l~" - 1-fE u-,
0- p0 -H" 2 2-

(32)

where u'=(u',v',O), u"=(u" ,v",O) are the horizontal velocity com-

ponents of thermals and anti-thermals, respectively, k=(0,0,l) the

vertical unit vector pointing upward, VH the two-dimensional

gradient operator (T,--,0), and f is the Coriolis parameter.

Thermals and anti-thermals are subjected to two different pressures

(Truesdell, 1969). Viscous forces are neglected since they are

unimportant for most geophysical convective situations. The ex-

change of momentum is modelled by a transfer of mass at the mean

i1
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horizontal velocity (u'+u")/2, analogous to the heat transfer. It

may be shown that this form of exchange is the only one that con-

serves total kinetic energy in the horizontal motion. The last

term of each equation represents a kinetic energy exchange, which is

converted to kinetic energy in the vertical motion (See section

about energetics). Finally, it may be seen that the pair of equa-

tions meets the Invariance Principle.

The sum of equations (31) and (32) yields an equation governing

the mean horizontal momentum U=(u,vO):

+ wu f kxu (33)<.x y - 0 - - - - PO -

In the particular case of horizontal homogeneity at large scales,

the two components of equation (33) reduce to:

fo - uw, (34)

av - a-
v+ fou T vw, (35)

where the Reynolds stresses -uw and -vw are defined by (7) and (8).

Subtracting from (31) and (32) the continuity equations (19)

and (20) pre-multiplied by u' and u", respectively, and assuming

that the vertical advection terms dominate (preliminary remark),

one obtains:

w'a U? Z E(u"-_u?' (36)

""i U" = E(u"-u') (37)

3

9
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By use of (22), the difference of these two equations leads to:

1f) ± u + f 0, (38)az-Z ftz

which is comparable to (30).

f) Vertical momentum equation:

In the context of Boussinesq approximations (Spiegel and

Veronis, 1960), densities may be approximated by the reference den-

sity Po everywhere except in the buoyancy terms where actual values

have to be kept. For two interacting fluids, the vertical momentum

equations are:

for thermals:
-(f + 4f ' + f) + a "1" fw'w')

atax ay aat fw' + u'w') + y fv'w') ~ w)

o f -o f' + E(w'+w"), (39)

for anti-thermals:

a - ((i-f)p") - <l-f)o" -(-~'1" (~" 11a ( p - o - 1 E(w'+w"). (40)

The sum of these two equations yields an equation for mean

quantities:

a ax y az PO az P

The main balance consists of the terms on the right-hand side, i.e.,

the hydrostatic balance. The fourth term dominates the left-hand

side, because w' and w" do not cancel their effect in the correla-

tion ww and vertical advection dominates. Using (13) and (22), the

Reynolds stress ww is found to be equal to w , and (41) may be
rms

4
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rewritten as:

I w2 (42)
P 0z PO a rms(

which simply is the hydrostatic relation corrected by the Reynolds

stress divergence. To obtain an equation governing the vertical

motions, this equation will be sutracted from (39), and this correc-

tion will become of the same order as the remaining terms.

A vertical velocity equation is needed in order to predict

vertical motions through the convective layer. That equation, ob-

tained by subtracting (42) multiplied by f from equation (39),

using (13), (22), (23), and assuming once again that vertical advec-

tion is the dominant term of the total time derivative (preliminary

remark), is:

aw+
rms 2m p+mprms 2) w2

rms z 1 ( °  rms az

c gT 1 (43)
rms p 3z Prms'

where m is a coefficient dependent on f only, defined by:

1-2f (44)

2(f(l-f))

This diagnostic equation controls the vertical motion of ther-

mals and anti-thermals. It relates the vertical acceleration to the

buoyancy. The pressure term allows an exchange of kinetic energy

between horizontal and vertical motions. The equation finally in-

cludes a correction term due to eventual changes in f.
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g) Need for a zlosure hypothesis:

In the above set of governing equations, the unknown variables

are u', u", u, v , v", v, wt, w", W, T', T11 T, pl, p", p, f, and E.

There are thus 17 variables for which 17 equations are needed.

The definitions of mean values u, v, w, 7, and p [(1), (2),

(3), (4), and (6)] yield 5 equations. The two continuity equations

(19) and (20) may be equivalently replaced by (22) and (23). The

heat conservation equations (24) and (25) may be replaced by (26)

and (30), the horizontal momentum equations (31) and (32) by (33)

and (38), the vertical momentum equations (39) and (40) by (42) and

(43). Since the horizontal momentum are two-dimensional, there are

5+2+2+4+2 = 15 independent definitions and governing equations.

One needs thus two extra equations to solve the problem for the 17

variables. A closure hypothesis will provide the first one, while

an examination of the energetics will provide the second one.

6. CONSERVATION OF FRACTION OF AREA OCCUPIED BY THERMALS

Where thermals accelerate, they tend to separate vertically and

to grow by entraining surrounding fluid (Turner, 1973, Chap. 6

and 7; Scorer, 1978, Chap. 8). Isolated thermals may grow freely,

but in presence of many others, they grow until they feel a strong

return flow more and more confined to a reduced fraction of area.

This return flow will tend to erode the thermals, preventing them

form growing any further, and a saturation equilibrium takes place.

Inversely, the same equilibrium state does occur in regions where



25

thermals decelerate: there, they tend to accumulate, restricting

the area available for the return flow and are therefore eroded.

Anti-thermals now grow so that saturation of area is reached.

This saturation equilibrium leads to assigning a constant value

to the fraction of horizontal area occupied by thermals. This as-

sumption of a constant value of f is supported by atmospheric obser-

vations. Direct measurements were carried out by Grant (1965),

while data obtained by Warner and Telford (1967) were used by Manton

(1975) to evaluate values of f. Both sources show a narrow range of

variation. The assumption was successfully used by Manton (1975) in

an attempt to model convection in the atmospheric boundary layer

below the inversion and by Roisin (1979) in a study of penetrative

convection with application to upper ocean surface cooling. The

encouraging results presented in subsequent papers support the vali-

dity of this assumption for both geophysical and laboratory applica-

tions.

The expression of the volume exchange between thermals and

anti-thermals (23) is compatible with this assumption. Indeed, in

regions where the fraction of area occupied by thermals is constant,

equation (23) reduces to:

E =f aw. (4~5)

i.e., when thermals accelerate ( wl/az > 0) and would normally sep-

arate if there were no exchanges, they grow (E > 0) and thus tend to

avoid separation. The same conclusion holds when thermals deceler-

ate (3w'/3z < 0, E < 0). This remark does not prove the assumption
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of constant f, but rather affirms that if saturation equilibrium

occurs, it is a stable equilibrium state.

Although the fraction f of area is expected to be constant for

a given convective situation, it might differ from one case to

another, depending upon the way thermals are produced. The value

to be assigned to f depends upon the average size and rate of pro-

duction of thermals along the boundary where the forcing is applied.

For example, small scale convection by surface stress in laboratory

experiments (Kato and Phillips, 1969; Kantha, Phillips and Azad,

1977) is not expected to yield the same value of f as oceanic con-

vection in the upper ocean due to surface cooling (Kraus and Turner,

1967; Foisin, 1979). In the oceanic wind-mixed layer and in the cor-

responding laboratory experiments (Chapter three), the value of f is

of the order of 10% (see Table I). In the case of penetrative con-

vection in the lower atmosphere, a reasonable range of values is 30%-

40% (see Chapter four). On the other hand, large-scale horizontal vari-

ations in the forcing may lead to some lateral variations of f.

Aside from those possible lateral variations and from restrict-

ed regions where saturation equilibrium is not yet reached, the

fraction of area occupied by thermals to the total area is assumed

to be constant. it will therefore appear parametrically in the

model. This assumption is stated at this early stage of the early

stage of the modelling of convection, and its effects are anticipated

to be unimportant.

As a consequence, equations (30) and (38) may be rewritten as:

z ( T + mT0ms

i.. ............... . .rm
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d+2 m u) 0 (47)z -rms

where m Ts defined by (44) and rms quantities by (14). Since f iz

constant, these two equations are linear. The vertical momentum

equation (43) becomes:

3m w Lw ag T -(48)rms3z rms rms P az 'rms

7. ENERGETICS

In this section, exchanges of kinetic energy between mean and

turbulent flow as well as conversion to potential energy are exam-

ined in detail. The last equation required by the model will result

as a direct consequence of the statement that the response time of

turbulent motions is much less than the time scale of variation of

the overall convective system (preliminary remark).

The total kinetic energy (KE) may be divided in two parts,

the kinetic energy in the mean flow (MKE) and the kinetic energy in

the turbulent motions (TKE):

KE fp°  + 2 + w2) dV
V

PO_ j(2+72+-w2) dV + (2m 2
2 rm ms rms

V V

MKE + TKE, (49)

where V is the total volume of the system. Equation (13) was used

to separate means and fluctuations. The potential energy is defined
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by ;

PE - gp° f z dV, (50)0(50

V

where z is the vertical coordinate, positive upward.

a) Mean Kinetic Energy Budget.

The time rate of change of the kinetic energy in the mean flow

results from (33). An integration over the entire volume yields:

MKE aPo (c.a 3l tu-u1-u--wu±-T.V ~)dV
dt -jaz - - z P0 -H

V

( [U.-u.n + (iuw + v w)n z + L -u.n] dS=-oJ "" "po - d

(51)

o . --- + -

v0

where 7. is the closed surface bounding the system, n and n are- z

respectively the horizontal and vertical components of the unit

outward normal vector to E. The first term is the input of mean

kinetic energy through the boundaries of the system, while the

second term represents the exchange of kinetic energy between mean

flow and turbulent motions, due to shear and divergence effects.

In agreement, with the basic assumptions, vertical fluxes along the

boundaries and vertical shear effect are the dominant process, and

equation (51) reduces to:

MKE -P (U T-V + )nzdS + p (- 2 + E )dV. (52)

£ V
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The exchange term may be rewritten by using (13), (22), and (47):

-u rms vms

+vW :d= 2pom (u +v)w dV
-- f, rms az rms z wrms

V V

= p mw a-- + v2  )dV. (53)
o rmsaz rms rms

V

b) Potential Energ__Budjet:

The time rate of change of the potential energy is directly

obtained from the heat equation (26):

dt.PE = agpj z 2L G-+ -7T+L-xT)d
v~

V

= agpo (z -T.n + z -nz )dS - agp 0 -- dV. (54)

E V

The first term represents the input of potential energy by means of

imposed convective heat flux through boundaries. The last term is

the exchange between potential and kinetic energy by convection.

It can be rewritten as follows, with use of (13), (22), and (48):

1ow 01 Wrms TrmsdV

V V

= (0om w2 a rmns + W P rms) dr. (55)rs 3z Wrms az

V

c) Turbulent Kinetic Energy_Budget:

The sources of turbulent kinetic energy are i) the exchange

with kinetic energy in the mean flow, (ii) the exchange with poten-

- -
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tial energy, and (iii) the input at the boundaries. This last

contribution is primarily due to vertical fluxes:

- {p 0 w[(u-U)2 +(v-V) 2 (w-f)2] + w[p-] indS,

which can be rewritten in terms of rms fluctuations by using (13),

(22), and (44):

[Pom w (U2  +v 2  + w2  ) + . (56)0 rms (Urms vrm s  Wms rms rms nzd

The sum S of the three sources of turbulent kinetic energy is given

by (53), (55), and (56):

S = ... a U2 + V2  )dV (3p m w2  rms + w aPrms)drms rms o ms 3z rms az
V v

- 4 [pomw (u 2  + v2  + w2  )+w p ]ndS.rms rms rms rms rms rms z

Integrations by parts lead to the cancellation of the boundary terms.

It results that:

awS = [Pm(U2m+ v2  ) + ] rms[p0u rms P rMs 3z d V "  (57)

V

Since the total energy in the system is conserved, the time

rate of change of turbulent kinetic energy ought to be equal to S.

However, in the present study, the preliminary remark, which states

that vertical advection is the dominant contribution to the
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substantial derivative, is equivalent to neglecting local time rate

of change of turbulent fluctuations compared with the vertical

transport, input, and conversion rates. Moreover, evaluation of the

orders of magnitude for laboratory experiments and geophysical sit-

uations shows that the time rate of change of turbulent kinetic

energy is at least one order of magnitude less than each individual

term in S (Denman, 1973; Willis and Deardorff, 1974; Niiler, 1975;

Lenschow et al., 1980). Therefore, in agreement with both obser-

vations and previous assumptions, the sum of the three contributions

to the turbulent kinetic energy has to be negligible compared to

each individual term, i.e., S = 0 at that level of approximation.

This conclusion states in other words, that turbulence adapts itself

quasi-instantaneously to local variations. Equation (56) for S=O

is immediately satisfied if

I
p z - om(U 2  + v2  )" (58)

Prsms ms

This constitutes the last equation closing the model. The final

energy diagram for the system is sketched on figure 2.

I
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Figure 2. Sketch of energy exchanges between mean kinetic energy,
turbulent kinetic energy, and potential energy.
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S. SUMMARY AND CONCLUSIONS

Convection is envisioned as the relative motions and inter-

actions of a two-fluid system. Considering only geophysical appli-

cations, the Boussineso approximation is made. Although molecular

processes are necessary to diffuse heat and momentum within the

thermals and anti-thermals, molecular diffusion is modelled through

the parametrization of heat and momenzum exchanges between thermals

and anti-thermals and does not explicitly appear in the governing

equations. The model requires a closure hypothesis. The existence

of a stable saturation equilibrium between the two interacting fluids

permits an assumption of a constant value of the ratio of areas

occupied by these two fluids.

The governing equations ma: b advantageously rewritten in

terms of mean and rms variables. In the particular case of no

horizontal variations, the one-dimensional unsteady model may be

summarized as follows:

Continuity equations: W = 0 (59)

1awE [f(l-f)] rms (60)

Heat equations:- - -(w T ) (51)a az rms rms

z Trms )  (62)

Horizontal momentum equations:

a+ - o - ( v ) (63)

aV a
t az rms rs

+ 2m u ) 0
)z rms (E

a --_v+ 2m v )=0OZ rms(66)
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Vertical momentum equations:

= -1-c- -- 2  (67)
aZ 0 0 o oz rms

aWrms 1 T - rms
rms az rms P 3z

Pressure fluctuation: - p m(u 2  + v 2  ) (69)Prms 0 rms rms

In the above set of equations, f and m are two constants,

related by (44). Equations (60) and (67) give E and p once the

solution is found; they may thus be separated from the others.

Equations (62), (65), and (66) may be directly integrated; the rms

pressure fluctuation may be eliminated in ( 8) by use of (69). The

problem thus reduces to four non-linear first-order coupled differ-

ential equations [(61), (63), (64), and (68)]. Examples of appli-

cations are presented in subsequent papers.

,II
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APPENDIX A

Mathematical treatment of the Preliminary Remark

If a represents any physical quantity, the preliminary remark

states:

(fa') + 2 (fu'a') + -L (fv'a')<<L (fw'a (Al)

Lt [(l-f)a"] + - (l-f)u"a"] + -L [(l-f)v"a"]<<-L [(l-f)w"a"], (A2)

i.e., the vertical acceleration is the dominant part of the substantial

time derivative. The orders of magnitude of the various terms can be

quantified by introducing the scale for each variable: T, for the

time scale of evolution of the whole system, L, for the horizontal

length scale of lateral non-homogeneities in the system, V, for the

horizontal-velocity components, H, for the convection-layer thickness,

and W, for the vertical velocity of thermals and anti-thermals. The

preliminary remark is then equivalent to stating:

1 W VW
-<i and 1 ,W

H L
or << T and

i.e., the time taken by the thermals to cross the convective layer is

much less than (i) the time scale of evolution of the whole system

and (ii) the advective time scale of lateral non-homogeneities.

Mathematically, one may define a dimensionless number, c, to

measure the ratio of these time scales:

35
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(H/WH/Wj (A3)
£ = max

The preliminary remark therefore holds as long as:

E<<l (A4)

If the terms of the order of c and smaller are neglected, the

mathematical treatment of the equations leads to the equations pro-

posed in chapter two. It is shown below that all the equations are

valid at the order of e or better.

The continuity equations (19) and (20) may be rewritten as:

(fw ) = E + 0 (c) (AS)

and - (l-f)w"] = -E + 0 (cK) , (A6)

the sum of which is:

aw w

H

Since, for most of geophysical situations w can be assumed to be zero

somewhere (along a boundary, for example), w is of order eW and thus

is much smaller than w' and w". An integration with respect to z

yields:

W f19' + (1-f)w" = 0(EW) , (A7)

i.e., equation (22) is valid at the order of e.

Equations (24) and (25) may be rewritten as:

a we
T(fw'T') = E (T'+T") + C (c-n) , (A8)

-(l-f)w"T'] = - E (T'+T") + C (e-l) , (A9)

where e is a measure of a temperature difference across the convective

layer. Subtracting from (A) and (A9) the continuity equations (A5)

and (A6) pre-multiplied by T' and T", respectively, one obtains:
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fw, !.T' = lE (T"-T') + 0 Cc-)
3ZH

(l-f)w" - E (T"-T') + 0 CE-)3z H

By virtue of (A7), the difference of these last two equations is:

fw' (T'+T") 0(--)

or (T'+T") 0

i.e., equation (30) is valid at the order of E.

The same treatment can be carried out in a straightforward

manner, and it is concluded that equations (38), (42) and (43) are

valid at the order of c. On the other hand, the governing equations

for the mean variables, T, u and v, are not based on the preliminary

remark and are exact equations.

As an example, the application of the theory of chapter two to

the deepening of the wind-mixed layer (Chapter three) is governed by

the following scales:

H = 10 m, L , T = 104s, W = 10- 2ms-1 , V = 10- 1ms- 1,

in which case, E is of the order of 10-1. Likewise, the application

of the theory to oceanic penetrative convection under surface cooling

(Chapter four) and to wind-induced oceanic frontogenesis (Chapter five)

are based on values of e of the order of 10- 4 and 5x10- 4 , respectively.

