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Abstract

In this paper, we introduce a simple new set of techniques for
deriving symmetric and positive definite secant updates. We use these
techniques to present a simple new derivation of the BFGS update using
neither matrix inverses nor weighting matrices. A related derivation
is shown to generate a large class of symmetric rank-two update
formulas, together with the condition for each to preserve positive
definiteness. We apply our techniques to generate a new projected
BFGS update, and indicate applications to the efficient implementation

of secant algorithms via the Cholesky factorization.
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1. Introduction and Background

In 1965, Broyden [2] published two apparently equally reason-

able methods for generating Jacobian approximations J, ¢ R"*" in a

quasi-Newton method for solving F(x) = 0 whose basic step is

= - -1
Xp = X - d¢ F(xc),
RPN

where F : R" » Rn, X € Rn, and Jc € is nonsingular. The method

which bears his name works very well and consists in taking

T
3, =3+ (y-d.s)s , (1.1)
c —y—-
S's
where s = x,_ - X is the current step, and y = F(x+)-F(xc) is the

yield of this step. It is easy to show [7] that J_ is nearest JC
[+
Q(y,s) ={Je R

the generalized quotients of y by s.

in the Frobenius norm F among all matrices in

nxn:Js=y},

Broyden's other method does not work so well, but it seems just

as reasonable, since it is to choose

T
J =g 4 (y—Jcs)y Je (1.2)
+ c T
y Jcs

or, equivalently, -
(S-Jcly)yT

T
yy

-1 g1 , (1.3)
=t

1 in the Frobenius norm. These

the nearest matrix in Q(s,y) to J;
methods have basically the same good theoretical justifications.
Powell [17] and Greenstadt [15] defined symmetric analogs of

these methods for the case when F is the gradient of some nonlinear

functional f: R" > R. Now we are dealing with Hessian matrices, which

we will denote by Hc’ H+, and so it seems desirable to have the




approximation H_ inherit symmetry from Hc' Again it seems as reason-
1

able to minimize the change from Q(s,y) n {A:A=AT} to H; as Greenstadt
does, as to follow Powell and minimize the change to Hc from candidate
approximations in Q(y,s) n {A:A=AT}. Once more, the theoretical
justification is similar and good, but numerical experience favors
Powell's symmetric form of (1.1).

There are various reasons why it has been thought desirable to
maintain positive definiteness as well as symmetry in the sequence

of approximate Hessians and this is done, when possible, by the DFP

({41, [10]) update formula

(y-HCS)yT + y(y—HCS)T sT(y-HCS)y y' (1.4)

H, = H_+ T - 7 )

¢ y's (y's)

-1, Tyl

or -1 _ -1 oy v He ss! ;
Hy = Ho - =711 T !

Yy HY y's ;

4,,

and also by the BFGS ([3], [9], [13], [19]) formula ;]

4 -1 (s-H(':ly)sT + s(s-HEly)T yT(s-Hgly)s sT
H,®= =H + - 5
+ c T T 12 :
sy (s'y) ;
T
Hs sH T
or 4 =jH - S CLyYy (1.5) !
+ c T T : 4
S H.s y's :
;

Since sTy = sTH s for any H ¢ Q(y,s), it is obvious that a -
necessary condition for Q(y,s) to contain a positive definite matrix
is yTs > 0. It is well-known that if Hc is symmetric and positive {
definite, then yTs > 0 is sufficient to ensure that both (1.4) and ‘
(1.5) generate H+ that inherit both properties. We will give a very

simple short proof of this fact in Section 2.

Dennis and Moré [7] and Dennis and Schnabel [8] show that (1.4)




%

and (1.5) are again least change updates. In this case, (1.4) defines

the minimum change to H. to obtain H, e Q(y,s) n {A:A=AT}. The change

is measured by llw(HC-H+)w]h: where W is any nonsingular matrix for i
which W= M e Q(s,y). Update (1.5) defines the least change to :
H;1 from Q(s,y) n {A:A=AT} measured by HW'T (HEI-H;1 W In this
case, unlike the others, computational experience indicates that the

BFGS, which makes the least weighted change to the inverse of Hc’ out-
performs the DFP, which makes the least weighted change to Hc‘

These derivations are unsatisfying because they relate the good
Broyden (1.1) to the Tess successful DFP (1.4) a d the bad Broyden (1.3)
to the more successful BFGS (1.5). In Section 2, .2 will give a new
derivation of the BFGS directly from the good Broyden. This new deriva-
tion is invariably successful in the classroom. We also show how the
DFP is derived from the bad Broyden. In Section 3, we show how the new
derivation can be used to derive from the rank-one methods a larae class
of the symmetric rank-two secant updates that inherit positive defi-
niteness. We also use this same technique to obtain a relationship between
Oren's [16] sizing of the Hessian and hereditary positive definiteness.

