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SUMMARY

This report describes the results of our efforts on AFOSR Contract F49620-

77-C-0076, Numerical Model Development for Laser Cavity Flowfields. The research

was aimed toward developing a technique for automatically varying (in time) the

one-dimensional spatial finite difference mesh over which certain time dependent

partial differential equations were discretized. In particular, the variable

mesh points should adapt themselves to the solution that is being marched out in

time, i.e., they should be closely spaced in regions where there are large

spatial gradients and widely spaced where the solution is smooth. Further, this

automatic mesh variation method is to be designed to be used in conjunction with

the GEARIB implicit integration package, which was used successfully for a variety

of fixed mesh discretizations during the first two years of this contract.

(GEARIB is used march out in time the solution of the system of ordinary

differential equa 'ons resulting from spatially discretizing the governing PDE(s).)

The partial differential equation that was used as a test bed for this

automatic mesh variation was Burger's equation. Numerical techniques (using

GEARIB on a fixed mesh) for solving this PDE were developed during the first year

of this contract. Although Burger's equation is simple in appearance, its

solutions have many of the characteristics (nonlinearity, wave-like propagation,

diffusive effects, and steep gradients) that are found in solutions of laser flow

equations, which are the problems that the methods developed herein are ultimately

intended for.
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I. ADAPTIVE MESH FOR BURGER'S EQUATION

A. Introduction

In the report on the results of the first year of this study, Reference [1],

a detailed discussion was given in Section II regarding the choice of an

integration method to march out the solution in the time-like coordinate. It was

concluded that an implicit integration method would be required to efficiently

handle differential systems containing the strong stiffness effects due to

chemistry and radiation present in the numerical solution of laser flows. It was

also concluded that the GEARIB package [2], which embodies a family of implicit

methods and which is also designed to treat implicit differential-algebraic

systems was well suited to our applications.

During the second year of this study, numerical difficulties arose in the

treatment of the laser flow equations because the onset of lasing was accompanied

by extreme spatial gradients in some of the dependent variables being integrated.

The location of these gradients is unknown a priori, and may in general vary in

time. In order to obtaii solutions, a trial and error mesh selection process was

used; pick a mesh, solve the problem, refine the mesh based on the current solution,

solve the problem again, etc. The only way to avert such an iterative procedure

would be to use a uniformly fine spatial mesh. Such a mesh adequate to accommodate

the gradients of realistic laser flows would be computationally prohibitive. Thus,

it became apparent that a successful numerical treatment of such flows would

require a finite difference mesh that automatically adapts to the solution.

This requirement for an adaptive spatial finite difference mesh has been

cited previously in the literature. For example, Dwyer and Sanders [4] in their

study of unsteady combustion phenomena suggest an approach to an adaptive finite

difference mesh but do not actually use it. (All the results they present are

for uniform meshes.) Chong [5] uses adaptive meshes in his study of Burger's

equation, which has solutions with steep spatial gradients. Although he obtains

good results, his approach does not seem practical for our applications. The

main reason is that Chong adjusts his finite difference mesh at discrete times,

which would mean in our case that the GEARIB integrator would have to be restarted
1-1
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after each such adjustment. This is a rather severe penalty to pay especially if

GEARIB had been operating with a high order method prior to the rediscretization,

since restart begins with a first order method and, consequently, a rather small

step size. A similar approach has been taken by Miller, Morton, and Baines [6] in

a moving boundary problem governed by a generalized one-dimensional diffusion

equation.

In the approach described in this report, the rediscretization is done on a

continuous basis, and so there is no need to restart the integrator (as there is

when the spatial mesh is altered at discrete times). A further advantage of this

approach is that moving boundary problems are readily accommodated.

B. Discretization of Burger's Equation

One of the simplest nonlinear PDE's which contains both convective and

diffusive effects is Burger's equation,

T _ 2 TT
=t = - yT -LT (1)

where and y are constants which can be varied to emphasize the diffusive or

convective contributions. Because Burger's equation has known exact solutions

which are traveling waves with very steep fronts (like shock waves) it has been

a popular equation to test numerical schemes on. In fact, during the first year

of this study a detailed numerical treatment of this equation was undertaken

(see Chapter IV of Schimke, Rushmore, and Zelazny [1] for details). Because of

this experience with Burger's equation, it seems an ideal test bed for our

proposed adaptive mesh scheme.

As in Reference [1], we begin by introducing the auxiliary variable, v,

v T (2)

Then (1) can be replaced by

DT ' - yvT (3a)

O V v - T (3b)

1-2
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The boundary conditions are assumed to be separated but otherwise quite

general, i.e.,

g1(TlV 1,t) = 0, (TNVN0 = 0 (4)

where gl and gN are arbitrary functions continuous in t, and the subscripts 1

and N refer to the left and right boundaries, which may be moving in time.

Now assume a finite difference mesh with nodes at xl , x2  ... , XN (which
are in general functions of time), with Ti and vi associated with xi, and

H i (xi+ l - xi). Now since Ti corresponds to a mesh point which is moving, the

rate of change of Ti in time (i.e., Ti) is not the same as [3T/t]x" in (3a).

The relation between these two quantities is: 1

T]xi = Ti i _ (5)

Now the xi are to be determined automatically during the course of the

problem so we must establish conditions which will uniquely specify them. For

x and xN we assume,

xI = fl(t), xN = fN(t) (6)

where fl and fN are prescribed functions of time. f1 and fN could be readily

generalized to be functions of the dependent variables without complicating the

numerical process. Such f, and fN are required in certain types of moving

boundary problems, but we will not consider them here.

To complete the system of equations, relationships specifying the interior

x must be established. This specification is the real crux of the numerical

problem. We certainly expect that a suitable mesh spacing should vary inversely

with the local gradients, i.e., the local values of vi. Such a relationship can

be written:

(xi+ - xi) = F(vivi+l) (7)

1-3
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where F is a function that can be specified in various ways and A is a positive

function of t but is constant in x. A in effect provides a uniform scaling of

all the (xi+ 1 - xi), i = 1,N-1 so that the mesh "fits into" the region [xl,xN].

F in (7) could have been made a function of Ti and Ti+ 1 (in addition to vi and

Vi+l) without introducing any essential complication, but we have had no occasion

to do so during the course of this study. The relation (7) involves values at

two adjacent mesh points. Why not allow a more general relation involving three

(or more) consecutive mesh points? This would be contrary to the philosophy which

led to the introduction of the auxiliary dependent variable, v, in equation (2).

Introduction of v allows a simple differencing scheme to be employed for the

partial differential system (10). This differencing scheme is unaffected by mesh

nonuniformity, requires no modification next to boundary points, and results in

a Jacobian matrixwith a narrow bandwidth.

According to equation (7), (x i+ - xi) is given explicitly as a function of

A, vi , and vi+ I . In practice, it is more convenient to specify (xi+ 1 - xi)

implicitly. Instead of (7) we use

(xi+l - xi) = F(xi ' Xi+l' viV ) (8)

A specific example of (8) used in the course of this study is:

(x i+1 -x) 4- ~ V) (9)vi+ 1  -vi) + :

x i+l xi
2 2

The squared term in (9) is an approximation to ,2T/ix2. Thus, (9) requires that

the mesh become finer in regions of large 2 T/,x 2 , a reasonable criterion. The

positive constant c is present to prevent the mesh 3pacing from becoming arbitrarily
2 2large in regions of small ,,2T/; x . Note that F(xi , xi+, vi , Vi+l) as defined in

(9) is always positive, thereby guaranteeing that consecutive mesh points will

always be distinct. (A can never vanish.)

*Implicit integration methods (as in GEARIB) require the formation and factorization

of the Jacobian matrix of the differential system.

1-4
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When A was introduced in (7), it was described simply as a scaling factor.

But it also has a "geometric" interpretation. Rewriting (8) and summing over

the (N-I) mesh intervals between xI and xN we get:

N-1 
xN(N-i F(xixi+l'Vi'Vi+l)(Xi - xi) (Nl JN F(xix+i'vi'v+i )dx (10)
x1

Now F(xixi+i,vivi+l) is normally selected to be some measure of the "variability"

of the solution within [xi,x i+1. For example, in (9) as F-+O

ii2

F = ~ T(11)

Thus, A is a measure of the average variability over a mesh interval.

Now differencing the partial differential system (3) in an obvious way,

using (4), (5), (6), and (8), and adopting the notation,

Hi  xi+ 1 - xi  (12a)

vij - (vi  + vj)/2 (12b)

Tij (T i + Tj)/2 (12c)

we obtain the differential-algebraic system on the following page.

Notice that product terms such as vT in (3a) and Av in (5) have been

approximated as products of sums in (13) (instead of sums of products). For

example, on mesh interval i, we wrote the term vT as

vi,i+1 Tiji+ 1 = (v i + vi+i)(T i + Ti+l)/4 instead of (viT i + vi+1 Ti+l)/2.

Numerical experiments were performed using both formulations. The results,

although not conclusive, tended to favor the product of sums formulation.

