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1. Introduction
Reliability growth modeling is an important component in development :

testing of complex systems. It provides estimates of the current status

of the process as well as forecasts of reliability at future time points.

Several models have been investigated in the literature (see Schafer, et al.

[1975]). 1In this report, we focus on comparing the ﬁerformance of a model !
introduced by L. Crow [1975] and a family of models which are generalizations H
i of those introduced in Braun and Paine [1977].

The novel feature of this latter family is that it models the logarithm
of tﬁe intensity function of the failure process as a multiple linear re-
gression on some functions of the number of different failure modes

uncovered and the number of recurrent failures. These models possess great

flexibility in accommodating many different shapes of reliability growth
curves including nonmonotonic ones.

Three members of this family are compared with the Crow model over a
range of simulated reliability growth patterns. One member, in particular,
seems to provide short-and long-term forecasts superior to those of Crow's.
These results suggest that these new models be considered in the modeling
of field data. Three such data sets are considered here as well. Through-

out this report, the following notation will be employed.
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Suppose a failure process consists of n failures. Let
t = operating time,
N(t) = number of failures in (0,t],
t; = time of the ith fajlure, 1=1,...,n,
: xl =t = first interfailure time,
3 i Xi = ti—ti-l = ith interfailure time, {=2,...,n, and
] CMIBF(t) = t/N(t) = cumulative mean time between failure at time t.
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|
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2. Reliability Growth Models
A. Crow's Model

In 1964, J. T. Duane proposed a deterministic model for reliability

growth in which he hypothesized that there is a linear relationship

between ln(CMTBF(t))and 1n(t). A stochastic analog to this model was
f»’ suggested by Crow [1975]. In this stochastic model, the failure process

is a nonhomogeneous Poisson process with intensity function given by
h (£) = kbt"™", k,b,e50.

E | The maximum likelihood estimates (MLE's), k and b, of k and b, are easy
; to compute (seae Appendix). Using the MLE's, we have the following estimate
!
i : for the intensity function:
{

hc(c) - kbeP L,

If hc(t) were constant between failures, then each Xi would have an
exponential distribution with parameter hc(ti_l). It would, therefore,

be true that E(xi)-l/hc(:i_l). Although Crow's intensity function is not
f constant between failures, the change in the intensity from one failure to
| the next is small. Therefore,‘l/hc(ti_l) is very close in value to E(xi).
Throughout this paper, we will use

E(X) = /b (c, )

as an estimate of E(xi) for Crow's model.




The intensity hc(t) in Crow's model is a monotone function. It decreases
when b<l, increases when b>1l, and is constant when b=1l, These three possi-
bilities correspond, respectively, to reliability growth, reliability loss,
and constant reliability. Suppose a process exhibits neither strict growth
nor strict loss of reliability. For example, a failure process may at first
display a loss of reliability followed by reliability growth. In this case,
the plot of 1ln(CMIBF(t)) versus ln(t) will look U-shaped. This phenomenon
corresponds to an intensity function which at first increases and then
decreases. For such data, a model with a monotone intensity function will
not be entirely suitable.

Another possible limitation of Crow's model is that it does not
distinguish between failure types. In many applications, the data consist
not only of the time of failure but also the (probable) cause. Thus, it is
known whether a. new failure mode has been revealed or whether an old one has
recurred. Presumably, for a fixed number of observed failures, different
combinations of new and recurrent failure modes ére associated with

different patterns of future reliability growth.

B. Failure Mode Models

In order to circumvent the above-mentioned constraints in the Crow model,
a more flexible family of models has been suggested by the first author. The
principal aim of this investigation has been to determine the properties of

this new family and compare its performance to that of Crow's. .
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[ Let, then,

] N (t) = number of failures in (o,t];
Nl(:) = number of different failure modes discovered in (o,t];
N,(t) = N(t) - N (¢)

Thus, Nz(t) gives the number of failures in (o,t] which are recurrences
of previously observed modes. It will be assumed that the fajilure process
is a Poisson process with intensity function hf (t) defined by

1n (hf(t)) = d° + dl 1n (Nl(t) + 1) + d2 g(NZ(t) + 1), where do’ d,, d

1’ 72
are parameters and g(+) is a function to be chosen. Here, we shall consider
three candidates for g(-): the identity, the square root, and the natural

logarithm. The MLE's for do’ dl, and d, can be obtained by iterative

2
methods (see Appendix).

