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Abstract

In this paper, we introduce a simple new set of techniques for

deriving symmetric and positive definite secant updates. We use these

techniques to present a simple new derivation of the BFGS update using

neither matrix inverses nor weighting matrices. A related derivation

is shown to generate a large class of symmetric rank-two update

formulas, together with the condition for each to preserve positive

definiteness. We apply our techniques to generate a new projected

BFGS update, and indicate applications to the efficient implementation

of secant algorithms via the Cholesky factorization.
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1. Introduction and Background

In 1965, Broyden [2] published two apparently equally reason-

able methods for generating Jacobian approximations J+ E R nn in a

quasi-Newton method for solving F(x) = 0 whose basic step is

x+ = x c - Jc
I1 F(xc),n n nR nxn

where F : Rn . Rn xc  Rn, and J c c R is nonsingular. The method

which bears his name works very well and consists in taking

T
J+- = Jc + (Y-JcS)sT  (11

Sss

where s = x+ - xc is the current step, and y = F(x+)-F(xc) is the

yield of this step. It is easy to show [7] that J+ is nearest Jc

in the Frobenius norm 11'1IF among all matrices in

Q(y,s) = {J E Rnxnjs =y},

the generalized quotients of y by s.

Broyden's other method does not work so well, but it seems just

as reasonable, since it is to choose

J~+ =Jc + (Y-Js)yTJ1 c c (1.2)

yTcs

or, equivalently, yyT
(s-J c yy (1.3)

j+1 = jl + y y

the nearest matrix in Q(s,y) to j3- in the Frobenius norm. These

methods have basically the same good theoretical justifications.

Powell [17] and Greenstadt [15] defined symmetric analogs of

these methods for the case when F is the gradient of some nonlinear

functional f: Rn R. Now we are dealing with Hessian matrices, which

we will denote by Hc , H+, and so it seems desirable to have the
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approximation H+ inherit symmetry from H Again it seems as reason-

able to minimize the change from Q(s,y) n A:A=A} to H as Greenstadt

does, as to follow Powell and minimize the change to Hc from candidate

approximations in Q(y,s) n {A:A=AT}. Once more, the theoretical

justification is similar and good, but numerical experience favors

Powell's symmetric form of (1.1).

There are various reasons why it has been thought desirable to
maintain positive definiteness as well as symmetry in the sequence

of approximate Hessians and this is done, when possible, by the DFP

([4], [10]) update formula

(Y-H s)yT + y(y-H s)T sT(y-H s)y yT
H H~ c c -c (1.4)H+ cT (yTs)2

H y yTH-1 T
or - -1 c c ss,H H-

c yTH ly y s
c

and also by the BFGS ([3], [9], [13], [19]) formula

+1~ ~ T 1 T(s-H-ly)sT + s(s-H-ly) yT(s-H-y1 sT

1 ' c i c y ) - y s H g y ) s s
s y (sy)

TH sH sH Tor H+ = H- c

H+s (1.5)

Since sTy = sTH s for any H c Q(y,s), it is obvious that a

necessary condition for Q(y,s) to contain a positive definite matrix

is yTs > 0. It is well-known that if Hc is symmetric and positive

definite, then yTs > 0 is sufficient to ensure that both (1.4) and

(1.5) generate H+ that inherit both properties. We will give a very

simple short proof of this fact in Section 2.

Dennis and Mor6 [7] and Dennis and Schnabel [8] show that (1.4)
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and (1.5) are again least change updates. In this case, (1.4) defines

the minimum change to Hc to obtain H+ C Q(y,s) n {A:A=AT}. The change

is measured by W(Hc-H+)WIJF where W is any nonsingular matrix for

which wTw = M c Q(s,y). Update (1.5) defines the least change to

H from Q(s,y) n {A:A:AT}measured by !IW-T(H c I - H+ )W-1 'F.  In this

case, unlike the others, computational experience indicates that the

BFGS, which makes the least weighted change to the inverse of Hc, out-

performs the DFP, which makes the least weighted change to Hc.