Possibly the reason is that the effect of spurious high frequency oscillations

(especially in vi) tend to be negated when using products of sums.

I-5
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Although the matrix multiplying the derivative vector is singular, this

presents no problems for the GEARIB integrator. (Similar singular differential-
algebraic systems were solved during the first two years of this study.) One

special characteristic of system (13) which was not present in the numerical

treatment of Burger's equation on a fixed mesh, is that the Jacobian of the system

is no longer strictly banded. The last column has many non-zero elements. Also,

certain variants of system (13) having many non-zero elements in the last row of

the Jacobian have been tested. Consequently, it was necessary to modify GEARIB

(which is tailored to systems with strictly banded Jacobians) to account for

the possibly full last row and column. The GEARIB LU decomposition routine was

modified so that the upper (N-l)x(N-l) is treated as a band matrix and special

formulas are used for the last row and column of the L and U factors, respectively.

With this modified LU decomposition plus a few changes within some of the other

routines of the GEARIB package, such systems with "almost" banded Jacobians are

efficiently integrated.

C. Specification of Boundary and Initial Conditions

In Section IV.C.l of [] an extensive discussion is given regarding the

specification of boundary and initial conditions when solving Burger's equation

on a fixed mesh. It is shown that it 4s important to choose initial and boundary

conditions so that all strictly algebraic equations are satisfied initially. On

a fixed mesh, this is easy to do for the boundary conditions

vT = gl(t), T N =gN(t), or (14a)

TI = gl(t), vN = gN(t) (14b)

Then the algebraic equations arising from the discretization of (3b), i.e.,

(vi + Vi+l) = (Ti + Ti+l)/H i  (15)

are satisfied by solving (15) recursively for vi (assuming Ti is prescribed which

is the usual case). For boundary conditions other than (14), the initial

satisfaction of all algebraic equations is less straightforward. The additional

I-7
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complications arising out of such boundary conditions and methods for dealing

with them are detailed in [1].

For variable meshes, there is the additional set of algebraic equations

obtained by writing (8) at the mid points of each mesh interval, i.e., equations

(5), (8), ..., (N-2) of system (13). These equations (e.g., (9)) are nonlinear.

Consequently, their initial solution poses more of a problem. In view of this,

all of the examples described in this report use boundary conditions (14a)* in

order not to compound the problem of determining initial conditions and therefore

deter us from our main goal of devising a reliable scheme for automatically

adapting the finite difference mesh to the solution as it evolves in time.

Another assumption that is made in all the examples of this report is that

the initial values of T are given by a function of x which is continuous and

piecewise differentiable. The method for determining initial conditions for

xi and vi described in the following is based on this assumption. (A discussion

of the problem where the initial Ti are assigned values at discrete x i is given

at the end of this section.)

A modified Newton method was used to solve the system of nonlinear equations

associated with the determination of the initial conditions. The GEARIB package

is designed to solve differential-algebraic systems, which includes purely

algebraic systems. Thus, the solution for the initial conditions can be done

within the framework of GEARIB. Certain changes to the standard GEARIB scheme

were found useful to increase the likelihood of convergence.

For the determination of the initial conditions, the governing system is (13)

with the matrix on the LHS set to zero and with equations (3), (6), ..., (N-4)

replaced by

0 = T. - T(xi) (16)

*(14a) was chosen over (14b) since our sample problems all have wave-like solutions

which travel in the positive x-direction. Consequently, the "upstream" boundary
condition tends to have a less important effect on the solution, especially when the
wave impinges on the downstream boundary. Thus, we have prescribed the more usual
condition (on T rather than v) at the downstream boundary.

I-8
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where T(x) is the function defining the initial values of T as a continuous

function of x. To distinguish the iterations for the initial conditions within

GEARIB, an artificial time starting with -50 and incremented by 1 on each call

to GEARIB was established. (Integration of the actual differential system

began at t=O.) This allows 50 iterations for the initial conditions to converge.

Convergence typically took place within 3 to 12 iterations. The problem was

aborted if 50 iterations did not produce convergence.

GEARIB requires a number of user coded routines to define the system to be

solved. Within each of these routines there is at least one test on t. If t

is negative, branches are taken to define the system for the initial conditions;

for t positive, branches are taken to define system (13). Error tests, convergence

tests, and the Jacobian re-evaluation criterion in GEARIB are modified so that

only one Newton Iteration (with a newly evaluated Jacobian) is performed for each

call to GEARIB when solving for initial conditions. (Testing for convergence

of the iterations is performed in the calling program.)

The specific steps of the initial conditions iteration procedure are as

follows:

1. Set time to -50 and step size to 1.

2. Choose xi to be equally spaced on the interval [X1,XN].

3. Evaluate Ti from (16).

4. Solve for vi recursively using (15).

5. Solve for A using

N-1

A = (XN - xl)/i ll/F(xi,xi+l,vi,vi+l)}

where F is as in (8). (Alternatively, equation (10) could be used for A.)

6. Place the values of all the dependent variables (Ti. vi, xi, A) in a "save"

vector.

7. Call GEARIB to do one Newton iteration.

I-9
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8. Check to see whether any mesh interval (xi+ l - xi) has decreased by more

than 20% during the Newton iteration. If so, relax the Newton iteration

by performing a uniform linear interpolation (for all xi) between the

current and preceding values so that the maximum decrease in any mesh

interval is 20%.

9. Evaluate Ti from (16).

10. Solve for v. recursively using (15).
1

11. Solve for A as in Step (5).

12. Test for convergence, i.e.,

3N+l /AY \2 2
S< [(3N+)EPS] 

2

j=l \YNj i

where

i) The summation is over all the dependent variables (Ti, vi , xi , A).

ii) AYj is the difference between the current and preceding (at the

beginning of Step (7)) values of the jth dependent variable.

iii) YNj is the "normalization" factor for dependent variable j. It

is the maximum value of Yj occurring during all of the preceding

iterations, but it must be at least 0.01.

iv) EPS is the same accuracy criterion used for the conventional GEARIB

integration.

13. If the iteration has converged go to the beginning of the conventional

integration.

14. Test to see if the maximum number of iterations (=50) has been exceeded

or if there is an error return from GEARIB. If so, then abort.

15. Go to Step (6).

As mentioned previously, the principal focus of the work described in this

report was the study of how the variable mesh adapts itself to the evolving solution.

Consequently, the emphasis in the initial condition iteration scheme was on the

assurance of convergence rather than on efficiency. This is the reason for the

I-10
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conservative relaxation criterion of Step 8 and the re-evaluation of the Newton

matrix on each iteration. Despite these safety factors, the time required for the

determination of initial conditions was generally an insignificant fraction of the

total run time.

What about the commonly occurring situation where the initial values of Ti

are prescribed at preselected values of xi? The algebraic equations (15) could

be satisfied as before by solving for the vi recursively. However, equations (8)

could not be satisfied. A way out of this difficulty would be to generalize (8)

so that the function F would be defined somewhat differently on each mesh interval,

but in such a manner that Fi - F with increasing time. If F specifies the

"optimal" distribution of the xi , then initially and for some time the xi
distribution actually used would be suboptimal, but this cannot be avoided.

All of the F definitions used during this study contain a parameter 6, e.g.,

equation (9). An easy way to implement the scheme just described would be to

preselect A and then replace c by cio so that (8) would be exactly satisfied on

each interval. Then define

Ei  = Cio e-at + E(l 
e-at)

where a is some positive constant to be determined; probably by experiment.

D. Specification of Finite Difference Mesh Spacing

As noted previously, the principal difficulty of this study is the selection

of the function F(xi,xi+ 1,Viv i+l) of equation (8). To motivate this selection

consider the spatial discretization error when (3a) is written at the mid point

of each mesh interval, i.e., equations (3), (6), ..., (N-4) of system (13).

(Ti + Ti+l) - (v, + vi+l)(Xi + Xi+l ) / 2

26(vi+ l - vi)/H i - y(vi + Vi+l)(T i + Ti+l)/2 (17)

Now expand each term of (17) about the midpoint cf the mesh interval. Quantities

associated with this midpoint are given a subscript m. Apostrophes denote a/ x.

I-1l
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2 Vm + H(2vm ) 2 )2 )

2B + -'vm") - y 2Vm + T'++ (

Thus, the truncation error associated with this spatial discretization is:
2

TE = - v .. + x + + 0'H ' (19)
43 m m- A+( m m XV );

Note that the truncation error is O(H2 ) irrespective of any mesh nonuniformity.

Contrast this to the classical three point differencing scheme for which the
truncation error is O(H2) only for uniform meshes. Thus, for a preselected

truncation error level TE, Hi should be chosen,

Hi 2v-E (20)

There are several reasons why (20) is impractical:

1) To establish a finite difference mesh satisfying (20), it is necessary

to fix at least one mesh point, say xI. Then assuming that { I can

be evaluated, (20) can, in principle, be used to specify all the mesh

points. However, for an arbitrarily selected value of TE, none of the

mesh points so determined would, in general, coincide with the desired

right boundary point, xN. Even if TE could be selected so that one of

the mesh points determined from (20) did coincide with xN initially,
this would not continue to hold as the solution evolved in time causing

{ } to change.

