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1. Introduction

Reliability growth modeling is an important component in development

testing of complex systems. It provides estimates of the current status

of the process as well as forecasts of reliability at future time points.

Several models have been investigated in the literature (see Schafer, et al.

[1975]). In this report, we focus on comparing the performance of a model

introduced by L. Crow (1975] and a family of models which are generalizations

of those introduced in Braun and Paine [1977].

The novel feature of this latter family is that it models the logarithm

of the intensity function of the failure process as a multiple linear re-

gression on some functions of the number of different failure modes

uncovered and the number of recurrent failures. These models possess great

flexibility in accommodating many different shapes of reliability growth

curves including nonmonotonic ones.

Three members of this family are compared with the Crow model over a

range of simulated reliability growth patterns. One member, in particular,

seems to provide short-and long-term forecasts superior to those of Crow's.

These results suggest that these new models be considered in the modeling

of field data. Three such data sets are considered here as well. Through-

out this report, the following notation will be employed.
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Suppose a failure process consists of n failures. Let

t - operating time,

N(t) - number of failures in (O,t],

t i . time of the ith failure, i-l,...,n,

X, - t l I first interfailure time,

X, M ti-ti_ 1 - ith interfailure time, i-2,...,n, and

CHTBF(t) - t/N(t) cumulative mean time between failure at time t.

iii
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2. Reliability Growth Models

A. Crow's Model

In 1964, J. T. Duane proposed a deterministic model for reliability

growth in which he hypothesized that there is a linear relationship

between ln(CMTBF(t))and ln(t). A stochastic analog to this model was

suggested by Crow [1975]. In this stochastic model, the failure process

is a nonhomogeneous Poisson process with intensity function given by

b-ih (t) - kbt - , k,b,t>O.

The maximum likelihood estimates (MLE's), k and b, of k and b, are easy

to compute (see Appendix). Using the MLE's, we have the following estimate

for the intensity function:

hc(t)kbt

If h ct) were constant between failures, then each Xi would have an

exponential distribution with parameter h c(t il). It would, therefore,

be true that E(Xi)-l/h(ti1l). Although Crow's intensity function is not

constant between failures, the change in the intensity from one failure to

the next is small. Therefore, 1/h c(ti_ ) is very close in value to E(Xi).

Throughout this paper, we will use

E(X) - 1/h c(ti )

as an estimate of E(Xi) for Crow's model.

A L ... .. ..-.
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The intensity h (t) in Crow's model is a monotone function. It decreases

when b<l, increases when b>l, and is constant when bul. These three possi-

bilities correspond, respectively, to reliability growth, reliability loss,

and constant reliability. Suppose a process exhibits neither strict growth

nor strict loss of reliability. For example, a failure process may at first

display a loss of reliability followed by reliability growth. In this case,

the plot of ln(CMTF(t))versus ln(t) will look U-shaped. This phenomenon

corresponds to an intensity function which at first increases and then

decreases. For such data, a model with a monotone intensity function will

not be entirely suitable.

Another possible limitation of Crow's model is that it does not

distinguish between failure types. In many applications, the data consist

not only of the time of failure but also the (probable) cause. Thus, it is

known whether a. new failure mode has been revealed or whether an old one has

recurred. Presumably, for a fixed number of observed failures, different

combinations of new and recurrent failure modes are associated with

different patterns of future reliability growth.

B. Failure Mode Models

In order to circumvent the above-mentioned constraints in the Crow model,

a more flexible family of models has been suggested by the first author. The

principal aim of this investigation has been to determine the properties of

this new family and compare its performance to that of Crow's.
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Let, then,

N (t) - number of failures in (o,t];

Nl(t) - number of different failure modes discovered in (o,t];

N2 (t) - N(t) - N_(t)

Thus, N2 (t) gives the number of failures in (o,t] which are recurrences

of previously observed modes. It will be assumed that the failure process

is a Poisson process with intensity function hf (t) defined by

in (hf(t)) - d0 + d1 In (Nl(t) + 1) + d2 g(N2 (t) + 1), where do, dl, d2

are parameters and g(-) is a function to be chosen. Here, we shall consider

three candidates for g(-): the identity, the square root, and the natural

logarithm. The MLE's for do, dip and d2 can be obtained by iterative

methods (see Appendix).