The theory, as developed in chapter two is thus directly applicable to

upper-ocean dynamics.

$



APPENDIX B

A more general parameterization of the exchanges
between thermals and anti-thermals

Exchanges of heat and momentum between thernals and anti-thermals

are assumed to take place exclusively through a volume exchange, thus

excluding transfer by diffusion or collision. Exchange terms can

then be written as the product of E, the volume exchange between

thermals and anti-thermals, by the quantity which is being transferred.

Since momentum exchanges are analogous to a heat exchange, only the

parameterization of the heat exchange is discussed in this appendix.

The conclusions will hold for momentum exchanges.

Assuming that the transfer of heat between thermals and anti-

thermals is a net transfer of volume, E per unit time and total

volume, at a temperature Tex , the heat conservation equations take

the form:

a (fT') + -2- (fu'T')+ (fv'T') + _L (fw'T') = E T (Bl)
at x ay az ex

a C(l-f)T"] + - t(l-f)u"T"] + -L (l-f)v"T"] + z[(-f)w"T"]

= -E T (B2)
ex

The exchange temperature, Tex, must be a function of T', T" and

possibly f, and has to meet the following requirements:

i) T ranges between T' and T", (B3)ex

(ii) Tex T, if T' = T" = T, (B4)

(iii) T (T', T", f) T (T", T', 1-f) (B5)

ex ex
38
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The second requirement states that if thermals and anti-thermals

are at the same temperature, the exchange takes place at that temper-

ature, while the third requirement directly follows from the

Invariance Principle.

Using the continuity equations and the Preliminary Remark, and

performing the same algebraic transformations as in chapter two, one

obtains the following equations:

fw'!' r (T - T') (B6)
az ex

(-f)w" = E (T"- T ) , (B7)

az ex

which are generalized forms of (28) and (29). The elimination of the

vertical velocities from (B6) and (B7) by use of (22) yields:

(T"-T LT- CT - T1) 2- 0, (B8)
ex az + (Tex 9)

which is the generalization of equation (30).

No further information can be drawn from this equation without a

parametrization of the exchange temperature, T . Since T has theex ex

dimension of a temperature, a linear function of T' and T" is well-

suited:

T a(f) T' + b(f) T", (B9)
ex

where the dimensionless coefficients, a and b, are functions of f

in general. The three requirements lead to impose:

i) Oa, b~l, (BlO)

(ii) a + b = 1 , (Bll)

(iii) a(l-f) = b(f) (B12)

In this case, equation (B8) reduces to:

a a + b i = 0 , (B13)
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for the derivation of which (BIl) has been used. The coefficients

a and b are functions of f only, and it is assumed later that f is

constant throughout the system. Therefore, (B13) becomes:

a T a- ex -z(aT' + bT") = 0 (B14)

This equation is a more general form of equation (30). Since it is

linear in T' and T", the same analysis as in chapter two and

the subsequent chapters can be carried out. The mathematical

formulation remains unchanged; only the dependence of the coefficient

m upon f has changed to:

m = a(f) - f (B15)
IT(l-f)

The particular case chosen in chapter two corresponds to a = b =

and is the only choice which leads to conserving the total kinetic

energy of the flow, i.e.,

f(U)2+V,2+WI2) + l__f (Uv12+vtt2ewti2)

2 2

As defined previously, parametrizations of exchanges between

thermals and anti-thermals are not based on any coefficient of

molecular diffusivity. However, molecular processes are required

to homogenize thermals and anti-thermals and are effective as

exchanges take place. Therefore, in all precision, molecular

diffusion is not neglected but modelled.



CHAPTER THREE

DEEPENING OF THE WIND-MIXED LAYER:

A MODEL OF THE VERTICAL STRUCTURE

II



1. INTRODUCTION

Much of the work on upper ocean mixing is limited to one-

dimensional models. These can be useful because bulk temperatures

and salinities tend to vary more along a vertical distance of a

hundred meters than along a horizontal distance of a thousand

kilometers. This holds true over many parts of the world's oceans, I
except near fronts, because vertical exchange processes between the

air and the sea, as well as vertical mixing within the water column,

are likely to affect local conditions much more rapidly and

effectively than horizontal advection and horizontal mixing (Niiler

and Kraus, 1977).

Time-dependent one-dimensional models often assume vertical

homogeneity in the mixed layer, and are therefore bulk models.

They were reviewed extensively'by Niiler and Kraus (1977) and

Zilitinkevich, et al., (1979). The four unknowns in these

models are the mixed-layer temperature T, horizontal velocity

components u, v, and thickness h. These variables are functions

of time only and are governed by the overall budgets of heat,

horizontal momentum and turbulent kinetic energy. This last

budget takes the form:

dTKE = F + E - PE - D - Fh , (i)
dt s dt

expressing that the time rate of change of the turbulent kinetic

energy (TKE) is the sum of a surface flux Fs from the atmosphere

through surface-wave breaking and the rate of production E by the

42
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shear of the mean flow minus the rate of increase of potential

energy PE, the rate of dissipation D by friction within the mixed

layer, and the flux Fh of energy lost by internal gravity waves

through the underlying stable layers.

It is reasonable to state that the turbulent kinetic energy

responds quasi-instantaneously to time variations and thus to

neglect its time rate of change (Denman, 1973; Niiler, 1975;

Chapter two). On the other hand, the downward flux by internal

gravity waves is often neglected since no acceptable parametrization

has yet been proposed. The TKE-budget (1) therefore reduces to:

dPE F- + E - D , (2)dt s

which leads to two main classes of models: (i) Turbulent erosion

models (TEM) for which the increase in potential energy by mixing

is exclusively due to the surface flux Fs minus internal dissipation,

and (ii) the dynamic instability models (DIM) for which the increase

in potential energy is entirely due to production of turbulence

by the mean-flow shear. The comparison and synthesis of these two

models are discussed by Niiler (1975), de Szoeke and Rhines (1976)

and Price, et al., (1978).

More recently, various turbulence closure models have been

applied to the mixed-layer deepening problem in order to study

the vertical structure across the layer (Mellor and Durbin,

1975; Warn-Varnas and Piacsek, 1979; Klein, 1980; Kundu, 1980a).

They all show that the assumption of vertical homogeneity is

excellent for temperature when the mixed layer is deep enough so

that the thermocline is well-defined, but not adequate for



44

horizontal velocity components for sub-inertial time scales when

an Ekman-spiral structure is present

In a parallel way, laboratory simulations of mixed-layer

deepening were conducted, either without mean shear (oscillating-

grid experiments by Turner and Kraus, 1967; Linden, 1975) or with

mean shear (Kato and Phillips, 1969; Moore and Long, 1971; Kantha,

Phillips and Azad, 1977).

Finally, theoretical and laboratory results have been com-

pared with observations (Turner, 1969; Denman and Miyake, 1973;

Halpern, 1974; Kullenberg, 1977; Price, Mooers and Van Leer, 1978;

Dillon and Powell, 1979). The main conclusions resulting from

the data are: (i) TEM[ and DIM both lead to qualitative agreement,

(ii) good quantitative agreement is obtained for a well-adjusted

dissipation term, and (iii) comparisons of the various terms in

(2) favor a TEM when the mixed layer is well developed (15 m or

more).

2. THE MODEL

The model presented here is a new turbulent erosion model

(TEM). It focuses on the vertical structure of the variables

throughout the mixed layer and thermocline. The aim is to predict

by simple analytical calculations the thermocline thickness and

profiles of temperature, velocity, Reynolds stresses and heat flux.

The model is based on a new parametrization of mixing and convection

(Chapter two). It can be applied to the most general case of
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mixed-layer deepening under variable wind stress and/or variable

surface heat flux.

The model envisions mixing as the relative motion of two

interacting fluids of different properties. Parcels of fluid

rising through the convective layer are given near the surface

extra momentum by the wind stress, and their temperature is

altered by the surface heat flux. These elements are pushed back

into the convective layer by turbulence with new properties.

Because they sink in a slightly stratified fluid, they accelerate

or decelerate. Ultimately, they will become buoyant and decelerate.

As they sink, they also progressively lose their horizontal-

momentum excess and heat content bv interactions with the upward

return flow. As they reach the bottom, they have a null vertical

velocity and lose their ability to carry heat and momentum. The

active sinking elements are called therrZs, and the rising

elements, anti-them=Zs, by analogy. The model describes the

individual dynamics of thermals and anti-thermals, and their

exchanges; mean properties and relative differences are then

deduced. This permits direct computation of mean profiles and

vertical fluxes of momentum and heat.

For better comparison with previous models and laboratory

experiments, the present study is limited to the case of no

surface heat flux. This wind-mixed layer deepening case is

depicted on Figure 3. At the surface, non-buoyant thermals are

produced by wind action. As they penetrate the mrixed layer,

they acquire positive buoyancy due to a slight stable stratification

I
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Figure 3. Schematic model of the wind-mixed layer.
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existing in that layer, and decelerate. At the bottom of the

mixed layer, their vertical velocity is somewhat reduced. As the

temperature profile begins to curve at the entrance of the thermo-

cline, the thermals' buoyancy increases sharply, and their vertical

velocity decreases rapidly. Since the newly-entrained fluid is

subjected there to the largest temperature variations, the vertical

heat flux wT (negative) is large at the bottom of the mixed layer.

A decreasing velocity therefore implies larger temperature contrasts

and increasing buoyancy forces, which in turn decelerate thermals

even more. The process is cumulative, and gives rise to the

formation of a thin layer of rapid variations, the thermct'ine,

which lies between the mixed layer and the quiescent stable fluid.

Throughout the mixed layer and thermocline, a saturation

equilibrium between thermals and anti-thermals can be assumed

(Chapter two). This leads to assigning a constant value to f,

the fraction of area occupied by thermals. However, continuity

of physical properties at the bottom of the thermocline requires

f to vanish at that level. This may be accomplished by assuming

the existence of an entrainment Layer within which f decreases

monotonically from its constant value in the mixed layer and

thermocline to zero. Calculations carried out in Appendix C show

tnat this layer is in fact so thin that it does not play any

active role in the deepening process and may be neglected. It is

therefore assumed here that f is constant throughout the water

column.

t

.I
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3. GOVERNING EQUATIONS

Thermals and anti-thermals are characterized by different

velocities, temperatures, densities and pressures. Primed and

double-primed quantities refer to thermals and anti-thermals,

respectively. If f represents the fraction of area occupied by

thermals at any level, the fraction of area available to anti-

thermals is (1-f), so that mean properties are defined by:

Mean Temperature T fT' + (l-f)T" , (3)

Mean velocity components u = fu' + (l-f)u' , (4)

= fv' + (l-f)v" , (5)

w = fw' + (l-f)w" , (6)

Mean density p = fP' + (l-f)p" , (7)

Mean pressure p fp' + (1-f)p" (8)

Moreover, root-mean-square (rms) fluctuations are defined by:

a = 'f(l-f) (a'-a") = - / (9)arms

where a stands for any physical quantity such as temperature,

velocity, density or pressure. Rms fluctuations are thus propor-

tional to the difference between thermals and anti-thermals

quantities. They may be positive or negative. The vertical

convective heat flux can be expressed as:

wT fwT' + (l-f)w"T"

(10)
+wT w T (

rms rms

and all the other fluxes such as the Reynolds stresses can be

written in similar forms:

...i• .. . ., o _
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rms rms
- = v w v w(12)

rms rms

_2 w2  (13)
rms

WIth these definitions, the one-dimensional convection (no

horizontal variations) can be described by the following equations

(Chapter two):

Continuity equation: w = 0 (14)

Heat equations: -T T (15)
at 3z rms m

- (T + mT ) 0 (16)z rms

Horizontal momentum u
au

± nT = 0(16)

equations: f v -z (UrmsWrms)

- + f u - (v w(8o Oz rms rms

(19)-zu +2mrms)

av + 2 mvm ) = 0 (20)

Vertical momentum 1 2_( 2
Equations: 0z rms (21)

aWm - agT 1 Prms
3mW az rms 0 o ; 2

0

Pressure fluctuation: Prms 0 -0 re( u  r+v (3

where f 0is the Coriolis parameter, p 0 the reference density at

T0 , a the coefficient of thermal expansion, and m a coefficient

dependent upon f, defined by
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1-2f (

m Vflf) ' (27 7-

and is related to the turbulent kinetic energy input at the surface

(Chapter two). Figure 4 exhibits a plot of m versus f. 0
Eliminating the equations for w and p, (14) and (21), and

replacing prms by its expression (23), the system reduces to seven

non-linear first-order coupled differential equations.

4. BOUNDARY CONDITIONS

At the surface, z =0, the Reynolds stresses ought to match the

wind stress components:

x

-uw = -u w rmsxs(25)
rms rms p

0

T
-vw = -v w Y

rms Ms 0 0 (26)

while the vertical convective heat flux is set equal to zero:

wT = w T = 0 , (27)

since the effect of a surface heat flux is not studied here.

Finally, isotropic turbulence is assumed in the wave zone just

beneath the surface:

w2  u2  + v2  , (28)
rms rms rms

expressing that the turbulent vertical velocity equals the turbu-

lent horizontal velocity.

The wind-stress amplitude defines a friction velocity charac-

teristic of the turbulence near the surface:
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Figure 4. Plot of m versus f, the fraction of area occupied by

thermals.
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U, C(Tx/P )2 + (T /p )2]V (29)

In terms of this friction velocity, the surface boundary conditions

(25), (26), (27) and (28) become:

u =s  /(P U) (30)

v = r /(p u.,.)
rms y o-

W -u (31)

T :0,
rms

where wrm s is chosen to be negative because thermals sink (wf<O<w").

At the bottom, z = -h(t), mean quantities match the charac-

teristics of the underlying motionless layer:

u 0.

v 0 , (32)

T -rh

where r = dT/dz is the constant temperature gradient in the stably

stratified fluid below the mixed layer (See Figure 3). By

definition, the bottom of the thermocline at z = -h(t) is the

level beyond which thermals do not penetrate. The thermals' ver-

tical velocity therefore vanishes at that level:

w? = 0. (33)

Strictly, w' ought to be equal to -dh/dt, the rate of entrainment

at which the bottom of the thermocline deepens. However, the

thermals' sinking velocity through the water column is much greater

than the rate of deepening of the thermocline, and boundary con-

dition (33) is a valid approximation.

The set of equations requires seven boundary conditions
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whereas eight are presently prescribed. The extra condition is

precisely the one which will yield a prognostic equation for the

mixed-layer depth h(t). The system is thus closed and self-

consistent.

5. THE HYPOTHESIS OF A TURBULENT EROSION MODEL (TEM)

For the present boundary conditions, the turbulent kinetic

energy input at the surface by the wind is:
Fs = (w-)[(u_-)2 + (v-v)2 -(_p)2] -

-mw (u2  +v 2  w2  ) w D
rms rms rms rms O rms rms

3=mu 3,
m(34)

at z 0. Thus the coefficient m as defined by (24) is equivalent

to the parameter m as defined by Niiler (1975).
0

In the case of no dissipation, the turbulent kinetic energy

budget (2) is given by Niiler (1975), de Szoeke and Rhines (1976),

Niiler (1977): 1 2 ' 3 1 -2 + =2
vN h h= mu* + ,(u + (35)

where h dh/dt is the rate of deepening, and the double bar

represents a vertical average of mean quantities across the mixed

layer. A turbulent erosion model (TEM) balances, in (35), the left-

hand side with the first term on the right-hand side, arguing that

deepening is caused by erosive action of turbulence propagating

from the surface down to the thermocline. A dynamic instability

model (DIM), on the other side, balances, in (35), the left-hand
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side with the second term on the right-hand side, arguing that

deepening results from a shear instability across the thermocline.

The computations of de Szoeke and Rhines (1976) show that the DIM
2ir

holds for times of the order of the inertial period Z At later
0

times, the mass flow in the mixed layer is limited to the Ekman

transport, the velocity components u and v decrease as h- , and a

TEM applies.

Because this study is directed toward long time scales,

assumptions will be made to reduce the model to a TEM, and thus

decouple the mixed-layer deepening from the mean horizontal flow.

The pressure term in equation (22) represents the mechanism of

production of turbulent kinetic energy from the mean flow shear

(Chapter two). The reduction of the model to a TEM is thus

accomplished mathematically by neglecting the pressure term in (22).

The final model thus reduces to the following set of equations:

- z (w r T ) (36)
-Ft- - - rw rms

S+ fw(37)

- fo" = z rms Wins) (38)

- +f = v w ) (3g)
at az rms rms

z( u + 2mu rm s ) 0 (40)

a( + 2 rms )  0 (41)

aWrm s

3mW rz = "gT (42)
rmsaz m
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with the boundary conditions at z = 0:

T = 0 (43)
r~ms

U "T /(P u ) (44)
rms x o

v rm /(Pou) (45)rms y

W :-u (46)Wrm S

and at z -h: T -rh (47)

u 0 (48)

V 0 (49)

w =0. (50)
rms

6. CHANGE OF VARIABLE AND FUNCTIONS

Since the mixed layer is constantly deepening it is advan-

tageous to use the similarity variable -z/h(t) which varies

from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equations

(37), (40) and (41) with respect to z and define:

U(t) - 2m(t,&)
(51)

Urms

v = V(t) - 2m,(t,&)

(52)
rms

-rT(t) - m r(t,&)
(53)

T rms rT(t,&)

pm



56

where tilded quantities are and t-dependent and represent rms

quantities. The non-tilded quantities U, It and T are constants of

intregration and depend upon time only. They will have to be

determined by the boundary conditions. Note that due to the

presence of the factor r, the new temperature variables T(t) and

T(t, ) have the dimension of a length. The rms vertical velocity

may be redefined as:

w rig -*(t, (54)

in order to work with a positive variable.