2) If { ) passes through zero, Hi from (20) can become arbitrarily large

and the denominator of (20) becomes nonanalytic. Both of these effects

are troublesome numerically.

3) Many of the terms in f ) of (19) cannot be estimated by difference

formulas involving values at only two consecutive mesh points. Since a

formula similar to (20) is embedded in the differential-algebraic

system (13), the number of consecutive mesh points in excess of two

used in the formula increases the bandwidth of the Jacobian and, consequently,

the computation time.
1-12



Bell Aerospace

To circumvent difficulty (1), the numerator of (20) is replaced by an

auxiliary variable A which is set initially and automatically adjusted as the

solution evolves in such a manner that the preselected number of mesh points

exactly fits into the specified spatial interval. With this modification we

have

TE = A2/4 (21)

Note the change in philosophy, i.e., the number of mesh points is selected, and

the spatial truncation error is a consequence of this number. TE also varies

in time.

Difficulty (2) is surmounted by replacing the denominator of (20) by

}+ c,. where E is a positive constant (typically 0(l) in our numerical

examples). This change has the effect of making the denominator analytic and

preventing the occurrence of arbitrarily large mesh, intervals even if { } 0.

Of course, the smaller c is chosen the closer to a nonanalytic function -

becomes, and the more numerical difficulties can be expected.

For difficulty (3) the solution is less satisfactory. Instead of

{' + which we cannot hope to evaluate within the constraints of our

formulation (i.e., minimum bandwidth) we employ a function F(xxi+l,Vi,Vi+l)

(already introduced in equation (8)) which we hope can be selected to mimic the

important features of / }+ ?T. Selection of this function is the principal

obstacle in the development of an automatic adaptive mesh method.

Implicit in our definition of the function F is that it does not depend on

Ti and Ti+ I. This is not an essential restriction. However, for the example

problems considered in this study, T is always in the range [0,1] and so it was

felt that T was not a crucial quantity in F. Further, spatial derivatives of

T can always be expressed in terms of v.

Another important assumption regarding F is that it not be a function of any

of the time derivatives. The reason for this is that GEARIB requires that all

time derivatives appear linearly so that the differential-algebraic system can be

cast in the form (13). The types of F considered in this study definitely do not

have this property.
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Of the remaining terms in (19) the only one that can be approximated in

terms of values at only two consecutive mesh points is yvmT ', i.e.,

vmm - (v 41)(= (v +1v1)2H (22)

One could hope that (22) is a reasonable measure of the discretization of the

nonlinear term of Burger's equation even though the other O(H 2) contribution,

MTmv", is neglected.

In typical applications of Burger's equation, the coefficient, B, of the

diffusion term on the RHS of (1) is small. For our examples, it never exceeds

0.01. Despite this small coefficient, the diffusion term is important at the

"knees" of the wave-like solutions to Burger's equation. For example, see

Figure I of the next section and note the sharpness of the knees for larger

values of t. As 3 is reduced these knees become sharper. Although we are not

able to estimate v. of (19) required for the truncation error of this diffusionm
term, we can at least determine when the diffusion term is important relative

to the nonlinear term by evaluating the ratio of these two terms, i.e.,

R (23)

Strictly speaking the denominator of (23) should have a factor (T1 + T2)2/4,

but this has been omitted for reasons cited previously. When R << 1 the

diffusion term is not important and (22) may be a good measure of the truncation

error corresponding to the RHS of Burger's equation. However, if R > O(1),

then some function should be devised which forces an increased concentration of
mesh points within this region where the diffusion term is important.

The preceding are some of the considerations that guided our selection of

the function F(xi,xi+l,vi,vi+l) for the determination of mesh spacing. Numerical

experiments were performed with a variety of such functions. A number of
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unexpected phenomena were encountered during these experiments, which are described

in the following section.

E. Selection of F(xi,xi+lViVi+l ) and Numerical Results

Most of the numerical results presented in this section are based on the

following values:

y = 1, 3= 0.01, EPS = 0.0001, N = 31

y and are constant parameters in Burger's Equation (1), EPS specifies the accuracy

of the time integration in GEARIB, and N is the number of mesh points. This value

of EPS is small enough so that the spatial discretization error dominates that of

the time integration.

In using the GEARIB integrator, the following were adhered to for all of our

numerical work:

1) The Jacobian of the RHS of (13) was evaluated analytically in the user

written subroutine PDG. (There is an option in GEARIB to evaluate the

Jacobian by numerical differencing, but the analytic approach is

generally preferable.)

2) In computing the Newton matrix, the variability of the matrix on the LHS

of (13) was explicitly accounted for. Some early runs which did not do

this suffered degraded integration performance.

3) To start the integration, the time derivatives of all dependent variables

were computed (in order to get a good initial prediction and, consequently,

improved corrector convergence properties for the first step.) Computation

of these initial derivatives requires differentiation of all algebraic

equations of system (13). However, the coding for these differentiations

was already present in subroutine PDG, so relatively little additional

work was required.

Most of our numerical examples are based on the x-interval [0,2] with the

initial condition
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(1 + cos(7rx))/2, 0 < x < 1

T(x) (24)

0 , l<x<2

T(x) has a discontinuity in its second derivative at x=l. Such discontinuities

sometimes cause difficulty for nonlinear iteration schemes, especially in the

determination of initial conditions. However, derivative discontinuities in

initial conditions are not uncommon in practice, so it was considered relevant

to use an initial condition such as (24).

For the reasons discussed in Section C, the boundary conditions used are

always:

vI = 0, TN = constant (25)

E.l Case I

Although not motivated by the truncation error analysis of the preceding

section, the first numerical tests used:

F(xi,xi+lViVi+ I) z \/(vi + vi4i)
2/2 + E (26a)

and

F(x lx (v. v.)  + (26b)

In regions where v. is small relative to v,7, the mesh spacing is nearly uniform.

In regions of steep slopes of the T-profile, the mesh spacing is nearly inversely

proportional to the slope.

Included in this section are plots of the numerical results for various

interesting and informative cases. We denote these as Case I, Case II,

In Figures la, lb, and Ic are plotted the results for:

Case I N = 32

xN = 1.985

= 1.0

(xi+ l  xi) = !, (27)

(vi + vi+) 2/2 +E
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The reason for the odd value of xN is discussed following the presentation of

numerical results.

Figure Ia shows the T-profiles at various time intervals up to t = 2.7,

which is an arbitrary stopping point. At this time the influence of the right

boundary is already strong. (Later examples illustrate the effect of allowing

the integration to proceed to "indefinitely large" values of t.) As can be

seen from the figure, from t = 1.0 to t = 2.0 (at least) the wave moves to the

right practically und storted and with a constant speed. X's and +'s are used

on alternate profiles to indicate the solution points (xi,Ti). In each mesh

interval an additional value of T was evaluated at the midpoint using Hermite

(cubic) interpolation based on the known quantities (Ti, T vi+l vi , Vi+l). Each

T-profile was generated by connecting the N points (xi,Ti) and the (N-l)

intermediate points by straight lines. No symbol is used to indicate these

intermediate points on the plots. However, in "rough" regions of the profiles

these intermediate points are conspicuous by the presence of noticeable slope

discontinuities. These slope discontinuities often signal an inappropriate

mesh spacing. For example, in Case I the mesh is too coarse in the regions of

high curvature near the "knees" of the T profiles, and this is clearly shown in

Figure Ia. It is apparent from the figure that the x-interval spanned by a

particular T-profile is less than the total solution interval. The plot begins

at the first xi for which

(Ivi+ll + jvi+21) > 0.2

and it ends at the last x. for which1

(Ivi21 + Jvi_lJ) - 0.2

This cutoff criterion (determined experimentally) is intended to prevent excessive

overlapping of the T profile plots, which makes it difficult to distinguish

certain details.

Another type of plot that was generated for each case is shown in Figure Ib.

It shows the trajectories of the xi in time. This p'ot clearly shows how the

region of concentrated mesh points moves along with the wave. It should be noted
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that a given mesh point does not remain stationary with respect to the wave. For

example, the trajectory of x18 is shown in Figure Ib as a heavy line. Initially

X18 lies in the undisturbed region ahead of the wave. As the wave moves to the

right, xl8 begins to move to the right, but at a speed less than the wave speed.

Consequently, xl8 passes smoothly through the wave region and then slows nearly to

a constant asymptotic position behind the crest.

It is clear from this plot that at any time more than half the mesh points

lie in a region of nearly constant T. Since such regions of constant T are not

of special interest and do not require many mesh points for their description,

it is natural to attempt to place more of these mesh points within the wave region.

