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FOREWORD

The problem of predicting the deepening of a turbulent, weakly-
stratified fluid has significant applications in oceanography and
meteorology. Both the atmospheric boundary layer and the upper ocean
can deepen due to convective penetration. The action of the windstress
on the ocean can deepen the mixed layer. The literature in these problems
is vast and complicated.

In this Ph.D. dissertation, an unusual but fruitful approach is
adopted. Two ihter;;tiﬁg fluids are envisioned. This formulism allows
the analytical interpretation of the penetrative convection problem and
the wind mixing problem. The comparison of the results with laboratory
experiments is very encouraging. The detailed profiles of turbulent fluxes
need to be compared to actual field measurements. Some data are available
but were not accessible to us. The theoretical results in this report are
a major advance in understanding the physics of the ocean.

Ocean modellers have continually ignored the influence of horizontal
structure on the dynamics of convective fluids. A small step forward has
been accomplished in the final problem where the wind mixing occurs in the
vicinity of an oceanic front. The conclusions are useful for understanding
ocean variability due to wind mixing on ocean fronts.

Finally, the reader will find a tremendous amount of redundancy in
this report. This was my decision, The report is written such that each

major chapter is written as a separate paper for subsequent submission to

a journal.

James J. O'Brien
Director
Mesoscale Air-Sea Interaction Group




ABSTRACT

MIXING, CONVECTION, AND ADVECTION
IN THE UPPER OCEAN

Convection, mixing and advection in the upper ocean may be

thought of as the motion of two interacting fluids of different

properties: the sinking fluid parcels generated near the sur-
face and transmitting surface information downward, and the
compensating rising return flow. A general theory based on
this concept is developed and applied to various cases, in-
cluding deepening of the wind-mixed layer, penetrative
convection due to surface cooling, and upper-ocean frontogensis
due to horizontal advection.

Equations of the general theory are written for two inter-
acting Boussinesq fluids in a rotating frame. Interaction terms
are parametrized in order to apply the theory to geophysical
situations. Considerable simplification is obtained by assuming
that the response time of turbulence is much less than the time
scale of evolution of the overall system. This assumption is
realized in all gecphysical situations and is a generalized

statement based upon approximations invoked previously by
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various authors. The study of deepening of the wind-mixed
layer and of penetrative convection due to surface cooling are
straightforward applications of the general theory. The analy-
tical treatment of the equations is simplified using the
observations that the mixed layer is quasi-homogeneous in its
physical properties and that the thermocline is a thin layer
of large gradients. The solution is analytical and simple.
Its agreement with observations is excellent and comparable to
sophisticated numerical models capable of resolving small-scale
turbulence. Advection and its interaction with mixing are
studied in a case of frontogenesis. Interactions result in
important cross-front asymmetries in properties such as mixed-
layer depth, thermocline strength and/or mixed-layer density.
Results also show that there exists a critical time scale
within which mixing dominates and beyond which advection con-
trols the upper ocean. For a mixed layer about one hundred
meters thick, this time scale is of the order of one month. In
the presence of strong mixing, frontolysis can ensue.

Although the applications focus on the upper ocean, the

theory is general and also applies to the lower atmosphere.
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CHAPTER ONE

INTRODUCTION




;
Air-sea interactions cannot be successfully modelled without
a deep knowledge of the upper-ocean dynamics and thermodynamics. ?
The currents and variations of temperature and salinity in the upper
ocean are induced and controlled by surface atmospheric conditionms,
oceanic lateral advection, and deep oceanic conditions. The com- '
plexity of the situation can, however, be somewhat simplified by
classifying the various processes which take place in the upper
ocean. They are: turbulent mixing by wind stirring or mean current .

shear, convection, penetrative convection, entrainment of stratified
fluid, and re-stratification. All these processes involve small-
scale turbulent motions, in space as well as in time. In this work,
the resulting fine structure is studied in order to achieve a better
knowledge of the dynamics and thermodynamics in the upper ocean.
Upper-ocean processes can be thought of as the relative motion

! of two interacting fluids: the sinking fluid parcels generated near
the surface and transmitting surface information downward and the
rising fluid parcels forming the return flow. The former play the
active role in mixing and convection, and are called thermals. The
latter play the alternate passive role and are called anti-thermals.
A general theory based on this concept is developed and applied to

L various cases, including deepening of the wind-mixed layer, penetra-

tive convection due to surface cooling, and upper-ocean frontogenesis

: due to horizontal advection.




The work is divided into several chapters (Chapters 2 to %),

each of them being a discrete and independent entity. As an advan-
tage, the reader interested in one specific topic may limit his/her
reading to a particular chapter without facing problems understanding
symbols or basic ideas. Despite advantages, this presentation leads
to some unavoidable repetition, for which the author apologizes.
Chapter two is the development of the general theory of mixing
and convection, based on the concept of a two-fluid system. It is
an application of the dynamical theory of interacting continua pro-
posed by Kelly (1964), developed by Green and Naghdi (1965), and
generalized by Truesdell (1969). The equations are written for two
interacting Boussinesq fluids in a rotating frame. Interaction terms
are parametrized for the purpose of geophysical situations. Pairs of
governing equations are derived for thermals and anti-thermals. Each
pair meets an Invariance Principle as a consequence of reciprocity in
the roles played by thermals and anti-thermals. Considerable sim-
plification is obtained by assuming that the response time of tur-
bulence is much less than the time scale of evolution of the overall
system. This assumption is realized in all geophysical situations.
Each pair of governing equations is transformed into an average
equation for which interaction terms cancel, combined with a very
simple equation linking the two fluid properties. An important
parameter of the model is the fraction, f, of area occupied by
thermals. Since a closure assumption is needed, a dynamic satu-

ration equilibrium between thermals and anti-thermals is assumed.

This implies a constant value of f throughout the convective layer.
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Chapter three is the application of the theory tc the deepening
of the wind-mixed layer. In view of simple algebra, the model iz
one-dimensional, frictionless, and neglects the turbulence produc-
tion by the mean-flow shear in the thermocline. Hence, the incresacse
in potential energy required for deepening is surpliied by the tur-
bulence imput at the surface. The analytical treatment of the
equations is simplified using the well-known facts that the mixad
layer is quasi-homogeneous and that the thermocline is a thin layer
of large gradients. The vertical structure throughout the mixed
layer and thermocline is given by an analytical solution. Vertical
profiles of mean velocity components, mean temperature, and verticel
fluxes of momentum and heat are then plotted. The solution also
yields bulk formulae predicting the rate of deepening, the thermo-
cline thickness, and the mean surface temperature. A3 the mixed
layer deepens, the thermocline shallows, vertical crofiles, there-
fore do not remain similar to themselves in time. The analytical
solution is not self-similar.

Chapter four is the application of the theory to penetrative
convection due to surface cooling, as it occurs past mid-fall and
during winter. The model is still one-dimensional, but includes
dissipation. Wind stirring plays an important role when the con-
vective layer is shallow, but rapidly convection dominates the
process. Thermal instability itself supplies the kinetic energy
required for stirring and deepening. Wind stirring is therefore
ignored in that section. Assuming a quasi-homogeneous mixed layer
and a sharp thermocline, a single non-similar analytical solution

is found. Vertical profiles of mean values and vertical fluxes
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are plotted for the mixed layer and the thermocline. The solution
also yields bulk formulae predicting the rate of deepenivg, the
mean surface temperature, the heat flux at the bottom of the mixed
la&er and the thermocline thickness. Although the results
presented here focus on convection in the upper ocean forced by sur-
face cooling, they also apply directly to convection in the atme-
spheric boundary layer above a heated ground.

Chapter five is a study of advective effects and their inter-
actions with wind-mixing effects. A case of frontogenesis is
chosen in order to include lateral variations in advection and
mixing and in order to understand better frontal dynamics of the
large-scale oceanic fronts in the central North Pacific. Inter-
actions between advection and mixing result in important cross-
front asymmetries in properties such as mixed-layer depth, pvcno-
cline strength, and/or mixed-layer density. Two cases are treated
separately: the case of convergence (when the water masses downwell

at the front) and the case of confluence (when the water masses

form a long-front current).




CHAPTER TWO

A GENERAL THEORY OF MIXING AND CONVECTION:
MCDELLING BY TWO BUOYANT INTERACTING FLUIDS

S




1. INTRODUCTION

Convection may be caused by either an initially unstable
situation or by a continuously-applied external forcing. In
most geophysical convective situations, convection is of the latter

kind and is maintained by a forcing which is almost invariably

applied along one boundary rather than within the fluid. The theory

developed here attempts to model convection when convective motions
are driven under such circumstances. Convection of air above a
heated ground, mixing of the upper ocean under the action of wind
stress and/or surface cooling, and penetrative convection in stars
are some examples.

Along the boundary where the forcing is applied, fluid par-

-
s

ticles’COming from the interior are altered; their velocity
compénents and/or temperature are modified. The same particles
thus leave thetboundary with new properties. As a consequence of
this mechanism, convection can be thought of as the relative moticn
of two different fluids: the fluid particles coming from the
interior toward the boundary, and the altered fluid particles leav-
ing that boundary with different properties. The latter play the
active role in convection and will be called thermals. This name
was adopted by glider pilots for masses of warm air rising from

hot ground. Ever since, this word has been widely used in the
field of convection. The other fluid parcels play an alternate

passive role and will be called anti-thermals.

{
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The model presented here does not require interpreting thermals
and anti-thermals as discrete elements. Particles will nct be
numbered nor will they be assigned a volume. The two fluids may
be considered like plumes, puffs or other forms (Scorer, 1978).
However, the terminclogy of thermals and anti-thermals is used for
convenience because discrete elements are more easily perceived.

As a formal extension, the word thermal will be even assigned
arbitrarily to non-buoyant fluid having an excess of momentum.

Priestley (1959) has shown how one can obtain informaticn
about the mean properties and the fluctuations in air over a heated
ground by considering it as the superposition of many closely-spaced
convecting elements. However, his approach is limited to environ-
mental lapse rate constant with height and does not allew the
elements to grow or decrease as they migrate vertically.

The model developed here is an extension of the dynamical
theory of interacting continua proposed by Kelly (1964) and Green
and Naghdi (1965), and extended by Truesdell (1969). Ffor the
present purpose, equations are written for a two-fluid continuum
in a rotating ffame. The Boussinesq approximations are made
(Spiegel and Veronis, 1960), and interaction terms are parametrized
in view of geophysical situations.

The forcing along the boundary generates thermals at the
expense of anti-thermals, whereas interactions between the two
fluids in the interior progressively transform thermals back to
anti-thermals. Thermals are directly driven by the external

forcing, while anti-thermals are driven by reaction to the thermals




(continuity of mass, conservation of momentum and heat). The two

fluids have different properties; their relative motion is thus
a mechanism capable of transferring heat, momentum, energy, or any

other constituent, through the convective layer.

2. FRACTION OF AREA OCCUPIED BY THERMALS

At a given level, any horizontal surface is crossed by thermals
and anti-thermals. At a given time, a given horizontal area A is
occupied partly by thermals and partly by anti-thermals (Figure 1l).
From a hypothetical instant infra-red picture detecting warm and
cold regions, one may compute the fraction of area occupied by ther-
mals for that surface at that time. That value inevitably varies in
a certain range, and a theoretical ensemble average yields, in a
statistical sense, a local instantaneous mean value. If one evokes
the hypothesis of ergodicity, this averaging process is equivalent
to an average over horizontal distances and time intervals short
compared to lateral and temporal scales of variation characterizing
the whole system. The resulting quantity, noted as f, is dimension-
less, positive and less than unity (Manton, 1975). As a direct result,
the fraction of area available to anti-thermals is (1-f). Although
it is anticipated that f will be assumed to be a constant, the govern-
ing equations derived hereafter are written in a general framework,
allowing local and temporal variations of f.

The observed mean value of any quantity is a combination of

contributions due to the two fluids in the ratio of their respective
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The fraction of area occupied by thermals at any level

is the instantaneous local value, averaged over horizoen-

tal distances and time intervals shert compared to lateral

and temporal scales of variation of the overall system.
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available areas:

horizontal velocity u

v
vertical velocity W
pressure P
density ;
temperature T

11
fu' + (1-fHu", (1)
fv' + (1-f)v", (2)
= fw' + (L-fw", (3)
fp' + (1-flp", (%)
= fp' + (1-£)p", (9)
£T' + (1-£)T", (s)

where primed and double-primed quantities refer to thermals and

anti-thermals, respectively. The bar thus represents an operator

averaging over short horizontal distances and short time intervals

in tre sense defined previously.

It indirectly assumes that each

fluid is characterized by single values rather than by distribution

functions of their properties.

The above relations, rather than a definition of mean values,

constitute the mathematical expression of the average operator:

a = fa' + (1-f)a",

where a represents any physical quantity. The application of this

operator may also define momentum, heat and energy fluxes. 1In the

context of Boussinesq approximations, the vertical fluxes of hori-

zontal momentum (Reynolds stresses divided by Py the reference den-

sity) are:

-fu'w' - (1-f)u"w", (7)

-fv'w' - (1-f)v"u", (8)
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the kinematic vertical convective heat flux (heat flux divided by
p C ) has the form:
oPp

WT = fw'T' + (L-£)w"T", (9)

and the vertical flux of turbulent kinetic energy reads:

Y w ((u-T)2+(v-7)2+(w-W)2)
= Lfuw' ((u'=T)2+(v'-7) 2+(w' -@)2)

+ %(l-f)w"[(u";ﬁ)2+(v"4v)2+(w"-wjz). (10)

Other fluxes may be defined in an analogous way but are not of
primary importance to geophysical convection problems.

Finally, the averaging operator may alsc be used to define
root-mean-square {(rms) quantities, measuring departures from mean

values. If a represents any physical quantity, the rms fluctuation

is defined as:

t T o
qms = - (a - &) s (11)
i.e., agms = f(a'-3)%+ (1-f)(a"-3)2. (12)

Simple calculations yield:

[s1]
]

(£C1-£))%(ar-a"). (1u)

The sign is selected as to yield a positive value when the thermals
quantity a' exceeds the mean value a. The rms fluctuation is
directly proportional to the difference between thermals and anti-

thermals values, and is zero when these values are equal and do not

o e
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differ from the mean.
3. MASS AND VOLUME EXCHANGES BETWEEN THERMALS AND ANTI-THERMALS

Thermals and anti-thermals continuously exchange mass and,
codsequently, momentum, heat, and energy. At any moment and at any
location, either thermals or anti-thermals lose some of their mass
to the other. The exchange is controlled by Em’ the mass exchange
per unit time and total volume of fluid (kg m-3s-1). However, in
the Boussinesg framework, that quantity is advantageously replaced
by the volwme exchange, E, per unit time and total volume (s-!)
defined as: .

E= -2, (15)

Po

where % is the reference density close to the actual densities of
thermals and anti-thermals, p' and p", respectively. By definition,
the mass exchange, Em, is chosen to be positive if anti-thermals
lose mass to thermals and is negative if thermals lose mass to
anti-thermals.

In subsequent sections, it will be assumed that heat and
momentum are transferred exclusively through this mass exchange,
thus excluding transfer by diffusion or collision. However, this
assumption may be questionable for highly turbulent clouds, where

momentum exchange between air masses can occur without mass

exchange, as in a collision.
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4. INVARIANCE PRINCIPLE

From a semantic point of view, thermals and anti-thermals play
reciprocal roles: what is lost by one is gained by the other.
Thermals may be labelled anti-thermals and vice-versa. Their dy-
namics and thermodynamics are therefore to be governed by corre-

sponding equations and the following Invariance fPrinciple must hold:

Principle: All the governing equations must be invariant under the
transformation:
primed quantity e double-primed quantity
f -——1-f
E -=—-E

rms fluctuation =—s-rms fluctuation.

It may easily be seen that any mean quantity such as u, -uw,

WT, ... is invariant under that transformation, and equations for

mean values will thus automatically meet the Invariance Principle.

5. GOVERNING EQUATIONS

The dynamics and thermodynamics of two interacting fluids are
parts of the mathematical theory of mixtures. This latter theory
aims to represent exchanges of mass, momentum, heat, and energy.
Particular cases are theories of diffusion and chemical homogeneous
reactions and kinetic theories of heterogeneous continua. A general

framework for all such theories has been laid down by Kelly (149fu),
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Green and Naghdi (1965), and Truesdell (1969, Lecture 5) so as to
include magnetohydrodynamic and other effects. Here, the governing
equations are written for a two-fluid Boussinesq rotating continuum,
Moreover, interaction terms are parametrized in view of geophysical
situations.
a) Preliminary remark:

Thermals and anti-thermals have relatively large vertical ve-
locities. Due to these sinking or rising motions, they do not have
time nor do they go far enough laterally to be affected by temporal

and horizontal variations in the overall system. As a result, in

any equation, operators such as
2(far), Sqfuraty, Sqeviany, L(-uma"), ...
3t ? 3x * dy > 3x >0

lead to terms which are negligible compared to those involving the

vertical operators applied to the same quantities:
é_(fw(a' ) L((l-f)w“a")
3z > 3z : ?

i.e., vertical advection is the dominant part of the substantial time
derivative. (See Appendix A for a detailed mathematical treatment.)
However, it will be seen in the treatment of the continuity
equations that, in the case of zero global vertical motion, w' and
w' almost exactly balance each other, so that, in the equations for

average variables, operators such as

ua), 2—( a)

wijay
i\

By
at =™

lead to terms comparable to those yielded by the vertical flux
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operator:

3 —
3;»(wa)

These comclusions are equivalent to stating that the response
time of the two interaeting fluids is much less than the time scale
of evolution of the overall convective system.

The system is thus characterized by two time scales: time
variations of the whole system will be resolved at the long time
scale, by assuming a quasi-instantaneous respcnse of the fluctua-
tions at the short time scale.

b) Equation of state:

If salinity or other densi+y variable effects are unimportant,
and if density variations do not exceed a few percent, the equation
of state may be adequately represented by a linear dependence upon

the temperature only:

for thermals: o' = (L - alT'-T )}, (16)

for anti-thermals: P = p (- a(T"-TO)], (17)

where a is the coefficient of thermal expansion ( a=3.5x10"3 %¢-t

s o ~1a~4% O] o) - s
for air at 15°C, a=10 C™ for pure water at 10 C), and T, is the
reference temperature. The mean density is related to the mean

; temperature by:

o =0, (1-a(T-1)). (18)

This latter result is obtained simply by summing (1€) and (17) pre-

[P SRR
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multiplied by f and (1-f), respectively. (If density is a lineer
function of salinity , an equation similar to (18) may be derived.)

In the Boussinesq framework, the variations of density are
small, and the continuity equation is equivalent to the law of
conservation of volume (Spiegel and Veronis, 1360). The equations
become:

for thermals:

B f 2 rury v 2qrer) + At =
Y f + ax(fu ) + sy(fv ) + §;<fw ) E, (19)
for anti-thermals:
a - é__ - " ,3_ - " ?_ - 1" = -
3p(1-6) + (=) + By((l £)v") + o=((1-f)w ) = -E, (20)

where E is the volume exchange between the two fluids, per unit
time and volume, and is positive Lf anti-thermals lose mass to
thermals (positive divergence of the thermals velocity field). It
may be easily shown that the above two equations meet the Invariance
Principle.

Summing (19) and (20), an averaged continuity equation is
obtained:

a_

- 3 - _
ayv+-a—z-w—0. (21)

ST+
ax
As stated in the preliminary remark, the term 3w/9z of this equation
is the sum of the dominant terms in the left-hand sides of (19) and

(20). The two other terms, 3u/3x and BVVBy, are the sum of negli-

gible terms. Therefore, the two contributions to dw/3z almost

cancel each other, and one may write:
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i.e., the mean vertical velocity is z-independent. 3ince, in most
cases, there is no mean upwelling or downwelling, this mean veloci-
ty ought to be zero everywhere, leading to a relationship betwezn
w' and w":
W= fu' o+ (1-f)w" = 0. (22)
To the same level of approximations, equations (19) and (20)

reduce to:

- 3 ' - _a__ 1. " ~
E = gx(fw') = - o= {(1-£)w"). (23)

In the regions where variations of f are unimportant, E=£f3w'/3z,
i.e., thermals grow (E > 0) when they accelerats (3w'/3z > 0), and
decrease in size (E < 0) when they decelerate (3w'/3z < 0). Note
that E has not been parametrized in any manner.

In the context of Boussinesq approximations, the heat conser-
vation equations are:

for thermals:

3 [ _a__ T 3 Sty 3 Eeg 1T - i 1T L
sz(fT ) + ax(fu T') + 3§(;v T') + 32( w'T") 3 E(T'+T"), (k)
for anti-thermals:
i’—((1-f)r") (£t + 2 ((1-6)v"T") + Z((1-F)wrT) |
ot % oy r

z
E(T'+T"), (25)

|-

where molecular diffusivity and internal source of heat are neglect-

ed, since they are unimportant for most geophysical convective situ-
P geop %
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ations. The heat exchange between thermals and antl-thermals is
modelled by a trancfer of mass at the mean temperature (T'+T")/2. A

justification of this parametrization and a discussion of a more

general formulation is presented in Appendix B.