These derivations are unsatisfying because they relate the good

Broyden (1.1) to the less successful DFP (1.4) a d the bad Broyden (1.3)

to the more successful BFGS (1.5). In Section 2, e will give a new

derivation of the BFGS directly from the good Broyden. This new deriva-

tion is invariably successful in the classroom. We also show how the

DFP is derived from the bad Broyden. In Section 3, we show how the new

derivation can be used to derive from the rank-one methods a laroe class

of the synetric rank-two secant updates that inherit positive defi-

niteness. We also use this same technique to obtain a relationship between

Oren's [16] sizing of the Hessian and hereditary positive definiteness.

It enables us to coerce Powell's symmetric Broyden formula, and all

the other rank two updates we derive, into having this desirable

property.

Section 4 is devoted to applying our technique to the derivation

from projected rank-one updates of the projected rank-two updates

of the type introduced by Davidon [5]. In particular, we derive a new

projected BFGS update from the projected Broyden update of Gay and

Schnabel [11]. In Section 5, we relate our derivations to an algorithm

of Goldfarb [14] for updating a Cholesky factorization of Hc.
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We hope that specialists will find the entire paper of interest,

but we believe that Sections 2 and 5 should be of interest to anyone

who teaches this material, since they constitute a quick and simple

way to derive the BFGS update from the Broyden update in a form that

leads directly to its Cholesky factorization implementation via the

update of the LQ factorization. These methods are all the material -

on updates that really needs to be taught in a general numerical

analysis course.
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2. The BFGS and DFP from the Good and Bad Broyden Methods

In this section, we will need the following very simple lemma

characterizing when a symmetric positive definite matrix exists in

Q(y,s) for y,s n. This lemma is quite easy, and it will form the

basis for our subsequent derivations.

Lemma 2.1: Let y, s e Rn, s nonzero, and let Q(ys) = {AeRnxn: As=y}.

Then Q(y,s) contains a symmetric positive definite matrix if and only if,

n nxn T
for some nonzero v E R and nonsingular J R , y = Jv and v = J S.

Proof: If v and J exist then clearly y = Jv = jjTs and JJT is the

symmetric positive definite matrix we seek.

Now suppose A is a symmetric positive definite matrix with

y = As. Let A = LLT be the Cholesky factorization of A and set J = L

and v = LTs to complete the proof.

If we have a symmetric positive definite approximate Hessian Hc

and we want to obtain H+, which inherits these properties as well as

the property of incorporating the new problem information by being in

Q(y,s), then the preceding lemma guides us to a solution. We probably
have a Cholesky factorization of Hc = L LT, and we know from the previous

Cc

lemma that the sort of H+ we desire exists if and only if we can find

a v and J+ such that y = J+v and v = JTs. It seems quite natural to

think of trying to obtain J+ from Lc, and in fact, we would hope to do

this without making a larger change to Lc than necessary, in order to

preserve as much as possible of the information stored in L c which has

been gathered as the iteration has proceeded. This motivates choosing

J+ by the following procedure.
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BFGS Procedure
• n  Rn xn

1. Assuming we know v R, find the J+ E R which is nearest Lc in

the Frobenius norm and satisfies J+v =y.

2. Solve for v so that J s = v.

The proof of the following theorem shows that the solution is the BFGS update.

Theorem 2.2: Let Lc e Rnxn be nonsingular, Hc = LcLT , y, s e R
n ,

s nonzero. There is a symmetric positive definite matrix H+ e Q(y,s)

if and only if yTs > 0. If there is such a matrix, then the BFGS update

TH+ = J+J+ is one such, where T T T

Lys~~ H cs)(L cs)
+ =L s+ - TcHs (2.1)

s H sSTHc c
cc

and either the positive or negative square root may be taken.

Proof: Recall first from Lemma 2.1 that a necessary condition for the

update to exist is that there exist nonzero v E Rn, and nonsingular

J+ Rnxn such that J v = y and J Ts = v. Therefore

vT v_ T s)T J-1) s Tv v = (Jls)T d ly) - s~

which shows that sTy > 0 is necessary.

Now we derive the BFGS update via the above procedure. If we knew

v, then the nearest matrix to Lc that sends v to y is just the

Broyden update (1.1): in this setting,

J+=L 
+ (Y-Lcv)vT

2
Notice that this reduces the problem of determining n elements of

J+ to finding the n components of v. Now we use the condition that
,T T.T s

V = dTs = LTs +-YSVLcs)

+ c v Tv



4 -7-

This implies that v = a LTs for some scalar a, and so the problem

of determining the n components of v is reduced to finding the scalar a.