An obvious variant to try is to reduce c in (27) since the mesh size in constant

regions cannot exceed A/vr/. However, it was found by experiment that reduction of

E much below unity generally resulted in little payoff. The problem became more

sensitive numerically resulting in smaller integration step sizes, more iterations

per step, and more erratic profiles and trajectories. For example, the slight

waviness in the xi trajectories of Figure Ib was often accentuated when c was

reduced.

A third type of plot generated for each case is shown in Figure Ic. It shows

the trajectories of the vi in time. Since vi should be negative for the examples

being considered in this report, we have plotted -vi/IVia, where vi is the
i/lvmaxi imax

largest value of vi (over all i and all t) encountered during the integration.
From t = 1.0 to t = 2.0 (approximately) the pattern of these v-trajectories is

nearly uniform. However, near t = 2.7 the pattern starts to change because of the

influence of the right hand boundary. Notice how vi corresponding to a position

ahead of the wave begins to oscillate about zero as the wave approaches, then builds

up to its peak value as its mesh point xi passes through the wave, then

decreases and oscillates about zero before reaching a steady zero value.

The tic marks just above the horizontal axis of Figure Ic indicate the

integration step sizes that were used. To reduce the memory and CPU requirements

of the plotting phase, the trajectories of Figures lb and Ic were generated by

connecting with straight lines the values at integration steps 0, 3, 6, ... This

is especially conspicuous in Figure Ic. Several of these straight line segments

spanning three integration steps are indicated by vertical lines at the bottom of

Figure Ic.
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From the plot of step sizes, it is apparent that starting at about t = 0.8,

the step size variation has settled into a somewhat regular pattern of increases

and decreases. There is no obvious characteristic of the solution which would

require such step size changes. More likely it is a deficiency of the GEARIB

step size changing criterion. This criterion could probably be tailored to the

specific examples being considered in this study in order to reduce this wasteful

variation of step size. From t = 0 to t = 0.3, the integration method was first

order. At t = 0.3 GEARIB switched (automatically) to a second order method and

continued with that order until the end. A few runs similar to Case I were

rerun with GEARIB modified so that it would always operate with a first order

method. The effect was that the step size variation was somewhat less erratic,

but the average step size was less, making the integration less efficient.

Beyond this experiment no further effort was expended in tuning GEARIB for the

class of problems being studied.

The implicit methods of GEARIB are implemented as an explicit prediction

followed by one or more nonlinear corrections. Each of these corrections requires

the evaluation of the RHS of (13) and the solution of a linear system. The

matrix of this linear system is a linear combination of the matrix on the left

of (13) and the Jacobian of the RHS. In GEARIB this matrix is re-evaluated and

refactored only when the corrector convergence begins to deteriorate badly.

Thus, the number of steps taken is not a reliable measure of the efficiency of

the integration. The ratios (NRE/NSTEP) and (NJE/NSTEP) are also crucial.

Here NRE is the number of RHS evaluations and NJE is the number of Jacobian

evaluations. When GEARIB is operating efficiently, typical values of these

ratios might be:

NRE . f NJE ..NRE 1.5 to 2.0, (N--EP) = 0.05 to 01
NSTSEEP.0 o .

In Case I these ratios were 4.0 and 0.5, respectively. In some of the other cases

to be described later, these ratios improved but never reached the hoped-for

levels.

Case I was repeated using (26b) and modifying (13) to use sums of products

for terms such as vx and vT (instead of products of sums). This resulted in an

improvement in the smoothness of the T-profiles and the v-trajectories and the
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integration statistics were better. Based on these results, this modification

of the Case I formulation seems preferable. However, the Case I and "modified

Case P results are based on a somewhat artificial example. In both instances,

xN was adjusted so that when the initial xi were solved for (to satisfy (27)),

one of the interior xi fell exactly at x=l. Then when the initial vi were

evaluated based on the Ti obtained from (24), vi = 0 for xi > 1. These smooth

initial conditions were apparently the reason for the superior performance of the

modified Case I. Later "more realistic" cases were run where the right boundary

point was set to 2 a priori. Subsequent computation of the initial xi resulted

in x = 1 falling in the interior of a mesh interval with the consequence that

vi+ l = - v i for xi > 1. These rougher initial conditions had little effect

on Case I but the performance of the modified formulation was significantly

degraded. Based on these experiments it was felt that the product of sums

formulation was preferable. All of the numerical results presented in this

section are for "product of sums" formulations.

One interesting difference between Case I and the modified formulation was

in the speed of the wave as it traveled practically without distortion (say

between t = 1.0 and t = 2.0). Theory (see [7]) says that the wave speed should

be y/2 (= 0.5 in our case). For Case I, the T-profiles obey this to as close as

can be measured on the plot. For the modified formulation, the wave speed is

0.48. When translated appropriately, the profiles themselves are practically

indistinguishable in the regions of steep slope. The reason for this difference

in wave speeds might be expected to lie in the discretization of the nonlinear

term yvT on the RHS of (3a). For Case I this is:

(v i + Vi+l( T i + T i+l) (28a)
'Y 2 2

whereas for the modified Case I it is:

Y(viT i + v i+iTi+l )/2 (28b)

If (28a) were consistently larger than (28b), this might explain the larger wave

speed corresponding to (28a). However, it is easy to show that (28b) is larger

as long as (vi - vi+l) > 0 which is over the upper half of the wave, approximately.

Thus, the reason for the difference in wave speeds is not obvious.
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E.2 Case I

The oscillations at the crest and trough of the T-profiles of Figure 1.1

clearly indicate the inadequacy of the mesh spacing formula (27). More mesh

points are needed in the regions of high curvature at the crest and trough.

Probably fewer points are needed in the steep portion of the wave. To get this

increased concentration in regions of high curvature formula (22) was used in

conjunction with (19) (neglecting all terms except v T").m m

Case II

N = 31

xN = 2.0

C= 1.0

(xi xi) = A (29)
2vi /\xi l - x i  + 

The initial Ti again satisfied the formula (24). The boundary conditions were

in accordance with (25). Figure Ila shows the T-profiles for t = 0, 0.5, 0.6479.

The integration "hung up" at t = 0.6479 for reasons to be discussed shortly.

Because of a plotter malfunction, the profiles between x = 0 and x = 0.2 are

distorted. The initial profile is identical to that of Figure Ia. Figures lIb

and IIc show the xi and vi trajectories and the integration step sizes.

The difficulty with using formula (29) to specify the mesh spacing can be

seen from Figure lib. The initial mesh spacing seems to be preferable to that

of Figure lb, since the mesh is more concentrated in regions where the curvature

of the T-profile is large. As the wave moves to the right, the mesh intervals

(xi+ l - xi) corresponding to small i reach their maximum value (= A/',/c) and so

these mesh points can no longer follow the wave. In order to obtain the required

concentration of mesh points in the region of high curvature near the crest,

the following pattern occurs:
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1) A mesh point moves out of the region of coarse mesh in the middle of

wave toward the crest. Since the lower part of the wave is nearly a

mirror image of upper part, another mesh point moves out of the middle

of the wave toward the trough.

2) This continues until the mesh interval at the center of the wave reaches

its maximum value (= A/VF). This situation is characterized by

v. = vi+ l , where x. and xi~ l are the mesh points in the steepest part

of the wave. This is readily seen from Figure IIc where the vi
trajectories for the two largest values of IviI intersect at various

values of t. (The trajectories corresponding to the other large values

of Ivil also intersect in pairs at the same t-points.)

3) Now the only way to achieve the required mesh concentration at the

crest is for a mesh point to cross over from the trough to the crest.

As the wave steepens, these crossovers become more and more violent

creating disturbances throughout the field. These crossovers cause

difficulty for the GEARIB integrator as can be seen from the step sizes

shown on Figure IIc.

Figure lIb shows that this pattern has been repeated four times. At the

end of the run (t = 0.6479) the mesh interval at the center of the wave has

reached its maximum and it is time for another crossover to begin. However, the

beginning of this crossover is accompanied by such violent changes in the

trajectories that the integrator continually failed to take another successful

step even though the step was retried with ever smaller step sizes. The final

attempt was with a step 10 orders of magnitude smaller than that of the first

attempt. Although it cannot be discerned from Figure IIc, the GEARIB integrator

was just barely able to negotiate the crossover beginning near t = 0.42. The

final T-profile of Figure IIa also illustrates the "extreme" distribution of

mesh points and the v-oscillations associated with this distribution.

Several variations of the mesh spacing formula (29) were attempted. One

was:

A (30)(xi+l- xi) (Vi+l Vi +(302

A xi+ 1 - xi )+
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This formula was used with both E = 1.0 and £ = 10. After the initial conditions

converged, the integrator was unable to take even one successful step. The reason

for this appears to be the following:

The initial conditions on v in the region of constant T (x= [1,2]) are such

that vi = vi+ I. The magnitude of these "spurious" vi are typically small, e.g.,

Ivil = 0(0.05). However, the difference quotient in (30) based on these vi is

0(1), and so A (from formula 10) is significantly affected by these small v-

oscillations. Now the effect of the diffusive term in Burger's equation is to

smooth out these high frequency oscillations. Because there are so many of these

oscillations, the cumulative effect of their being smoothed out is to cause a

rapid reduction in A, which in turn forces a rapid change in all the mesh points

through formula (30). The integrator is unable to cope with these violent changes.

