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SUMMARY

v

A method for the prediction of the response of a wing to non-
stationary buffet loads is presented. The time history of the applied load is
segmented into a number of time intervals. In each time segment, the non-
stationary load is represented by the product of a deterministic shaping
function and a statistically stationary random function. An approximate
modelling of the load on the wing is given. The wing is divided into panels
or elements, and the load is computed from measured or estimated pressure
fluctuations at the centre of each panel. A series representation, with terms
of the correlated noise type, is used to curve fit the experimentally deter-
mined complex buffet pressure power spectral densities. Using the correlated
noise form of power spectral density for the random part of the applied
load, analytic expressions are derived for the mean square displacement and
acceleration response of the wing. An illustration using data available for
the F-4E aircraft is included.

R

o T

A T g 9 N

e e

RESUME

La présente communication porte sur une méthode de prévision

| du comportement d’une aile sous des charges de buffeting instationnaires.

, L’évolution de la charge appliquée est divisée en intervalles de temps. Dans

] } chaque intervalle, la charge non fixe est représentée par le produit d’une
k| fonction de “forme’’ déterministe et d’une fonction aléatoire statistiquement
stationnaire. Un modéle approché de la charge sur 1’aile est donné. L’aile
est divisée en panneaux ou éléments, et la charge est calculée a partir des
fluctuations de pression mesurées ou estimées au centre de chaque panneau.
Un développement en série, comportant des termes du type bruit correlé,
sert a ajuster a une courbe les densités spectrales complexes de pression de
buffeting qui sont déterminées expérimentalement. Des expressions analy-
tiques du carré moyen de la réponse de l’aile en déplacement et en
accelération sont dérivées de la fonction de type bruit correlé de la densité
spectrale pour la composante aléatoire de la charge appliquée. Un exemple
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AMETHOD FOR THE PREDICTION OF
WING RESPONSE TO NON-STATIONARY BUFFET LOADS

1.0 INTRODUCTION

Buffeting is the aeroelastic response of aircraft structures to aerodynamic excitation arising
from random loading due to flow separations on the wing. It is almost always encountered when the
aircraft approaches the limiting useable lift at high speeds. The maneuvering capability of aircrafts in
the transonic speed range is thus usually limited by buffet or buffet-related unsteady phenomena which
induce the pilot to restrict the maneuver. Methods for predicting the buffet intensity as the aircraft
penetrates into the buffet régime are extremely useful and much needed in aircraft design.

The random nature of the loading on the wing due to flow separations requires statistical
theory in predicting the dynamic response of the wing during buffeting. Considering the exciting force
to be statistically stationary, Liepman (Ref. 1) examined the problem of the lift force exerted on a two-
dimensional thin airfoil moving in turbulent air. Later, he extended the method to wings of finite span
(Ref. 2). The analysis was generalized by Ribner (Ref. 3) using a model of turbulence represented by the
superposition of plane sinusoidal shear waves of all orientations and wavelengths. The correlations be-
tween flight and wind tunnel tests with predictions based on statistical approach had been reported by
various investigators (e.g., Refs. 4-8). Amongst the more recent studies on this subject are those of
Mullans and Lemley (Ref. 9), Hwang and Pi (Refs. 10, 11). Cunningham et al. (Ref. 12), Jones (Ref. 13),
and Butler and Spavins (Ref. 14). Because of the complexities of the buffet phenomenon, the above
methods incorporate numerous simplifying assumptions and hence, can only be considered to be approx-
imate. However, they are invaluable in providing buffet information during the early stages of aircraft
design.

! The assumption of statistical stationarity used in the above prediction methods can be justified
-‘ as long as the flight conditions are unchanged within a reasonably long analysis time when measurements
are made of either the buffet load or the wing response. In wind tunnel testing, statistical stationarity
requires long running time compared to the natural period of the mode of vibration under investigation.
When these conditions are not met, such as in rapid maneuvers or in short duration wind tunnel testing,
a non-stationary analysis of the wing response has to be considered.

An approximate solution of the transient response of a wing to a buffet load having a parabolic
variation of its rms value with time was given by Zbrozek and Jones (Ref. 15). In Reference 16, a method
for estimating the response of a wing to non-stationary buffet loads was developed and applied to a
number of examples involving different aircraft maneuvers. The analysis was based on a theory of the
; non-stationary response of linear dynamic systems first given by Caughey and Stumpf (Ref. 17), and 1

N later extended by Barnoski and Maurer (Ref. 18), and Holman and Hart (Ref. 19). Various forms of
the power spectral density for the random part of the input load were investigated, and expressions
were derived for the mean syuare response of the wing displacement. In Reference 20, it was shown
that if the loading on the wing was to compose of fluctuating forces from various uncorrelated sources,
a series representation could be used to represent fairly complex buffet load spectra. The total response
could be obtained from a summation of the individual responses to each term in the series. The analysis
was further extended in Reference 21 to include multi-modal response of a wing to non-stationary
buffet loads for those cases when the undamped natural frequencies of individual modes were close
together and the modes of vibration were statistically dependent.

This report describes a method for predicting the mean square displacement and acceleration
response of a wing to non-stationary buffet loads by extending the analyses of References 16, 20 and
21. The time history of the applied load is segmented into a number of time intervals. In each time
segment, the non-stationary load is represented by the product of a deterministic shaping function and
E a statistically stationary random function. The total response to a given maneuver is obtained by sum-

- mation of the responses of the wing from each time segment. Unlike the approach used in References
16, 20 and 21, which assume a known integrated buffet load over the wing, the present study gives an
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approximate modelling of the load on the wing. This is based on a modification of a method proposed
by Schweiker and Davies (Ref. 22) for the study of the response of shells to aerodynamic noise. In
essence, the method divides the wing into panels or elements, and the load is computed from measured
or estimated pressure fluctuations at the centre of each panel. Following the approach used in Refer-
ence 20, a series representation, with terms of the correlated noise type, is used to represent the complex
buffet pressure power spectral densities. Some computed response results are presented for the F-4E
wing as an example, using experimental fluctuating pressure data obtained by Mullans and Lemley
(Ref. 9).