Plugging back in, we see that
(y s- % STH s)

a + T2sTHs c

c

or

2 =yT s TH s.

TTherefore if y s > O,we have defined a symmetric and positive update

in Q(y,s).

We have now proved everything except the easily verified

statement that H+ defined by (1.5) is identical to J+J+ where

J+ is given by (2.1), no matter which sign is taken for the square root.

This derivation has the satisfying property of connecting the

good Broyden formula (1.1) and the BFGS method. Another alternative

in using Lemma 2.1 to derive a symmetric and positive definite

H+ c Q(y,s) would be to first chose J+ to satisfy

T s = v (2.2)

and then solve for v so that

J+v = y.

The proof of Theorem 2.3 shows that if we do this, and choose J+ in (2.2)

to be the bad Broyden update (1.2) to Lc, the solution is the DFP update.
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* Theorem 2.3: Let L., Hc, s, and y satisfy the hypotheses of Theorem 2.2.

There is a symmetric positive definite matrix H+ e Q(y,s) if and only if
TT

yT s > 0. If there is such a matrix, then the DFP update H+ = JJ is one

such, where

T T+c
J+ L c +

ys

for either sign of the square root.

Proof: Let us return to the derivational proof of Theorem 2.2. If we
T

decide, given the intermediate vector v, that we will obtain J from

(1.2) via
(v-L Ts) v 

T 'LTTT TT
T T (v4 5 (2.3)J+ = Lc +

vL s

to satisfy (2.2), then the equation for y J+v is
vT-TLcv

y = J v = Lv+Lv ( vT 'T C )
+ c c vT LT

c

so v = B Lcy for some scalar 6 and plugging back in,c

T sC -1y

and v Tyc Lc1y. (2.4)

T
Again if y s > O,we have derived a symmetric and positive definite

update in Q(y,s). It is easily verified that if J+ is defined by

T(2.3) and (2.4), then J+J+ is the DFP update given by (1.4).
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3. Hereditary Positive Definiteness and Oren Sizing For Synnmetric

Rank-Two Updates

In the last section, we followed two different tacks in our

derivations. Assuming that we had v, for the BFGS we updated Lc to J+9
T T

and for the DFP, Lc to J+. Then in each case, we obtained v from a

requirement on the transpose of the updated factor. In this section,

we will generalize our derivations to include scaling matrices. The

BFGS derivation turns out to be largely invariant to scaling. On the

other hand, the generalization of the DFP derivation turns out to yield

a large class of symmetric rank two update formulas, including the

PSB in the unweighted case,as well as the condition for each to inherit

positive definiteness from Hc -

Our second interest in this section is the relationship between

Oren's [16] sizing and hereditary positive definiteness of symmetric

rank-two updates. Oren's sizing consists of first multiplying Hc by

a constant H2 and then updating a2Hc to H+. Our generalization of the

DFP derivation will lead naturally to a range of sizing factors a

which make the PSB update of a sized positive definite matrix be

positive definite. A similar result holds for any update obtained

via the DFP derivation.

Let us consider first the "BFGS procedure" from the last section,

Tbut with scaling matrices. We want H+ =j+j+ and we assume we have
Hc = Lc L cT

. Given nonsingular WL and WR in Rnxn we consider the

procedure

n1. Assuming we know v c R , choose J+ to solve

min II WL(J+-Lc)WRIIF  (3.1)
J+ E Q(y,v)

2. Solve for v so that JTs = v.

12.
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The BFGS update came from this procedure with WL = WR I. Note

that if we are approximating the Hessian, WL corresponds to a linear

transformation of the variable space by WLT , but WR has no natural

interpretation.

It is well-known ([8], Corr. 2.3) that, for M = WRTW R
(Y-LcV)(Mv)T

J+ Lc  vMv (3.2)

solves (3.1) independent of WL. Thus, we can say that the BFGS update

results from the above procedure with any WL and M = I. Furthermore,

WR can be any unitary matrix without changing the result. It actually

turns out that the BFGS results from any WL and any WR for which

Lcs is an eigenvector of M. We postpone this and the development

for general WR to the appendix since we can think of no reason to

choose any WR or M other than I.