The above equations, which meet the Invariance Principle, could

also have been written in terms of the buoyancies
D' =- LI "wo-_ o
b ag(T To)’ b ag(T To). f
The sum of equations (24) and (25) yields the global heat con-
servation equation:

3

— 3 —= _
5y vT + o—wWT = 0, (26)

3 = 3 —=
7t T + ™ uT +

which expresses that the time rate of change of the mean temperature
T is equal to the negative of the divergence of the convective heat

flux. In the case of horizontal homogeneity on scales much larger

than the one of thermals, the reduced equation is:

g—t?=-gwr, (27)

where the vertical convective heat flux wT is defined by (9).
Subtracting from (24) and (25) the continuity equations (1¢)

and (20) pre-multiplied by T' and T", respectively, and assuming

that thermals and anti-thermals do not have time to see lateral and

temporal variations (preliminary remark), one obtains: ;

fwg% - % E(T"-T'), (28)
"
(l-f)w"%z— : % E(T"-T'). (29)
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By use of (22), the difference of these two eguations leacds to:
Lrrsmm =0 (:0)
3z ?

stating that vertical variations of temperatures are inversely
correlated. This last equation is remarkable by its simplicity.
As one may expect, similar results will be obtained from the
treatment of the horizontal momentum equations, and these will

greatly facilitate further computations.

momentum equations on a rotating fo—plane are:
for thermals:
2—(fu') + 3—(fu'u') + é—(fv'u') + E-—-(fw’u') + Ff kxy'
ot "~ = X ~ 3y = dz ~ o~ =
= -EL-V (fp') + L E(u'+u") + é(l—2f)E(u'-u”), (31)
oo JH 2 = 0= 2 ==

for anti-thermals:

~

%((l—f)g") + g_x((l_f)uugn) + g;((l-f)v"g") . ;_z((l_f)wu‘:,u)
+(1-D)F Joa" === 7 ((1-)p") - F ECu'+y™) - FH1-26E(u'-a"),

o
(32)

where u'=(u',v',0), u"=(u",v",0) are the horizontal velocity com-
ponents of thermals and anti-thermals, respectively, k=(0,0,1) the

the two-dimensional

vertical unit vector pointing upward, VH

gradient operator (%;,%;30), and fo is the Coriolis parameter.
Thermals and anti-thermals are subjected to two different pressures
(Truesdell, 1969). Viscous forces are neglected since they are
unimportant for most geophysical convective situations. The ex-

change of momentum is modelled by a transfer of mass at the mean

P NN [N VI A,

L.

L !
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horizontal velocity (g'ﬂ.x")/?, analogous to the heat transfer. It
may be shown that this form of exchange is the only one that con-
serves total kinetic energy in the horizontal motion. The last
term of each equation represents a kinetic energy exchange, which is
converted to kinetic energy in the vertical motion (See section
about energetics). Finally, it may be seen that the pair of equa-
tions meets the Invariance Principle.

The sum of equations (31) and (32) yields an equation governing
the mean horizontal momentum 1?:(7._;,17,0)1

a_

3y (33)

e
£
g

3 3 - ) - -
WY taxuwf +E~+fo}5><g-- v

In the particular case of horizontal homogeneity at large scales,

the two components of equation (33) reduce to:

%‘- £7 = -g—zm‘, (34)
§—Z+f—=—%z—7w—, (35)

where the Reynolds stresses -uw and -vw are defined by (7) and (8).
Subtracting from (31) and (32) the continuity equations (19)
and (20) pre-multiplied by u' and u", respectively, and assuming

that the vertical advection terms dominate (preliminary remark),

one obtains:

w'_g? ‘é' = E(\:}"-‘e')’ (36)
wné_ u" = E(u"-u') (37)
3z =~ ~ -
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By use of (22), the difference of these two equations leads to: 3
(-6 ut + £y = 0 (38)
3z ~ 9z - i
which is comparable to (30). Y
f) Vertical momentum equation:
In the context of Boussinesq approximations (Spiegel and
Veronis, 1960), densities may be approximated by the reference den- s
sity LIS everywhere except in the buoyancy terms where actual values
have to be kept. For two interacting fluids, the vertical momentum
equations are: 3
for thermals:
sty + st + 2qevt) « 2qmewn)
at ax 3y 3z
= - l;-g—(fp') - g—fp' + l-E(w'+w"), (3¢) i
p_ oz ) 2 3
o o .
for anti-thermals:
3—-((1—f)w") + a—-((l—f)u"w") L (a-n)vmn) + o ((-fwmn)
it ox y A
= - 22 ((1-£)p") - B(1-£)o" - L E(ut+u™). (40)
p 2z o) 2 ?
o o
The sum of these two equations yields an eguation for mean
quantities:
P g lmilw. w2 g3 (41) :
at ox 3y 3z o3z o o +
o o
The main balance consists of the terms on the right-hand side, i.e.,
the hydrostatic balance. The fourth term dominates the left-hand b |
side, because w' and w" do not cancel their effect in the correla-
tion ww and vertical advection dominates. Using (13) and (22), the
Reynolds stress ww is found to be equal to wﬁms , and (ul) may bSe 1

Sllec




rewritten as:

lr—‘

-g-E:-g——B’__a—wz R (q?)
o 2 [+]
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which simply is the hydrostatic relation corrected by the Reynolds
stress divergence. To obtain an equation governing the vertical
motions, this equation will be sutracted from (39), and this correc-
tion will become of the same order as the remaining terms.

A vertical velocity equation is needed in order to predict
vertical motions through the convective layer. That equation, ob-
tained by subtracting (42) multiplied by f from equation (39),
using (13), (22), (23), and assuming once again that vertical advec-
tion is the dominant term of the total time derivative (preliminary

remark), is:

ow p+mp
ms 2m rms _ 2y .2 of
3 W s 5z | 1-2f ( s (14m%) “r 3z
- 1l 3
=08 Tons o 3z Prms’® (43)

(o]

where m is a coefficient dependent on f only, defined by:

m = 1-2f . (uu)

2(f(1-f))E
This diagnostic equation controls the vertical motion of ther-
mals and anti-thermals. It relates the vertical acceleration to the
buoyancy. The pressure term allows an exchange of kinetic energy
between horizontal and vertical motions. The equation finally in-

cludes a correction term due to eventual changes in f.




In the above set of governing equations, the unknown variables
are u', u", U, v', v', v, w', w", w, T, T, T, p', p", p, £, ané E.
There are thus 17 variables for which 17 equations are needed.

The definitions of mean values u, v, w, T, and p [(1), (2),
(3), (4), and (6)] yield 5 equations. The two ccntinuity equaticns
(19) and (20) may be equivalently replaced by (22) and (23). The
heat conservation equations (24) and (25) may be replaced by (26)
and (30), the horizontal momentum equations (31) and (32) by (33)
and (38), the vertical momentum equations (39) and (40) by (42) and
(43). Since the horizontal momentum are two-dimensional, there are
5+42+2+4+2 = 15 independent definitions and governing equations.
One needs thus two extra equations to solve the problem for the 17
variables. A closure hypothesis will provide the first cne, while

an examination of the energetics will provide the second one.

6. CONSERVATION OF FRACTION OF AREA OCCUPIED BY THERMALS

Where thermals accelerate, they tend to separate vertically and
to grow by entraining surrounding fluid (Turner, 1973, Chap. 6
and 7; Scorer, 1978, Chap. 8). Isolated thermals may grow freely,
but in presence of many others, they grow until they feel a strong
return flow more and more confined to a reduced fraction of area.
This return flow will tend to erode the thermals, preventing them

form growing any further, and a saturation equilibrium takes place.

Inversely, the same equilibrium state does occur in regions where




25

thermals decelerate: there, they tend to accumulate, restricting
the area available for the return flow and are therefore eroded.
Anti-thermals now grow so that saturation of area is reached.

This saturation equilibrium leads to assigning a constant value
to the fraction of horizontal area occupied by thermals. This as-
sumption of a constant value of f is supported by atmospheric obser-
vations. Direct measurements were carried out by Grant (1965),
while data obtained by Warner and Telford (1967) were used by Manton
(1975) to evaluaté values of £f. Both sources show a narrow range of
variation. The assumption was successfully used by Manton (1975) in
an attempt to model convection in the atmospheric boundary layer
below the inversion and by Roisin (1979) in a study of penetrative
convection with application to upper ocean surface cooling. The
encouraging results presented in subsequent papers support the vali-
dity of this assumption for both geophysical and laboratory applica-
tioms.

The expression of the volume exchange between thermals and
anti-thermals (23) is compatible with this assumption. Indeed, in
regions where the fraction of area occupied by thermals is constant,

equation (23) reduces to:
Ezf—, (u5)

i.e., when thermals accelerate (3w'/3z > 0) and would normally sep-
arate if there were no exchanges, they grow (E > 0) and thus tend to

avoid separation. The same conclusion holds when thermals deceler-

ate (dw'/3z < 0, E < 0). This remark does not prove the assumption




of consrant £, but rather affirms that if saturaticn equilibrium
oceurs, it is a stable equilibrium state.

Although the fraction f of area is expected to be comstant for
a given convective situation, it might differ from one case to
another, depending upon the way thermals are produced. The value
tc be assigned to f depends upon the average size and rate of gro-
g duction of thermals along the boundary where the forcing Is applied.
i For example, small scale convection by surface stress in laborztory
experiments (Xato and Phillips, 1969; Kantha, Phillips and Azad,
1877) is not expected to yield the same value of f as oceanic con-
vection in the upper ocean due to surface cooling (Kraus and Turmer,
1667; Roisin, 1979). In the oceanic wind-mixed laver and in the cor-
responding laboratory experiments (Chapter three), the value of f is
of the order of 10% (see Table 1). In the case of penetrative con-
vection in the lower atmosphere, a reasonable range of values Is 30%-

40% (see Chapter four). On the other hand, large-scale horizontal vari-

ations in the forcing may lead to some lateral variations of f.

Aside from those possible lateral variations and from restrict-
ed regions where saturation equilibrium is not yet reached, the
fraction of area occupied by thermals to the total area is assumed
to be constant. It will therefore appear parametrically in the
model. This assumption is stated at this early stage of the early
stage of the modelling of convection, and its effects are anticipated
to be unimgortant.

As a conseguence, equations (30) and (38) may be rewritten as:

L (® = ug
Bz(‘ + mTrms) 0, {ug)
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3 -
—(u+2mu__ ) =0, (u7)
oz =~ ~rms
where m is defined by (44) and rms quantities by (l4). Since f is
constant, these two equations are linear. The vertical momentum

equation (43) becomes:

) 12
“rms 3z “rms - 8 Trms b, 9z Prms (u8)

7. ENERGETICS

In this section, exchanges of kinetic energy between mean and
turbulent flow as well as conversion to potential energy are exam-
ined in detail. The last equation required by the model will result
as a direct consequence of the statement that the response time of
turbulent motions is much less than the time scale of variation of
the overall convective system (preliminary remark).

The total kinetic energy (KE) may be divided in two parts,
the kinetic energy in the mean flow (MKE) and the kinetic energy in
the turbulent motions (TKE):

m:%pof(?+7+'&7) av
\'

©

2 2 rms rms rms

P
= =2 f(ﬁ2+62+wz) av + =2 J(uz +v2 4u2 ) gv
\ v

=2 MKE + . TKE, (49)

where V is the total volume of the system. Equation (13) was used

to separate means and fluctuations. The potential energy is defined

R e
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by

PE = - age f z T dv, (50)
\7

where z is the vertical coordinate, positive upward.

The time rate of change of the kinetic energy in the mean flow

results from (33). An integration over the entire volume yields:

d _ .9 — 1 _
I MKE = —pof(g.sz 0 u + 5 B.YHﬁ) av

o

E|
l;l
l
3l
o;|

Z
(e}
(51)
3 —_93 - — 3 — 1 -
*%f‘“_‘f W T R U P Iy D A
v

where I is the closed surface bounding the system, n and n, are
respectively the horizontal and vertical components of the unit
outward normal vector to L. The first term is the input of mean
kinetic energy through the boundaries of the system, while the
second term represents the exchange of kinetic energy between mean
flow and turbulent motions, due to shear and divergence effects.

In agreement, with the basic assumptions, vertical fluxes along the
boundaries and vertical shear effect are the dominant process, and

equation (51) reduces to:

Y SR o 0, o 3T
it MKE = G é(u oW + v vw)nzds + oof(uw + VW )

z v

2 32 dv. (52)
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The exchange term may be rewritten by using (13), (22), and (47):

— Ju v
— U | — 0V - rms rms
-00[(uw 3z o sz)dv - 2pomJ(urms 3z * Vrms 9z rmsdv
\Y '}
e mf" 22+ w2 )av. (53)
o ™MS3z Ims rms
'

The time rate of change of the potential energy is directly

obtained from the heat equation (26):

d - 3 —= 3 == . 3 —= .
Ty PE = agpo[ z[3x uT + 3;'VT t 3z wT}dV =
v
= agp, é(z'gT.g + 2z GT.nz)dS - agpo('aT av. (54)
Z 4

The first term represents the input of potential energy by means of
imposed convective heat flux through boundaries. The last term is
the exchange between potential and kinetic energy by convection.

It can be rewritten as follows, with use of (13), (22), and (48):

agpof wT av agpof W TrmsdV
v v
W op

30 m w2 rms rms
f( °o" "rms 3z | “rms oz )
v

qav. (55)

The sources of turbulent kinetic energy are (i) the exchange

' with kinetic energy in the mean flow, (ii) the exchange with poten-

— Wi . f I T R TS
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tial energy, and (iii) the input at the boundaries. This last

contribution is primarily due to vertical fluxes:

- é{% o, WD 2+ (v-9)Zr(w-2] + w[p-5] In_ds,
z

which can be rewritten in terms of rms fluctuations by using (13),

(22), and (44):

- & [emw (u2 +vZ +w2 Y+w_ p Inds. (56)
7 Yo "rms'"rms’ ‘rms’ “rms rmsTyms’ z
Z

The sum S of the three sources of turbulent kinetic energy is given

by (53), (55), and (56):

oW op
_ 3 . 2 2 2 rms rms | .,
S = foom “ems 32 Yems® Veme?dV [(3pom "ems 3z T Yrms iz o
\ \%
- 2 2 2
é Po™ ¥rms Ums* Vems* “pms) * ¥ rmsPrms 17298
z

Integrations by parts lead to the cancellation of the boundary terms.

It results that:

ow
= - 2 2 rms
S f [pom(urms+ v s) + prms] 5. dV- (57)
v

Since the total energy in the system is conserved, the time
rate of change of turbulent kinetic energy ought to be equal to S.
However, in the present study, the preliminary remark, which states

that vertical advection is the dominant contribution to the

g
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substantial derivative, is equivalent to neglecting local time rare
of change of turbulent fluctuations compared with the vertical
transport, input, and conversion rates. Moreover,‘evaluation of the
orders of magnitude for laboratory experiments and geophysical sit-
uations shows that the time rate of change of turbulent kinetic
energy is at least one order of magnitude less than each individual
term in S (Denman, 1973; Willis and Deardorff, 1974; Niiler, 1975;
Lenschow et al., 1980). Therefore, in agreement with both obser-
vations and previous assumptions, the sum of the three contributions
to the turbulent kinetic¢ energy has to be negligible compared to
each individual term, i.e., S = 0 at that level of approximation.
This conclusion states in other words, that turbulence adapts itself
quasi-instantaneously to local variations. Equation (56) for $=0 !

is immediately satisfied if

.

- - 2 2
Prms pom(urms + vrms)' (58)

This constitutes the last equation closing the model. The final

energy diagram for the system is sketched on figure 2.




_Poéiu—\i+7v—w)nzds

MEAN KINETIC ENERGY
2 fi524324w2)av
v

MKE =

- ( w.~..+ ‘l-—-)dv 1
‘OIJ ¥z

-f {'j-:g‘ﬁo W[(u-ﬁ)2+(v-'\i)2+(wnﬁ)"’]
=

R .
—— TURBULENT
+wlP P]}"z ds KINETIC ENERGY

TKE=—-p f(u ms

.'l"w rmslfw

—agpofﬁ av

cgpofz wT n,dS
= t -

POTENTIAL ENERGY

PE= -agp [ 2T av
v

Figure 2. Sketch of energy exchanges between mean kinetic energy,
turbulent kinetic energy, and potential energy.
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"8. SUMMARY AND CCNCLUSIONS

Convection is envisioned as the relative motions and inter-

actions of a two-fluid system. Considering only geophysical appli-

cations, the Boussinesg¢ approximation is made. Although molecular
precesses are necessary to diffuse heat and momentum witﬁin the
thermals and anti-thermals, molecular diffusicn is modelled through
the parametrization c¢f heat and momentum exchanges between thermals
and anti-thermals and does not explicitly appear in the governing
equations. The model requires a closure hypothesis. The existence
of a stable saturaticn equilibrium between the two interacting fluids
permits an assumption of a constant value of the ratlio of areas

occupied by these two fluids.

The governing equations mav b2 advantageously rewritten in
terms of mean and rms variables. In the particular case of no
horizontal variations, the one-dimensional unsteady model may be

summarized as follows:

Continuity equations: w =0 (59)
3 awrms
E = [f(1-£)]° 2 (60)
Heat equations: éi = - 2.
9 at 3z(drmsTrms) (51)
a —_—
SE{T +m Trms) =0 (62)
Horizontal momentum equations:
au - _ 9
5t - foV T - Ez(urmsvrms) (63)
32 — )
— 4 L o
dt fou az(vrmswrms) (64)
3 ,-
sz(u + 2m urms) =0 (€5)
? ,—
sz(v + 2m Vrms) = Q0 (6€)
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Vertical momentum equations:

k "
~ o= R 4
9 = =0 - -- - > —)-— 2
27 o gll-a(T TO)] Po T2 Yims (57)
awrms 1 gprms
3m = ag T - — — (€8)
rms 3z rms P, 9%
I - 2 2 - ]
Pressure fluctuation: P = - p m(u + v ). (h9)
rms o rms rms

f In the above set of equations, f and m are two ccnstants,
related by (44). Equations (60) and (67) give E and D cnce the $
solution is found; they may thus be separated from the others.

Equations (62), (65), and (66) may be directly integrated; the rms

pressure fluctuation may be eliminated in (68) by use of (69). The
problem thus reduces to four non-lirear first-order coupled differ-
ential equations [(61), (63), (64), and (68)]. Examples of appli-

cations are presented in subsequent papers. |




APPENDIX A

Mathematical treatment of the Preliminary Remark

If a represents any physical quantity, the preliminary remark

states:
= (fa') + = (fu'a’) + % (fv'at)<< (fw'a’) (A1)
% [(1-f)a"] + :—x [(1-f)u"a"] + % [(1-f)v"a"]<<-a§z— [(1-f)w"a"], (A2)

i.e., the vertical acceleration is the dominant part of the substantial
time derivative. The orders of magnitude of the various terms can be
quantified by introducing the scale for each variable: T, for the

time scale of evolution of the whole system, L, for the horizontal
length scale of lateral non-homogeneities in the system, V, for the
horizontal-velocity components, H, for the convection-layer thickness,
and W, for the vertical velocity of thermals and anti-thermals. The

preliminary remark is then equivalent to stating: |

1 W vV _W !
TG d peg
H L

or W« T and T

i.e., the time taken by the thermals to cross the convective layer is

much less than (i) the time scale of evolution of the whole system

and (ii) the advective time scale of lateral non-homogeneities.
Mathematically, one may define a dimensionless number, ¢, to

measure the ratio of these time scales: ]




If the terms of the order of € and smaller are neglected, the
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) H/W  H/W

€ = max (—T— s m] (A3)
% The preliminary remark therefore holds as long as:

!

; g<<l . (A)
%

?

3

mathematical treatment of the equations leads to the equations pro-
posed in chapter two. It is shown below that all the equations are
valid at the order of ¢ or better.

The continuity equations (19) and (20) may be rewritten as:

3 _ W
SZ(t'w') -E+O(eﬁ-) s (A5)
and 2 (-] = -E+ 0 €D (A6)
3z H
the sum of which is:
w W
3z 0 @2§0

Since, for most of geophysicil situations w can be assumed to be zero
somewhere (along a boundary, for example), w is of order €W and thus
is much smaller than w' and w". An integration with respect to z
yields:

w=fw' + (1-F)w" = 0@EW) , (A7)
i.e., equation (22) is valid at the order of ¢.

Equations (24) and (25) may be rewritten as:

= (Fu'T') = HE (T'4T") + C €%, (48)
2 [(1-EWT'] = 5E (T'4T") + © €%, (A9)

where 6 is a measure of a temperature difference across the convective
layer. Subtracting from (A8) and (A9) the continuity equations (AS5)

and (A6) pre-multiplied by T' and T", respectively, one obtains:

g S
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_al’ -1 " ' ﬂ
fw! 3z - LE (T"-T') + 0 € ™ )

a'r"

8
91 -1 "ot 0 (¥

(1-f)w"

By virtue of (A7), the difference of these last two equations is:

] wb
[} TLTY) =
fw' o (T'+T") = 0( T ),

O (TraTmy = 8
or 32 (T'+T") = 0 (eH) s

i.e., equation (30) is valid at the order of ¢.

The same treatment can be carried out in a straightforward
manner, and it is concluded that equations (38), (42) and (43) are
valid at the order of €. On the other hand, the governing equations
for the mean variables, T, u and v, are not based on the preliminary
remark and are exact equations.

As an example, the application of the theory of chapter two to
the deepening of the wind-mixed layer (Chapter three) is governed by
the following scales:

H=10m L =ow, T=10%, W =102ms"!, v = 10 Ims™ 1,
in which case, € is of the order of 107!, Likewise, the application
of the theory to oceanic penetrative convection under surface cooling
(Chapter four) and to wind-induced oceanic frontogenesis (Chapter five)
are based on values of ¢ of the order of 10™“ and 5x10 “, respectively.

The theory, as developed in chapter two is thus directly applicable to

upper-ocean dynamics.