2.0 ANALYSIS
2.1 Dynamic Aeroelastic Equations

Consider a Cartesian co-ordinate system x, y and z fixed on the wing as illustrated in Figure 1.
The displacement of the wing can be expressed in terms of a set of normal co-ordinates z;(t) as:

1
z(x,y,t) = E_ ) ¢i(x’Y)zi(t) (1)

where ¢;(x,y) is the mode shape function of the ith mode, and I is the number of modes required to
adequately represent z(x,y,t) in the form of a series. The dynamic aeroelastic equations governing the
response of z(t) to an input load L;(t) is given in generalized co-ordinates as:

Mz + Ciz; + Kiz; = Ly(t) (2

for the ith mode. The dots denote differentiation with respect to time, M;, C; and K| are the generalized
mass, daraping coefficient and stiffness of the ith mode respectively. In the above equation, the assump- v
tion of light damping is made, thus, cross damping terms do not appear. )

Define the undamped natural frequency w; as:

2-.K'; 3
Wi T M 3)

and the damping ratio §; as:

G

§ = E—/ﬁ—l—ﬁr 4)

Using the above two expressions, Equaticn (2) can be rewritten as follows:

ii + 2§iwinii + wi:zi = Mi Ll(t) (5)

The generalized force can be expressed in terms of the fluctuating pressure p(x,y,t) as:

L](t) = ff ¢i(xvy)P(x,Y)t)dXdy
wing
planform

where the integration is taken over the wing surface.
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2.2 Response to Non-Stationary Input

From Equation (1), the mean square response of the displacement of the wing can be written
in the following form:

n -
nw 44—

Elz2(xyt)] =

i (x,y)¢;(x,¥)E[z;(t)z(t)] (7

1 j=1

Fori=j, ¢i2 (x,y)E[zi2 (t)] gives the mean square response of the ith mode at the point (x,y) on the wing.

Iti+j, ¢i(x,y)¢j(x,y)E[zi(t)zj(t)] is the contribution to the total response due to correlation between
the ith and jth modes.

For a given buffet maneuver, the mean square loading on the wing versus time may be re-
presented schematically as in Figure 2. The points A and B correspond to the onset and exit of buffeting
respectively. The time duration the aircraft spends in the buffet régime is denoted by T . The load is
non-stationary and time varying properties, such as the mean square of the response, can only be deter-
mined by instantaneous averaging over an ensemble. The time segmentation technique used in References
16, 20 and 21 divides the time Ty into a number of intervals or segments. Within each segment, the
load is represented by the product of a deterministic time function and a stationary random function.
The random function may not necessarily be the same in each segment. Using the subscript ‘r’ to denote
the rth segment, the generalized force for the ith mode at time t can be written as:

Lt = I 7,05 1) ®)

r=1

where f; (t) is a stationary random function, and 7, (t) is a deterministic function of time which may be
. I . . . . .
considered as a shaping function written in the following form:

Y (t) = €6, (t) 9

where B.(t) = u(t-t,_;)- u(t-t,) (10)

Here u(t) is a unit step function, €, is a constant at each time segment and represents the intensity of
the generalized input load. Figure 3 illustrates the variation of € with time and shows an approximate
description of a continuously varying load using the time segmentation method. However, such a
representation can be exact in practice, for example, in wind tunnel testing where the model angle of
incidence advances in steps with time in a prescribed manner so that the buffet load can be represented
by Equation (8) without any approximation.

Introduce a frequency response function H;(w) as

Hy(w) = a1

The correlation between L;(t, ) and Lj(tz) can be written as:

i
i
]
i

n
RLiLj(tl ,tz) = X

r=1

o7l mt)Ry, g 6 t) (12)
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Since f; (t;) and fJ (t,) are assumed to be stationary, then
T s

Re, 1 (tt2) = Re g (1) = [ Sp ¢ (w)e'"dw 13)
I ris Ity

- 0o

where 7 = t; - t,. Using Equations (12) and (13) and the generalized Wiener-Khinchine relation (Ref. 23),
SLiLj(w, W5 ) can be expressed as

n n oo .
SL-L-(‘-"’I ,(.l)z) = X > f Sf_ £, (w)A, (w"' Wy )Aj (w- (OF) )dw (14)
ij r=1 s=1 - ipig r s
1 y i(w-w )t
where Ai,(“-"' w,) = -27 I o.(t)e 1771dt, (15)
* 1 by —-j(w—-w )t
and Ajs(w- wy) = -2-;r— Ity )e 27724dt, (16)

The correlation of z(t,; ) and z;(t; ) can be expressed in terms of the power spectral density
of the applied load SLiLJ-(“’l w5 ) as follows:

Rop (i) = 81 (0,0 Hi(w) H] (w)e!“111792Ddw, dw, (A7)

where H;(w, ) is given by Equation (11) and Hj' (wj) is the complex conjugate of Hj(wz ). Substituting
Equation (14) into the above equation results in the following:

RZ‘ZJ(tl ’t2) =

" ™Ma
u Ms

] St, 15, (@), (1 )T (1 wo)de (18)

where I(t,w) is the time dependent frequency response function defined as:

(4w = [ Afw-w)H(w)e'1'1dw, (19)
and I (ty,w) = g Aj (@ - W )H] (w;)e71 2'2dw, (20)

