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1. INTRODUCTION

Beamforming may be described loosely as the coherent processing of an array of
receivers in order to ascertain the arrival directions of the incident signals
or to increase the signal-to-noise ratio of a signal from a given direction.
In time domain beamforming this is achieved by time delaying the receiver outputs,
so that they are brought into phase coherence for a plane wave arriving from a
given direction, and subsequently summing them. If the receiver outputs are
first narrowband filtered then this time delay may be effected by a phase multi-
plication. This process is termed frequency domain beamforming.

However the choice of phase factors in frequency domain beamforming need not be
restricted to those corresponding to real angles of arrival. As discussed by
Booker and Clemnow(ref.l,2,3) the variable wavevector is often used instead of
angular coordinates. Thus the total power incident on an array may be estimated
as a function of frequency, f, and the wavevector components kx, kX and kz (see

references 4 and 5). It should be noted that only three of the above four
variables are independant. This power estimate is termed the frequency wave-
number power spectrum (although to be pedantic it should be termed the frequency
wavevector power spectrum).

For a linear array only a two dimensional formulation need be used. Thus the
power spectrum is estimated as a function of the variables f, kx and k . Only

the independent variables f and kx (X sXn) need be used. In this paper the
liberty of referring to kx as wavenumber rather than 'the component of the wave-

vector along the axis of array' is taken although it should be borne in mind that

wavenumber is strictly defined*as

From figure 1 k may be interpreted as a spatial frequency and for a linear array
of equispaced receivers the decomposition into an angular spectrum of plane wave
components is mathematically equivalent to the Fourier analysis of a sampled time

series into a spectrum of single frequency components.

All phase delays correspond to particular values of wavenumber which then must
be interpreted in terms of the physical quantities of interest, viz., angle,
frequency, and velocity of propagation. If these phase delays are effected at
a number of frequencies then the resulting power spectrum is termed the
frequency wavenumber power spectrum.

For a linear array of equispaced receivers it is shown in Section 2 how the
frequency wavenumber spectrum can be written as a two-dimensional Fourier trans-
form of the matrix of receiver outputs. For appropriate choices of the number
of receivers and data points the Fourier transforms may be effected by use of the
Fast Fourier Transform algorithm. The properties of the frequency wavenumber
spectrum are discussed in Section 3 with particular attention being paid to their

interpretation in terms of beamforming.
I0

In conventional time series analysis, sidelobes from negative frequency components
"k may distort low frequency components in the estimate of the power spectrum (see

references 6 and 7). In a similar way the negative frequencies introduced by
the restriction to real time series may distort other low frequency components
in the estimate of the frequency wavenumber spectrum. Some measures of the
sidelobe level and the power distortion due to this leakage are derived in

Footnote: Alternative derivations use a 2w factor.
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Section 4. Finally, in Section 5 some miscellaneous remarks on the treatment
of statistical data, the derivation of the spatial autocorrelation function and
methods of displaying the frequency wavenumber spectrum are made.

2. THE FREQUENCY WAVENUMBER TRANSFORM

2.1 Beamforming fundamentals

In time domain beamforming the constructive interference of signals is
effected by delaying the outputs of given receivers so as to bring into phase
coherence any signals arriving from a given direction. For the line array
of N equispaced receivers as illustrated in figure 1 the output A(B, t) of a
beam 'steered' in direction 0 is given by

N-1

A(S,t) = xj (t - j&)

j=0

where dsin8 d is the separation of adjacent receivers and c is the prop-C

agation velocity of the signal in the medium.

In order to determine the frequency content of a signal incident from direction
0 it is necessary to Fourier analyse A(G, t). For a continuous signal Xt8, f)
an estimate of the complex amplitude of a signal of frequency f arriving from
a direction 0, is given by

lim T

X(0,f) l Tm -T A(Ot)exp(-2wift) dt (1)

-T

N-1

lim I T Z xj (t - j r)exp(-2iift) dt.

Q -T j=O

The power at this frequency and direction S(8,f) is then given by

S(O,f) = A(8, f) A*(8,f)

Similarly the total power incident from direction 0 is given by

P(') =,i'm A(O,t) A*(O,t)dt

0 T T

I _ __

... .. *1 .. mt
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2.2 Frequency domain beamforming

It is well known that for a narrow-band signal a time delay can be effected
as a phase multiplication. By interchanging the summation and integral in
equation (1) this principle may be applied to the time delays required for
beamforming. It then follows that

N-I

X(0,f) = lim 1jT xj (t-jbf)exp(-2irift) dt

TP°° -T j=0

N-1 T

(lir - xj (t)exp-(2ift)dt) exp(-2irifj i) (2)
j=0 T

N-1

X (f)exp(-2Tifjir)

j=0

If k*, the wave-number, is dofined by

k = fsinO sin0  (3)

then N-i

X(k,f) 4 Xj(f)exp(-27rijkd) (4)

which is just a Fourier series of the Xj(f)'s. The new variable, the wave-

number, has a direct physical significance in that it is (apart from a factor
c) the spatial frequency of the incident plane wave in the direction of the
array axis. This is diagrammatically illustrated in figure 1. This
interpretation of wavenumber as a spatial frequency allows a very useful
analogy between time series analysis and frequency domain beamforming. The
spatial series X. (f),j = 0,1...N-1 may be considered as equivalent to a time

series of N data points and the resolution into spatial frequencies or wave-
number expressed in equation (4) of this spatial series is equivalent to the
resolution of a time series into its frequency components. This idea was
first put forward by Booker and Clemmow(ref.l).