APPENDIX B

A more general parameterization of the exchanges
between thermals and anti-thermals

Exchanges of heat and momentum between thernals and anti-thermals
are assumed to take place exclusively through a volume exchange, thus
excluding transfer by diffusion or collision. Exchange terms can
then be written as the product of E, the volume exchange between
thermals and anti-thermals, by the quantity which is being transferred.
Since momentum exchanges are analogous to a heat exchange, only the
parameterization of the heat exchange is discussed in this appendix.
The conclusions will hold for momentum exchanges. i

Assuming that the transfer of heat between thermals and anti-
thermals is a net transfer of volume, E per unit time and total
volume, at a temperature Tex’ the heat conservation equations take

the form:

? 3 ? 3 _
SE-(fT') : 5;-(fu’T') + 5;-(fv'T‘) * 3 (fw'T') = E Tex , (Bl)

3 " i e _3_ - nmit _3_ - 1"y
T [(1-£)T"] + o [(1-F)u"T"] + 3 [(1-£)v"'T"] + = [(1-F)w"T"]

=-ET (B2)
ex

The exchange temperature, Tex’ must be a function of T', T" and
possibly £, and has to meet the following requirements:
(i) Tex ranges between T' and T", (B3)
(1) T, =T, 1£T' = T" = T, (Bu4)

(iii) Tex (T,
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The second requirement states that if thermals and anti-thermals

are at the same temperature, the exchange takes place at that temper-
ature, while the third requirement directly follows from the
Invariance Principle.

Using the continuity equations and the Preliminary Remark, and
performing the same algebraic transformations as in chapter two, one
obtains the following equations:

aT!

fw! 35 - F (Tex -TY , (B6)

T"
2 )

(1-f)w" 3z C E (T" - Tex s (B7)

which are generalized forms of (28) and (29). The elimination of the

vertical velocities from (B6) and (B7) by use of (22) yields:

AT aT"
" —_ - T!') =~ = ’
(T"-T ) 3 + (T ) 3 0, (B8)

which is the generalization of equation (30).

No further information can be drawn from this equation without a
parametrization of the exchange temperature, Tex' Since Tex has the
dimension of a temperature, a linear function of T' and T" is well-
suited:

Tog = a(f) T' + b(£) T", (B9)

where the dimensionless coefficients, a and b, are functions of f

in general. The three requirements lead to impose:

(i) o<a, b<l, (310)

(ii)a+b =1, (B11)

(iii) a(1i-f) = b(f) (B12)
In this case, equation (B8) reduces to:

o LI 0, (B13)

a 1A + '}/




Fere LA TR PR

40

for the derivation of which (Bll) has been used. The coefficients
a and b are functions of f only, and it is assumed later that f is

constant throughout the system. Therefore, (B13) becomes:

3

2 = 2 (aT? "y =
52 Tox = 3z (aT' +DT") =0 . (B1lu)

This equation is a more general form of equation (30). Since it is
linear in T' and T", the same analysis as in chapter two and

the subsequent chapters can be carried out. The mathematical
formulation remains unchanged; only the dependence of the coefficient
m upon f has changed to:

m= §££l_:_£ . (B15)

v£(1-1)

The particular case chosen in chapter two corresponds to a = b = %
and is the only choice which leads to conserving the total kinetic

energy of the flow, i.e.,

g (u|2+vv2*w12) + _l_éi (u"2+v”2+w"2)

As defined previously, parametrizations of exchanges between
thermals and anti-thermals are not based on any coefficient of
molecular diffusivity. However, molecular processes are required
to homogenize thermals and anti-thermals and are effective as
exchanges take place. Therefore, in all precision, molecular

diffusion is not neglected but modelled.

B e et

B - 0 . St s <M i s - = ot = ANl S b 1




R

CHAPTER THREE

DEEPENING OF THE WIND-MIXED LAYER:
A MODEL OF THE VERTICAL STRUCTURE
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1. INTRODUCTION

Much of the work on upper ocean mixing is limited to one-
dimensional models. These can be useful because bulk temperatures
and salinities tend to vary more along a vertical distance of a
hundred meters than along a horizontal distance of a thousand
kilometers. This holds true over many parts of the world's oceans,
except near fronts, because vertical exchange processes between the
air and the sea, as well as vertical mixing within <he water column,
are likely to affect local conditions much more rapidly and
effectively than horizontal advection and horizontal mixing (Niiler
and Kraus, 1977).

Time-dependent one-dimensional models often assume vertical
homogeneity in the mixed layer, and are therefore bulk models.

They were reviewed extensively by Niiler and Kraus (1977) and
Zilitinkevich, et al., (1979). The four unknowns in these
models are the mixed-layer temperature T, horizontal velocity
components u, v, and thickness h. These variables are functions
of time only and are governed by the overall budgets of heat,
horizontal momentum and turbulent kinetic energy. This last

budget takes the form:

4 - 4
I TKE = Fs +E - It PE - D - Fh s (1)

expressing that the time rate of change of the turbulent kinetic
energy (TKE) is the sum of a surface flux F_ from the atmosphere

through surface-wave breaking and the rate of production E by the

42
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shear of the mean flow minus the rate of increase of potential
energy PE, the rate of dissipation D by friction within the mixed
layer, and the flux Fh of energy lost by internal gravity waves
through the underlying stable layers.

It is reasonable to state that the turbulent kinetic energy
responds quasi-instantaneously to time variations and thus to
neglect its time rate of change (Denman, 19873; Niiler, 1975;

Chapter two). On the other hand, the downward flux by internal

gravity waves is often neglected since no acceptable parametrization
has yet been proposed. The TKE-budget (1) therefore reduces to:

%E? =F +E-D, (2)
which leads to two main classes of models: (i) Turbulent erosion
models (TEM) for which the increase in potential energy by mixing
is exclusively due to the surface flux FS minus internal dissipation,
and (ii) the dynamic instability models (DIM) for which the increase
in potential energy is entirely due to production of turbulence

by the mean-flow shear. The comparison and synthesis of these two

models are discussed by Niiler (1975), de Szoeke and Rhines (1976)

T g R o i <

and Price, et al., (1978).
More recently, various turbulence closure models have been i

applied to the mixed-layer deepening problem in order to study

the vertical structure across the layer (Mellor and Durbin,

1975; Warn-Varnas and Piacsek, 1979; Klein, 1980; Kundu, 1980a).

They all show that the assumption of vertical homogeneity is

excellent for temperature when the mixed layer is deep enough so

that the thermocline is well-defined, but not adequate for
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horizontal velocity components for sub-inertial time scales when
an Ekman-spiral structure is present 3

In a parallel way, laboratory s mulations cof mixed-layer
deepening were conducted, either without mean shear (oscillating-
grid experiments by Turner and Kraus, 1967; Linden, 1975) or with
mean shear (Kato and Phillips, 1969; Moore and Long, 1971; Kantha,
Phillips and Azad, 1977).

Finally, theoretical and laboratory results have been com-
pared with observations (Turner, 1969; Denman and Miyake, 1373;
Halpern, 1874; Kullenberg, 1977; Price, Moocers and Van Leer, 1378,
Dillon and Powell, 1979). The main conclusions resulting from
the data are: (i) TEM and DIM both lead to qualitative agreement,
(ii) good quantitative agreement is obtained for a well-adjusted
dissipation term, and (iii) comparisons of the various terms in
(2) favor a TEM when the mixed layer is well developed (15 m or

more) . ‘
2. THE MODEL

- The model presented here is a new turbulent erosion model
(TEM). It focuses on the vertical structure of the variables
throughout the mixed layer and thermocline. The aim is to predict
by simple analytical calculations the thermocline thickness and
profiles of temperature, velocity, Reynolds stresses and heat flux.
The model is based on a new parametrization of mixing and convection

(Chapter two). It can be applied to the most general case of




mixed-layer deepening under variable wind stress and/or variable
surface heat flux.

The model envisions mixing as the relative motion of two
interacting fluids of different properties. Parcels of fluid .

rising through the convective layer are given near the surface

extra momentum by the wind stress, and their temperature is i f
altered by the surface heat flux., These elements are pushed back
into the convective layer by turbulence with new properties.

Because they sink in a slightly stratified fluid, they accelerate

or decelerate. Ultimately, they will become buoyant and decelerate.
As they sink, they also progressively lose their horizontal-
momentum excess and heat content by interactions with the upward
return flow. As they reach the bottom, they have a null vertical
velocity and lose their ability to carry heat and momentum. The
active sinking elements are called thermals, and the rising

elements, anti-thermals, by analogy. The model describes the

PR RS

individual dynamics of thermals and anti-thermals, and their
exchanges; mean properties and relative differences are then
deduced. This permits direct computation of mean profiles and
vertical fluxes of momentum and heat.

For better comparison with previous models and laboratory
experiments, the present study is limited to the case of no
surface heat flux. This wind-mixed layer deepening case is
depicted on Figure 3. At the surface, non-buoyant thermals are

produced by wind action. As they penetrate the mixed layer, ;

they acquire positive buoyancy due to a slight stable stratification
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Figure 3. Schematic model of the wind-mixed layer.
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existing in that layer, and decelerate. At the bottom of the
mixed layer, their vertical velocity is somewhat reduced. As the
temperature profile begins to curve at the entrance of the thermo-
cline, the thermals' buoyancy increases sharply, and their vertical
velocity decreases rapidly. Since the newly-entrained fluid is
subjected there to the largest temperature variaticns, the vertical
heat flux wT (negative) is large at the bottom of the mixed layer.
A decreasing velocity therefore implies larger temperature contrasts
and increasing buoyancy forces, which in turn decelerate thermals
even more. The process is cumulative, and gives rise to the
formation of a thin layer of rapid variations, the thermocline,
which lies between the mixed layer and the quiescent stable fluid.
Throughout the mixed layer and thermocline, a saturation
equilibrium between thermals and anti-thermals can be assumed
(Chapter two). This leads to assigning a constant value to f,
the fraction of area occupied by thermals. However, continuity
of physical properties at the bottom of the thermocline requires
f to vanish at that level. This may be accomplished by assuming
the existence of an entrainment layer within which f decreases
monotonically from its constant value in the mixed layer and
thermocline to zero. Calculations carried out in Appendix 7 show
tnat this layer is in fact so thin that it does not play any
active role in the deepening process and may be neglected. It is

therefore assumed here that f is constant throughout the water

column.
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3. GOVERNING EQUATIONS

Thermals and anti-thermals are characterized by different
velocities, temperatures, densities and pressures. Primed and
double-primed quantities refer to thermals and anti-thermals,
respectively. If f represents the fraction of area occupied by
thermals at any level, the fraction of area available to anti-

thermals is (1-f), so that mean properties are defined by:

Mean Temperature T = £T' + (1-£)T" , (3)

Mean velocity components u = fu' + (1-f)u" , (%)

v = fv' + (1-f)v" , (5)

. w = fuw' + (1-f)w" (6)
Mean density o = fo' + {1-F)o" , (D

Mean pressure p = fp' + (1-£)p" . (8)

Moreover, root-mean-square (rms) fluctuations are defined by:

ams © YE(1-£) (a'-a") = +(a-a)? %, (9)

rm
where a stands for any physical quantity such as temperature,

velocity, density or pressure. Rms fluctuations are thus propor- 3

tional to the difference between thermals and anti-thermals
quantities. They may be positive or negative. The vertical

convective heat flux can be expressed as:

wT fw'T' + (1-f)w"T"

(10)

WwT +w T s
rms rms

and all the other fluxes such as the Reynolds stresses can be

written in similar forms:

A S s "2 AR <




-UW = -UW -U W (11)
rms rms ,

Wz -YW-V_ W , (12)
rms rms

-ww = -Wl - wd (13)
ms

With these definitions, the one-dimensional convection (no
horizontal variations) can be described by the following equations

(Chapter two):

Continuity equation: Ww =0 (14)
Heat equations: T = __a(w (15)
ot 9z rms rms
2(F + T ) = 0 (16)
3z rms

Horizontal momentum

oncal [T

equations: T fov = g (urmswrms) (17
%—+fﬁ=-;—a( . (18)
t o 0z rms rms
93 - (19)
Bz(u * Qmurms) =0
a(\—/+2mv ) = 0 )
3z rms (20

Vertical momentum

1 93p - 3
ions: r = - (1-a(T-T - Wl
Equations: o 5& g o)] 5% “rms (21)
ow ap
3 ..rms _ 1 rms

™ rms 3z 8T s o —55 (22)

. = . 2 2
Pressure fluctuation: Prms Oom(urms+vrms), (23)

where fo is the Coriolis parameter, LI the reference density at

To’ a the coefficient of thermal expansion, and m a coefficient

dependent upon f, defined by
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m = 7?TTT?T= > (2w)

and is related to the turbulent kinetic energy input at the surface
(Chapter two). Figure 4 exhibits a plot of m versus f.

Eliminating the equations for w and p, (14) and (21), and
replacing Prms BV its expression (23), the system reduces to seven

non-linear first-order coupled differential equations.

L. BOUNDARY CONDITIONS

At the surface, z =0, the Reynolds stresses ought to match the

wind stress components:

-uw = -u W = X (25)
rms rms o] ?
o
- T
-VW = -y W = L
rms rms o] 4 (26)
o
while the vertical convective heat flux is set equal to zero:
Wl = = 27
wT wrmsTrms o, (27)

since the effect of a surface heat flux is not studied here.
Finally, isotropic turbulence is assumed in the wave zcne just

beneath the surface:

w2 =z u? +vZ (28)
rms rms rms

expressing that the turbulent vertical velocity equals the turbu-
lent horizontal velocity.

The wind-stress amplitude defines a friction velocity charac-

teristic of the turbulence near the surface:
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Figure 4. Plot of m versus f, the fraction of area occupied by
thermals.,
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o

u, = [t /o )2 + (1 /o )27% . (29)
* x' "o y' "o

In terms of this friction velocity, the surface boundary conditicns

(25), (26}, (27) and (28) become:

Une = rx/(oou*) , (30)
Vems - ry/(oou*) s
Woms = Ui (31)
T =0

rms

where Wims is chosen to be negative because thermals sink (w'<O<w").

At the bottom, z = -h(t), mean quantities match the charac-

teristics of the underlying motionless layer:

u= 0.,
v=0, (32)
T=-Th,

where T = dT/dz is the constant temperature gradient in the stably
stratified fluid below the mixed layer (See Figure 3). By
definition, the bottom of the thermocline at z = -h(t) is the
level beyond which thermals do not penetrate, The thermals' ver-
tical velocity therefore vanishes at that level:

w' =0 . (33)
Strictly, w' ought to be equal to -dh/dt, the rate of entrainment
at which the bottom of the thermocline deepens. However, the
thermals' sinking velocity through the water column is much greater
than the rate of deepening of the thermocline, and boundary con-

dition (33) is a valid approximation.

The set of equations requires seven boundary conditions




whereas eight are presently prescribed. The extra condition is

precisely the one which will yield a prognostic equation for the
mixed-layer depth h(t). The system is thus closed and self-

consistent.

THE HYPOTHESIS OF A TURBULENT EROSION MODEL (TEM)

For the present boundary conditions, the turbulent kinetic

energy input at the surface by the wind is:

1 — — - - -
Fg = —E(w—w)[(u-u)2 + (v-v)? + w-w)?] - %-(W~W)(P'P)
)
- - 2 2 2 1
" ms (Ypms * Vems * Yrms) 5; “rmsPrms
= mu’® ,
% (34)

at z = 0. Thus the coefficient m as defined by (2u4) is equivalent
to the parameter m, as defined by Niiler (1975).

In the case of no dissipation, the turbulent kinetic energy
budget (2) is given by Niiler (1975), de Szoeke and Rhines (1976),
Niiler (1977):

%Nzhzﬁ ] mu; + %(32 + ¥R, (35)

where h = dh/dt is the rate of deepening, and the double bar
represents a vertical average of mean quantities across the mixed
layer. A turbulent erosion model (TEM) balances, in (35), the left-
hand side with the first term on the right-hand side, arguing that
deepening is caused by erosive action of turbulence propagating
from the surface down to the thermocline. A dynamic instability

model (DIM), on the other side, balances, in (35), the left-hand
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side with the second term on the right-hand side, arguing that
deepening results from a shear instability across the thermocline.

The computations of de Szoeke and Rhines (1976) show that the DIM

2n

fO

times, the mass flow in the mixed layer is limited to the Ekman

holds for times of the order of the inertial period At later
transport, the velocity components 4 and v decrease as h'l, and a
TEM applies.

Because this study is directed toward long time scales,
assumptions will be made to reduce the model to a TEM, and thus
decouple the mixed-layer deepening from the mean herizontal flow.
The pressure term in equation (22) represents the mechanism of

production of turbulent kinetic energy from the mean flow shear

it

(Chapter two). The reduction of the model to a TEM is thus

accomplished mathematically by neglecting the pressure term in (22).

The final model thus reduces to the following set of equations:

2T = -2 ( T
3t 3z “rms rms) (36)
3 -

= 7
H(T+mTr-ms) 0 (37)
3% -
3t fov - _sg(urmswrms) (38)
v - _ 3
3t | fou - -Eg(vrmswrms) (39)
(3 + 2mu__ ) =0 (40)
3z rms
3 (v + 2mv ) =0 (41)
dz rms

dw

amwrms—3§EE = agTrms ’ (42)
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with the boundary conditions at z = 0:

= (u43)
Trms 0
- (uL)
urms TX/(pou*)
= (us)
Voms Ty/(pou*)
w = -u (46)
rms &
and at z = <h: T = -Th (47)
u =0 (48)
v =0 (49)
= (50)
Yrms 0.

6. CHANGE OF VARIABLE AND FUNCTIONS

Since the mixed layer is constantly deepening it is advan-
tageous to use the similarity variable £ = -z/h(t) which varies
from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equations

(37), (40) and (41) with respect to z and define:

u = U(t) - 2mu(t,E)

N (51)
Uns ° u(t,E) ,
v o= v(t) - 2mv(t,£)

- (52)
Vrms v(t,8),
T = -TT(t) -mTI'T(t,£)

- (53)

T = I'T(t,8) ,

rms




R B T T

56

where tilded quantities are £ and t-dependent and represent rms
quantities. The non-tilded quantities U, V and T are constants of
intregration and depend upon time only. They will have to be
determined by the boundary conditions. Note that due to the
presence of the factor ', the new temperature variables T(t) and
%(t, £) have the dimension of a length. The rms vertical velocity
may be redefined as:

Wons = -w(t, €) , (5u)

in order to work with a positive variable.
With these changes of variable and functions, the remaining

governing equations (36), (38), (39), and (42) become:

: oT BT . (123 (55 (55)
-T - me mgiag = -7 QE(WT) s
52l fi, Bu = 23 (4 (56)
U-2m§¥ + ngig_ - fOV + 2mfov o BE(uw) ,
v h, 3V - R A (57)
V-2m§¥ + 2mg§—g + foU 2nr°u N 8£(vw) ,
~ oW _ 2. 3 (58)

where N2 = agl' is the square of the Brunt-Vi#is4ld frequency in the
underlying stratum, and where a dot represents a time derivative.

The boundary conditions become:

T(0) = 0, u(0) = T /(0 u,), v(0) = ry/(oou*), w(0) = u, , (59)
and
T(1) = (h-T)/m, u(l) = U/2m, ¥(1) = v/2m, w(l) = 0O (£9)

This constitutes a set of four coupled first-order non-linear

differential equations which require four boundary conditions.
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However, they contain four unknown time-dependent functions: T(t),
U(t), v(t) and h(t), for which four additional conditions are
required. The system consists of eight boundary conditions,

precisely what is required.
7. GLOBAL HEAT BUDGET

The heat budget of the whole system yields the temperature
T(t) as a function of the mixed-layer depth h(t). Although the
result of this section will be recovered after having solved the
equations, it is useful to anticipate that result in order to
define the Richardscn numbers of the next section.

The global heat budget of the mixed layer and thermocline,
integrated over time, expresses that the temperature difference
from the initial value integrated over the water column is equal
to the time integration of the net surface heat flux, which is
zero in the present case:

o
f (T-Tz)dz = 0.
Lh

Using expression (53) for T and the vertical momentum equation

(58) to eliminate T, one obtains:
1

3m2r _aw _
fo(—I'T t ¥ Wap tThEdhdE = 0,

and, with the use of boundary conditions (59) and (60), the

integral yields: )
3

N2p2)

u

T(t) = %(l-3m2 (61)
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For oceanic values corresponding to time scales greater than the
inertial period, i.e.,
NA107 2571, u,v10 2ms™ !, h320 m, m of the order one, ;

it is easily seen that the second term in the parentheses in (61)

is of order of 10 2. Therefore, because the mixed layer is deep

enough (h>>:§), the heat budget reduces at the leading order to:

_h
T=35. (62)

This approximate result could have been easily anticipated.

Indeed, assuming a well-developed mixed layer of perfectly

homogeneous temperature and bounded by a zero-thickness thermo-

cline (see Figure 5.), the global heat budget requires the equality
of areas A and B, and therefore T=h/2. Because the mean tempera-
ture profile T is not exactly z-independent, the correction f, due
to a slight gradient through the mixed layer and to a non-zero
thermocline thickness, leads to a value of T which is somewhat
reduced, as expressed by (61).

The total buoyancy in the mixed layer is:

B = g%eh
o

where Ap is the density jump across the thermocline, and % the
reference density. Since Ap = pouAT, AT = -Th/2+Th = -Th/2, by
virtue of (62) (see also Figure 5.), and N% = agl, the total
buoyancy may be rewritten as:

' 5 o N2n2
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Figure S.

Limiting case of a perfectly homogeneous mixed layer
bounded below by & zero-thickness thermocline. The

global heat budget requires: Area A = Area B.