Assuming fi,(t) and fis(t) to be statistically independent between any two time segments,
Equation (18) can be simplified to the following:

Repltata) = Bla)g(t)] = £ Bl ()5, (4) (@1)




where

Elz; (t))z (t,)] = 5 Sr, ¢, (@) (b W), (& )dew (22)

Ii,(tl ,w) can be obtained from Equations (15) and (19) by contour integration (Ref. 16).
After some algebra, the final form is:

Iir(tl’w) = ¢, Hj(w) "u(tl—tr—l) [eiwt’ - el-1 <\l’i(t1‘tr-1) + i;‘i ¢i(tl-tt—l))]

|
(23)
iwt iwt , W
-u(t;-t,) [e l-e®'r (¢i(t1—t,_l) +i— ¢i(t1~t,))]}
wid
where wi, =/1- Flow,
n
is the damped natural frequency of the ith mode, and
“tiw; t win
Yit) =e " 'n leosw; t+§— sinw; t (24)
d wid d
#(t) = e {1%in" gn wi, b (25)

Similar expressions can be derived for Ij,(tz ,w) and hence Ij*r (t;,w). If an analytic expression for the
power spectral density Sfi f (w) is specified, Equation (22) can be integrated by residue calculus.
r'r

Ii,(tl ,(.‘J)Ij"‘r (t; ,w) can be determined from Equation (23) and it is given in Appendix A.

2.3 Approximate Representation of Buffet Loads on Wing

In the previous section, it is seen that the response of a wing to non-stationary buffet loads
can be evaluated once the power spectral density Sfi £ {w) in each time segment is known. Let p,(x,y,t)
r’r

be the fluctuating pressure on the wing at the rth time segment. Here p, (x,y,t) is taken to be statistically
stationary and is related to the function fi,(t) in Equation (8) by the following expression:

1
£® = Jf o ¢i(xy)p(x,y,t)dxdy

wing
planform

(26)

The power spectral density can be written as:

1
Sfirfjt(w) ey JIST (%591 )85(%3,¥2)8, (X.¥).X,,¥,,w)dx, dy, dx,dy, (27
T




where Spr(xl -¥1,X3,¥7,w) is the cross power spectral density between points (x, ,¥1)and (x5,5;5)
(Fig. 1) in the rth time segment.

Following a method used by Schweiker and Davis (Ref. 22), and Davis (Ref. 24) for the study

of the response of shells to aerodynamic noise, the wing is divided into a number of panels (Fig. 4).
Approximation to the integral in Equation (27) is made by assuming the pressure at the centre of a
panel to be representative of the pressure field at all points within that panel. That is, the pressure
spectrum at any point is given by that at the centre of the panel. The pressure cross spectrum between
two points on the same panel is taken to be equal to the pressure spectrum at the panel centre, while
if they lie on different panels, it has the same value as the cross-spectrum between the centres of the
two panels. Equation (27) can be simplified to the following:

1 K K
5¢ ¢ (W) = 3 z z I J Sp,(xl Y1X9,¥2,W)(X,y;) ¢j(X2 ¥ )dx, dy, dx,dy,
r er k=1 R =1 Ak AQ

(28)

where K is the number of panels the wing is divided into, A, and A, are the areas of the kth and 2th
panel respectively. Within the panel of area A, , an average mode shape for any mode ‘i’ is taken as:

oF = [ (x,y)dA, (29)
Ag

1
Ay
If points (x, ,y, ) and (x,,y, ) fall on the same panel, say the kth panel, Spr(xl WY1 ,X9,¥,0) is written

as S}‘,r (w). On the other hand, if points (x, ,y, ) and (X,,y,) lie on different panels, for example, the
kth and 2th panels, then SPI(X' »¥1 -X3,¥,,W) is represented by

=6 I
Sp (X1.¥1 X,y5,0) = Sp (w)e < KF (30)

where 8, is the spatial decay coefficient measured at the point (x,y, ) and r, , is the distance between
the centres of the kth of 2th panels (Fig. 4).

Using Equations (29) and (30), Equation (28) can be rewritten as follows:

S ¢ (w) 1 ZK sk (w)xk (31)
. = T W
f fjr 63 k=1 P
where
k = 7k o .7k "y ~8Tke
X" = ¢ A |¢,- At T 9] A ] (32)

Using Equations (31) and (32) to determine Sfi f (w), and upon substitution into Equation (22)
rJr

and carrying out the integration, the expected value E[z(t, )z(t;)] can be evaluated from Equation (21)
using Equation (22).

|
i
i
H
¢
E}
i
i

SR R,
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For a given wing, a:‘ and $Jk can be calculated along with A, and r, , once the dimensions
of the panels have been decided. Sg (w) and bk are usually determined experimentally or are estimated
r

based on available power spectral density and decay coefficient data on similar wings. There are certain
forms of the pressure spectrum that enable the integral in Equation (22) to be evaluated analytically.
The pressure at any point on the wing can be considered to be made up of contributions from a number
of sources. These sources may arise from flow separations, wing leading edge and tip vortices and other
disturbances characteristic of that particular wing geometry. Assuming that the pressure fluctuations of
these sources are uncorrelated, S‘;‘(w) can be written in series form as:

85 (@) =

n M

S§™ (w) (33)
1 T

where M is the number of terms that give a good fit to the experimental data. Reference 21 shows
3 ] that quite complex power spectral density curves can be derived from the series representation of
.‘ Equation (33) using the correlated noise and exponential (commonly used in isotropic turbulence)
i froms of the power spectral density.