With these changes of variable and functions, the remaining

governing equations (36), (18), (39), and (42) become:

* - T T1a (5=-T± =- -- .- (wT)

i au 1 m( i (56)
6-2m~u+ 2m- - f V + 2mf v - (h)at hU-2m - o h a . '

• + 2m.h. +f U -2mr u -- -L( (57)
at h aC 0 o h a

3mwa = -N2hT,

where N 2 = agF is the square of the Brunt-VXis~l9 frequency in the

underlying stratum, and where a dot represents a time derivat've.

The boundary conditions become:

T(O) =0, u(0) = T /(PoU.I), (0) = Ty/(Po),(0 u u, ,(9
x 0y 0

and

T(1) (h-T)/m, u(1) = U/2m, (1) = Vi2m, (i) 0

This constitutes a set of four coupled first-order non-linEar

differential equations which require four boundary conditions.

cm
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However, they contain four unknown time-dependent functions: T(t),

U(t), V(t) and h(t), for which four additional conditions are

required. The system consists of eight boundary conditions,

precisely what is required.

7. GLOBAL HEAT BUDGET

The heat budget of the whole system yields the temperature

T(t) as a function of the mixed-layer depth h(t). Although the

result of this section will be recovered after having solved the

equations, it is useful to anticipate that result in order to

define the Richardson numbers of the next section.

The global heat budget of the mixed layer and thermocline,

integrated over time, expresses that the temperature difference

from the initial value integrated over the water column is equal

to the time integration of the net surface heat flux, which is

zero in the present case:

f(T-rz)dz = 0.
h

Using expression (53) for T and the vertical momentum equation

(58) to eliminate T, one obtains:

3m2F _ w
(-rT +-, ="h w-- + rh&)hd& = 0

0

and, with the use of boundary conditions (59) and (60), the

integral yields:

T(t) -'_(13m2-2 . 612 N
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For oceanic values corresponding to time scales greater than the

inertial period, i.e.,

N'10-2s-1 , u,,p0- 2ms-1, ht20 m, m of the order one,

it is easily seen that the second term in the parentheses in (61)

is of order of 102. Therefore, because the mixed layer is deep

enough (h>>U*), the heat budget reduces at the leading order to:enough

T (62)

This approximate result could have been easily anticipated.

Indeed, assuming a well-developed mixed layer of perfectly

homogeneous temperature and bounded by a zero-thickness thermo-

cline (see Figure 5.), the global heat budget requires the equality

of areas A and B, and therefore T=h/2. Because the mean tempera-

ture profile T is not exactly z-independent, the correction T, due

to a slight gradient through the mixed layer and to a non-zero

thermocline thickness, leads to a value of T which is somewhat

reduced, as expressed by (61).

The total buoyancy in the mixed layer is:

B g2h
0 0

where AP is the density jump across the thermocline, and p the

reference density. Since Ap = po0AT, AT = -rh/2+rh = -Fh/2, by

virtue of (62) (see also Figure 5.), and N2 = ag, the total

buoyancy may be rewritten as:

N2h2

2 (63)
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Figure 5. Limiting case of a perfectly homogeneous mixed layer
bounded below by a zero-thickness thermocline. The
global heat budget requires: Area A Area B.
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8. RICHARDSON NUMBERS

The mixed-layer deepening under the action of a surface wind

stress is successfully characterized by the values of two Richardson

numbers, ratios of the total buoyancy in the mixed layer to the

square of a velocity. The FrictionaZ Richardson nunber is the

ratio of B as defined by (63) to the square of the friction

velocity u, as defined by (29), based on the wind-stress amplitude:

N2h2

Ri = - (64)

This is the Richardson number used by Turner and Kraus (1967),

Kato and Phillips (1969), Kim (1976), Kullenberg (1977), and

Price, Mooers and Van Leer (1978). The OveraZl Richardson number

is the ratio of B to the square of the mean horizontal velocity

in the mixed layer, here approximated by U2+V2 as introduced by (51)

and (52):

R N2h2
v 2(U2 V2) (65)

R is the Richardson number used by Pollard, Rhines and Thompson
V

(1973), Garwood (1977), Dillon and Powell (1979), Price (1979) and

Kundu (1980a).

Both numbers Ri and Rv are time-dependent through h, U and V,

and increase as the mixed layer deepens. They characterize at

anytime the state of the system. The frictional number, Ri, is

the dominant number in TEM's, for turbulence induced by vertical

shear across the thermocline is neglected compared to the surface

input. Because the present model is a TEM, the frictional
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Richardson number, i, will play an essential role. It increases

from zero, when the wind starts to blow, to values much larger

than unity, when the mixed layer is well-developed (Ri%10 2 for

orders of magnitude listed in the previous section ).

[ ~Mathematically, it will be assumed here that the mixed-layer

+ thermocline system may be treated as an interior + boundary-

layer problem. It will be shown a posteriori that this simplifi-

cation holds when

Ri-l,

i.e., when the mixed layer is well-developed.

Another important dimensionless number is the rate of

entrainment

E (66)
U.

the ratio of the deepening rate to the friction velocity, as

defined by Kato and Phillips (1969). The friction velocity is

characteristic of the vertical downward velocity of thermals. It

is anticipated to be large compared to the rate of deepening of

the thermocline because thermals take a short time to sink from

the surface down to the thermocline compared to the time scale of

evolution of the whole system. The entrainment parameter is thus

expected to be very small compared to one.

Dimensional analysis leads to the solution of the mixed-layer

deepening:
E = F(Ri) (67)

and U G (Ri), G (Ri), T G (Ri),U 1 Us 2 h 3
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where the four functions, F, G , G and G result from the solution
1 2 3

of the equations.

9. SOLUTION

a) Hypotheses of a quasi-homogeneous mixed layer:

It is well known from observations and laboratory experiments

that when the mixed layer is well-developed, it is auasi-homogeneous

and bounded below by a thin layer of large gradients, called the

thermocline. This behavior may be anticipated a priori and a

boundary-layer treatment is therefore the appropriate method of

solution. The system is divided into two regions, the interior

region where the horizontal velocity and temperature are almost

constant with depth

Qi < < U , < < V , T < < T 
( 6 8a (68)

T 0(i),

and the thermocline, where vertical gradients are anticipated tc

be very large:

O.%U, V, T T,

a (69)
--> 0(i).

These assumptions will be verified a posteriori, and it will be

- wr. -a- -hey are correct provided that Ri is much greater than



7.

63

b) Solution in the mixed laver

Assuming a quasi-homogeneous mixed layer, equations (55) to

(58) reduce to:

h (w) (70)

u- fv: 13
U V 12- u(71)o h 3'

0 h' (72)

--N hT .(73)

The left-hand sides of the first three equations are independent

of &. Integrations with respect to and use of surface boundary

conditions (59) yield:

hT- , (74)
w

T /P0 -h(U-f 0 V)
~(75)

T3 /Po-h(0+foU)&
: •(76)

Replacing T by (74) in equation (73) yields a single equation

for i whose solution is:
N2 2

3=U3 N 2h T2j (77)
2m

after the surface boundary condition (59) has been used.

c) Solution in the thermocline:

The dominant terms in the governing equations are now those

which include derivatives with respect to &. Moreover, since

this boundary layer lies near 1 1, & may be replaced by one

* where it appears. Equations (55) to (58) now reduce to:

I
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m -(78)
h 3~ h 3

2mi tt : T h c (uw )  (79)

2m (80)

L3W 2
3mw- -N hT (61)

These last equations may be easily integrated with respect to .

The constants of integration are determined by using the bottom

boundary conditions (60):

;T ~ (h-T) (

U +2h(83)
(Bu

where a is implicitly given by the cubic polynominal:

w' + ~w 2 :N~h(h-T)' I-)()

+ iThmn
2 m

10. MATCHING OF SOLUTIONS

The two sets of solutions were obtained independently for the

mixed layer and thermocline by using surface and bottom boundary

conditions, respectively. However, they ought to be the asymptotic

forms of a unique set of solutions valid throughout the whole water

column. This requires imposing matching conditions. As a result,
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four prognostic equations for the time-dependent functions T, U,

V and h will be obtained.

Mathematically, matching conditions are obtained by writing

that, for each variable T, Q, , and i, the mixed layer solution

for approaching unity is equal to the thermocline solution for

C much greater than A. The resulting relations are:

hT = (h-T)h
w 4

T/ h(U-foV) hU

Ty/%° - h(V+f0 U) hV

24 2

u3 N2 h 2  + N h T N)N2 h(h-T)h
7m m m

The above equations can be rewritten as:

(hT) h , (86)

T

(hU) - f (hV) = . (87)o 0°
0

(hV)" + f (hU) = Ty, (88)
o Q

0

N2 h 2 7 = 2mu 3  (89)

Equation (86) can be integrated over time in order to obtain

T in terms of h:

T 1 + constant (90)

2! h2
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The constant of integration cannot be determined by the initial

conditions, since the boundary-layer technique breaks down at the

incipient deepening, when the mixed layer and thermocline are not

well-defined. But, equation (90) is identical to the global

heat budget (61), which is an exact result for all times. The

2 2constant of integration is therefore -3m u!/N and,

T = hi- ), (9)2 2FI%

which reduces to (62), because Ri is much greater than one.

Equations (87) and (88) are the classical transport equations,

whose general solution contains inertial oscillations superimposed

on an Ekman drift to the right of the wind stress. For a time-

dependent wind stress, the solution is:

t

hU = h U + L--T (T) casf (t-T) + Ty(T) sinf (t-T)]dT
0 0 Pjfx 0 y 0

0

t

hV =h V + i-~ E'T (T) cosf (t-'r) - T (T) sinf (t-T)]dT
0 0 P 0 f y 0 x 0

0

The last relation (89) combined with (91) is the prognostic

equation for the mixed-layer depth, and is discussed in the next

section. Finally, the vertical profiles valid throughout the

water column are:

hfE (92)

T /o(-)+ UE(93)

w+ 2mhz

it+ 2mhi+1 
(9L4)

&O ............
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where w is implicitly given by:

, l + JM A 2  = u (I- E2)  ( 5

It is evident from the structure of this final solution (92)

to (95) that similarity solutions do not exist. None of the

variables can be expressed as single products of time dependent

and s-dependent functions. The approach of Kundu (1980b) is

therefore not justified.

11. MIXED-LAYER DEEPENING

Equations (91) and (89) form a coupled set of equations for

T and h. Eliminating T, a prognostic equation for h is obtained:

22 2(N h + 3m u')S : =mu , (96)

which reduces to

2h2h = 4mu. , (97)

since it was assumed that Ri>>l. This last equation is the

turbulent kinetic energy budget for a TEM without dissipation,

expressing that the time rate of change of potential energy equals

the turbulent kinetic energy input by wind at the surface. If the

wind-stress amplitude is constant with time, the mixed-layer depth
3

increases in time as t3.

In a dimensionless form, (96) and (97) become:

2m (98)

2 +Ri

and E 22 (99)
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respectively, where E and Ri are defined by (66) and (64). The

dependence of the entrainment rate on the inverse of the frictional

Richardson number has long been observed in the laboratory (Kato

and Phillips, 1969) as well as in oceans and lakes (Kullenberg,

1977; Price, et al., 1978; Dillon and Powell, 1979).

Various values of m are proposed by authors while more can be

computed from data in the literature. A summary is shown in Table

1. From the table, one concludes that all the values of m agree

rather well, approximately one or slightly larger. Values of f,

the fraction of area occupied by thermals, were computed by (24)

and are found of order of 10%. Thermals are thus rather small

disturbances among a return flow which occupies most of the

available surface. This result agrees with numerical calculations

(Piacsek, 1968) and laboratory observations (Turner, 1973), which

all show that thermals or plumes are narrow and occupy a small

fraction of the total area of any level. For a system where the

roles played by thermals and anti-thermals are perfectly symme :ric,

one can argue that the value of f ought to be 50%. However, in

the present situation, thermals are locally generated very near

the surface while anti-thermals are progressively formed in the

water column as they rise, and an excess of momentum is input

locally at the surface, while it is progressively consumed for an

evenly-distributed momentum increase of the water column. These

asymmetries explain why thermals are narrow and anti-thermals

diffuse and thus why f differs markedly from 50%.

The correction in the denominator of (98) is reminiscent of
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Of the one proposed by Kim (1976):

2m
(Cm/u) 2±Ri

where 1c2 is the average turbulent kinetic energy across the mixed

m

layer. For m = 1.25, Kim proposes (CM/U )2 = 9, while (98) yields
3m2

= 2.34. The corrections are thus of the same order of magnitude.2

The results of this section permit justification of the

assumptions which were stated before solving the equations. One

has to show that the approximations

T<<T, <<U, v<<V

hold in the mixed layer as long as Ri>>l. In the mixed layer,

, is of order of u*, its surface value, which is much larger

than A according to (99). From (92), (93) and (94), one obtains:

T U V u,

which validates the method of solution chosen for this problem.

12. THICKNESS OF THE THERNOCLINE

Due to non-linearities, the boundary-layer method applied

here differs from classical applications to linear systems, and

caution must be exercised when one evaluates the boundary-layer

thickness. At first, one could think that the thermocline is the

region where w is of order A, so that corrections in the denominators

of (92) to (94) become important. This argument leads to a

dimensionless thermocline thickness of order Ri-3, which is
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&much too small. There is a thicker layer where boundary corrections

start to appear in the solution. Indeed, in the temperature

equation (55),

DT t ~

(a) (b) (c) (d)

The right-hand side, term (d), balances term (a) in the mixed layer,

while it balances term (c) in the thermocline. The top of the

thermocline is thus the level where term (c) begins to take over

tarm (a). Boundary corrections therefore start to appear where

these two terms compete, i.e., where

h 6

where 6& is the dimensionless thermocline thickness. Because

the boundary layer is a thin region, & is almost one, and,
hu4

according to (89) and (92), T is of order of R, , so that:

U,* (100)

The balance of the vertical-momentum equation (58) combined with

(89) requires:

u1*.
3  

(101)

Combination of (100) with (101) finally yields:

SRi-  , (102)
1

Su*Ri - 4  (103)

Therefore the dimensionless thickness of the thermocline is Ri
- 4

rather than Ri- 3.

In a study of turbulence and entrainment within the interfacial

zone bounding a mixed layer, Long (1978) concludes that turbulent

!i
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patches have a dimension hRi - , and that the rms vertical velocity

in the mixed layer near the interface is of order uRi -4. The

agreement between the two approaches is perfect, and supports the

modelling by two interacting fluids as a theory of convective

turbulence.

The actual dimensional thickness of the thermccline is:
3

, (lO2)

and decreases as the mixed layer deepens. This interface shal-

lowing was observed in laboratory experiments (Kato and Phillips,

1969) and in numerical experiments (Kundu, 1980a).

13. VERTICAL PROFILES

Solutions (92) to (95) govern the vertical variations of

rms fluctuations throughout the mixed layer and thermocline.

They can be used in (51) to (54) to yield the profiles of mean

quantities they can also be combined to form vertical fluxes.

Figures 6 to 13 are plots of vertical profiles of physical

quantities of interest. The wind stress is taken in the

x-direction:

Ty/ 0 0

and mean currents at 450 to its right:

U -V ku,
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The values assigned to the various parameters are:

Ri = 100, m = 1.25 (f = 0.11), k = 7.

Figure 6 is a plot of the turbulent vertical velocity, which

is proportional to the thermals' vertical velocity. Thermals

leave the surface with the friction velocity imposed by the

surface stress. As they sink, they become slightly buoyant and

decelerate. Their velocity vanishes precisely at the bottom of

the thermocline.

Figure 7 shows the mean temperature profile. The temperature

is almost homogeneous in the mixed layer and equal to -Ih/2, as

required by heat conservation. There is however a slight stable

gradient of order Ri- , so that thermals progressively become

buoyant and decelerate as they sink through the mixed layer. The

thermocline is well-defined, and its thickness corresponds to (102).

Figure 8 shows the development of the mixed layer and the shallowing

of the thermocline as time goes on.

Figure 9 shows the vertical profiles of horizontal velocity

components, u and v. The mixed layer is quasi-homogeneous as

required by the assumptions made in order to solve analytically

the governing equations. This excludes Ekman veering with depth,

and separates the flow into a depth-independent inertial oscillation

and a quasi-steady shearing flow that carries the turbulent stresses

downward through the mixed layer. This is similar to the results

of Kundu (1980a) for time scales greater than the inertial period,

when his model becomes a TEM. The velocity u in the direction of
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the surface stress increases slightly with depth. The reason is

the following: as thermals sink, they progressively exchange with

anti-thermals the extra momentum they have received near the sur-

face. This reduces the turbulent fluctuations, and increases the

mean value accordingly. The v-profile does not exhibit such

behavior since there is no extra-momentum in the y-direction given

at the surface. In the thermocline, both profiles curve sharply

and vanish so as to match the bottom boundary conditions.

Figures lOa and b show the vertical profiles of the Reynolds

stresses, -uw and -vw, scaled by the surface stress. Both

stresses vary linearly through the mixed layer, from the imposed

value at the surface, to a residual value at the top of the thermo-

cline. These residual values are AU and AV, and are precisely the

jump conditions imposed by authors of bulk models (Niiler, 1975,

for example). The stresses decrease rapidly through the thermo-

cline to zero so as to meet bottom boundary conditions.

From mean profiles and stresses, one can compute eddy

viscosities defined by:

V = _uw and v = -VW

Figures lla and b show the results. The eddy viscosity in the

x-direction is negative in the mixed layer due to the increase

of u with depth. The negative values are correlated with a

transfer of momentum from turbulent motions to mean current.