There would have been good choices of WL9 e.g., (WLWL) E Q(s,y),

since this corresponds to scaling y = WLY and A Ts so that

A =-T -T T Y)= Y A
s= WL s = WL (WLWLY) = WLY and I is feasible. While our BFGS

derivation was invariant under such scalings, the situation reverses

when we introduce scaling into the DFP derivation.

The generalization of the "DFP procedure" is to select nonsingular

TTT
matrices WL and WR assume that we know v J= jy, choose J+T to solve

min WL(JT-L T WR11F' (3.3)
j T E Q(vqs)

and then solve for v from

y = j v. (3.4)

Notice that in this case the role of the scaling matrices is reversed;
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WR corresponds to a transformation of the variable space by WR1 while

W L has no obvious justification.

As before, we see that for M = (W WT)I

T TRR
(v-L s)(Ms)T~T LT + c(3.5)

J+ c sTMs

solves (3.3) just as (3.2) solves (3.1). Again the answer is independent

of WL, but this time it eliminates the scale matrix that we don't know

how to choose. We will finish carrying through the second procedure for

general WR or M, but first we state the result.

Proposition 3.1: Let Lc, H+, s and y satisfy the hypotheses of

Theorem 2.2. The result of the procedure outlined by (3.3), (3.4), and

S(3.5) is T)T sTyHS)sT MT (y-H cS)(Ms)T+(Ms)(y-H cS) sT(y-H s)MssTM

H+ + + Hc + sTs CsT s
= c s , (3.6)

where J+ is given by (3.5) and

v = L c(y+Ms) (3.7)

for either root a of

2sT = 0. (3.8)

c c cI
if

(sTMHcly)2 > (sTMHI Ms)(yTHcly-sTy), (3.9)

c c c
then J+ is a real matrix and H+ is positive definite.

Proof: Again we proceed in a derivational manner beginning with (3.5)

and then (3.4),
T T
v v-sTLcv (3.10)

y = J~v Lcv + (Ms) sTMs

.... ~ ~ cL T..... . ... .. .... .. .... ....... ... . ... . . ... .



-12-

Thus, for some (Y, y + aMs = L V. Direct substitution into (3.10) shows

that (3.4) is satisfied if and only if a is chosen so that

ys= vv= (_ ly+L 4MS)(L 4+LlMs)

T 1 T -1 2 T 1
y H y+2as MHI Y+a s MH IMs.

This is equivalent to a being a root of (3.8), which has real roots

if and only if (3.9) holds. Clearly, if v and J+ are defined by a

real a, then H+ is positive definite. It is straightforward to show

that H+ is real in any case and is given by (3.6).

.+

It is shown in [18] that the class of matrices (3.6) is

equivalent to the set of all symmetric rank-two updates that can

be represented as the difference of two symmetric rank-one updates.

It should also be noted that the scaling used above corresponds exactly

to the scaling used by Dennis and More [7] and Dennis and Schnabel [8]

in their least change derivations of the same class of updates.

Now we give the relationship of hereditary positive definiteness

to Oren's sizing. The proof is obvious.

Corollary 3.2: Let M and H = L L be symmetric positive definiteC:c cRn

matrices and let s, y c R with sTy > 0. If a is any number for which

T -1 T1 Tj
(s MH lMs)yTHc y - (sT11Hcy)22 c c c(3.11)

aY> T I1T
(s MHc Ms)ys

then (3.6) applied to a2Hc = (oL )(OL T) defines a symmetric positivec c
definite H+, (3.9) is a strict inequality for a 2Hc , v defined by (3.7)

for oLc is real, and J+ defined by (3.5) is a real matrix with

TH+ =J+J+.
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It is interesting to note that if o = 1 satisfies (3.11), then

H+ inherits positive definiteness directly from Hc , but that

2=yT -;12 yTH~y

a = T , one of Oren's recommended choices, always satisfies

(3.11) and is independent of M and WR.

We complete the section by specializing Theorem 3.2 to the PSB,

DFP, and BFGS formulas.