There are several ways out of this v-oscillation difficulty:

1) "Doctor" the problem so that the initial conditions do not contain these

spurious v-oscillations. For example, this was accomplished in Case I

by adjusting the right boundary, xN9 so that a mesh point fell exactly at

x = 1. Such doctoring is not in the spirit of developing a general

purpose numerical technique so nothing further was done in this direction.

2) Reduce the interval of interest to x = [0,1]. The initial conditions

now have no region of constant T and consequently no region of v-

oscillation. This problem was run with c = 10. There was no longer any

difficulty getting the integration started. However, the integration

"hung up" at t = 0.5779 because of a crossover effect similar to that

discussed in conjunction with Case II. Due to the shortened x-interval,

the right boundary affected the wave from the beginning and so the upper

and lower parts of the wave were not mirror images for t>O. Consequently,

the T-profiles and the xi and vi trajectories are somewhat different than

those of Figure II. The basic difficulty is still the same, i.e., as the

lower part of the wave straightens out (e.g., like the last profile of

Figure Ia) fewer mesh points are needed there, and so from time to time

a mesh point must cross the steep portion of the wave and into the crest

to compensate for the mesh points that have not been able to follow the

wave. As the wave becomes steeper, this crossover becomes more and more
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violent and finally the integrator quits. Of course, changing the

x-interval from [0,2] to [0,1] in order to get the integration started

is an artifice which is in general unacceptable.

3) A more satisfactory approach is to modify the mesh spacing formula to

nullify the effect of the spurious v-oscillations. In fact, this has

already been done in Case II where the mesh spacing formula (29) contains

the factor (vi + Vi+l). Other variations, all containing this crucial

factor, are discussed in the following:

One mesh spacing formula for which a number of tests were run is:

A(31)
(xi+l - xi) = 2 (31i

4/ xi+ 1  xi] (v + 2 )
ix.x. ?(v+v +10 +*1 ,ili 2 2 -Y

kxii i) (vi +V i+l + l10-r

In regions where T varies significantly, the ratio [ ] in (31) is close to unity

and so (31) is nearly equivalent to (30). In regions where T is constant,

vi = -vi+ 1 and (31) is equivalent to (29).

When T is not constant formula (31) (in comparison to formula (29) of Case II)

has the effect of putting a greater concentration of mesh points in regions where

v is small (e.g., near the crest and the trough) and a lesser concentration where

v is large (e.g., in the middle of the wave). The numerical results using (31)

were similar to Case II. However, (31) produced smoother T-profiles and x and v

trajectories, and the integration was about 25% more efficient (for the same value

of t). Equation (31) allowed one more crossover before becoming hung up (at t = 0.86).

Another run using "31) with c = 10 (instead of c = 1) produced very similar results

but was about 25% more efficient. Still another run was made with (31) and C = 10

but with the number of mesh points, N = 51 (instead of 31). Crossovers were more

frequent, but less violent. However, the integration eventually hung up at t = 1.05

(at the beginning of the 13th crossover) for the same reason as before. The

integration was about 25% less efficient (in terms of the number of corrector

iterations and Jacobian re-evaluations) than the N = 31, c = 10 case. The T-profiles

were somewhat smoother as would be expected from the increased number of mesh

points.
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E.3 Case III

In this section we present numerical results for a case somewhat similar to

the case discussed at the end of the preceding section.

Case III

N = 51

XN = 2.0

E = 10.0

(xi+ l -xi) = A (32)

__v. __ 2i + i +l  1 +

- i i+j

The difference between Case III and that discussed at the end of the preceding

section is the use of 7- in (32) instead of V-. The numerical results are

presented in Figures Ilia, IIIb, and IIIc. The use of / results in quite

different looking x and v trajectories. There is still the crossover effect

which occurs when the mesh spacing at the center of the wave reaches its

maximum (= A/v'). Now for Case II and the other similar cases discussed in the

preceding section, there was a sudden change in the x and v trajectories at

such maximum points (see Figures lib and IIc). In contrast, for the present

case this maximum mesh spacing decreases gradually and the trajectories are smooth.

Then suddenly the mesh point crossover takes place and disturbances are propagated

throughout the field. As expected, the integration step size is greatly reduced

at such points.

From Figure IIb it can be seen that the integration hangs up at a time

when the trajectories are smooth, in contrast to the cases previously discussed,

e.g., Figure lib. The reason that the integration stopped in Case III was that

two mesh points became equal to six figures making the problem numerically too

sensitive for the integration to continue. The effect of using 5 (instead of

-- in the mesh spacing formula is to force the mesh points even closer together
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in regions of high curvature. However, coincidence of mesh points to six figures

is almost certainly a numerical problem. One way to avert such difficulties is

to modify (32) so as to place a lower bound on (xi+ l -xi), e.g.,

(xi+ l - xi) = A(-L-+ 6) (33)
V-

where 6 is related to the minimum permissible mesh spacing. This approach was not

pursued, however, since the formula seemed to be preferable (in terms of

integration efficiency and smoothness of the T-profiles) to formula (32) even

before excessively small mesh sizes became a problem.

E.4 Case IV

Problems arose in the examples of the preceding subsections due to the fact

that as the wave moved to the right, additional mesh points were needed behind

the wave. These mesh points had to be supplied from those initially ahead of the

wave, and the only way they could get to where they were needed was to pass

through the wave. As the wave became steeper, this passage became more and more

difficult and finally prevented the integration from continuing.

This suggests adding mesh points from the left boundary, as required, making

it unnecessary for mesh points to pass through the wave. To do this "properly"

would require:

1) Establishing the criter on by which a new mesh point could be admitted

from the left boundary. Most likely this would be based on how near

(x2 - x) is to its maximum allowable value. It would be necessary to

monitor for such a condition frequently.

2) Since (x i+- xi) appears in the denominator of some of the terms of the

govening differential-algebraic system (13) it would be necessary to

develop special formulas to allow the newly introduced mesh interval tu

start off with a zero value. Alternatively, the new mesh interval might

start off with a finite value (say by halving the interval (x2 - xl )

that existed just prior to the admission of the new mesh point).

However, this would require the specification of new values of v and T

at this new interior field point such that all of the algebraic equations

are satisfied.
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3) Shift all the xi, vi, Ti (i = 2,3,...,N) and A of the dependent variable

vector, add the x, v, and T values for the new mesh point, and then

restart the integration.

Although this approach is probably possible, it would require a considerable amount

of analysis and reprogramming to accomplish it. A simple alternative approach is

to force x1 to move to the right in time. This is easily accomplished by prescribing

fl(t) on the right of the second equation of (13) to be a positive monotonic

function of t. As noted previously, theory says that the wave-like solutions of

Burger's equation travel at a speed y/2 (= 0.5 in the present case). We then

define:

Case IV

N = 31

x = t/2

XN = 2.0

= 1.0

(xi+- xi) : v (34)

-1 1 12 2v + v 03i+l / vi i i+l)vi+ 2 10 3 0 ]

Note that (34) is identical to formula (31) discussed in Section E.2. The

numerical results are illustrated in Figures IVa, IVb, and IVc. From Figure IVb,

it can be seen that "crossovers" still occur. However, the presence of the moving

left boundary reduces their frequency. When the identical case was run with a

fixed left boundary, the integration "hung up" at t = 0.86 (near the end of the

fifth crossover). The present case hung up at t = 1.10 (near the end of t,,e third

crossover). Further, the integration was about 50%I more efficient (for the same

values of t) for the present case.
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E.5 Case V

Forcing the left boundary to move with the wave speed reduced the crossover

effect and allowed the integration to proceed further. However, the problem is

still essentially the same as before, i.e., as the wave moves to the right there

is an excessive number of mesh points ahead of the wave (relative to those behind

the wave). An obvious remedy for this is to remove mesh points from the right

boundary as they are no longer needed. Such removal of mesh points entails some

of the same difficulties cited in Section E.4 when mesh points are added through

the left boundary. Generally though, removal of mesh points is somewhat easier

than addition. This is discussed further in the next section. For the present,

we simulate the removal of mesh points by forcing the right boundary to move

with the wave speed.

Case V

N = 31

x = t/2

xN = 2.0 + t/2

=1.0

(xi+ l - xi): Formula (34), Same as Class IV

The numerical results are shown in Figures Va, Vb, and Vc. Because of a plotter

malfunction, the beginning (near x = 0) of Figure Va is slightly distorted. In

Figures Vb and Vc, the plots end near t = 2.7 even though the integration went

to at least t = 2.9. This is due to a plot program idiosyncracy which does not

plot the last integration point, which was reached by a large integration step

(At > 0.2). Also, the uniform region above x = 2.2 on Figure Vb has been trimmed

off.

