

This report was prepared by the TRW Defense and Space Systems Group, Redondo Beach, CA 90278, under Contract F04701-80-C-0022 with the Headquarters, Air Force Space Division, Deputy for Space Communications Systems, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009. It was reviewed and approved for TRW Defense and Space Systems Group by R. H. Alborn, Manager, DSCS II Orbital Operations. Capt. Gerald D. Nordley was the project engineer.

This report has been reviewed by the Office of Public Affairs (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

D. D. NORDLEY, Capt. U

GERALD D. NORDLEY, Capt, USAF Project Engineer

ALBERT E. ROSS, Major, USAF

Director of Engineering, DSCS II Deputy for Space Comm Systems

FOR THE COMMANDER

S E. FREYTAG, Color

System Program Director, DSCS II Deputy for Space Comm Systems

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATIO	READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2 GOVT ACCESSION NO	3 ALCIPIENT'S CATALOG NUMBER
SD-TR-80-69	AD-20930	24
TITLE (und Subfille)		5. TYPE OF REPORT & PERIOD COVERED
Satellite 9444 Telemetry		Final
Transmitter Anomaly Report		. PERFORMING ONG REPORT NUMBER
		36060-AR-022-01 -
		B. CONTRACT OF GRANT NUMBER(S)
G. E. Neuner		F04701-80-C-0022
PERFORMING ORGANIZATION NAME AND ADUR	r ss	10. PROGRAM ELEMENT. PROJECT, TASK
TRW Defense and Space Systems		AREA & WORK UNIT NUMBERS
One Space Park	·	
Redondo Beach, California		12. REPORT DATE
Department of the Air Force H		August 1980
Space Division (AFSC). Post		13. NUMBER OF PAGES 97
Worldway Postal Center, Los A MONITORING AGENCY NAME & ACORESE(II dilli	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION DOWNGRADING
		SCHEDULE
Approved for public release; di		
. DISTRIBUTION STATEMENT (of the abetract ente		BOTIC SELECTE DECTY 1980
DISTRIBUTION STATEMENT (of the observed onto B. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessar)	red in Block 20, il dillerent fre	Beports SELECTE DECTY 1980 F
DISTRIBUTION STATEMENT (of the observed onto SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde il necessar) Spacecraft , Satellite	red in Block 20, il dillerent fre	Beports SELECTE DECTY 1980 F
DISTRIBUTION STATEMENT (of the aberract ente SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessar)	red in Block 20, il dillerent fre	Beports SELECTE DECTY 1980 F
. DISTRIBUTION STATEMENT (of the about act on to . SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessar) Spacecraft , Satellite Transmitter	red in Block 20, il dillerent fre	Beports SELECTE DECTY 1980 F
DISTRIBUTION STATEMENT (of the observed only SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation	red in Block 20, il dillerent fro y and identify by block number)	Beports SELECTE DECTY 1980 F
DISTRIBUTION STATEMENT (of the about act only SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation	red in Block 20, if different tro y and identify by block number) and identify by block number)	F
DISTRIBUTION STATEMENT (of the observed only SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation	red in Block 20, if different tre r end identify by block number) and identify by block number) transmitter #1 on	Bereveri S D D D C T T T T T T T T T T T T T
DISTRIBUTION STATEMENT (of the observed onlo SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation ABSTRACT (Continue on reverse olde If necessary On January 21, 1980, telemetry abruptly failed after two mont commanded on and normal operat	red in Block 20, if different fro r and identify by block number) end identify by block number) transmitter #1 on hs in orbit. The r 10n continued. An	DEC T 7 1980 F DEC T 7 1980 F DSCS II Satellite 9444 redundant transmitter was orbital anomaly investi-
DISTRIBUTION STATEMENT (of the observed onle SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation ABSTRACT (Continue on reverse olde If necessary On January 21, 1980, telemetry abruptly failed after two mont commanded on and normal operat gation team evaluated possible	red in Block 20, if different tro r and identify by block number) and identify by block number) transmitter #1 on hs in orbit. The r lon continued. An causes, reviewed c	DSCS II Satellite 9444 redundant transmitter was orbital anomaly investi- component manufacturing
DISTRIBUTION STATEMENT (of the observed onle SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation ADSTRACT (Continue on reverse olde If necessary On January 21, 1980, telemetry abruptly failed after two mont commanded on and normal operat gation team evaluated possible and test histories and compare After an exhaustive analysis an	red in Block 20, if different fro r end identify by block number) and identify by block number) transmitter #1 on hs in orbit. The r lon continued. An causes, reviewed c d the failure with	DSCS II Satellite 9444 redundart transmitter was orbital anomaly investi- component manufacturing similar previous failures.
DISTRIBUTION STATEMENT (of the observed onle SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary Spacecraft, Satellite Transmitter Anomaly Investigation ADSTRACT (Continue on reverse olde If necessary On January 21, 1980, telemetry abruptly failed after two mont commanded on and normal operat gation team evaluated possible and test histories and compare	red in Block 20, if different fro r end identify by block number) and identify by block number) transmitter #1 on hs in orbit. The r lon continued. An causes, reviewed c d the failure with	DSCS II Satellite 9444 redundart transmitter was orbital anomaly investi- component manufacturing similar previous failures.