60

8. RICHARDSON NUMBERS

The mixed-layer deepening under the action of a surface wind
stress is successfully characterized by the values of +wo Richardson
numbers, ratios of the total buoyancy in the mixed layer to the
square of a velocity. The Frictional Ricnardson number is the
ratio of B as defined by (63) to the square of the friction
velocity u, as defined by (29), based on the wind-stress amplitude: y

2,2
Ri = —z-guh . (64)

This is the Richardson number used by Turner and Kraus (1967),
Kato and Phillips (1969), Kim (1976), Kullenberg (1977), and
Price, Mooers and Van Leer (1878). The Overall Richardsovn number
is the ratio of B to the square of the mean horizontal velocity
in the mixed layer, here approximated by UZ+V? as introduced by (51)
and (52):
23,2

R, = ﬁf%f)' . (65)
Rv is the Richardson number used by Pollard, Rhines and Thompson i
(1973), Garwood (1977), Dillon and Powell (1979), Price (1978) and ;
Kundu (1980a).

Both numbers Ri and Rv are time-dependent through h, U and V,

and increase as the mixed layer deepens. They characterize at
anytime the state of the system. The frictional number, Ri, is
the dominant number in TEM's, for turbulence induced by vertical
shear across the thermocline is neglected compared to the surface

input. Because the present model is a TEM, the frictional
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Richardson number, ' i, will play an essential role. It increases
from zero, when the wind starts to blow, to values much larger
than unity, when the mixed layer is well-developed (Rinv102 for
orders of magnitude listed in the previous section ).

Mathematically, it will be assumed here that the mixed-layer
+ thermocline system may be treated as an interior + boundary-
layer problem. It will be shown a posteriori that this simplifi-
cation holds when

Ri>>1,

i.e., when the mixed layer is well-developed.

Another important dimensiopless number is the rate of

entrainment

ES

E = , (66)

2.
"

[ =

the ratio of the deepening rate to the friction velocity, as
defined by Kato and Phillips (18969). The friction velocity is
characteristic of the vertical downward velocity of thermals. It
is anticipated to be large compared tc the rate of deepening of
the thermocline because thermals take a short time to sink from
the surface down to the thermocline compared to the time scale of
evolution of the whole system. The entrainment parameter is thus
expected tc be very small compared to one.

DPimensional analysis leads to the solution of the mixed-layer

deepening:
E = F(R1i) (67)

U . . T
and o = G (Ri), — = G (Ri), n

= G (Ri),
3




62

where the four functions, F, Gl, G2 and 63 result from the sclution

of the equations.
9. SOLUTION

) Hypotheses of a_quasi-homogeneous mixed layer:

It is well known from observations and laboratory experiments
that when the mixed layer is well-developed, it i1s gquasi-homogeneous
and bounded below by a thin layer of large gradients, called the
thermocline. This behavior may be anticipated a priori and a
boundary-layer treatment is therefore the appropriate methoc of
solution. The system is divided into two regions, the interior
region where the horizontal velocity and temperature are almost

constant with depth

<<y, ¥<<v, T<<T ,
3 (68)
EE = 0(1),

and the thermocline, where vertical gradients are anticipated tc

be very large:

gy, "W, TnT,
5 (89)
§E'>>0(l).

These assumptions will be verified a posteriori, and it will be

- wr, *na® %hey are correct provided that Ri is much greater than
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b) Solution in the mixed layer

Assuming a quasi-homogeneous mixed layer, equations (55) to

(58) reduce to:

-1 s of G (70)
U - £V = -% §g<ar> , (71)
Vot £.U = -% %E(GG) , (72)
3m§%% = -N%hT . (73)

The left-hand sides of the first three equations are independent
of £. Integrations with respect to £ and use of surface boundary
conditions (59) yield:

> hTE
T =, (74)

Tx/oo-h(u-fov)i

a4 = ‘.} ' (75)
T /o -h(V+f U)E
v = AX( o - 0 . (76)

W

Replacing T by (74) in equation (73) yields a single equation

for % whose solution is:

2, 2.
~3 3 _ N°'h'T 2 -
w - u:': 2m 2 * (77)

after the surface boundary condition (59) has been used.

c) Solution in the thermocline:
The dominant terms in the governing equations are now those
which include derivatives with respect to £. Moreover, since

this boundary layer lies near £ = 1, £ may be replaced by one

where it appears. Equations (55) to (58) now reduce to:

<ol & B




By
R 3T 1 9 ,~x
a2l - = 2 78
m= 3 = E(wT) s (78) [
1
du _ 1 93 - . "
2m— 3 ° R gﬂ(uw) . (79) ?
v 1 3 , - |
: 2mK gg = -E BE(VW) ) (80) E
: PO LTI (62) v
¢ & : -
4
F

These last equaticns may be easily integrated with respect to £.
The constants of integration are determined by using the bottom
boundary conditions (60):

F (h-T)A

w+mh

~ hU
T T (83)

RV
w+2mh

<
"
—-
o 0]
£
Z

3

where & is implicitly given by the cubic polynominal:

. N?h(h-T)A

~ 3 ~2
wl o+ 3mAw -

(1-3) . (:

(o8]
[$3]
—

10. MATCHING OF SOLUTIONS

The two sets of solutions were obtained independently for the

mixed layer and thermocline by using surface and bottom boundary

conditions, respectively. However, they ought to be the asymptotic

forms of a unique set of solutions valid throughout the whole water

column. This requires imposing matching conditions. As a result,




four prognostic equations for the time-dependent functions T, U,

V and h will be obtained.

Mathematically, matching conditions are obtained by writing
that, for each variable T, 3, ¥ and %, the mixed layer solution
for & approaching unity is equal to the thermocline solution for

W much greater than h. The resulting relations are:

BT _ (h-T)H
T T W ’

Tx/bo - h(U-fOV)

W

]
ch

TX/«% - h(V+foU) i EX_ .
7 ¥
s _ Nh2T  N2m%f 0 . N?h(h-T)K
u, 5 + ~ (1-¢) = - (1-8).

The above equations can be rewritten as:

(hT) = nk , (86)
L ] Tx
(hu) - £ (hV) = — (87)
o) p
(o]
[ ] T
(hv) + £ (hU) = =L (88)
o) CO

N2h%T = 2mu? . (89)

Equation (86) can be integrated over time in order to obtain
T in terms of h:

con::ant] ) (90)

= h
T = 2 [l+




The constant of integration cannot be determined by the initial i
conditions, since the boundary-layer technique breaks down at the
incipient deepening, when the mixed layer and thermocline are not
well-defined. But, equation (90) is identical to the glcbal

heat budget (61), which is an exact result for all times. The

constant of integration is therefore —3m2u,2.‘/N2 and,

_h,, 3m? _
T=z1-5+) , (a1) ¥

which reduces to (62), because Ri is much greater than one.

Equations (87) and (88) are the classical transport equations,

e

whose general solution contains inertial oscillations superimposed

on an Ekman drift to the right of the wind stress. For a time-

dependent wind stress, the solution is:

t
1 .
= = t- T (1) sinf (t-1)ldtr ,
hU hoU° + 5 IBX(T) cosfo( T) + y o
o
0
t
1 .
= = - - t-T1)l]dTt .
hvV = hovo + po [[Ty(T) cosfo(t T) Tx(T) 51nf°( )]
o

The last relation (89) combined with (S81) is the prognostic

| equation for the mixed-layer depth, and is discussed in the next
section. Finally, the vertical profiles valid throughout the

water column are:

E ~ . hig (92)
T = ofew °
i .
@ RACREL -
w + 2mh ?
. ry/po(l-g) + hVE ’ (au)

j - w + 2mh




where w is implicitly given by:

W o+ dmhw? = ul(1-g2) . (95)

It is evident from the structure of this final solution (92)
to (95) that similarity solutions do not exist. None of the

variables can be expressed as single products of time dependent

and E-dependent functions. The approach of Kundu (1880b) is

therefore not justified.

11. WMIXED-LAYER DEEPENING

Equations (91) and (89) form a coupled set of equations for

T and h. Eliminating T, a prognostic equation for h is obtained:

(N?*n? ¢ 3am®ul)h = wmu} (96)
which reduces to
N*h%h = 4mu} , (97)

since it was assumed that Ri>>1l. This last equation is the

turbulent kinetic energy budget for a TEM with;ut dissipation,

expressing that the time rate of change of potential emergy equals

the turbulent kinetic energy input by wind at the surface. If the

wind-stress amplitude is constant with time, the mixed-layer depth
1

increases in time as t°.

In a dimensionless form, (96) and (97) become:
2m

E = - (98)
gﬂ-+Ri ’
2
and =20 (99)

Ri ’
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respectively, where E and Ri are defined by (66) and (64). The
dependence of the entrainment rate on the inverse of the fricticnal
Richardson number has long been observed in the laboratory (Kato
and Phillips, 1969) as well as in oceans and lakes (Kullenberg,
1877; Price, et al., 1978; Dillon and Powell, 1979).

Various values of m are proposed by authors while more can be
computed from data in the literature. A summary is shown in Table
1. From the table, one concludes that all the values of m agree
rather well, approximately one or slightly larger. Values of f,
the fraction of area occupied by thermals, were computed by (2u)
and are found of order of 10%. Thermals are thus rather small
disturbances among a return flow which occupies most of the
available surface. This result agrees with numerical calculations
(Piacsek, 1968) and laboratory cobservations (Turnmer, 1373), which
all show that thermals or plumes are narrow and occupy a small
fraction of the total area of any level. For a system where the
roles played by thermals and anti-thermals are perfectly symme :ric,
one can argue that the value of f ought to be 50%. However, in
the present situation, thermals are locally generated very near
the surface while anti-thermals are progressively formed in the

water column as they rise, and an excess of momentum is input

locally at the surface, while it is progressively consumed for an
evenly-distributed momentum increase of the water column. These
asymmetries explain why thermals are narrow and anti-thermals
diffuse and thus why f differs markedly from 50%.

The correction in the denominator of (98) is reminiscent of

amibioatiihial
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Of the one proposed by Kim (1976):

E = 2m
“ (e /u*55+Ri ?
m -

where %cé is the average turbulent kinetic energy across the mixed
layer. For m = 1.25, Kim proposes (cm/u*)2 = 9, while (98) yields
E%i = 2.34, The corrections are thus of the same order of magnitude.

The results of this section permit justification of the
assumptions which were stated before solving the equations. One
has to show that the approximations

T<<T, G<<U, V<<V

hold in the mixed layer as long as Ri>>1., In the mixed layer,

w is of order of u,, its surface value, which is much larger

than R according to (99). From (92), (93) and (94), one obtains:

"~ Ri1 1<< 1 N

(3¢
l
[=f Kot
e
<J <
e
£l=

which validates the method of solution chosen for this problem.

12. THICKNESS OF THE THERMOCLINE

Due to non-linearities, the boundary-layer method applied
here differs from classical applications to linear systems, and
caution must be exercised when one evaluates the boundary-layer
thickness. At first, one could think that the thermocline is the
region where w is of order h, so that corrections in the denominators
of (92) to (94) become important. This argument leads to a
3

dimensionless thermocline thickness of order Ri ®, which is
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much too small. There is a thicker layer where boundary corrections

start to appear in the solution. Indeed, in the temperature

equation (55),

. 3T . B .af _
T - meo + 535 5—(wT) s
(a) (b)) () (d)

The right-hand side, term (d), balances term (a) in the mixed layer,

while it balances term (c) in the thermocline. The top of the
thermocline is thhs the level where term (c) begins to take over
term (a). Boundary corrections therefore start to appear where
these two terms compete, i.e., where

Fa 555,
where 6£ is the dimensionless thermocline thickness. Because
the boundary layer is a thin region, ¢ is almost one, and,

hu'.'e
according to (89) and (92), T is of order of Riw » So that:

(100)

The balance of the vertical-momentum equation (58) combined with

(89) requires:
w2 Uy

EN%— . (101)

Combination of (100) with (101) finally yields:
8E ~ Ri-é s (102)
W v U Ri” : . (103)

3
Therefore the dimensionless thickness of the thermocline is Ri™ *

rather than Ri~?,

In a study of turbulence and entrainment within the interfacial

zone bounding a mixed layer, Long (1978) concludes that turbulent

[N Ver
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Slw

, and that the rms vertical velocity
1

in the mixed layer near the interface is of order u*Ri-;. The

patches have a dimension hRi~

agreement between the two approaches is perfect, and supports the
modelling by two interacting fluids as a theory of convective
turbulence.

The actual dimensional thickness of the thermccline is:
3

u,)? -1
héE = [T] h?, (10%)

and decreases as the mixed layer deepens. This interface shal-
lowing was observed in laboratory experiments (Kato and Phillips,

1969) and in numerical experiments (Kundu, 198Ja).
13. VERTICAL PROFILES

Solutions (92) to (95) govern the vertical variations of
rms fluctuations throughout the mixed layer and thermocline.
They can be used in (51) to (54) to yield the profiles of mean
quantities they can also be combined to form vertical fluxes.

Figures 6 to 13 are plots of vertical profiles of physical
quantities of interest. The wind stress is taken in the

x~-direction:

TX/DO u; s
9/

and mean currents at 45° to its right:

1]
o
-

U=-vV=kuy,.
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The values assigned to the various parameters are:

Ri = 100, m = 1.25 (f = 0.11), k = 7.

Figure 6 is a plot of the turbulent vertical velocity, which
is proportional to the thermals' vertical velocity. Thermals
leave the surface with the friction velocity imposed by the
surface stress. As they sink, they become slightly buoyant and
decelerate. Their velocity vanishes precisely at the bottom of

the thermocline.

[ U VR r

Figure 7 shows the mean temperature profile. The temperature

is almost homogeneous in the mixed layer and equal to -Th/2, as

required by heat conservation. There is however a slight stable

gradient of order Ri~!, so that thermals progressively become

buoyant and decelerate as they sink through the mixed layer. The

thermocline is well-defined, and its thickness corresponds to (102).

Figure 8 shows the development of the mixed layer and the shallowing
of the thermocline as time goes on.

Figure 9 shows the vertical profiles of horizontal velocity
components, u and v. The mixed layer is quasi-homogeneous as
required by the assumptions made in order to solve analytically
the governing equations. This excludes Ekman veering with depth, ;
and separates the flow into a depth-independent inertial oscillation ]
and a quasi-steady shearing flow that carries the turbulent stresses
downward through the mixed layer. This is similar to the results

of Kundu (1980a) for time scales greater than the inertial period,

when his model becomes a TEM. The velocity u in the direction of




Figure 6. Profile of turbulent vertical velocity, scaled by the
friction velocity.
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the surface stress increases slightly with depth. The reason is
the following: as thermals sink, they progressively exchange with
anti-thermals the extra momentum they have received near the sur-
face. This reduces the turbulent fluctuations, and increases the
mean value accordingly. The v-profile does not exhibit such
behavior since there is no extra-momentum in the y-direction given
at the surface. In the thermocline, both profiles curve sharply
and vanish so as to match the bottom boundary conditions.

Figures 10a and b show the vertical profiles of the Reynolds
stresses, -uw and -vw, scaled by the surface stress. Both
stresses vary linearly through the mixed layer, from the imposed
value at the surface, to a residual value at the top of the thermo-
cline. These residual values are hU and hV, and are precisely the
jump conditions imposed by authors of bulk models (Niiler, 1975,
for example). The stresses decrease rapidly through the thermo-
cline to zero so as to meet bottom boundary conditions.

From mean profiles and stresses, one can compute eddy

viscosities defined by:

-Uw v
Vo T 3g A Y, T o
32 3z

Figures lla and b show the results. The eddy viscosity in the
x-direction is negative in the mixed layer due to the increase
of u with depth. The negative values are correlated with a
transfer of momentum from turbulent motions to mean current.

The turbulence generated at the surface by the wind is progressively
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Figures 10a and b. Profiles of the Reynolds stresses -uw and -vw,
scaled by the surface stress u,2 in the
x-direction.
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structured to increase the mean current. In the y-direction, no
turbulence is supplied at the surface, aﬁd fluctuations increase
downward due to differences between sinking thermals and rising
anti-thermals. At the level where u is maximum, a little above
the thermocline, vu is unbounded, as a result of its definition.
Below that level, in the thermocline, the strong shear of the

mean flow generates turbulence, and eddy viscosities are both

positive. They vanish at the bottom of the thermocline, where

: stresses vanish, and shear is maximum. It is worth noting that
) Vu is quasi-constant near the surface, and that v, increases

linearly from the surface like
N ——* I I
Vo Vm 121

in agreement with the classical theory of turbulence. The
: corresponding Von Kirman constant is

2

4 : 1

K=En-=0.u0,

for m = 1.25. This result is encouraging. There is therefore a
link between the parameter m and the Von Kirmédn constant. The
laboratory value obtained for m is in perfect agreément with
laboratory measurements of turbulent flow.

Figure 12 shows the profile of the vertical convective heat
flux. Mixing brings cold water from below, cools the surface
3 layers and heats the fluid recently entrained in the convective
process. There is therefore downward transfer of heat. This is
the reason why the heat flux is negative everywhere. The constant

gradient through the mixed layer corresponds to a homogeneous

T e P e .
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cooling of the fluid, as stated by the heat equation (15). The
maximum negative value at the top of the thermocline is close to
-%Thﬁ, which is the jump condition across the thermocline, used
in bulk models (Kraus and Turner, 1967, for example).

Figure 13 shows the profile of the eddy heat diffusivity

defined by

It is positive everywhere, and has a profile similar to v, -

14, MONIN-OBUKOV LENGTH

The Monin-Obukov length is a measure of turbulence in
convection. It is generally defined as (Turner, 1973;
Zilitinkevich, et al., 1979): ,

Uge
L = v
where u, is the friction velocity characteristic of the turbulence,
K the Von Kirmin constant, and B the vertical buoyancy flux.
In the present case, the vertical buoyancy flux is noted

B = aglwT| ,
which 1s zero at the surface and at the bottom of the thermocline.
It is maximum near the top of the thermocline. The value of that

maximum is obtained (at the leading order in Ri™!) as the limit

of the mixed-layer buoyancy flux as § tends to one:

B = 1im ag|wT| = N2hT .
£+1
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by using (10), (14) and (74)., Using this value in the definition

of &, one obtains:

3
2u* 1

Y SR m R

by virtue of (89). The Monin-Obukov length is therefore propor-
tional to h. The coefficient of proporticnality (2xm)” ! equals
unity for k = 0.40 and m = 1.25. This result has a physical
reason: the wind-mixed layer is a convective system generated
by surface turbulence; therefore, turbulence and convection
have equal importance, and the Monin-Cbukov length has to be
proportional to and of order of the depth of the layer i.e., h.

Inversely, this physical argument could have been used
independently, by writing a priori & = h (Zilitinkevich, et al.,
1979). The model would therefore conclude that (2«xm) ! equals

one, or
m = 1.25,

for k = 0.40. The value of m can therefore be inferred from the
theory, and be compared to observations and laboratory experiments
(see Table 1). The agreement is excellent.

When a buoyancy flux (cooling or heating) is imposed at the
surface, convection or re-stratification may dominate turbulence.
In such a case, the Monin-Obukov length is expected to be smaller
or larger than h, and the resulting values of m are expected to

be greater or smaller than 1.25.




15. CONCLUSIONS

" A new model of convection and mixing was applied to the

study of mixed-layer deepening under the action of wind stress.
It is based on a modelling by two interacting fluids. Emphasis
was not on the energetics, but rather on the dynamics of mixing.
Turbulence production by mean shear near the thermocline was

neglected in order to simplify the vertical-momentum equation.

The model is thus a turbulent erosion model, for which the
potential-energy increase required for deepening is provided by
turbulence input at the surface.

A simple analytical solution was found in the case where the
mixed layer is well-mixed and separated from the underlying
quiescent fluid by a sharp thermocline. The results are valid
if the frictional Richardson number is much greater than unity,
the condition for a sharp thermocline to exist. Expressions for
the thermocline thickness and turbulence scale near the thermocline
are in very good agreement with previous results of turbulence
theory.

Vertical profiles were then plotted. The turbulent vertical

velocity decreases monotonically from a maximum value at the

surface down to zero at the bottom of the thermocline, without
showing any sudden variations in the thermocline. The temperature
profile is composed of a quasi-constant value through the mixed

layer and of a rapid variation in the thermocline. Velocity
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profiles show the separation of the flow into a depth-independent 4
inertial oscillation and a quasi-steady shearing flow that carries J
the turbulent stresses downward through the mixed layer. In the
thermocline, the profiles curve sharply in order to match the zero
mean velocity in the underlying stable fluid. Reynolds stresses
and vertical convective heat flux vary linearly through the mixed
layer from their respective imposed surface values to residual
values required for entraining new fluid in the mixing process.

In the thermocline, they rapidly decrease to zero. Resulting

eddy diffusivities of heat and momentum were computed and plotted.
The eddy viscosity of the flow in the direction of the wind stress
is negatiQe near the surface, implying that a part of the turbulent
energy supplied at the surface goes to the mean flow. In the 1

direction perpendicular to the surface stress, the eddy viscosity

varies like the eddy heat diffusivity, vanishing at the surface

and at the bottom of the thermocline, and reaching a maximum

somewhere at mid-depth. Finally, an argument based on the pro-
portionality between the lonin-Obukov length and the mixed-layer
depth led to relate the parameter m, ratio of the turbulent

kinetic energy input to the cube of the friction velocity, to the

Von Karmin constant. The value was found to be equal to the one {

proposed by Kato and Phillips (1969) and in good agreement with i

field observations.




APPENDIX C

The entrainment layer

The results presented in the previous section [equations (92)
to (95)] were based on the assumption of a constant fraction of
area occupied by thermals throughout the mixed layer and thermo-
cline. This, however, leads to some inconsistencies. At the
bottom of the thermccline (z=-h), the anti-thermals' variables

are given by:

1-f
" -
T = -13F Th ,
f
N = o —
u 13F U, (Cl1)
f
" o= =
viEereE Vo

At that level, however, anti-thermals are constituted of newly
entrained fluid, and the expected values are
™ = -Th, u" = v" =0 . (c2)

The values (Cl) reduce to (C2) if £ = 0.