FOOTNOTE: As discussed in the introduction, wavenumber is the magnitude of a
vector, the wavevector, the direction of which is orthogonal to the wavefront.
However, since only one dimension is considered here wavenumber is defined in
terms of the projection along the array axis. Alternative definitions involve4a 2w factor.
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2.3 Application to discrete finite time series

The derivation of frequency domain beamforming in the preceeding section
assumed that output of each receiver was a continuous time series running

from t = -* to t = +0. In practice the time series is only observed over a
finite interval and often only sampled data is available. Under these
conditions the phase delays effect not a true but a cyclic time delay; this
is demonstrated in Appendix I. As discussed in Appendix I and references 8
and 9 the error associated with this approximation to the true time delays
can be minimized by choosing M (the number of data points) to satisfy

M >> 1 d
cT O

For discrete sampled data the continuously variable vector x.(t) is replaced

by the matrix X = x.(T ) abbreviated to x.t where j, as before, runs over

the receivers 0,1,..., N-1 and I representing the time samples will in general
take the values 0,1,... ,M-1 and 7 is the sampling interval. The correspond-0

ing expression from X(k,f) now becomes

N-1 M-1

X(k,f) = it xJ'exp(-2wikjd) exp(-2wifT 0)

j=0 t=0

While X(k,f) is still a continuous function of k and f it follows, since the
transform is discrete that not all values of X(k,f) are independent. The
maximum number of independent values can be generated by finding a complete
set of orthogonal vectors. The most convenient set of vectors to choose are
the M sine and cosine waves whose periods are integer subdivisions of the

T
observation interval and the N complex spatial frequencies whose spatial
periods are integer subdivisions of the array aperture. Once these orthogonal
set of vectors have been determined the value of X(k,f) for an arbitrary k and
f can be expressed as a linear combination of these orthogonal ones. The

I Nfundamentals, Af and Ak of these orthogonal sets of frequencies and wavenumbers
I' are given by

Afr o

' 1
and

Akd= *

Multiples of Af and Ak are termed the frequency and wavenumber bins respectiv-
ely. The set of MN orthogonal (in a two-dimensional sense) vectors are

exp(-2ruij/N) exp(-2rip /gM)

for

p = 1,2,...,
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and

P =1,2,..M

Denoting X(pAk, vAf) as X, equation (4) reduces to

N-1 M-1

p= Z Z Xjk exp(-2rikij/N) exp(-2irivt /M) (7)

jOk=O

This can now be readily recognised as a two-dimensional discrete Fourier
transform. The power spectral density So, is given by

S A = XJA X*

and S ; Af LAk represents the power incident on the array within a frequency

range of (v - ) Af and a wavenumber range of (p +  ) Ak.

By choosing M and N to be highly composite (eg powers of two), the above
transformation may be effected by use of the Fast Fourier Transform algorithm
and so the number of operations is reduced from the order of N2MW to NM log2M
1 og2 N.

2.4 Physical interpretation

As indicated in the previous section S is an estimate of the power density
incident on the array corresponding tola frequency PAf and a wavenumber pAk.
Since, in general, the physical quantities of interest are frequency and
bearing, then wavenumber should be reinterpreted in terms of these parameters.
From equation (3) the bearing 0, corresponding to a given frequency, f, and
wavenumber, k, is given by

sin0  = ck/f (8)

Furthermore denoting 0y, as the angle corresponding to the P -th frequency bin

and the P -th wavenumber bin then

s in 0 -

(9)

There are two interesting consequences that follow immediately from the above
equation.
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(a) Lines of constant bearing

From equation (8) a line of constant bearing is represented by a
linear relationship between k and f the gradient of which is c/sinO *
If f and k are plotted as the two axes of a two-dimensional plot then
as indicated in figure 2 lines of constant bearing will run radially
outwards from the origin with a slope proportional to c/sinO. Since
the input time series is real it follows that the negative frequency
components are mirror images of the positive ones with opposite k (see
later). In figure 2 the lines corresponding to the two endfire beams
and the broadside beam have been shown. The frequency f, is that

corresponding to the half-wavelength of the array.

(b) Physical region

For real values of 0, sin 0 lies between ±1 but as can be seen fromck
equation (3) for low values of f, I Z-- can be greater than

unity, eg, f = 0, which would imply that I sin 0 1 > 1. In the
remainder of this article the region in which I sin 0 1 Q-, ie,
I f I < c.1 k I will be termed the "physical region" and the region
where I f I > c. I k 1 , the "non-physical region". The physical
region represents plane wave signals incident on the array from
angles lying between ±90.