4

.

1

. مىلى

ř

) }

٩.;

2011

τ

IISCSII SATELLITE 9444 TELEMETRY TRANSMITTER

ANOMALY REPORT.

o. 36060-AR-022-01

// August 7980

1:2)/ 2 4 J

Prepared by: G. E. Neuner! Manager System Engineering 10

FG 114 1 -

11:51

Approved: .

R. Alborn, Manager Orbital Operations

Approved: $\underline{\mathcal{T}}$

F. R. Cartier, Manager DSCS II Project

Prepared for Department of the Air Force Headquarters Space Division

Accession For NOTS GRA&L DTIC TAB Unannounced \Box Justification \Box By____ Distribution/ Availability Codes Avail and/or Dist Special

Ť

1 ~

ii

4 . .

CONTENTS

1.	SUMM	MARY AND CONCLUSIONS	1-1				
2.	BACK	GROUND	2-1				
	2.1	Telemetry, Tracking and Command Subsystem	2-1				
	2.2	Telemetry Subsystem	2-1				
	2.3	Transmitter Integration and Test (I&T) History	2-4				
	2.4	Transmitter Orbital Performance	2 -8				
3.	FAIL	URE ANALYSIS	3-1				
	3.1	Possible Failure Causes	3-1				
	3.2	Converter Fold-Back	3-3				
	3.3	F-14 Unit Fabrication Test Histories	3-3				
		3.3.1 Transmitter 3.3.2 Converter	3-3 3-7				
	3.4	Unit Failure Histories from Past Flights	3-7				
		 3.4.1 DSCS II Transmitter Failures 3.4.2 DSP Transmitter Failures 3.4.3 Particles and Fields Satellite Transmitter Failures 3.4.4 Converter and Dual Baseband Assembly Failures 3.4.5 Conclusions From Unit Failure Histories Review 	3-9 3-9 3-10 3-10 3-11				
	3.5	Critical Part Failure History	3-11				
		3.5.1 Transmitter Critical Parts3.5.2 Converter Critical Parts3.5.3 Parts History Review	3-12 3-13 3-14				
	3.6	Investigation of Temperature Data	3-16				
	3.7	Transmitter Power Output Comparisons	3-19				
4.	REVI	EW OF OTHER ORBITAL TRANSMITTER FAILURES	4-1				
	4.1	DSCS II Flight 4 Transmitter Failure	4 - 1				
	4.2	DSP Flight 4 Transmitter Failure 4					

R5-214-80

ř

٠,

and a second sec

iii

CONTENTS (Continued)

Page

R5-214-80

5.

6.

