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ABSTRACT

Fluctuations in the amplitudes and phases of 20-sec Rayleigh waves were

measured for ten earthquakes recorded at NORSAR and for two earthquakes

recorded at an 1100-km long linear array in the Southwestern United States.

These measurements were compared with the prediction of Chernov (1962), who

analyzed the scattering of elastic waves by random inhomogeneities along the

source-to-receiver path. Use of this theory enabled the amplitude and phase

fluctuations to be related to a statistical description of the random scatter-

ing medium. As predicted, it was found that the fluctuations were correlated

over a longer distance in the direction parallel to the propagation of the

wavefront than in the direction perpendicular to it. This implies by recipro-
city that relative M within a test site would be better determined at a

s

station in line with the vector between two events than by a station perpendi-

cular to the vector. Certain measurements were incompatible with Chernov's

theory, however; these discrepancies may be attributable to multipath arrivals

and/or large-amplitude scattering for which the Born approximation is not

valid.

It was found that narrow-band spectral measurements of Rayleigh wave

amplitudes exhibited stronger fluctuations across both arrays than did visual

measurements of M . The size of the fluctuations was diminished by usings

broad-band spectra. Fluctuations in Ms are approximately 1/3 those in mb

across equivalent array dimensions. By reciprocity this implies that relative

yields within a test site may be determined by using M with a standard devia-s

tion 1/3 of that obtained from mb if an equivalent number of station measure-

ments are available.

Random scattering of Rayleigh waves has a larger effect upon narrow-band

measurements of attenuation than upon measurements of phase velocity. As a

result of such scattering, surface-wave spectra may display significant fluctu-

ations at various frequencies, causing source mechanisms inferred from spectral

observations at only a few stations to be unreliable.
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INTRODUCTION

Researchers have long recognized the effects of the earth's lateral inho-

mogeneity on basic seismological measurements. In fact, systematic variations

of wave amplitudes, travel times, and spectral content have been successfully

utilized to infer much of the structural variations of the earth's crust and

mantle. However, in most cases the structure becomes discernible only when a

suitable amount of data is averaged, implying that a significant degree of

randomness appears in that data and that single observations are not reliable

for making geophysical inferences. For example, the range of P-wave amplitudes

over LASA is frequently as large as 10 to 1 (Chang and von Seggern, 1977),

with the amplitude pattern changing among events. The random component in

data sets, such as travel times or amplitudes, can usually be described with

common statistical formulations and a statistical description of the media

properties can often be derived from the statistical content of observed seis-

mic data. This observed random scattering is associated with features of the

medium having smaller scale than those causing broad regional effects, such

as North's (1978) magnitude bias or Herrin and Taggart's (1968) travel time

residuals. However, because of its severity, random scattering often obscures

broad regional effects and inhibits determining underlying structure and seis-

mic source parameters.

Aki (1973) and Capon (1974) performed scattering analysis on the travel

Chang, A. C. and D. H. von Seggern (1977). A study of amplitude variations
and mb bias at LASA subarrays, SDAC-TR-77-11, Teledyne Geotech, Alexan-
dria, Virginia.

North, R. G. (1978). Station bias for ISM-reported magnitudes, Geophys. J.,
in press.

Herrin, E. and J. Taggart (1968). Regional variations in P travel times,
Bull. Seism. Soc. Am., 58, 1325-1337.

Aki, K. (1973). Scattering of P waves under the Montana LASA, J. Geophys.
Res., 78, 1334-1347.

Capon, J. (1974). Characterization of crust and upper mantle structure under
LASA as a random medium, Bull. Seism. Soc. Am., 64, 235-266.
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times and amplitudes of LASA P-wave recordings using Chernov's (1962) theory.

This report focusses on whether or not a similar phenomenon exists for Rayleigh

waves and how it can be described theoretically; it will not deal with the

phenomenon of distinct multipathing of surface waves that Capon (1970) studied

because multipathing is a deterministic, not statistical, effect arising from

known lateral variations in the gross structure of the crust and upper mantle

such as the oceanic/continental boundary. However, such multipathing should

grade into random effects on surface-wave amplitudes and phases where the

structure is uniform except for small-scale heterogeneities that can be des-

cribed statistically using Chernov's method. Demonstrable random scattering

effects on Rayleigh waves will have important implications for the reliability

of surface-wave magnitude estimates, for the accuracy of surface wave phase-

velocity and attenuation measurements, and for the character of surface wave

spectra.

The first portion of this study examines evidence that suggests random

scattering of Rayleigh waves, then modifies Chernov's three-dimensional theory

to predict the effects for a two-dimensional propagation problem and presents

new results that can be compared with the modified theory and other possible

models. Finally, the probable error of various Rayleigh-wave measurements

taken from long-period seismograms is investigated. Throughout, waves with

periods near 20 sec are stressed because ef the practical importance of using

surface-wave magnitude (M s) in estimating yields of underground nuclear

explosions.

Chernov, L. A. (1962). Wave propagation in a random medium, New York, Dover
Publications, Inc.

Capon, J. (1970). Analysis of Rayleigh-wave multipath propagation at LASA,
Bull. Seism. Soc. Am., 60, 1701-1731.
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OBSERVATIONS OF SMALL-SCALE SCATTERING OF RAYLEIGH WAVES

Few opportunities exist to observe recorded surface wave signal variations

over small spatial dimensions on the order of a few wave-lengths or less with

a regularly spaced array. Aside from the large seismic arrays, LASA and NOR-

SAR, there are almost no available data sources. However, during early 1962

one well-placed set of stations existed in the Southwestern United States.

These sites, part of the VELA Long Range Seismic Measurements program (Figure

1), were situated to record seismic signals from the GNOME underground nuclear

explosion and, all together, composed a 1100 km linear array. During their

short recording interval, surface waves from several earthquakes at teleseismic

distance were well recorded at most of the 11 sites. For this study, signals

arriving perpendicular and parallel to this linear array were needed to verify

certain theoretical models; two such events were available. Their epicenter

information and great circle paths are indicated on Figure 1; Figure 2 and 3

illustrate the vertical-component recordings of the Rayleigh waves for the two

events. Note that the plots preserve the true relative amplitudes. Signifi-

cantly, the range of amplitude among the seismograms at a period of 20 sec is

over a factor of three and it is apparently random. Attenuation along the path

or changes in crustal responses at the individual sites cannot alone explain

this range and a detailed analysis of these particular recordings will be pre-

sented in this report.

Observations of random fluctuation in Rayleigh waves are possible at the

NORSAR array of long-period instruments, (shown in Figure 4), but only over a

span of 100 km. One example is the recordings made of the Turkish earthquake

shown in Figure 5. Comparing the seismograms with those of Figures 2 and 3

reveals less variation in signal amplitudes and shapes, an observation to be

expected because the aperture is reduced by an order of magnitude. Yet, among

the NORSAR recordings there are significant differences that cannot be explained

by varying crustal response or slight calibration errors. For such typical

events, the standard deviation of measured M over 22 NORSAR sensors will bes

somewhat less than 0.1. A thorough analysis of these types of recordings will

be presented later when we compare theoretical and empirical results for the

random scattering of Rayleigh waves.

- mom



Figure 1. Locations of a linear array of LRSM sites in the Southwestern United
States and arrival directions for two earthquakes studied in this
report.
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Figure 2. LRSM long-period recordings for the Nicaragua earthquake.
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Figure 3. LRSM long-period recordings for the Kermadec earthquake.
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NORSAR LP sensor effects
.0508 hz (I smoothing)
10 events

10 km
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00 0

Figure 4. Layout of the NORSAR long-period array. Numbers indicate sensor
effects, the difference between the individual spectral amplitudes
and the mean spectral amplitude, averaged over 10 events.
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Using wavenumber analysis Mack (1972) has already investigated this ap-

parent scattering phenomenon at arrays, suggesting that actual Rayleigh wave

signals can be represented in two-dimensional wavenumber space as a distribu-

tion rather than as a single discrete point. One of these possible representa-

tions is the Gaussian distribution:

S22 2 2
F(kx) = exp (-x k ); F(ky) = exp [- ( -k ] (1)

where the k and k axes are parallel and normal to the wavefronts, respectively,x y

and k is the wavenumber where the power of the signal peaks for a given fre-0

quency. From this model, Mack derived the form of the coherence function for

spectral amplitudes from two sensors at the frequency corresponding to k as
22 22 0

y2(Y) = [exp- x . exp - r ry] (2)

a2

were r is the vector from one sensor to another within the array of instru-

ments and
r= (rx,r )

r = x1 -x2  (3)

r= y y 2

To simplify, henceforth r = InI. At the frequency of .047 Hz, Mack computed

coherence between sensor pairs for the signals shown in Figure 5; the results

are in Figure 6. Results for sensor pairs nearly normal or parallel to the

wavefront are shown as a function of sensor separation r. We have superimposed

the relation (2) for various of a (or a). Assuming r = 0 for sensor pairs

aligned normal to the wavefront, we estimate a '\ 1200; similarly a nu 500 for

sensor pairs aligned parallel to it. Clearly, coherence along the raypaths

falls off much less rapidly, a fundamental feature of the random forward scat-

tering of waves detailed in Chernov's (L962) theory. However, alternative

wavenumber representations or signal models will predict similar coherence

patterns; for instance, two discrete multipath arrivals of nearly equal ampli-

tude and equal phase delay at nearby points k and k in wavenumber space1 2
would result in a theoretical coherence function (Mack, 1972) of

Mack, H. (1972). Spatial coherence of surface waves, Report No. SAAC-8, Tele-

dyne Geotech, Alexandria, Virginia.
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y2(r) [1 + cos 2'iF i -k 2)
1/2

This equation would fit the actual data of Figure 6 nearly as well as the

Gaussian predictions shown there.

In order, then, to define the typical Rayleigh signal wavefield, a more

detailed analysis of the observations is required. Information important in

determining the best signal model is contained in recording phases at each

array sensor; such information is suppressed in the simple coherence computa-

tions, but it can be recovered with alternative methods (discussed later). To

overcome NORSAR's dimensions, which are inadequate to fully analyze the wave-

field nature, signal analysis over a long linear array, such as in Figure 1,

will be necessary. Before proceeding to the data analysis, Chernov's work,

which is appropriate to a wave propagating in three dimensions, will be modified

to obtain predictions for a Rayleigh wave, which essentially propagates

in two dimensions near the earth's surface.

-19-
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CHERNOV'S SCATTERING THEORY MODIFIED FOR RAYLEIGH WAVES

Chernov (1962) derived analytic expressions that statistically described

the behavior of monochromatic, acoustic, plane waves as they travelled through

a non-turbulent fluid medium characterized by spatial fluctuations of the wave

velocity C which are both small and random. Certain simplifying assumptions

must be made to apply these results to the problem of waves propagating across

the surface of a solid, such as seismic Rayleigh waves. Complications intro-

duced by the elliptical particle motion of Rayleigh waves are ignored, and all

displacements are assumed to be along the direction of wave propagation in the

plane of the earth's surface. This assumption not only has the effect of

replacing Rayleigh waves by acoustic waves, but also eliminates the considera-

tion of effects due to LR-LQ mode conversion when the waves are scattered.

Ignoring the dependence of the waves on the depth-varying properties of the

medium below the surface further simplifies this problem. The problem is thus

considered strictly two-dimensional, and Chernov's theory must be modified.

Since our data reduction employs spectral analysis, which allows analysis of

waves within only a narrow band of frequencies, the assumption that the waves

are monochromatic is acceptable. Our treatment of the spatial variation of

phase velocity C(x,y), therefore, does not need to involve dependence upon the

frequency C (x,y,w) characteristic of dispersive waves. In Chernov's fluid

medium the velocity fluctuations vary in time as well as in space, and the wave

propagation is described in terms of averages over (an infinite) time for a

given source and a given receiver. Although in the solid earth the velocity

fluctuations are deterministic and permanent, they may be treated in Chernov's

manner if averages over the azimuths of incident waves from (all possible) dif-

ferent sources to a given receiver are taken. This method of averaging is dis-

cussed more fully in the memorandum of Rivers and von Seggern (1978), which for

convenience is reproduced as an appendix to this report.

The scattering properties of an inhomogeneous medium are determined by

the spatial fluctuations of the index of refraction, which are defined by

C '0
P(x,y) 0 -i

C (xy)

Rivers, D. W. and D. H. von Seggern (1978). Theory of wave propagation in a

two-dimensional random medium, Technical Memorandum, Teledyne Geotech,

Alexandria, Virginia.