The crosshatched areas in figure 2 represents the physical region and
is bounded by the lines corresponding to the two endfire directions
of ±900. The number of frequency-wavenumber bins lying within the
physical region can easily be related to the half-wavelength of the
array. At the half-wavelength of the array

fc

-2d

and substituting in equation (9) this implies that

sin0  co
N2 f, Md

S -M Mb2 forP MP..10=M 2 ...2

It trivially follows that since I p I 4 M all the wavenumber bins

correspond to physical directions. For frequencies f less than f

it directly follows that any value of p such that I p I < MLwill

correspond to a real direction.

*FOOTNOTE: In the figure f and k are treated as continuous variables; for

sampled data a matrix of data should be superimposed on the diagram as shown.
The interdot spacings are Ak and Af along the wavenumber and frequency axis
respectively.
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(c) Non-physical region

As discussed above, contributions to the power spectrum lying within
the "nonphysical region" do not correspond to a real signal incident
upon the array. Some possible interpretations of components in this
region are:

(i) As illustrated in figure 3 and discussed in greater detail in
Section 3.2, leakage from either the frequency-time transform
or the wavenumber-space transform gives rise to contributions
within this region. This is especially true of the negative
frequency sidelobes which are discussed in greater detail in
Section 4. Sidelobes of the frequency-time transformation
can be differentiated from lines of constant bearing since they
are parallel to the frequency axis and do not run radially out-
wards from k = 0 as do lines of constant bearing. (See later).

(ii) Often effects can be transmitted through the array structure at
velocities differing from those in the medium. For example,
at a quarter wavelength the physical region would be doubled if
the velocity of propagation through the array was half that
through the surrounding medium. This is particularly common
in acoustic arrays, whereby vibrations of the array structure
can propagate along the array and excite the hydrophone
receivers.

3. APPLICATION OF THE TWO-DIMENSIONAL FAST FOURIER
TRANSFORM TO BEAMFORMING

In this section some properties of the two-dimensional discrete transform will
be discussed with particular emphasis being placed on the interpretation of these
properties from a beamforming viewpoint.

3.1 Symmetries

Since

N-1 M-1

S = j jXjk exp(-2riPj/N) exp(- 2rivk/M) 12

j=O k=O

it immediately follows that

Ssp + pN ±qM =

for p and q integers. This periodicity in frequency and wavenumber is a
consequence of the discrete temporal and spatial sampling respectively. This
results in a block periodic structure as indicated in figure 2. Also the

•% x..'s are real and so as a result (see Appendix II) it follows that

r SN-p M-v = PP

and (10)

N-pv p M-
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The physical interpretation of equations(10) is that the positive frequency
components from a direction 0 and negative frequency components from 0 + 180
are identical for a given value of f. At a given frequency the positive and
the corresponding negative wavenumber terms have no such symmetry since they
correspond to opposite velocities of the projected waventumber along the array
axis.

Note that for the wavenunbers to run contiguously from angles corresponding

to -: to 7 the terms in equation (10) should be rearranged to
2

S' N/2+pv = S PV

and

STpv = S /2+ for p = 0,1,...,N/2-1

As shown in Appendix II the d.c. and Nyquist terms require special treatment.

3.2 Response to a complex sinusoid

As discussed in Section 2.3 the two-dimensional Fourier transform is a
decomposition of the matrix X into orthogonal plane waves which are harmonics
of exp(-2riAkx) and exp(-2riAft). It follows that any plane wave input which
is the (k,p)th harmonic of this fundamental will contribute zero to terms in
S p for p * k and V 0 p. For plane waves which are not exact multiples of

the spatial and temporal harmonics the power will be distributed among the
S p's and, by analogy with time series analysis, this 'leakage' may be specified

by a response function. This response function Hp, (k,f) is the S presulting

from a plane wave of frequency f and a wavenumber k. The response function
may be thought of as a generalization of the polar diagram of the array since
it includes all frequencies and extends the response into the 'non-physical'
region (see Section 2.4). It also holds that the observed output from an
arbitrary signal is given by the convultion of the true frequency wavenumber
spectrum of the signal with the response function.

Furthermore, since for a complex sinusoid of unit amplitude the data x. is? Jp
given by the product

exp (27rifjr 0 ) exp(27tikpd)

it follows that H P(fk) decomposes into the product

W Wp(k) Fv ( f )  ( 1

where

sin
2 irM(fr - M

Fv (f) s0 0
sin2 7r ( fr o  M

F~,(f)= I!2sin
2  0f -

and sin 2 IN(kd - -P

Wp (k) = W

N2 sin2 ir(kd - N
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As a result of the factorization in expression (11) many of the properties of
the response function may be treated separately in spatial and temperal co-
ordinates.