Note that hf () is a step-function in time with jumps occurring at each

point of failure. Aside from some technical points, the failure process is

an inhomogeneous Poisson process in which each interfailure time Xi has

exactly an exponential distribution with parameter hf(ti_). Since E(Xi) -

1I/hf(ti-l), the estimate k(Xi) - 1/hf(t will be used throughout.

The above family does have the flexibility to accommodate nonmonotone

intensity functions. For example, imagine a system for which in the early

stages of reliability growth testing NW(t) increases more rapidly than N2(t).

Once most of the failure modes have been discovered, though not entirely

corrected, NW(t) will increase only infrequently in.comparison to N2(t).

If d >o and d2<o, then hf(t) will increase at first and subsequently

decrease. On the other hand, if d and d2 are both negative, then hf(t)

will be monotone decreasing.
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The family of failure mode models is very much empirical in nature.

It is based on the assumption that the patterns in N1 (t) and N2 (t) jointly

provide more information on the structure of reliability growth than N(t)

alone. Under this assumption it seems more natural to calibrate time in

terms of N1(t) and N2 (t). This permits the model to deal with systems in

which the rate of reliability growth is nonmonotone. Of course, the validity

and utility of this point of view must be borne out in practice.

C. Urn Models

We also investigated the possibility of using urn models to represent

the failure process. Imagine an urn containing (C + N) balls: C clear

balls and N colored ones. Balls are drawn from the urn at the rate of one

every 8 hours. If a clear ball is drawn, no failure is recorded and the

ball is returned to the urn. If a colored ball is drawn, a failure is

recorded and a clear ball is returned to the urn in place of the ball drawn.

Under this sampling scheme,

EC(x) S(N-fC)/(N-n)

and

2E(Yn) " (C+N) [(n/N) + 1/2 (n/N)2].

Maximum likelihood estimates for the parameters can be obtained by grid

search methods and the derivations are presented in the Appendix. Unfortunately,

there are occasional difficulties with convergence and the estimates seem to

be exceedingly variable.



3. Data

A. Field Data

We have available for analysis three data sets obtained from actual

development testing. The first set consists of 52 failure times of a

complex electronic system built by General Electric. Aside from 14 so-

called non-pattern failures, all other failures were associated with one

of 13 identifiable failure modes. In one version of this data set, to be

denoted by GE, each non-pattern failure is treated as representing a newly

discovered failure mode - making 27 in all. In another version, denoted

by GE, the non-pattern failures are treated as recurrences of a single

failure mode - making 14 failure modes in all.

The next two data sets obtained from development testing of the Black

Hawk helicopter and were made available by the Department of the Army. One

set, denoted by RHYDR, is derived from a hydraulic subsystem and consists of

54 failures associated with 40 different failure modes. The second set,

denoted by RTT00, is derived from the engine and consists of 56 failures

associated with 52 different failure modes.

B. Simulation Data

Inasmuch as actual reliability growth data is.difficult to obtain, it

is necessary to observe the operating characteristics of the different

models on simulated data. Ideally, the simulation should be designed to



capture the salient features of real data but without conforming explicitly

to any of the stochastic mechanisms underlying the models to be tested. The

simulation employed in the present study is described below and was based

roughly on the characteristics of the field data made available to the

authors.

Five sets of independent simulated processes were constructed. In a

given set, each simulation consists of the superposition of a number of

independent homogeneous Poisson processes whose intensities are obtained

by sampling from a gamma distribution with specified parameters. Each

Poisson process which represents a different failure mode, is truncated

after a certain number of failures have appeared. That number is determined

by sampling independently from a Poisson distribution with a fixed mean.

The parameters determining each set of simulations are presented in

Table 1. For example, data set 0 was generated by the superposition of

25 homogeneous Poisson processes whose intensities were sampled from a gamma

distribution with a mean of 1.5 failures per 1000 hours and a mode of .786

failures per 1000 hours. (Those processes associated with the larger intensi-

ties correspond to failure modes which tend to appear early on in the relia-

bility growth process.)