The turbulence generated at the surface by the wind is progressively

i .. . .
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structured to increase the mean current. In the y-direction, no

turbulence is supplied at the surface, and fluctuations increase

downward due to differences between sinking thermals and rising

anti-thermals. At the level where u is maximum, a little above

the thermocline, V is unbounded, as a result of its definition.u

Below that level, in the thermocline, the strong shear of the

mean flow generates turbulence, and eddy viscosities are both

positive. They vanish at the bottom of the thermocline, where

stresses vanish, and shear is maximum. It is worth noting that

* V is quasi-constant near the surface, and that V increases
u v

linearly from the surface like

u,

v 2m

in agreement with the classical theory of turbulence. The

corresponding Von Kgrman constant is

K - 0.40

for m = 1.25. This result is encouraging. There is therefore a

link between the parameter m and the Von Kirman constant. The

laboratory value obtained for m is in perfect agreement with$
laboratory measurements of turbulent flow.

Figure 12 shows the profile of the vertical convective heat

flux. Mixing brings cold water from below, cools the surface

layers and heats the fluid recently entrained in the convective

process. There is therefore downward transfer of heat. This is

the reason why the heat flux is negative everywhere. The constant

gradient through the mixed layer corresponds to a homogeneous
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cooling of the fluid, as stated by the heat equation (15). The

maximum negative value at the top of the thermocline is close to

-!Ihh, which is the jump condition across the thermocline, used

in bulk models (Kraus and Turner, 1967, for example).

Figure 13 shows the profile of the eddy heat diffusivity

defined by

T T

It is positive everywhere, and has a profile similar to v v

14. MONIN-OBUKOV LENGTH

The Monin-Obukov length is a measure of turbulence in

convection. It is generally defined as (Turner, 1973;

Zilitinkevich, et al., 1979):
u*3

where u* is the friction velocity characteristic of the turbulence,

K the Von Karman constant, and 8 the vertical buoyancy flux.

In the present case, the vertical buoyancy flux is noted
B = ctglI ,

which is zero at the surface and at the bottom of the thermocline.

It is maximum near the top of the thermocline. The value of that

maximum is obtained (at the leading order in Ri-1) as the limit

of the mixed-layer buoyancy flux as & tends to one:

8 Z lim gJlTl N2h,

$

, 4kj
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by using (10), (14) and (74). Using this value in the definition

of Z, one obtains:
2u3

2u Km

by virtue of (89). The Monin-Obukov length is therefore propor-

tional to h. The coefficient of proportionality (2Km)-1 equals

unity for K 0.40 and m :1.25. This result has a physical

reason: the wind-mixed layer is a convective system generated

by surface turbulence; therefore, turbulence and convection

have equal importance, and the Monin-Obukov length has to be

proportional to and of order of the depth of the layer i.e., h.

Inversely, this physical argument could have been used

independently, by writing a priori L h (Zilitinkevich, et al.,

1979). The model would therefore conclude that (2m - equals

one, or
m :1.25,

for K = 0.40. The value of m can therefore be inferred from the

€
theory, and be compared to observations and laboratory experiments

(see Table 1). The agreement is excellent.

When a buoyancy flux (cooling or heating) is imposed at the

surface, convection or re-stratification may dominate turbulence.

In such a case, the Monin-Obukov length is expected to be smaller I

or larger than h, and the resulting values of m are expected to

be greater or smaller than 1.25. 9

0

1S
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15. CONCLUSIONS

A new model of convection and mixing was applied to the

study of mixed-layer deepening under the action of wind stress.

It is based on a modelling by two interacting fluids. Emphasis

was not on the energetics, but rather on the dynamics of mixing.

Turbulence production by mean shear near the thermocline was

neglected in order to simplify the vertical-momentum equation.

The model is thus a turbulent erosion model, for which the

potential--energy increase required for deepening is provided by

turbulence input at the surface.

A simple analytical solution was found in the case where the

mixed layer Is well-mixed and separated from the underlying

quiescent fluid by a sharp thermocline. The results are valid

if the frictional Richardson number is much greater than unity,

the condition for a sharp thermocline to exist. Expressions for

the thermocline thickness and turbulence scale near the thermocline

are in very good agreement with previous results of turbulence

theory.

Vertical profiles were then plotted. The turbulent vertical

velocity decreases monotonically from a maximum value at the

surface down to zero at the bottom of the thermocline, without

showing any sudden variations in the thermocline. The temperature

profile is composed of a quasi-constant value through the mixed

layer and of a rapid variation in the thermocline. Velocity
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profiles show the separation of the flow into a depth-independent

inertial oscillation and a quasi-steady shearing flow that carries

the turbulent stresses downward through the mixed layer. In the

thermocline, the profiles curve sharply in order to match the zero

mean velocity in the underlying stable fluid. Reynolds stresses

and vertical convective heat flux vary linearly through the mixed

layer from their respective imposed surface values to residual

values required for entraining new fluid in the mixing process.

in the thermocline, they rapidly decrease to zero. Resulting

eddy diffusivities of heat and momentum were computed and plotted.

The eddy viscosity of the flow in the direction of the wind stress

is negative near the surface, implying that a part of the turbulent

energy supplied at the surface goes to the mean flow. In the

direction perpendicular to the surface stress, the eddy viscosity

varies like the eddy heat diffusivity, vanishing at the surface

and at the bottom of the thermocline, and reaching a maximum

somewhere at mid-depth. Finally, an argument based on the pro-

portionality between the Monin-Obukov length and the mixed-layer

depth led to relate the parameter m, ratio of the turbulent

kinetic energy input to the cube of the friction velocity, to the

Von K~rm~n constant. The value was found to be equal to the one

proposed by Kato and Phillips (1969) and in good agreement with

field observations.

i2



APPENDIX C

The entrainment layer

The results presented in the previous section [equations (92)

to (95)] were based on the assumption of a constant fraction of

area occupied by thermals throughout the mixed layer and thermo-

cline. This, however, leads to some inconsistencies. At the

bottom of the thermocline (z=-h), the anti-thermals' variables

are given by:

l-2f
~f

Ulf T ---f U ,(Cl)

l-2f

At that level, however, anti-thermals are constituted of newly

entrained fluid, and the expected values are

T" = -rh, u" = v" = 0 (C2)

The values (Cl) reduce to (C2) if f = 0.

Therefore, these inconsistencies can be removed by including

a new boundary layer below the thermocline, here named the

entrainment layer. The role of this layer is to allow f to decrease

from its constant value in the mixed layer and thermocline, through

this entrainment layer, down to zero in the quiescent fluid under-

neath it.

The purpose of this appendix is to show that, based on scaling

arguments, this entrainment layer is in fact very thin and, thus,

cannot have any effect on the dynamics of the whole system.

87
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In a thin layer of large gradients, the mean-temperature

equation reduces to (78), implying that the scale for the vertical-

velocity fluctuation, Wrms, is n. Physically, this scaling

expresses that, in that region, thermals siak at a velocity

comparable to the rate of deepening.

Assuming that heat transfers between thermals and anti-

thermals are controlled by molecular diffusion in the entrainment

layer, one can write

SAT VAT (C3)

d2

where d is the thickness of the layer, AT, the scale for the

temperature difference between thermals and anti-thermals, and v,

the molecular heat diffusivity (v = 1.4×10 7-m 2s-l, for water at

150C). From the above equation it appears that the layer

thickness is:

d -(C4)

For typical oceanic values, h is of the order of 0-ms-1 and,

therefore, d is of the order of the millimeter.

In conclusion, the entrainment laver, where thermals are

converted to anti-thermals by molecular diffusion, is a very

thin layer and is not capable of controlling the evolution of

the overall mixing processes.



CHAPTER FOUR

PENETRATIVE CONVECTION
DUE TO SURFACE COOLING
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1. INTRODUCTION

In early fall, the upper ocean usually has a continuous,

moderately stable density distribution, bounded at its top by a

thin daily wind-mixed layer. Past mid-fall and during winter,

a net cooling of the ocean surface sets in. Instability and

natural convection occur. Cold elements produced near the

surface become unstable and sink through the water column,

eroding the stratification built up during the previous summer.

Contrary to the diurnal thermocline formation, this erosion is

accomplished at a slow but continuous rate throughout the winter

period. A mixed layer is formed, penetrating the stable strati-

fied fluid below and entraining new fluid in the convective

process. The lower boundary is marked by a density change that,

on a macroscopic scale, is almost discontinuous. As deepening

proceeds, this density jump, called the seasonal thermocline,

becomes deeper and stronger. The maximum depth of the winter-

time erosion marks the permanent thermocline.

Wind stirring plays an important role at the start, but

rapidly convection dominates the process. Thermal instability

itself supplies the kinetic energy required for stirring and

deepening. In the present modelling, therefore, the wind effect

is ignored. The system is highly convective, and molecular

diffusion of heat is not important.

The problem has long antecedence in studies of the atmos-

pheric boundary layer. Indeed, convection above a heated ground

90
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exhibits the same features of upper-ocean mixing due to surface

cooling (Scorer, 1978). The models of Yamada and Mellor (1975),

and Zeman and Lumley (1976), based on aecond-order closure

hypotheses, realistically predict the structure of buoyancy-

driven mixed layers. Comparisons with laboratory experiments

(Willis and Deardorff, 1974; Heidt, 1977) and observations

(Telford and Warner, 1964; Warner and Telford, 1967; Lenschow,

1970) support these theories.

The present study shows that simple analytical calculations

as opposed to sophisticate turbulence numerical models, can

describe the general features of a convective layer. The phi-

losophy resembles the one of Manton (1975) in a study of penetra-

tive convection in a stratified fluid due to a field of thermals.

The present work, however, describes the dynamics and turbulent

characteristics of convection in more detail.

Although the results presented here focus on convection in

the upper ocean forced by surface cooling, they apply directly

to convection in the lower atmosphere above a heated ground.

2. THE MODEL

The model is based on a new parametrization of mixing and

convection (Chapter two). It can be applied to the most general

case of mixed-layer deepening under variable wind stress and/or

variable surface heat flux. The present work is a direct appli-

cation to upper ocean convection due to surface cooling.

• _ .... ...I
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The model envisions convection as the relative motion of two

interacting fluids of different properties. The active sinking

elements are called thermazs, and the rising return flow, anti-

thermals, by analogy. The model describes the individual dynamics

of thermals and anti-thermals, and their interactions. Mean

properties and relative differences then result from the solution.

This permits direct computation of mean profiles and vertical

fluxes of momentum and heat.

Throughout the mixed layer and thermocline, a saturation

equilibrium between thermals and anti-thermals can be assumed

(Manton, 1975; Chapter two). This leads to assigning a constant

value to f, the fraction of area occupied by thermals. This

hypothesis closes the set of equations without introducing any

empirical coefficient of entrainment by thermals.

Parcels of fluid rising through the convective layer are

given, near the surface, negative buoyancy by the outward sur-

face heat flux (see Figure 14). These elements, the thermals,

become heavier than their environment, and sink back into the con-

vective layer. They accelerate and gradually mix with the upward

return flow until they reach the neutral level, where they are no

longer buoyant. Because of their non-zero velocity and their

inertia, they overshoot that equilibrium level, become buoyant,

and progressively decelerate. As the mean temperature profile

begins to curve at the bottom of the mixed layer, the elements'

buoyancy increases sharply, and their vertical velocity decreases

rapidly. Since the newly-entrained fluid is subjected there to

,: .: _ _ . .. ... .... ... .. 2.2.2 "L .7 Z _ " "... ... .... .. ......... .... ..... .. ..... .. .. j.. . . ....
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/MIXED LAYER w>0

T/
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STHERMOCLINE I

rz dh
dt

Figure 14. Sketch of penetrative convection in the upper ocean due
to surface cooling by an imposed heat flux Q. In the
mixed layer, the mean temperature T is almost constant,
while the convective heat flux ;T decreases with depth.
In the thermocline, T varies sharply, while wT increases
rapidly. The neutral level is the level where thermals
and anti-thermals have the same temperature. The
dotted curve is the mean temperature profile at a
later time, showing the cooling in the mixed layer
and the heating in the thermocline.
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the largest temperature changes, the vertical convective heat flux

-T (downward) is large. A decreasing vertical velocity there-

fore implies larger temperature contrasts and increasing buoyancy,

which in turn decelerate the sinking elements even more. The

process is cumulative, and gives rise to the formation of a thin

layer of rapid variations, the thermocline, which lies under the

mixed layer and above the quiescent stably-stratified fluid.

Above the neutral level, thermals transport a lack of heat

downward. The heat flux is thus positive (upward) in that region.

It decreases with depth as the temperature difference between

sinking and rising fluids is progressively reduced by mixing.

Below the neutral level, the sinking elements are buoyant and

carry an excess of heat downward. The heat flux there is

negative (downward). At the bottom of the thermocline, thermals

stop, and the heat flux vanishes again. The heat-flux profile

therefore behaves as shown on Figure 14, with a negative

minimum value near the bottom of the mixed layer. The level at

which the minimum value of wT is reached can be thought of as

being the top of the thermocline.

The heat-conservation equation is

. . . wT(
at z (

and implies that, in the mixed layer, the mean temperature

decreases, while in the thermocline, it increases with time.

After a short while, the temperature profile will behave like

the dotted curve in Figure 14. The water temperature therefore
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does not change at the top of the thermocline. Of course, that

level deepens with time, allowing every layer of fluid to be

somewhat heated before being cooled. This heating process in a

system forced by cooling only is explained by the ability of

convection to generate its own kinetic energy for mixing.

3. GOVERNING EQUATIONS

Thermals and anti-thermals have different properties, here

noted by primed and double-primed quantities, respectively. If

f represents the fraction of area occupied by thermals at any

level, the fraction available to anti-thermals is (1-f), so

that one may define

the mean vertical velocity w =fw'+ (l-f)w" , (2)

the mean temperature T =fT' +(l-f)T" , (3)

the vertical convective heat flux wT= fw'T' + (l-f)w"T" (4)

Root-mean-square (rms) fluctuations can also be defined (Chapter

two): w .'f(l-f) (w'-w") , (5)
rms

T = f (1-f) (T'-T") . (6)
rms

Note that, according to these definitions, rms fluctuations can

be positive or negative.

In the absence of lateral variations (one-dimensional model),

continuity requires w to be constant with depth (Chapter two).

Since there is no overall upwelling nor downwelling in the system.

w vanishes everywhere. As a consequence, the vertical convective

["
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heat flux, as defined by (4), may be rewritten in terms of rms

fluctuations only:

wT : w T (7)
rms rms

With these definitions, and in the absence of horizontal

velocity, the one-dimensional model of convection (Chapter two)

can be summarized as follows:

Heteuain;at=-a(w T ),(S)Heat equations: t - -z rms rms

= 0 , (9)
az m

aw
Vertical momentum equation: 3mw rms +

rms z gT + 5, (10)

where m is a coefficient depending on f only, defined by:

l-2fm : (II)

The first equation expresses that the time rate of change of the

mean temperature is due to the divergence of the convective heat

flux. The second equation relates mean and rms temperatures in a

simple linear way, and is a direct result of the assumption that

turbulent motions respond quasi-instantaneously tc local variations

in the system (Chapter two). The third equation expresses that

thermals' inertia is balanced by the buoyancy force and a friction

force, 6. The friction force was not included in the model of

chapter two, but is introduced here because of its importance in

deep convection processes. The Monin-Obukov similarity theory

(Wyngaard, Cot6, and Izumi, 1971), theoretical studies (Lenschow,

1974), laboratory experiments (Willis and Deardorff, 197a), as
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well as atmospheric boundary layer observations (Lenschow, et aZ.,

1980), suggest that the rate of dissipation of kinetic energy is

constant with depth, but decreases rapidly toward zero near the

interface. This implies that 6 behaves like 1w rms I- , except in

the thermocline where it has to remain bounded. On the other

hand, global turbulence arguments suggest that the total dis-

sipation is proportional to the cube of turbulent velocity scale.

A parametrization of the friction force which satisfies all

these requirements is:
3mD w_____

6 M-
K = Wrms

where D is a dimensionless parameter, and w* the scale of the

turbulent vertical velocity, which will be defined in the next

section. The small term mh in the denominator is introduced to

yield a friction force bounded everywhere; its form is chosen

for further convenience in the mathematical formulation of

the solution. The vertical length scale is chosen to be Kh,

the Von Kfrm~n constant times the convective layer depth.

The problem consists of three non-linear first-order

coupled differential equations. It requires thus three boundary

conditions. At the surface, z = 0, the convective heat flux

equals the imposed surface flux, and a friction velocity pre-

scribes the rms vertical velocity:

w T :Q , (12)

W (13)

0The surface flux Q is the kinematic heat flux (heat flux divided

------------------- 'D.-.
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by p C ), and is positive in a cooling situation (upward flux).

The rms vertical velocity is negative since thermals sink while

anti-thermals rise (w'<0<w").

At the bottom of the thermocline, z = -h(t), the mean

temperature ought to match the temperature of the underlying

stratum.:
= -Ph , (14)

where r is the initial temperature gradient of the water (see

Figure 14).

In the formulation of the problem, the mixed-layer depth,

h(t), is still unknown. An extra boundary condition has thus to

be imposed in order to close the problem. This condition is

precisely the definition of the base of the thermocline, i.e.,

the level beyond which thermals do not penetrate:

W= 0 ,

which implies: wrms = 0 . (15)

4. CHANGE OF VARIABLE AND FUNCTIONS

Since the mixed layer is constantly deepening, it is

advantageous to use the similarity variable = -z/h which varies

from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equation

(9) with respect to z, and define:

=-rT(t) - mrT(t,&) ,(16)

rms



where T is a function of time only, and T is a function of both

time and . Note that, due to the presence of the factor F, the

new temperatures T and T have the dimension of a length. The

rms vertical velocity may be redefined:

win -i (t, ) , (18)
rms

in order to work with a positive variable.