Therefore, these inconsistencies can be removed by including
a new boundary layer below the thermocline, here named the
entrainment layer. The role of this layer is to allow f to decrease
from its constant value in the mixed layer and thermocline, through
this entrainment layer, down to zero in the quiescent fluid under-
neath it.

The purpose of this appendix is to show that, based on scaling
arguments, this entrainment layer is in fact very thin and, thus,

cannot have any effect on the dynamics of the whole system.
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In a thin layer of large gradients, the mean-temperature

equation reduces to (78), implying that the scale for the vertical-
velocity fluctuation, Woms ? is B. Physically, this scaling
expresses that, in that region, thermals sink at a velocity
comparable to the rate of deepening.

Assuming that heat transfers between thermals and anti-
thermals are controlled by molecular diffusion in the entrainment

layer, one can write

VAT

AT = :;5- (C3)

Y=

where d is the thickness of the layer, AT, the scale for the
temperature difference between thermals and anti-thermals, and v,
the molecular heat diffusivity (v = 1.ux10 ‘m?®s” !, for water at
15°C). From the above equation it appears that the layer
thickness is:

d=2 (cu)

h

For typical oceanic values, h is of the order of 10~ “

ms ! and,
therefore, d is of the order of the millimeter.

In conclusion, the entrainment laver, where thermals are
converted to anti-thermals by molecular diffusion, is a very

thin layer and is not capable of controlling the evolution of

the overall mixing processes.
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CHAPTER FOUR

PENETRATIVE CONVECTION
DUE TO SURFACE COOLING




1. INTRODUCTION

In early fall, the upper ocean usually has a continuous,
moderately stable density distribution, bounded at its top by a
thin daily wind-mixed layer. Past mid-fall and during winter,

a net cocling of the ocean surface sets in. Instability and
natural convection occur. Cold elements produced near the
surface become unstable and sink through the water column,
eroding the stratification built up during the previous summer.
Contrary to the diurnal thermocline formation, this ercsion is
accomplished at a slow but continuous rate throughout the winter
period. A mixed layer is formed, penetrating the stable strati-
fied fluid below and entraining new fluid in the convective
process. The lower boundary is marked by a density change that,
on a macroscopic scale, is almost discontinuous. As deepening
proceeds, this density jump, called the seasonal thermocline,
becomes deeper and stronger. The maximum depth of the winter-
time erosion marks the permanent thermocline.

Wind stirring plays an important role at the start, but
rapidly convection domirates the process. Thermal instability
itself supplies the kinetic energy required for stirring and
deepening. In the present modelling, therefore, the wind effect
is ignored. The system is highly convective, and molecular
diffusion of heat is not important.

The problem has long antecedence in studies of the atmos-

pheric boundary layer. Indeed, convection above a heated ground

30

.




exhibits the same features of upper-ocean mixing due to surface

cooling (Scorer, 1978). The models of Yamada and Mellor (1975),
and Zeman and Lumley (1976), based on second-order closure
hypotheses, realistically predict the structure of buoyancy-
driven mixed layers. Comparisons with laboratory experiments
(Willis and Deardorff, 1974; Heidt, 1877) and observations
(Telford and Warner, 1964; Warner and Telford, 1967; Lenschow,
1970) support these theories.

The present study shows that simple analytical calculations
as opposed to sophisticate turbulence numerical models, can
describe the general features of a convective layer. The phi-
losophy resembles the one of Manton (1975) in a study of penetra-
tive convection in a stratified fluid due to a field of thermals.
The present work, however, describes the dynamics and turbulent
characteristics of convection in more detail.

Although the results presented here focus on convection in
the upper ocean forced by surface cooling, they apply directly

to convection in the lower atmosphere above a heated ground.

2. THE MODEL

The model is based on a new parametrization of mixing and
convection (Chapter two). It can be applied to the most general
case of mixed-layer deepening under variable wind stress and/or
variable surface heat flux, The present work is a direct appli-

cation to upper ocean convection due to surface cooling.
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The model envisions convection as the relative motion of two
interacting fluids of different properties. The active sinking
elements are called thermcls, and the rising reéurn flow, anti-
thermals, by analogy. The model describes the individual dynamics
of thermals and anti-thermals, and their interactions. Mean
properties and relative differences then result from the solution.
This permits direct computation of mean profiles and vertical
fluxes of momentum and heat.

Throughout the mixed layer and thermocline, a saturation
equilibrium between thermals and anti-thermals can be assumed
(Manton, 1375; Chapter two). This leads to assigning a constant
value to f, the fraction of area occupied by thermals. This
hypothesis closes the set of equations without iIntroducing any
empirical coefficient of entrainment by thermals.

Parcels of fluid rising through the convective layer are
given, near the surface, negative buoyancy by the outward sur-
face heat flux (see Figure 14). These elements, the thermals,
become heavier than their environment, and sink back into the con-
vective layer. They accelerate and gradually mix with the upward
return flow until they reach the neutral level, where they are no
longer buoyant. Because of their non-zero velocity and their
inertia, they overshoot that equilibrium level, become buoyant,
and progressively decelerate. As the mean temperature profile
begins to curve at the bottom of the mixed layer, the elements'
buoyancy increases sharply, and their vertical velocity decreases

rapidly. Since the newly-entrained fluid is subjected there to
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dh
dt

Sketch of penetrative convection in the upper ocean due
to surface cooling by an imposed heat flux Q. In the
mixed layer, the mean temperature T is almost constant,
while the convective_heat flux wT decreases with depth.
In the thermocline, T varies sharply, while wT increases
rapidly. The neutral level is the level where thermals
and anti-thermals have the same temperature. The

dotted curve is the mean temperature profile at a

later time, showing the cooling in the mixed layer

and the heating in the thermocline.
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the largest temperature changes, the vertical convective heat flux
Wl (downward) is large. A decreasing vertical velocity there-
fore implies larger temperature contrasts and increasing bucyancy,
which in turn decelerate the sinking elements even more., The
process is cumulative, and gives rise to the formation of a thin
layer of rapid variations, the thermocline, which lies under the
mixed layer and above the gquiescent stably-stratified fluid.

Above the neutral level, thermals transport a lack of heat
downward. The heat flux is thus positive (upward) in that region.
It decreases with depth as the temperature difference between
sinking and rising fluids is progressively reduced by mixing.
Below the neutral level, the sinking elements are buoyant and
carry an excess of heat downward. The heat flux there is
negative (downward). At the bottom of the thermocline, thermals
stop, and the heat flux vanishes again. The heat-flux profile
therefore behaves as shown on Figure 14, with a negative
minimum value near the bottom of the mixed layer. The level at
which the minimum value of wT is reached can be thought of as
being the top of the thermocline.

The heat-conservation equation is

and implies that, in the mixed layer, the mean temperature T
decreases, while in the thermocline, it increases with time.
After a short while, the temperature profile will behave like

the dotted curve in Figure 1l4. The water temperature therefore

o e i i e e e e e




does not change at the top of the thermocline. Of course, that
level deepens with time, allowing every layer of fluid to be
somewhat heated before being cooled. This heating process in a
syétem forced by cooling only is explained by the ability of

convection to generate its own kinetic energy for mixing.
GOVERNING EQUATIONS

Thermals and anti-thermals have different properties, here
noted by primed and double-primed quantities, respectively. If
f represents the fraction of area occupied by thermals at any
level, the fraction available to anti-thermals is (1-f), so
that one may define

the mean vertical velocity w=fw'+ (1-f)w" , (2)
the mean temperature T=£T'+ (1-£)T" , (3)
the vertical convective heat flux Wl = fw'T'+ (1-£)w"T" .  (4)
Root-mean-square (rms) fluctuations can also be defined (Chapter

two):

w = VE(1-f) (w'-w") , (5)
rms

T VE(L-£) (T'-T™) . (6)

rms
Note that, according to these definitions, rms fluctuations can
be positive or negative.

In the absence of lateral variations (one-dimensional model),

continuity requires w to be constant with depth (Chapter two).

Since there is no overall upwelling nor downwelling in the system.

w vanishes everywhere. As a consequence, the vertical convective
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heat flux, as defined by (4), may be rewritten in terms of rms
fluctuations only: i

Wl = W T . (7)
rMS rms

With these definitions, and in the absence of horizontal
velocity, the one-dimensional model of convection (Chapter two)

can be summarized as follows:

; Heat equations: Erall -52'(wrms ers) , (8)
- i-('f'i-m"' ) = 0 (9)
3z T 'rms >
w m
Vertical momentum equation: Imw | s 2gT + 8, (10)
rms 9dz rms

where m is a coefficient depending on f only, defined by:

= i2f

3 2VE(I-F)

The first equation expresses that the time rate of change of the

(1)

mean temperature is due to the divergence of the cornvective heat

flux. The second equation relates mean and rms temperatures in a

simple linear way, and is a direct result of the assumption that
turbulent motions respond quasi-instantanecusly tc local variations
in the system (Chapter twe). The third equation expresses that
thermals' inertia is balanced by the buoyancy force and a friction
force, 6. The friction force was not included in the model of

E chapter two, but is introduced here because of its importance in
deep convection processes. The Monin-Obukov similarity theory
(Wyngaard, Coté, and Izumi, 1971), theoretical studies (Lenschow,

1974), laboratory experiments (Willis and Deardorff, 1974), as

- e~
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well as atmospheric boundary layer observations (Lenschow, et al.,
1980), suggest that the rate of dissipation of kinetic energy is
constant with depth, but decreases rapidly toward zerc near the
interface. This implies that § behaves like |wrmsl-h except in
the thermocline where it has to remain bounded. On the other
hand, global turbulence arguments suggest that the total dis-
sipation is proportional to the cube of turbulent velocity scale.

A parametrization of the friction force which satisfies all

these requirements is:

where D is a dimensionless parameter, and w, the scale of the
turbulent vertical velocity, which will be defined in the next
section. The small term mh in the denominator is introduced to
yield a friction force bounded everywhere; its form is chosen
for further convenience in the mathematical formulation of

the solution. The vertical length scale is chosen to be «h,
the Von K&rmdn constant times the convective layer depth.

The problem consists of three non-linear first-order
coupled differential equations. It requires thus three boundary
conditions. At the surface, z = 0, the convective heat flux
equals the imposed surface flux, and a friction velocity pre-
scribes the rms vertical velocity:
=Q, (12)

w T
rms rms

Woms = Uk - (13)

The surface flux Q is the kinematic heat flux (heat flux divided



R s e Pt B 7 € S T2

i

98

by pon), and is positive in a cooling situation (upward flux).
The rms vertical velocity is negative since thermals sink while
anti-thermals rise (w'<O<w").

At the bottom of the thermocline, z = -h(t), the mean
temperature ought to match the temperature of the underlying

stratum: _
T=-Th, (1)

4 where I is the initial temperature gradient of the water (see
Figure 14).

In the formulation of the problem, the mixed-layer depth,
h(t), is still unknown. An extra boundary conditicn has thus to
be imposed in order to close the problem. This condition is
precisely the definition of the base of the thermocline, i.e.,

the level beyond which thermals do not penetrate:
which implies: w = 0. (15)
4. CHANGE OF VARIABLE AND FUNCTICONS

Since the mixed layer 1is constantly deepening, it is
advantageous to use the similarity variable § = -z/h which varies
from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equation
(S) with respect to z, and define:

T = -IT(t) - mIT(t,E) , (18)

Trms = TT(t,§) , (17)




where T is a function of time only, and T is a function of both
time and £{. Note that, due to the presence of the factor T, the
new temperatures T and T have the dimension of a length. The
rms vertical velocity may be redefined:
Yoms C -w(t,8) ,
in order to work with a positive variable.
With these changes of variable and functions, the governing

equations (8) and (10) become:

R8T _ 1 3 ,-a
= -2 7, (19)

13
w3
.y (20)

where N2 = agl is the square of the Brunt-Viisdld¥ frequency in
the underlying stratum, and where a dot represents a time

derivative. The boundary conditions become:

T(0) —Q—, w(0)

-Fu*

(D

h-T
m

s w(l) =

This constitutes a set of two coupled non-linear first-order
differential equations which require twe boundary conditioenms.
However, they contain two time-dependent unknowns: T(t) and h(t),
for which two additional conditions are prescribed. The system

is thus closed and self-consistent.

SCALES AND THE RICHARDSON NUMBER

The characteristic parameters of penetrative convection due




3 100

to surface cooling are the buoyancy flux at the surface B = agQ,
the mixed-layer depth h, the Brunt-Vdisdl&d frequency in the

underlying stable fluid N = (agFfi, and the friction velocity u,
(computed from the surface wind stress). The comparison of wind-

induced turbulence to convective motion is expressed by the

Monin-Obukov length:

For very convective situations (h>>%), when wind-stirring becomes
a negligible part of the kinetic-energy release from potential
energy, the turbulence structure in the mixed layer no longer
depends on uy; (Kaimal, et al., 1976). Tre characteristic velocity
becomes the convective vertical-velocity scale:

W, = (ncBh)]Ig = (KughQ}g . (2w)

According to the assumption that wind-stirring plays a secondary
role in the deepening process, w, is the correct scale in the
mixed layer if:

w2>>u§ , (25)
by virtue of (23) and (24).

The total buoyancy in the mixed layer is

B=glh,

where Ap is the density jump across the thermocline, and p, the
reference density. Since 8p = p,aAT, where AT is the temperature
jump across the thermocline, the total buoyancy may be rewritten

as:
r B = agh 4T. (26)
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The Richardson number is defined as the ratio of the total
mixed-layer buoyancy, B, to the square of the characteristic

vertical velocity, w,,

aghAT
Ri = -—EL—~—;§ . (27)
(kaghQ)

As the mixed layer deepens, the temperature jump across the
thermocline increases (Willis and Deardorff, 197u4; Heidt, 1977).
The Richardson number therefore increases with time. It is well
known, too, from observations and laboratory experiments that
when the mixed layer is deep enocugh, it is quasi-homogeneous and
bounded below by a thin layer of large gradients. It will be
shown here a posteriori that this situation corresponds to:

Ri>>1 . (28)
For penetrative convection in the upper ocean due to winter
cooling, typical values are
Qvax10 %ecms 1, ro.1oCm 1, x = 0.40, u,N10 fmsT!, ATVIOC, hvl00 m
which corresponds ta:’
Bv3x10"'m2s™3, Nv1072s7E, 2010 m, wyn2.3 107 2ms b, Rin190.
It is therefore seen that, for the purpose of this work, the
inequalities h/2>>1 and Ri>>1 are met. The latter permits use
of a boundary-layer technique to solve the equations, while the

former will simplify the discussion of mixed-layer deepening, as

shown later.
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6. SOLUTION

Mathematically, it is assumed here that the mixed-layer and
thermocline system may be treated as an interior and boundary-
layer problem. The solution found here will therefcre apply if
Ri is much greater than one.

The system is thus divided into two regions, the Interior

region, where the temperature is quasi-constant with depth, i.e.,

3 S o
3% ° o(1) , T<<T , (29)
and the thermocline, where vertical gradients are anticipated to

be very large:

i>>l

3E s, TAT . (30)

These assumptions will be verified a posteriori, and it will be

shown that they are correct provided that (28) is met.

a) Solution in the mixed layer:

Assuming a quasi-hcmogeneous mixed layer, equations (19)

and (20) become:

-T = —% a—ag(ﬁT) , €31)
3
~ 2 - DW‘,‘_
gl . Mhg ¥ (32)
3¢ m KW

The left-hand side of (31) is independent of £, and an integration

can be performed. Use of surface boundary conditions (21) gives:




A N e A B A 2 St e 15 m =

% + th
t s — (23)

w

Replacing T by this expression into (32) yields a single

differential ¢ uation for w:

~ L 24,2
20w _ * _NRTT,. D .3
3w 3 T mx m E- v

whose solution is:

24 20
.3 _ 3, 1l-mD 3. NZn2T ,
Wz ud = wle - —e2, (3u)

after the surface boundary condition (21) has been used.

b) Solution in the thermocline:

- - — " = -

The dominant terms in the equations are now those which
include derivatives with respect to £. However, since this
boundary layer lies near £ = 1, £ may be replaced by one where

it appears. Equations (19) and (20) now reduce to:

B T 1 93 .
m-ﬁ'-a—g-— 5 3E(wT) s (35)

3

Pl 2 . DW*
w . Nhg (36)

3 m k (W+mh)
These last equations can be easily integrated with respect to £.
The constants of integration are determined by using the bottom
boundary conditions (22). The implicit solution is:

~ _ (h-T)h
T E Gk 37

2 o :
w3+ ¥mhw? = w+%w3)(l-€) . (38)
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¢) Matching of solutions:

- - - - -

The two sets of solutions were obtained independently for
the mixed layer and thermocline by using surface and bottom
boundary conditions, respectively. However, they ought tc be
the asymptotic forms of a unique set of solutions valid throughout
the whole water column. This requires imposing matching con-
ditions. As a result, two prognostic equations for the time-
dependent functions T and h will be obtained.

Mathematically, matching conditions are obtained by writing
that, for each variable T and w, the mixed-layer solution for ¢
approaching unity is identical to the thermocline solution for

w much greater than K. The resulting relations are:

Q .
T (e
w W
3, 1-mD 3 N2h2T  (1-mD 5 NZ2h2%) . ., _
# Y o Yk 2m km & T m ) (1-£)

2 - o

[N h(h-T)R P—wi) (1-£)
B
They can be rewritten as:

(hT)" =hﬁ+%, (39)

3 .
["* Nzhz'!‘} .
STz ot

3 _ mD

’
w

(40)

}

I
x
e

Equation (39) is the global heat budget of the system.
Indeed, the overall heat budget expresses that the temperature
difference from the initial value, I'z-T, integrated over the

water column is equal to the time integration of the net surface
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heat flux, Q:

o _ t
f (rz-T)dz =f ndt . (u1)
-h o]

Using expression (16) for T and the vertical momentum equation

(20) to eliminate T, one obtains:

1 3

2 . W 2 t
m aw D " LA
BT - 17 L(aw—-—ag e SR L S LT at . (42)
The integral is estimated to be of order wé. The second term

of the left-hand side is thus found to be of the order of 2%%?1 .
Estimating AT to be comparable to T (somewhat smaller according
to laboratory experiments), this term is estimated to be not

hT . . .
greater than = , which is much smaller than the first term for

Ri

Ri>>1, as assumed previously. The global heat budget thus

reduces to:

2 t
hT=p2-—+(%—dt, (43)
‘0

whose time derivative is rrecisely (39).

Equation (40) is the turbulent kinetic energy budget of the .
system. It expresses that the turbulent kinetic energy is in
quasi-equilibrium at all times (Chapter two), so that the sum
of the release of potential energy and the surface input equals
the rate of dissipation in the water column. Indeed, the release

of potential energy is:

0
- éL-%gg ag I wWT dz,
o -h
1

N2nl 1LQ ]
NhL[r+hTEJdE,

3
Y 2}, 27
= -5 tus)




according to (7), (17), (18), (24), and (33); the surface ingput is

-mw3  (z=0) ,

=0 rms

-k w(w—ﬁ)zlz

according to (13).

Combined with (39), equation (40) yields the prognostic
equation for the mixed-layer depth. Due to its importance and
its consequences, that equation is derived in the next section.

The vertical profiles of T and % valid throughout the water
column are, after matching:

Q .
-T+ hTE

T = ——— (46)

w+mhg ’

3+ ka2 = ud(1-62) + D3 g(1-g) | (47
Since the friction velocity u, cannot exceed the convective
velocity scale, equations (45) shows that w, is, indeed, the
appropriate vertical-velocity scale, as assumed previcusly.

It is worth noting that the solution is implicit in &, but

vertical profiles can be plotted without real difficulties.
7. MIXED-LAYER DEEPENING

Equations (39) and (40) form a coupled set of equations for
T and h. Eliminating T yields a prognostic equation for h,
which can then be solved if the time variations of ¢ and u, are
known. Such a substitution is possible. However, it is

advantageous to consider T as a function of h. Eliminating then

muj , (45)




the variable t between (39) and (40) yields:

m ,,,dT _ 4T
2(1-mD)(1ty— P (b + T-h) = h . (48)

Although an exact solution can be found, an approximate solution
is obtained without great difficulty, based on the inequality
2<<h .

The method of regular perturbation yields:

Km L
T = ehllsr e & ] (49)
where the coefficient € is defined by:

_ 2(1-mD)
[ m . (50)

The constant of integration was chosen such that T remains

bounded for h = 0. At the leading order (&/h = 0), (49) reduces

to: T = €¢h . (51)

The mean temperature in the mixed layer is thus proportional to
the depth of convection. This has been shown to be the case in
laboratory experiments (Heidt, 1977). The coefficient of pro-
portionality, noted e by Heidt, is given by (50).

Now eliminating T in (39) by use of (49) leads to the
prognostic equation for the mixed-layer depth:

km £

s Q
“I<mD -E)hh = (3-umD) (52)

(1 T
For a given surface heat flux, Q, and friction velocity, u,,
known as functions of time, this equation can be integrated by
quadrature., If Q is steady, and if the mixed-layer is deep

%

enough (h>>%), the depth of the layer increases as t°. This

Wmfw«»nwmm~ -




108

rate of growth was found by most of the bulk models and laboratory

experiments (Betts, 1973, and Heidt, 1977, for example).