With real systems, some failure modes will only occur after a certain

amount of non-stop operating time. For instance, a part may fail only after

the engine has been running long enough for it to heat up to a certain
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temperature. With this in mind, the simulations in data sets 0, 1, and

2 have been augmented by ten "lagged" failure modes, again modeled as

independent homogeneous Poisson processes. However, these processes only

begin after a threshhold of 80 consecutive hours without a failure has

been reached. The intensities for these modes are obtained by sampling

from a Gaussian distribution with fixed parameters. These are also dis-

played in Table 1. For data set 0, the mean is 5 failures per 1000 hours

and the standard deviation 1 failure per 1000 hours. All lagged failure

modes are truncated after three observed failures.

Data sets 3 and 4, although not augmented by lagged failures, involve

a relatively large number of potential failure modes with low recurrence

rates. All simulations were tracked until the first failure after 4000

hours.
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4. Measures of Performance

The primary role of reliability growth models is to provide engineers

with satisfactory predictions of future levels of reliability. We focus

here on the accuracy of the model's short and long-term forecasts of

instantaneous mean time between failures. Since it is difficult to deter-

mine absolute standards of performance, model assessments are carried out

on a comparative basis.

One measure of the ability to predict interfailure times is given by

the R2 statistic (Braun and Paine [1977)). It is simple modification of

a statistic employed by Schafer, et al. [1975]. This statistic compares

the average of three consecutive interfailure times to the estimated mean

of the middle one of the three times. Even when reliability growth occurs,

the observed Xi's can fluctuate greatly. The use of the average of three

interfailure times hopefully diminishes some of the effect of the irregulari-

ties in the data. When using the R.2 statistic, we only consider the failures

which occur after a certain interval of time, when reliability growth should

be more evident. It is usually the later interfailure times that we want to

predict. Let

m - number of disjoint groups of three interfailure times after some

starting time,

X - average of the observed X i's for the jth group, J=l, .. ,m,

E(X4 ) - estimated mean interfailure time for the middle time in

the jth group, J-1,...,m, and

"- m 1iX - E X /m.

J-1 J

The R2 statistic is given by
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m 1 _o 21

j (X.-X) (m-l)* ~j=l

A small value of R2 implies a good fit. Since R2 tests predictive value,

it is proper, when estimating E(X.) for each j, to use the estimate derived

from the data through time tj I .

A more severe test of the predictive power of a model is to estimate

the parameters of the model using the data up to a certain test time and

then to predict the level of the interfailure times at a later time, say

1000 hours later. Comparison of this prediction with the actual inter-

failure time level should give a good indication of the utility of the

model. In this study, long-term forecasts of (current) reliability at

2500 and 3500 hours are obtain'ed on the basis of observations up to 1500

hours. They are then compared with the observed instantaneous mean time

between failures at 2500 and 3500 hours. These are actually estimated by

taking the average of the 5 interfailure times straddling those time points.

Although of secondary interest, it is also possible to judge whether

the distributional assumptions of the models are approximately satisfied by

the date. If Fi (.) is the hypothesized cdf of the interfailure time, Xi, and

F i(.) its estimate, then a plot of Fi (xi) versus i should be roughly symmetric

about the line Fi(x±) 1 0.5 with no visible patterns. In addition, since the

variates ui.W Fi(xi) are approximately independent uniform on [0,1] , 50% of the

values should fall between .25 and .75. Clearly, many such tests may be devised.
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5. Prediction with Failure Mode Models

As indicated in Section 2 above, prediction of future interfailure

times with the Crow or urn models is relatively straightforward. However,

since the intensity function h (t) for the failure mode model depends on
f

N1 (t) and N2 (t), prediction at some future time point is not simply

accomplished. In this paper, we have employed the following procedure.