With these changes of variable and functions, the governing

equations (8) and (10) become:

3T 3 1 -
- - m T =- -- - (oT , (19)

-aw N2h- D w3
3w- - - - T - +mh (20)

where N2  cgr is the square of the Brunt-V~isglg frequency in

the underlying stratum, and where a dot represents a time

derivative. The boundary conditions become:

a t(o) - - ' (0) = u. (21)
~and

() h I (,) = 0 (22)
m

This constitutes a set of two coupled non-linear first-order

differential equations which require two boundary conditions.

However, they contain two time-dependent unknowns: T(t) and h(t),

for which two additional conditions are prescribed. The system

*is thus closed and self-consistent.

5. SCALES AND THE RICHARDSON NUMBER

T

The characteristic parameters of penetrative convection due

....................-
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to surface cooling are the buoyancy flux at the surface S = agQ,

the mixed-layer depth h, the Brunt-V~is~l8 frequency in the

underlying stable fluid N = (agf)', and the friction velocity u,.

(computed from the surface wind stress). The comparison of wind-

induced turbulence to convective motion is expressed by the

Monin-Obukov length: 3
u,.

(23)

For very convective situations (h >4, when wind-stirring becomes

a negligible part of the kinetic-energy release from potential

energy, the turbulence structure in the mixed layer no longer

depends on u* (Kaimal, et al., 1976). The characteristic velocity

becomes the convective vertical-velocity scale:

w, (KSh): (KaghQ (24)

According to the assumption that wind-stirring plays a seccndary

role in the deepening process, w,.. is the correct scale in the

mixed layer if:

3 3 (25)

by virtue of (23) and (24).

The total buoyancy in the mixed layer is

Lp

where AP is the density jump across the thermocline, and P. the

reference density. Since Ap = PoaAT, where AT is the temperature

jump across the thermocline, the total buoyancy may be rewritten

as:

B =agh AT. (26)



101

The Richardson number is defined as the ratio of the total

mixed-layer buoyancy, B, to the square of the characteristic

vertical velocity, w,,

Ri ghAT (27 )

(KR ghQ)(

As the mixed layer deepens, the temperature jump across the

thermocline increases (Willis and Deardorff, 1974; Heidt, 1977).

The Richardson number therefore increases with time. It is well

known, too, from observations and laboratory experiments that

when the mixed layer is deep enough, it is quasi-homogeneous and

bounded below by a thin layer of large gradients. It will be

shown here a posteriori that this situation corresponds to:

Ri>>l . (28)

For penetrative convection in the upper ocean due to winter

cooling, typical values are

Q%3xl 0-oCms- 1, r%0.1°Cm - 1, K = 0.40, u.,.%10- 2ms- I
, L7%l 0C, h^100 m

which corresponds to:'

3×10-7m 2s- 3, N"I0-2s -1, V-10 m, w..2.3 10-zms- 1, Ril90.

It is therefore seen that, for the purpose of this work, the

inequalities h/Z>>l and Ri>>l are met. The latter permits use

of a boundary-layer technique to solve the equations, while the

former will simplify the discussion of mixed-layer deepening, as

shown later.
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6. SOLUTION

Mathematically, it is assumed here that the mixed-layer and

thermocline system may be treated as an interior and boundary-

layer problem. The solution found here will therefore apply if

Ri is much greater than one.

The system is thus divided into two regions, the interior

region, where the temperature is quasi-constant with depth, i.e.,

i 0(i) , T<T (29)

and the thermocline, where vertical gradients are anticipated to

be very large:

>>l , .-T(0
(30)

These assumptions will be verified a posterior-, and it will be

shown that they are correct provided that (28) is met.

a) Solution in the mixed layer:

Assuming a quasi-homogeneous mixed layer, equations (19)

and (20) become:

f (31)
- h 3E

~3? N2h -
3w _ T - (32)

m K

The left-hand side of (31) is independent of E, and an integration

can be performed. Use of surface boundary conditions (21) gives:
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-I+ hi
F a (?3)

Replacing T by this expression into (32) yields a single

differential t uation for P:
3

3g2 =' - N2h2  D
5 MK m K

whose solution is:

3= cmw": 2m (34)

after the surface boundary condition (21) has been used.

b) Solution in the thermocline:

The dominant terms in the equations are now those which

include derivatives with respect to Z. However, since this

boundary layer lies near = 1, & may be replaced by one where

it appears. Equations (19) and (20) now reduce to:

mh -= - -(T ) , (35)

3~N 2 h - D~3 -- T- - (36)
m

These last equations can be easily integrated with respect to F.

The constants of integration are determined by using the bottom

boundary conditions (22). The implicit solution is:

(h-T)A
+'--- ' (37)

g3 + mhf 2 =N 2h(h-T) + R w 3 (38)

m K
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c) Matching of solutions:

The two sets of solutions were obtained independently for

the mixed layer and thermocline by using surface and bottom

boundary conditions, respectively. However, they ought to be

the asymptotic forms of a unique set of solutions valid throughout

the whole water column. This requires imposing matching con-

ditions. As a result, two prognostic equations for the time-

dependent functions T and h will be obtained.

Mathematically, matching conditions are obtained by writing

that, for each variable t and ;, the mixed-layer solution for $

approaching unity is identical to the thermocline solution for

Smuch greater than 1. The resulting relations are:

Q +hT
T h (h-T)1

+1-mD N2h2T 1Kmw:mJ
Km- 2m I ,-c (-m

(N2h(hT)A + (w31

They can be rewritten as:

(hT)" hh + (39)r'

(w7 2N2') + u 
3 mD3 2 . (40)

Equation (39) is the global heat budget of the system.

Indeed, the overall heat budget expresses that the temperature

difference from the initial value, rz-T, integrated over the

water column is equal to the time integration of the net surface
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heat flux, Q:

h(rz-t)dz = fOdt (4l)

Using expression (16) for T and the vertical momentum equation

(20) to eliminate T, one obtains:

hT 3, 2A ?(~~ +d + -t dt .(42)a2 &2 J

The integral is estimated to be of order w2. The second term

of the left-hand side is thus found to be of the order of 
-ghAT
Ri

Estimating LT to be comparable to T (somewhat smaller according

to laboratory experiments), this term is estimated to be not

hT
greater than - , which is much smaller than the first term for

Ri>l, as assumed previously. The global heat budget thus

reduces to:

hT = h2 + dt , (u3)

whose time derivative is precisely (39).

Equation (40) is the turbulent kinetic energy budget of the.

system. It expresses that the turbulent kinetic energy is in

quasi-equilibrium at all times (Chapter two), so that the sum

of the release of potential energy and the surface input equals

the rate of dissipation in the water column. Indeed, the release

of potential energy is:

1dE= Otg 10 dz,1 dPE-

P dt zh

- Q +

d
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according to (7), (17), (18), (24), and (33); the surface input is

-2 w(w-:)2 I = -rmw3 (z~o)
-zo rms

= mu , (45)

according to (13).

Combined with (39), equation (40) yields the prognostic

equation for the mixed-layer depth. Due to its importance and

its consequences, that equation is derived in the next section.

The vertical profiles of T and 0 valid throughout the water

column are, after matching:

QT+ 'ahT 
(46)

43 +JfmAQ2 u3(l_E2) + 1-mD 3
.,. ( m) w,_i (47)

Since the friction velocity u* cannot exceed the convective

velocity scale, equations (45) shows that w.* is, indeed, the

appropriate vertical-velocity scale, as assumed previously.

It is worth noting that the solution is implicit in f, but

vertical profiles can be plotted without real difficulties.

7. MIXED-LAYER DEEPENING

Equations (39) and (40) form a coupled set of equations for

T and h. Eliminating T yields a prognostic equation for h,

which can then be solved if the time variations of Q and u, are

known. Such a substitution is Dossible. However, it is

advantageous to consider T as a function of h. Eliminating then
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the variable t between (39) and (40) yields:

m X dT dT

2(1-rD)(1l~D m , + T-h) =:- (48)

Although an exact solution can be found, an approximate solution

is obtained without great difficulty, based on the inequality

X<<h .

The method of regular perturbation yields:

T = el-- M-z(49)£hl2(l-mD)2 (9

where the coefficient E is defined by:

C = 2(1-mD) (50)
3-4mD (

The constant of integration was chosen such that T remains

bounded for h = 0. At the leading order (Q/h = 0), (49) reduces

to: T = Eh . (51)

The mean temperature in the mixed layer is thus proportional to

the depth of convection. This has been shown to be the case in

laboratory experiments (Heidt, 1977). The coefficient of pro-

portionality, noted e by Heidt, is given by (50).

Now eliminating T in (39) by use of (49) leads to the

prognostic equation for the mixed-layer depth:

(1-i -- L)hA = (3-4mD)I (52)h

For a given surface heat flux, Q, and friction velocity, u*,

known as functions of time, this equation can be integrated by

quadrature. If Q is steady, and if the mixed-layer is deep

enough (h>>Z), the depth of the layer increases as t . This
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rate of growth was found by most of the bulk models and laboratory

experiments (Betts, 1973, and Heidt, 1977, for example).

From the previous relationships, one may compute the temper-

ature jump across the thermocline, the heat flux at the base of

the mixed layer, and the Richardson number. The temperature

jump across the thermocline is:

AT -PT + Ph

l-2mD Ph (1+ m k

3-4mD (-mD)(l-2mD) h

according to (49). The temperature jump increases with time as

h. The heat flux at the base of the mixed layer is the limit

for approaching one of the mixed-layer flux wT = -FPT derived

from (33):

TTI- h = Q - hT

= -Q[l-2mD+2Km-] , (54)

according to (49) and (52). That heat flux is negative (down-

ward), and thus opposite to the surface flux (upward). This

results from the previous description of thermals' dynamics.

Thermals are buoyant in the bottom of the mixed layer, below the

neutral level. They thus carry an excess of heat downward.

The heat flux is therefore negative (downward) and opposite to

the surface flux. The same situation commonly occurs in the

atmosphere. The atmospheric convective boundary layer, which

forms above a heated ground (upward heat flux), is capped by an

inversion, at the base of which a downward heat flux is observed.

This phenomenon was first reported by Ball (1960), and since
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4', then has been reported in many observational surveys.

The heat flux at the base of the mixed layer is proportional

to the surface flux, Q. The coefficient of proportionality,

noted A by various authors, is:

A=1-2mD + 2 m (55)
h

The Richardson number, defined by (27), can be computed

from (53). At the first order in , it takes the form:

Ri- m = rm t l+(lmD)(l_2mD) h(56)

and increases with time as h . The rate of deepening, 1,

decreases with time as Ri~ , according to (52) and (56).

The Richardson number can be used to write the prognostic

* equation for the mixed-layer depth in a non-dimensional form.

If the rate of entrainment, E, is defined by the ratio of rate

of deepening, h, over the characteristic velocity scale, w*, a

* simple algebraic relationship between Ri and E can be obtained:

E A=R---L (57)
E cRi

The rate of entrainment is therefore inversely proportional to

the Richardson number. Since Ri is much greater than one, E is

small, and 1 is much less that w,. Thermals thus sink much

faster than the mixed layer deepens.

8. COMPARISON WITH OBSERVATIONS AND PREVIOUS MODELS

Various values of the coefficients A and e were proposed

$

" 6- .2. t- -,
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in the literature. These two parameters are not independent.

Indeed, eliminating mD between (50) and (55), one obtains, at

the leading order:

I-E
A (58)

Table 2 presents an extended version of a table of values

of the parameters A and E compiled by Heidt (1977). Values

proposed in the literature are based on atmospheric observations,

laboratory experiments, and various models of penetrative con-

vection, applied to the atmosphere and ocean. From this table

it appears that (i) no values were proposed in the literature

as a result of oceanic observations, (ii) models without

dissipation yield invariable values (A = 1, E = 3), (iii)

highly dissipative experiments or models yield extreme values

(A=0, E=1), and (iv) atmospheric observations, numerical models,

and laboratory experiments are in satisfactory agreement

(A = 0.12-0.25, e = 0.83-0.90). The scattering of the values

can be explained as follows. By this model, A and E are

related to the parameter m see Figure 15), which in turn depends

upon f, the fraction of area occupied by thermals. The value of

f strongly depends upon the surface unstable layer where thermals

are generated, and there is no reason to believe that laboratory

experiments and a heated ground generate thermals in the same

conditions.

Simple non-dissipative models underestimate the value of c,

while laboratory experiments, where molecular viscosity acts as



TABLE

YEAF A! h '() £OUPrE A E

1960 Ball Atmospheric bulk model, without
dissioaticn 1 0.67

1967 Kraus and
Turner Oceanic bulk model, in case of no

dissipation 1 0.67

1968 Lilly Atmospheric bulk model
- without dissipation 1 0.67

- for minimum entrainment 0 i
1968 Lenschow and

jchnscn Airplane measurements 0.25 0.83

1964 Ceardorff, Laboratory experiments, strong
e: ai. molecular viscosity effect 0.02 0.98

1973 Betts Atmospheric bulk model, with
dissipation; empirical coefficient
from observations in the Tropics 0.25 0.83

1973 Carson Cbservations of the atmospheric
boundary layer 0 - 0.5 0.75 - i

1973 Lenszhow Dbservations of the atmospheric
:oundary layer over the Great Lakes 0.08 0.93

1973 Pollard, ceanic bulk model, without
et aZ. lissipation 1 0.67

1973 Tennekes Atmospheric bulk model, with
dissipation; empirical coefficient

from studies of convection 0.2 0.86

197L Deardcrff Second-order turbulence numerical
model . 0.14 - 0.21 0.85 - 0.39

1974 Lenschow Bulk model, empirical coefficients
from aircraft measurements over a
lake 0.15 0.86

197L Willis and
Deardorff Laboratory experiments 0.10 0.91

1975 Manton Simple model of convection, with
trong dissipation 0 1

1976 Sill and ceanic bulk model, coefficient of
Turner penetrative convection estimated from

atmospheric observations 0.15 0.88

197E Zeman and econd-order turbulence numerical
Lumley nodel 0.10 - 0.15 0.88 - 0.91

1977 Heidt Laboratory experiments 3.12 - 0.24 0.84 - 0.90

1979 Poisin Model of oceanic convection due to a
field of thermals, no dissipation 1 0.67

1980 Cushman-Poisin Present analytical model, with
dissipation (function of f) 0 - 1 0.67 -

Table 2. Summary of values for the parameters A and e proposed in the
literature. The parameter A is a measure of the heat flux at
the base of the mixed layer, and c is the coefficient of
proportionality between T and h.
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a strong dissipative mechanism, overestimate E. The reason is

found in the discussion of the turbulent kinetic energy budget.

The excess of the potential energy in the mixed layer over the

potential energy of the initial state is, at the leading order:

1 PE -ag (T-rz)zdz
°o -h

3 E- 2 N 2h 3 .
6

Its time rate of change is:

1 dPE .
P d -a tg hwTdz

= -2 N2h2h
2

For e greater than 2/3, the time rate of change is negative,

expressing that release of potential energy occurs. The kinetic

energy so produced feeds convective motions and is finally dis-

sipated. A model without dissipation, therefore, does not allow

a net global potential-energy release, and yields c = !,,

establishing a minimum value for e. This value is recovered in

the present model if the friction coefficient, D, is set equal

to zero in (50). Increasing dissipation requires increasing

release of potential energy for convective motions and, therefcre,

an increasing value of c. Values of E greater than unity cannot

occur, for, in such a case, the temperature difference across

the thermocline would be destabilizing (mixed-layer temperature

lower than underlying stable fluid temperature). In laboratory

experiments for which molecular viscosity plays a dominant role,
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the value to E is close to unity.

Second-order closure turbulence numerical models lead to

decreasing values of c as the mixed layer develops. Indeed, at

the early stage, dissipation is dominant, and c is close to one;

but as time goes on, dissipation has less importance and c

decreases slightly. The present analytical study is based cn

the assumption of a well-developed mixed layer (Ripl), the

value to be assigned to e in the present model is thus to be

compared with the lowest values of the numerical models (0.84-0.85).

9. THICKNESS OF THE THERMOCLINE

Due to non-linearities, the boundary-layer method applied

here differs from classical applications to linear systems, and

caution has to be taken in the evaluation of the boundary-layer

thickness. At first, one could think that the thermocline is

the region where w is of order h, so that the ccrrection in the

denominator of (46) becomes important. This argument leads to a

dimensionless thermocline of order Ri- 3, much too small. There

is a thicker layer where boundary corrections start to appear in

the solution. Indeed, in the temperature equation (19):

-~- T+ h 2T -z-4( T ) , (59)-

the term on the right-hand side balances the first term in the

mixed layer, and the third term in the thermocline. The top of

the thermocline was defined as the level where the convective
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heat flux reaches its maximum negative valie, i.e., where the

right-hand side of (59) vanishes. Equation (59) thus requires

a balance between the first and third terms at that level:

where 6 is the dimensionless thermocline thickness. Because

the boundary layer is anticipated to be a thin region, & is

almost one, and according to (46) and (49), T and T are of the

order of and 1, respectively, so that:

(60)6 rhQ

On the other hand, the balance of the vertical-momentum equation

(20) requires:

Q 2(61)

Combination of (60) and (61) and use of (24) and (56) yield:

6 Ri- (62)

and

% wRi- (63)

Therefore, the dimensionless thickness of the thermccline is

Ri-  rather than Ri

In a study of turbulence and entrainment within the inter-

facial zone bounding a mixed layer, Long (1978) concludes that

turbulent patches have a dimension of hRi , and that the rms

vertical velocity in the mixed layer near the interface is of
-3-

order of w*Ri . The agreement between the approaches is perfect

and supports modelling by two interacting fluids as a theory of
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convective turbulence.

With dimensions, the actual thickness of th therncc'i.

is:

and does not depend upon h. If Q is steady, the mixed layer

deepens with time, but is bounded below by a thermocline 3f

constant thickness. For typical oceanic values (Q 3 X10- 4Crs 1,

rx0.1lCm - 1, N1\10- 2s-1), the thermocline thickness is found to be

of the order of 50 cm.