Note that hf(') is a step-function in time with jumps occurring at each
point of failure. Aside from some technical points, the failure process is

an inhomogeneous Poisson process in which each interfailure time X has

i

exactly an exponential distribution with parameter h.(t, ,). Since E(Xi) =

i-1
1/hf(ti—l)' the estimate ﬁ(xi) = 1/fxf(ti_l) will be used through;ut.

The above family does have the flexibility to accommodate nonmonotone
intensity functions. For example, imagine a system for which in the early
stages of reliability growth testing Nl(t) increases more rapidly than Nz(t).
Once most of the failure modes have been discovered, though not entirely
corrected, Nl(t) will increase only infrequently in comparison to Nz(t).

If d1>o and d2<o, then hf(t) will increase at first and subsequently

decrease. On the other hand, if d1 and dz are both negative, then hf(t)

will be monotone decreasing.
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The family of failure mode models is very much empirical in nature.
It is based on the assumption that the patterns in Nl(t) and Nz(t) jointly
provide more information on the structure of reliability growth than N(t)
alone. Under this assumption it seems more natural to calibrate time in
terms of Nl(t) and Nz(t). This permits the model to deal with systems in

which the rate of reliability growth is nonmonotone. Of course, the validity

and utility of this point of view must be borne out in practice.

C. Urn Models

We also investigated the possibility of using urn models to represent
the failure process. Imagine an urn containing (C + N) balls: C clear
balls and N colored ones. Balls are drawn from the urn at the rate of one
every 8 hours. If a clear ball is drawn, no failure is recorded and the

ball is returned to the urn. If a colored ball is drawn, a failure is

recorded and a clear ball is returned to the urn in place of the ball drawn.
Under this sampling scheme,

Eg 'c(xh)- §{N+C) / (N-n)
l,

and
2
E(Y ;) * 8(CY) [(n/N) + 1/2 (n/M)7].
Maximum likelihood estimates for the parameters can be obtained by grid
search methods and the derivations are presented in the Appendix. Unfortunately,

there are occasional difficulties with convergence and the estimates seem to

be exceedingly variable.




3. Data
A. Field Data

We have available for analysis three data sets obtained from actual
development testing. The first set consists of 52 failure times of a
complex electronic system built by General Electric. Aside from 14 so-
called non-pattern failures, all other failures were associated with one
of 13 identifiable failure modes. In one version of this data set, to be
denoted by GE, each non-pattern failure is treated as representing a newly
discovered failure mode - making 27 in all. In another version, denoted
by GE, the non-pattern failures are treated as recurrences of a single
failure mode - making 14 failure modes in all.

The next two data sets obtained from development testing of the Black
Hawk helicopter and were made available by the Department of the Army. One
set, denoted by RHYDR, is derived from a hydraulic subsystem and consists of
54 failures associated with 40 different failure modes. The second set,
denoted by RT700, 1is derived from the engine and consists of 56 failures

associated with 52 different failure modes.

B. Simulation Data
Inasmuch as actual reliability growth data is difficult to obtain, it
is necesgsary to observe the operating characteristics of the different

models on simulated data. Ideally, the simulation should be designed to
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capture the salient features of real data but without conforming explicitly
to any of the stochastic mechanisms underlying the models to be tested. The
simulation employed in the present study is described below and was based
roughly on the characteristics of the field data made available to the

authors.

Five sets of independent simulated processes were constructed. In a
given set, each simulation consists of the superposition of a number of
independent homogeneous Poisson processes whose intensities are obtained
by sampling from a gamma distribution with specified parameters. Each
Poisson process which represents a different failure mode, is truncated
after a certain number of failures have appeared. That number is determined
by sampling independently from a Poisson distribution with a fixed mean.