It enables us to coerce Powell's symmetric Broyden formula, and all
the other rank two updates we derive, into having this desirable
property.

Section 4 is devoted to applying our technique to the derivation
from projected rank-one updates of the projected rank-two updates
of the type introduced by Davidon [5]. In particular, we derive a new

projected BFGS update from the projected Broyden update of Gay and

Schnabel [11]. 1In Section 5, we relate our derivations to an algorithm

of Goldfarb [14] for updating a Cholesky factorization of Hc’
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We hope that specialists will find the entire paper of interest,
but we believe that Sections 2 and 5 should be of interest to anyone
who teaches this material, since they constitute a quick and simple
way to derive the BFGS update from the Broyden update in a form that
leads directly to its Cholesky factorization implementation via the
update of the LQ factorizatioh. These methods are all the material

on updates that really needs to be taught in a general numerical

analysis course.
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2. The BFGS and DFP from the Good and Bad Broyden Methods

In this section, we will need the following very simple Temma
characterizing when a symmetric positive definite matrix exists in
Q(y,s) for y,s ¢ R". This lemma is quite easy, and it will form the
basis for our subsequent derivations.
Lemma 2.1: Lety, S ¢ Rn, s nonzero, and let Q(y,s) = (AR, As=y}.
Then Q(y,s) contains a symmetric positive definite matrix if and only if,
for some nonzero v ¢ R" and nonsingular J ¢ Rnxn, y=Jdvand v = JTs.

T is the

Proof: If v and J exist then clearly y = Jv = JJTS and JJ
symmetric positive definite matrix we seek.

Now suppose A is a symmetric positive definite matrix with
y = As. lLet A= LLT be the Cholesky factorization of A and set J = L

and v = LTs to compiete the proof.

If we have a symmetric positive definite approximate Hessian Hc
and we want to obtain H_, which inherits these properties as well as
the property of incorporating the new problem information by being in
Q(y,s), then the préceding lemma guides us to a solution. We probably
have a Cholesky factorization of Hc = LCLZ, and we know from the previous
lemma that the sort of H+ we desire exists if and only if we can find
a vandJ, such that y = J,vand v = JIs. It seems quite natural to
think of trying to obtain J, from LC, and in fact, we would hope to do
this without making a larger change to LC than necessary, in order to

preserve as much as possible of the information stored in Lc which has

been gathered as the iteration has proceeded. This motivates choosing

J+ by the following procedure.
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BFGS Procedure

nxn

1. Assuming we know Vv € Rn, find the J, ¢ R which is nearest LC in

the Frobenius norm and satisfies J,v = y.
2. Solve for v so that JIS = V.

The proof of the following theorem shows that the solution is the BFGS update.

Theorem 2.2: Let Lc e RN be nonsingular, HC =L LT, Y, S € Rn,

cc
s nonzero. There is a symmetric positive definite matrix H_ e Q(y,s)

-1 if and only if yTs > 0. If there is such a matrix, then the BFGS update
T

: H, = J,J, is one such, where T -
| (yof =2 Hos)L,'s)
J =L + s Hs (2.1)

e
T T
Tz S S Hcs
S Hcs

+
| and either the positive or negative square root may be taken.

Proof: Recall first from Lemma 2.1 that a necessary condition for the
update to exist is that there exist nonzero v ¢ R", and nonsingular

J, € R such that J,v =y and JIS = v. Therefore
- T
Vv = (JIS)T(J+1y) =5y
which shows that sTy > 0 is necessary.
Now we derive the BFGS update via the above procedure. If we knew
v, then the nearest matrix to LC that sends v to y is just the

Broyden update (1.1): in this setting,

T
AL v)

J, =L + y LCV'X__

f o T

Vv

Notice that this reduces the problem of determining n2 elements of

J+ to finding the n components of v. Now we use the condition that

(yTs-vTLIs)

; v = JIS = LZ S +-“’:7ﬁ7——-——v.
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This implies that v = a LIs for some scalar o, and so the problem
of determining the n components of v is reduced to finding the scalar a.
Plugging back in, we see that
T T
(y's - as Hcs)-a

uZSTH S
C

a =1+

or
2

Q

yTs/sTHcs.
Therefore if yTs > O,we have defined a symmetric and positive update
i in Q(y,s).
We have now proved everything except the easily verified
statement that H_ defined by (1.5) 1is identical to J+JI where

J+ is given by (2.1), no matter which sign is taken for the square root.