The boundary-layer method required that (i) : is negligible

compared to T in the mixed layer, and (ii) the thermocline thick-

ness is small compared to the mixed-layer depth. In the mixed

layer, T is of the order -- , while T is of the order of h, i.e.,

T Q KQ)/3.-
T Phw,

according to (24) and (56). On the other hand, the ratio of

the thermocline thickness to the mixed-layer depth is 5 , and is

of the order of Ri . It is therefore concluded that the boundary-

layer method is applicable to the present problem provided that

Ri is much greater than unity, as anticipated.

10. COMPARISON WITH SIMILARITY THEORY

The solution presented and discussed in the previous para-

graphs is not a similarity solution, for the ratio thermocline
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thickness to mixed-layer depth is not constant with time.

However, it is shown here that the asymptotic behavior near the

surface takes a similarity form, and is formally identical to

the solution obtained by Wyngaard, Cot4 and Izumi (1971).

The theory presented by these authors is an extension of the

Monin-Obukov similarity theory to free convection regime under

very unstable conditions (£<h). Its validity is confirmed

by atmospheric observations (Wyngaard, et ai., 1971).

Near the surface, the characteristic dimensionless variable

is:

z h- (65)

where Z is the Monin-Obukov length defined by (23). For n of

order one, turbulence and convection compete, and the Monin-Obukov

similarity theory applies. For n much greater than one (but

still less than h/), free convection takes over surface-generated

turbulence, and the theory degenerates in simple 1/3 power laws, as

shown by Wyngaard, et al.

Near the surface (&<<I), the solution of the present model

takes the form:

T = -- (66)

+ -m_ w.1. , (67)

according to (46) and (47). In terms of the variable n, (66)

and (67) become:

T - (l 1nYD (69)-r+u --,nm -
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f4 u .(l + M- D n).. ,:'-" --n 3(69)

From these expressions for the rms fluctuations of temperature

and vertical velocity, second- and third-order correlations can

be computed. For example:

1 u n'(l/3 (70)
cm

1-moD )1
w7(T-T) = -2mu...Q(l +- 3(KM (71)

Figures 16a and b are plots of vertical profiles of exzressions

(70) and (71), for which Wyngaard, Cct6 and Izumi (1971) had

observations from the atmospheric boundary layer. The agreement

between theory and data is best for:

1-mD 5
Km

and 2m = 0.64

These values correspond to a fraction of area occupied by thermals

of 35% (f = 0.348, m = 0.32) and a friction coefficient D = 1.125.

From (50) and (58), the values of E and A are

e = 0.82

A = 0.28

This is the range of values observed in the atmospheric boundary

layer for unstable conditions (Lenschow and Johnson, 1968;

Carson, 1973). It is worth noting that values of ' and E obtained

here are deduced exclusively from surface conditions. The theory

is, therefore, capable of predicting bulk properties of the

atmospheric boundary layer or oceanic mixed layer by using only
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Figure 15. (a) Dimensionless vertical velocity variance and
(b) Dimensionless vertical turbulent flux of vertical
heat flux near the surface, for (1-mD)/Kmz5 and 2mzO.64.
Dots correspond to atmospheric observations presented
by Wyngaard et aZ. (1971).
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surface turbulence conditions.

11. VERTICAL PROFILES

Solutions (46) and (47) govern the vertical variations of

rms fluctuations throughout the mixed layer and thermocline.

They can be used to compute profiles of mean quantities such as

mean temperature, heat flux, turbulent kinetic energy flux and

variances.

Figures 17 to 24 are plots of vertical profiles of physical

quantities of interest. The values assigned to the parameters are:

m = 0.5, (f = 0.276),

D =0.8

0.1

Ri= 20

and were chosen in order to reproduce the laboratory experiments,

run El, of Willis and Deardorff (1974). The four parameters were

computed to match the Richardson number Ri, the rate of entrain-

ment E, the ratio u,/w,., and the total rate of dissipation.

Figure 17 is a plot of the turbulent vertical velocity, which

is proportional to the thermals' vertical velocity. Thermals

leave the surface with the friction velocity u,. As they sink, 9
they accelerate under gravity. Due to the combined action of

friction and a decreasing downward buoyancy force due to mixing

with the environment, their velocity reaches a maximum. Below
t

that level, the buoyancy force is still directed downward, but

"1
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Figure 17. Vertical profile of the rms vertical velocity, scaled
by -w.*.
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Figure 18. Vertical profiles of the vertical-velocity variance, w2,
scaled by w*2 . The solid curve is the solution of the
present model. The dashed curve is the numerical
solution of Zeman and Lumley (1976). The dots represent
the data of Willis and Deardorff (1974), run Sl.
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friction dominates, and thermals decelerate. Ultimately, they

become lighter than their environment. Both friction and an

upward buoyancy force bring the thermals' velocity to zero, pre-

cisely at the bottom of the thermocline.

Figure 18 is a plot of the vertical-velocity variance,

defined by w. It is a measure of the turbulent kinetic energy.

Dots reproduce Willis and Deardorff's data for run S1. Figure 1?

is a plot of the vertical flux of turbulent kinetic energy.

defined by -1ww2 , which is the reduced form of the total tur-

bulent kinetic energy when only the vertical velocity is impor-

tant. Dots reproduce Willis and Deardorff's data for run S1.

The agreement of the theory with laboratory experiments is

excellent in both cases. The accuracy of the present simple

analytical calculations is comparable to the one of the second-

order turbulence numerical model of Zeman and Lumley (1976),

whose solutions are shown in dashed lines for comparison.

Figure 20 is a plot of the temperature variance, defined by

(T-T)2. It is maximum at surface and decreases with depth as

the temperature difference between thermals and anti-thermals

is reduced by mixing. The temperature variance vanishes at the

neutral level, where thermals and anti-thermals have the same

temperature, and increases below that level, where turbulence

is generated. Dots reproduce Willis and Deardorff's data for

run Sl. The agreement is satisfactory. Although none of the

observed values is zero near the neutral level (as one may

expect in laboratory or in geophysical situations), a

3
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Figure 19. Vertical profiles of the vertical flux of turbulent
kinetic energy, -!-ww 2 , scaled by wl. The solid
curve is the solution of the present model. The
dashed curve is the numerical solution of Zeman and
Lumley (1976). The dots represent the data of Willis
and Deardorff (1974), run Sl.
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scaled by (u*/Q)2 . The solid curve is the solution of

the present model. The dashed curve is the solution of

Zeman and Lumley (1976). The dots represent the data of

Willis and Deardorff (1974), run Si.
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well-pronounced minimum is present in the bottom half of the

mixed layer.

Figure 21 is a plot of the vertical temperature profile

through the mixed layer and thermocline. The temperature is

almost homogeneous in the mixed layer. The thermocline is

well-defined, and its thickness corresponds to (62). Figure 22

shows the profile of the vertical convective heat flux, wT. Near

the surface, it is positive (upward) and matches the imposed flux.

It decreases almost linearly with depth, corresponding to a

homogeneous cooling of fluid, as stated by the heat equation (1).

The level at which the convective heat flux vanishes corresponds

to the neutral level beyond which thermals become buoyant. Below

that level, the heat flux is negative (downward). The maximum

negative value at the top of the thermocline is equal to -AQ,

which is the jump condition across the thermocline used in bulk

models (Kraus and Turner, 1967, for example). Dots reproduce

Willis and Deardorff's data for run Sl. The linear decrease

through the mixed layer was also observed in the atmospheric

boundary layer (Lenschow, 1974).

From the profiles of mean temperature and heat flux, one can

compute an eddy diffusivity of heat, defined by:

-wT
VT - aT

9z

Figure 23 shows the resulting profile of vT' The eddy heat

diffusivity is negative above the neutral level, where the heat
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Figure 21. Vertical profile of mean temperature, Tscaled by rh.
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flux is positive. The heat taken out of the fluid near the

surface creates thermals, which sink with a heat deficiency.

Along the sinking motions, that heat deficiency is progressively

reduced by mixing between thermals and anti-thermals. The

turbulent temperature fluctuations generated at the surface are

thus progressively structured to change the mean temperature.

The negative sign of the eddy heat diffusivity expresses that

the transfer of energy is from turbulence to mean structure.

Below the neutral level, the heat flux is negative, and the

eddy heat diffusivity is positive. The transfer is from mean

structure to turbulence. The eddy heat diffusivity vanishes

again at the bottom of the thermocline where the heat flux

vanishes, and the temperature gradient is maximum.

Figure 24 shows the terms of the turbulent kinetic energy

budget, obtained from the vertical momentum equation (10):

aw w0 = -3m w2  rms mD 3 rms
rms Wrms rms K Iw +M

IrmsI

Advection, release of potential energy, and dissipation balance

exactly to yield a zero time rate of change of turbulent kinetic

energy. The release of potential energy is propcrtional to the

heat flux; release occurs only above the neutral level; below

that level, thermals decelerate under the action of the buoyancy

force'and convert the kinetic energy, which was not dissipated,

back to potential energy. The rate of dissipation is quasi-

constant with depth and decreases rapidly through the thermocline.

This is not surprising since the dissipation term was parametrized
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Figure 24. Dimensionless turbulent kinetic energy budget: release

of potential energy (dashed line), transport (solid line),
and dissipation (dotted line).
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Figure 25. Same as figure 24, but for run Sl of Willis and
Deardorff (1974).
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for that purpose. Figure 25 reproduces Willis and Deardorff's

computations from their data of run SI. The agreement is

excellent.

Figure 26 to 28 are plots similar to the previous ones, to

be compared with run S2 of Willis and Deardorff (1974). Values

of m and D were unchanged since there is no reason to expect

that the fraction of area occupied by thermals and the friction

coefficient differ from run SI. The ratio £/h and the

Richardson number were recalculated to represent the different

conditions of the experiment (£/h = 0.1, Ri = 45). Figures 26

to 28 show plots for which data were available for comparison.

The other plots do not differ greatly from those related to run Si.

12. CONCLUSIONS

A new model of convection and mixing was applied to the

study of penetrative convection in the upper ocean due to surface

cooling. It is based on modelling by two interacting fluids.

Cold elements produced near the surface become unstable and sink

through the water column while continuity of mass forces an upward

return flow. The model describes the individual dynamics of these

two fluid motions. Mean properties and fluxes up to third-order

correlations are then computed. Dissipation is included in order

to model realistically the deepening of the mixed layer. The

new parametrization of dissipation presented here is dictated by

laboratory experiments, atmospheric observations, and turbulence
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Figure 26. Vertical profile of the vertical-velocity variance, w2,
scaled by wi, as on figure 18 but for Ri = 45. The
triangles repre,'ent the data of Willis and Deardorff
(1974), run S2.
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The triangles represent the data of Willis and Deardorff
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wT. scaled by the surface flux Q, as on figure 20 but
for Ri= 45. The triangles represent the data of
Willis and Deardorff (1974), run S2.
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t arguments.

A simple non-similar analytical solution is found in the

case of a well-mixed layer separated from the underlying quiescent

fluid by a thin thermocline. The results are valid if the

Richardson number is much greater than unity, the condition for

the existence of a sharp thermocline. Expressions for the

thermocline thickness and turbulence scale near the thermocline

are in very good agreement with previous results of turbulence

theory. The asymptotic behavior of the solution near the sur-

face has a similarity form as predicted by the similarity theory

of Monin and Obukov. Moreover, in the interior of the mixed

layer, far away from the surface and the thermocline, the

solution degenerates in simple /3-power laws as proposed by

Wyngaard, Cotd and Izumi (1971).

Bulk properties of the solution were compared with atmospheric

observations of the surface boundary layer, laboratory experiments,

and previous models (see Table 2). Scattering in the values of

the coefficients proposed in the literature implies that no

universal values can be assigned to those coefficients. The

present model does not assign any specific value; rather, it shows

a dependence on the fraction of area occupied by sinking elements.

This fraction of area strongly depends upon the surface unstable

layer where thermal instability occurs, and is not expected to

take the same values in laboratory experiments, in the ocean,

or in the atmosphere.
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Vertical profiles of vertical-velocity variance and vertical

flux of turbulent kinetic energy (Figures 18 and 19, respectively)

have a broad maximum near mid-depth, as observed in laboratory

experiments. At the surface, they match the imposed turbulence

imput by the wind, and, at the bottom of the thermocline, they

both vanish without showing any sudden variations in the thermo-

cline. The temperature variance decreases from the surface down

to zero at the neutral level, where sinking and rising fluids

are at the same temperature. Below that level, it increases

again and has a large gradient in the thermocline. As expected,

observations do not show a vanishing temperature variance at

any level, but a well-pronounced decrease is observed precisely

at the neutral level. The temperature profile is composed of

a quasi-constant value through the mixed layer and a rapid

variation in the thermocline. The vertical convective heat

flux varies linearly throughout the mixed layer. It is positive

(upward flux) above the neutral level, vanishes at the neutral

level, and is negative (downward flux) below it. In the

thermocline, the heat flux rapidly decreases from its maximum

negative value down to zero. A resulting eddy diffusivity of

heat is computed from the mean-temperature gradient and the

convective heat flux. The heat diffusivity is found to be

negative above the neutral level. This implies that the

temperature variance supplied at the surface by the forcing is

progressively used to change the mean temperature, as cold
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elements move downward. Below the neutral level, the heat

diffusivity is positive; in that lower region of the mixed layer

and in the thermocline, turbulence is generated by the system

itself. As shown in figures 18 to 28, computed profiles and

available laboratory data agree remarkably well. Moreover,

the accuracy of the simple analytical results presented here

is comparable to that of sophisticated turbulence numerical

models.

.
r



CHAPTER FIVE

* EFFECTS OF HORIZONTAL ADVECTION:
A CASE OF FRONTOGENESIS



1. INTRODUCTION

The large-scale upper ocean fronts across the central North

Pacific are fronts associated with the convergence of Ekman

transports (Roden, 1976). In that region, the wind field is

dominated by westerlies and the trade winds. This results in

eastward stresses and southward Ekman drifts in the north, and in

westward stresses and northward Ekman drifts in the south. The

region of convergence of these water transports is highly fronto-

genetical. Continuity of mass requires that the water either

downwells (convergence) or escapes laterally in a zonal flow

(confluence). According to Roden (1980), the central North

Pacific is characterized by these t~io dynamic features. Obser-

vations show two zones of strong surface convergence of Ekman

transports, one at the southern edge of the westerlies and the

other at the northern edge of the easterlies, and a transition

zone of conf uence in between. What mechanism determines whether

convergence or confluence occurs, remains however unclear.

Wind stresses generate Ekman transports and, at the same

time, vigorously stir the upper layer of the ocean. If there

is no advection, wind stirring erodes the stably-stratified fluid

underneath and entrains heavier water in the mixed layer; the

surface density increases with time as the mixed layer deepens.

On the other hand, if there is no mixing, positive buoyancy advec-

tion (cold or saline water advection) locally increases the sur-

face density, while negative buoyancy advection (warm or fresh

139
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water advection) locally decreases the surface density. Therefore,

wind stirring and wind-driven horizontal advection can add or

subtract their respective effects. In the case of an oceanic

front generated by the convergence of Ekman transports, positive

buoyancy advection generally occurs on the northern side, and

negative buoyancy advection on the southern side of the front.

Wind mixing thus reinforces advection north of the front, while

it opposes advection south of the front. As a result such a

front is asymmetric: the horizontal density gradient is stronger

on the northern side of the front than it is on the southern side.

The asymmetry was observed in the subtropical frontal zone in

the central North Pacific (Roden, 1976 and 1980), where fronts

exhibit a well-defined southern edge which separates weak density

gradients to the south from strong density gradients to the north.

.The Subarctic Front around 420N escapes this asymmetry, for temp-

erature and salinity fronts compensate each other, yielding very

weak density gradients (non-baroclinic front).

Another source of asymmetry results from the initial hori-

zontal density gradient. Positive buoyancy advection tends to

transport heavy water masses over lighter water masses and thus

to reduce the density jump at the bottom of the mixed layer.

There results an asymmetry in the pycnocline strength between

northern and southern sides of the front: the pycnocline is

weaker in the north and stronger in the south. Moreover, the

resistance to mixed-layer deepening is less where the density

n



# jump across the pycnocline is weaker. As a consequence, the mixed

layer is slightly deeper on the northern side. Observations

(Roden, 1980) and results presented here both show these asymme-

tries in the pycnocline strength and mixed-layer depth in both

sides of the front.

MacVean and Woods (1980) developed a two-dimensional oceanic

frontogenesis model forced by a barotropic horizontal deformation

field associated with meso-scale eddies. Turbulent mixing is

neglected and Ertel's potential vorticity theorem governs the

cross-front velocity. The present approach drastically differ

from this study, for the forcing is a surface wind stress capable

of generating both drift currents and turbulent mixing. The

cross-front flow is the Ekman transport. Moreover, for the

scales chosen herein, mixing effects are found to be as important

as advective effects.

The present study is aimed at wind-induced frontogenesis

with emphasis i) on the distinction between convergence and con-

fluence in frontal zones, and (ii) on the dual role played by

the wind: advection and mixing. An initially quiescent ocean

is characterized by linear density gradients in both vertical and

meridional directions. (Heavier water is encountered in the deep

layers and in the northern region.) The vertical stratification

is suppressed near the surface and is replaced by an initially

very shallow vertically-homogeneous upper layer. A wind-stress

field suddenly takes place and remains constant with time. The
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wind stress is positive (westerlies) at the north, and negative

(easterlies) at the south. Ekman transports to the right of the

wind thus converge toward the middle of the basin, where the wind-

stress curl is maximum. The flow pattern is frontogenetical, and

a density front is progressively generated by heavy water advec-

tion from the north, and light water advection from the south.