Corollary 3.3: Let Lc , Hc, s,y satisfy the hypothesis of Corollary 3.2

(st 2 TH- s)(y T H I ) - (sT H y) 2
and let > ( 1 T S) Then the PSB update of a2Hc ,(sTHcls)(y s)c

c

2 T + 2 s T 2 T
H+ = 2H (Y-02Hcs)s + s(Y-C,2HcS) ST(y- H cs)ssT

+ c 5T5  Tc +ss (s s)
is a positive definite matrix, and H+ J+J+T, where

T T (v-TLs)
J: aLc + ( s

c

sTH~ly + fsTH4l) 2 - (sTH Is)(yTH~ly-o 2sTy)

a s Hc Y - ,H-y c - c s)yHc Y- Sy)

are all real.

Proof: The proof follows from the quadratic formula and the fact that

(3.6) with M =I =WR is the PSB update.

As we discussed earlier, other than the identity, the obvious scaling

to try is M = (WRW) c Q(y,s). The result is the DFP formula. The

following is straightforward.
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Corollary 3.4: Let Lc , Hc  s, y satisfy the hypothesis of Corollary

3.2, and let a be any positive number. Then the DFP update H+ of
2H is positive definite and

TH+ = J+J+,:

T Tly
J+ aL
+ c Ty s

The following corollary is not so obvious, but it is perhaps

the most interesting of all. It consists in applying a scaling from

[18] to obtain the BFGS update from the same derivation as the DFP

and PSB.

Corollary 3.5: Let L H s, y satisfy the hypothesis of Theorem 3.2.

Then for any

:QTy H ,s)t sH s c]

and any scalar y, (3.6) defines the BFGS update H+ of Hc . The BFGS

update of any a2Hc is positive definite for any real a.

Proof: First notice that (3.6) is independent of scalar multiples

of M and then plug and grind. Take (2.1) with its unspecified sign

on the radical and equate its transpose to (3.5).

The interesting thing to note here is that, by taking any DFP

scaling ff E Q(y,s), the BFGS scaling is

+ 1 T) s)H
+ H s +

which is a convex combination of the DFP scaling and the current

scaling. In fact, if the conditions of Dennis and Mor6 [61 for
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q-superlinear convergence are met, it is easy to show that M

asymptotically approaches CM+ H C )12.
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4. A Projected BFGS from the Projected Broyden Update

Davidon [5] modified the standard symmetric rank-two update

formulas in an attempt to satisfy the current secant condition H+s =y

without doing more than necessary damage to past secant conditions.

We will introduce some notation in order to state the problem. Let

{Sl,...,s m Ic Rn, assume s is linearly independent of the space spanned

by the si's, and consider the following problem:

c LL Rn T T
Given Hc  L L, s, y R with y s > 0 find H+ = J+J+ such that

H+s = y and H+si 
= Hc i, i = 1, 1, ..., m. (4.1)

The si can be interpreted as past steps and s as the current step.

Schnabel [18] proved that a solution is possible if and only if

(y-Hcs)Ts i = O, i = 1, 2, ..., m. (4.2)

Gay and Schnabel [11] gave a projected form of Broyden's update

which satisfies (4.1) in the case when H and H are not required toc + enoreurdt

be symmetric. In this section we will use a form of Gay and Schnabel's

update in place of Broyden's update in the BFGS derivation of Section 2.

The result will be a new projected BFGS formula which agrees with

Davidon's version for quadratic functionals. Our formula will satisfy

(4.1) for every si that satisfies (4.2), but it will also have a fairly

sensible partial version of (4.1) for all the si .

The procedure we will follow to derive the projected BFGS update
= T

is the following. Once again we assume we have Hc  Ic Lc and we

want H+ = J+J T

Projected BFGS Procedure
Rn

1) Assuming we know v E , choose J+ to solve

min Il+ - L cII F

J+ F Q(y,v)

subject to (J+-L )L s = 0, i = 1, ... , m (4.3)
.~ C cL
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T
2) Solve for v so that J+ s v

This procedure is carried out in the proof of Theorem 4.5. It differs

from the "BFGS procedure" of Section 2 only in the addition of condition

(4.3). In Lemmas 4.1 - 4.4 we justify this condition. Essentially,
Lemmas 4.1 and 4.2 show that the condition (J+-L c)Lc si = 0 is half

of a necessary and sufficient condition for any "reasonable" update

to satisfy
jT LT -

(J+J _LcL csi = 0. (4.4)

The other half is (J+-L )Tsi = 0. Lemma 4.4 shows that the above
+ c T

procedure is guaranteed to produce an H+ = J+J+ which satisfies (4.4)

whenever this is consistent with H+s = y. We will state the following

lemmas in terms of matrices J+ and Lc and vector si for ease in

referring to them later, but the lemmas will contain explicit

hypotheses and no other assumptions, such as Lc being lower triangular,

are meant to be implied by the notation.