3.2.1 Leakage

Leakage can occur from either the frequency or the wavenumber transform
and the combined effect is given by equation (11).

sin2 P(O-)
In particular, each term in equation (11) is of the form G(O) = p2sin2 ( o)

where P is either the number of hydrophones or time samples and 0 represents
either 27rk or 2irf. This function is plotted in figure 4 where tO, the
separation of the zeros and also the bin width, is either the reciprocal of
the observation interval or the array aperture. The leakage into the
various bins is determined by the value of the appropriate response function
at the multiples of 60. For example in figure 4 when 0o(l) is an exact

multiple of h there is no leakage into other bins since they correspond to
the zeros of G(O). The worst possible case is when 0o(2) lies halfway

between two bins as illustrated in figure 4 and the power is equally
distributed between the two adjacent bins. In each case the power is
approximately 3.9 dB down on the true power. In the extreme case of both
the frequency and wavenumber lying exactly between adjacent cells it follows
from expression (11) that the power in the adjacent cells is reduced by
7.8 dB.

There is an interesting consequence of the multiplicative effect of
equation (11) which has a simple physical interpretation. The polar
diagram as a function of k is only dependent on the frequency f through a
scaling factor which is just F(f). The physical interpretation of this
is that frequency components which 'leak' from the time-frequency trans-
formation are beamformed in k-space but with a reduced amplitude. The
invariance of the response function W(k) on frequency is one of the
advantages of using a frequency wavenuwber as opposed to a frequency bear-
ing representation.

To illustrate these considerations, two response functions for a 32 element
array are plotted in figures 3 and 5. These functions are plotted as a
continuous function of wavenumber but the frequencies were evaluated at
multiples of the frequency bin Af where the highest frequency corresponded
to X/2 of the array. In figure 3 the complex sinusoid was an integer
multiple of Af and no frequency leakage is apparent. However in figure 5
since the frequency was chosen to lie halfway between two adjacent bins,
leakage caused significant contributions to the resulting spectrum at all
frequencies. The radical difference between these two spectra show the
importance of choosing a frequency resolution which is finer than that of
the expected line width of data or weighting the time series to reduce
leakage.

Another advantage of using the frequency wavenumber representation is
V shown in figure S. If the frequency resolution is inadequate and leakage

does occur then peaks of the 'leaked'frequency terms run parallel to the
frequency axis. This, even with noise present, serves to distinguish
them from broadband targets of a constant bearing which would run radially
from the centre, (see also figure 6).

$ 1 I I I I I I I " .. . I I I I I I l
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3.2.2 Ripple

Often it is required to estimate more than either the M/2 frequency bins
or the N wavenumber bins. One important reason for this is that due to
the fact that the spectra corresponding to sinusoids with wavenumber or
frequency components lying between bins will, due to leakage, have a ripple,
the depth of which can be up to 7.8 dB. This ripple may lead to false
conclusions. Another reason, particularly valid for the spatial transform,
is that the number of spectrum points is insufficient and it may be
desirable to interpolate between them. A simple solution to either
problem is to double the number of beams steered; this reduces the spatial
ripple to less than 1 dB.

Fortunately a simple way of generating these redundant beams is to add a
block of N (or M in the time domain) zeros to the appropriate row or
column of the matrix. The required number of beams are generated by an
FFT or length 2N (or 2M). If further interpolation is required then more
blocks of zeros should be similarly added.

3.2.3 Spatial aliasing

It is often the case that the sampling rate is sufficiently high that the
frequency transformation will produce frequencies corresponding to wave-
lengths shorter than the half-wavelength of the array. It is well known
that the polar diagram of an array at these higher frequencies may contain
extra main lobes. By analogy with time series analysis, this phenomenon
is termed spatial aliasing and once again has a convenient interpretation
in the wavenumber representation. As discussed in Section 3.1 the
frequency-wavenumber spectrum is periodic in wavenumber and in a similar
way to time series analysis aliased wavenumbers fold back into the wave-
number spectrum. However, since the positive and negative wavenumbers
are not symmetric as in time series analysis the aliased peaks of positive
wavenumber will be present as negative wavenumber components and vice
versa. An example of this is shown in figure 6 where the frequency range
of a 32 element array has been extended to 3X/4 introducing aliased positive
wavenumbers for a broadband target.

Once again the frequency-wavenumber representation is an appropriate mode
for this analysis. This is because lines of constant bearing are folded
back as straight lines which no longer run radially out from the origin
but are inclined at a characreristic angle. This is illustrated in
figure 6 for a simulated broadband source.