-20-
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where C is the average phase velocity of the waves in the medium. Denoting

the mean square fluctuation of the index of refraction by W- , the correlation

coefficient of p is defined to be

I(xiy 1 ) P(x2,Y2) / (6)

If the fluctuation p(x,y) are truly random, the average denoted by the overbar

in (6) depends only upon the distance between the points (xi, yl) and (x2, y2 )

and not upon the coordinates of the points themselves; i.e., v = v(r). In the

modification of Chernov's theory presented here, it is assumed throughout that

the form of the correlation coefficient is given by the Gaussian function

v(r) = exp (-r 2/a2 )

where the "correlation distance" a represents the typical linear dimension of

the inhomogeneities which give rise to the scattering. Chernov's theory is a

statistical method of describing scattering phenomena within a medium character-

ized by the parameters =-and a.

Table I gives theoretical expressions derived in Rivers and von Seggern

(1978) for seven basic quantities which characterize the scattering process.

These seven quantities are:

B2 , the mean-square fluctuation of the amplitude (in natural logarithmic

units) of the wave at a given receiver relative to the average of

the amplitudes at all receiver;

S2 the mean-square fluctuation of the phase (in radians) of the wave

at the same receiver relative to the phase of the (hypothetical)

average wavefront;

P, the cross-correlation coefficient between the amplitude and phase

fluctuations at the same receiver;

Rb(AL) and Rs (AL), the spatial autocorrelation coefficients for amplitude

or phase fluctuations measured at two different receivers whose

separation distance AL lies along the direction of propagation of

the incoming wave; and

(Z) and Rs (Z) the corresponding autocorrelation coefficients for two

receivers whose separation k lies in the direction transverse to

the wave propagation.

-21-



TABLE I
Co parison of Chernov Scattering Theory for Two- and Three-Dimensional Cases

Fluctuations of Amplitude and Phase for Single-Receiver Case

2 , A 12

S - Il 1( ) + 12 ((1)1/2

Fluctuations and Correlation Coefficients for Longitudinal Separation of Receivers

B I B long - " [ i (AL) - 12(Al)1/2

S
1 S2 long - pl 111(AL) + 12 (l)l/2

b long (AL) - [1
1 
(L) - I

2
(AL)/fl (O) - 12 (O)l

R., long (AL) - [I (AL) + 12(AL)]/jI1(0
) 
+ 12(0)1

Fluctuations and Correlation Coefficients for Transverse Separation of Receivers

gIB
2 trans -2 1 (9) - (t)/2

8* 1
2(B2

SIS2 trans A? (1
1
() 1

2
()/112

Rb. trans (M) - [II(E) - 1
2
( 111/I

1
(0

) - 12 Ml

R , trans (I) - [I 1 ( ) + 12(5) l/[l l() * 12(0 

where:
Two Dimensions Three Wlmensions

1 ( 2) K3 
2 
Ka

2
/a8 K 2(K2a2 / g

2 
L a

: K
2  
L a

12(0) /7 K 
2 
L a [€ + I - 1) 

/ 2
/ K

2 
La -1D -3 tan D

1 (AL K_2- -,L2/a2 ' e-K
2 
a 
2

/ 1 2 L a/(+ 2 L 2

1
/2 -2/[a

2
(C2 + 1)1 

2
a /4 / K

2  
e-f?/a

2  
-rt(K

2
a
6
)

,,1/2 (il/a, ,,/2 .2/ .cos(K,1--- s[ n(€
2 + 11- 4 + eosI I d

z: K
2 

L a e
"
f/a •is/(K2a

6
)

_2(__K 
L a I -D

2
/a

2  

K

(1) 1,0{r( )-- 2
.
2
-- ( Ei/ai - ii--)--))

2d4 L D a

2Kal

* modified Seose. function of order 'n.

Correlation of Amplitude od Phase Foctuations at a Single Receiver

- in([(, +1 + 1)/21 -1) Two Dimensions

4

/7R a l + D
)

Three Dimensions

((,-,2+~ 1) / V2
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As the table shows, these seven quantities can be expressed as functions of

the four variables: 7, a, the wavenumber k, and L, which is the length of

of wave's path through the medium. For a narrow spectral band, k is nearly

constant. Rivers and von Seggern (1978) showed that variations in the source

to receiver distance L will not strongly effect our analysis. Therefore, this

study will determine the values of WT and a for those inhomogeneities in the

earth's crust causing the random scattering of Rayleigh waves (near 20 sec

period). This study will also determine the applicability of Chernov's theory

to the quantitative prediction of fluctuations due to that scattering, particu-

larly Rb (AL) and Rb(Z).

Note the conditions that govern the validity of the result in Table I.

Tae two-dimensional, longitudinal-wave model of Rayleigh waves, which is em-

ployed in our modification of Chernov's theory, has already been described;

also the assumptions that permit replacement of equation (6) with (7) were

stated. One other set of Chernov's key assumptions pertained to the smallness

of fluctuations in density, phase velocity, and refractive index:

A<<Pop, Ac<<Co, and hence 2<<1. (8)

The validity of these assumptions must be tested after the value of 7 is

determined. Further, we assume that the scattering caused by density fluctu-

ation can be neglected when compared with scattering caused by fluctuations

in phase velocity. This assumption is valid if, for a wave travelling along

the x-axis,

1 (Ap) Ac77- a <<1 c "o
0 0

For a fairly uniform crustal structure, a(Ap)/3x . 01.01/gm/cc/km would be a

liberal value while Ac/c 0 u 0.05 would be a reasonable value. Using p 0 n 3

gm/cc and k n-' 0.1 for 20 sec periods, the relation is satisfied.

Another assumption, reflected in Table I, that Chernov used was that

the Born approximation was valid for the Rayleigh waves. This first-order

approximation, which Chernov referred to as the method of small perturbations,

consists of substituting, within the integrand of an integral equation, the

-23-
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expression for the composite wave field after scattering in place of the expres-

sion for the unscattered incident wave. The Born approximation is, therefore,

essentially the assumption that the scattering process results in a small

perturbation, i.e., that the amplitude and phase fluctuations are both small:

1I AJ<1 and IAOj<cl.
A
o

Chernov claimed that his formulas were valid under conditions less restrictive

than those imposed by (10); i.e., that the amplitude and phase fluctuations be

small over the distance of a wavelength X rather than over the entire source-

to-receiver path length L. This claim, based upon Rytov's method, was disputed

by Aki (1973) who claimed that incident wave field attenuation due to energy

lost by scattering throughout the path length L must be small. Thus, determin-

ing whether the Rayleigh-wave data is consistent with the assumption of small

fluctuations (10) is important.

Chernov also assumed that the source-to-receiver path length L is large

when compared to the correlation distance, which, in turn, is assumed to be

large when compared with the wavelength:

1L>>a>> 1.

Chernov defined the "wave parameter" as

D . 4L

If D << 1, the ray equation may be used to approximate the equations of motion;

if D >> 1, Fraunhofer diffraction theory is appropriate. In either case the

condition of small wavelength (known as the Fresnel approximation), ka >> 1,

must be obeyed. Since for Rayleigh waves with periods of 20 sec and phase

velocities of 3.6 km/sec, k % .1 km-i, this condition implies that a should

be much larger than 10 km. Because this condition may not be met, there are

listed in Table I, wherever appropriate, two expressions for the given func-

tions. The more precise (and more cumbersome) of the expressions is less

sensitive to the restriction ka >> 1 than the other. Note, however, that even

the more exact expressions are of questionable validity where the size of the

scatterers is approximately equal to a wavelength, that is, kazl.

-24-



The Fresnel approximation implies that most scattering deflects the waves

forward into a cone of aperture angle j-, suggesting that the direction of

the scattered wave deviates little from the incident wave. Our justification

for the validity of this approximation is based upon Capon's (1970) observa-

tions that most of the energy in a typical incident wave is concentrated in a

small range of azimuths. Finally, note that even if ka >> 1, the transition to

geometrical acoustics (k w) is not allowed by the Chernov theory.

-
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RAYLEIGH-WAVE SCATTERING AT NORSAR

Data

Measurements were made of the amplitude and phase of 20-sec Rayleigh waves

recorded at NORSAR for a selected suite of ten events (listed in Table II) to

provide a quantitative description of fluctuation magnitudes and of the corre-

lation among the fluctuation at different locations within a seismic sensors

array. Rivers and von Seggern (1978) explained that the present adaptation of

Chernov's theory utilizes averages over source-to-receiver paths of the full

3600 range of incident azimuths. However, this procedure could not be fully

implemented because of the location of suitable seismic regions. Still, the

events chosen for analysis in this study were selected to attain as wide a

range as possible and yield even spacing in incident azimuths. Nevertheless,

the range of (geometrical) azimuths, shown in Table II, is only about 1350.

The range is limited because of the need to include only events for which the

great-circle paths to NORSAR did not cross any major source of non-random scat-

tering, such as an ocean-continent boundary. Also, selection was restricted

because we wanted events that took place within as short a time period as pos-

sible to minimize the effects of potential long-term instabilities in the

response of the instruments at NORSAR. To check measurement repeatability, one

event was chosen that was an aftershock of another; thus, two events in the

chosen data set occurred at approximately the same epicenter within three days

of each other. Finally, an effort was made to pick events with as large a Ray-

leigh-wave magnitude as possible so that most of the measurea fluctuations

would stem from wave scattering and not from background noise.

Computational Methods

The data for each event consisted of seismograms from twenty-two long-

period vertical instruments within the array. These twenty-two seismograms

were analyzed in frequency-wavenumber space using the program that Smart (1972)

developed, indicating the time window (chosen to be 256 sec long) where the

signal power was greatest, the phase velocity, and the incident azimuth, all

as a function of frequency. The FKCOMB results confirmed that no strong

Smart, E. (1972). FKCOMB, a fast general-purpose array processor, Report No.
SAAC-9, Teledyne Geotech, Alexandria, Virginia.
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multipath arrivals contaminated the data for the selected events. The time

windows chosen with the aid of FKCOMB as the best for waves of 19.7 sec peri-

od were then used to compute the amplitude and phase spectra for each of the

twenty-two seismograms; for any of the events, this time window was identical

for all 22 sensors. We then determined the amplitude at each instrument by

smoothing the natural logarithms of the spectral amplitudes for the periods

21.3, 19.7, and 18.3 sec, using Hanning weights of 1/4, 1/2, 1/4, respectively.

The phase of the wave at each intrument was assumed to be the spectral phase

for the period 19.7 sec.

Amplitude fluctuations for each event at each instrument were then calcu-

lated from the values found for each instrument. Also for each event a grid

search of azimuths and a linear least-squares fit to the phase yielded the

azimuth and phase velocity of the plane wave best fitting the spectral phase

data. The azimuths and phase velocities of the best-fitting wave found with

this procedure were consistent with values calculated by FKCOMB. These phase

fluctuations were assumed to be the advance or the delay of the spectral phase

at each instrument relative to the phase of the hypothetical plane wave as it

passes through that point in the array. Thus, we have

B.. knA. - nAi  i = 1,2, ... , 10 j = 1,2, ... , 22 (13)

Si. = i (J) - i i = 1,2, . 10 j = 1,2, 22 (14)

where pi(j) denotes the phases of the (hypothetical) coherent incident wave as

measured at the jth instrument. Note that ci.(j) is, of course, dependent upon

values assumed for the phase velocity and azimuth of the incident wave. The

phase velocities computed for the best-fitting plane waves were not the same

for each event; in fact, they varied from 3.503 to 3.976 km/sec (see Figure 7).

Since theoretical models of the crustal structure underneath NORSAR (Massd

and Alexander, 1974) yield a phase velocity (for waves of 19.7 sec period) of

3.64 km/sec and since this value should presumably be constant for all events,

we decided to proceed with the analysis in two different ways.

Masse, R. P., and S. S. Alexander (1974). Compressional velocity distribution
beneath Scandinavia and western Russia, Geophys. J., 39, 587-602.

-28-

Aw !jjl"



0.30

CA8

120'

2.

II,. 150,

Figure 7. Phase velocities and azimuths measured at 19.7 sec period for ten
earthquakes recorded at NORSAR.

-29-



One mode of analysis calculated qi(j) on the basis of a constant phase velo-

city of 3.64 km/sec for each event; the other mode used the phase velocity Ci

which best fit the data for the ith event. Our data base thus consisted of

the set of amplitude residuals Bij and two sets of phase residuals Sij.