This derivation has the satisfying property of connecting the
good Broyden formula (1.1) and the BFGS method. Another alternative
in using Lemma 2.1 to derive a symmetric and positive definite
H, € Q{y,s) would be to first chose J, to satisfy

O (2.2)

J
and then solve for v so that

Jyv=y.
The proof of Theorem 2.3 shows that if we do this, and choose Jy in (2.2)

to be the bad Broyden update (1.2) to LZ, the solution is the DFP update.
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Theorem 2.3: Let L_, H , S, and y satisfy the hypotheses of Theorem 2.2.

c
There is a symmetric positive definite matrix H, € Q(y,s) if and only if

yTs > 0. If there is such a matrix, then the DFP update H, = J+JI is one

T
(fos -
yH 'y

Jd, = L_+ T
Y s

such, where

for either sign of the square root.

Proof: Let us return to the derivational proof of Theorem 2.2. If we
T

decide, given the intermediate vector v, that we will obtain J+ from
(1.2) via
T TT
T T (V'Lcs) Vil (2.3) ;
Lot TT ' 1
v Lc S
j
to satisfy (2.2), then the equation for y = J,v is i
vTv-sTch 3
y=d vl ( T )
c
sov=2g8 Lgly for some scalar 8 and plugging back in,
Ts
8 = [ -
y Hc y 1
Ts -1
and v = Lr—_—l— LC Y. (2-4)
y HSY

Again if yTs > 0,we have derived a symmetric and positive definite

update in Q(y,s). It is easily verified that if J, is defined by

(2.3) and (2.4), then J,J] is the DFP update given by (1.4).




3. Hereditary Positive Definiteness and Oren Sizing For Symmetric

Rank-Two Updates

In the last section, we followed two different tacks in our
derivations. Assuming that we had v, for the BFGS we updated Lc to J,,
and for the DFP, Lz to JI. Then in each case, we obtained v from a
requirement on the transpose of the updated factor. In this section,
we will generalize our derivations to include scaling matrices. The
BFGS derivation turns out to be largely invariant to scaling. On the
other hand, the generalization of the DFP derivation turns out to yield
a large class of symmetric rank two update formulas, including the
PSB in the unweighted case ,as well as the condition for each to inherit
positive definiteness from Hc’

Our second interest in this section is the relationship between
Oren's [16] sizing and hereditary positive definiteness of symmetric
rank-two updates. Oren's sizing consists of first multiplying Hc by
a constant 02 and then updating 02HC to H,. Our generalization of the
DFP derivation will lead naturally to a range of sizing factors 02
which make the PSB update of a sized positive definite matrix be
positive definite. A similar result holds for any update obtained
via the DFP derivation.

Let us consider first the "BFGS procedure" from the last section,

but with scaling matrices. We want H, = J+J+T and we assume we have

_ T . X . nxn .
Hc = Lch . Given nonsingular wL and wR in R, we consider the

procedure

1. Assuming we know v ¢ Rn, choose J+ to solve

min W (3,-L W, | (3.1)
J, € Qly,v) L7+ e TRTF

2. Solve for v so that JIs =y,




The BFGS update came from this procedure with wL = NR = 1. Note

that if we are approximating the Hessian, wL corresponds to a linear
transformation of the variable space by wiT, but wR has no natural

interpretation.

Tyl

It is well-known ([8], Corr. 2.3) that, for M = NR R

(y-L v)(Mv)T
J, =L +—&

* ¢ vTMv

(3.2)

solves (3.1) independent of wL. Thus, we can say that the BFGS update

results from the above procedure with any NL and M = I, Furthermore,

WR can be any unitary matrix without changing the result. It actually

turns out that the BFGS results from any W and any W, for which

L R
LZS is an eigenvector of M. We postpone this and the development

for general wR to the appendix since we can think of no reason to
choose any WR or M other than 1.