3.2.4 Windowing and shading

As can be seen from the examples of Section 3.2.2 the sidelobes of either
the frequency or wavenumber transformation may often be too high. In
particular the leakage of power from a strong signal through these side-
lobes may distort and even hide a weaker signal. One technique to reduce
these sidelobes is to multiply each data sample by a weight which is
designed to reduce the sidelobes. This is termed windowing in time series
analysis and shading in array beamforming. These are a number of well
known weights among which are the Hamming, Parzen and Tchebyshev which can
be applied in either the temporal or spatial domain. All of these although
reducing sidelobes, have the inevitable effect of increasing the width of
the main peak. A more complete description of the effect of shading is
given in reference 11.
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A general window and shading scheme can be represented by P= w where

w and w are the appropriate temporal and spatial weights respectively.
p P
The matrix x P is then replaced by wS xp,"

3.3 The relation of the wavenumber bins to beamwidths

As discussed in Section 3.1 there are N independent wavenumber beams and as
shown in the diagrammatic representation of H(k) in figure 4 adjacent beams
overlap each other at their approximate 3.9 dB points. These beams are
equispaced in wavenumber for all frequencies. Since the size of the
'physical region' varies linearly with frequency the invariance of H(k) has
a number of important consequences when interpreted in terms of angles and
are discussed below.

3.3.1 Frequency broadening

Frequency, wavenumber and angle are related by

k = 2 f sin 0
c

An approximation, particularly valid for small 0 is that the change in
angle 60 resulting from a change in wavenumber 5k is given by

60 = 8kc/2irf (12)

If 5k is taken to be the constant wavenumber bin then it follows that the
corresponding angular separation 50, or beamwidth as it is commonly known,
will increase as the frequency is decreased according to equation (12).
This can be shown to be true for all 0 and is an expression of the well-
known fact that the angular resolution of an array decreases with decreas-
ing frequency.

3.3.2 Angular broadening at a given frequency

At broadside sin 0 - 0 and so the beams are approximately equispaced in
angle. However towards endfire an increment of one wavenumber bin will
correspond to a large angular variation. Thus the beamwidth of the end-

V fire beams will be broader than those at broadside. Spacing beams such
that the adjacent beams overlap at their 3.9 dB points is a simple way of
ensuring a complete coverage with a minimum of redundancy and the frequency-
wavenumber transform provides a natural formalism for attaining this.

4. NEGATIVE FREQUENCY DISTORTION

In assessing the properties of the frequency waventumber spectrum, frequent use
was made of the response function, defined to be the spectrum corresponding to
a complex sinusoidal input. However a more realistic representation of the data
is as a real sinusoid.

The results of time series analysis shows that in general the effect of this
restriction is slight but can be significant in the treatment of low frequencies.
In particular since the real sinusoid is the sum of two equal-amplitude complex
exponentials of positive and negative frequencies, leakage of the negative power
peaks will distort the estimate of the positive frequencies. Since the energy
'leaked' through a particular sidelobe decreases with its distance from the main
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lobe, low frequency components are more likely to be distorted than higher
frequency ones. This is illustrated in figure 7. Whether the interference is
constructive or destructive will depend on the phase of the sinusoid. The
effect of this in conventional time series analysis has been extensively discussed
in references 1 and 2. In the remainder of this section the effect of these
negative frequencies on the beamforming will be discussed.

4.1 Response to a real sinusoid

Ignoring phase terms the real data matrix due to a cosinusoidal input can be
written

x. = h(x+ + x)
it it it

where

x. = exp(2wi(f'jr 0 - k' td))
it

and

x = x.+*
it it.

For this section it is more convenient to work with the continuous tranform
Y(k,f) defined by equation (5) rather than just the independent terms of
equation (7).

Substituting in equation (5) the above expression for x j it follows that

X(k,f) = X+(k,f) + X=(k,f)

where
M-1 N-1

X+(k,f, = 1 Z jexp(2iri(f'-f)jro) exp(-2ri(kt -k)td)..
y j=0 t=O

and

M-1 N-1

X-{k,f) = exp(2vi(f'+f)Jro) exp(-2ri(k'+k)td).

j=o t=0

Defining

S+(k,f) X+(k,f) X +*(k,f)

it can readily be shown that
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rsin;rM(f-f')? 2 sinrN(k-k ') d 2

S~kf)= L~sin (f-f' 3) 0 sinhl(k-k')d3

Similarly S(k,f) defined by X-(k,f) X (k,f) is given by

,sinrM(f+f' )T 0 2 CsinrN(k+k')d 2 (13)

LMsinlr f+f)roj (Nsinlk+k')d(

The corresponding response to xjt is given by

S(k,f) = (X+(k,f) +X-(k,f)) (X+*(k,f) +X-*(k,f))

which ignoring the cross terms reduces to

S(k,f) a5 S+ (k,f) + S-(k,f).

Thus the amplitude of the negative frequency leakage into the positive
frequency region is approximately determined by equation (13) evaluated for
f > 0. The peak of S(k,f) as for f > 0 as a function of k occurs at -k.
This affords a simple physical interpretation that the negative frequency
components which leak into the positive frequency region are beamformed as
normal sinusoids with a wavenumber of -k i.e. incident upon the array from
the reflected angle about broadside.

To qualitatively illustrate these features both S+(k,f) and S(k,f) are plotted
in figures 5 and 8 respectively for an array of 32 receivers and 16 independent
frequencies varying from 0 to X/2 of the array. Both of these functions have
only been evaluated for the discrete values of f corresponding to centre cell
when using a 32 point frequency transform.