Results

These three sets of residuals are listed in Tables III, IV, and V. In

Table III, for the amplitude fluctuations, the extreme right-hand column con-

taino for each instrument the mean fluctuation and its standard deviation over

all events. (Note that not every instrument was operative during each of the

ten events.) For every instrument the 95% confidence limits (±2 standard

deviation/number of events) on the mean overlaps zero demonstrating that no

significant net amplitude biases existed that had to be removed from the data

for each instrument. At the bottom of each event column in Table III the

standard deviation of the amplitudu fluctuations for that event over all the

instruments is listed. (The mean of the fluctuations is zero by definition

in equation (13).) This value is equal to (--) for the ith event. The aver-
i

age of this quantity for all ten events is 0.249, corresponding to a standard

deviation in surface-wave magnitude of (0.249)/ kn (10) = 0.108. A typical

value oB is thus (0.249) = 0.062. The rms fluctuation of 0.249 is only

in fair agreement with our hypothesis of small fluctuation in amplitude. Sim-

ilar results hold for Tables IV and V, which list the two sets of phase resi-

duals S... The mean fluctuation over all events and all instruments had a1J

standard deviation of about 13 degrees for both data sets, which corresponds

to a value of S = 0.051 in radian measure. The rms (2) = 0.227, which

again is somewhat larger than the fluctuations considered in Chernov's theory.

The repeatability, and to a certain extent the reliability, of the mea-

surements can be determined by comparing the fluctuations for the two events

in the same aftershock sequence, events 600 and 700. Since the epicenter-to-

NORSAR path for these two events is nearly identical, the residuals at each

instrument should also be identical, an observation supported in an examina-

tion of Tables III, IV, and V. (One glaring exception, however, is instrument

number 16, whose amplitude residual for event 600 suggests a malfunction.)

Although most other residuals for the two events are nearly the same, they are

not exactly so. This difference is thought to stem from slight differences in
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the paths of the incident waves and not from variations within a three-day

period of the instrument responses. If this were the case it would strongly

suggest that instrument responses, at least for some instruments, were subject

to significant random fluctuations during the period the data set represents.

Rivers and von Seggern (1978) explained that important parameters in the

Chernov theory are the ratio of B2 to S2 and the correlation coefficient p

between the amplitude and phase fluctuations. Capon (1974) derived expressions

for the confidence limits about the theoretical values of B2/STand p within

which estimates of those quantities should fall based upon N observations.

The confidence limits R about p are given by

R = tanh (Z+ 2o) (15)

where
S= 1/2 n P-- ) (16)

and

a = (N - 3) 1/2 (17)

We surround our observed values of p with error bars by substituting the

observed value in place of the theoretical value in (16). Error bars about

B2 /S2 are obtained by noting that this quantity has the F distribution. The

values of B 2/S 2 , p, and their 95% confidence limits are given in Table VI.

For every event the ratio B2 /S2 is greater for the data set where the phase

velocity of the best-fitting incident wave rather than the constant C = 3.64

km/sec was used, because the best-fitting phase velocity is defined to be the

one for which S7 is a minimum for that event. The difference between the

values of p found by using the two different sets of phase residuals is impos-

sible to predict.

The phase residuals and, therefore, the quantities B /S and p are depen-

dent not only upon the assumed phase velocity of the incident wave but also

upon the value assumed for its azimuth. Table II shows that the azimuths

found by FKCOMB, which minimized the residuals S for a given event, did not

always agree with the geometrical NORSAR-to-epicenter azimuth for that event.

The sensitivity of S7 and p to variations in the assumed azimuth of the inci-

dent wave should be examined. This is done for event 200 in Table VII, which
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TABLE VI

Ratios and correlations of single-receiver
amplitude and phase fluctuations at NORSAR

Complete Data Set

Phase
Azimuth velocity Confidence Confidence

Event (degrees) (km/sec) S2 interval interval __

200 106.9 3.641 0.448 0.185 to 1.084 -0.385 -0.700 to 0.056
3.550 0.701 0.290 1.696 -0.081 -0.495 0.363

300 106.7 3.641 0.591 0.240 1.454 0.227 -0.240 0.608
3.550 0.641 0.261 1.577 0.246 -0.220 0.621

400 80.9 3.641 0.280 0.114 0.689 0.616 0.238 0.832
3.829 0.355 0.144 0.873 0.290 -0.174 0.650

500 16.0 3.641 0.490 0.194 1.240 -0.339 -0.687 0.136
3.575 0.512 0.202 1.295 -0.306 -0.668 0.172

600 73.0 3.641 2.473 1.005 6.084 0.323 -0.139 0.670

3.720 2.835 1.152 6.974 0.267 -0.199 0.634

700 73.9 3.641 1.702 0.692 4.187 0.538 0.125 0.792
3.707 1.832 0.745 4.507 0.492 0.064 0.768

800 62.8 3.641 1.156 0.484 2.763 -0.283 -0.630 0.157
3.668 1.196 0.500 2.650' -0.348 -0.671 0.086

900 152.4 3.641 0.507 0.212 1.212 0.349 -0.085 0.672
3.579 0.519 0.217 1.240 0.312 -0.126 0.648

1000 6.0 3.641 1.405 0.571 3.456 -0.192 -0.585 0.274

3.503 1.510 0.614 3.715 -0.135 -0.545 0.327

1100 85.4 3.641 1.432 0.582 3.523 -0.100 -0.519 0.358
3.976 4.262 1.733 10.485 -0.529 -0.787 -0.113
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TABLE VII

Effect of varying the assumed NORSAR-to-epicenter azimuth for event 200

Phase velocity assumed to be 3.641 km/sec.

Complete Data Set

Assumed azimuth 20 S2 = sum of squares of B
(degrees) phase residuals (degrees2) S2  p

96.9 14,740 0.025 -0.259
97.9 12,030 0.031 -0.264
98.9 9,611 0.038 -0.270
99.9 7,482 0.049 -0.280

100.9 5,644 0.065 -0.293
101.9 4,099 0.090 -0.311
102.9 2,849 0.129 -0.336
103.9 1,895 0.194 -0.368
104.9 1,238 0.297 -0.405
105.9 880 0.418 -0.424
106.9 821 0.448 -0.385
107.9 1,061 0.347 -0.294
108.9 1,603 0.230 -0.206
109.9 2,446 0.150 -0.142
110.9 3,591 0.102 -0.098
111.9 5,038 0.073 -0.069
112.9 6,788 0.054 -0.048
113.9 8,841 0.042 -0.034
114.9 11,200 0.033 -0.024
115.9 13,860 0.027 -0.016
116.9 16,820 0.022 -0.011
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assumes the phase velocity of the incident wave to be 3.64 km/sec and in Table

VIII, which uses the best-fitting phase velocity for each value assumed for
the incident azimuth. Clearly S2 and B/S2 change markedly for azimuths only

a few degrees from the values for which S2 is a minimum. The correlation p also

exhibits a strong, but less dramatic, dependence upon azimuth. The values

B 2/S and p for event 200 would have been significantly different if the geo-

metrical azimuth (99.0 ° ) rather than the value found by FKCOMB (106.9') were

used.

Table III, IV, and V show several amplitude and phase fluctuations whose

magnitude exceeds twice the standard deviation of fluctuations for that event.

That is, for certain events i and certain instruments j,

IBij>2(B..) 1/2 (18)

and similarly for S... Because these large (and possibly spurious) fluctuations

have a signicant effect upon B S, and p, another data set, the "edited"

set, was formed by omitting these anomalous values from the complete data set.

As already noted, we also wanted the data set to reflect as wide and as well-

spaced a range of azimuths as possible so the statistical average over source-

to-receiver paths in the Chernov theory would be valid; for this reason one of

the events in the aftershock sequence (event 600) was not included in the

edited data set. Ths omission prevents excess emphasis on a particular path

in the averaging process. (Athough event 200 and 300 had almost the same

FKCOMB azimuths for the incident wave, their geometrical NORSAR-to-epicenter

azimuths are different.)

For the edited data set (Tables IX, X, and XI), the rms amplitude fluc-

tuation is 0.147 natural log unit, a figure equivalent to a standard devia-

tion of 0.064 in the measurement of the Rayleigh-wave magnitude M from 20s

sec waves. The rms phase fluctuation, calculated by assuming a phase velocity

of 3.64 km/sec, is 11.2 degrees, or 0.195 radians; the fluctuation calculated

on the basis of the best-fitting phase velocity is 9.7 degrees, or 0.169 ra-

dians. The amplitude fluctuations, therefore, are much smaller, and the phase

fluctuations somewhat smaller, for the edited data set than for the complete

data set. The values of B/ S2  and P calculated for the edited data set are

listed in Table XII.
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TABLE VIII

Effect of varying the assumed NORSAR-to-epicenter azimuth for event 200

Best-fitting phase velocity used for each azimuth

Complete Data Set

Assumed 20 S2 = sum of squares B2  phase
azimuth of phase residuals velocity
(degrees) (degrees2) S p (km/sec)

96.9 14,740 0.025 -0.261 3.644
97.9 12,030 0.031 -0.254 3.629
98.9 9,589 0.038 -0.246 3.616
99.9 7,432 0.050 -0.239 3.603

100.9 5,559 0.066 -0.232 3.592
101.9 3,976 0.093 -0.225 3.582
102.9 2,686 0.137 -0.217 3.573
103.9 1.693 0.217 -0.208 3.565
104.9 1,000 0.368 -0.193 3.559
105.9 610 0.604 -0.156 3.554
106.9 525 0.701 -0.081 3.550
107.9 748 0.492 -0.003 3.547
108.9 1,280 0.287 0.040 3.546
109.9 2,122 0.173 0.059 3.545
110.9 3,275 0.112 0.066 3.546
111.9 4,739 0.078 0.066 3.549
112.9 6,513 0.056 0.063 3.552
113.9 8,597 0.043 0.058 3.557
114.9 10,990 0.033 0.052 3.564
115.9 13,690 0.029 0.044 3.571
116.9 16,690 0.022 0.037 3.580
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TABLE XII

Ratios and correlations of single-receiver

amplitude and phase fluctuations at NORSAR

Edited Data Set

Phase B2

Azimuth velocity - Confidence Confidence
Event (degrees) (km/sec) S2 interval p interval

200 106.9 3.641 0.425 0.168 to 1.075 -0.359 -0.699 to 0.113
3.548 0.715 0.283 1.809 -0.096 -0.527 0.375

300 106.7 3.641 0.437 0.173 1.106 -0.038 -0.484 0.424
3.559 0.473 0.187 1.197 -0.011 -0.463 0.445

400 80.9 3.641 0.465 0.184 1.176 0.530 0.100 0.793
3.772 0.576 0.228 1.457 0.213 -0.267 0.608

500 16.0 3.641 0.490 0.194 1.240 -0.339 -0.687 0.136

3.575 0.512 0.202 1.295 -0.306 -0.668 0.172

700 73.9 3.641 1.754 0.675 4.560 0.196 -0.298 0.608
3.686 1.864 0.717 4.846 0.144 -0.346 0.573

800 62.8 3.641 0.695 0.287 1.682 -0.003 -0.434 0.429

3.687 0.776 0.321 1.878 -0.075 -0.491 0.369

900 152.4 3.641 0.689 0.272 1.743 0.499 0.058 0.777

3.587 0.707 0.279 1.789 0.477 0.029 0.765

1000 6.0 3.641 1.405 0.571 3.456 -0.192 -0.585 0.274

3.503 1.510 0.614 3.715 -0.135 -0.545 0.327

1100 85.4 3.641 0.355 0.137 0.923 0.379 -0.106 0.719
4.000 2.705 1.040 7.033 0.180 -0.313 0.597
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While the logarithmic amplitude fluctuation mentioned above was calculated

by smoothing the spectral amplitudes for the three distinct periods 21.3, 19.7,

and 18.3 sec, the phase fluctuation was calculated upon the basis of spectral

phases for the distinct period 19.7 sec alone. A third data set was created

that treated each of these three periods separately by calculating unsmoothed

logarithmic amplitudes and phase delays on the basis of each period's data

alone. As before, two sets of phase residuals were calculated; for one set

the phase velocities were assumed constant for all events. For the other set,

the phase velocity used for each event was the best-fitting value for that

event. However, it was assumed that the incident azimuth was the same for

each period, namely the value which was found for the waves of period 19.7 sec.