A wind-mixed layer also deepens on both sides, reinforcing advec-

tion in the north and opposing advection in the south. The mixed

layer deepens faster away from the front, where the magnitude

of the wind stress is larger, and on the northern side where the

pycnocline is weaker. The two cases of convergence and conflu-

ence are treated separately. In the case of convergence, a down-

welling is superimposed on the system. This effect is maximum

at the front itself where the wind-stress curl is maximum. In

the case of confluence, water flows away laterally along the

front, and no downwelling is present. For the sake of simplicity,

dissipation is not included, the front strengthens endlessly, and

no steady state is reached. The $-effect is neglected, since a

frontal zone has, by definition, a small meridional extent.

2. MODEL

The model developed herein is based on modelling of mixing

and convection by two interacting fluids (Chapter two). The

present work is a generalization of a one-dimensional version of

the model applied to the deepening of the wind-mixed layer
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(Chapter three), in order to study the effects of lateral advec-

tion on mixing.

The model envisions mixing as the relative motion of two

interacting fluids of different properties. Parcels of fluid

rising through the mixed layer are given, near the surface, extra

momentum by the wind stress. These elements are pushed back into

the convective layer by turbulence with new properties. Because

they sink in a slightly stratified fluid, they are buoyant and

decelerate. As they sink, they also progressively lose their ex-

cess of horizontal momentum by interactions with the upward

return flow. As they reach the bottom of the pycnocline, they

have a null vertical velocity and lose their ability to carry

heat and momentum. The active sinking elements are called ther-

nrzls, and the rising elements, anti-themaZs, by analogy. The

model describes the individual dynamics of thermals and anti-

thermals and their exchanges.

The one-dimensional model developed in chapter three is

capable of predicting the vertical structure of mean and fluctua-

ting properties throughout the mixed layer and the pycnocline.

Since the level of turbulence responds quasi-instantaneously to

temporal and local variations (advective effects are equivalent

to temporal variations), turbulent fluxes and vertical-structure

properties are given by the one-dimensional model. Therefore,

using the results of the one-dimensional model, an advective bulk

model is developed and solved. Emphasis is placed on the discus-

sion of mixed-layer depth, mean currents, and horizontal density

0~
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gradient, all bulk properties affected by advection, rather than

on vertical profiles of turbulence structure which are not affected

by lateral advection.

Another generalization is also proposed. Since open ocean

frontogenesis depends on both temperature and salinity fields,

salinity is included in the formalism. Double-diffusive processes

fall out of the scope of the present study, and diffusion is ne-

glected. This simplification permits combination of temperature

and salinity in a unique thermodynamic variable, the buoyancy,

defined by:

b = g( -aT + $S), (1)

where T is the temperature, S the salinity, a the coefficient of

thermal expansion, and $ the coefficient of saline contraction.

The so-defined buoyancy is dimensional, greater for cold and

saline water, and smaller for warm and fresh water. The initial

buoyance field is chosen to be:

b = b + r 2 y - r3z , for z < -ho

(2)
and

b = b0 + r2y rh , for -ho < z < 0,

where b0 is a reference buoyancy (pure constant), r2 and r3

the horizontal and vertical gradients, respectively, and h0
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the non-zero initial mixed-layer depth. The factor Y is intro-2

duced, in agreement with the one-dimensional model of the wind-

mixed layer (Chapter three).

3. GOVERNING EQUATIONS

Thermals and anti-thermals are characterized by different

velocities, densities, and pressures. Primed and double-primed

quantities refer to thermals and anti-thermals, respectively.

If f represents the fraction of area occupied by thermals at any

level, the fraction of area available to anti-thermals is (1-f),

so that mean properties are defined by:

a = fa' + (l-f)a" , (3)

where a stands for any DhVsical auantitv such as velocity compo-

nents, buoyancy, or pressure (u, v, w, b, or p). Moreover, root-

mean-square (rms) fluctuations are defined by:

af = l-f (a'-a") = ± 2 (4)
rms

Fams fluctuations are thus proportional to the difference between

thermals and anti-thermals quantities. They may be positive or

negative. Second-order turbulence correlations are expressed as:

ac = fa'c' + (l-f)a"c" , (5)

where a and c stand for any physical quantities. Simple calcula-

tions using (3) and (4) yield:

I - r , m . . . . . . . I . . [ l ] I l . . . . . h . . ". . . .... . . .. . . ." ' . . . . . . . . . .
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ac ac + a Msc (6)I~Srms

Throughout the mixed layer and pycnocline, a saturation equi-

librium between thermals and anti-thermals can be assumed (Chapter

two). This leads to assigning a constant value to f, the fraction

of area occupied by thermals. It has been shown in chapter three

that oceanic observations and laboratory experiments suggest a

value close to 10%.

With these definitions and the closure hypothesis, the advec-

tive model is governed by the following non-linear equations

(Chapter two):

Continuity equation: .-- + - + - = 0 (7)
ax, y _Z

Buoyancy equations: a + -7b + - 0 , (8)at D a

a (Smb ) 0 (9)
az rms

Horizontal momentum a - a - a - 0
equations: at + ' u+ uw - fo

a- a- a- _(n
at ay a: o P0Oy

a- + 2m u ) 0 (12)

az
S(v + 2m v )=0 ,(13)

az rms

Vertical momentum
equations: . (1 + (14)

P az

,.,•0
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3m w -w b ,(15)
rms 8z rms rms

where f is the Coriolis parameter (positive and constant), p0

the reference density, and m is a coefficient dependent upon f

only, defined by:

1-2f 
(16)

2,'f(l-f)

Three small terms were neglected: (i) a correction due to verti-

cal advection in the hydrostatic balance (14), (ii) a correction

due to a non-zero mean vertical velocity w in (15), (iii) the

pressure term in (15). These simplifications hold as long as

2
w <<gh, (17)
rms

w<<lw rms , (18)

-2-2.h 3

u +v )_ << mu3 , (19)

respectively. The last requirement is equivalent to neglecting

the turbulence production in the pycnocline by mean shear compared

to the surface turbulence input (Chapter three). This simplifica-

tion is valid for time scales much larger than the inertial period

which is met in the case of frontogenesis.
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In the case of frontogenesis, it is reasonable to anticipate

that the zonal mean velocity, u, is geostrophically balanced by

a cross-front mean pressure gradient, 6p/ay, and that the meridi-

onal mean velocity, v, is the depth-independent Ekman flow induced

by the zonal wind stress. In the mixed layer, equations (10) and

(11) thus reduce to:

f -- uw (20)

and

f =(21)0 PO ay

Assuming that b is depth-independent in the mixed layer, (21) can

be solved for u in terms of the horizontal buoyancy gradient (so-

called thermal-wind relationship):

- 1 3bu 1 ay (z+h) (22)

0

Since u vanishes at the bottom of the mixed layer, the newly-

entrained fluid from below is not given zonal momentum in the

thermocline. The Reynolds stress -Uw therefore vanishes at

z -h, and equation (20) can be integrated to yield:

T
- x
- , (23)

0
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where Tx(y) is the local wind stress at the surface, and h(y,t)

the local instantaneous mixed-layer depth. North of the front

T is positive and v is negative; south of the front T is nega-x x

tive and v is positive. These two Ekman flows meet at the front

(y=0), and continuity requires the water to flow either vertically

(convergence), laterally (confluence), or both ways. At the pres-

ent state of knowledge, it is unclear from observations what mech-

anism determines whether convergence or confluence occurs. In

the present work, the two extreme cases of convergence and con-

fluence are thus studied separately. In nature various combina-

tions of these two cases occur simultaneously, as described by

Roden (1980).

In the case oj convergence, the continuity equation (7) is

reduced to 3v/ay + Z/9z 0 and yields:

I 1 ' f y (X) (24)

0 0 f0 a

In the case of confZuence, w at the bottom of the mixed layer is

the vertical component of the velocity along the sloping pycnocline

(w = -v Wah/y as z = -h), and the full continuity equation (7) has

to be used. This yields:

-L_ (z+h) + x 1 (25)
0 ay ofoh y fy  0 (25)0 0y0

$
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where the origin of the zonal coordinate x is undefined. At the

bottom of the mixed laver, the mean vertical velocity w is:

_W a ) (convergence),

h'r (26 )

= -= y ( ) (confluence) .

PO f 0 y h

The Ekman downwelling in the underlying stratified fluid is given

by:

1 ax
W 1 - (convergence),k Po0fo0 ay

(27)

wEk =  0 (confluence).

The Ekman downwelling is related to the wind-stress curl and is

dependent of the mixed-layer depth. It differs from the mean ver-

tical velocity at the bottom of the mixed layer. The difference

is the vertical component of the velocity along the sloping pycno-

cline.

The expression

at ay at (28)

represents the rate of entrainment of fluid from below into the

mixing process. It vanishes if the mixed layer deepens solely

by Ekman downwelling without entraining new fluid in the mixed

layer.



151

The initial buoyancy field in the underlying stratified fluid

is advected downward by the Ekman downwelling velocity given by

(27). If the wind forcing is steady, the buoyancy field under the

mixed layer at any time is:

b_(y, z, t) = b 0 y - r3(Z-W~kt) (29)

where t = 0 corresponds to the initial time when the wind starts

to blow.

4. JUMP CONDITIONS ACROSS THE PYCNOCLINE

Due to the presence of large vertical gradients, the terms

which dominate the governing equations in the pycnocline differ

from those which dominate the equations in the mixed layer. To

bring out the dominant terms, the governing equations are

advantageously expressed with the similarity vertical coordinate

= -z/h(t). Replacing z by E, equations (8), (10) and (11)

become:

as a b a h a3 Dh ah~b 1 a-b
+ -- w---

at -- -hata hay a h
au + v a h a5 a h 3Uv 1 a uw

Po+ 1 -- + f

11 3h

T y p h 3y 3

I0
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The pycnocline is a very thin layer of large gradients 1 for

all quantities except ap/a) and is located at the bottom of the

mixed layer ( = 1). Therefore, the above equations can be

simplified by retaining only the terms including derivatives

with respect to E (except 3 p/D) and by replacing by one.

Integrations with respect to then yield:
h -T h - h)(0

b +vb 2 + wb b_(-h)(- + w(3
at ay at Ek ' (0

- h -- ah --
u h + uv a uw 0 (31)

h V - Th + vw 0 , (32)
at ay

where the constants of integration were determined by expressing

that all the rms fluctuations, u, and V vanish below the pycno-

cline; b (-h) is the value of the buoyancy at the top of the

underlying stratified fluid:

b(-h) = b + r2y + r3(h+wEkt) , (33)

according to (29) for z -h.

In the mixed layer, b and v- are quasi-independent of depth.

From (9) and (13), it results that the rms fluctuations brms and

v are much smaller than the mean variables b and v th ..oughout
rms

the mixed layer. Relations (30) to (32), which are applicable in

the pycnocline, can thus be simplified in the limit near the

bottom of the mixed layer. Using (6) and (28), they become:

wrms b rms b (-h)-S] , (34)rms -

urms w rms -6U(-h) , (35)

V w -hv. (36)rmsg ms
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These equations relate the values of variables at the top and

bottom of the pycnocline. They are the classical jump conditions

used in one-dimensional bulk models (Kraus and Turner, 1967, and

Niiler, 1975, for example). It was, however, necessary to derive

them in the context of non-zero lateral variations, for the slope

of the pycnocline and the vertical velocity modify the expression

of the rate of entrainment h.

5. SCALING IN THE MIXED LAYER

Since the front sharpens endlessly with time, there is no

proper cross-front length scale in this problem. Therefore, the

scale, L, of the meridional coordinate, y, is chosen to be the

length scale of the wind-stress field. The buoyancy difference

across the front is scaled by B = 2.L, the initial buoyancy

difference over the length scale of the wind-stress field. The

vertical coordinate, z, and the mixed-layer depth, h, are scaled

by H = B/I3, the initial vertical height corresponding to a

buoyancy difference B. The wind stress is scaled by p U2, the

order of magnitude of its maximum value away from the frontal

zone. In the mixed layer, the along-front mean velocity u is

scaled by U = HB/Lf0 , the cross-front mean velocity v by V = U 0/f H,

and the vertical velocities w and WEk by W = U2/foL, as dictated

by (22), (23), (26) and (27). The time variable t is scaled by

the advective time scale T = L/V. Rms fluctuations in the mixed

layer are scaled as follows: u rms and wrms by U* (since -TW= Tx /P

x
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at the surface), brms by HB/TU*, and v by HV/TU,*, as suggested

by (34) and (,C), respectively.

Typical values for scales corresponding to large-scale

oceanic frontogenesis in the central North Pacific can be found

in Roden (1980). Primary and computed scales are proposed in

Table 3. From Table 3, it can be seen that the calculated height

scale of the mixed layer (H'I00 m) corresponds to observed values

(Roden, 1980). As anticipated, rms fluctuations brms and vrms

are much smaller than their respective mean values in the mixed

layer. The rms vertical velocity w is much greater than w andrms

h, since thermals sink from the surface down to the pycnocline in

a time relatively short compared to the time of evolution of the

whole system. The frontogenesis time scale is of the order of

four months, i.e., much larger than a week, which is the response

time of a pre-existing oceanic front to atmospheric variations

(Roden and Paskausky, 1978). From Table 3, it can also be shown

that requirements (17) to (19) are met.

Using unchanged notations for dimensionless variables,

equations (8), (10), (11) and (15) become:

+r(mb ) = 0(37)r b -: a2 a-w- + - ( v b
at 1~ ay ~z Loay rms rmS

V( t3a8)z oy rm m

+ 2a(u w 0 (38)
az rms rms
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-aR + +. 1. ( H '12L v 2
a~t v + W- + Ri ~T~J~ 3y Vrms

1i ) + p (39)R Z rms rms + ay

3 a w rw -2b (40)

in the derivation of which continuity equation (7) used. The

dimensionless numbers brought out by scaling are:

- the ratio of entrainment rate to the friction velocity:

H _ 5 -S ,

TU*

U
- the velocity ratio: 0.2

- the Rossby number: Ro f V-L = (fo0- (41)
0

the Richardson number: Ri = y 250 , (42)

2 mU,,
- the coefficient: a oRiV 1 . (43)

The coefficient a is called the mixing parameter.

As the front sharpens, the derivatives 3u/3y and aS/ay

increase with time by an order of magnitude (Roden, 1980). These

non-dimensional terms are thus extimated to be of the order of ten.

On the other hand, since the mixed layer is well mixed, 3S/Dz and

av/az are very small terms. Neglecting all the small terms, the

above equations reduce to:aS -3b
+_L =~ _ -(w b )(44)

at arms rms

v = (u w r(4)
_z rms rms
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=_u p (46)

ay

3aw -2b (47)
rmsz rms rms

and are applicable in the mixed layer only. Equations (45) and

(46) express that v is a pure Ekman drift and that u is geostro-

phically balanced by the cross-front pressure gradient. These

solutions for u and v were anticipated earlier in order to evaluate

the scales of w and rms fluctuations. It is therefore shown here

a posteriori that the hypotheses made on u and v are correct.

6. BULK MODELS: CASES OF CONVERGENCE AND CONFLUENCE

Considerable simplifications result from assuming a homogeneous

mixed layer. A closed set of equations is obtained from (44) to

(47) by assuming that S and v are constant, brms w and u wms rms rms rms

linear, and w3  quadratic with depth. Boundary conditions are:
rms

- no surface buoyancy flux: wrms brms = 0

- surface stress= wind stress: u w = -T at z = 0,msrms

- w = friction velocity

rmss
(Chapter three): w -LI2TJ

- jump condition (34): wri s brms = h6

- jump condition (35): Urm s Wrms = 0 at z -h,

- negligible residual w
rms t

(Chapter three): IWrms I<«IT 2
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where r is the wind stress Tx(y), scaled by P 2 is the

buoyancy jump across the thermocline, function of y and t:

b (-h) - b

After replacement of linear and quadratic laws and after

elimination of v and wEk by (23) and (27), (v -T/h, wEk ; -at/ay

or zero), the prognostic equations for b and h can be written:

in the case of convergence -h a (48)

31

)h dT a (49)
Z't dy (h)I

where 6 : y + h - t - (50)

3,

in the case of convergence t - + a - 2a h2 (1

h a (52)
at h6

where 6 y f- h - b (53)

Equations (48) and (51) express that the time rate of change

of the mixed-layer buoyancy is due to advection by the Ekman

meridional flow and to mixing with newly-entrained fluid from

below. Equations (49) and (52) express that the time rate of

change of the mixed-layer depth is due to the Ekman downwelling,

if any, and to deepening by turbulent erosion. The wind stress,

T(y), acts is the forcing on the system. The mixing parameter, a,

6iven by (43), depends upon the global physical characteristics

-.Ts coef'fOicient controls the entrainment rate

... *. ;'-r r 'a~ra.r) a, the less (more)
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intense is the entrainment of stratified fluid in the mixing

process, and the slower (faster) is the mixed-layer deepening.

7. NUMERICAL RESULTS

The governing equations (49) to (50) and (51) to (53) are

coupled and highly non-linear. Moreover, coefficients depend

upon y through the wind-stress forcing T. The search for an

analytical solution is thus hopeless. However, it is very easy

to implement a numerical scheme to integrate the governing

equations step by step in time, starting from an imposed initial

state.

For the numerical calculations, the wind-stress field is

chosen to be:

T(y) = tanh y

positive for y>O and negative for y<0 (Figure 29). A frontal

zone is thus expected near y = 0. The meridional extent of the

basin, in which the equations are solved, is chosen to be:

-25y52 .

The initial conditions consist of an initially homogeneous mixed

layer of non-zero depth (h = 0.5), in order to avoid an initially

infinite Ekman flow. The buoyancy gradient is chosen to be in the

horizontal and vertical directions, as required by scaling. The

ocean stratification horizontal length scale is thus equal to the

wind-stress length scale, as it is observed (Roden, 1980). The

mathematical expression of the initial buoyancy field results



(OD

ww

-4

cu 0 c

o *0

z c C4



from (2).