4.2 Negative frequency artefacts

The height of these negative frequency sidelobes which leak into the positive
frequency region (termed artefacts) will depend not only on N and M (the
number of data points and receivers) but also on the frequency f' and wave-
number k' of the incident sine wave. The envelope of the negative frequency
beams is given by

___ (14)

4sin r(f + f)r0 sin r(k + k')d.

A useful measure, C, of this leakage is given by the ratio of the maximum
value of the envelope for f > 0 to the peak of S+(k,f) ie

10 log(S(k f)' max f >0>
k.fimax/
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In most cases the approximation sinr(f + f')ro aiT f + f')ro holds and hence

the maximum of expression (14) occurs for f = 0 and k = -k'. Thus C can be
shown to reduce to

C = -20 log Irf'T 0

However

MT0 = T0

where T is the observation interval and so f'T is just the number of periods
within the observation interval. Thus

C = -20 log 1FNT

where NT is the number of periods of the sine wave within the observation

interval.

The extension of the above argument to the case of the discrete transform
where only independent Nalues of the two-dimensional transform are evaluated

can easily be effected by means of the sampling theorem. For an input
sinusoid whose frequency is centrecell then no artefacts will occur since all
other frequencies occur at zeros of the response function. The worst case

occurs when the frequency of the sinusoid lies exactly halfway between bins
and expression C (with an extra 3.9 dB subtracted to allow for the equiparti-
tioning of S+(k,f) into adjacent cells) describes the heights of the negative
frequency artefacts.

4.3 Power distortion

When the 'leaked' negative frequencies irtefacts are beamformed the resulting
sidelobes will interfere with the main positive frequency lobe and as a result
will distort an estimate of the power. A measure, P, of the distortion in
the peak power estimate of a real sinusoid can be defined to be the ratio of
S-(k,f) to S+(k,f) when both evaluated at k = k' and f = f'.

Thus

P = 10 log 5

sin 27rMf'r 0  sin 2WNk'd
= 20 log M sin 2rf'r N sin 29k'd

This varies from zero when both f' and k' are centre cell to a maximum when
both are exactly between cells. In the latter case, P is given by

P = -20 log M sin 2xf'7 Ir N sin 2Wk'dJ

which can be approximated by
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P= -20 log 412 MNT

where NT is the number of periods of the sine wave in the observation interval

and M is the number of wavelengths projected onto the array aperture. (This

lattir quantity obviously varies with incident angle). Thus

P = CA CT

From this equation it can be seen that the distortion will be greatest at low
frequencies and angles around broadside.

5. MISCELLANEOUS COMMENTS

S.1 Statistical data

In the preceding chapters the properties of the frequency wavenumber spectrum
have been discussed with respect to deterministic signals. In order to treat
random data, some sort of averaging is necessary to reduce the variance of
the power estimates which are now random variables. Two methods for effect-
ing this are possible.

(a) In time series analysis the ratio of the variance to the mean of
the power spectral estimate is reduced by segmenting the time
series into a number of blocks, estimating the power spectrum for
each block and then averaging the power spectra. In a similar
way the time series from each receiver are segmented into blocks
of M data points and the frequency wavenumber spectrum is estimated
for each block. The resulting blocks are averaged an4 the averaged
power spectral estimates will have X2 distribution, the ratio of the
variance to the mean of these power estimates will be reduced by a factor
of V P where P is the number of averages. Since the array aperture is
limited in space the segmenting into blocks is effected in the time
domain.

An attractive feature of frequency wavenumber analysis is that if
only independent frequency and wavenumber bins are used then detection
statistics may readily be evaluated.

(b) Multiplying the data matrix x by a window wjl can easily be shown

to be equivalent to convolving the Fourier spectrum of the X j's with

the Fourier spectrum of the W j'S. Since the two-dimensional con-

volution is essentially a weighted averaging of the S over

adjacent bins it follows that the variance of this convolved spectral
estimate will be reduced. However, the bias (or lack of resolution)
will be correspondingly increased.

5.2 Spatial autocorrelation function

In Section 2 it was shown that the wavenumber amplitude spectrum X(k,f) is
the Fourier transform of the narrowband aperture distribution of signal
X.(f). It follows directly that S(k,f) = X(kf) X*(k,f) is the Fourier

transform of the function
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N-p-I

x X(f) X (f)

j=0

This is easily seen to be the discrete autocorrelation function rp(f) of the

X (f)'s. It follows that the frequency wavenumber spectrum could be

alternatively derived as the Fourier transform of the narrowband spatial auto-
correlation function at each frequency of interest. If an assumption of
spatial stationarity is made, an alternative definition of rP(f) would be

r (f) = < X!(f) X. f) > (16)

where ' > denotes the ensemble average.