Suppose data is available until time t and prediction at time tI is

required. Plot h f(t) versus t at the jump points of the function. Ordi-

narily, hf(t) will vary quite smoothly with t and, assuming that reliabil-

ity growth eventually occurs, will be smoothly decreasing in t after a

certain point. One could try to extrapolate h (-) to t by using a French

curve or some such device. We have chosen instead to linearize the de-

creasing portion of the curve, by choosing appropriate reexpressions of t

and hf(t) (see Tukey [1977], Chapter 6), and extrapolate linearly on the

transformed scale. The final prediction is obtained by transforming back

to the original scales. Although this procedure is somewhat tedious in the

context of a simulation study, it is quite practicable when a single data

set is at hand.
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6. Analysis of Simulated Data

A. R2 Statistics

The Crow, urn, and three versions of the FM model were applied to

the ten simulations of set 0. The essential features of the batch of ten

R2 statistics generated by each model are captured by the 5-number sum-

maries (see Tukey [1977], Chapter 2) contained in Table 2 and displayed

graphically in Figure 2. The urn model is clearly dominated by the other

methods and seems prone to disproportionately large R2 values. Given the

difficulty involved in obtaining the MLE's for this model, it was decided

to eliminate it from future comparisons. On the whole, the FM models seem

to perform slightly better than Crow's.

Simulations in data set 1 are characterized in general by fewer observed

failures than those in data set 0. With less "data" available, the Crow

model, which requires fewer parameters to be estimated, seems to perform

slightly better overall. (See Table 3 and Figure 3.) This is particularly

true with respect to the criterion of minimizing the chance of very large

R2 values.

We attempted to improve the performance of all methods by smoothing the

raw interfailure times before carrying out the parameter estimation. Smooth-

ing was done either by moving averages of three or running medians of three.

Unfortunately, the preprocessing of the data tended to degrade the performance

of all the models. For comparison, Table 3 contains the 5-number summary for
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R2's generated by the square-root version of the FM model applied to the

interfailure times smoothed by running means.

For data set 2, with larger number of failures and an increased likeli-

hood of observing lagged failures, the FM models seem to improve. (See

Table 4 and Figure 4.) The square-root version is particularly noteworthy:

it's median R2 value is nearly 40% less than that of Crow's and in a Q-Q

plot (with Crow's quantiles along the abscissa) only one point, corresponding

to the pair of largest order statistics, would lie above the 450 line.

Another view of the comparison may be obtained from Figure 5 where the

difference between the R2 statistics for the FM model and the Crow model

for each simulation is plotted against the Crow R2 statistic. Here we see

that in 17 out of 20 cases, the FM model proved superior to Crow's. The

use of mean smoothing only succeeded in slightly reducing the largest order

statistic.

The results for data sets 3 and 4 are analogous to those for data set 2,

although the former have no lagged failures. The average observed number of

failures is still comparable failure modes. The results are presented in

Table 5 and 6, as well as Figures 6 through 9.

B. Long-term Prediction

We now focus on the quality of the models' long-term predictions as

described in Section 4. Estimates of IMTBF at 2500 and 3500 hours were

made for 10 simulations in each of data sets 3 and 4, on the basis of the

information available at 1500 hours. Only the Crow model and the square-

root version of the FM model were compared. The estimates and target
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values are presented in Tables 7(a) and 8(a). One notes immediately the

tremendous variability in the latter, despite the fact that they are

actually averages of five consecutive interfailure times. On the whole,

the FM-model predictions tend to be larger than the Crow predictions and

display greater simulation-to-simulation variability.

The quality of the predictions can be assessed by consideration of

Tables 7(b), 7(c), 8(b), and 8(c). They contain 5-number summaries of the

errors of prediction and the relative errors of prediction. In interpreting

the latter tables, it should be recalled that negative relative errors,

corresponding to overprediction, are theoretically unbounded in magnitude

while positive relative errors, corresponding to underprediction are

bounded above by unity. Thus, the FM-model which occasionally overpredicts

small observed values earns large negative relative errors. On the other

hand, the Crow model tends to considerably underpredict future interfailure

times: at 3500 hours, for example, Crow's median relative error exceeds

+ 50% for both data sets. Predictions of the FM-model are more nearly

unbiased and somewhat superior to those of Crow's model. Although both

sets of predictions could use considerable improvement, it should be kept

in mind that at 3500 hours one is extrapolating over a time interval

longer than the period of observation. Such extrapolation is necessarily

prone to large errors.