24 Mean Square Response of Wing Displacement for Given Input Power Spectra

From Equation (21), the expected value E[zi(t1 )zj(t2 )] can be rewritten as:

3
|
j E[ 5, )7t,)] = [z &)z )] + zl B[z )zjr(tz)] (34)
|
|

: where t;_; <t; <t; andt,_; <t, <t,.In other words, if t; and t, lies in the gth time segment,
‘ the expected value i 1s given by the sum of Elz iq (t)z (t2 )] at the qth segment and contributions from

ther =1 to q - 1 segments. The significance of wntmg E[z(t, )z(t,)] in the form of Equation (34)
will become clear later on when it is shown that the two terms on the right hand side of the equation
are obtained from differeut expressions.

If S:“‘(w) takes on the spectrum of a white noise, then Equation (33) can be written as:
I

s'; (w) = s} = constant (35)
I

Substituting Equations (31) and (35) into (22) yields

1 K
E[zir(tl )z’.r(tz)] 7 .5 Xk E[zi‘(tl )zjr(tz)] (36)
where B[z )5 )] = £ SHL 0 (4 ke 37

I —
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Equation (37) can be evaluated fort _, <t, <t t., <t, <t, using Equation (Al) of Appendix A,
while Equation (A2) is used for t; >t , t, = t;. The poles in the integrand are given by the term
Hi(w)H;(w), and there are four of them in the w-plane, namely, p, = Wi + i{iwin 1Py =y + i{iwin ,
Py = wj, - i§; w; and py =-w; a" i§; Wj - Using residue calculus, the integrations can be performed

by choosing the proper integrated paths. The resulting expressions for E [zir(tl )zj,(tz )] are given by
Equations (B1) and (B2) in Appendix B.

The mean square response of the wing displacement is obtained from Equation (7) using
Equation (34) after setting t; =t, = t. If Equations (36) and (37) are substituted into Equation (34) »
to obtain E[z(t, )zj(t,)], the resulting response is for a white noise pressure spectrum in each of the %
time segments.

To handle more complex buffet load spectra, the term S'; M(w) in Equation (33) can be
written in the following form: '

km km km
sprat (o™ e "+ )

[af""‘ +(w +B:“")2] [af""‘ +(w- ﬂ:“")z]

Spm(w) = (38)

which is the correlated noise power spectral density. Here S, « and § are constants, and the subscript ‘r’
denotes the rth time segment, the superscripts ‘k’ and ‘m’ denote the kth panel and the mth mode
respectively. Note that if ﬁ'r‘m is set equal to zero, the resulting expression is the same as that used in
Reference 16 for power spectrum of the form used for isotropic turbulence.

Using Equations (31) and (33), Equation (22) becomes

» MR
i M

E[z ¢tz )] = XER™ [, 4,)g (t)] (39)

i

'-me! |l

where Ek"‘[zir(t] )zjr(tz)] = s‘;:" (@ (¢, W) (b, ,w)dew (40)

Substituting Equations (A1) and (A2) into the above expression, and using Equation (38) for
sg;n(w),ﬁkm [z (t,)z ()] fort,_; <t; <t,,t_, <t, <t is given by Equation (C1). Whent, >t ,
t, = t_, the expected value is given in Equation (C2). The mean square value of the wing response is
again given by Equations (7) and (34) with t; =t, =t and using Equations (39) and (40) to obtain
Elz (6)z ().

2.5 Mean Square Response of Wing Acceleration for Given Input Power Spectra

An expression similar to that of Equation (7) can be written for the acceleration by simply ;
replacing z(x,y,t) with the second time derivative z (x,y,t), that is, :




e e ————

™ -

E(z2(xy.t)] = > 8;(x,y)8, (x.y)E[Z,(t)Z,(1)] (41)

i= l j=1
Elz,(t)z j(t)] is obtained from the following equation:
9”1 . .
E(Z,(bz,)] = E['z'iq(t)ijq(t)] + ‘ E[zir(t)zjr(t)] (42)

where t,_, <t <t,.If the pressure fluctuations in each time segment have spectra of the white noise
type, then:

. 1 X .

E[zir(t)zjr(t)] = —e—?— kzz 1 Xkﬁ[zir(t)zjr(t)] (43)
while for correlated noise power spectral density,

. 1 K M ke

E[z )z, )] = = = =T XKEM[Z, (t)z, ()] (44)
Yook € k=1m-=1 r
64
where B[z, ) (t)] [z, )z (4, )] (45)
at] atz ty=ty=t
Ek 64 k
mE e e _ ~km

and [zir(t)zjr(t)] o E [zi‘(tl )z, (t, )] (46)

1Y% t =ty=t

Using the equations given in Appendices B and C, Equations (45) and (46} can be evaluated
by carrying out the differentiations and setting t; = t, = t. The resulting expressions are substituted
into Equations (43) and (44). The mean square response of the acceleration of the wmg is then de-
termined from Equations (41) and (42). The expressions for E[z zZ; (t)z (t)] are given in Appendix D,

while those for E¥m (z; (t)z (t)] are given in Appendix E.