Apart from the Bartlett window in equation (15) in the ensemble limit the
estimators given by (15) and (16) are equivalent. In practice however the
ensemblc average will usually be replaced by a time average over a finite
time interval and so expressions (15) and (16) will no longer be equivalent.
This has an effect on-a number of non-linear techniques for estimating the
frequenry wavenumber spectrum which are based on the use of the spatial auto-
correlation function (15) or the cross power spectral matrix.

5.3 Displays

5.3.1 Choice of axes

A common alternative to frequency wavenumber analysis is to only form
beams corresponding to the physical region and to form these beams at
equal angular or sin0 intervals. A lengthy comparison of the different
displays is given in reference 10 where the frequency wavenumber plots are

* referred to as a distortionless Bearing Frequency display. An advantage
of the frequency wavenumber display is that a broadband target will appear
as a straight line whereas on a frequency bearing display it appears as a
funnel shape. For detection purposes the eyeball matched filtering
required is considerably simplified.

To convert a frequency wavenumber spectrum into a frequency - sin9 spectrum,

a simple interpolation procedure may be used: For each frequency a number
of wavenumber points are Fourier Transformed, zeros are augmented to this
transform and then the inverse transform is effected. The number of wave-
number points used in the forward transform should at least cover the
physical region and due to sidelobe leakage there is probably considerable
advantage in taking more. The number of zeros augmented will depend on
the degree of interpolation required. P computational advantage of this
interpolation is that it should only need to be effected at the end of an
integration period on the averaged spectrum.

5.3.2 Display technique

The method chosen to display the intensity as a function of the variables
frequency and wavenumber has been to use a 'hide' routine. The perspective
of this can be varied in order to display features which may have been
blanked out by strong targets. Two alternative methods of displaying a
function of two variables are the two-dimensional intensity modulated
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displays (or LOFARgrams) or contour plots ('fraz') or equi-level contours.

5.4 Analysis of real data

To illustrate some of the features of frequency wavenumber beamforming 128
data points from each of 32 hydrophones of a linear array were processed
using a two dimensional Fast Fourier Transform. Zeros were appended to the
end of each spatial transform resulting in 128 wavenumber bins. The
frequency wavenumber power spectrum when averaged over 300 integrations is
shown in figure 9 where the 40 independent frequencies range from zero to that
corresponding to the half-wavelength of the array. Features such as the
radial characteristics of broadband sources, spatial aliasing of low frequency
array self noise and leakage into the nonphysical region are readily discernible.

6. CONCLUSIONS

Provided care is taken to avoid the errors in approximating delays as discussed
Appendix I and the leakage through negative frequency sidelobes, the two-
dimensional Fast Fourier Transform has been shown to be a natural and efficient
way of estimating the two-dimensional frequency wavenumber spectrum. The
spacing of beams which naturally overlap at their 3.9 dB points and the fact that
broadband targets appear as straight lines, are two particular advantages of
using a frequency wavenumber analysis. For certain problems such as array self-
noise the extension of the wavenumber representation into the non-physical region
is very useful.

I .

I'
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APPENDIX I

PHASE DELAYS AS A CYCLIC TIME SHIFT

th
Let X (f) denote the frequency output of the j receiver; it is defined by

M-1

Xj(f) = j x(lro) exp(-29iflr0) (1.1)

1=0

where i* is the sampling interval.o

Suppose it is required to steer a beam in a direction 0 defined by

dsinO
c

where p is some integer. (The restriction to a steering angle such that the
interelement time delay is an integral multiple of the sampling rate is not
essential but simplifies the following argument).

When steering in this direction X.(f) is multiplied by a phase factor of the
form 3

exp(-27rifpr0)

However since the transform in equation (I.1) is finite the phase factor corresponds
not to a true time delay but rather a cyclic time delay. Thus if the input series
used in (I.1) is

x0 , x1 , x 2 . .. ... ... xM 1

where

x i denotes xi(ir0 )

r then it follows that

X (f) exp(-2wifpr )3 0J
I.

corresponds to a cycled version i.e.

th
p position

M -p+1 x- X1 ..... -p-I.
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In a time delay beamformer the corresponding series would be

x-P X x oXxI- '---p -1.. X~ ° x .. XMl_

Thus since the frequency domain beamformer does not have available the values
X-p . . 1 it approximates them by XM-p, ..., xM I .

The magnitude of this error depends on a number of factors; the frequency of
the signal, the arrival angle and the length (Mr ) of the data record used to

effect the transform (I.1). The problem has been addressed in references 3 and
4 and to minimize the effect of the cyclic time delay it is recommended that the
data accumulation period (ie Mr ) should be much greater than the time for a

signal to transverse the array. This time is longest for beams steered around
endfire and so the condition can be expressed as

Mr >> Nd
0 c

i
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APPENDIX II

SYMMETRY PROPERTIES OF THE TWO-DIMENSIONAL SPECTRUM

The number of independent terms in the power matrix S are derived and the correct

treatment of the d.c. and Nyquist terms is given.