From the previous relationships, one may compute the temper-
ature jump across the thermocline, the heat flux at the base of
the mixed layer, and the Richardson number. The temperature
jump across the thermocline is:

AT = =TT + Th ,

_ 1-2mD

Km 2)
~ 3-4mD

Ih (5 (Tom0) &

, (53)

according to (49). The temperature jump increases with time as

h. The heat flux at the base of the mixed layer is the limit

for £ approaching one of the mixed-layer flux wl = -I'WwT derived
from (33):
wi| = 0Q- 1T,
= -Q[l-2mD+2<m§] , (54)

according to (49) and (52). That heat flux is negative (down-
ward), and thus opposite to the surface flux (upward). This
results from the previous description of thermals' dynamics.
Thermals are buoyant in the bottom of the mixed layer, below the
neutral level. They thus carry an excess of heat downward.

The heat flux is therefore negative (downward) and opposite to
the surface flux. The same situation commonly occurs in the
atmosphere. The atmospheric convective boundary layer, which
forms above a heated ground (upward heat flux), is capped by ar
inversion, at the base of which a downward heat flux is observed.

This phenomenon was first reported by Ball (1960), and since
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then has been reported in many observational surveys.

The heat flux at the base of the mixed layer is proportional
to the surface flux, Q. The coefficient of proportionality,
noted A by various authors, is:

A=l-2mD+2m-§-. (55)

The Richardson number, defined by (27), can be computed

from (53). At the first order in % , it takes the form:

. _ 1-2mD [rNh2)%
R = 35%mD { J

&) [t & 0
and increases with time as ‘%. The rate of deepening, h,
decreases with time as Ri~%h according to (52) and (56).

The Richardson number can be used to write the prognostic
equatiocn for the mixed-layer depth in a non-dimensional form.
If the rate of entrainment, E, is defined by the ratio of rate

of deepening, h, over the characteristic velocity scale, w,, a

simple algebraic relationship between Ri and E can be obtained:

E =, (57)

The rate of entrainment is therefore inversely proportional to
the Richardson number. Since Ri is much greater than one, E is
small, and h is much less that w,. Thermals thus sink much

faster than the mixed layer deepens.
8. COMPARISON WITH OBSERVATIONS AND PREVIOUS MODELS

Various values of the ccefficients A and & were proposed
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in the literature. These two parameters are not independent.
Indeed, eliminating mD between (50) and (55), one obtains, at

the leading order:

_ l-¢
A=z1 - (58)

Table 2 presents an extended version of a table of values
of the parameters A and € compiled by Heildt (1977). Values
proposed in the literature are based on atmospheric observations,
laboratory experiments, and various models of penetrative con-
vection, applied to the atmosphere and ccean. From this table
it appears that (i) no values were proposed in the literature
as a result of oceanic observations, (ii) models without
dissipation yield invariable values (A = 1, € = %3), (iii)
highly dissipative experiments or models yield extreme values
(A=0, e=1), and (iv) atmospheric observations, numerical models,
and laboratory experiments are in satisfactory agreement
(A = 0.12-0.25, € = 0.83-0.90). The scattering of the values
can be explained as follows. By this model, A and e are
related to the parameter m (see Figure 15), which in turn depends
upon f, the fraction of area occupied by thermals. The value of
f strongly depends upon the surface unstable layer where thermals
are generated, and there is no reason to believe that laboratory
experiments and a heated ground generate thermals in the same
conditions.

Simple non-dissipative models underestimate the value of €,

while laboratory experiments, where molecular viscositv acts as

-~
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TABLE T
YEAP AUTHIF(S)Y COURCE A €
1360 |Ball Atmospheric bulk model, without
dissipaticn b 0.67
1367 |Kraus and
Turner Oceanic bulk model, in case of no
dissipation 1 0.67
1968 JLilly Atmospheric bulk model
- without dissipation 1 0.67
- for minimum entrainment 0 1
1968 |Lenschow and
Jshnscen Airplane measurements 0.25 0.83
1963 [Ceardorff, Laboratory experiments, strong ™
ec ai. bmolecular viscosity effect 0.02 0.38
1973 {Betts . tmospheric bulk model, with
dissipation; empirical coefficient
from observations in the Tropics 0.2% 0.83
1373 [Carson Cbservations of the atmospheric ;
boundary layer 0 - 0.5 0.75 - 1 i
1973 |Lenschow bbservations cof the atmospheric ;
Foundary layer over the Great Lakes 0.08 0.93 i
1973 |Pellard, Cceanic bulk model, without 2
et al. Kissipation 1 0.67 3
H
1973 | Ternekes Atmospheric bulk model, with
dissipation; empirical coefficient
from studies of convection C.2 0.86
1974 1 Deardorff Second-order turbulence numerizal
model . 0.14 - 0,21 10.85 - 0.8¢
1374« Jlenschow Bulk model, empirical ccefficients
from aircraft measurements over a
lake 0.15% 0.88
197 JWillis and
Deardorff Laboratory experiments 0.10 €.91
1875 |Manton 3imple model of convecticn, with
trong dissipation 0 1
1976 }3ill and ceanic bulk model, cocefficient of
Turner enetrative convection estimated from
tmospheric observations 0.1% 0.88
137¢ JZeman and econd-order turbulence numerical
Lumley odel 0.10 - 0.15(19.88 ~ 0.21
1377 JHeidt Laboratory experiments 72.12 - 0.2u | 0.84 - 0.90
1979 [Roisin Model of oceanic convection due to a|
field of thermals, no dissipation be 0.67
1980 [Cushmar-Roisin fPresent analytical model, with
dissipation (function of f) 0 - 1 0.67 - o
Table 2. Summary of values for the parameters A and € proposed in the
literature. The parameter A is a measure of the heat flux at
the base of the mixed layer, and € is the coefficient of

proportionality between T and h.
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Figure 15. Plots of the coefficients € and A defined by (50) and
(58); € is the ratio T/(-Th), and A is the ratio
—(wT)_h/Q.
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a strong dissipative mechanism, overestimate €. The reason is
found in the discussion of the turbulent kinetic energy budget.
The excess of the potential energy in the mixed layer over the

potential energy of the initial state is, at the leading crder:

1 ° -
= PE = -ag J (T-Tz)2dz
o -h

=~ 2=2° N2p3,

Its time rate of change is:

fo _

—l—% = -ag J wTdz
s ~h

-2 .

z - .3_22_" N2h2h

For € greater than %, the time rate of change is negative,
expressing that release of potential energy occurs. The kinetic
energy so produced feeds convective motions and is finally dis-
sipated. A model without dissipation, therefore, does not allow
a net global potential-energy release, and yields € = ;E,
establishing a minimum value for €. This value is recovered in
the present model if the friction coefficient, D, is set equal
to zero irn (50). Increasing dissipation requires increasing
release of potential energy for convective motions and, therefcre,
an increasing value of €. Values of € greater than unity cannot
occur, for, in such a case, the temperature difference across
the thermocline would be destabilizing (mixed-layer temperature
lower than underlying stable fluid temperature). In laboratory

experiments for which molecular viscosity plays a dominant role,

Yy
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the value to ¢ is close to unity.

Second-order closure turbulence numerical mcdels lead to
decreasing values of € as the mixed layer develops. Indeed, at
the early stage, dissipation is dominant, and ¢ is close to one;
but as time goes on, dissipation has less importance and ¢

decreases slightly. The present analytical study is based cn

value to be assigned to € in the present model is thus to be

compared with the lowest values of the numerical mcdels (0.84-0,85).
9. THICKNESS OF THE THERMOCLINE

Due to non-linearities, the boundary-layer methed applied
here differs from classical applications to linear systems, and
caution has to be taken in the evaluation of the boundary-layer
thickness. At first, one could think that the thermocline is
the region where w is of order h. so that the ccrrection in the
denominator of (46) becomes important. This argument leads to a
dimensionless thermocline of order Ri™3, much toco smali. There
is a thicker layer where boundary corrections start tc aprear in

the solution. Indeed, in the temperature equation (19):

_ 9 am
= -5;(wT) s (53)

'13.

i
o.’?cv
3

+
e

o™y
[SIRY)
~l3

the term on the right-hand side balances the first term in the
mixed layer, and the third term in the thermocline. The top of

+he thermocline was defined as the level where the convective




heat flux reaches its maximum negative valie, i.e., where the
right-hand side of (59) vanishes. Equation (59) thus requires
a balance between the first and third terms at that level:

I

T’\' EGE L]
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where 8¢ is the dimensionless thermocline thickness. Because
the boundary layer is anticipated to be a thin region, £ is
almost one, and according to (46) and (49), T and T are of the
order of %%-and h, respectively, so that:

65’»% . (60)

On the other hand, the balance of the vertical-momentum equaticn

(20) requires:

=32
o N2Rl ]
55 N hﬁ . (5-)

Combination of (60) and (61) and use of (24) and (56) yield:

-3
sEVRiTH (67)
and
W%w._.:Ri_;G (63)
Therefore, the dimensionless thickness of the thermccline is
'y -3
Ri ™ rather than Ri °.
In a study of turbulence and entrainment within the inter-
facial zone bounding a mixed layer, Long (1278) concludes that
%

turbulent patches have a dimension of hRi™ *, and that the rms

vertical velocity in the mixed layer near the interface is of
]

order of w*Ri- . The agreement between the approaches is perfect

and supports modelling by two interacting fluids as a theory of

ek




convective turbulence.
With dimensions, the actual thickness of the thermecline
is:
1
Q1 (54)

and does not depend upon h. If ¢ is steady, the mixed layer
deepens with time, but is bounded below by a thermocline of
constant thickness. For typical oceanic values (73x10 “oCms™ 1,
rvo.1°Cm !, Nv10 2571), the thermocline thickness is found to be
of the order of 50 cm.

The boundary-layer method required that (i) T is negligible
compared to T in the mixed layer, and (ii) the thermocline thick-

ness is small compared to the mixed-layer depth. In the mixed

layer, T is of the order F%_ , while T is of the order of h, i.e.

o

T.._Q kQ K4, o.-t
T ~N Y (—-—-Z—FN_h Rl N

according to (24) and (56). On the other hand, the ratio of

the thermocline thickness to the mixed-layer depth is &8¢, and is
X

of the order of Ri ™

layer method is applicable to the present problem provided that

Ri is much greater than unity, as anticipated.
10. COMPARISON WITH SIMILARITY THEORY

The solution presented and discussed in the previous para-

graphs is not a similarity solution, for the ratio thermocline

b

It is therefore concluded thet the boundary-

£
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thickness to mixed-layer depth is not constant with time.
However, it is shown here that the asymptotic behavior near the
surface takes a similarity form, and is formally identical to
the sclution obtained by Wyngaard, Coté and Izumi (1971).
The theory presented by these authors is an extension of the
Monin-Cbukov similarity theory to free convection regime under
very unstable conditions {(%<<h). Its validity is confirmed
by atmospheric observations (Wyngaard, et al., 1971).

Near the surface, the characteristic dimensionless variable
is:

n = -%.= % £ (65)
where 2 is the Monin-Obukov length defined by (23). For n of
order one, turbulence and convection compete, and the Monin-Obukov
similarity theory applies. For n much greater than one (but
still less than h/&), free convection takes over surface-generated
turbulence, and the theory degenerates in simple k@ power laws, as
shown by Wyngaard, et al.

Near the surface (£<<1l), the solution of the present model

takes the form:

F :_% , (66)
@3 =l ¢ M0 3 g (87)
Yo Y

according to (46) and (47). In terms of the variable n, (66)

and (67) become:

T e -l (1422074

k]

Tu,, Km




~ 1-mD 13
U (le=—mn) "> . (69)

From these expressions for the rms fluctuations of temperature
and vertical velocity, second- and third-order correlations can

be computed. For example:

! 1
T/Z=u_',:(l+l-mDn)/3

W s (70)
Km

1
1 mDn) 3

T_-"_~ -
we(T-T) = -2mu, QL + Km : (71)

Figures i6a and b are plots of vertical profiles of expressions

(70) and (71), for which Wyngaard, Ccté and Izumi (1971) had
observations from the atmospheric boundary layer. The agreement
between theory and data is best for:

1-mD
Km

:S’

and 2m = 0.64 .
These values correspond to a fraction of area occupied by thermals
of 35% (f = 0.348, m = 0.32) and a friction coefficient D = 1.125.
From (50) and (58), the values of ¢ and A are

€ = 0.82 ,

A

0.28

This is the range of values observed in the atmospheric boundary
layer for unstable conditions (Lenschow and Johnson, 196€;

Carson, 1973). It is worth noting that values of ‘ and e obtained
here are deduced exclusively from surface conditions. The theory
is, therefore, capable of predicting bulk properties of the

atmospheric boundary layer or oceanic mixed layer by using only




Figure 16.
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(a) Dimensionless vertical velecity variance and
(b) Dimensionless vertical turbulent flux of vertical

heat flux near the surface, for (1l-mD)/km=5 and 2m=0.6u4.

Dots correspond to atmospheric observations presented
by Wyngaard e® al. (1971).
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surface turbulence conditions.

11. VERTICAL PROFILES

Solutions (u46) and (47) govern the vertical variations of
rms fluctuations throughout the mixed layer and thermocline.
They can be used to compute profiles of mean quantities such as
mean temperature, heat flux, turbulent kinetic energy flux and
variances.

Figures 17 to 24 are plots of vertical profiles of physical
quantities of interest. The values assigned to the parameters are:

m= 0.5, (f = 0.278),

D=0.8
Loy,
Ri = 20 ,

and were chosen in order to reproduce the laboratory experiments,
run S1, of Willis and Deardorff (1974). The four parameters were
computed to match the Richardson number Ri, the rate of entrain-
ment E, the ratio u,/w,, and the total rate of dissipation.

Figure 17 is a plot of the turbulent vertical velocity, which
is proportional to the thermals' vertical velocity. Thermals
leave the surface with the friction velocity u,. As they sink,
they accelerate under gravity. Due to the combined action of
friction and a decreasing downward buoyancy force due to mixing
with the environment, their velocity reaches a maximum. Below

that level, the buoyancy force is still directed downward, but

- e AR,
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Figure 17. Vertical profile of the rms vertical velocity, scaled
by -w,.

0.2 04 06 08 1.0

T
0.2
0.4
'3 2
0.6
0.6
1.0 pl

Figure 18. Vertical profiles of the vertical-velocity variance, w2,
scaled by wZ. The solid curve is the solution of the
present model. The dashed curve is the numerical
solution of Zeman and Lumley (1976). The dots represent
the data of Willis and Deardorff (1974), run S1.
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friction dominates, and thermals decelerate. Ultimately, they

become lighter than their environment. Both friction and an
upward buoyancy force bring the thermalsf® velocity to zero, pre-
cisely at the bottom of the thermocline.

Figure 18 is a plot of the vertical-velocity variance,
defined by w2. It is a measure of the turbulent kinetic energy .
Dots reproduce Willis and Deardorff's data for run S1. Figure 132
is a plot of the vertical flux of turbulent kinetic energy.
defined by —%;;E, which is the reduced form of the total tur-
bulent kinetic energy when only the vertical velocity is impor- g
tant. Dots reproduce Willis and Deardorff's data for run Sl.
The agreement of the theory with laboratory experiments is
excellent in both cases. The accuracy of the present simple
analytical calculations is comparable to the one of the second-
order turbulence numerical model of Zeman and Lumley (1976),
whose solutions are shown in dashed lines for comparison.

Figure 20 is a plot of the temperature variance, defined by

(T-T}2, 1t is maximum at surface and decreases with depth as i
the temperature difference between thermals and anti-thermals

is reduced by mixing. The temperature variance vanishes at the

neutral level, where thermals and anti-thermals have the same

temperature, and increases below that level, where turbulence

is generated. Dots reproduce Willis and Deardorff's data for

run Sl1. The agreement is satisfactory. Although none of the

observed values is zero near the neutral level (as one may

expect in laboratory or in geophysical situations), a




Figure 19. Vertical profiles of the vertical flux of turbulent
kinetic energy, -}ww2, scaled by w3. The solid
curve is the solution of the present model. The
dashed curve is the numerical solution of Zeman and
Lumley (1976). The dots represent the data of Willis
and Deardorff (1974), run Sl.
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Figure 20.

Vertical profiles of the temperature variance, (T-T)2,
scaled by (u,/Q)2. The solid curve is the solution of
the present model. The dashed curve is the solution of
Zeman and Lumley (1976). The dots represent the data of
Willis and Deardorff (1974}, run Sl.
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well-pronounced minimum is present in the bottom half of the
mixed layer.

Figure 21 is a plot of the vertical temperature profile
through the mixed layer and thermocline. The temperature is
almost homogeneous in the mixed layer. The thermocline is
well-defined, and its thickness corresponds tc (62). Figure 22
shows the profile of the vertical convective heat flux, wI. Near
the surface, it is positive (upward) and matches the imposed flux.
It decreases almost linearly with depth, corresponding to a
homogeneous cooling of fluid, as stated by the heat equation (1).
The level at which the convective heat flux vanishes corresponds
to the neutral level beyond which thermals become buoyant. Below
that level, the heat flux is negative (downward). The maximum
negative value at the top of the thermocline is equal to -AQ,
which is the jump condition across the thermocline used in bulk
models (Xraus and Turner, 1967, for example). Dots reproduce
Willis and Deardorff's data for run Sl. The linear decrease
through the mixed layer was also observed in the atmospheric
boundary layer (Lenschow, 1974).

From the profiles of mean temperature and heat flux, one can

compute an eddy diffusivity of heat, defined by:

-3
1=k

Figure 23 shows the resulting profile of Vg« The eddy heat

diffusivity is negative above the neutral level, where the heat
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Figure 21, Vertical profile of mean temperature, T, scaled by Th.
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Figure 22. Vertical profile of the vertical convective heat flux wrT,
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TPV

1 flux is positive. The heat taken out of the fluid near the

surface creates thermals, which sink with a heat deficiency.

Along the sinking motions, that heat deficlency is progressively

) reduced by mixing between thermals and anti-thermals. The
turbulent temperature fluctuations generated at the surface are
thus progressively structured to change the mean temperature.
The negative sign of the eddy heat diffusivity expresses that
the transfer of energy is from turbulence to mean structure.
Below the neutral level, the heat flux is negative, and the
eddy heat diffusivity is positive. The transfer is from mean
structure to turbulence. The eddy heat diffusivity vanishes
again at the bottom of the thermocline where the heat flux
vanishes, and the temperature gradient is maximum.

Figure 24 shows the terms of the turbulent kinetic energy

budget, obtained from the vertical momentum equation (10):

ow W
rms mD 3 rms

¢ 0 = -3m wl +ag w T - —_ w3 To T +mB
rms 9z rMS rms K % .w b +m)
rms!

Advection, release of potential energy, and dissipation balance

exactly to yield a zero time rate of change of turbulent kinetic

energy. The release of potential energy is propcrtional to the .
heat flux; release occurs only above the neutral level; below
that level, thermals decelerate under the action of the buoyancy
force and convert the kinetic energy, which was not dissipated,
back to potential energy. The rate of dissipation is quasi-

constant with depth and decreases rapidly through the thermocline.

This is not surprising since the dissipation term was parametrized




-08 -04 O 0.4 0.8

l i L4 L LIS L LR R T
, o ®
‘ o2l
- :
0.4} E
o.6} :
- .
0.8 4 J
'.o - ...‘-

Figure 2u4. Dimensionless turbulent kinetic energy budget: release
of potential energy (dashed line), transport (solid line),
and dissipation (dotted line).

-0.4-0.2 0 0.2040.608 1.0

1) L 1§ T T 7T ﬁ
//
0.2}¢
0.4)+ 7
€ B s
P
0.6 :.. /
0.8 t.....‘.ﬁ(
1.0+ \

Figure 25. Same as figure 24, but for run S1 of Willis and
Deardorff (1974).




for that purpose. Figure 25 reproduces Willis and Deardorff's

computations from their data of run S1. The agreement is
excellent.

Figure 26 to 28 are plots similar to the previous ones, to
be compared with run S2 of Willis and Deardorff (1974). Values
of m and D were unchanged since there is no reason to expect
that the fraction of area occupied by thermals and the friction
coefficient differ from run S1. The ratio %2/h and the
Richardson number were recalculated to represent the different
conditions of the experiment (2/h = 0.1, Ri = 45). Figures 26
to 28 show plots for which data were available for comparison.

The other plots do not differ greatly from those related to run Sl.

12. CONCLUSIONS

A new model of convection and mixing was applied to the
study of penetrative convection in the upper ocean due to surface

cooling. It is based on modelling by two interacting fluids.

Cold elements produced near the surface become unstable and sink

e i A EA -

through the water column while continuity of mass forces an upward

return flow. The model describes the individual dynamics of these

© ks i

two fluid motions. Mean properties and fluxes up to third-order
correlations are then computed. Dissipation is included in order

to model realistically the deepening of the mixed layer. The

St memtme s e vl s Sk

new parametrization of dissipation presented here is dictated by

laboratory experiments, atmospheric observations, and turbulence
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Figure 26.

Vertical profile of the vertical-velocity variance, ;E,
scaled by wg, as on figure 18 but for Ri = 45. The

triangles reprerent the data of Willis and Deardorff
(1974), run S2.




Figure 27. Vertical profile of the vertical flux of turbulent kinetic
energy, -%ww2 , scaled by wg, as figure 19, but for Ri=45,

The triangles represent the data of Willis and Deardorff
(1974), run S2.