C. Goodness-of-Fit

Figures 10 and 11 display plots of Fi(Xi) versus i for the FM and Crow

models from a simulation in data set 3. Both models seem to fit the data well

and this appears to be true in general. These results underline the danger in

inferring from goodness-of-fit tests the adequacy of long-term predictions.
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7. Analysis of Field Data

Smoothed plots of CMTBF versus Test time for the RT 700 and RHYDR

data sets are displayed in Figures 12 and 13. Only the RT 700 system

seems to display sustained reliability growth. In Table 9 we present the

R2 statistics of the Crow model and the FM models for all four data sets.

Except for the RHYDR set, where it performs abysmally, the Crow model is

superior. Plots of Fi(Xi) versus i for the different models do not differ

appreciably. Figures 14 and 15 provide one example.

Long term prediction was carried out for the GE data only. The Crow

model was compared to the square-root version of the FM model. The former

was more accurate at 2500 hours, the latter at 3500 hours.
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8. Conclusions

The basic conclusion of this study seems to be that the family of

FM models is deserving of further consideration. Although these models

require one more parameter than does Crow's, significant improvements in

forecasting accuracy result. One drawback to the FM family is the effort

required to produce the long-range forecasts. However, this should not

be a bar to practical implementation. Validation in field testing will

determine whether the extra effort is merited.

We have also determined that preprocessing of the raw interfailure

times does not improve parameter estimates or lead to better forecasts.

Future research should be directed at determining stochastic proper-

ties of the FM models, developing estimates of standard errors of pre-

diction and further analysis of field data.
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Append ix

A. Crow Model

The intensity function for the nonhomogeneous Poisson process

underlying the Crow model is h c(t) -kbt b- t>O.

Suppose that n failures are observed, the last one occurring at

time t(n). Then the maximum likelihood estimates of k and b are

found to be (Crow [1975]):

k =n/(t(n)Ib

and . n-i

b =n/Z log [r(n)/Xi I

B. Failure Mode Models

The intensity function for the failur'e mode model satisfies the

relation in. (h f(t)) - d o+d 1 in (N 1(t) + 1) + d 2 g (N 2(t) + 1). For the

case that g(-) is the square root, we have

h f Wt - exp .(d 0+ (12 qT12 (t) +1 ) (Nl(t) + Jd

Let Mui - Ni (t iil) + 1 and M 2 1O N 2 (t 1 1) + 1.

Then,

nL

i-i X2,-il Xln h tl

n

- {d + d2 V.C2 + di ln(C1~ exp (d + d2 1CiC 1  X1)

Setting the derivatives of in. L with respect to d., di and dequal 0,

yields the equations:
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n
d ln n -lnZEY (Bl)

n n n

iin Cl (njy3,!i yiln Cii, (B2)

n n n

ill Vr" n- lyiliil yi\C2i (B3)

where
d1

Yi "e ( 2  2i )  Cli Xi .

Equations (B2) and (B3) can be solved by ordinary Newton - Raphson

iteration and the resulting solutions for d and d2 employed in (BI) to

obtain an"estimate for d
0

C. Urn Model

Suppose that the sequence of observed interfailure times is

{x i - j6} i - 1, 2, ... , n, where Ji is some integer. Let k = C/N and

ai -i/N (i -1, 2, ...,n). Then
j -l
i+1

Pr {X i 6 - (ai + k)/(l + k)] (I - a )/(1 + k).

Hence,

log LNWK(Xl, X2  ... , X)

n-l
- {(Ji+i -1) log [(ai+k)/(l+k)] + log [(l-ai)/(l+k)]}.
1-0

Setting 3log L/Ik equal 0, yields the equation
n-i
r [(Qi+l -1) (1-a i)/(a i + k)] =n. (el)
i-o
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Setting alog L/3k equal 0, yields the equation

n-l n-i
- i(j -l)/(i + kN). (C2)

i-a i-a i+l

The simplest approach to finding solutions to (Cl) and (C2) seems to be

to search over a grid of values of k and N. However, this consumes a

fair amount of computer time and the process does not always converge to

acceptable values of k and N.
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2500 HOURS 3500 HOURS