Only events and instruments which were included in the "edited" data set were

included in the third data set. The amplitude and phase fluctuation for this

data set are typified by event 200, shown in Table XIII. The phase residuals

are smaller for the 19.7 sec waves than for the other two periods, since the

chosen azimuth minimizes the residuals for this period. A fourth data set

was created like the third except for each period the azimuth of the incident

wave was assumed to be the value that minimized the phase residuals for that

period alone. The fluctuations in this fourth data set (not tabulated) were

the samc size as those in the third, save that the phase residuals for periods

of 21.3 and 18.3 sec were now about the same size as those for 19.7 sec. The

third data set thus represents the same assumption as the "complete" and "edited"

sets, i.e., that the "true" azimuth of the waves within the spectral band under

consideration is given by the value that minimizes the phase residuals for the

period in the middle of that band, an assumption not made in calculating the

fourth data set. The best-fitting azimuths and phase velocities (Table XIV

and Figure 8) vary significantly within the chosen spectral band for several

events.

The quantities 2/S and P were not evaluated for each event and each

frequency using the third and fourth data sets. Instead, these data sets,

as well as the first two, are now used in a different form of analysis.

Chernov's theory involves taking averages over all possible incident azimuths;

so, average values of B2 , s and p were found for each of the four data sets

using the combined data from all events. Thus, instead of ten values of B
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TABLE XIV

Azimuths and phase velocities yielding best
fit to data for each of three frequencies

Period - 21.3 sec Period = 19.7 sec Period = 18.3 sec

Event 0 (degrees) c(km/sec) 0 (degrees) c(km/sec) Q (degrees) c(km/sec)

200 102.0 3.643 107.0 3.543 102.4 3.601

300 129.4 3.649 106.4 3.561 110.3 3.603
400 83.9 3.618 80.5 3.770 83.6 3.431

500 20.4 3.752 15.5 3.576 14.0 3.487
700 71.9 3.631 75.0 3.679 71.2 3.553
800 66.0 3.670 62.5 3.693 61.4 3.403

900 155.5 3.489 152.9 3.593 170.8 3.543
1000 353.0 3.337 9.1 3.504 18.4 3.369
1100 78.7 3.751 84.1 4.012 83.2 3.658

-
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Figure B. Phase velocities and azimuths measured at three periods for earth-
quakes in the edited data set.
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being computed on the basis of as many as twenty-two observations each, one

value is computed on the basis of 204 observations. (Raw data from ditferent

events must not be used together. Rather, use the fluctuations, i.e., data

from which had been removed the mean of the amplitude and the phase delays of

the incident wave for each event.)

Table II indicates that Lhe azimuth determined by FKCOMB differs markedly

from the geometrical NORSAR-to-epicenter azimuth for events 500 and 1000.

Their geometrical azimuths and source regions suggest that the eastern and,

especially, the northern edges of the Asian continent scatter rays from these

events. Possibly as a result of this scattering, the amplitude and phase

residuals for event 1000 are significantly greater than those for the other

events. To avoid the possible systematic (non-random) scattering phenomena

that created these fluctuations, B , , and p have been redetermined from

the second and third data sets by deleting the data from these two events.

Therefore, six data sets were used to determine the average over several

events of B , S , and p; in addition, each of these data sets has, in turn,

two sets of phase residuals, one set assuming the constant phase velocity

and the other set using a different value of C for each event. These results

are summarized in Table XV.

Wave Parameter D

The wave parameter D is an important quantity in the Chernov theory.

Rivers and von Seggern (1978) showed that D can be determined from either

B/S2 or from p by means of the formula listed in Table I. Also, the wave

parameter can be eliminated between the expressions for B/S and for p, thereby

determining one of these quantities as a function of the other. Following Aki's

(1973) approach, D is calculated from BZIS and also independently from p. A

value which lies between these two independent values is found by determining

the point on the theoretical B--S2 versus p curve (shown in Rivers and von Seggern

(1978)) closest to the observed point (p, B /S2); this value is designated

D * Tables XVI and XVII list these three values of D for each event for
curve

the complete and edited data sets. Another value of D was also calculated

using these three methods for each of the six data sets that are composites

of all events; it was from composite data that Capon (1974) found his value

of D . These results are shown in Table XVIII.
curve
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TABLE XV

Ratios and correlations of single-receiver

amplitude and phase fluctuations at NORSAR

Average over all events

Phase B2

Velocity Number of

Data Set (km/sec) S p Detections

Complete 3.641 1.028 0.039 204
variable 1.211 0.006

Edited 3.641 0.894 -0.009 172
variable 1.100 -0.020

Edited, 3.641 0.586 0.267 133
7 events variable 0.838 0.196

Edited, 3.705,
3 separate 3.641,

frequencies 3.587 0.646 0.010 172

variable 0.683 0.025

Edited, 3.705,
3 separate 3.641,

frequencies, 3.587 0.569 0.107 133
7 events variable 0.608 0.104

Edited, 3.705,
3 separate 3.641,

frequencies, 3.587 1.353 0.009 172

different

azimuth for variable 1.536 0.060

each

frequency
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TABLE XVI

Values of the wave parameter D

Complete Data Set

Phase D
velocity D D

Event (km/sec) B 2/S2  curve

200 3.641 12.8 -

3.550 69

300 3.641 29 22 28
3.550 41 18 34

400 3.641 5.2 -

3.829 7.6 11.0 8.5

500 3.641 16 -

3.575 18

600 3.641 - 7.7

3.720 - 14.0

700 3.641 - -

3.707 0.6

800 3.641 -

3.668

900 3.641 18 5.9 14

3.579 19 8.8 16

1000 3.641 --

3.503 -

1100 3.641 -

-4i
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TABLE XVII

Values of the wave parameter D

Edited Data Set

Phase

velocity D D
Event (km/sec) B 2/S

2  P curve

20u 3.641 11.2

3.548 76

300 3.641 12.0

3.559 14.4

400 3.641 14.0

3.772 26 27 27

500 3.641 16

3.575 18

700 3.641 33
3.686 74

800 3.641 68

3.687 130

900 3.641 63 0

3.587 71 0.97

1000 3.641

3.503

1100 3.641 7.8 4.1 6.9

4.000 40
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TABLE XVIII

Values of the wave parameter D

Average over all events

Phase D
velocity D D

Data Set (km/sec) B 2S 2  P curve

Complete 3.641

variable -

Edited 3.641 830
variable -

Edited, 3.641 28 14 25
7 events variable 310 32 140

Edited, 3.705,
3 separate 3.641,
frequencies 3.587 44

variable 61 -

Edited, 3.705,
3 separate 3.641,
frequencies, 3.587 25 150 34
7 events variable 32 160 43

Edited, 3.705,
3 separate 3.641,
frequencies, 3.587

different
azimuth for variable 700
each
frequency
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Discussion of Experimental Observation

Note that about half the data consists of values with D undefined because
2 2

the observed values of p, or B /S , lie outside the range of permissable values

useful in calculating D. The Chernov theory predicts that

0 < p < 0.5 (19)

27 < 2 (20)
B S

but frequently our data did not meet these conditions. Perhaps, the inequality

(20), and also indirectly (19), should not always be expected to hold because

for several of the data sets efforts were made to minimize the phase residuals

by selecting the best value of the incident azimuth and phase velocity. This

procedure indicates the need to determine the proper average values to use

when calculating amplitude and phase residuals. (So far we have assumed that

these values were: for amplitude, the average of the logarithmic amplitudes

for all the instruments; and, for phase, the plane wave with azimuth and vel-

ocity that best fits the phase data.) The values calculated for the fluctua-

tions would have been different if these mean values were chosen differently.

One reason that they perhaps should have been different is that the mean values

themselves may reflect the random scattering process. For example, if the data

set had consisted of magnitudes measured not only at NORSAR, but also at other

stations nearby the array, the average of the amplitudes probably would have

been different from the value determined by NORSAR data alone. Because we

think that some of this difference stems from random scattering, the question

arises of the applicability of Chernov's theory to random fluctuations about

a value which is itself a random fluctuation. Again, note that the fluctuations

are assumed small, but the difference between the average magnitude at NORSAR

and the average magnitude at a point several hundred kilometers away can be

considerably greater than the average magnitude difference within the hundred

kilometer-wide array. The fluctuations measured across NORSAR, then, may

represent scattering on a smaller scale than that for which Chernov's theory

is valid, given the true size of the inhomogeneities which are the most effi-

cient scatters of waves of 70 km wavelength. These points will be further

discussed following analysis of data from the linear array in the Southwestern

United States.
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Another problem in analyzing the data is that tile azimuth and phase velo-

city for the best-fitting plane wave can vary significantly within a narrow

spectral band, further demonstrating the difficulty of choosing tile mean

value about which fluctuations should be measured. This variation of azimuth

with frequency suggests that Rayleigh-wave scattering may differ from tile

model that Aki (1973) and Capon (1974) assumed for P-wave scattering. In

their model, amplitude and phase fluctuations measured at LASA stemmed from

scattering within the crust of a single coherent wave incident from the mantle.

However, because of the Rayleigh waves' much longer path through the scattering

medium, the fluctuation measured at NORSAR results from scattering through tile

array of several different rays incident at different angles, and these rays

themselves might have been scattered from other rays rather than from the same

wavefront. If this multiple scattering occurs, then the Born approximation,

which separates the wave field into an incident wave carrying most of the

energy and a diffracted wave of small amplitude, breaks down. In any case,

our data is frequently inconsistent with inequalities (19) and (20) predicted

by the Chernov theory; however, note that values measured for 2/S- and for

p lie within large confidence limits.

Spatial Correlations

The spatial correlation among fluctuations measured at different receivers

for the same event is another characteristic of the scattering studied here

using the "edited" data set. In order that Chernov's theory be applicable, the

separation between any given pair of instruments is projected along two direc-

tions: the "longitudinal" direction which is parallel to the direction of pro-

pagation of the incident wave and the "transvers2" direction which runs per-

pendicular to the longitudinal. The separation between any two given receivers

measured with this coordinate system will depend upon the azimuth assumed for

the incident wave and, therefore, will differ among events. Now consider these

separations to be measured on a grid consisting of overlapping squares of side

20 km in the longitudinal and transverse directions, i.e., a grid made up of

blocks defined by

x1 i <longitudinal separation < x 2i (21)

Xli 0, 5, 10,-.., 90 km x 20, 25, 30, ... , 110 km

Yli < transverse separation Y21  (22)

Yli 1o, 5, 10, ..., 90 km y 21 = 20, 25, 30, ... , 110 km

-53-



The blocks are defined by (21) and (22) to overlap in order to smooth the

data. For the nine events of the edited data set, the number of pairs of

instruments with separations that fall into each of the blocks defined by (21)

and (22) are shown in Figure 9. If (i,j)k denotes the indices of a pair of

instruments which for the kth event have a separation which lies within a

given block and if Sk denotes the set of all such pairs, then the correlation

coefficient of amplitude fluctuation for the block is given by
9 9 2 2 1/2

Rb Z E BiB./( z ( E Bi  E B)) (23)

k=l Sk k-1 all i all j

A similar expression holds for the correlation coefficient of phase fluctua-

tions R
S

The results of evaluating Rb and Rs, using the edited data set (with its

two sets of phase residuals), are shown in Figures 10, 11, and 12. The extreme

left-hand column and the uppermost row in these figures, corresponding to pure

transverse and pure longitudinal separation of the instruments, should be

compared to theoretical results derived in Rivers and von Seggern (1978). An

idea of the reliability of the correlation found for each block is found in

Figure 9, which shows the number of observations used for each measurement.

Figure 10 shows that distinct regions of positive and negative amplitude

correlation exist. The nodal curves separating these regions are roughly

linear and parallel to the longitudinal and transverse axes. There are nodes

at transverse separations of 25 and 75 km and at a longitudinal separation of

70 km. The amplitude fluctuations are correlated over a longer distance

(by a factor of almost three) in the longitudinal direction than in the trans-

verse direction, a fact at least in qualitative agreement both with Chernov's

theory and with the empirical results of Mack's (1972) study of Rayleigh-wave

coherence.