2.6 Expressions for Displacement and Acceleration Response in Non-Dimensional Forms

It is convenient for computation purposes to express the equations derived in Sections 2.4
and 2.5 in non-dimensional forms. Consider first the case where the pressure power spectral densities
are of the form for white noise. Panel 1 (k = 1) is taken as the reference panel and the subscript ‘r,
used to present the conditions at e(t) = 1. Using the time segmentation technique (Fig. 3), AC s

and the power spectral density curves given in Reference 9 are assumed to be the values at the tnme
segment when the load intensity is at its maximum, that is, at ¢, = 1. The relation between S at the
rth time segment and its valueat e, = 1 is
K = ¢2qk
S, = €& 8/ 47

o




- -10-
: Define the following non-dimensional quantities:
Sk
sk = — (48)
' 1
Sro
3 ak
pr = —~ (49)
9]
- h
ok = = (50)
¢ :
A
- K
A = ; (51)
_ $i
§, = —- (52)
1 §1
{
‘ M.
; M o= (53) 4
L | ! M, -
!
£
|
1 I _ wj
| n w,
;! n
-
‘ ' Intermsofg:‘ ,§:‘canbewrittenas:
| °
= 8k = .2 gk
| S (55)
B
= and §:‘ can be expressed as:
[+
2
ack
‘S'k - prms 56)
o AC! (
‘ rms
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From Equation (32), let
Xk = X*@1)’ A,° (57)
— mr= [~ ~o— =81
where Xt =gkA, ¢}‘Ak + 92 k¢fAQe koke

Substituting into Equation (36) and using either Equation (B1) or (B2) for E [zir(tl )zj,(tz )] yields the
following expression for E[zir(t)zjr(t)]:

—_ K _
Elz; (tz; (1] = €} (#])’ AJKS, T Xksy (58)

1
0 2§iMiMjwi3n K«

In deriving this expression, t, and t, have been set equal to t. Let I—E[zi (t)zjr(t)] be the non-dimensional
form of E[z; (t)z; (t)] defined as: '

28, M2 3
E[Zi (t)zj Wi = —“_——‘—‘E[Zi (t)Zj t)] (59)
I T 1TK(¢{)2 A%S: T I

Then E—[zi‘(t)zjr(t)] can be expressed as:

= K vkak
Elz; (07 ()] = T XS (60)

where the expressions for ¥, fort,_., <t <t and t >t  are given in Appendix B. A similar equation
can be derived from Equation (39) for correlated noise power spectral densities. Since it is assumed
that the shapes of the power spectral density curves at different time segments are similar and differ

in scale only, o.':”" and ﬁ:‘"‘ in Equation (38) can be written in terms of the valuesat €, =1 as a:““
o

and B:‘:‘ respectively.

k
Define Sr:‘
§km = (61)
o sk (0)
Py,
and similar to Equation (47), let
km - o2&k
gkm = 2 gkm (62)
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Using Equation (39) and Equation (C1) for t,-, <t <t or Equation (C2) fort >t,, E[Zil(t)zjr(t)l
can be written as:

2
€T
Elz (t)z (t)] = ——— xkgkmy,
T MM} k=1 m=1 To

3
'n

Using Equation (57), define

_ M
S, = m(¢])’Als! (0 Z S§)lmal™
© pro m =1 Ta To

Similar to Equation (59), define a non-dimensional form for E[zir(t)zjr(t)] as follows:

2.3
2§, Mjwy

Elz ()7 (1)) = ——— Elz, (t)z ()]
r r "KSO I I

Combining Equations (63) to (66) yields.

€2

E[zi,‘“zi,‘t” = Xk§km g

_ L
EMM&} K cstm=

) n

The acceleration response for white noise form of pressure power spectral density can be
obtained from Equation (42). If the non-dimensional form for E[z, (t)z ; ()] is written as:
T r

28, M?

E (2, (VF ®] = ElZ, (t)z; (t)]

7132 2241
wlnnK(db 1) A S’o
then using Equation (D1) fort,.; <t <t or Equation (D2) for t > t,, it can be expressed as:

in
t MM

Xksk
= r
i)

E[i,r(t)'z'j‘(t)] =

P i catiind A dade £ des b Shandb i
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Corresponding to Equation (44) for correlated noise power spectral density, if E [i,-r(t)'z' J'r(t)] is defined
as:

ML
— i Elz; (t)z; ()] (70)

ozxo1rKS0

E[Ei‘(t)'z'jx(t)] =

then using Equations (E1) or (E2) gives the following:

2 Otkm
- .. . er 1 K M SkSk LY
E{z. ()2, (t)] = ——— — % > XkSkmy — (71)
i ) 1 d
r r IiM‘Mj K k=1 m=1 [} a:l

where S; is given by Equation (65). With expressions E [zir(t)zjr(t)] and E ['z'ir(t)'z'j[(t)] given by Equa-
tions (60) and (68), or Equations (67) and (71) for white noise or correlated noise form of power spectral
densities of the pressure fluctuations respectively, the total displacement and acceleration response at

any point on the wing can be obtained from Equations (7) and (41). Non-dimensional forms of the mean
square response E [z2(x,y,t)] or E [22(x,y,t)] can be obtained following the definitions of E [z ()2 (t)]
and E [iir(t)ij‘(t)] given in Equations (59) and (66), or Equations (68) and (70) respectively.

3.0 AN ILLUSTRATIVE EXAMPLE

The steps involved in computing the response of the wing are fairly straightforward once the
necessary aeroelastic data are given. As an example, the response of a F-4E wing is studied using the
data supplied by Mullans and Lemley (Ref. 9). Figure 5 is taken from Reference 9 and shows the choice
of panel dimensions on the wing. A total of eighteen panels (K = 18) are used in the computations, and
the panel centres are marked numerically from 1 to 18. The distances between the centres of any two
panels r; , can be determined from the geometry of the wing planform.

Only the first ten symmetrical mode_s_ are considered in this example. The natural frequencies
w; > generalized mass M;, average mode shape ¢ :‘ and damping ratio {; for dynamic pressure q = 470 psf
are tubulated in Mullans and Lemley’s report (Ref. 9). They also obtained buffet data from wind tunnel

tests on a 10% scale rigid three dimensional model. For a clean wing with zero leading edge and trailing
edge deflections, the rms pressure coefficients ACpm’ on the wing are shown in Figure 6. In this par-

ticular example, ACp rms varies practically linearly along constant chord and span directions.