The parameters determining each set of simulations are presented in
Table 1. For example, data set 0 was generated by the superposition of
25 homogeneous Poisson processes whose intensities were sampled from a gamma
distribution with a mean of 1.5 failures per 1000 hours and a mode of .786
failures per 1000 hours. (Those processes associated with the larger intensi-
ties correspond to failure modes which tend to appear early on in the relia-
bility growth process.,)

With real systems, some failure modes will only occur after a certain

amount of non-stop operating time. For instance, a part may fail only after

the engine has been running long enough for it to heat up to a certain
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temperature. With this in mind, the simulations in data sets 0, 1, and
2 have been augmented by temn '"lagged" failure modes, again modeled as
independent homogeneous Poisson processes. However, these processes only
begin after a threshhold of 80 consecutive hours without a failure has
been reached. The intensities for these modes are obtained by sampling
from a Gaussian distribution with fixed parameters. These are also dis-
played in Table 1. For data set 0, the mean is 5 failures per 1000 hours
and the standard deviation 1 failure per 1000 hours. All lagged failure
modes are truncated after three observed failures.

Data sets 3 and 4, although not augmented by lagged failures, involve

-

a relatively large number of potential failure modes with low recurrence
rates. All simulations were tracked until the first failure after 4000

hours.




4, Measures of Performance

The primary role of reliability growth models is to provide engineers
with satisfactory predictions of future levels of reliability., We focus
here on the accuracy of the model's short and long-term forecasts of
instantaneous mean time between failures. Since it is difficult to deter-
mine absolute standards of performance, model assessments are carrieﬂ out
on a comparative basis.

One measure of the ability to predict interfailure times is given by
the R2 statistic (Braun and Paine [1977]). It is simple modification of
a statistic employed by Schafer, et al, {1975]. This statistic compares
the average of three consecutive incarfailure times to the estimated mean
of the middle one of the three times. Even when reliability growth occurs,
the observed xi's can fluctuate greatly. The use of the average of three
interfailure times hopefully diminishes some of the effect of the irregulari-
ties in the data. When using the R2 statistic, we only consider the failures
which occur after a certain interval of time, when reliability growth should
be more evident. It is usually the later interfailure times that we want to
predict. Let

m = number of disjoint groups of three interfailure times after some

starting time,

A
%j = agverage of the observed Xi's for the jth group, j=1,...,m,
~ 3
E(xj) = estimated mean interfailure time for the middle time in
the jcth group, j=1,...,m, and

- ml\‘
X=L X /o,

y=1 3

The R2 statistic is given by
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t (X,-E(X,))"/(m-2)
Rz = 321 >

2 %0 %/ (@1
=1

A small value of R2 implies a good fit. Since R2 tests predictive value,

it is proper, when estimating E(Xj) for each j, to use the estimate derived

i from the data through time tj-l'

' A more severe test of the predictive power of a model is to estimate

the parameters of the model using the data up to a certain test time and

! then to predict the level of the interfailure times at a later time, say

1000 hours later. Comparison of this prediction with the actual inter-

failure time level should give a good indication of the utility of the

model. In this ;tudy, long-term forecasts of (current) reliability at

{ 2500 and 3500 hours are obtaired on the basis of observations up to 1500
hours. They are then compared with the observed instantaneous mean time
between failures at 2500 and 33500 hours. These are actually estimated by
taking the average of the 5 interfailure times straddling those time points.

Although of secondary interest, it is also possible to judge whether

the distributional assumptions of the models are approximately satisfied by
the date. If Fy (+) is the hypothesized cdf of the interfailure time, X and
;i(-) its estimate, then a plot of ;i (xi) versus 1 should be roughly symmetric
about the line ;i(xi) = 0.5 with no visible patterns. In addition, since the

-~

variates u, = Fi(xi) are approximately independent uniform on [0,1], 50% of the

values should fall between .25 and .75. Clearly, many such tests may be devised.
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5. Prediction with Failure Mode Models

As indicated in Section 2 sbove, prediction of future interfailure
times with the Crow or urn models is relatively straightforward. However,
since the intensity function hf(t) for the failure mode model depends on
Nl(:) and Nz(t), prediction at some future time point is not simply
accomplished. In this paper, we have employed the following procedure.