The correlation coefficient for phase fluctuations calculated for phase

residuals determined on the basis of an assumed constant C for all events

(Figure 11) does not reflect so clear a spatial pattern as does the amplitdue

correlation coefficient. However, the pattern becomes clearer when the resi-

duals used are those which were calculated using a different value of C for

-54-



0 5 10 15 20125 30 313 401450155160 65 70 75 80 85 90 95100010)

0 I 7 18 63 85 92 90 72 65 68 66 50 45 40 39 36128 20 19 12 9

5 8 21 47 106 134139 132 109 100 100 95 72 63 60 57 52 39 30 28 19 16
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400 8 II I8 16 17 16 40 9 6 5 4 3 4 0 0 0 0 0 0 0 0

LONGITUDINAL SEPARATION (km)

Figure 9. Number of pairs of receivers at NORSAR which were used in the
edited data set and which have a given separation (within over-
lapping separation intervals of size 20 km X 20 km). Note that the
interval size is actually smaller than 20 km X 20 km for transverse
and/or longitudinal separations of less than 20 km.
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Figure 10. Correlation (in percent) of logarithmic amplitude fluctuations at

NORSAR as a function of the separation between the receivers. The

amplitude fluctuations were calculated using the edited data set.
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Figure 11. Correlation (in percent) of spectral phase delays at NORSAR as a

function of the separation between the receivers. The phase

delays calculated using the edited data set and an assumed phase

velocity of 3.641 km/sec.
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Figure 12. Correlation (in percent) of spectral phase delays at NORSAR as a

function of the separation between the receivers. The phase

delays were calculated using the edited data set and a different

value of the phase velocity for each event.

-58-



each event (Figure 12). For this second set of phase residuals, R has nodess
at transverse separatiu of 15 and 55 km and at a longitudinal separation

of 40 km. Thus, the phase fluctuations, as well as the amplitude fluctuations,

are correlated over nearly three times as great a distance in the longitudinal

direction as in the transverse direction. However, the nodes for Rb and R

occur at different distances.

Comparing these results with predictions of the modified Chernov theory

(Rivers and von Seggern (1978), Tables I-IV; Figures 6-13) reveals certain

important results and discrepancies. First, the theoretical amplitude corre-

lation in the transverse direction is less oscillatory than is the observed

R , and the theoretical value does not oscillate at all in the longitudinal

direction. Second, the theoretical R takes on no negative values for sepa-

ration in either direction while the observations do. Reasons for these dis-

crepancies may lie, at least in part, in the fact that the values of Rb and Rs

for large separations in either direction are not particularly reliable,

because they are based on few observations. Further discrepancy may be due

to the constraint that, on account of the methods used in calculating them, about

half of the residuals must be positive and about half must be negative. This

result again reveals the problems in determining the correct average amplitude

(or phase) from which the fluctuations are to be calculated. For example, if an

event's average amplitude were significantly lower in the vicinity of NORSAR

than was the average of the values measured at NORSAR alone, then all twenty-two

amplitude residuals would actually be positive, and Rb would be positive for
all blocks in the grid. In general, then, these discrepancies restrict the

comparison with the theoretical results to a broad discussion of the amplitude

correlation coefficient Rb in the transverse direction.

Figures 10 and 13 of Rivers and von Seggern (1978) reveal that for large

values of the wave parameter D, Rb has a node in the transverse direction at
k/a 1 1, where lis the transverse separation between instruments and where

a is the correlation distance. Specifically, Figure 13 of that report shows

a node at £ = 1.15a for D = 24.4 and at £ = 1.30a for D = 85.6. (The difficulty

in calculating D from our data sets was explained above.) Temporarily consider

the value D = 43, determined using seven events from edited data sets
curve
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that were analyzed by considering three distinct periods, a common azimuth for

the waves of each period, and a different phase velocity for each event (Table

XVIII). For D ~ 40, the node occurs at about £ 1.2a, so a ~ (25km)/1.2 ~ 21

km. For waves of period 19.7 sec and phase velocity 3.64 km/sec, the wave-

number k = 0.0876, so ka ~ 1.8. The condition that ka - 1, an assumption
2

made in the Chernov theory, is, therefore, not valid. Since D = 4L/ka , the

length L of the path through the scattering medium is found to be roughly

380 km, a value that is much less than the actual epicenter-to-NORSAR distance

for any of the events. This result indicates that all the waves incident at

NORSAR have been scattered once within 380 km of the array. Since details of

the propagation along the previous 2600 km of the path are lost by this scattering,

we cannct say whether all the scattered waves were part of the same wavefront

at a distance of 380 km, as in the P-wave model of Aki (1973) and Capon (1974)

or whether the wavefield at NORSAR is the final result of the multiple scattering

of several different rays which diverge over a longer distance, possibly even

back to the source. Had the opposite approach been adopted of assuming values

of about 21 km for the correlation distance and 3000 km for the path length, a

value of about 310 would have been obtained for the wave parameter. Note that

the many disallowed values of B/S > 1 and p < 0 suggest a large value of D

since many of these disallowed values at least lie within the confidence limits

surrounding the tail end of the BZ/S versus p curve, for which D . It is

unlikely, however, that the Born approximation could hold for a distance L of

3000 km, since it is strictly valid only for single, not multiple, scattering.

Inability to solve for accurate values of D and L renders it impossible to solve

accurately for the remaining parameter in the Chernov theory, the mean-square

fluctuation in refractive index P7. It is possible, however, to calculate an

approximate value of 7 by using the data set mentioned above, for which Dcurve

= 43. For this data set the mean-square amplitude and phase fluctuation are
B2 = 0.0848 and S2 = 0.140. The value of P__may be calculated by using either

2S2

of these values and the formulas for B2 or S given in Table I. It is assumed

that D = 43, k = 0.0876, a = 21 km, and L = 380 km. Substitution of the assumed

values into the formulas for B
2 yields an rms fluctuation of -= 4.46%

and substitution into the formulas for S2 yields =4.60%. Although these

two values of the refractive index fluctuation are in good agreement, their

derivation is hardly convincing, so they should be regarded only as rough estimates.
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RAYLEIGH-WAVE SCATTERING OVER A LINEAR ARRAY IN THE SOUTHWESTERN

UNITED STATES

Data

7, January and February 1962 eleven LRSM stations, set up to monitor

GNOME, an explosion in southern New Mexico, (Figure 1), were operative in the

Southwestern United States. These eleven stations were selected to form an

approximately linear array extending over a distance of almost 1100 km from

northern Arizona to the Big Bend region of Texas. Analysis of the amplitude

and phase fluctuations for events recorded by this array will provide insights

into the effecLs of Rayleigh-wave scattering over long distances.

The two events chosen for this study were an earthquake near Nicaragua

and one in the Kermadec Islands region (Table XIX). These events were selected

so that incident waves would be both longitudinal and transverse to the separation

between the stations in the array. It would of course have been helpful to

have had a larger data base than two events, but during the period of operation

of the array no other suitably large events occurred for which the array-to-

epicenter azimuth was either nearly longitudinal or transverse. Although the

ray path for waves from the Kermadec event crosses an oceanic-continental

boundary and although the path for the Nicaragua event runs along the margin

of the Pacific Ocean and through the Sierra Madre mountain range, results of

a ray-tracing program (Sobel and von Seggern, 1978), shown in Figure 13 and

14, reveal no significant effects at the array due to systematic multipathing

(i.e., non-random scattering).

Computational Methods

Spectra were calculated for both events with the method used for the

NORSAR data: the logarithmic amplitudes were smoothed over the band of periods

18.3 to 21.3 sec, and the phase delays measured at the distinct period 19.7

sec. However, unlike the NORSAR study, where the same time window was anal-

yzed for each instrument, the large dimensions of the array required choosing

a time window for analysis that was different for each station, so at each

station the maximum amplitude for 20-sec Rayleigh waves would arrive centered

Sobel, P. A. and D. H. von Seggern (1978). Applications of surface-wave ray
tracing, Bull. Seism. Soc. Am., in press.
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Figure 13. Raypaths for LR20 from the Kermadec earthquake to a linear array
of LRSM sites in the Southwestern United States.
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Figure 14. Raypaths for LR20 from the Nicaragua earthquake to a linear array
of LRSM sites in the Southwestern United States.
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within the chosen window. After visually inspecting the seismograms, we

decided to select a time window that propagated, along with the wave train,

across the array at a velocity of 3.87 km/sec. If the true phase velocity

had been equal to this value, the phase delays calculated by the spectral

analysis would have been random (as it was, the phase delays exhibited a

slight linear trend). The phase fluctuations were assumed equal to the dif-

ference between the value corresponding to this linear trend, as determined

by a least-squares fit, and the observed spectral phases. The slope of the

trend removed was then used to calculate a correction to the assumed value

of the phase velocity.

Results

The amplitude and phase fluctuations for the two events are shown in

Table XX. The column headed "corrected" contains spectral phases with multi-

Iles of 360 degrees added or subtracted, as necessary, to minimize phase

fluctuations while at the same time yielding a physically realistic value of

the phase velocity. Note that other choices of the "corrected" phase would

have resulted in different values of C, B /S , and p. While for the Kermadec

earthquake certain of these other choices cannot be completely ruled out, for

the Nicaragua earthquake the choice shown in Table XX appears valid.

For the Kermadec earthquake, the phase velocity C = 3.37 km/sec, the

mean-square amplitude and phase fluctuations are B2 = 0.323 and S2  2.666,

and the correlation between amplitude and phase fluctuations is p = 0.740.

For the Nicaragua earthquake, C = 3.29 km/sec, B2 = 0.275, S2 = 0.410, and

2
P = 0.056. For fluctuations this large, particularly the case of S for the

Kermadec earthquake, Chernov's assumption of small perturbations is clearly

violated. The ratio B 2/S2 < 1 for both events, but for the Kermadec earth-

quake p > 0.5 and for the Nicaragua earthquake p<O, so the wave parameter D

is undefined in both cases. However, again note that the error bars are quite

large for values of B 2/S2  and p determined from only ten observations. (On

the day of each event only ten of the eleven stations were operative.)

For the spatial autocorrelation of amplitude fluctuation Rb, note that

each event has (10) = 45 different pairs of receivers and that the longitud-
2

inal or transverse separation represented by each pair is an erratically
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distributed function because the instruments were not spaced evenly along the

array. Therefore, calculating results by dividing the separations into seg-

ments, like for the NORSAR study, will fail because too few pairs of receivers

exist whose separation falls within a given segment and because a given seg-

ment would need to encompass too great a range of separations. One ad hoc

solution to this dilemma was a procedure where the data were smoothed before

computing the correlation. An expanded "data set" was formed by interpolating

the values of the logarithmic amplitudes at 10 km increments along the length

of the array. The spatial correlation coefficient R was then calculated for

the even spacing of receiver separations this expanded data set represented.

The validity of this interpolation process can be questioned, however, because

in practice the amplitudes that would have been observed at the evenly-spaced

points would not equal the interpolated values. Justification for this proce-

dure, admittedly questionable, is based upon the NORSAR study which showed

that the rms amplitude fluctuation over the separation of 100 km is typically

0.25 natural log unit while the amplitude fluctuations for the linear array

are more than twice as great. Thus, the fluctuations about the values inter-

polated between consecutive stations typically 100 km apart are small when

compared to the fluctuations measured between stations in the array that are

several hundred km apart. Note that when examining the results of this pro-

cedure the linear interpolation imposes a priori the constraint of strong

correlation over small separations. Therefore, values found for separations

of less than about 100 km, which represents the true resolution of the linear

array, are rather tenuous.

Figures 15 and 16 illustrate the amplitudes measured at the different

stations for the two events. The value of Rb, determined for the interpolated

(dashed) curves, is shown in Figures 17 and 18. Again, assuming that the cor-

relation distance a of the scattering medium is roughly equal to the distance

where Rb(Z) falls to zero, this value is estimated to be about 125 km. These

figures also show that the correlation extends in the longitudinal direction

about 1.8 times farther than in the transverse direction. The effect of atten-

uation, previously ignored, can be accounted for by adding a correction factor

of 1.66 log A to the logarithmic amplitudes, where A is the epicenter-to-sta-

tion distance in degrees (Figure 19). This term is nearly the same for all
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stations for the Kermadec earthquake, so only its effect upon the Nicaragua

earthquake data will be considered. Figure 20 shows that this correction

extends the correlation in the longitudinal direction to separations of

about 265 km.

Possible amplitude biases at the eleven stations in the array were calcu-

lated by measuring visual magnitudes at each of the stations for a suite of

ten events (Table XIX). These events were selected for their azimuth distri-

bution, so the effects from longitudinal or transverse orientation would not

be subtracted out of the data as station effects. The residuals found for

each station from these ten events (Table XXI) were removed from the logarith-

mic amplitudes for both the Kermadec and Nicaragua events, and Rb was calcu-

lated again (shown in Figures 21-24). This correction effectively decreased

the correlation distance for the Nicaragua event and increased it for the

Kermadec event. When both the attenuation and station-effect corrections are

entered, as in Figures 25 and 26, the correlation extends about twice as far

in the longitudinal direction as in the transverse direction.