From the plots it is apparent that the use of boundary points which move

at the wave speed has eliminated problems associated with crossovers. The mesh

now moves along with the wave and all dependent variables behave either as

constants or linearly in time allowing large integration steps to be taken. The

large reduction in step size near t = 1.10 does not appear to be related to any

properties of the solution and so should be attributed to a numerical integration fluki
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E.6 Case VI

Although the use of moving boundaries in Case V allowed the integration to

proceed smoothly, it is not a satisfactory solution for the following reasons:

1) Knowledge of the direction and speed of the wave is required. In more

general problems, e.g., gas dynamics, this information would not

generally be known.

2) The boundary conditions on v and T are applied at the moving boundaries

instead of at the original fixed boundaries. Thus, the problem actually

solved is not the problem originally posed. For Case V, there is

probably little difference between the actual problem and the problem

solved until the wave begins to be affected by the downstream boundary

(at about t = 2.5 according to Figure Ia).

To overcome objections (1) and (2) but still retain the desirable properties

of Case V, the following modification of system (13) was considered:

1) For the first few mesh intervals (say 1,2,...,m) use one of the "standard"

types of formulas, e.g., (29), (30), (31), but with a reduced value of 6

(say E). To indicate this we rewrite the general mesh spacing formula

(8) as:

x) _________0_A (35)
F(xi,xi+l,Vi,Vi+lc)

The examples so far have used an c = 1. If an E = 1/16 is used in an F

containing V- then the maximum possible mesh size is double what it is

with E = 1. We have previously mentioned some numerical experiments for

which small values of c have been used for all intervals. These experiments

were generally unsuccessful. However, it was hoped that by using a reduced

E in only a few intervals behind the wave the difficulties associated with

small c would be minimal. This modification allows mesh points behind the

wave to follow the wave more closely and so is analogous to Case IV

(moving left boundary). Recall (Figure IVb) that this only delayed

integration "hang up" due to the crossover effect. Also needed is a

technique by which mesh points can be removed from the right boundary.
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2) To permit mesh points ahead of the wave to move toward and out of the

right boundary, the usual mesh spacing formula for the last interval

[XNl XN] was replaced by:

(x2 - x1) + (x3 - x2) + ... + (Xm - xm ) + (xN - XNl) =

1 + 1~ +
A F(x,x 2,vl,v2,) F(x2,x3,v2,v3,)+..

1 + *1 3
F(XmXm+1 'vm'Vm+l ,) F(x ,XNVNl VN,) *

Note that the standard c (rather than the reduced E) is used in (36). In

our examples we have used c = 1 and : 1/16. Consider the special case where

m = 1 in (36). As vI and v2-O,(x 2 - xl)-2A (from (35)), and the contributio,

from the first term on the RHS of (36) approaches A. The last term on the RHS

of (36) cannot exceed A. Thus, in order that (36) be satisfied (xN - XNl) must

go to zero (or even negative values if the last term on the RHS is less than A).

A numerical test of this case was run. (xN - xNl) approached zero asymptotically.

Because (xN - xNl) appears in the denominator of certain terms of the differential

algebraic system (13), the integration hung up because of this ill conditioning.

If m>l then (xN - XN- must eventually become negative as v,, v2 ...., vm+l

become small. There may be some question as to the validity of the solution of

system (13) (modified by (35) and (36)) for negative values of (xN - XN-l). This

did not seem to be a problem in the examples attempted with this formulation.

However, the integration for all these examples hung up before the wave approached

the right boundary. After presentation of numerical results for a typical case of

this modified formulation, we will discuss a correct method of treating vanishing

mesh intervals at the right boundary.

*Because (36) directly couples the dependent variable at many mesh points (instead of

just two) it is necessary to place this relation in the last row of (13). The last
row of the Jacobian of (13) will consequently have many no zero elements. However,
as previously noted special variants of the GEARIB routines have been developed to
accommodate these cases.
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Case VI

System (13) modified by (35) and (36)

N = 31

x =0

xN = 2.0

: 1.0

=1/16

m = 5

x = A (37)(xi+ + xi W=V + ( i + v W

2 +(Vi+l- vi (v + V2 i+1 10 ]
If \i~l 1+1 -0

Of course (37) is modified in accordance with (35) for mesh intervals 1 to 5 and

(36) is used for the last mesh interval. The numerical results are shown in

Figures VIa, b, and c. Note the plotter malfunctions which caused the distortion

at the beginning of Figure VIa and the skip near the end of Figures VIb and VIc.

From Figure VIb it can be seen that the trajectories for XNl and XN2 have

crossed xN (= 2.0) before the integration hung up. Although there is a potential

danger of the integration hanging up (due to a singularity in the governing system)

when XN-l = XN, this did not occur for this case because the integration step

size used at this point was such that xN - XN-l did not become excessively

small. Comparing Figure VIb with Figure Vb, we see that at least initially (up to

about t = 0.40) our new formulation has the desired effect. Near t = 0.40,(x 2 - x)

is close to its maximum permissible value (= 2A) but then a slight spurious build

up of v2 (from 0.014 to 0.056) causes a dip in the x2 trajectory. (This small

change in v2 has a noticeable effect on (x2 - xl) because of the small value of

e (= 1/16) being used in (37).) The integration proceeds with both (x2 - X) and

(x3 - x2) near their maximum permissible values at about t = 0.61. In order for

the mesh to continue to follow the wave, it is now necessary for (x4 - x3) to
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increase. However, v3 has not fallen off enough to allow this. The only way to

obtain the required mesh concentration in the crest is for a crossover to occur.

From Figure VIb, it may not seem that a crossover should be occurring since

the mesh size in the middle of the wave is nowhere near its maximum permissible

size. However, recall that the mesh spacing formula (37) contains the additional

term (vi + Vi+l)
2 . There is no way this term can become zero in the middle of

the wave. What has happened is that vi has become equal to vi+ l (see Figure VIc)

reducing the second term in -of (37) to zero. This is the same effect that we

have already seen in Cases II, III, and IV. Although the modified formulation has

succeeded in delaying the first major crossover, when this crossover is required

it is so violent that the integration cannot continue.

To eliminate the possibility that our questionable treatment of the problem

(i.e., allowing the mesh size to become negative for the last interval) influenced

the preceding conclusion, the same problem was solved in a different manner.

Instead of allowing XN-l to cross xN, the integration continued until x Nl x N* x

(to within the user specified integration accuracy). Then TN, vN, and xN were

eliminated from the system, and the integration was restarted with the boundary

conditions now on TNl and XNl and with a formula similar to (37) now specifying

the mesh spacing for the interval (xN-l - XN-2). The integration then continued

until XN-2 = XN-l where another restart was made, etc. Until XN-l = XN, the

numerical results were identical to those of Case VI. Upon restart, there was a

slight change in slopes of the x. and vi trajectories, especially for the larger

values of i. At t = 0.577, XN2 = XNl , whereas in Case VI this did not occur

until t = 0.631. The integration hung up at t = 0.659 versus t = 0.658 in Case VI.

The T-profiles and the xi and vi trajectories (except for i close to N) were

practically indistinguishable for the two cases.

*Near such singular points the integrator has considerable difficulty. The technique

by which such singular points are determined could be improved by making use of the
polynomial representation (in t) of each of the dependent variables which is
generated by GEARIB. However, this was not our objective in this example so no
effort was made in this direction.
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Several other variations of this formulation were attempted. Instead of mesh

spacing formula (37), formula (34) was used. This did not make any significant

difference. Other cases were run using E = 1/256 (instead of 1/16) in conjunction

with both formulas (34) and (37). The integration managed to proceed somewhat

farther (e.g., t = 0.80) but (x2 - X) was more erratic, as expected, because of

the small value of E.

E.7 Case VII

Of all the mesh spacing formulas discussed so far that of Case I (equation (27))

produced the best results. However, as discussed previously, this formula is

clearly inadequate near the knees of the T-profile. It is almost certain that we

need a term containing (vi+ 1 - vi)2/(Xi+l - xi) 2 , but so far all of our attempts

to use this term (except for the "artificial" Case V) have been thwarted by the
$)crossover effect." This suggests combining the term (vi + v i+1)2 of formula (27)

with (vi+1  - vi) 2/(xi+ - x) 2 to yield a mesh spacing formula with the desirable

properties of Case I (i.e., allowing mesh points to move smoothly through the wave)

with those of Cases II - VI (i.e., concentration of mesh points at the knees of the

wave).

This has already been attempted in formula (37) of Case VI. One clear effect

of tne additional term (vi + vi+ 1) 
2 in (37) is to force a more concentrated mesh

in the middle of the wave. (Compare Figure VIb with Figures lIb or IVb.) However,

this increased mesh concentration has not allowed mesh points to pass smoothly

through the wave. The integration in Case VI was still forced to stop because of
the violent crossover effect associated with (vi+- vi)2/(xi+ 1  xi)2 . An

examination of the relative contributions of the terms (37) showed that as the wave

steepened the (v i+l vi) 2/(Xi+l - xi)2 term generally dominated the (vi + V )2

term, even in the middle of the wave where (vi + v W) is at its largest. The

consequence is that the "easiest" way to provide the required increased mesh

concentration at the crest and trough is to maximize the mesh interval at the center

of the wave by making vi = vi+ 1 which is what happens at the end of the integration

in Case VI (see Figure VIc) and also in Cases II, III, and IV.
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It seems, then, that to prevent the crossover effect the contribution of)2
(v. + vi+) should be such that this term is dominant in the middle of the wave.