There would have been good choices of wL, e.qg., (NINL) e Q(s,y),

since this corresponds to scaling 9 = wLy and ? = w[Ts so that

§ = wiTs = w[T(WINLy) =Wy = ¥ and 3+ = | is feasible. While our BFGS

derivation was invariant under such scalings, the situation reverses

when we introduce scaling into the DFP derivation.

The generalization of the "DFP procedure" is to select nonsingular

matrices NL and wR, assume that we know v = Jlly, chouse JI to solve

. T.7
min [, (3°-L) gl (3.3)
J e Q(v,s)
and then solve for v from
y = d.v. (3.4)

Notice that in this case the role of the scaling matrices is reversed;
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» NR corresponds to a transformation of the variable space by wﬁl, while
wL has no obvious justification.

As before, we see that for M = (NRNE):I

(v-LTs)(Ms)T

* s
| : T _ c (3.5)
; J+ = Lc + T

s Ms !

A S 4 " _ VY iy <=

= . solves (3.3) just as (3.2) solves (3.1). Again the answer is independent
of NL, but this time it eliminates the scale matrix that we don't know
,; i how to choose. MWe will finish carrying through the second procedure for

general wR or M, but first we state the result.

Proposition 3.1: Let Lc’ H,» s and y satisfy the hypotheses of
Theorem 2.2. The result of the procedure outlined by (3.3), (3.4), and

(3.5) is
- (y-H_s) (M) T+(Ms) (y-H_s)T T (y-H_s)MssM

M, =30, =H +—=F T £ - S—s—, (3.6)
¢ s'Ms (s'Ms)

i

where J_ is given by (3.5) and

v = L;l(y+aMs) (3.7)
for either root a of ;
azSTMH;1M5+2asTMH;1y+yTH;ly—sTy = 0. (3.8) :
If
(sTMH::ly)2 > (sTMHEIMs)(yTHgly-sTy), (3.9)

then J+ is a real matrix and H, is positive definite.

Proof: Again we proceed in a derivational manner beginning with (3.5)

and then (3.4),

vTv-sTch

sTMs

- - 3.10
y = Jdwv= ch + (Ms) ( )




——
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Thus, for some a, y + aMs = ch. Direct substitution into (3.10) shows

that (3.4) is satisfied if and only if « is chosen so that

T

T -1
ys=vyvs (Lc

1

“1, (T -1, -1
y+aLc Ms) (Lc y+aLc Ms)

T

_ Tl
y'H,

1..2T

Ta- -1
y+2as MHC y+ta“"s MHc

Ms.

This is equivalent to o being a root of (3.8), which has real roots
if and only if (3.9) holds. Clearly, if v and J, are defined by a
real o, then H+ is positive definite. It is straightforward to show

that H_ is real in any case and is given by (3.6).

It is shown in [18] that the class of matrices (3.6) is
equivalent to the set of all symmetric rank-two updates that can
be represented as the difference of two symmetric rank-one updates.
It should also be noted that the scaling used above corresponds exactly
to the scaling used by Dennis and More [7] and Dennis and Schnabel [8]
in their least change derivations of the same class of updates.

Now we give the relationship of hereditary positive definiteness
to Oren's sizing. The proof is obvious.

Corollary 3.2: Let M and HC = LcLl be symmetric positive definite

matrices and let s, ¥y ¢ R" with sTy > 0. If o is any number for which

T,,~1y . Ty-1 To-1.12
2 (s MHc Ms)y Hc y - (s JHC y)

o} >

(3.11)

(sTMHglMs)yTs

then (3.6) applied to 02Hc = (oLC)(oLI) defines a symmetric positive
definite H_, (3.9) is a strict inequality for ozHc, v defined by (3.7)
for oLc is real, and J, defined by (3.5) is a real matrix with

I
H, = J,d,.

ke A ek b e Sidi e
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It is interesting to notc that if ¢° = 1 satisfies (3.11), then

H, inherits positive definiteness directly from HC, but that
T,-1
2 y Hc y . . o
¢ = —5—, one of Oren's recommended choices, always satisfies
y's
(3.11) and is independent of M and Wp-

We complete the section by specializing Theorem 3.2 to the PSB,

DFP, and BFGS formulas.