The magnitude of the phase fluctuations made calculating R impossible.
s

Since many of the spectral phases for the Kermadec earthquake could not be

determined uniquely to within 360 degrees, the reliability of the phase data

is highly suspect in many cases.
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IMPLICATIONS OF WAVE SCATTERING IN THE USE OF RAYLEIGH WAVES

TO DETERMINE SEISMIC SOURCE PARAMETERS AND EARTH PROPERTIES

Magnitude Estimates from Long-Period Rayleigh Waves

Event Magnitude (M s ) from Rayleigh waves is commonly computed on the basis

of amplitude measurements at periods near 20 sec. Previously, this report has

dealt with amplitude only in the spectral domain, but we will now show that the

spectral amplitude scatter is indicative of the time-domain scatter. For the

events studied earlier at NORSAR (Table II), maximum seismogram amplitudes for

periods near 20 sec were measured and reduced by the system response at the

exact measured period. Because the propagation distance over NORSAR is small,

no correction is required for differences in epicentral distance for the 22

individual sensors, and the variance of M over the sensors can be computeds

directly; the results are listed in Table XXII for the 10 events. The average

standard deviation of M is roughly .09. For comparison, the results usingS

average spectral amplitudes over a narrow (.0488 - .0508 Hz) and wide (.0315 -

.0908) band are also listed; the narrow and wide bands comprise 2 and 11

points, respectively, in the 257-point spectra (512 seconds sampled at 1

s/sec). Narrow band (.0468 -.0547 Hz) estimates were used in previous sections

of this report. Table XXII indicates that the scatter in spectral amplitude

measurements is nearly the same as the seismogram measurements and also indi-

cates that a wider bandwidth estimate will reduce the amplitude variance over

NORSAR. Using the results given in Table III for average sensor bias at

NORSAR, a standard deviation of .04 M units results from only the purelys

local effects of the sensors, neglecting actual wave scattering. The sensor

biases are based on only 10 events and would probably be less with a larger

sample. In fact, on physical grounds, NORSAR sensor effects are expected to

be negligible for 20-sec waves where the wavelength is almost as long as the

entire array aperture. Therefore, the "mean" a values in Table XXII should

be reduced only slightly, if at all, to give the true Rayleigh-wave scattering

effects over NORSAR.

Chang and von Seggern (1977) studied mb scatter across LASA, which has

13 subarrays and an aperture of roughly 55 km. They reported a mean a for mb

of .15 based on a large event sample. Local effects at the subarrays, they
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stated, accounted for only a small fraction of this fluctuation. Because the

NORSAR array spans over 100 km, a better comparison with mb scatter can be

made if only amplitudes from a reduced NORSAR are considered. An array formed

by the inner seven sensors would have an aperture of roughly 50 km, nearly

equivalent to LASA. When standard deviations of spectral amplitudes over these

seven sensors were computed for each of the ten events, they equalled roughly

€hne-half the values for the full NORSAR array, in the range .04 - .05. When

compared to .15 mb scatter over LASA, a threefold decrease in magnitude scatter

apparently results for M compared to that for mb over an equivalent array5

aperture. Using the seismic reciprocity theorem, Chang and von Seggern

argued that the observed level of receiver fluctuation for mb might also apply

to expected fluctuations at one distant receiver from equivalent sources

spread over an area with dimensions and physical properties similar to LASA's.

In this study the identical argument is made for M scatter, with the infer-
s

ence that M is a more stable measure of source strength as the source loca-
s

tion is varied. Therefore, calibration of a source area will hold to larger

inter-source distances for M than for mb. Furthermore, results already stated

in this report clearly show that this calibration will hold to significantly

larger inter-source distances measured along the great-circle path to the

receiver than transverse to it.

Seismograms for the events recorded in the Southwestern United States,

studied earlier in this report in the spectral domain, provide additonal

insight into M scatter. Computations identical to those for the NORSARs

events in Table XXII are shown for these two events at the bottom of the

same table. The result revealed that 1) the M scatter over the Southwesterns

U. S. array is roughly twice that of the NORSAR array; 2) the wide-band spec-
tral measure of M is more stable than either analyst M or a narrow-band

s s

spectral estimate near f = .05 Hz; 3) the gross signal fluctuation, measured

in either the time or frequency domain, is nearly the same for sensors aligned

along the great-circle path as for sensors perpendicular to it. Also in this

report we stated that for the Southwestern U. S. array the signal correlation

was definitely higher over a longer space dimension for the Nicaragua earth-

quake than for the Kermadec earthquake. However, because the dimension of the

array (~ 1100 km) is large compared to the correlation length, the overall
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level of the observed amplitude fluctuations does not differ with the angle of

approach.

Attenuation Estimates from Long-Period Rayleigh Waves

By expressing the observed Rayleigh-wave spectrum as:

A(f) = S(f) G(A) e-a (f)r

where S is the source spectrum, G is the geometrical spreading factor, and r

is the distance, it is possible to take the ratio of the spectra at two sta-

tions on a great-circle path as

A2 7 G(AI . -a(f) .(r I - r2)
A2(f )  -UF e

By absorbing the known G factors into the amplitude, we find for the attenuation
coefficient

a(f) = [lOgAl1(f) - logA 2(f)]/(r 2 -r2)

For 20 sec Rayleigh waves, a typical a is .0003 km-I (Mitchell et al., 1976).

For this value as .0002 and .0004, Figure 27 shows the term log A1 (f) - log

A2 (f) versus r2 - r . Following the authors' observations, the measured dif-

ference of log A1 (f) - log A2(f) can have several tenths error due to random

scattering effects. Therefore, apparently at a station separation of even

5000 km, a true a of .0003 km-I could be estimated at anywhere from .0002 to

.0004. This range is actually wider than necessary because it is based mel- y

on scattering data for one frequency while attenuation measurements are

usually spread over a fairly wide bandwidth and smoothed in some manner.

Phase-Velocity Estimates from Long-Period Rayleigh Waves

Data in Tables X and XI indicate that a typical standard deviation of the

measured phase over the 22 NORSAR sensors is .03 circles (120) for Rayleigh

waves at .05 Hz. For the two station method of determining phase velocity,

the equation

C = f(r2 - r 1 )/( 2 - ± n)

Mitchell, B. J., L. W. B. Leite, Y. K. Yu, and R. B. Herrmann (1976). Attenua-
tion of Love and Rayleigh waves across the Pacific at periods between
15 and 110 seconds, Bull. Seism. Soc. Am., 66, 1189-1202.

-85-

A ______ _____ .1



4.0

3.0

S2.0

1.0

0 5000 10000

r2-r, (kin)

Figure 27. Predicted spectral amplitude difference at .05 Hz versus station

separation for various values of a, the attenuation coefficient

for surface waves.
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is used where C is phase velocity in km/sec, f is frequency, is the measured

phase in circles, and n is the proper integer to be adjusted to make C phys-

ically acceptable. For small errors A in 02 - 01 due to scattering

C + AC = f (r2 -rl)/(0 2 - 01 + A 1 ±n)

Using C = 4.0 and f = .05 Hz (oceanic structure), the difference AC is ± .04

km/sec for A = ± .03 circles at r2 - r1 :200 km and decreases as r2 -r 1

increases, assuming that AO remains bounded for receiver separations much

greater than the correlation distance. Thus, to yield a general accuracy of

± 1% to phase-velocity measurements with fair confidence, a two-station separ-

ation of only few hundred km would be sufficient if random scattering effects,

like those discussed here, were the only factors in measurement error.

Source Mechanism from Surface Waves

The inversion of surface-wave spectra for obtaining the source mechanism of

of earthquakes has been widely reported as a successful method. Recently,

estimates of the number of spectra necessary for resolving the source mechanism

have decreased; in fact, Turnbull (1976) suggested that as few as two stations

would be adequate if placed favorably in relation to the source radiation pat-

tern. However, several propagation effects seem to argue against Turnbull's

view, especially laterally varying attenuation properties and large-scale

refraction and multipathing. In this report, the data showed that only small-

scale scattering affects the signals recorded across the Southwestern U.S.

array, but that the effect was still considerable on amplitudes. As a guide

to the spectral variation expected for recordings of an earthquake solely

because of this effect, the LR spectra for the Kermadec and Nicaragua events

are shown in Figure 28 and 29 respectively. Note the acute fluctuations for

various frequencies, some of which might be interpreted as spectral "holes"

related to source depth. Although the corresponding Love-wave specta were not

processed here, the authors presume they display similar behavior. In view of

the variations seen for these two suites of recordings, accepting that LQ and

LR for as few as two stations can reliably constrain the earthquake source

mechanism is difficult.

Turnbull, L.S. (1976). Determination of seismic source parameters using far-

field surface wave spectra, Ph.D. Thesis, Pennsylvania State University
University Park, Pennsylvania.
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Figure 28. Spectra of the Nicaragua earthquake LR recordings at a linear
array of LRSM sites in the Southwestern United States.
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Figure 29. Spectra of the Kermadec earthquake LR recordings at a linear
array of LRSM sites in the Southwestern United States.
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CONCLUSIONS

Both amplitude and phase fluctuations of 20-sec Rayleigh waves were found

to correlate over a longer distance in the direction of wave propagation than

perpendicular to it. In addition, the report revealed that amplitude and phase

fluctuations were correlated positively, in most cases. While this fact might

support the hypothesis of random scattering of the Rayleigh waves according

to a modified Chernov theory, the hypothesis of multipath arrivals cannot be

rejected. Data available for this study was insufficient to infer the exact

nature of the wavefield. In the case of the NORSAR investigation, the array

aperture of 100 km was too small to define the correlation functions accurately

to a large enough spatial dimension. In the case of the Southwestern United

States linear array, the spacing (about 100 km) was too large to construct

confidently the spatial correlation function and the entire aperture of 1000

km was so extended that large-scale multipathing, although not predicted by

the ray-tracing program, might have affected the observations. From studies

of recordings at the Southwestern U.S. array, indications are that the cor-

relation length of the inhomogeneities causing the random scattering, assuming

it exists, is the order of 100 km or more. The smaller-scale scattering

observed at NORSAR is characterized by a correlation length of about 25 km.

The standard deviation of .05 Hz spectral amplitudes from Rayleigh-waves

recorded on the NORSAR array of instruments, roughly 100 km in aperture, is

approximately 0.1 log unit. For the same events used in the spectral analysis,

the analyst-measured M values also had a standard deviation of 0.1 log unit.
s

This figure is only somewhat less than the 0.15 standard deviation reported by

Chang and von Seggern (1977) for mb values across the 50-km aperture of LASA.

However, when only the inner seven NORSAR sensors are considered (aperture about

50 km), the M standard deviation drops to roughly 0.05. Thus, M scatter is

significantly less than mb scatter over equivalent array dimensions, and by

reciprocity, M would provide more accurate (1/3 the standard deviation) rela-
S

tive yield estimations for shots within a test site than would m.

On the basis of the observed level of amplitude fluctuations reported here,

we suggest that attenuation measurements for Rayleigh waves can give highly

variable results for differing sample points of the wavefield and that the

attenuation coefficient can be resolved confidently to within a factor of two only
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for long paths, at least of few thousand kilometers. On the other hand, the

associated phase fluctuations are relatively insignificant in phase-velocity

measurements; for 20-sec LR, the phase velocity can be resolved to within

1% over short (> 200-300 km) paths if instruments are well calibrated and no

large-scale multipathing occurs.

Spectra of LR waves are considerably affected by small-scale scattering,

and their variability would seem to preclude accurate source mechanism resolu-

tion from a small number of seismograms.
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APPENDIX I

THEORY OF WAVE PROPAGATION IN A TWO-DEMENSIONAL RANDOM MEDIUM

In a companion report (Rivers and von Seggern, 1979) the authors investi-

* gated fluctuations in the amplitudes and phases of 20-sec Rayleigh waves caused

by raindom irregularities in the structure of the crust along the great-circle

path of wave propagation. By analyzing these fluctuations, which were measured

at NORSAR and in the southwestern United States, certain parameters can be

evaluated that characterize the degree of heterogeneity in the structure of

that segment of the crust through which the waves travelled. In order to perform

this analysis it is necessary to have a theoretical prediction of the scattering

phenomena that are expected when an elastic wave propagates through an inhomo-

geneous medium characterized by continuous, but random, fluctuations in the index

of refraction. Chernov (1962) developed such a theory of wave propagation in

three dimensions. In order to study the Rayleigh-wave problem, the authors

have modified Chernov's theory to make it applicable to the two-dimensional

case. This memorandum consists of the derivation of certain theoretical results

summarized in Table I of Rivers and von Seggern (1979), against which the ob-

served Rayleigh-wave amplitude and phase fluctuations are to be compared.