The formula should also be such that (vi+ l  vi)/(Xi+l xi0 is important at the

knees of the wave. This suggests the following mesh spacing formula:

(xil- x) 1 (v4 v~ A rI 2 )(38)
~ 2 ) 2 [§2 v i v i+i) +lI

Here y and a are the coefficients in Burger's equation (3a), £l is a constant to

be set so that [ ] does not come too close to becoming singular, and C is a

numerical "tuning" constant. If C = 1 and Fl = 0, the [ ] term approxirmates

the square of the ratio of the diffusive term to the nonlinear term of Birger's

equation. (Strictly speaking there should be a factor (Ti + T i+l) 2/4 in the

denominator of [ ].) The rationale for (38) is that if the diffusive term is
important (e.g., at the knees of the wave) then (vi+ l - vi) 2 /(xi+l xi) 2 should

have a significant influence in the mesh spacing formula. Accordingly, [ ]

has been defined so that [ ] > 0(1) when the diffusive term is important.

Case VII

N = 31

xI  0.

xN = 2.0

= 0.5

El  = 0.1

C = 0.25

(xi+ l - xi): formula (38)

The numerical results are shown in Figures Vlla, b, and c. Because of plot routine

storage limitations, the plots of the x and v trajectories were terminated a few

steps before the final station, t = 3.1. From the T-profiles it can be seen that
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t = 3.1 is nearly steady state. A later example (Case IX) will show the actual

attainment of steady state.

A comparison of Figures VIIa and b with Figures Ia and b shows that formula

(38) does in fact have the desired effect. The "crossover effect" has been

eliminated, i.e., the mesh points are now able to pass smoothly through the wave.

There is also an increased concentration of mesh points at the knees of the wave

which eliminates most of the spurious oscillations in the T-profiles that are

present in Figure Ia. The v-trajectories of Figure VIIc look much different than

those of Figure Ic. This is due to the fact the integration proceeded slightly

further in Case VII (t = 3.1 versus t = 2.7). The T-profiles steepened

significantly between t 2.7 and t = 3.1. Consequently, the scaling factor for

the v-trajectories was quite different in the two cases.

A check of the relative importance of the terms in (38) shows that when the

wave is traveling undistorted (from t 1.0 to t = 2.5) the (vi + v i+l) 2/4 term

dominates the [ ] (vi+ l - vi) 2/(Xi+l - xi)2 term in the mesh interval at the
"center" of the wave by 3:1. However, one or two mesh intervals to either side

of this center interval the dominance is reversed.

Comparing the integration statistics for Case I and Case VII at t = 2.7, we

find that Case VII is approximately 15% less efficient in terms of the number of

corrector iterations required. Case VII is slightly more efficient in terms of

the number of Jacobian evaluations required.

Several variations of Case VII were run. In one set of experiments, the

effect of cl was examined. Values of 1.0, 0.1, and 0.01 were used. The integration

statistics for el = 1.0 were significantly worse than for cl = 0.1. In the case

of C1 = 0.01, the integration hung up early in the run. Based on these results

E :0.1 was used in all subsequent runs.

Another set of experiments tested the effect of varying c. c = 0.5 was

found to be significantly better than c = 1. An attempt to use E 0.25 failed

to converge on the initial conditions. In another test, an c that decayed in

time was used (c = 0.5e- t). Initially, this was identical to Case VII. At t = 0.5

the variable c case was statistically sliqhtly better than Case VII. However, by the

end of the run, its statistics were much worse than those of Case VII. The small

value of c at the end of the run did have the effect of forcing more mesh points
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into the wave. For example, the T-profile at t = 3.0 of Figure V1la shows 11 mesh

points in the region x > 1.8, whereas the small c case has 17 in the same region.

Another set of experiments examined the effect of using smaller values of B.

Reducing B makes the T-profiles steeper and generally makes the problem more

difficult. A repeat of Case VII with B = 0.001 (instead of 0.01) integrated very

inefficiently and the T-profiles had significant oscillations. This case was rerun

with the constant C in (38) increased by 100 to compensate for the smaller value

of a. (The product CB2 is now the same as for Case VII.) Up to about t = 0.1,

this case behaved similar to Case VII. Beyond this the integration statistics

degraded. The integration was stopped (deliberately) at t = 0.6. By this time,

the T-profile was significantly steeper than for .= .01. (Ma -mum slope about

three times as great.) The T-profile also had noticeable oscillations at t = 0.6

In an attempt to improve the numerical results for the B= 0.001 case, this

case was rerun using a variant of the mesh spacing formula (38) in which the

exponent of the (vi + vi+i) term in the denominator of [ ] was 4 (instead of 2).

This modification reduced the spurious oscillations in the T-profiles. However,

the integration statistics at t = 0.6 (the end of the run) were about the same

as they were for an exponent of 2. This modified formula was also used for a

a = 0.0001 case. The integration hung up at t = 0.51. Prior to t = 0.51, the

T-profiles and x and v-trajectories were quite erratic. A rerun of this B = 0.0001

case using (vi + vi+ 1)
6 in [ ] of (38) produced even worse results.

E.8 Case VIII

In this section we describe the numerical results for an example problem for

which an exact analytical solution is known. It is taken from Sincovec and Madsen

[8], who also solved this problem numerically. This exact solution can be written:

-A -B -C
Tex(t,x) = (O.le - + 0.5e + e) (39)

(e-A + e-B + eC

where

A - (x - 0.5 + 4.95t)/20

B - (x - 0.5 + 0.75t)/4B

C - (x - 0.375)/2a
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a is the coefficient of the diffusion term in Burger's equation (1). The coefficient,

y, of the nonlinear term is assumed to be unity in (39).

For our examples, the x-interval is taken to be [0,1] and the boundary conditions

are:

v1 = 0, TN=Tex(tl) (40)

The initial condition on T is (39) evaluated at t = 0. The initial conditions for

x and v are computed in terms of this analytical representation of T (O,x) just asex
they were previously for the initial condition (24).

Strictly speaking the boundary condition vI = 0 is not consistent with (39).

However, for the values of being considered, [Tex /3x](t,O) from (39) is less

than 10 4 . Initially, T (t,l) = 0.1 to eight figures. However, as the wave moves
ex

to the right this is no longer true. Consequently, the exact time dependent

boundary condition (40) was used.

Case VIII

N = 31

x = 0.

xN = 1.0

= 0.005

E 1.0

El  = 1.0

C = 0.025

-x~ xi) =A 0.05 + 1

(41)
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The numerical results are shown in Figures VIIIa, b, and c. Because of a flaw in
|i the logic that determines the scaling factor for the v-trajectory plots, these

trajectories have not been normalized so that the maximum value is unity. Also,

because of memory limitations for the storage of plotter data, only every fourth

integration point has been plotted in Figures VIIb and VIIIc.

Note that the initial T profile in Figure VIlla has regions of steep slope and

high curvature, in contrast to the gentler initial T-profile used in previous

examples. Decreasing accentuates the slope and curvature of this initial profile.

We had intended to use = 0.003 in Case VIII in order to make a direct comparison

of our numerical results with those of [8] (for which 6 = 0.003 was used). It

turned out, however, that it was difficult to get the iterations for the initial

xi and vi to converge for such small values of (. By adjusting the constants 6l

and C in the mesh spacing definition and by adding the "lower bound" term, (0.05A),

in (41) and by making some other adjustments in the initial condition iteration

scheme, convergence could usually be attained. However, for a = 0.003, the initial

distribution of mesh points was erratic and the initial vi contained some rather

large, 0(0.3), spurious oscillations. This was true in spite of the fact that the

residuals (of all the algebraic equations that must be satisfied by the initial

values of Ti , vi, xi and A) were driven to very small values. The integration was

usually able to get started in such cases but always hung up for small t as the vi

oscillations built up, instead of dying off as they normally do. In the many

attempts that were made to run this exact solution example for small values of (,

6 = 0.005 was the smallest value for which reasonable initial conditions and

integration efficiency could be obtained.

The T-profiles of Figure Villa are smooth with no significant spurious

oscillations and an apparently good distribution of mesh points. The final T-profile

(at t = 1.5) was the constant steady state value, T=l, and was not plotted. The

agreement between these profiles and the exact solution was good. Some of the

largest discrepancies occurred for the profile at t=l:

TNumerical TExact

0.6072 0.5966

0.3663 0.3475

0.2574 0.2448
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For these values of T the slope is large (0(15)) and the mesh spacing is small

(Ax = 0(0.01)). Consequently, a plot of the exact solution would hardly be

distinguishable from the profiles of Figure VIIIa.