The power spectral densities of the pressure fluctuations at various points on the wing for
Mach number 0.7 and angle of incidence 12° are also given in Reference 9. The transducers are not
located exactly at the panel centres and there may be more than one transducer per panel, or, in some
cases, none at all. Figure 7 indicates the transducers (numbers correspond to these given in Ref. 9)
whose measured outputs are used to represent the fluctuating pressures on the panels where they are

located.

The value of the spatial decay coefficient 8, given in Equation (30) can be found from
cross-correlation of the pressure fluctuations at two points on the wing. Its value is taken to be con-
stant between any two points on different panels and equal to 0.25. The variation of the intensity of
the input load with time is assumed to be sinusoidal, that is,

ot
€(t) = sin T (72)
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where Ty is the time the aircraft spends in the buffet regime (Fig. 3). The values of AC, s given in

Figure 6 are taken to correspond to €(t) = 1, or when t = T /2. Furthermore, it is assumed that the
normalized shapes of the pressure power spectral density curves with respect to its value at zero fre-
quency at different panels are the same for all values of €(t). In other words, varying e(t) changes the
magnitude of power spectra only, but the normalized values are the same for all time segments. This
requires the flow field on the wing to be similar at all times during the buffet maneuver with changes
only in the scale of the fluctuating pressure force. This should be viewed as a rough approximation
only. A more complete representation requires measurements of .ACp”ns and the pressure power

spectral densities on all panels at flight conditions which correspond to the value of €, under consid-
eration.

4.0 RESULTS AND DISCUSSIONS

In the formulation given in the previous sections, the Mach number, angle of incidence and
dynamic pressure do not appear explicitly in the equations defining the response of the wing. The
input buffet data necessary for the computations are the ACp rms and the power spectral densities
of the pressure fluctuations at each of the 18 panels for the time segment €, = 1. The data used in this
example at €, = 1 correspond to those given by Mullans and Lemley (Ref. 9) for q = 470 psf, M = 0.7
and o = 12°. The variation in the buffet load with time arises from changes in flight conditions, for
example, changes in the angle of incidence. A sinusoidal variation of e(t) is chosen for convenience
in the computations, even though the time segmentation technique can be used for quite general
buffet maneuvers.

The experimentally determined power spectral density curves are expressed in series form
using Equations (33) and (38). The unknowns S‘,‘:’“ s af{‘;“ and 51‘:‘ and the number of terms in the series

are obtained by a curve fitting procedure using Powell’s minimization algorithm (Ref. 25). Figure 8
shows a comparison between the curve fitted non-dimensional power spectral density §§r (w) (k =18)

versus frequency w for transducer 16 at panel 18 (Fig. 7) with the smoothed experimentafdata taken

from Reference 9. It is seen that only three terms are necessary in Equation (33) to give a very good

fit to the experimental data. The individual terms are plotted in Figure 9. Curve ‘a’ has the exponential

form of power spectral density which is used commonly for isotropic turbulence, and has been inves-

tigated in detail in Reference 16. Curves ‘b’ and ‘c’ have power spectra of the correlated noise type [ «
which has been studied in Reference 20. On examining these curves, the pressure can be decomposed A
into three components: a fluctuating part due to flow separations with power spectral density represented
approximately by the exponential form, and two convected vortices or disturbances with correlated

noise power spectral densities. These convected vortices can be identified as the leading edge and wing

tip vortices. In curve fitting the power spectral densities taken from Reference 9, it is found that three

terms are needed at most. For some panels, two terms are sufficient.

The mean square displacement response E[z2 (x,y,t)] given in Equation (7) can be written
in non-dimensional form at a panel centre as:

- I —y = =
E' 2wl =z §]¢}‘¢}‘E[zi(t)zj(t)1 (73)
i= j:

E[zi(t)zj(t)] is obtained from Equation (34) by setting t; =t, =t and using non-dimensional forms of
the expected values. Consider ¢, to be constant, and without loss in generality, take €, = 1. This is
equivalent to the case of the wing response to one time segment only, and Equation (67) can be used
in place of Equation (34) to evaluate E[z;(t)z(t)]. The term ¥, in Equation (C1) fort,_; <t <t,,
after setting t; =t, =t, determine the response to step modulated buffet loads, while for t >t ,
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substitution of Equation (C2) into Equation (67) gives the decay to pulse modulated toads. The pulse
duration is given by the time segment At,, which isequalto t, - t,_,.

Figure 10 shows the response at the centre of panel 18 for €, = 1 using the values of ACP:ms
and spectral information given in Reference 9. The superscript ' is used to denote that time is non-

2n
dimensionalized with respect to the undamped natural period of the first mode of vibration T, = —— .
wy
n

The mean square response is normalized with respect to EX [22 (t')lnax » Which is the maximum value
obtained ast' - t;_; = oo. This maximum response is the sum of the responses from the ten individual
symmetrical modes of vibration together with the contributions from the correlation terms between
different modes. The magnitude of the correlation terms can be obtained from the difference between
curves ‘1’ and ‘2’ which amounts to approximately 8% for t' - t,_, > 1. As expected, the first bending
mode of vibration is the dominant one, but it only accounts for 55% of the total response. Because
the damping is fairly large for this particular wing, the response reaches its maximum in approximately
three undamped natural periods T of the first mode. The oscillations in the response curves are rela-
tively small as compared to those of Reference 16 for small values of damping.

The decay of the mean square displacement response at the centre of panel 18 after the
exciting force has been withdrawn at time t; is shown in Figures 11 to 13 for three values of the pulse
duration (At; = 0.5, 1 and 2). The shapes of curves are very similar for the three values of At; shown.
In less than three undamped natural periods T, of the first mode, the decay curve is practically zero.
Comparison of curves ‘1’ and ‘2’ shows the correlation terms to be small, especially for increasing At;.
The oscillating behaviour of the decay curves can be observed from these figures, but the amplitudes
are much smaller than those shown in Reference 16 for small damping ratios.