PREDICTIONS OBSERVED PREDICTIONS OBSERVED

nM CROW FM, v'=r CROW

60.5 33.9 99.8 95.0 54.6 171.1

52.8 36.5 26.4 90.3 64.6 233.9
49.0 40.0 67.9 88.5 54.4 137.6
253.6 70.9 55.6 166.9 81.6 262.5
90.4 49.2 102.2 239.4 95.0 312.4

108.2 39.7 120.4 154.2 75.2 64.9
73.7 55.7 71.3 143.7 88.2 123.9
67.6 39.4 44.3 94.2 56.2 94.2
.64.3 37.5 62.7 93.3 67.0 58.9
89:4 43.3 32.4 69.5 48.3 70.0

(a) Raw Data

MODEL TIME 0% 25% 50% 75% 100%

FM, /N+1 2500 -198.0 -26.4 -2.0 12.2 39.3
CROW 2500 - 15.3 -10.1 15.6 53.0 80.7

FM, V N+l 3500 - 89.3 -19.8 24.8 76.1 143.6
CROW 3500 - 10.3 21.7 60.6 169.3 217.4

(b) Errors of Prediction. 5-number summaries.

FM, ,N+l 2500 -3.56 -1.76 -.03 .12 .39
CROW 2500 - .38 - .28 .31 .52 .67

FM, VN+1 3500 -1.38 - .16 .12 .36 .61
CROW 35.00 - .16 .29 .50 .69 .72

(c) Relative Errors of Prediction. 5-number summaries.

Table 7. Data Set 3. Long-term Forecasts of IMTBF.



-r . .. . . -.. . . .. ...a £. ......-

2500 HOURS 3500 HOURS

PREDICTIONS OBSERVED PREDICTIONS OBSERVED

FM, -/N2  CROW FM, / IT CROW

56.4 33.5 53.7 70.4 50.7 180.0
93.9 42.8 46.6 124.1 58.0 100.6

132.0 77.2 48.2 70.2 90.2 121.9
112.0 47.6 14B.3 174.8 76.7 151.7
123.5 41.8 83.9 163.2 80.2 275.8
97.7 51.1 112.4 181.4 82.4 268.8
74.3 56.8 83.7 191.2 102.0 365.8
91.6 58.1 77.8 135.5 82.9 223.9
77.9 44.8 32.1 93.3 57.7 147.7

123.6 63.8 154.5 206.7 97.6 206.5

(a) Raw Data

MODEL TIME 0% 25% 50% 75% 100%

FM, I/Wi 2500 -83.8 -45.8 -8.2 14.7 36.3
CROW 2500 -29.0 3.8 23.5 61.3 100.7

FM, i/N 3500 -23.5 .2 70.9 109.6 174.6
CROW 3500 31.7 75.0 119.2 186.4 263.8

(b) Errors of Prediction. 5-number summaries.

FM, \//1 2500 -1.74 -1.02 -.11 .13 .24
CROW 2500 - .60 .08 .34 .55 .68

FM, VN+ 3500 - .23 0 .38 .42 .61
CROW 3500 .26 .49 .62 .71 .72

(c) Relative Errors of Prediction. 5-number summaries.

Table 8. Data Set 4. Long-term Forecasts of IMTBF.



0 
0

0 ",

0
00

o0

0 0

0 0
00

0 0
0 1

0 P

0
0

0
00

0W

00o

0 Oj

0W
00 0.

00 .

0

0 0

00*

- it

0S to in Fn



0i 0

00

oa

0 .44
0 04

00

0 AG
0l ca

00

04

00

00

-H
W-

Ln m 0)
i3 

1.4

cm0



*7 7

0 >

%0

-64

0
01
0

04

01

00
-4

C14 r0



* C -- C - ~ - - - C-- -

I.

0
0
-t

-4

0

-4

0

0
0
0

-4

0
o

'A'A

02

o 02o
~0

0

o 'Ao

(U
'A

0(U

0
o ).4

-4

00
*r4

00 0 0 0 0 04 (N -4



ul

00

0 -)
00K

0

0

00

0

00

SI *
0CD

0

0

0400

0 m

0 00

L* 0,

r:4

cm m

• • o e -



0

00
0+

00 m

M,

0 U-

o 13>
00

0 ,

0- 0

00

oc
0 -%

'4

0 0 0

r.a

0 'mom