Corollary 3.3: Let Lc, HC, s,y satisfy the hypothesis of Corollary 3.2

o (I (YY) - (sTHly)?
and let o > T
(s Hc S)(y s)

Then the PSB update of ozHC,

(y-ozHcs)sT + s(y-vzHcs) sT(y-ozHcs)ssT
H+= c+ T - T2
s's (s's)
T

is a positive definite matrix, and H, = J+J+ , where

T T (v—cLIs)sT
J, = oLy + —S—>
s's

Lgl(y+a5),

T,-1 reTy=1 )2 (s T -1

SH 'y £/ {s H y s)(y He ly-o?s y)

T,-1
S HC S

are all real.

Proof: The proof follows from the quadratic formula and the fact that

(3.6) with M =1 = Wp is the PSB update.

As we discussed earlier, other than the identity, the obvious scaling

to try is M = (waE)'1 e Q(y,s). The result is the DFP formula. The

following is straightforward.




Corollary 3.4: Let Lc’ Hc, s, y satisfy the hypothesis of Corollary

3.2, and let 02 be any positive number. Then the DFP update H, of

oZHC is positive definite and

- T
H+—J+J+’ T
where —%;§T—-L;1y-oLIs yT
T_ T, WYHRY
J+=0L + c
c

YTS

The following corollary is not so obvious, but it is perhaps
the most interesting of all. It consists in applying a scaling from
[18] to obtain the BFGS update from the same derivation as the DFP
and PSB.

Corollary 3.5: Let LC, Hc’ s, y satisfy the hypothesis of Theorem 3.2.

-
MeQ [y:/li—u s1,s
€ (Y STH < c )

c

Then for any

and any scalar vy, (3.6) defines the BFGS update H, of H.- The BFGS

update of any 02HC is positive definite for any real o.

Proof: First notice that (3.6) is independent of scalar multiples
of M and then plug and grind. Take (2.1) with its unspecified sign

on the radical and equate its transpose to (3.5).

The interesting thing to note here is that, by taking any DFP
scaling M ¢ Q(y,s), the BFGS scaling is

M= 1 M+ f1--
T
1+ l:;[gii
STHCS

1
T )HC’
1 +1%L§_
S Hcs

which is a convex combination of the DFP scaling and the current

scaling. In fact, if the conditions of Dennis and More [6] for




g-superlinear convergence are met, it is easy to show that M

asymptotically approaches (M + HC)/Z.

|
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4. A Projected BFGS from the Projected Broyden Update

Davidon [5] modified the standard symmetric rank-two update
formulas in an attempt to satisfy the current secant condition H+s =y
without doing more than necessary damage to past secant conditions.

We will introduce some notation in order to state the problem. Let
{sl,...,sm} c Rn, assume s is linearly independent of the space spanned
by the si's, and consider the following problem:

T

given H. = L.Ll, s, y ¢ R" with y's > 0 find H, = J,J] such that

cc

Hys = yand Hs, =Hs., i=1,1,...,m (4.1)

csi
The s; can be interpreted as past steps and s as the current step.

Schnabel [18] proved that a solution is possible if and only if
(y-H$)Ts; =0, i=1,2, ...,m (4.2)

Gay and Schnabel [11] gave a projected form of Broyden's update
which satisfies (4.1) in the case when Hc and H+ are not required to

be symmetric. In this section we will use a form of Gay and Schnabel's

update in place of Broyden's update in the BFGS derivation of Section 2.

The result will be a new projected BFGS formula which agrees with
Davidon's version for quadratic functionals. Our formula will satisfy
(4.1) for every P that satisfies (4.2), but it will also have a fairly
sensible partial version of (4.1) for all the S

The procedure we will follow to derive the projected BFGS update
is the following. Once again we assume we have Hc = lCLI, and we

_ T
want H+ = J+J*.

Projected BFGS Procedure

1) Assuming we know v ¢ R", choose J, to solve

min I, - LCIIF
J, e Qly,v)
subject to (J+-L()LI 55




2) Solve for v so that JIS =y

This procedure is carried out in the proof of Theorem 4.5. It differs
from the "BFGS procedure" of Section 2 only in the addition of condition
(4.3). In Lemmas 4.1 - 4.4 we justify this condition. Essentially,
Lenmas 4.1 and 4.2 show that the condition (J,-L )L]s, = 0 is half
of a necessary and sufficient condition for any "reasonable" update
to satisfy
T T -

(J+J+'Lch)Si 0. (4.4)
The other half is (J+-Lc)Tsi = (0. Lemma 4.4 shows that the above
procedure is guaranteed to produce an H,_ = J+JI which satisfies (4.4)

whenever this is consistent with H,s = y. We will state the following

oy

Temmas in terms of matrices J_ and Lc and vector S5 for ease in
referring to them later, but the lemmas will contain explicit
hypotheses and no other assumptions, such as LC being lower triangular,

are meant to be implied by the notation.