Although the discussion presented here of the two-dimensional random

scattering problem is intended to be more or less self-contained, it neces-

sarily requires knowledge of Chernov's (1962) text, which it follows closely.
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Amplitude and Phase Fluctuations

We assume that the random medium is characterized by only small deviations

of the density and acoustic velocity from their mean values, i.e.

We assume further that a plane wave having acoustic pressure p0 and travelling

in the +x direction,

?. A. ,V-',(2)

is incident upon the medium. Each element of the medium then becomes a source
of secondary scattered waves p1 which obey the equation (Chernov, p. 43, (26))*

C. V ' = - Co (3~ A 1 idt~K .)

Taking the coordinates of the scattering element to be (4,n), those of the
observations point to be (x, y), and their separation to be r,

r = i - )'+ ? - j  (4)

we may solve the inhomogeneous equation (3) by the method of Green's functions,

obtaining

-- - + . . l r')e ,I a' (5)

where the integration extends over the entire region from which waves are being

scattered to the observation point. The index of refraction of the medium is
defined to be

( ' I ~ Co (6)

-iwt
so by substituting (6) into (5), dropping the time dependence e , and neg-
lecting the scattering caused by density fluctuations in comparison with that

caused by velocity fluctuations, we obtain

1) elr W."v~ c1- i (7)

For waves of frequency 0.05 Hz and phase velocity 3.6 km/sec, the wave number
K is 0.087 km ,-and the asymptotic expansion of the 1lankel function,

I (K T /4)

J (8)

* All references are to the text of Chernov (1960).
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is valid to within a few percent for scatterer-to-receiver separations r
of more than about 60 km. The equation obeyed by the scattered waves thus
becomes

K . . t 4 j,'11'

(9)

This equation is the two-dimensional analog of Chernov, p. 59, (67).

If the sum of the incident and scattered waves is expressed as

A A. e * Ae (10)

and if the amplitude A = A0 + AA and phase 0 = 0 + A@ of the resulting
wave differ only slightly from those of the inciaent wave, i.e.,

AA

A. << t(L 1 (1

it follows (cf.Chernov, pp. 58-60)-that

a -- +(12)

and that

.~ - + g

Equation (11) is known as the Born approximation in scattering theory.
Chernov uses the method of Rytov to show that (12) and (13) hold under conditions
less rigid than those imposed by (11), namely that the amplitude fluctuation
AA/Ao and phase fluctuation 60 be small over the distance of a single wave-
length, rather than over the entire path length of the wave through the
medium. This is an important loosening of restrictions, since the observed
fluctuations are not always small. In the event that the amplitude fluc-
tuations are not to be regarded as small perturbations, Rytov's method
dictates that the left side of equation (12) be replaced by the logarithmic
amplitude fluctuation Zn AA/Ao . We must note, however, that Rytov's method
has been criticized by Aki (1973), so we should be cautious about the appli-
cability of the theory to those cases for which (11) is not satisfied.

Introducing the dimensionless variables

* X V- 
(14)

and denoting the phase fluctuation by S and the logarithmic amplitude fluctua-

AI-3
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tion by B, equations (13) and (.12) become

I , (15)

We will treat only the case in which the medium is composed of large-scale

inhomogeneities, i.e.,

K a ') 1. (17)

where a is the characteristic dimension of the scatterers. For this case
we are able to neglect back-scattering and assume that all secondary waves

P1 are emitted into a cone (actually a two-dimensional sector) which has an
aperture angle of the order of i/Ka and which is centered about the direction
of the incident wave P0 (i.e., the +x-axis)(Chernov, pp. 56-57). It follows
that the receiver at (xy') will detect ratiation scattered only from those
inhomogeneities located inside a similar cone with apex at the receiver and
oriented in the -x-direction. Within this cone we may approximate (4) by

(18)

and substitute (18) into the arguments of the trigonometric functions in (15)
and (16). Since I/Vr varies much more slowly than do the trigonometric func-

tions, we may make the rougher approximation

(19)

in these same equations. Since we need consider only scatterers lying between
the planes '= 0 and C' = x', (15) and (16) become

- F3C, -V)t1'(1

We emphasize that our neglect of waves not scattered forward into a small cone

(the Fresnel approximation of diffraction theory) is valid only if (17) applies.
If, as previously supposed, K z 0.09 km-1 , our theory will not be valid for
media composed of scatterers for which the characteristic dimension is much less
than 100 km. Since we wish to consider the effect of inhomogeneities smaller

than this, it will be necessary to make approximations, wherever possible, which
are not so strongly dependent upon the condition imposed by (17).

AI-4
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We assume that the receiver is located at (L,O) where L is the distance
through the medium travelled by incident wave. We now write (20) and (21) as

_.V'./.O] o / /o A ,'- . ) A(c.',.') a%'J ' (22)

where we have adopted the abbreviations

A(c , ( Z10., ) (24)

S+

(25)

and where L' = K L.

For the moment, let us make explicit the fact that we have oriented the
+x-axis of our coordinate system along the source-to-receiver line by expressing
coordinates in this system as (xy,Q), where 0 is the geometrical azimuth of
the source as measured in a geographical (i.e., fixed) coordinate system
centered at the receiver. Considering coordinate systems oriented toward
two different sources, we see that the points (x1 ,Yl ,01 ) and (xl, yl, 2) are
physically distinct, but in the two different coordinate systems they Sear
an identical geometrical relationship to the source and the receiver (see
Figure 1). (We assume all sources to be at the same distance, L, from the
receiver.) We now introduce the spatial correlation function of the index
of refraction

Nl . =  (,, e) (x ,bB)(26)

where the overbar denotes the average taken over all receiver-to-source azimuths
0, i.e. ,

, A(27)

Due to the random arrangement of scatterers, the correlation function N12 depends
only on the separation between the points (xl,yl,@) and(x 2 ,y2 ,@) and not on the
points themselves, so we may write

(28)
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where p is the mean square fluctuation of the refractive index (i.e., Nll)
and where N is the correlation coefficient. Now the geometrical functions
A1 and A2 in (22) and (23) depend only on the coordinates of the points
(L,O) and (Cn) and not on any physical property corresponding to the actual
points in space themselves (such as v), hence they are the same whether eval-
uated at the point (F,9l) or at the point (F,n,, 2)- It then follows that by
squaring (22) and (23) and by averaging over all receiver-to-source azimuths
0, we find the mean square phase and amplitude fluctuations to be

L- AL-,)A,(L'- "l,) r').im ' . (29)

j~S~ ~i..A, (L'-'): V.- )Nr W) (30)

where

I
I"" (, . -I; ) "  [m , -" )' .(31 )

We rewrite (29) and C30) in terms of new coordinates n and y, defined by

(32)

(33)

Our expressions then become

" : .S o , _.. . A ,(W - . , + ) A ,(x-'- ', - )N r') A i Ay (34 )

B1 ' I. S.L. A. -, AL'-r ',-/-))Iiw . y tA," -. (35)

It is shown in Appendix II that performing the integration with respect to y
yields

S' --VI "I "., A,I, L' : + > - A , (NI ' , ] ~ ' nl. & (36)

(37)

which we write as
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where we have defined

, , n ) AN W'- ) (40)

Introducing new variables x and F, defined by

x) (43)

= - (44)

and allowing the integration over to extend from - to + (which we may do
if L >> a, since N(r) 0 for r >> a), we have

T.= oI. 1 A,(0F1) N.fW) A,,a X (45)

where we now write

(47)

Since the integrand of (45) is independent of x, we find

I , - "1 .I .A,(1 i N t,' (48)

Recalling our definition of Al, (24), and noting that r' is an even function
of both $ and n, we write this as

AI-7
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.1 ' "(49)

We now assume (Chernov, pp. 7-11) that the correlation coefficient of the
refractive index has the form of a Gaussian density, i.e.,

N= :e(50)

where, as before, a is the characteristic dimension of the scatterers and
where a' - Ka. It follows from (47), (49), and (50) that by setting
n2

q we obtain

=~A& 4T,- ', + /',-

(51)
2&

where c = a2 . We may evaluate the integral in (51) approximately by noting
although therange of integration extendsfromE = 0 to C = +-, the exp(-A/a' )
term causes the integrand to vanish for & >> a', so the effective range of
is actually of the order of a'. Then throughout this effective range of E we
have =2 2a'2 -S << 1, where we have used the restriction (17) that a'

Ka >> 1. We thus set = 0 in (51), obtaining

, e'-"

-Y ' L 's(52

which is identical to Chernov's I, for the analogous three-dimensional case
(Chernov, p. 73 and p. 83).

We may obtain a more cumbersome, but exact, representation of I by

writing (51) as
jI

0++ f -(53)
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where a = (42 + 1)1/2 + and 8 - (2+ 1)1/2 _ . This reduces to

(54)

where V + . Equation (54) has the form of a tabulated Laplace
transform, and it reduces to

K L

-, (55)

We note that the asymptotic expansion of the modified Bessel function K,(x),

-(56)

K (x) " - ' + '. ) (56)

implies that (55) reduces to (52) if Ka - 1. We may thus use (52) when
(17) is valid, but we should use (55) when considering scatterers of size
a 1 100 km.

Substituting from equations (47) and (50) into (46) and performing
the integration over , we find

I o / _ , ( L' ( _ -. , ) ,nI, (57)

Reversing the o.der of integration and noting that the integrand is an even
function of n, wt have

(58)

Substituting t = 4L' - 4x, this becomes

12 ~~ 5.-~ ~ A (*+ Aht]i eiL L'L , t

t~

AI-9 (59)
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where we have adopted Chernov's (p. 74) definition of the so-called "wave
parameter" D,

C 4L - ,
(60)

Physically, the wave parameter represents approximately the ratio of the
size of the first Fresnel zone wXL to the scale of the inhomogeneities.

Making the change of variable p - e ir/4 t in equation (59), we find

V e - , +

k o ri " (61)

This last integral has the form of a Laplace transform, and it reduces to

= 9 L '_- ]

D K (62)

We finally obtain the desired expressions for the phase and amplitude
fluctuations by substituting the equation for I,, either (52) or (55), and
those for 12, (60) and (62), into equations (38) and (39). We see that the
form of these expressions depends in an essential way on the value of the
wave parameter D:

for D >> 1: 12 = 0

- - ' TT 'L

for D - 1: 12 v- K2La

: K L, a , 13 O .  "

(63)

These limiting values are the same as those for the three-dimensional case
treated by Chernoy (p. 83, (159) and (160)). We note that use of the__exact
value of I, given by (55), would have yielded a negative value for B2 in the

case D << 1. We also note, however, that the limit K - - (which would imply
D - 0) must not be approached too closely, since our scattering formulas
are invalid in the very high frequency case corresponding to geometrical

acoustics (Chernov, p. 56).
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Correlation of the Amplitudes and Phase Fluctuations at the Receiver

Having determined the magnitude of both the amplitude and phase
fluctuations, we now examine the correlation between them. We deter-
mine the average (over receiver-to-event azimuths) of the product of
the two fluctuations by the same method as was used to determine the
average of their squares, (34) and (35), thereby obtaining

It is shown in the Appendix II that performing the integration with respect
to y yields

Changing variables as indicated in (43) and (44) and, as before, allowing
the integration with respect to to extend from = -- to = +co, we find

S.N tr') A - 4

: ; _ A!, 4 (7.L-..Y; 'Nt W)e" A < (66)

We now substitute (47) and (50) into (66) and perform the integration

over F, obtaining

- I 'n -
- It2IL_lO , '"-- + e

~-x x (67)

By inspection of equations (58)-(61), we see that

i i
e 4

I o

(68)
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Equation (68) is tabulated Laplace transform, so finally we have

-1 +~ (69)

The correlation coefficient for amplitude fluctuations and phase
fluctuations is given by

(70)

If we approximate I1 in (38) and (39) by (52), we have

S2 (W11 -1 (71)

K a L D 4- ) (72)

and (701 reduces to

- (73)

We see that for large values of the wave parameter (D >> 1) we have p = 0, and
for small values of the wave parameter (D << 1) we have p = 1/2. For the three-
dimensional case Chernov (p. 89) finds corresponding values
of 0 and l3-/ /2, respectively.