= y - z , for z<-0.5 , -25yS2

S y + 0.25 , for -0.5<z50 , -25y,0

The initial meridional section corresponding to those initial

conditions is presented in figure 30.

The problem requires a boundary condition on b on each side

of the region of interest to characterize the buoyancy of the

water newly advected in the basin. These conditions are chosen

to be:
-- = 1 at y = -2 and y = +2,
ay

expressing that, outside of the region of interest, the water

does not feel the presence of the front and conserves its initial

horizontal buoyancy gradient.

The results are divided into two classes: the case of

convergence and the case of confZuence. For each class, various

runs were executed in order to compare the combined effects of

mixing and advection.

Figures 31, 32 and 33 show three cross-front sections of the

buoyancy field in the case of convergence, for increasing values

of the mixing parameter a. For these cases, a global Ekman

downwelling given by (27), is superimposed on the system. This

Ekman downwelling is symmetric about the front and is maximum at9
the front where the wind-stress curl is the greatest. The result-

ing deformation field in the stratified fluid is increasing linearly

in time. Figures 31 and 32 are plots corresponding to t = 1.6, i.e.,

about 6 months after the winds start to blow. in figure 33, the

r
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Ekman downwelling is less apparent, because the cross-section is

made at an earlier time (t = 0.16, i.e., about 18 days after the

winds start to blow).

For a small value of the mixing parameter (Figure 31), the

erosion of the underlying stratification can be significant only

for a very weak density jump across the pycnocline. On the

southern side of the front, negative buoyancy advection from the

south increases the density jump across the pycnocline and thus

prevents any erosion. The mixed layer deepens only be Ekman

downwelling without entraining new fluid in the mixing process.

On the northern side of the front, positive buoyancy advection

from the north decreases the density jump across the pycnocline

and favors entrainment of stable fluid. Entrainment is limited,

however, since the mixing parameter is small. The mixed layer

is somewhat deeper north of the front. Because mixing is not

important on either side of the front, the buoyancy field in

the mixed layer is governed mainly by advection, i.e., the

buoyancy gradient is almost symmetric about the front. There-

fore, as shown in figure 31, the asymmetry of the front is most

pronounced in the pycnocline strength, while mixed-layer depth

and buoyancy profile are quasi-symmetric.

Figure 32 shows a similar section of the buoyancy field for a

greater value of the mixing parameter. Mixing is more pronounced

away from the front, where the wind-stress magnitude is greater.

The mixed-layer depth thus has a minimum at the middle of the

front where the wind stress vanishes. In a real oceanic situation,
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winds fluctuate about a mean value. These fluctuations increase

turbulent mixing and not advection, since mixing is non-linearly

dependent upon the wind stress. Including such fluctuations in

the forcing would therefore reduce the minimum mixed-layer depth

at the front. Mixing is maximum away from the front, while the

Ekman downwelling is maximum at the front; these two effects thus

compete. As shown on figure 32, the result is a maximum mixed-

layer depth on both sides of the front. On the southern side of

the front, negative buoyancy advection increases the pycnocline

strength. Nevertheless, entrainment is effective and tends to

increase the mixed-layer buoyancy. Advection and mixing oppose

each other, and the buoyancy field in the mixed layer is almost

identical to the one of the initial state. On the northern side

of the front, positive buoyancy advection decreases the pycnocline

strength and favors entrainment. The mixed layer deepens faster

in the north. Mixing increases the mixed-layer buoyancy and thus

reinforces the positive buoyancy advection from the north, leading

to the formation of a large frontal buoyancy gradient. The

resulting horizontal profile of the mixed-layer buoyancy is very

asymmetric: the southern side is characterized by a weak gradient,

almost identical to the one of the initial state, while the

northern side is characterized by a strong frontal horizontal

gradient.

Figure 33 shows a cross-front section of the buoyancy field

for a large value of the mixing parameter. An increasing mixing

parameter leads to an increasing rate of entrainment. The mixed
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layer becomes rapidly so deep that the physical occurence of such

a situation is doubtful. However, it is interesting to study the

modifications brought out in this extreme case. Mixing is now so

intense that it controls the deepening of the mixed layer. Hence

the mixed-layer depth is symmetric about the front. On the southern

side of the front, the density increase due to mixing takes over

the density decrease due to advection from the south. The lines

of constant buoyancy move southward, away from the front.

FPontolysis occurs on the southern side. On the northern side,

however, mixing and advection reinforce each other, and a front

appears. Since advection is not very effective compared to mixing,

the front is a result of differential mixing rather than of

differential advection.

Figure 34 is a summary of the cross-front profiles of the

mixed-layer buoyancy shown in the three previous figures. The

dashed line represents the initial linear profile. For a small

value of the mixing parameter (a = 0.1), the profile is highly

distorted by northward advection in the south and southward

advection in the north. The profile is almost symmetric about

the center of the front (y = 0, B = 0.25). The gradient at the

center is five times greater than the initial gradient, revealing

the presence of a well-defined front. For a greater value of the

mixing parameter (a = 1.0), the profile is totally asymmetric:

linear and almost identical to the initial profile in the south,

and distorted by southward advection in the north. The maximum

gradient at the center of the front Is near the one for a 0.1,

--i-- .--
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but the region of large gradients is reduced by two, revealing a

weaker front. For a large value of the mixing parameter (a = 10.),

the buoyancy profile is displaced southward everywhere as a result

of mixing only. The buoyancy gradient is almost zero on the

southern edge but large on the northern edge of the front. The

frontal zone is not a consequence of advection but rather a result

of non-mixing in a region where the wind stress vanishes.

The time evolution of the mixed-layer depth on both sides of

the front is shown in Figure 35, for the three values of the

mixing parameter. As expected, the greater the mixing parameter,

the deeper the mixed layer. For times greater than 0.3 (about one

month), the mixed layer deepens at a constant rate. On the

southern side of the front (y = -0.5), the rate of increase almost

coincides with the rate of deepening by Ekman downwelling. The

reason is clear: due to negative buoyancy advection, the buoyancy

jump across the pycnocline becomes so strong after a month that it

prevents any further mixing. On the northern side of the front

(y = 0.5), the rate of increase is larger because of the tendency

of positive buoyancy advection to reduce the pycnocline strength.

The rate of deepening is remarkably constant with time, although

there is no reason a priori for such behavior. For a = 0.1, the

asymmetry between north and south appears around t = 0.2 (about

20 days), when the pycnocline strength is substantially reduced

on the northern side such that mixing becomes noticeable. For

a = 1.0 and 10, the asymmetry appears sooner, and the incipient

deepening is well separated from the Ekman downwelling.
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Figures 36, 37 and 38 show three cross-front sections of the

buoyancy field in the case of oonfNuence, for the same values of

the mixing parameter. They are to be compared with Figures 31,

32 and 33, respectively. The interior is at rest at all times.

For a small value of the mixing parameter (Figure 36), the

pycnocline strength and the mixed-layer depth greatly differ on

both sides. On the southern side, negative-buoyancy advection

has largely increased the buoyancy jump across the pycnocline

and prevented any erosion of the stratified fluid. On the

northern side, positive-buoyancy advection has swept out the

pycnocline almost totally and favored a moderate deepening (small

mixing parameter). For a greater value of the mixing parameter

(Figures 37 and 38), the asymmetries of pycnocline strength and

of the mixed-layer buoyancy becomes more asymmetric.

Figure 39 is a plot of the cross-front profiles of the

mixed-layer buoyancy of the three previous figures. Comparison

with Figure 34 reveals that the frontal gradients of buoyancy

are greater by about a factor of three in the case of confluence.

But, the profiles exhibit qualitatively the same shapes.

The time evolution of the mixed-layer depth on both sides

of the front in the case of confluence is shown on Figure 40, for

the three values of the mixing parameter. Comparison with Figure

35 reveals that the rate of mixed-layer deepening is reduced in

the case of confluence, as a rosult of the absence of the Ekman

downwelling. Because the mixed layer is shallower in the case of

confluence, the cross-front Ekman drift is larger and advection
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is more important. This explains why the horizontal buoyancy

gradients are greater in the case of confluence.

8. SUMMARY AND DISCUSSION

A bulk model for the study of advective and mixing effects in

the upper ocean was constructed from a one-dimensional mixed-layer

model. The aim of the work was to investigate the formation of a

frontal zone by convergence of Ekman transports, as observed in

the central North Pacific. The 8-effect and dissipation were

neglected. Temperature and salinity were combined to form a

single thermodynamic variable, called the buoyancy. Scaling

showed that the long-front velocity is in geostrophic balance

with a cross-front pressure gradient and is unimportant. The

cross-front velocity is an Ekman drift, driven by the surface

wind stress, and converges toward the region of zero wind stress,

producing frontogenesis. Continuity of mass near the front

requires that water masses either downwell (convergence) or

escape laterally (confZuence). This distinction leads to two

cases, each treated separately. Moreover, the wind stress is

capable of advection and mixing. Emphasis was put on the

interaction of these two effects.

The model reduces to two coupled highly non-linear prognostic

equations for the buoyancy and mixed-layer depth. Numerical

solutions were obtained by quadrature in time. The main results

are: (i) the front is never symmetric, (ii), in the case of
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lweak mixing, the asymmetry is most pronounced in the pycnocline

strength and in the mixed-layer depth, while the buoyancy field is

almost symmetric about the center of the front, (iii), in the

* case of strong mixing, the asymmetry is most pronounced in the

buoyancy field and frontolysis may occur, (iv), after about one

month, the Ekman downwelling resulting from convergence strongly

* controls the rate of deepening, and (v) frontal density gradients

are about three times larger in the case of confluence than in the

case of convergence.

*The relative importance of mixing to advection is measured by

a mixing parameter, which results from scaling. It is related to

the Rossby and Richardson numbers. In the case of large-scale

oceanic fronts as those in the North Pacific Ocean, this mixing

parameter is of order one, implying that wind mixing is as

important as wind-driven advection. Zero-mean fluctuations

superimposed on the mean wind-stress field would change mixing

but not advection. These can thus be modelled by increasing

the value of the mixing parameter. For very large values of the

mixing parameter, frontolysis occurs on the side of low-density

advection and strongly weakens the front.

Since dissipation was neglected, the solution of the present

model does not reach a steady state; a front is forming and

sharpening endlessly with time. The model therefore does not

yield any length scale for the width of the frontal zone. However,

when the front is sufficiently sharp, dissipation will play a

dominant role and force the system to a steady state. Hence the

. . ..& . . . .. • y ,- . . .. . ... .. .... . . . .. . .
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length scale for the width of the front is believed to be con-

trolled by dissipation.

Finally, since there is no advection where the wind stress

vanishes, a coastal wall can be placed at the middle of the front,

without altering the solution. Results of convergence are thus

applicable to a coastal downwelling, forced by a longshore wind

stress increasing offshore. If the mixing parameter is of order

one, it is observed that the maximum downwelling does not occur

at the coast but somewhat offshore (Figure 32).

I[
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CHAPTER SIX

I SUMMARY AND DISCUSSION



A new theory of mixing and convection is developed and then

applied to three cases: (i) the deepening of the wind-mixed layer,

(ii) penetrative convection due to surface cooling, and (iii) upper-

ocean frontogenesis by convergence of Ekman transports.

The theory of the model (Chapter 2) is based on the concept

of a two-fluid system: thermals carrying the information from the

boundaries of the system toward the interior, and anti-thermals

forming the return flow required by continuity of mass. The

governing equations are derived from the general dynamical theory

developed by Kelly (1964), Green and Naghdi (1965), and Truesdell

(1969). Pairs of equations are written for two interacting

Boussinesq fluids in a rotating frame, and interaction terms are

parametrized in order to adapt the theory to geophysical situations.

Each pair meets an Invariance Principle as a consequence of

reciprocity in the roles played by thermals and anti-thermals.

Each pair is transformed into an average equation for which

interaction terms cancelled and a very simple equation linking

the two fluid properties. An important parameter of the model is

the fraction, f, of area occupied by thermals to the total area.

A dynamic saturation equilibrium between thermals and anti-thermals

is assumed. This implies a constant value of f throughout the

system. Considerable simplification is obtained by assuming that

*the response time of turbulence is much less than the time scale of

182
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evolution of the overall system. This assumption is realized

in all geophysical situaticns and is a generalization of various

assumptions previously stated by Denman (1973), Niiler (1975),

Niiler and Kraus (1977), and Garwood (1977) for the upper ocean,

and by Lilly (1968), Tennekes (1973), and Lenschow et al. (1980),

for the atmospheric boundary layer. The model neglects dis-

sipation, and its validity extends to any convective situation

where molecular viscosity and diffusivity may be neglected.

The theory is first applied to the study of the deepening of

the wind-mixed layer (Chapter 3). The one-dimensional and fric-

tionless model neglects the turbulence production by the mean-

flow shear in the thermocline. The potential-energy increase

required for deepening is thus supplied by the turbulence input at

the surface (turbulent erosion model). A non-similar analytical

solution is found in the case of a well-mixed layer bounded

below by a sharp thermocline, treated as a boundary layer. That

solution is valid if the frictional Richardson number, Ri, defined

as the ratio of the total mixed-layer buoyancy to the square of the

vertical-velocity scale, is much greater than unity. The model

predicts an entrainment rate proportional to Ri-1 , and a ratio of

thermocline thickness to mixed-layer depth 
of the order of Ri

3/4

The thermocline shallows as h- /2 , as the mixed-layer depth, h,

increases with time.- The vertical structure throughout the mixed

layer and thermocline is given by the analytical solution. Verti-

cal profiles of mean values and vertical fluxes are calculated.

The comparison of these profiles with those obtained by turbulence-
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closure numerical models is favorable.

The same model is applied to the study of penetrative con-

vection in the upper ocean due to surface cooling (Chapter 4).

The model is still one-dimensional, but dissipation is included,

since dissipative effects are more important when the mixing

region is deeper. An analogous non-similar analytical solution

is found in the case of a well-mixed layer bounded below by a

sharp thermocline. That solution is valid if the Richardson

number, Ri, is much greater than unity. The model predicted a

deepening rate proportional to Ri-3 /", a constant thermocline

thickness, and a ratio of thermocline thickness to mixed-layer

depth proportional to Ri-¥V. If the surface heat flux is con-

stant, the mixed layer deepens in time as t"/2. The vertical

structure throughout the mixed layer and thermocline is given by

the analytical solution. The agreement of mean temperature and

vertical fluxes with laboratory experiments is excellent. More-

over, the results of the present analytical calculations are

comparable to that of turbulence-closure numerical models.

Advective effects and their interactions with mixing were

studied in a case of upper-ocean frontogenesis (Chapter 5). A

bulk model including both advection and mixing is derived based on

the one-dimensional model developed in Chapter 3. Continuity of

mass near the front requires that water masses either downwell

(convergence) or escape laterally (confZuence). This distinction

led to a study of these two different cases, each treated separately.
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*Interactions between advection and mixing result in important

cross-front asymmetries in properties such as mixed-layer depth,

thermocline strength, and/or mixed-layer density. These asymmetries

have been observed (Roden, 1976 and 1980). Results also show

that there exists a critical time scale within which mixing domi-

nates and beyond which advection controls frontogenesis. For a

* mixed layer about one hundred meters thick, this time scale is of

the order of one month. Strong mixing is shown to be able to induce

frontolysis on the front side of light-water advection. Frontal

density gradients are about three times larger in the case of con-

fluence than in the case of convergence. Dissipation is neglected,

and the model does not reach a steady state. Hence, the length scale

for the width of the front (believed to be controlled by dissipation

in a steady state) is not provided by the model.

Although the theory presented in chapter two is very general,

the subsequent applications are restricted by various simplifying

assumptions, such as absence of dissipation, large Richardson

number, and decoupling between wind mixing and surface cooling.

The scope of this work is to present a better understanding of the

fine structure of turbulence in the upper ocean. This understanding

could only be acheived by a clear presentation of analytical solu-

tions corresponding to various particular cases. The author is

aware of the limitations brought by those simplifying assumptions

and of the resulting restricted applicability of the mathematical

formulae presented herein. More general and more accurate results
c
can be sought by numerical solutions of the general equations pro-
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posed in chapter two.

The applicability of the general theory of chapter two is

based on the assumption of a saturation equilibrium between

thermals and anti-thermals, which leads to assigning a constant

value to f, the fraction of area occupied by thermals to the total

area. Although this assumption is supported by physical arguments

and various observations, it may fail in particular situations like

the incipient deepening of convection or in restricted regions such

as those very near the surface or at the bottom of the thermocline.

A discussion of possible variations of f was presented in an appen-

dix to chapter three. It was concluded that, if such a region of

non-constant f exists, it is very limited and does not affect the

overall behavior of the system. On the other hand, the good agree-

ment of the results with observations and with previous models,

despite various other simplifications, is very encouraging.

This work also ignores the presence of internal gravity waves

generated by turbulence. Although waves are important as a mecha-

nism capable of extracting kinetic energy from the system, the study

of their effects on mixing and convection is a recent subject of

research, one which is in its early stage of development, and no

acceptable parametrization has yet been proposed for geophysical

situations.

The model can be applied to various other cases related to

geophysical fluids. The coupled problem of wind mixing and surface

cooling/heating can be investigated as a direct application of the

results presented in chapters three and four. The model is also
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directly applicable to convection in the atmospheric boundary layer

under a cloud-topped inversion. Moisture can be incorporated in

the formalism without major problems. A dual application of the

model can be that of convection in the lower atmospheric layers

above mixing and convection in the upper oceanic layers. Surface

air and sea temperatures and surface heat flux would then be the

unknowns in the problem. An intersting case would be that of double

penetrative convection, in the atmosphere and the sea, past mid-fall

and during winter when the water is warmer than the air.

i.I
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