Suppose data is available until time to and prediction at time 3 is
required. Plot ﬂf(t) versus t at the jump points of the function. Ordi-
narily, ﬁf(c) will vary quite smoothly with t and, assuming that reliabil-
ity growth eventually occurs, will be smoothly decreasing in t after a
certain point. One could try to extrapolate ﬂf(‘) to t; by using a French
curve or some such device. We have chosen instead to linearize the de~
creasing portion of the curve, by choosing appropriate reexpressions of t
and Bf(t) (see Tukey [1977], Chapter 6), and extrapolate linearly on the
transformed scale. The final prediction is obtained by transforming back
to the original scales. Although this procedure is somewhat tedious in the
context of a simulation study, it is quite practicable when a single data

gset is at hand.

B - —
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6. Analysis of Simulated Data

A. R2 Statistics

The Crow, urn, and three versions of the FM model were applied to

the ten simulations of set 0. The essential features of the batch of ten

Y 1 R2 statistics generated by each model are captured by the S-number sum-

‘maries (see Tukey [1977], Chapter 2) contained in Table 2 and displayed

graphically in Figure 2. The urn model is clearly dominated by the other

] § methods and seems prone to disproportionately large R2 values. Given the
difficulty involved in obtaining the MLE's for this model, it was decided

\ to eliminate it from future comparisons. On the whole, the FM models seem

to perform slightly better than Crow's.

| - Simulations in data set 1 are characterized in general by fewer observed

failures than those in data set 0. With less ''data" available, the Crow

model, which requires fewer parameters to be estimated, seems to perform

slightly better overall. (See Table 3 and Figure 3.) This is particularly

true with respect to the criterion of minimizing the chance of very large’

R2 values.

We attempted to improve the performance of all methods by smoothing the
raw interfailure times before carrying out the parameter estimation. Smooth-
3 ing was done either by moving averages of three or running medians of three.
Unfortunately, the preprocessing of the data tended to degrade the performance

of all the models. For comparison, Table 3 contains the S5-number summary for
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R2's generated by the square-root version of the FM model applied to the
interfailure times smoothed by running means. |

For data set 2, with larger number of failures and an increased likeli-
hood of observing lagged failures, the FM models seem to improve. (See
Table 4 and Figure 4.) The square-root version is particularly noteworthy:
it's median R2 value is nearly 40% less than that of Crow's and in a Q-Q
plot (with Crow's quantiles along the abscissa) only one point, corresponding
to the pair of largest order statistics, would lie above the 45° line.

Another view of the comparison may be obtained from Figure 5 where the
difference between the R2 statistics for the FM model and the Crow model
for each simulation is plotted against the Crow R2 statistic. Here we see
that in 17 out of 20 cases, the FM model proved superior to Crow's. The
use of mean smoothing only succeeded in slightly reducing the lafgest order
statistic.

The results for data sets 3 and 4 are analogous to those for data set 2,
although the former have no lagged failures. The average observed number of
failures is still comparable failure modes. The results are presented in

Table 5 and 6, as well as Figures 6 through 9.

B. Long-term Prediction

We now focus on the quality of the models' long-term predictions as
described in Section 4. Estimates of IMIBF at 2500 and 3500 hours were
made for 10 simulations in each of data sets 3 and 4, on the basis of the

information available at 1500 hours. Only the Crow model and the square-

root version of the FM model were compared. The estimates and target
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values are presented in Tables 7(a) and 8(a). One notes immediately the
tremendous variability in the latter, despite the fact that they are
actually averages of five consecutive interfailure times. On the whole,

the FM-model predictions tend to be larger than the Crow predictions and

display greater simulation-to-simulation variability.
g i The quality of the predictions can be assessed by consideration of
i Tables 7(b), 7(c), 8(b), and 8(c). They contain S5-number summaries of the
; i errors of prediction and the relative errors of prediction. In interpreting
3 the latter tables, it should be recalled that negative relative errors,
corresponding to overprediction, are theoretically unbounded in magnitude

while positive relative errors, corresponding to underprediction are

bounded above by unity. Thus, the FM-model which occasionally overpredicts

small observed values earns large negative relative errors. On the other

hand, the Crow model tends to considerabl§ underpredict future interfailure
times: at 3500 hours, for example, Crow's median relative error exceeds
+ 507% for both data sets. Predictions of the FM-model are more nearly
unbiased and somewhat superior to those of Crow's model. Although both
sets of predictions could use congiderable improvement, it should be kept
in mind that at 3500 hours one is extrapolating over a time interval
“‘f longer than the period of observation. Such extrapolation is necessarily

; prone to large errors.
B C. Goodness-of-Fit
L Figures 10 and 11 display plots of ;i(xi) versus i for the FM and Crow
models from a simulation in data set 3. Both models seem to fit the data well

and this appears to be true in general. These results underline the danger in

inferring from goodness-of-fit tests the adequacy of long-term predictions.