Lemma 4.1: Let L, J, ¢ R, s, e R If

T,
(J+'Lc)Lcsi =0 (4.5) |
and
T. _
(J+-LC) sy = 0,
then
T 7
(J+J+-Lch)si = 0.

Proof: The proof follows from the identity:

T

J,J

+Y+

T. T T
- Lbe = (3L )01 ) + L (0,-Le)
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Lemma 4.2: Let the hypotheses of Lemma 4.1 hold, and assume 1in

addition that L is nonsingular. Then (4.7) and

rank (J+JI - LCLI) > 2 (rank(J+—Lc)) -1

implies that (4.5) and (4.6) hold. {

Proof: The proof will consist in showing that if (4.7) holds, then
either (4.5) and (4.6) hold or the hypothesized rank condition does

not hold. First we regroup terms in (4.8) to obtain
T Ty T T
(09,-L L) = 9 (3L T + (9, -LOL. (4.9)

We see immediately that if (4.7) holds, then (4.6) implies (4.5).

Now again from (4.8),

L)L s,

T T T - T 2 T
si(J J,-L L )Si II(J*-LC) siH2 + 251.(J+ ILes;

+ 4+ ¢ C

and so if (4.7) holds, then (4.5) and (4.6) are equivalent.
Now suppose that neither (4.5) nor (4.6) holds. Since L is

nonsingular, let k = rank(J+-Lc) = rank(LC(J+-LC)T). Again from (4.8),

rank(d,9]-L_L1) = 2k-(a+b),

where
s T ’
a = dim [( row space of J+-LC) n (row space of LC(J+—LC) )]
b = dim (z ¢ R" : (J+JI-LCLI)2 = 0 and (3,-L)"z = 0 = (3,-L )L]2).

Since we are supposing (4.7) but neither (4.5) or (4.6), b = 1. Now
we transpose (4.9) and obtain, from (4.7),

T

_ T
0= LC(J+-LC) s; + (J+-LC)J+si.

Using this and the fact that LC(J+-LC)Tsi=o because (4.6) doesn't

hold and Lc is nonsingular, we see that a = 1. Thus, rank
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(9,9;-Lelg) < 2k-2.

b The rank condition in Lemma 4.2 is required to exclude "unreason-

able updates" such as J, = Q - LC, Q orthogonal, which satisfy (4.7)
B without satisfying (4.5) or (4.6). In the case when J, is a rank-

one update to Lc we have the following easy corollary.

Corollary 4.3: Let Lc*l+’ s. obey the hypotheses of Lemma 4.2. If

i
_ T T . .
rank (J+-LC) =1, and JJ, = LCLC, then (4.7)is equivalent to (4.5)

\ and (4.6).

R FETEE TR TR T SR S TR T ST LT a—

Proof: From Lemma 4.2, (4.7) implies (4.5) and (4.6). Lemma 4.1 is

|
? the converse.
j

i j Now we show that we can expect the result of the Projected
BFGS Procedure to satisfy (4.6), and hence (4.7), for any S for
| which (4.2) is true.
Lemma 4.4: Let L_ e R™™ be nonsingular, J, e RPN s, Si» ¥ e R,
and let (4.5) hold. Set H_= L Ll and v = Jls. If (4.2) holds for
T. _ - a =
Sis then (y-LCv) S5 = 0. If J.v =y, rank (J+ Lc) 1, and

s'y = y'H_ly also hold, then (4.7) holds. ;

|
F Proof: First we note that

T T T
(y-HCS) S; - (y-LCV) S (LCV-HCS) S

T TAT

ST(J+‘LC)TL2519

and so (4.2) and (4.5) imply (y-LCv)Tsi = 0. If we assume that V=Y,

then
0= (y‘ch)TSi = VT(J+°LC)TSi’ (4.10)

an e AT oY e Ats - o e vk
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n T _ T ]
1, for some Wys Wy € R, (J+-LC) =W W, 4

1 i but since rank (J,-L)
and (4.10) becomes |

T T
0=v w1w251'

. T
Thus, either (J+-Lc)v 0 or (J+-Lc)

T T.T T T

-1 T - _ _ 1
then v = Loy and y's = (J,v) s=vids=vv=y

:
S5 = 0. IfO0-= (J+—Lc)v =y - ch, -4
H; ¥y, vihich contradicts 1
the hypothesis. This means that (4.6) must hold, and since we have

assumed (4.5), (4.7) must hold by Corollary 4.3. 4

Now we derive the new projected BFGS update. We Tet Gij denote ﬁ
the Kronecker delta.