Figure 14 shows the response to a step modulated input buffet load at the centre of panel 18
assuming white noise pressure power spectral densities for all the panels. In this case, Equation (60) is
used in place of Equation (67). Comparison with Figure 10 shows the response curves to be nearly the
same. Similar observations are also made when the decay curves given in Figures 15 to 17 are compared
to Figures 11 to 13. It thus appears that approximating the power spectral densities of the fluctuating
pressures in all the panels by that of a white noise, the shapes of the response and decay curves when
one time segment is considered do not differ much from those computed using series representation

of the experimentally determined power spectral densities. It has been shown in Reference 16 that

form =1 and [3',‘(’)“ = 0, the response and decay curves are similar to those with white noise power
spectral densities if w; is small compared to a}‘:‘ .For f(’)“ # 0, which corresponds to the case where
the power spectral density is of the correlated noise type, the results presented in Reference 20 show
that if w; is not near BL‘:’" , the response and decay curves for w;_ /a‘,‘(‘)“ < 1 are similar to those obtained

in Reference 16 using the white noise form of power spectral density. The series representation of the
experimental data shows that values of Bl‘:‘ (m = 2) are large compared to the first few natural fre-
quencies of the modes that contribute significantly to the response and decay. Also, at those panels
where values of ACprm’ are large, Wi < (x:‘:’ for the lower modes. Hence, the use of white noise

power spectral densities for the pressure fluctuations is a fairly good approximation for this particular
example. It should also be noted that the computation time using white noise representation is signifi-
cantly less than that using series representation. A comparison between Equations (60) and (67) shows

K
that ¥, has to be computed X M, times, where M, is the number of terms required in the series
k=1

expression for S';l (w) in the kth panel, while in Equation (60), \Ila needs to be evaluated only once.
[+




|

Bedihin 3. At

-16 -

Figure 18 shows the maximum displacement response (t' - t;_l —» oo) normalized with respect
to that at panel 18 for all the panels. The numerals 1 to 18 designate the panel centres, and their loca-
tions are given by y/b. Here b is the semi-span, and y is the distance measured from the wing root along

a constant percentage chord line (Fig. 5). As expected, the response increases in the outboard direction,
and is larger for panels near the trailing edge than those close to the leading edge.

For an input buffet load with sinusoidal variation of ¢ with time, the displacement response
versus time t' is shown in Figure 19. The results are for panel 18 using white noise pressure power spectral
densities for all the panels. The duration of the applied load Ty is forty times the natural period T; for
the first vibration mode. Two cases are given for At, = 0.5 and 2, which correspond to eighty and twenty
time segments respectively. Similar to Reference 16, it has been found that changing the number of time
segments produces practically no differences in the computed results if At; < 0.5. In all subsequent
computations, At is taken to be 0.5.

It has been shown in Reference 16 that for rapid maneuvers, that is, Ti; is small, the maximum
response lags the applied load, and the amplitude is lower than that obtained if Ty is very long. Since the
damping for the wing in this example is fairly large, the lag is found to be negligibly small. The displace-
ment amplitude decrement, which is defined as

— f Tk 244
Ek[zz(t )]max. for Tg = o “ER[( )]max (74)
5 < " X 100%
Ek[ZZ (t’)]max. for Ty —~ =

is plotted versus Tp in Figure 20 for panel 18. § decreases sharply with Tg initially, and it is less than
1% after 14 periods of vibration in the first mode.

The mean square acceleration response to step and pulse modulated buffet loads has been
computed using an expression similar to Equation (73) with z(t) replaced by z(t). Comparing the results
sults for white noise and those using series representation for the experimental pressure power spectral
densities yields similar conclusions as with the displacement response. Only the white noise power
spectral densities results are presented in this report, and they are shown in Figures 21 and 22 for
panel 18. The results indicate that the response reaches its maximum value in less than one natural
period T, of the first mode. The contributions from the correlation terms are larger than those for

the displacement response, reaching a value of nearly 20% of EX[z?2 () ] ax -

The decay curves in Figure 22 are shown for two values of the duration of the time segment
(At; = 0.5 and 1). The curves reach practically zero value for t'- t, = 1. As in the response case, the
correlation terms between modes are more significant than those found for the displacement. For the
two values of At; shown in the figure, the curves are practically identical. The mean square accelera-
tion response with sinsoidal variation of € with time is shown in Figure 23 for Ty = 40, At, = 0.5. For
the same value of At,, Figure 19 shows the oscillations in the displacement response curve to be much
smaller.

5.0 CONCLUSIONS

A method for predicting the mean square displacement and acceleration response of a wing
to non-stationary buffet loads has been developed and applied to an example using available data for
the F-4E wing. The time segmentation technique, which is an approximation to a continuously varying
load with time, gives results which are practically independent of the duration of the time segment
when it is below a certain minimum value. In this particular example, the minimum value is found to
be about half the undamped natural period of the first vibration mode.
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The present method of modelling the buffet load on the wing may overestimate the response,
since the pressure cross-spectrum between two points on the same panel is taken to be equal to the
pressure spectrum at the panel centre. Also, for two points lying on different panels, it has the same
value as the cross-spectrum between the centres of the two panels. This simplification is probably
admissible in providing approximate response data in the early stages of aircraft design, since detailed
correlation measurements are extremely time consuming and expensive to carry out.