Lemma 4.1: Let L , J c R S E Rn. If
c +

(J+-Lc )L s i  0 (4.5)

and

(J+-L C)Ts = 0, (4.6)

then T T

(j+J+-LcLc)Si = 0. (4.7)

Proof: The proof follows from the identity:

T TTTT
JJ+ - LcLc = (J+-L)(J-L )T + Lc(J -L)T + (J+-Lc)LT. (4.8)
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Lemma 4.2: Let the hypotheses of Lemma 4.1 hold, and assume in

addition that Lc is nonsingular. Then (4.7) and

rank (J+J " L L- T 2 (rank(J+-Lc - 1+ + LL' +

implies that (4.5) and (4.6) hold.

Proof: The proof will consist in showing that if (4.7) holds, then

either (4.5) and (4.6) hold or the hypothesized rank condition does

not hold. First we regroup terms in (4.8) to obtain

(3 -_L LT)= ( L)T+( LLT(49++ cc) + c + L (4

We see immediately that if (4.7) holds, then (4.6) implies (4.5).

Now again from (4.8),

TJjT LT T 2  T Ts
si+J+-c c 'i = "I(+-c) i"2 + si J+ c )c i

and so if (4.7) holds, then (4.5) and (4.6) are equivalent.

Now suppose that neither (4.5) nor (4.6) holds. Since Lc is

nonsingular, let k = rank(J+-Lc) = rank(Lc (J+-LC) T). Again from (4.8),

jT LT
rank(J J-L L = 2k-(a+b),

where

a = dim [( row space of J+-L c ) n (row space of L c(J+-L C)T)]

b = dim {z E Rn: (3 JJTL LT)z = 0 and (JL)TZ 0 T -Lc)L Z1.

Since we are supposing (4.7) but neither (4.5) or (4.6), b 1. Now

we transpose (4.9) and obtain, from (4.7),

0 = Lc(J+-L) T s + (J+-LT)Ts

Using this and the fact that Lc(J+-Lc)T siO because (4.6) doesn't

hold and Lc is nonsingular, we see that a 2 1. Thus, rank
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( JTL LT) 2k-2.
+ + c c

The rank condition in Lemma 4.2 is required to exclude "unreason-

able updates" such as J+ = Q - Lc, Q orthogonal, which satisfy (4.7)

without satisfying (4.5) or (4.6). In the case when J+ is a rank-

one update to Lc we have the following easy corollary.

Corollary 4.3: Let L,J+, s obey the hypotheses of Lemma 4.2. If

rank (J.+-Lc) = 1, and J+JT e Lc L , then (4.7)is equivalent to (4.5)

and (4.6).

Proof: From Lemma 4.2, (4.7) implies (4.5) and (4.6). Lemma 4.1 is

the converse.

Now we show that we can expect the result of the Projected

BFGS Procedure to satisfy (4.6), and hence (4.7), for any s. for
1

which (4.2) is true.
Rnxn Rnxnn

Lemma 4.4: Let Lc e R be nonsingular, J+ F R s, Si g y c Rn,

and let (4.5) hold. Set Hc = L L and v = J s. If (4.2) holds forc c c +s f(.) od o

si, then (Y-LvTs =0 . If J v = y, rank (J = 1, and
T yTH-1cy+
s y e y H y also hold, then (4.7) holds.

Proof: First we note that

(Y-Hcs)Tsi - (y-LcV)Tsi  (Lcv-Hcs)Tsi

-(jT LT T
SL WS-LL s)Ti

and so (4.2) and (4.5) imply (y-L cv)Ts = 0. If we assume that J+v y,

then 0 = (y-Lcv) Tsi = vT (J+-LC) Tsi, (4.10)



-20-

but since rank (J+-L) = 1,for some w1, w2  Rn, (J +-L )T I w2 T

and (4.10) becomes
0 T T

0 = v Tw T s .