Symmetries

Defining the following cosine and sine transforms

~21rkP
= Z x. cos cos

j,k jk NM'

= Z xj, sin 2N sin 27 k

bP j k N M

(II.1)

CP = Z x.cos k Nsin 2!
j.,k N

and
d pj 2rkvd~v PV x. sin N _ Cos M

jk jk

it follows that

X = a -b +i(c +d ).

From equations (If.1) the symmetries such as

ap , = aPM_v = aN -p P = aN p M-P

can easily be derived, with corresponding relationships holding for the b , c p

and d P. An immediate consequence of the reality of the Xjk's is the relation

PV= xN-pM-P

and consequently that

SN-p M-v = PP

It also holds that since S is given by

S = (app - bpP) + (coy + d p)2 (11.2)

that

N-PP P M-P
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These symmetries combine to reduce the number of independent elements by a factor
of 2.

D.C. and Nyquist terms

The d.c. and Nyquist terms (corresponding to subscripts O, N- or M are usually

calculated as the real and imaginary parts of the X element. To estimate the

power in these components by equation (11.2) is incorrect. Assuming that the
d.c. and Nyquist components are stored in the real and imaginary parts of the
zero-th term the correct expressions for the powers are

2 + 2S = ov

S b 2  +d 2
N/2v C=b o

= a 2  + d2
Pvo VO Po

and 2Sv2 = bv +cvo
vM/2 PO Va

For v =0 the expressions are further contracted to

S = a2

00 00

and

S b b2

N/2 M/2 = 00

As a result of this decomposition and the symmetries, the number of independent

power terms in 1.
2
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Figures 1 & 2
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Figure 2. Frequency wavenumber plots
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Figure 3. Side lobe leakage into non physical region
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Figures 8 & 9
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Figure 8. Response function of maximally leaked real consinusoid

Figure 9. Frequency wavenumber spectrum for real data



WSRL-0162-TR

DISTRIBUTION
Copy No.

EXTERNAL

In United Kingdom

Defence Scientific and Technical Representative, London 1

Dr C. Hart (RN3 Div) Royal Aircraft Establishment, Farnborough 2

Dr D. Williams, AUWE Portland, Dorset 3

British Library Lending Division, Boston Spa, Yorkshire 4

In United States of America

Counsellor, Defence Science, Washington 5

Dr V.C. Anderson, MPL Scripps Institute of Oceanography,
San Diego 6

National Technical Information Services, Springfield Va 22151 7

Engineering Societies Library, New York NY 10017 8

Cambridge Scientific Abstracts, Riverdale Md 20840 9

In Australia

Chief Defence Scientist 10

Deputy Chief Defence Scientist 11

Superintendent, Science and Technology Programmes 12

Director, Joint Intelligence Organisation (DDSTI) 13

Navy Scientific Adviser 14

Superintendent, Central Studies Establishment is

Superintendent, RAN Research Laboratory 16

Dr A.S. Burgess, HMAS Watson 17

Defence Library, Campbell Park 18

Library, Aeronautical Research Laboratories 19

Library, Materials Research Laboratories 20

Defence Information Services Branch (for microfilming) 21

Defence Information Services Branch for:

United Kingdom, Ministry of Defence,
Defence Research Information Centre (DRIC) 22

Canada, Department of National Defence,
Defence Science Information Service 23

United States, Department of Defense,
Defense Documentation Center 24 - 35

New, Zealand, Ministry of Defence 36

Australian National Library 37

Prof. R.G. Keats, Maths Department, University, Newcastle 38

Dr A. Cantoni, Department Electronic Engineering, University,
Newcastle 39

4; "



WSRL-0162-TR

Copy No.

WITHIN DRCS

Chief Superintendent, Weapons Systems Research Laboratory 40

Chief Superintendent, Electronics Research Laboratory 41

Superintendent, Electronic Warfare Division 42

Superintendent, Radar Division 43

Senior Principal Research Scientist, Radar 44

Senior Principal Research Scientist, Marine 4S

Dr M. Lees, Jindalee Project Group 46

Principal Officer, Ionospheric Studies Group 47

Principal Officer, Tropospheric Studies Group 48

Dr R. Clarke, Ionospheric Studies Group 49

Principal Officer, Underwater Detection Group 50

Principal Officer, Signal Processing and Classification Group 51

Mr G.C. Mountford, Signal Processing and Classification Group 52

Dr A.L. Carpenter, Underwater and Detection Group 53

Mr A.P. Clarke, Signal Processing and Classification Group 54

Dr D. Kewley, Underwater Detection Group 55

Dr A.K. Steele, Signal Processing and Classification Group 56

Dr D.G. Cartwright, Signal Processing and Classification Group 57

Dr G. Gartrell, Signal Processing and Classification Group 58

Author 59 - 60

DRCS Library 61 - 62

Spares 63 - 68

4
I

4



Th ofiiaocmetspoue bthLaotrins of the DfneRsearch Centre Salisbury

Techica recrdsof scientific and technical wcrk of a permanent value intended for other

Technical intended primarily for disseminating information within the OSTO. They are

FMemoranda usually tentative in nature and reflect the personal views of the author.