The complex experimental buffet pressure spectra can be expressed in the form of a series by
a curve fitting procedure. The pressure can be decomposed into components. It is found that for all
panels, the first term in the series representation gives the exponential form of power spectral density,
which can be considered to be a fair approximation for separated flows. Other terms indicate the pre-
sence of convected vortices, and the number of such vortices depends on the location of the panel. In
this particular example, it is found that approximating the pressure power spectral densities at each
panel by that of a white noise yields results which are fairly close to those obtained using the experi-
mentally measured values.

A significant portion of the wing response can be accounted for by the first few lower vibra-
tion modes. The correlation between modes, which are considered to be statistically dependent, is
investigated and found to contribute less than 10% to the total mean square displacement response,
For the acceleration response, the correlation terms are nearly 20% of the total.

A sinusoidal variation of load intensity with time is used as an example to demonstrate the
computation of the response for the particular wing under investigation. Since the damping for this
wing is fairly large, the lag between the maximum response and the applied load is negligibly small.
The displacement amplitude decrement is practically zero after a few undamped natural periods of
the first vibration mode.
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1 APPENDIX A

Expressions for L (t.l ,w)I; (tz,w)
r r

Q Iir(tl ,w)Ij*r(tz,w) = ¢ Hi(w)Hj'(w)

w .

+ iw-—- ot -t ))—e“"('l"r-l)(\bj(tz—tr_l)
i
d

- iw—:d—¢j(t2—tr~l )>+¢’i(t1'tr-l)¢j(t2_tr-l) (Al)
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w . . W _ ~
+ Py (b =t,_ 1 )(t, t,_,)ﬂwid (wj(t2 t_ 9 -t )
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da

, N
Fort, >t,t, >t :

L (4,@) (4,0) = €? H(w)H] (@)
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g (ZCR AT
wW. W:

ig g

¢i(t] _tl’ )¢j(t2—tr)

o Al t) <1 gty t)
4 Ja
2

Yot Yt ) 4 www. Bt =t Iy(ty-t )
Ja

tg




where
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. w i w
1;"‘1: ¢i(t1'tr-1)‘l’j(t2_tr-l)_ 1;;‘ ¢j(t2_tf-1)‘p"(tl-t"‘ )
. 2
e~ iw (tr—tr__ 1 ) . [wl(tl —tr—‘ )w](t’2-tr) + o w. ¢i(tl-tr—-l )¢J(t2_tr)
a4

. W )
1 T ¢i(tl—tr—l )‘pj(tz—tr) -1 ZJ— ¢j(t2‘t,)¢/i(tl‘tr_1 )]
4 Yq

2

elw (4=t _ )[wi(t’ “EY(ty-t ) * ¢, (ty -t )e;(t,-t )

w. W,

ig g

Cow iw ]l
’;— ¢i(t1‘tr)‘1’j(t2'tr-1)“ w. ¢j(t2'tr—1)‘1’i(t1'tr)

q Jd

W,
1

Y (t) = e“’i“’in'<cos w; t+ $i —" - sin w; t
d w, d
d

¢, (t) = e 8% ‘sin widt

w =y 1- §i2wi
n

1q

(A2)

(A3)

(A4)

(A5)

Expressions similar to Equations (A3) to (A5) are obtained for y j(t), ¢j(t) and wjd by changing the

subscript i in the equations to j.
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APPENDIX B

Expressions for E[zi (t, )z’. (t, )}
r L ¢

Fort _, <t <t

[ a4

3 s
Elz ¢, )zjr(tz)] =¥,

3
2,0 MM,

T, = 45,10, (1 =t) ~ ¥ (b=t )Py (=t ) ¢t =t )Py (-t )

a

Uty =t )P, (4=t ) Gty )P (6=t )

+

vty -t )‘l’j(tz'tr—l )®, - ¢t~y )¢j(t2’tr-1 )P
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)d
= Ng (bt )Py (bt )~ R (5t )Py (B- L ) >(BZ)
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P,(t) = ———— (asinw, t + bcos w. t)
Jq Jd

@, (t) (b, sin wjdt - a,cos wjdt)

e
b, (t) = —1 (dcos w, t- csinw, t\
w; d la”

(e cos wid t - fsin wid t)

(B3)

(B4)

(B5)

(B86)

(B7)

(B8)

(B9)
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(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)
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The expressions for the A’s are given by the following:

)\l(tl’tZ) = \l/i(t,‘t,)wj(tft,) + Wi(t,‘t,_,)%(tz-t,_,)

)\Z(tl 1t2) = ¢i(tl—tr)¢j(t2-tl‘) + ¢i(t|_tr—l)¢j(t2—tr—l)

Aytyity) = Gt =t )yi(ty-t) + @it -t Iy(t,-t, )

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)
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)\4(t1’t2) = ¢j(t2_tr)wi(tl_tr) + ¢j(t2-tr—l)¢/i(t]_tr—l) (828)
)\s(tl,tz) = llfi(tl‘thl)wj(tz"t,) (829)
7\6 (t]vtz) = ¢i(t’l_tr—-l )¢J(t2-t[) (B30)
Aty = gt -t Y (ty-t) (B31)
] ], Nglt b)) = Ottt <t ) (B32)
‘* Mo(tty) = ¢l ‘tr)¢j(t2‘tr—1) (B34)
! Ao tts) = 6t -ttt ) (B35)

Ap(tyty) = ¢,

J(tl—t’r—l Wi(tl‘t,) (B36)

; The expressions for y, and ¢, are given by Equations (A3) and (A4).
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APPENDIX C
Expressions for k™ [z, (t, )zj (t,)]
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The A’s can be obtained from Equations (B25) to (B36), while the ®'’s are given by the following:
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APPENDIX D
Expressions for E [z, (t)'z'j’(t)]
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