Rnxn T

Theorem 4.5: Let L.« be nonsingular, H. = LCLC, and let

e e

{s,y,sl,...,sm} <R, s linearly independent of the snace spanned by

{sl,...,sm}. Assume without loss of generality that ?
c . L
SiHch = 6ij' Define . 5
S=s-1 s.(sH s;) E
i=1 ' ¢ {
[
. m T ?
(y-ah 3) (aL'3)
Set J=1L + c ¢ (4.11) -
+ T
c s'y
2 s'y . T
for o = ETH = and define H, = J+J+. Then
c
T — T
vl Hs s'H
H,= Hc + l%%} _ ET — ¢ , (4.12)
Sy S Hcs

- T . . -
Hys = ¥o (OLoLesy = 058 = 1,2,...,m and 3, is real if 513 » 0.

T
If (y-H s)'s. = 0 for any i = 1, ..., m - =
c j , M, then (H+ Hc)si = Q.
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Proof: The proof consists mainly of the derivation of update (4.12)
via the procedure outlined earlier.
From Theorem 2.1 of [11], the solution to step 1 of the projected

BFGS procedure is

=T
g, =L+ btviv (4.13)
¢ T
Vv
where
- T T T
V=V - iil Lcsi(v Lcsi)' (4.14)
Thus step 2 of the procedure requires that
T __(yTs-vTLZs)
vV = LCS +v — g (4.15)
v'v
which, by (4.14), implies
veatlse 1 osils (4.16)
c o, 1ci? )

for some scalars a«, Bi’ cees Bm' Now from(4.14) and SIHCsj = §,.,

1]
we see that VTLZSi = 0 for every i, so from (4.15) followed by (4.16),

we have for every i,

V = v-z, SO v = ar and we only need find « to have v and hence v. Note

TAT,T. _ TT. _ TAT, T
or
- T.\T
B; = (l-a)(Lcs) Lcsi.
s This allows us to rewrite (4.16) as H
- m m
- _ T T T,\T,T T T T, .
:_ V=a [Lcs— R Lcsi(Lcs) Lcsi] + z Lcsi(LCs) Lcsi Zar+az,
F i=1 i=1
: _
; where r and z are defined in the obvious way and r = LIs . Notice that
%

also that

—
1

since VTLIsi = 0 for all i.
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To find «, direct substitution shows that as in the proof of

Proposition 3.1, (4.15) is satisfied if and only if

sTy = vTv = aerr + ZarTz + sz
= aerr + sz. ,
Thus
T T, _ 2T T-— .
SYy-Z2z=uas LCLc s,
T, 0 T T2, 2T, =
S’y -151 [(Lcs) Lcsi] = s Hcs .
T, " Tiay2 - 2T, <
AR (s Hcs1) =o sHS,
i=1
STy =a?3SHS
c
and (!2 = st—'E— .
S HCS

Next we show that (4.13) reduces to (4.11). Using v = ar,
rTz = 0, rTr = EIHCE;and the value we have just found for az, :

Vv = arly = arT(ar+z) = olrly = sTy.

Also, by the definition of v, y,and z, and r = LCT§,

y-ch y-aLcr-ch

—_m T
y-oH s - z Hcsi(s Hcsi)

i=1

_y-—ch-S—
and so (4.13) becomes
(y-o.H g) (aLTg) !
J, =L+ < <

+ C STY ’

which is (4.11). Notice that « and J_ are real if yTs > 0. Equation

(4.12) s obtained by algebra from J,J,".

To complete the proof, notice that if 0 = (y—Hcs)Tsi hoids for

any s, then (H+-Hc)si = 0 from Lemma 4.4.
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It is straightforward to confirm that (4.12) agrees with Davidon's

projected BFGS formula when f is a positive definite quadratic func-
tion, but not necessarily otherwise. Schnabel is currently testing
an algorithm using the above projected BFGS update; the results will
be reported elsewhere. Finally, we note that in analogy to the
weighted DFP derivation of Chapter 3, an entire class of projected
rank-two updates can be derived using the procedure (3.3) - (3.4)
with the condition

(3,17,
added to (3.3).