Thus, either (J+-Lc )v = 0 or (J+-Lc) s = 0. If 0 = (J+-Ic )v = y - LcV,

then v = L 1y and yTs (dv)Ts= vTT s = T which contradicts

the hypothesis. This means that (4.6) must hold, and since we have

assumed (4.5), (4.7) must hold by Corollary 4.3.

Now we derive the new projected BFGS update. We let 6.. denote

the Kronecker delta.

Theorem 4.5: Let Lc c R be nonsingular, Hc L LT, and let

{s,y,sl ...,s m c Rn, s linearly independent of the space spanned by

{s1,.. IsmI. Assume without loss of generality that

T
si H C s ij. Define

m
s = s s(s H Csi

i=1

mT
and y = y - F Hcsi(sTHc s).

i=1

(-rc)(aLT S)

Set J+L + c c (4.11) 

s y

fo a_ and define H+ J++ Then

T HssH

HH+L~ c ssHc+ c -Hc +- (4.12)
C s y sH s

Hs = y, (J+-Lc )LTi = Oi = 1,2,...,m and .3 is real if sTY > 0.

If (y-Hcs)Ts. = 0 for any i M , ... , m, then (H+-Hc )si = 0.

L1
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Proof: The proof consists mainly of the derivation of update (4.12)

via the procedure outlined earlier.

From Theorem 2.1 of [U1],the solution to step 1 of the projected

BFGS procedure is

J =L + (yLvC (4.13)
+ C T

vTv

where
m .T TT

= v - E L si(v Lcsi). (4.14)i= i

Thus step 2 of the procedure requires that

T T T
T (y s-v L CS)

v = Lcs + v ( Tv (4.15)

which, by (4.14), implies

T m T
v L c 5+ a iLcsi' (4.16)

i=1

for some scalars a, ai, ... , m . Now from (4.14) and sTH s i

we see that vT LcSi = 0 for every i, so from (4.15) followed by (4.16),

we have for every i,

(L Ts)T L Ts vT Ls i  a(L Ts)T L Ts.+.,C ci c c ci i'

or
Bi:(I-a)(L TS)T Lcsi

This allows us to rewrite (4.16) as

m mT T T iLT )TLTii ar+zv [Lacs- E Lcsi(L cs)TL csi] + E Lsi(L~c)TLs - r + zi=1 i=1

where r and z are defined in the obvious way and r : L s . Notice that
C

v = v-z, so v = ar and we only need find a to have v and hence v. Note

also that
T -T

rTz = z/ =0,
since v TLTs i  0 for all i.

ci
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To find a, direct substitution shows that as in the proof of

Proposition 3.1, (4.15) is satisfied if and only if

s y v v a r r + 2arTz + z z

2 T zTz
a r +zz.

Thus

s y-zz= T s L LST ,

c c
T _ m TTsT] 2 = 2 -TH

s y E [(L S) L S
i=1 c

T m T 2 =2-THs y F (sHcs i)s c Hc
i=1

s T y a2 -THc -
T-_2-

and a2 = s

s-TH -

C

Next we show that (4.13) reduces to (4.11). Using v= ar,
T T -T~cn 2
r z = r r = sTHc sand the value we have just found for a

vTv = arv (= crT(r+z) = a r r = s y.
Also, by the definition of v, y,and z, and r L c s,

Y-Lc v= y-L cr-L cZ

m T
= y-cH s - E H s.(s H si)c i=i ci c

= Y-aH cS

and so (4.13) becomes
T

(Y-H cS)(L Ts)
J+ c + c

which is (4.11). Notice that (a and J+ are real if yTs > 0. Equation

(4.12) is obtained by algebra from j+j+T

To complete the proof, notice that if 0 = (y-Hc s)T si holds for

any si, then (H+-Hc )si = 0 from Lemma 4.4.