PRI ﬂh-nmnIﬂiH.-ﬂﬁIhNilhﬂIhihﬂuﬂhiHilﬁ‘H..-i.'.‘................“‘
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7. Analysis of Field Data

Smoothed plots of CMIBF versus Test time for the RT 700 and RHYDR
data sets are displayed in Figures 12 and 13. Only the RT 700 system
seems to display sustained reliability growth. In Table 9 we present the
R2 statistics of the Crow model and the FM models for all four data sets.
Except for the RHYDR set, where it performs abysmally, the Crow model is
superior. Plots of-;i(xi) versus i for the different models do not differ
appreciably. Figures 14 and 15 provide one example.

Long term prediction was carried out for the GE data only. The Crow

model was compared to the square-root version of the FM model. The former

was more accurate at 2500 hours, the latter at 3500 hours.
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8. Conclusions
The basic conclusion of this study seems to be that the family of

FM models is deserving of further consideration. Although these models

x | require one more parameter than does Crow's, significant improvements in
forecasting accuracy result. One drawback to the FM family is the effort
] 1 required to produce the long-range forecasts. However, this should not

| be a bar to practical implementation. Validation in field testing will

! determine whether the extra effort is merited.

| We have also determined that preprocessing of the raw interfailure
times does not improve parameter estimates or lead to better forecasts.

Future research should be directed at determining stochastic proper-

ties of the FM models, developing estimates of standard errors of pre-

diction and further analysis of field data.
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Appendix

A. Crow Model

The intensity function for the nonhomogeneous Poisson process
underlying the Crow model is hc(t) = kbtb-l, t>0.

Suppose that n failures are observed, the last one occurring at
time t(n). Then the maximum likelihood estimates of k and b are

found to be (Crow [1975]):

~

k = n/[t(n)]°

and
- n-1l
b = n/L log [t(n)/Xi]
i=1

B. Failure Mode Models

The intensity function for the failure mode model satisfies the
relation 1ln (hf(t)) = do+dl in (Nl(t) + 1) + d2 g (Nz(t) + 1). For the
case that g(-) 1s the square root, we have

a
— 1
hf(t) exp {d_ +d, \/Nz(t) +1 ) (Nl(t) +1)

Let Mli = Nl(ti_l) + 1 and M

21 = Mty y) + 1.

Then,

- 1n L (Xl’ XZ’..., Xn)
n

"I TP () Xlamgley )

n d

— 1
T (4, +d; VG +d, 1n(C) - exp (4, + 4, VT €y X

Setting the derivatives of 1In L with respect to dO’ dl, and d2 equal 0,
yields the equations:




e e i i R S P ' e D 5 ARG, SRS ¢ v T ..

H
¢
1 -20-
|
;| . n
1 d, =1lan - lnizlyi s (B1)
[ n n n 1
1 10 Oy = (fEyy )55 vyle Gy (B2)
{ n - n n —_— 3
: N c.. ., B
; g1 Vo InggyyilgE) viVoy (B3)
1 where
. dl
2 yg = exp (4, NG ¢y "X
| Equations (B2) and (B3) can be solved by ordinary Newton - Raphson
y .
. iteration and the resulting solutions for d1 and d2 employed in (Bl) to
gyl . obtain an’estimate for d .
3 . -

C. Urn Model

Suppose that the sequence of observed interfailure times is
{xi = jiG} i=1, 2, ..., n, where j; is some integer. Let k = C/N and

a, =1i/N (i=1, 2, ..., n). Then

i 3 -1
. i+l
; Pr {xi+l=ji+l 8§} wm [(ai+k)/(l+k)] (l—ai)/(l+k).
: Hence,
log LN;K(xl’ XZ, ceay Xh)
I n-1
=z {3, -1 log [(a+k)/(1+k)] + log [(1-11)/(1+k)]}.