Figure 28. Vertical profile of the vertical convective heat flux,
WT. scaled by the surface flux Q, as on figure 20 but
for Ri =45, The triangles represent the data of
Willis and Deardorff (1974), run S2.
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i ’ arguments.
A simple non-similar analytical solution is found in the

case of a well-mixed layer separated from the underlying quiescent

! fluid by a thin thermocline. The results are valid if the

Richardson number is much greater than unity, the condition for

M v i

the existence of a sharp thermocline. Expressions for the
! thermocline thickness and turbulence scale near the thermocline
are in very good agreement with previous results of turbulence
theory. The asymptotic behavior of the solution near the sur-
face has a similarity form as predicted by the similarity theory
of Monin and Obukov. Moreover, in the interior of the mixed
layer, far away from the surface and the thermocline, the
$ solution degenerates in simple Bg-power laws as proposed by
Wyngaard, Coté and Izumi (1971).
Bulk properties of the solution were compared with atmospheric
i observations of the surface boundary layer, laboratory experiments,
and previous models (see Table 2). Scattering in the values of

the coefficients proposed in the literature implies that no

universal values can be assigned to those coefficients. The
present model does not assign any specific value; rather, it shows
a dependence on the fraction of area occupied by sinking elements.

This fraction of area strongly depends upon the surface unstable

layer where thermal instability occurs, and is not expected to

take the same values in laboratory experiments, in the ocean,

or in the atmosphere.
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Vertical profiles of vertical-velocity variance and vertical
flux of turbulent kinetic energy (Figures 18 and 19, respectively)
have a broad maximum near mid-depth, as observed in laboratory

experiments. At the surface, they match the imposed turbulence

imput by the wind, and, at the bottom of the thermeccline, they
both vanish without showing any sudden variations in the thermo-
cline. The temperature variance decreases from the surface cown
to zero at the neutral level, where sinking and rising fluids
are at the same temperature. Below that level, it increases
again and has a large gradient in the thermocline. As expected,
observations do not show a vanishing temperature variance at

any level, but a well-pronounced decrease is observed precisely
at the neutral level. The temperature profile is composed of

a quasi-constant value through the mixed layer and a rapid
variation in the thermocline. The vertical convective heat

flux varies linearly throughout the mixed layer. It is positive
(upward flux) above the neutral level, vanishes at the neutral
level, and is negative (downward flux) below it. In the
thermocline, the heat flux rapidly decreases from its maximum
negative value down to zero. A resulting eddy diffusivity of
heat is computed from the mean-temperature gradient and the
convective heat flux. The heat diffusivity is found to be
negative above the neutral level. This implies that the

temperature variance supplied at the surface by the forcing is

progressively used to change the mean temperature, as cold
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elements move downward. Below the neutral level, the heat
diffusivity is positive; in that lower region of the mixed layer
and in the thermocline, turbulence is generated by the system
itself. As shown in figures 18 to 28, computed profiles and
available laboratory data agree remarkably well. Moreover,

the accuracy of the simple analytical results presented here

is comparable to that of sophisticated turbulence numerical

models.
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1. INTRODUCTION

The large-scale upper ocean fronts across the central North
Pacific are fronts associated with the convergence of Ekman
transports (Roden, 1976). In that region, the wind field is

dominated by westerlies and the trade winds. This results in

eastward stresses and southward Ekman drifts in the north, and in
westward stresses and northward Ekman drifts in the south. The
region of convergence of these water transports is highly fronto-
genetical, Continuity of mass requires that the water either
downwells (convergence) or escapes laterally in a zonal flow
(confluence). According to Roden (1980), the central North
Pacific is characterized by these two dynamic features. Obser-
vations show two zones of strong surface convergence of Ekman
transports, one at the southern edge of the westerlies and the
other at the northern edge of the easterlies, and a transition
zone of confluence in between. What mechanism determines whether
convergence or confluence occurs, remains however unclear.

Wind stresses generate Ekman transports and, at the same
time, vigorously stir the upper layer of the ocean. If there

is no advection, wind stirring erodes the stably-stratified fluid

underneath and entrains heavier water in the mixed layer; the
surface density increases with time as the mixed layer deepens.

On the other hand, if there is no mixing, positive buoyancy advec-
tion (cold or saline water advection) locally increases the sur-

face density, while negative buoyancy advection (warm or fresh !
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water advection) locally decreases the surface density. Therefore,
wind stirring and wind-driven horizontal advection can add or
subtract their respective effects. In the case of an oceanic
front generated by the convergence of Ekman transports, positive
buoyancy advection generally occurs on the northern side, and
negative buoyancy advection on the southern side of the front.
Wind mixing thus reinforces advection north of the front, while

it opposes advection south of the front. As a result such a
front is asymmetric: the horizontal density gradient is stronger
on the northern side of the front than it is on the southern side.
The asymmetry was observed in the subtropical frontal zone in

the central North Pacific (Roden, 1976 and 1980), where fronts
exhibit a well-defined southern edge which separates weak density
gradients to the south from strong density gradients to the north.
The Subarctic Front around 42°N escapes this asymmetry, for temp-
erature and salinity fronts compensate each other, yielding very
weak density gradients (non-baroclinic front).

Another source of asymmetry results from the initial hori-
zontal density gradient. Positive buoyancy advection tends to
transport heavy water masses over lighter water masses and thus
to reduce the density jump at the bottom of the mixed layer.

There results an asymmetry in the pycnocline strength between
northern and southern sides of the front: the pycnocline is
weaker in the north and stronger in the south. Moreover, the

resistance to mixed-layer deepening is less where the density
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jump across the pycnocline is weaker. As a consequence, the mixed
layer is slightly deeper on the northern side. Observations
(Roden, 1980) and results presented here both show these asymme-
tries in the pycnocline strength and mixed-layer depth in both
sides of the front.

MacVean and Woods (1980) developed a two-dimensional oceanic
frontogenesis model forced by a barotropic horizontal deformation
field associated with meso-scale eddies. Turbulent mixing is
neglected and Ertel's potential vorticity theorem governs the
cross-front velocity. The present approach drastically differ
from this study, for the forcing is a surface wind stress capable
of generating both drift currents and turbulent mixing. The
cross-front flow is the Ekman transport. Moreover, for the
scales chosen herein, mixing effects are found to be as important
as advective effects.

The present study is aimed at wind-induced frontogenesis
with emphasis (i) on the distinction between convergence and con-
fluence in frontal zones, and (ii) on the dual role played by
the wind: advection and mixing. An initially quiescent ocean
is characterized by linear density gradients in both vertical and
meridional directions. (Heavier water is encountered in the deep
layers and in the northern region.) The vertical stratification
is suppressed near the surface and is replaced by an initially

very shallow vertically-homogeneous upper layer. A wind-stress

field suddenly takes place and remains constant with time. The
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wind stress is positive (westerlies) at the north, and negative
(easterlies) at the south. Ekman transports to the right of the

wind thus converge toward the middle of the basin, where the wind-

i

stress curl is maximum. The flow pattern is frontogenetical, and -
a density front is progressively generated by heavy water advec-

tion from the north, and light water advection from the south.

= =S e 7 7 T

A wind-mixed layer also deepens on both sides, reinforcing advec- %

tion in the north and opposing advection in the south. The mixed
layer deepens faster away from the front, vhere the magnitude

of the wind stress is larger, and on the northern side where the
pycnocline is weaker. The two cases of convergence and conflu-
ence are treated separately. In the case of convergence, a down-
welling is superimposed on the system. This effect is maximum

at the front itself where the wind-stress curl is maximum. 1In
the case of confluence, water flows away laterally along the
front, and no downwelling is present. For the sake of simplicity,
dissipation is not included, the front strengthens endlessly, and
no steady state is reached. The B-effect is neglected, since a

frontal zone has, by definition, a small meridional extent.

2., MODEL
The model developed herein is based on modelling of mixing
and convection by two interacting fluids (Chapter two). The

present work is a generalization of a one-dimensional version of

the model applied to the deepening of the wind-mixed layer ;




(Chapter three), in order to study the effects of lateral advec-
tion on mixing.

The model envisions mixing as the relative motion of two
interacting fluids of different properties., Parcels of fluid
rising through the mixed layer are given, near the surface, extra
momentum by the wind stress. These elements are pushed back into
the convective layer by turbulence with new properties. Because
they sink in a slightly stratified fluid, they are buoyant and
decelerate. As they sink, they also progressively lose their ex-
cess of horizontal momentum by interactions with the upward
return flow. As they reach the bottom of the pycnocline, they
have a null vertical velocity and lose their ability to carry
heat and momentum. The active sinking elements are called ther-
mals, and the rising elements, anti-thermals, by analogy. The
model describes the individual dynamics of thermals and anti-
thermals and their exchanges.

The one~dimensional model developed in chapter three is
capable of predicting the vertical structure of mean and fluctua-
ting properties throughout the mixed layer and the pycnocline,
Since the level of turbulence responds quasi-instantaneously to
temporal and local variations (advective effects are equivalent
to temporal variations), turbulent fluxes and vertical-structure
properties are given by the one-dimensional model. Therefore,
using the results of the one-dimensional model, an advective bulk
model is developed and solved. Emphasis is placed on the discus-

sion of mixed-layer depth, mean currents, and horizontal density
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gradient, all bulk properties affected by advection, rather than
on vertical profiles of turbulence structure which are not affected
by lateral advection.

Another generalization is also proposed. Since open ocean
frontogenesis depends on both temperature and salinity fields,
salinity is included in the formalism. Double-diffusive processes
fall out of the scope of the present study, and diffusion is ne-
glected. This simplification permits combination of temperature
and salinity in a unique thermodynamic variable, the buoyancy,

defined by:

b = g( -aT + 8S), (1)

where T is the temperature, S the salinity, a the coefficient of
thermal expansion, and B the coefficient of saline contraction.
The so-defined buoyancy is dimensional, greater for cold and
saline water, and smaller for warm and fresh water. The initial
buoyance field is chosen to be:

b= bo + r2y -rz, forz«< -ho N

3
(2)

and

o
|

- 1 -
bo + P2y + 3 raho s for ho <z <0,

where bo is a reference buoyancy (pure constant), I', and Iy

the horizontal and vertical gradients, respectively, and ho
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the non-zero initial mixed-layer depth. The factor %5 is intro-
duced, in agreement with the one-dimensional model of the wind-

mixed layer (Chapter three).

3. GOVERNING EQUATIONS

Thermals and anti-tuermals are characterized by different
velocities, densities, and pressures. Primed and double-primed
quantities refer to thermals and anti-thermals, respectively.
If f represents the fraction of area occupied by thermals at any
level, the fraction of area available to anti-thermals is (1-f),

so that mean properties are defined by:

a=fa'+ (1-fla" , (3)

where a stands for anv phvsical quantitv such as velocity compe-
nents, buoyancy, or pressure (u, v, w, b, or p). Moreover, root-

mean-square (rms) fluctuations are defined by:
a, = VE(I-E) (a'-a") = +(a-3)2 2, ()

Rms fluctuations are thus proportional to the difference between
thermals and anti-thermals quantities. They may be positive or

negative. Second-order turbulence correlations are expressed as:

ac = fa'e' + (1l-fla"c" , (5)

where a and ¢ stand for any physical quantities. Simple calcula-

tions using (3) and (4) yield:




ac =ac +a__c . (6)
rms rms

Throughout the mixed layer and pycnocline, a saturation equi-
librium between thermals and anti-thermals can be assumed (Chapter
two). This leads to assigning a constant value to f, the fraction
of area occupied by thermals. It has been shown in chapter three
that oceanic observations and laboratory experiments suggest a
value close to 10%.

With these definitions and the closure hypothesis, the advec-
tive model is governed by the following non-linear equations

(Chapter two):

. . u v w
Continuity equation: a t 3y + 3% o , (7)
Buoyancy equations: 25+ 23+ 2wb=o (8)
) at dy 9z ?
2 (Bemb__ ) = 0 (9)
9z rms i
Horizontal momentum 3 - 9 — 9 — -
equations: Uty Wt W™ fv=0 (10)
3-, 83—, 83— - __ 13
T 5y VYot VWt fou z 5. 5y (11)
a—(ﬁ;ému ) =0 (12)
9z rms *
S Geomv_d=o0 (13)
9z rms !
Vertical momentum 1 3
equations: — ==-(1+b) , (1)
N 3z
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w —w
rms 9z rms rms

3m = -b . (15)

where fo is the Coriolis parameter (positive and constant), G

the reference density, and m is a coefficient dependent upon f

only, defined by:

me—2 (16)

2VE(1-f)

Three small terms were neglected: (i) a correction due to verti-
cal advection in the hydrostatic balance (14), (ii) a correction
due to a non-zero mean vertical velocity w in (15), (iii) the

pressure term in (15). These simplifications hold as long as

2
wrms<<gh ? 7
! we<|w | (18)
rms' °’
(@23 << m (19)

respectively. The last requirement is equivalent to neglecting
the turbulence production in the pycnocline by mean shear compared
to the surface turbulence input (Chapter three). This simplifica-

tion is valid for time scales much larger than the inertial period

which is met in the case of frontogenesis.




In the case of frontogenesis, it is reasonable to anticipate

that the zonal mean velocity, u, is geostrophically balanced by
a cross-front mean pressure gradient, 3p/3y, and that the meridi-
onal mean velocity, v, is the depth-independent Ekman flow induced

by the zonal wind stress. In the mixed layer, equations (10) and

(11) thus reduce to:

- _ 3 —
fov = g, (20)
and
g =-1 9P
fou = o 3y (21)

Assuming that b is depth-independent in the mixed layer, (21) can
be solved for u in terms of the horizontal bucoyancy gradient (so-
called thermal-wind relationship):

b

1 -
?;- Iy (z+h) . (22)

Q=
Since u vanishes at the bottom of the mixed layer, the newly-
entrained fluid from below is not given zonal momentum in the

thermocline. The Reynolds stress -uw therefore vanishes at

z = -h, and equation (20) can be integrated to yield:

(23)
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where rx(y) is the local wind stress at the surface, and h(y,t)
the local instantaneous mixed-layer depth. North of the front
T is positive and v is negative; south of the front L is nega-
tive and v is positive. These two Ekman flows meet at the front
(y=0), and continuity requires the water to flow either vertically
(convergence), laterally (confluence), or both ways. At the pres-
ent state of knowledge, it is unclear from observations what mech-
anism determines whether convergence or confluence occurs. In
the present work, the two extreme cases of convergence and con-
fluence are thus studied separately. In nature various combina-
tions of these two cases occur simultaneously, as described by
Roden (1980).

In the case of convergence, the continuity equation (7) is

reduced to 3v/3y + 3w/3z = 0 and yields:

' T

- _1 b - z 3 ,'x
us=— — (z+h) , w= = (=) . (24)

£ %y p,E, 3 ' n

In the case of confluence, w at the bottom of the mixed layer is
the vertical component of the velocity along the sloping pycnocline
(w = -v 3h/3y as z = -h), and the full continuity equation (7) has

to be used. This yields:

- at 2T
- 1 3 X X - x 9,1
u = -:—-—(Z"'h) + —_— , W= — —{ ) . (25)
‘o 3y pofoh y pofobay R

Ze




where the origin of the zonal coordinate x is undefined. At the

bottom of the mixed layer, the mean vertical velocity w is:

= -2 (%) (convergence),

p y h

0o

ht (26)
- _ X 3 .1
w = pofo 5y (h) (confluence)

The Ekman downwelling in the underlying stratified fluid is given

by:
9T
R S (convergence)
Ek p £y ’
oo
(27)
W, = 0 (confluence)

Ek

The Ekman downwelling is related to the wind-stress curl and is
dependent of the mixed-layer depth. It differs from the mean ver-
tical velocity at the bottom of the mixed layer. The difference
is éhe vertical component of the velocity along the sloping pycno-
cline.

The expression

h = el vay + = a3t Yk (28)

represents the rate of entrainment of fluid from below into the
mixing process. It vanishes if the mixed layer deepens solely
bv Ekman downwelling without entraining new fluid in the mixed

layer.

e ) B - e — e b =0
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The initial buoyancy field in the underlying stratified fluid
is advected downward by the Ekman downwelling velocity given by
(27). If the wind forcing is steady, the buoyancy field under the
mixed layer at any time is:

b (y, z, t) = bo + Ty - Ts(z-wEkt) . (29)
where t = Q0 corresponds to the initial time when the wind starts

to blow.

4, JUMP CONDITIONS ACROSS THE PYCNOCLINE

Due to the presence of large vertical gradients, the terms
which dominate the governing equations in the pycnocline differ
from those which dominate the equations in the mixed layer. To
bring out the dominant terms, the governing equations are
advantageously expressed with the similarity vertical coordinate
£ = -z/h(t). Replacing z by £, equations (8), (10) and (11)
become:

—_ —_— —
- - — et w e e—— -

du . duv _ & 3n 8u _ g dh 3uv 1 3uw . 5 _ ,
5t T 9y T h 3t 3 " h 3y BE T h 8 T o
3v . 3¥v £ 3nh 3v _ E 3h 3Vv _ 1 avw _ &
3t T3y T h 3t 3  hdy @ h 3E °
1 9 . 1 E 3n 3p
= e m— ¥ —™ T AT .
Py 9y o, b 3y 13
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The pycnocline is a very thin layer of large gradients (§%>> 1 for
all quantities except 3p/df) and is located at the bottom of the
mixed layer (£=1). Therefore, the above equations can be
simplified by retaining only the terms including derivatives
with respect to £ (except 3p/df) and by replacing £ by one.

Integrations with respect to § then yield:

- 3nh — 5h —_— dh

Pt Py v PLRIGE v B0
— 3h ~— 3h = . (31)
ugg t U gy T o
- 3h — 2h - . (32)
VTtV oay + VW o

where the constants of integration were determined by expressing
that all the rms fluctuations, u, and v vanish below the pycno-
cline; b_(-h) is the value of the buoyancy at the top of the

underlying stratified fluid:

b_(-h) = b_ + Iy + Tylhtw, t) (33)

according to (29) for z = -h.

In the mixed layer, b and v are quasi-independent of depth.

From (9) and (13), it results that the rms fluctuations brms and

V.mg 3F€ much smaller than the mean variables b and v throughout
the mixed layer. Relations (30) to (32), which are applicable in
the pycnocline, can thus be simplified in the limit near the

bottom of the mixed layer. Using (6) and (28), they become:

W brms = h(b_(-h)-b] , (34)
Uoms Yoms C -hu(-h) , (35)
= -hV . (36)

v, w
rms ms

J

Sor
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These equations relate the values of variables at the top and

bottom of the pycnocline. They are the classical jump conditions
used in one-dimensional bulk models (Kraus and Turner, 1967, and
Niiler, 1975, for example). It was, however, necessary to derive
them in the context of non-zero lateral variations, for the slope
of the pycnocline and the vertical velocity modify the expression

of the rate of entrainment h.

S. SCALING IN THE MIXED LAYER

Since the front sharpens endlessly with time, there is no
proper cross-front length scale in this problem. Therefore, the
scale, L, of the meridiocnal coordinate, y, is chosen to be the

length scale of the wind-stress field. The buoyancy difference

"across the front is scaled by B = T,L, the initial buoyancy

difference over the length scale of the wind-stress field. The
vertical coordinate, z, and the mixed-layer depth, h, are scaled

by H = B/T,, the initial vertical height corresponding to a
buoyancy difference B. The wind stress is scaled by poU;, the
order of magnitude of its maximum value away from the frontal

zone. In the mixed layer, the along-front mean velocity u is

scaled by U = HB/Lfo, the cross-front mean velocity v by V = Ui/foH,

and the vertical velocities w and w., by W = U;/foL, as dictated

Ek
by (22), (23), (26) and (27). The time variable t is scaled by

the advective time scale T = L/V. Rms fluctuations in the mixed

layer are scaled as follows: Yims and Wos by U, (since -uw= Tx/po




at the surface), brms by HB/TU,, and Vims by HV/TU,, as suggested
by (34) and (:t), respectively.

Typical values for scales corresponding to large-scale
oceanic frontogenesis in the central North Pacific can be found

in Roden (1980). Primary and computed scales are proposed in

Table 3. From Table 3, it can be seen that the calculated height
scale of the mixed layer (HV100 m) corresponds to observed values
(Roden, 1980). As anticipated, rms fluctuations brms and Vems
are much smaller than their respective mean values in the mixed
layer. The rms vertical velocity Woms is much greater than w and
ﬁ, since thermals sink from the surface down to the pycnocline in
a time relatively short compared to the time of evolution of the
whole system. The frontogenesis time scale is of the order of
four months, i.e., much larger than a week, which is the response
time of a pre-existing oceanic front to atmospheric variations
(Roden and Paskausky, 1978). From Table 3. it can also be shown
that requirements (17) to (19) are met. ’

Using unchanged notations for dimensionless variables,

equations (8), (10), (11) and (15) become:

b ., - 385 _ - 3b H )2 3
I _;'+ Yoz " TU*} 3y (vrmsbrms)
]
* 3;(wrmsbrms) =0, (371
9u , -du , -du) . Ho 3
%Ro tt Vay "3_] * 1Ro3y Vrms rms
4+ _a.._(u w ) -v = 0 (38)
3z rms rms !
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1fav | -3v  -av 1{ H )23
s|lr— t v=— + — PN LS 2
Ri [3t dy waz] * Ri (T *] 9y vrms
1l 2 -
t - N 9
Ri az(vrmswrms) tuos 55 , (39)
9
3a Yrmsdz rms - _Qbrms (40)

£

in the derivation of which continuity equation (7) used. The
dimensionless numbers brought out by scaling are:

- the ratio of entrainment rate to the friction velocity:

H -
;I,—U-;'\ISlO “,
. . U
~ the velocity ratio: V-% 0.2 ,
- the Rossby number: Ro = ?!f'= (fo'I').1 nv1eTd (41)
o)
. . HB
- the Richardson number: Ri = 7 ~ 250 (42)
2mU*
- the coefficient: a = g 1 (43)

The coefficient a is called the mixing parameter.