!c
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It is straightforward to confirm that (4.12) agrees with Davidon's

projected BFGS formula when f is a positive definite quadratic func-

tion, but not necessarily otherwise. Schnabel is currently testing

an algorithm using the above projected BFGS update; the results will

be reported elsewhere. Finally, we note that in analogy to the

weighted DFP derivation of Chapter 3, an entire class of projected

rank-two Updates can be derived using the procedure (3.3) - (3.4)

with the condition

(J+-L)Tsi = 0, i m ,

added to (3.3).
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5. Updating Cholesky Factors

Finally we discuss the efficient sequencing of Cholesky factor-

izations in algorithms that use the update formulas derived in this

paper. All the algorithms of this section have already been suggested

by Goldfarb [14] using the Brodlie, Gourlay, and Greenstadt [1] factored

form of the BFGS and DFP updates and the orthogonal decompositon update

ideas of Gill, Golub, Murray, and Saunders [12]. Our purpose is to

point out that they follow very naturally from the preceding derivations.

We will focus on the BFGS formula since the development for the

others is similar. We assume we have Lc, the lower triangular Cholesky

factor of the current Hessian approximation, and that

T(- s H s)sTLc

J L + (Y Hc c = Lc + wzT (5.1)J+ LcT Tc

sT sTcs
TT

from(2.1 Now we want the Cholesky factorization L+L of H+ = T

However, (5.1) is an especially handy form for the algorithms of

[12] in which we are given

T
J+ = LcQ + wz

or
J+ = LcDcV c + wz 

T

and find

J+ = L+Q+ (5.2)

or

J+= L+D++, (5.3)
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2
respectively, in a small multiple of n operations. (Here Q and V

denote matrices with orthogonal columns and D a diagonal matrix.)

Equation (5.1) is handy because since Qc = Vc = I, the n2 work ordinarily

necessary to obtain Q z or VTz as a first step to obtaining L+ is not

needed.

It is also unnecessary to accumulate Q+ or V+. From (5.2)

or (5.3)

H+ = J T L Q QTT TL LT
++ + +.++. + +

or

H - J T L D V VTD LT = L D 2 LT

and so we have a cheap stable computation for the Cholesky or LDLT

factorization of H+ from the corresponding factorization of Hc -
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Appendix: The scaled BFGS derivation

If we carry through the first derivation of Section 2 with scaling

matrices, then we consider:

1. Assuming we know v, choose J to solve

min IIWL (J+- Lc)W 21 F
J+ Q(y,v)

2. Solve for v so that jTs = v.

The solution is independent of WL and depends on WR through
LT -1

TM W wR . As noted in Section 3, step 1 gives

(y-L cv) (MV)T
SL + Mv

and step 2 gives T(/T T.T .Ts= +M _ys-v__cS (A.2)
+ c

From (A.2),

Mv = a(v-LTs) (A.3)
c

for some scalar a, and substituting this into (A.2)

T TT
T LTs ( - Lc

v = L s + (v - L C ) vTV - S
c

which is satisfied if and only if

vTv = yTs * vT LS. (A.4)

Substituting (A.3) into (A.1),

T(y-L v)(v-L s)
J+ =L c + T=L ft C C)

(v-Lc~s)v

and so using (A.4) and doing some rearranrinn of terms, we find

that the solution to our procedure is

(y-H cS)wT + w(Y-c c) (y-Hcs) T ww (A.5)
H+ = J+.] + = + Hc (A.)

.. (w s)
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where
A

w =y -L v (A.6)
C

and v satisfies
T

v(I-(I/a)M)-I L c s  (A.7)

for some scalar u such that

v Tv = yT s. (A.8)

If LTs is an eigenvector of M, we have that

T 1/2

v=(L L~sV=sTH s
and the solution is again the BFGS update. The reader can also

verify that if 1 1/2
H [I ( c Y T 1

[I + TL L

for any positive definite H E Q(y,s) and any positive scalkr , then M

is positive definite and the DFP update results from (A.5-8), n fact,

if M is any matrix of the form

M = BI + a2 LTHl I L
1 c c

where H is defined as above, and a1, $2 are positive scalars, then M

is positive definite and an update from the Broyden class results.

In general, if yTS > yTHcly, it can be seen from (A.6-8) that

w can have any direction, and we have the same class of updates as

we derived with the DFP derivation with scaling matrices. If

yTS < yTH-ly, we have a subset of this class.i c