R YT TR T P SRS A v
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5. Updating Cholesky Factors

Finally we discuss the efficient sequencing of Cholesky factor-

izations in algorithms that use the update formulas derived in this

paper. A1l the algorithms of this section have already been suggested

by Goldfarb [14] using the Brodlie, Gourlay, and Greenstadt [1] factored

form of the BFGS and DFP updates and the orthogonal decompositon update

ideas of Gill, Golub, Murray, and Saunders [12]. Our purpose is to

point out that they follow very naturally from the preceding derivations.

We will focus on the BFGS formula since the development for the

others is similar. We assume we have Lc’ the lower triangular Cholesky

factor of the current Hessian approximation, and that

yTS
T T
S el s (y -VsHs Hes)sL U (5.1)
+ c c
T T
yS S Hcs
sTHcs

from (2.1 Now we want the Cholesky factorization L+LI of H_ = J+JI.

However, (5.1) is an especially handy form for the algorithms of

[12] in which we are given

_ T
J+ = Lch + wz
or
_ T
J+ = LchVc + w2z
and find
J+ = L+Q+ (5.2)
or
J+ = L+D+V+, (5.3)

TR PR P, i
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respectively, in a small multiple of n2 operations. (Here Q and

denote matrices with orthogonal columns and D a diagonal matrix.)

Equation (5.1) is handy because since QC =V =1, the n2 work or

c
necessary to obtain sz or VZz as a first step to obtaining L, is

needed.

It is also unnecessary to accumulate Q+ or V+. From (5.2)

or (5.3)

_ T _ TT _ T
Hy = 9, = LQQL, = LL,y
or
_ T _ T, T 2T
H, = d,d, = LDV VDL =1LDL,

and so we have a cheap stable computation for the Cholesky or LDL

factorization of H, from the corresponding factorization of Hc'

v

dinarily

not

T
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Appendix: The scaled BFGS derivation

If we carry through the first derivation of Section 2 with scaling

matrices, then we consider:

1. Assuming we know v, choose J+ to solve

min W, (J.-L )W, |
J, e Qly,v) Lo TeRAF

2. Solve for v so that JIS =v.
The solution is independent of NL and depends on wR through

M= wﬁTwil. As noted in Section 3, step 1 gives

AN s il et a8

it

(y-LCV)(_Mv)T
J, = Lc t (A.1)
v My
and step 2 gives yTs-vTLTs
v = JIS = LZs + v ———7r——5L— (A.2)
v My 5
From (A.2),
Mv = alv-Lls) (A.3)
for some scalar a, and substituting this into (A.2)
T T
v = Lcs + (v-Lcs) s
which is satisfied if and only if
vTv = yTs # vTLZs. (A.4) ‘
Substituting (A.3) into (A.1),
(y-L_v)(v-Lls)
Jp= Lot . T, Tc
(v-Lcs) v
and so using (A.4) and doing some rearran~inn of terms, we find
that the solution to our procedure is
T (y-Hcs)wT *wly-H.s) (Y-HCS)TS wa (.5}
H, = J+-J+ = HC + T — - T e
w's (w's)



£
¥
|
|

where
A
W=y - ch (A.6)

and v satisfies

v = (1-(1/a)M) "1 LIS (A.7)

for some scalar o such that

vly = y's. (A.8)

If Lls is an eigenvector of M, we have that

( Ts 1/2 .
vV = —~x——> L.s
T C
S Hcs

and the solution is again the BFGS update. The reader can also
verify that if T,-1.01/2

y'H "y .
M=g 1+ (—C LI v 1Lc]
Yy s

for any positive definite H ¢ Q(y,s) and any positive scaler 3, then M
is positive definite and the DFP update results from (A.5-8) .n fact,

if M is any matrix of the form
- T ~1
M= 31 c H
where H is defined as above, and 81, 82 are positive scalars, then M
is positive definite and an update from the Broyden class results.

In general, if yTs > yTHgly, it can be seen from (A.6-8) that

W can have any direction, and we have the same class of updates as
we derived with the DFP derivation with scaling matrices. If

I +82L LC’

yTs < yTHEIy, we have a subset of this class.