As the front sharpens, the derivatives 3u/dy and 3b/3y
increase with time by an order of magnitude (Roden, 1980). These
non-dimensional terms are thus extimated to be of the order of ten.
On the other hand, since the mixed layer is well mixed, 3b/dz and
dv/3z are very small terms. Neglecting all the small terms, the

above equations reduce to:

ab -3b )

= + _— T e—

at vey Bz(wrmsbrms) ’ (44
ve 2 ) (45)

b
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i
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R (46)
dy ’
3 = -
awrmsazwrms -_2brms , (47)

and are applicable in the mixed layer only. Equations (45) and
(46) express that v is a pure Ekman drift and that u is geostro-
phically balanced by the cross-front pressure gradient. These
solutions for u and v were anticipated earlier in order to evaluate
the scales of w and rms fluctuations. It is therefore shown here

a posteriori that the hypotheses made on u and vV are correct.
6. BULK MODELS: CASES OF CONVERGENCE AND CONFLUENCE

Considerable simplifications result from assuming a homogeneous
mixed layer. A closed set of equations is obtained from (4u4) <o
(47) by assuming that b and v are constant, b W and u w

rms rms rms rms

linear, and w;ms quadratic with depth. Boundary conditions are:

- no surface buoyancy flux: W oms brms =0
- surface stress =wind stress: u w = =T at z = 0,
TMS rms
-w = friction velocity
™ms N
. = _|rl2
(Chapter three): W [t]
- jump condition (3u4): Woms brms = hé
-~ jump condition (35): ems “pms = © at z = -h,
- negligible residual w
rms L
3 << 2
(Chapter three): l"rmsl (]

e g4 o
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where T is the wind stress Tx(y), scaled by poUi; § is the
buoyancy jump across the thermocline, function of y and t:
§ = b (-h) - b
After replacement of linear and quadratic laws and after

elimination of v and we, by (23) and (27), (v = -1/h, Wey = -9T/3y

or zero), the prognostic equations for E and h can be written:

3,

117
2 ’ (u8)

@
log]

I

+t a

oA
Q.
<

in the case of convergence 73«

5T T &y ne (49)
dt -
where S =y + h - 3o by (50) 3
v =
- — | 3 1
. 3h _ T 9b T
in the case of convergence =T = 3y t a T o (51)
3,
3h frl?

Q
ot
1
[¢1)
jou
O
—
(8]
N
~

where § =y +hn - b . (53) , %
Equations (48) and (51) express that the time rate of change )

of the mixed-layer buoyancy is due to advection by the Ekman

meridional flow and to mixing with newly-entrained fluid from

below. Equations (49) and (52) express that the time rate of

change of the mixed-layer depth is due to the Ekman downwelling,

if any, and to deepening by turbulent ercsion. The wind stress,

T(y), acts as the forcing on the system. The mixing parameter, a,

Z2iven by (43), depends upon the global physical characteristics

©o-a srchilem, Thiz coefficient controls the emtrainment rate

IS

K

sic pmeller (larger) a, the less (more)
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intenge is the entrainment of stratified fluid in the mixing

process, and the slower (faster) is the mixed-layer deepening.

7. NUMERICAL RESULTS

The governing equations (49) to (50) and (51) to (53) are
coupled and highly non-linear. Moreover, coefficients derend
upon y through the wind-stress forcing 7. The search for an
analytical solution is thus hopeless. However, it is very easy
to implement a numerical scheme to integrate the governing
equations step by step in time, starting from an imposed initial
state.

For the numerical calculations, the wind-stress field is
chosen to be:

t(y) = tanh y ,
positive for y>0 and negative for y<0 (Figure 29). A frontal
zone is thus expected near y = 0. The meridional extent of the
basin, in which the equations are solved, is chosen to be:

-25ys2 .

The initial conditions consist of an initially homogeneous mixed
layer of non-zero depth (h = 0.5), in order to avoid an initially
infinite Ekman flow. The buoyancy gradient is chosen to be in the
horizontal and vertical directions, as required by scaling. The
ocean gtratification horizontal length scale is thus equal to the

wind-stress length scale, as it is observed (Roden, 1980). The

mathematical expression of the initial buoyancy field results
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Fy-2z, for z<-0.5 , -28y<2 ,

(o]
]

y + 0.25 for -0.5<250 , -2<y<0 .
The initial meridional section corresponding to those initial
conditions is presented in figure 30.

The problem requires a boundary conditicn on b on each side
of the region of interest to characterize the buoyancy of the
water newly advected in the basin. These conditions are chosen
to be: -
3 .
ay

expressing that, outside of the region of interest, the water

l aty=-2andy = +2,

does not feel the presence of the front and conserves its initial
horizontal buoyancy gradient.

The results are divided into two classes: the case of
convergence and the case of confluence. For each class, various
runs were executed in order to compare the combined effects of
mixing and advection.

Figures 31, 32 and 33 show three cross-front sections of the
buoyancy field in the case of convergence, for increasing values
of the mixing parameter a. For these cases, a global Ekman
downwelling given by (27), is superimposed on the system. This
Ekman downwelling is symmetric about the front and is maximum at

the front where the wind-stress curl is the greatest. The result-

ing deformation field in the stratified fluid is increasing linearly

in time. Figures 31 and 32 are plots corresponding to t = 1.6, i.e.,

about 6 months after the winds start to blow. In figure 33, the




—ro e x orwr " e s i . v

——

‘PI913 Aouefong TeTaTul  °*gg @2andtg




163

Ekman downwelling is less apparent, because the cross-section is
made at an earlier time (t = 0.16, i.e., about 18 days after the
winds start to blow).

For a small value of the mixing parameter (Figure 31), the
erosion of the underlying stratification can be significant only
for a very weak density jump across the pycnocline. On the
southern side of the front, negative buoyancy advection from the
south increases the density jump across the pycnocline and thus
prevents any erosion. The mixed layer deepens only be Ekman
downwelling without entraining new fluid in the mixing process.
On the northern side of the front, positive buoyancy advection
from the north decreases the density jump across the pycnocline
and favors entrainment of stable fluid. Entrainment is limited,
however, since the mixing parameter is small. The mixed layer
is somewhat deeper north of the front. Because mixing is not
important on either side of the front, the buoyancy field in
the mixed layer is governed mainly by advection, i.e., the
buoyancy gradient is almost symmetric about the front. There-
fore, as shown in figure 31, the asymmetry of the front is most
pronounced in the pycnocline strength, while mixed-layer depth
and buoyancy profile are quasi-symmetric.

Figure 32 shows a similar section of the buoyancy field for a
greater value of the mixing parameter. Mixing is more pronounced
away from the front, where the wind-stress magnitude is greater.
The mixed-layer depth thus has a minimum at the middle of the

front where the wind stress vanishes. In a real oceanic situation,
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winds fluctuate about a mean value. These fluctuations increase
turbulent mixing and not advection, since mixing is non-linearly )
dependent upon the wind stress. Including such fluctuations in
the forcing would therefore reduce the minimum mixed-layer depth
at the front. Mixing is maximum away from the front, while the
Ekman downwelling is maximum at the front; these two effects thus
compete. As shown on figure 32, the result is a maximum mixed-
layer depth on both sides of the front. On the southern side of
the front, negative buoyancy advection increases the pycnocline
strength. Nevertheless, entrainment is effective and tends to
increase the mixed-layer buoyancy. Advection and mixing oppose
each other, and the buoyancy field in the mixed layer is almost
identical to the one of the imitial state. On the northern side
of the front, positive buoyancy advection decreases the pycnocline
strength and favors entrainment. The mixed layer deepens faster
in the north. Mixing increases the mixed-layer buoyancy and thus
reinforces the positive buoyancy advection from the north, leading
to the formation of a large frontal buoyancy gradient. The
resulting horizontal profile of the mixed-layer buoyancy is very
asymmetric: the southern side is characterized by a weak gradient,
almost identical to the one of the initial state, while the
northern side is characterized by a strong frontal horizontal
gradient.

Figure 33 shows a cross-front section of the buoyancy field
for a large value of the mixing parameter. An increasing mixing

parameter leads to an increasing rate of entrainment. The mixed

|
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layer becomes rapidly so deep that the physical occurence of such
a situation is doubtful. However, it is interesting to study the
modifications brought out in this extreme case. Mixing is now so
intense that it controls the deepening of the mixed layer. Hence
the mixed-layer depth is symmetric about the front. On the southern
side of the front, the density increase due to mixing takes over
the density decrease due to advection from the south. The lines
of constant buoyancy move southward, away from the front.
Frontolysis occurs on the southern side. On the northern side,
however, mixing and advection reinforce each other, and a front
appears. Since advection is not very effective compared to mixing,
the front is a result of differential mixing rather than of
differential advection.

Figure 34 is a summary of the cross-front profiles of the
mixed-layer buoyancy shown in the three previous figures. The
dashed line represents the initial linear profile. For a small
value of the mixing parameter (a = 0.1), the profile is highly
distorted by northward advection in the south and southward
advection in the north. The profile is almost symﬁetric about
the center of the front (y = 0, b =0.25). The gradient at the
center is five times greater than the initial gradient, revealing
the presence of a well-defined front. For a greater value of the
mixing parameter (a = 1.0), the profile is totally asymmetric:
linear and almost identical to the initial profile in the south,

and distorted by southward advection in the north. The maximum

gradient at the center of the front 1s near the one for a = 0.1,
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but the region of large gradients is reduced by two, revealing a
weaker front. For a large value of the mixing parameter (a = 10.),
the buoyancy profile is displaced southward everywhere as a result
of mixing only. The buoyancy gradient is almost zero on the
southern edge but large on the northern edge of the front. The
frontal zone is not a consequence of advection but rather a result
of non-mixing in a region where the wind stress vanishes.

The time evolution of the mixed-layer depth on both sides of
the front is shown in Figure 35, for the three values of the
mixing parameter. As expected, the greater the mixing parameter,
the deeper the mixed layer. For times greater than 0.3 (about one
month), the mixed layer deepens at a constant rate. On the
southern side of the front (y = -0.5), the rate of increase almost
coincides with the rate of deepening by Ekman downwelling. The
reason is clear: due to negative buoyancy advection, the buoyancy
jump across the pycnocline becomes so strong after a month that it
prevents any further mixing. On the northern side of the front
(y = 0.5), the rate of increase is larger because of the tendency
of positive buoyancy advection to reduce the pycnocline strength.
The rate of deepening is remarkably constant with time, although
there is no reason a priori for such behavior. Ffor a = 0.1, the
asymmetry between north and south appears around t = 0.2 (about
20 days), when the pycnocline strength is substantially reduced
on the northern side such that mixing becomes noticeable. For
a = 1.0 and 10, the asymmetry appears sooner, and the incipient

deepening is well separated from the Ekman downwelling.
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Figures 36, 37 and 38 show three cross-front sections of the
buoyancy field in the case of confluence, for the same values of
the mixing parameter. They are to be compared with Figures 31,
32 and 33, respectively. The interior is at rest at all times.
For a small value of the mixing parameter (Figure 36), the
pycnocline strength and the mixed-layer depth greatly differ on
both sides. On the southern side, negative-buoyancy advection
has largely increased the buoyancy jump across the pycnocline
and prevented any erosion of the stratified fluid. On the
northern side, positive-buoyancy advection has swept out the
pycnocline almost totally and favored a moderate deepening (small
mixing parameter). For a greater value of the mixing parameter
(Figures 37 and 38), the asymmetries of pycnocline strength and
of the mixed-layer buoyancy becomes more asymmetric,

Figure 39 is a plot of the cross-front profiles of the
mixed-layer buoyancy of the three previous figures. Comparison
with Figure 34 reveals that the frontal gradients of buoyancy

are greater by about a factor of three in the case of confluence.

But, the profiles exhibit qualitatively the same shapes.

The time evolution of the mixed-layer depth on both sides
: of the front in the case of confluence is shown on Figure 40, for
the three values of the mixing parameter. Comparison with Figure
35 reveals that the rate of mixed-layer deepening is reduced in
the case of confluence, as a result of the absence of the Ekman
downwelling. Because the mixed layer is shallower in the case of

confluence, the cross-front Ekman drift is larger and advection
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is more important. This explains why the horizontal buoyancy

gradients are greater in the case of confluence. i

8. SUMMARY AND DISCUSSION

A bulk model for the study of advective and mixing effects in
the upper ocean was constructed from a one-dimensional mixed-layer
model. The aim of the work was to investigate the formation of a
frontal zone by convergence of Ekman transports, as observed in
the central North Pacific. The B-effect and dissipation were
neglected. Temperature and salinity were combined to form a
single thermodynamic variable, called the buoyancy. Scaling
showed that the long-front velocity is in geostrophic balance
with a cross-front pressure gradient and is unimportant. The
cross-front velocity is an Ekman drift, driven by the surface
wind stress, and converges toward the region of zero wind stress,
producing frontogenesis. Continuity of mass near the front
requires that water masses either downwell (convergence) or |

escape laterally (confluence). This distinction leads to two

cases, each treated separately. Moreover, the wind stress is
capable of adveetion and mixing. Emphasis was put on the
interaction of these two effects.

The model reduces to two coupled highly non-linear prognostic

equations for the buoyancy and mixed-layer depth, Numerical

solutions were obtained by quadrature in time. The main results

are: (i) the front is never symmetric, (ii), in the case of




weak mixing, the asymmetry is most pronounced in the pycnocline
strength and in the mixed-layer depth, while the buoyancy field is
almost symmetric about the center of the front, (iii), in the

case of strong mixing, the asymmetry is most pronounced in the
buoyancy field and frontolysis may occur, (iv), after about one
month, the Ekman downwelling resulting from convergence strongly
controls the rate of deepening, and (v) frontal density gradients
are about three times larger in the case of confluence than in the
case of convergence.

The relative importance of mixing to advection is measured by
a mixing parameter, which results from scaling. It is related to
the Rossby and Richardson numbers. In the case of large-scale
oceanic fronts as those in the North Pacific Ocean, this mixing
parameter is of order one, implying that wind mixing is as
important as wind-driven advection. Zero-mean fluctuations
superimposed on the mean wind-stress field would change mixing
but not advection. These can thus be modelled by increasing
the value of the mixing parameter. for very large values of the
mixing parameter, frontolysis occurs on the side of low-density
advection and strongly weakens the front.

Since dissipation was neglected, the solution of the present
model does not reach a steady state; a front is forming and
sharpening endlessly with time. The model therefore does not
yield any length scale for the width of the frontal zone. However,
when the front is sufficiently sharp, dissipation will play a

dominant role and force the system to a steady state. Hence the
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length scale for the width of the front is believed to be con-
trolled by dissipation.

Finally, since there is no advection where the wind stress
vanishes, a coastal wall can be placed at the middle of the front,
without altering the solution. Results of convergence are thus
applicable to a coastal downwelling, forced by a longshore wind
stress increasing offshore. If the mixing parameter is of order
one, it is observed that the maximum downwelling does not occur

at the coast but somewhat offshore (Figure 32).
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A new theory of mixing and convection is developed and then
applied to three cases: (i) the deepening of the wind-mixed layer,
(ii) penetrative convection due to surface cooling, and (iii) upper-
ocean frontogenesis by convergence of Ekman transports.

The theory of the model (Chapter 2) is based on the concept
of a two-fluid system: thermals carrying the information from the
boundaries of the system toward the interior, and anti-thermals
forming the return flow required by continuity of mass. The
governing equations are derived from the general dynamical theory
developed by Kelly (1964), Green and Naghdi (1965), and Truesdell
(1969). Pairs of equations are written for two interacting
Boussinesq fluids in a rotating frame, and interaction terms are
parametrized in order to adapt the theory to géophysical situations.
Each pair meets an Invariance Principle as a consequence of
reciprocity in the roles played by thermals and anti-thermals.

Each pair is transformed into an average equation for which
interaction terms cancelled and a very simple equation linking

the two fluid properties. An important parameter of the model is
the fraction, f, of area occupied by thermals to the total area.

A dynamic saturation equilibrium between thermals and anti-thermals
is assumed. This implies a constant value of f throughout the
system. Considerable simplification is obtained by assuming that

the response time of turbulence is much less than the time scale of

182

st e

e K e e ki S e <




e mair

183

evolution of the overall system. This assumption is realized

in all geophysical situaticns and is a generalization of various
assumptions previously stated by Denman (1973), Niiler (1975),
Niiler and Kraus (1977), and Garwood (1977) for the upper ocean,
and by Lilly (1968), Tennekes (1973), and Lenschow et al. (1980),
for the atmospheric boundary layer. The model neglects dis-
sipation, and its validity extends to any convective situation
where molecular viscosity and diffusivity may be neglected.

The theory is first applied to the study of the deepening of
the wind-mixed layer (Chapter 3). The one-dimensional and fric-
tionless model neglects the turbulence production by the mean-
flow shear in the thermocline. The potential-energy increase
required for deepening is thus supplied by the turbulence input at
the surface (turbulent erosion model). A non-similar analytical
solution is found in the case of a well-mixed layer bounded
below by a sharp thermocline, treated as a boundary layer. That
solution is valid if the frictional Richardson number, Ri, defined
as the ratio of the total mixed-layer buoyancy to the square of the
vertical-velocity scale, is much greater than unity. The model

1, and a ratio of

/y

predicts an entrainment rate proportional to Ri~
-3
thermocline thickness to mixed-layer depth of the order of Ri

Ve , as the mixed-layer depth, h,

The thermocline shallows as h~
increases with time.- The vertical structure throughout the mixed
layer and thermocline is given by the analytical solution. Verti-
cal profiles of mean values and vertical fluxes are calculated.

The comparison of these profiles with those obtained by turbulence-
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closure numerical models is favorable.

The same model is applied to the study of penetrative con-
vection in the upper ocean due to surface cooling (Chapter 4).
The model is still one-dimensional, but dissipation is included,
since dissipative effects are more important when the mixing
region is deeper. An analogous non-similar analytical solution
is found in the case of a well-mixed layer bounded below by a
sharp thermocline. That solution is valid if the Richardson
number, Ri, is much greater than unity. The model predicted a
deepening rate proportional to Ri'sk, a constant thermocline
thickness, and a ratio of thermocline thickness to mixed-layer
depth proportional to Ri"%, If the surface heat flux is con-
stant, the mixed layer deepens in time as t%2. The vertical
structure throughout the mixed layer and thermocline is given by
the analytical solution. The agreement of mean temperature and
vertical fluxes with laboratory experiments is excellent. More-
over, the results of the present analytical calculations are
comparable to that of turbulence-closure numerical models.

Advective effects and their interactions with mixing were
studied in a case of upper-ocean frontogenesis (Chapter 5). A
bulk model including both advection and mixing is derived based on
the one-dimensional model developed in Chapter 3. Continuity of
mass near the front requires that water masses either downwell
(eonvergence) or escape laterally (confluence). This distinction

led to a study of these two different cases, each treated separately.
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Interactions between advection and mixing result in important
cross-front asymmetries in properties such as mixed-layer depth,
thermocline strength, and/or mixed-layer density. These asymmetries
have been observed (Roden, 1976 and 1980). Results also show

that there exists a critical time scale within which mixing domi-
nates and beyond which advection controls frontogenesis. For a
mixed layer about one hundred meters thick, this time scale is of
the order of one month. Strong mixing is shown to be able to induce
frontolysis on the front side of light-water advection. Frontal
density gradients are about three times larger in the case of con-
fluence than in the case of convergence. Dissipation is neglected,
and the model does not reach a steady state. Hence, the length scale
for the width of the front (believed to be controlled by dissipation
in a steady state) is not provided by the model.

Although the theory presented in chapter two is very general,
the subsequent applications are restricted by various simplifying
assumptions, such as absence of dissipation, large Richardson
number, and decoupling between wind mixing and surface cooling.

The scope of this work is to present A better understanding of the
fine structure of turbulence in the upper ocean. This understanding
could only be acheived by a clear presentation of analytical solu-
tions corresponding to various particular cases. The author is
aware of the limitations brought by those simplifying assumptions
and of the resulting restricted applicability of the mathematical

formulae presented herein. More general and more accurate results

can be sought by numerical solutions of the general equations pro-
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posed in chapter two.

The applicability of the general theory of chapter two is
based on the assumption of a saturation equilibrium between
thermals and anti-thermals, which leads to assigning a constant
value to f, the fraction of area occupied by thermals to the total
area. Although this assumption is supported by physical arguments
and various observations, it may fail in particular situations like
the incipient deepening of convection or in restricted regions such
as those very near the surface or at the bottom of the thermocline.
A discussion of possible variations of f was presented in an appen-
dix to chapter three. It was concluded that, if such a region of
non-constant f exists, it is very limited and does not affect the
overall behavior of the system. On the other hand, the good agree-
ment of the results with observations and with previous models,
despite various other simplifications, is very encouraging.

This work also ignores the presence of internal gravity waves
generated by turbulence. Although waves are important as a mecha-
nism capable of extracting kinetic energy from the system, the study
of their effects on mixing and convection is a recent subject of
research, one which is in its early stage of development, and no
acceptable parametrization has yet been proposed for geophysical
situations.

The model can be applied to various other cases related to
geophysical fluids. The coupled problem of wind mixing and surface

cooling/heating can be investigated as a direct application of the

results presented in chapters three and four. The model is also
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directly applicable to convection in the atmospheric boundary layer
under a cloud-topped inversion. Moisture can be incorporated in
the formalism without major problems. A dual application of the
model can be that of convection in the lower atmospheric layers
above mixing and convection in the upper oceanic layers. Surface
air and sea temperatures and surface heat flux would then be the
unknowns in the problem. An intersting case would be that of double

penetrative convection, in the atmosphere and the sea, past mid-fall

and during winter when the water is warmer than the air.
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