i=o

Setting alog L/2k equal Q, yields the equation

n-1
z

1) (1-a,))/(a, + k)] =n. (cl)
i=0 1 1

(Q i+1 ~




RIS Al

Setting 3log L/3k equal O, yields the equation

{ n-1 n-1
@ T for = 1D/ + . (c2)

The simplest approach to finding solutions to (Cl) and (C2) seems to be

3 to search over a grid of values of k and N, However, this consumes a i
fair amount of computer time and the process does not always converge to

acceptable values of k and N. 4
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B NP TR

i !
;o H
! E
| i
4 §
- }
¢
» |
2500 HOURS 3500 HOURS t
PREDICTIONS OBSERVED PREDICTIONS OBSERVED ;
i M, VNT | CROW FM, VN,FT| CROW ‘
: i
] i
i 60.5 33.9 99.8 95.0 S4.6 | 171.1 f
B 52.8 36.5 26.4 90.3 64.6 | 233.9
1 49.0 40.0 67.9 88.5 54.4 137.6
‘ 253.6 70.9 55.6 166.9 81.6 | 262.5
; 90.4 49.2 102.2 239.4 95.0 | 312.4 l
.§ 108.2 39.7 120.4 154.2 75.2 64.9 :
73.7 55.7 71.3 143.7 88.2 123.9
; 67.6 39.4 44.3 94.2 56.2 94.2
! .64.3 37.5 62.7 93.3 67.0 58.9
2 89:4 43.3 32.4 69.5 48.3 70.0
} (a) Raw Data I
! MODEL TIME 0% 25% 50% 75% 100%
E M, VE#1 2500 -198.0  -26.4 <~2.0 12.2 39.3
CROW 2500 - 15.3 -10.1 15.6 53.0 80.7 }
FM, yN+1 3500 - 89.3  -19.8 24.8 76.1  143.6 ’
CROW 3500 - 10.3 21.7 60.6 169.3 217.4
(b) Errors of Prediction. 5-number summaries. §
— §
j FM, VN+41 2500 -3.56  -1.76 -.03 12 .39 |
: CROW 2500 - .38 -.28 .31 .52 .67 :
- ™, VN+L 3500 -1.38 - .16 .12 .36 .61 %
:‘¢ CROW 3500 - .16 .29 .50 .69 .72
i (¢) Relative Errors of Prediction. S-number summaries.

i
i

Table 7. Data Set 3. Long-term Forecasts of IMIBF.




|
|

2500 HOURS 3500 HOURS
PREDICTIONS OBSERVED PREDICTIONS OBSERVED
M,V N2+1 CROW ™, V 2+I CROW
56.4 | 33.5 53.7 70.4 50.7 180.0
93.9 42.8 46.6 124.1 58.0 100.6
132.0 77.2 48.2 70.2 90.2 121.9
112.0 47.6 148.3 174 .8 76.7 151.7
123.5 41.8 83.9 163.2 80.2 275.8
97.7 51.1 112.4 181.4 82.4 268.8
74.3 56.8 83.7 191.2 102.0 365.8
91.6 58.1 77.8 135.5 82.9 223.9
77.9 44,8 32.1 93.3 57.7 147.7
123.6 63.8 154.5 206.7 97.6 206.5
(a) Raw Data
MODEL TIME 0% 25% 50% 75% 100%
FM, VN+1 2500 -83.8 -45.8 -8.2 14.7 36.3
CROW 2500 -29.0 3.8 23.5 61.3 100.7
FM, VN+1 3500 -23.5 .2 70.9 109.6 174.6
CROW 3500 31.7 75.0 119.2 186.4 263.8
(b) " Errors of Prediction. 5S-number summaries.
FM, \/F+1 2500 -1.74 =1.02 -.11 .13 .24
CROW 2500 - .60 .08 .34 .55 .68
FM, VN+1 3500 - .23 0 .38 W42 .61
CROW 3500 .26 .49 .62 .71 72
Relative Errors of Prediction. 5S-number summaries.

(c)

Table 8.

Data Set 4.

Long-term Forecasts of IMTBF.
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