The plots of the x and v-trajectories seem to be well behaved except possibly

for the x-trajectories for small t and for 1.0 < t < 1.2. Shortly after t = 1.2

the steady solution has been reached.

From the plot of step sizes of Figure VIIIc, it is clear that the integration

did not proceed efficiently. Not only were many steps taken but the ratio of

corrector iterations to steps was high (NRE/NSTEP:4) and the ratio of Jacobian

evaluations to steps was high (NJE/NSTEPMO.5). It is likely that these statistics

could be improved somewhat by a better selection of the tuning parameters, c, £l

and C. In Case VIII, these parameters were chosen to provide good convergence

properties of the iteration for initial conditions. By smoothly altering them

during the course of the integration (toward the values used in Case VII, say) a

more efficient integration may have resulted.

The numerical results of reference [8] were generated by discretizing the

standard Burger's equation (1) on a uniform mesh (200 points) using three point

differencing. The time integration was performed by GEARB , a subroutine package

similar to GEARIB. The numerical examples of [8] were for B = 0.003 arid an

integration error tolerance of l0-5. (We used 10- 4.) These two differences make

the numerical problem of [8] somewhat more demanding with respect to computation

time.

The time integration in [8] was carried out to t = 1.1. A comparison of

integration statistics with Case VIII at this time is:

NSTEP NRE NJE

[8] 434 648 6

Case VIII 532 1909 268

The maximum error in T for the two cases was about the same (0.02). The minimum

mesh size in Case VIII was about 0.007; slightly larger than the uniform 0.005

mesh size of [8]. (The 0.05 term in the mesh spacing formula (41) may have
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influenced this minimum mesh size even though the minimum allowable mesh size was

0.05 A - 0.0023.)

Now [8] uses many more mesh points (200) than Case VIII which uses only 31.

However, Case VIII has three dependent variables per mesh point, whereas [8] only

has one. Thus, the ratio of the system sizes is about 2:1. A rough estimate then

is that it takes [8] about twice as long to perform a single corrector iteration.

On this basis alone [8] seems to have a definite advantage in terms of integration

efficiency. Add to this the great disparity in the number of Jacobian evaluations

and the fact that the problem solved in [8] was more demanding computationally.

The conclusion is that the method employed in [8] has a clear cut advantage.

E.9 Case IX

In this section the results for a case similar to Case VIII are presented.

Everything is the same except that the right boundary condition is held fixed,

TN = 0.1. The results are shown in Figures IXa, b, and c. Until about t=l, the

results for the two cases are practically identical. At steady state the results

are completely different as seen by a comparison of Figures VIII and IX. From

about t = 1.1 to t = 1.3, the integration of Case IX proceeded significantly more

efficiently. In Figure IXa the T-profiles for t = 1.2 and t = 1.5 are practically

indistinguishable since t = 1.2 is nearly steady state. (The +'s correspond to

t = 1.2 and the X's correspond to t = 1.5.) One interesting aspect of the final

T-profile is that the minimum mesh spacing is 0(0.003), considerably smaller than

the minimum of 0(0.007) of Case VIII. If Case IX were to be solved by the methods

of [8], the advantage of [8] over the present method would not be so clear cut

because of the increased number of mesh points required to obtain a mesh size of

0.003 on a uniform grid.
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II. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

During this study a variety of mesh spacing formulas have been used. The

better ones, e.g., Cases VII, VIII, and IX did a reasonably good job of placing

the mesh points where they were most needed. These formulas are based more on

experiment and intuition than on theory. Despite this lack of theoretical

foundation, the variable meshes so produced are far better than uniform meshes.

For example, in Case VIII 31 mesh points produced about the same accuracy as 200

uniformly spaced points. Of course, for Burger's equation there are three

dependent variables per mesh point for the formulation used in this study, versus

one per mesh point for the usual formulation, e.g., reference [8]. For large

partial differential systems, e.g., those involving many chemical dependent

variables, the ratio (dependent variables/mesh points) would approach 2n, where n

is the number of basic dependent variables. Thus if a variable mesh scheme uses

only half as many mesh points as a uniform mesh method for such problems, the

former method would be competitive.

The foregoing conclusion is true providing the time integration can be performed

as efficiently for variable meshes as it is for uniform meshes. However, this was

not the case. In Case VIII the integration statistics were much worse than those

for a similar case reported in [8]. One experiment performed during this study was

to take a variable mesh case that was having integration difficulty (e.g., small and

er-atic step sizes, build-up of spurious oscillations, difficulty with corrector

convergence), stop the integration at some point before "hang up," redefine the

mesh spacing formula so that the mesh would stay fixed from then on, and then restart

the integration. The results were dramatic; the oscillations died out and the

integration proceeded smoothly. Of course, the fixed mesh soon became inadequate

to describe the solution.

What is the reason for this integration difficulty? Most likely it is due to

poor conditioning, especially when the T-profiles become steep and have regions of

high curvature. This was already discussed in conjunction with Case VIII. Attempts

were made to solve Case VIII with = 0.003 (instead of = 0.005 that was eventually

used). Considerable difficulty in obtaining initial condition convergence was
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encountered. Even when convergence was obtained, the xi distribution was peculiar
and Ivi - viexacti * was relatively large. However, the residuals of the algebraic

equations that were being solved had been driven to small values. This phenomenon

is practically the definition of ill conditioning.

Another indication of this poor conditioning was the disappointingly large

ratios (NRE/NSTEP)** and (NJE/NSTEP)** that occurred in most of our numerical

examples. Such large ratios are symptomatic of ill-conditioning.

B. Recommendations

Although definite progress has been made in developing an automatic mesh varying

method, certain obstacles (especially the conditioning problem) preclude writing a

production program based on this method. Additional analysis and experimentation is

required in the following areas:

1) Replace the banded matrix equation solver within GEARIB by one which also

provides an estimate of the condition number of the matrix, e.g., subroutine

SGBCO described in [9]. (This change may require extensive coding revisions

of GEARIB to accommodate the different storage arrangement of SGBCO.)

Study the effect of the mesh spacing formula (including any "tuning" constants)

on the condition of the matrix used for the quasi-Newton corrector iterations.

2) Continue investigation of mesh spacing formulas. Consider introducing

additional mesh point dependent variables for the purpose of estimating

third and fourth derivatives of T (with respect to x) in order to compute

a mesh spacing formula more consistent with the theoretical error estimates

of equation (19).

*Here vi exact is the derivative with respect to x of equation (39) evaluated at
xi.

**NSTEP: Number of successful integration steps

NRE: Number of corrector iterations
NJE: Number of Jacobian evaluations
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3) From the standpoint of integration efficiency our most successful example

was Case V. What made this case run efficiently was that the mesh points

moved with the wave rather than passing through it. Consequently, once

the wave established itself, the dependent variables were either constant

or linear in time. This suggests developing methods by which mesh points

are added to (deleted from) the field as they are needed (unneeded). By

so doing, shifting of the entire set of mesh points just to transfer a

single mesh point from one place to another would be averted. (This was

seen most dramatically in the "crossover effect" of Figures lIb, IIIb, and

IVb, but it is also evident to a lesser extent in Figures 1b, VIIb, VIIIb,

and IXb.) These mesh point additions (deletions) might be done at discrete

times, in which case the method resembles the regridding approaches of

references [5] and [6]. Preferably, this would be accomplished in a

continuous manner by allowing a single mesh point to split in two or by two

mesh points coalescing into one.

4) One of the assumptions throughout this study was that xI would coincide

with the left boundary (say xL) of the mathematical problem and xN with

the right boundary (say xR), and that the number of mesh points N would

be constant. According to formula (10), A then varies as the solution

evolves. Now the spatial truncation error is related to A (equation (21)).

A preferable approach would be to specify the desired level of truncation

error (and therefore A) and then determine the number of mesh points N and/or

the length of the finite difference mesh [xl , xN] consistent with this

specification. If x1 < xL < x2 and/or xN-l < xR < xN , the boundary conditions

at xL and xR would be expressed in terms of values at two consecutive mesh

points instead of the simpler expressions of system (13). This would increase

the bandwidth at the beginning and end of the Jacobian matrix. However,

special formulas could be developed which would allow solution of such

modified matrices with very little additional cost. A simplification arising

out of such a formulation is that A is not a variable, and so the modification

of the GEARIB banded equation solver to accommodate a possibly full last

column would no longer be required.
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5) Ultimately, it is desired to extend these variable mesh methods to gas

dynamic problems involving chemistry and radiation. Even "standard"

gas dynamic problems exhibit phenomena not present in solutions to

Burger's equation, e.g., waves traveling at variable speeds, waves being

reflected from boundaries, waves traveling in opposite directions and

impinging on each other. Thus, even after variable mesh methods are

perfected for Burger's equation, there is still much work to be done

before these methods can be successfully applied to realistic problems.
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