Longitudinal Autocorrelation of Amplitude and Phase Fluctuations

We now examine the correlation of both amplitude and phase fluctuations
which are measured at two separate receivers. By "longitudinal" autocorrela-
tion we mean the special case in which the separation of the two receivers is
parallel to the direction of propagation of the incident wave (i.e., normal to
the wavefront). We thus take the coordinates of the receivers to be (LI,0) and
(L2 ,0). Taking the product of the fluctuations at the two receivers and aver-
aging over azimuths (changing the actual location in space of the geometrical
point (L2 ,0,9) so that the separation is longitudinal for each azimuth), we find

AAC,, o),, (7 4)

s,', " - A1 (LA - .)A, L-Y )Nr') c'' , J (75)
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where LI ' - KLI and L2 ' - KL2.

We assume that the effect of waves scattered in the region between the two

receivers is negligible, since such waves are incident upon only the second

receiver. We thus set the upper limit on the integrals over 2' to be LI'.

Inspection of equations (29)-(41) enables us to write

T -51 ('- (77)

where we have now defined

I I L % . AJJLL -L$-(r-)l))Nh-')4, p g,'A (78)

I i.: S -_ A(J.+L' - ( E'+ ),) Nr')A, ) ' AJ (79)

Making the substitutions (43) and (44) and setting the limits on the

integral equal to - and +, we find

050.~~ W~~+ t~T) ax

LYO.S 0  ~+ 1~r') e~,(80)

where AL = L2 - L1 . Proceeding as in equations (49)-(53), we have

2IAL'-~
where now = 2 -AL' -. We divide (81) into two integrals

S+ _j e

2(AL' - ) 2(& - AL')
where l a7 and ;2 =  a'2 We now write

e i - 7+1 +( ; '
-

O C (&I-'57 + (83)
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Inspection of (83) reveals that when the separation between receivers, AL,
is small compared to the size of the scatterers, a, we may neglect the
dependence of ll_upon AL, whereupon II takes on the value found in the
single-receiver case,

I( V VL- o AL. (84)

We may treat the general case by evaluating the integral in (83) numerically.

We substitute (43), (44), (47), and (50) into equation (79) and once
again set the limits on the & integral equal to _o and + , thereby obtaining

By comparison with equations (58)-(62) we see that

Y - W . (86)

where now

), (L ) (87)

S ,(88)

For the case in which the receiver separation, AL, is small compared with

the source-to-receiver distance, L z L1 z L2, the expression for 12 reduces
to the constant value found for the single-receiver case,

;i jr'I-i (89)

The correlation coefficient for phase fluctuations as a function of
receiver separation in the longitudinal direction is given by

(s,--,) ,.°

Rs, long 452

-1, I./.IL +I .Cj L)

(90)
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and that for amplitude fluctuations is

Rb, long

1 (o) - 1 (0) (91)

Transverse Autocorrelation of Amplitude and Phase Fluctuations

We now examine the case in which two receivers are separated in the
direction "transverse" to the direction of the incident wave (i.e., parallel

to the wavefront). We take the coordinates of these receivers to be (L,O)
and(L,L). By the same procedure as was used to derive equations (29)-(30)
and (74)-(75), we see that for this case

" ) ~ AL'- ,' A1)A - ) N( )T - (92)

where 22 - Kk.

Following the same procedure as in equation (29)-(41) we obtain

5L-- =  1 +IJ) (94)

"- - : - ' I' " - -  -')( 9 5 )

where now

L)o, A, +,.Nt')a (96)

,'- +, - V ) N ) A "(97)

In order to evaluate Ii, we make the substitutions (43) and (44) and

allow the integration over to extend from -- to +-, whence

-~ ~ A +i- V IA("~I) N W') J

e1 v +) I + (98)
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The second integral in (98) may be written as

1 i

where P a,2- and q = Since the real part of p is positive, we

may write

Substituting (100) into (9a), we obtain

L 4.

- l~ )

and our expression for I, becomes

UZ -", I g " e ] (102)

.i.'"~ ' ' t

It is not apparent from the form of equation (102) that the expression
for 11 reduces to the value found for the single-receiver case, equation (54),

in the limit as the separation between the receivers, Z, approaches zero. In
order to make the relation between (102) and (54) more apparent, we substitute

2.2

=.L2 and remove the complex numbers from the denominators in (102), obtaining

Il

(100)

We may set

(104)
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where r = 7_1, cos 0 and sin 0 De Moivre's theorem then implies thatr r

-Ik~ +i
ri

+e " +; -X ,. -

(105)

and hence

J:~.1, +' +r -+ P

(106)

where a = (/77 + 'a2d a 'T 1 -This last expression
reduces to

F(107)

so equation (103) becomes

(108)

which reduces to (54) when £2 0.

'v2 C2

If the restriction imposed by (17) is valid, the term e 4 will cause
the integrand to vanish for Z 1, so throughout the effective range of inte-
gration we may neglect C2 im comparison with unity. For this case equation
(108) reduces to ,, 9 _

C-

=-~ e
(109)

which is the same value as that which Chernov derived for the three-dimensional
case (p. 102, (213)). For small-scale inhomogeneities (i.e., those for which

AI-17



equation C17) is not valid) we shall have to evaluate (108) numerically.

We may evaluate 12 by substituting (43) and (44) into (97) and setting
the limits on the integral over & equal to -- and +, thereby obtaining

Inspection of equations (98)-(102) enables us to write

N w le' L X a Y

where we have used the definition of the wave parameter D, equation (60).
If we substitute t = - ik'2/a'2  into equation (111), we find

r .C -- {

' i -i (112)

-- a"°---,- - - - Er

where r(a,e) is the incomplete gamma function, defined by

oo (113)-

We now show that equation (112) reduces to the value which was found for the
single-receiver case, equation (62), as the separation between receivers, £,
approaches zero. Expanding the incomplete gamma function in a power series,
we find

i ,. i-C- ; ) -- { '(- ) - ,,L-') , }

j-0

(114)
)

hence
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(115

which agrees with (62). Having demonstrated the behavior of 12 for small Z,
we may now delete the first term inside the braces in equation (112), since
it has no imaginary part and contributes nothing.

Since the incomplete gamma function is not tabulated for complex
arguments, it will be necessary to evaluate 12 by means of the power series
expansion which is shown in (114). Because this series is only slowly con-
vergent when the wave parameter D is small, we will find it helpful to treat
this particular case by expanding (112) in a Taylor series:

where

(117)

We see from the definition (113) that

(118)

ij' <<> ) e (1- I
(119)

'J.

Retaining terms of up to third order in the small quantity D, we find

+ e <-1 (120)
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As was done for the case of longitudinal receiver separation in equations
(90) and (91), we write the expressions for the correlation coefficients for
phase fluctuations and for amplitude fluctuations:

R = 1) t
s, trans 1, (0) + t)

(121)

Rbtrans 1, (0)

(122)

We note that we may obtain convenient expressions for the correlation
coefficients in the particular case D << 1 by expanding (62) in a power series:

- 1)v' o - - 4 ..) - v, '-  ..? .
+ +

-7 P,

(123)

Substituting (109), (120), (52), and (123) into (122), we find

e ~

( +i)e~ Ve&1. Ka>'?1, ii- (124)

For the corresponding three-dimension case Chernov finds the value (p. 102,

(227)) Rb - (Z4/2a4 - 2k2/a2 + l)exp(-Z 2/a2 ). Similarly, equation (121) in
this particular case reduces to

(125)

which is the same value found by Chernov (p. 107, (227a)).

Summary of Theoretical Results

The expression for B2 , s2, p, Rb long(AL), R b tran (Z ), and Rs tr~ns(z)
are summarized anid compared with Chernov's values for tMe three-dimensional
case in Table I of Rivers and von Seggern (197_2). It may be seen that the ratio
of the amplitude and phase fluctuations, B/S2, and the correlation between them, •
p, can be expressed parametrically as

AI-20
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= fl(K,L,a) (126)

p = gl(K,L,a). (127)

If we make the approximation Ka >> 1, these equations take on the even
simpler form

B = f 2(D) (128)

P = 92(D). (129)

Figures 2, 3, and 4 show B, S7, and as functions of D. We may
eliminate D from (128) and (129) and plot B/S -versus p, in Figure 5.
The values of D corresponding to selected points along this curve are
shown on it. Analogous plots may be obtained from the more exact rela-
tions (126) and (127) by taking K and L to be given and eliminating a. This
is done, for three different source-to-receiver distances L, in Figu.es 6,
7, and 8. Comparison of these three plots shows that the values of B2/s2 and
p are insensitive to the value of L, so long as L >> a. It was this insensi-
tivity to the length of the path through the scattering medium (after the
incident wave has been scattered several times) which enabled us to assume
that all paths were of the same length L when computing the averages (29)
and (30).

By once again assuming K and L to be given constants, we may calculate
the longitudinal amplitude and phase correlation coefficient, Rb(AL) and Rs(AL),
as functions of a. This is done in Tables I and II for separation between
receivers of up to 100 km, approximately the distance across NORSAR. It is
seen that both Rb(AL) and Rs(AL) fall off slowly with increasing separation
between receivers. (The apparent increase in Rb with increasing AL for large
values of a is an artifact of the computation process; in fact, Rb(AL) Z 1.0
for AL - a.) The tabulated values were computed for source-to-receiver
distance L = 3000 km; they were found to be scarcely different for the case
L = 9000 km.

The transverse amplitude and phase correlation coefficients, Rb(£) and
Rs(k) , were similarly calculated for fixed K and L and for various values of a.
As shown in Tables III and IV, Rs(£) fall off in an approximately Gaussian
curve with increasing separation between receivers, but Rb(£) decreases to
negative values for k z a. Inspection of Table V shows that the values of
Rb(") are relatively insensitive to the assumed value of L; Rs(£) is even less
sensitive to L. The behavior of Rb(£) and of Rs(£) are shown graphically, for
both large and moderate values of the wave parameter, in Figures 9-12. These
graphs demonstrate the same general behavior with increasing Z as do those
given by Chernov for the three-dimensional case. (Chernov, Figs. 5 and 6)
Figure 13 shows Rb() for five values of D and extends the separation £ to
distances beyond the 100 km considered in Table III.
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APPENDIX II

Evaluation of certain integrals used in Appendix I

In this appendix we evaluate three integrals involving the functions

A, (A. 1)

and

which appear in the two-dimensional modification of Chernov's theory. The
three integrals are

IAA), A. A -,,I ) A, (e,,),+y (A.3)

(A. 4)

and

IA7 
(A.5)

It follows from the definition (A.1) that

e-9.A ko-e-16- 1

-e -e + e

(A.6)

where we have made the substitutions

IK, +1 (A.7)

and
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(A. 8)

In order to evaluate the two integrals appearing in (A.6), we make use of
the identity ( b)- * Z -9

" ~ ~ ~ ~ cy 4i c d l %c>O

e e

(A. 9)

The expressions appearing in the exponents in (A.6) are

+ + id (A.10)

and

so we may evaluate the first integral in (A.6) by substituting

(A. 12)

(A.13)

(A.14)

into (A.9). It follows from the definitions (A.12)-(A.14) that

(A.15)
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so we have

rz , ______ Y

4 ,+(A.16)

In order to evaluate the second integral in (A.6), we note that the
restriction a > 0 was used in deriving (A.9), so we may substitute from
(A.11) into that identity only if a2 > al. We may treat the case a, > a2,

however, simply by noting that

e (A.17)

so we may treat both the cases a2 > al and al > a2 by substituting

0L= ; o (A. 18)

-A'. (A. 19)

(A.20)

into (A.9). We find that

C- ti +4 (A.21)

and thus

(A.22)
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Substituting (A.16) and (A.22) into (A.6), we derive as our first result

t '-LYJ "  ) ' (1 ,°, ' )

= at,,+ , ,- ) +~ h - ,l ,-, ,(A.2)

We may use (A.16) and (A.22) to evaluate (A.4):

e]

! A ;' = °  '(-' ( '" ', -,S; 7,_ e + e e+

e +

- . , )' ,- ., , J (A.24)

For (A.5) we find

e e-e

All. (A.25)

By inspection of CA.9) we may write
~I

e j -, ' ' C - tn + , ' 0 (A .26)

Our derivation proceeds as before, but now our treatment of the case al > a2

replaces (A.17) with the identity

- e (A. 27)

and our final result is
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A, A r,+rL0 tA (A. 2 8)

where the plus sign is to be used if a2 > a,, and where the minus sign is to be

used if al > 2
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