ILLUSTRATIONS

Figure		Page
2-1	TT&C Subsystem Block Diagram	2-2
2-2	Spacecraft Component Layout	2-3
2-3	Transmitter S/N 3-25 Output Power During Integration and Test	2-6
2-4	Transmitter S/N 3-25 Power vs Temperature	2-7
2-5	9444 XMTR 1 Orbital Parameters	2-9
3-1	Diagram of Possible Failure Causes	3-2
3-2	Output Oscilloscope Traces From Converter Overload Tests	3-5
3-3	9444 XMTR 1 Failure - Related Temperature Data	3-18
3-4	TTC Transmitter Output Power History During I&T	3-20
C-1	Transmitter Output Power Correction for Flights 7 through 12	C-8

TABLES

Table		Page
2-1	I&T History of Transmitter 3-25	2-5
3-1	Transmitter Converter Overload Test Pesults - PN 266295-1 S/N 3-25	3-4
3-2	Summary of Fabrication Test Results for Transmitter S/N 3-25	3-8
3-3	Converter S/N 3-61 Test History	3-9
3-4	TTC Receiver Temperature Before and After Failure	316
3-5	Predicted Temperatures with Transmitter ON and OFF	3-17

R5-214-80

Ì

No. of Street

and a store

1

۷

1. SUMMARY AND CONCLUSIONS

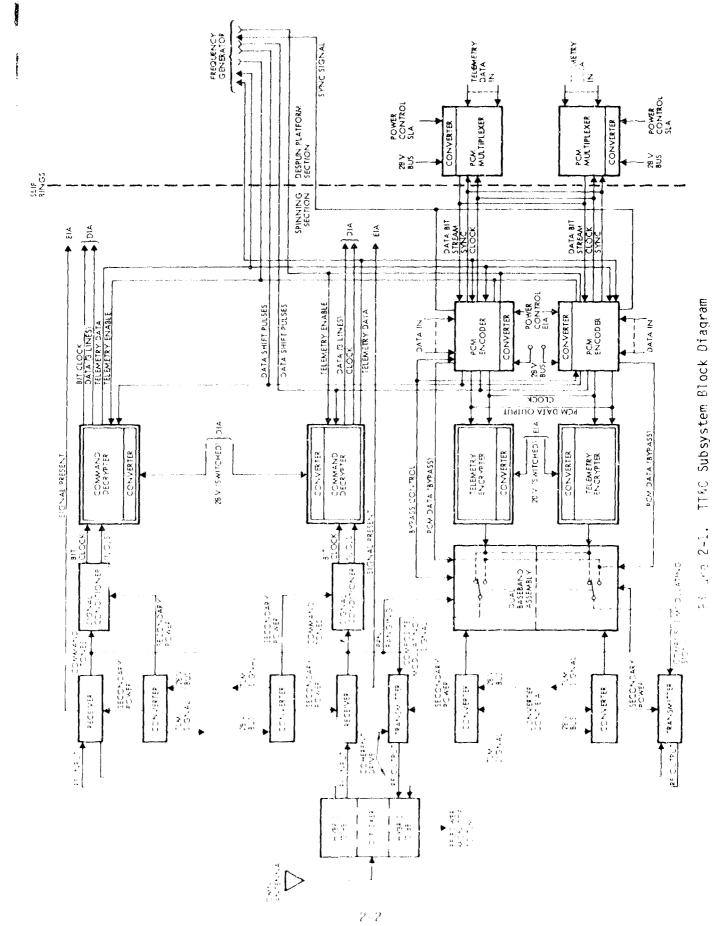
On January 21, 1980, at 10:00 p.m. local time during a routine pass, the downlink telemetry carrier for Flight 14 (Satellite 9444) could not be located. The downlink was commanded off and on with no response. Command to coherent operation also produced no response. It was assumed that transmitter No. 1 (or its power converter), which was operating normally 20.5 hours earlier, had failed. At 11:00 p.m. local time, January 21, (the next pass), the redundant transmitter was commanded on and is now operating normally.

The satellite was launched November 21, 1979, and was in transit toward 5°W longitude (East Atlantic Ocean). No unusual telemetry, tracking and command subsystem conditions or other satellite anomalies were noted during the two months of orbital operation.

An orbital anomaly investigation team was formed to:

- o Determine possible failure causes
- p Investigate unit and part test histories.
- Examine telemetry and test correlations which might give clues to the cause of failure
- Compare with similar failures on Flight 4 and the Defense Space Program (DSP).

After an exhaustive analysis and investigation, no definitive cause of failure could be found. Transmitter ground test history and orbital performance were normal prior to the failure. Possibly a random electronic part failure, such as an open or short in a diode or transistor, caused the failure; however, there is no evidence for suspecting any particular part. Other possibilities include an open circuit in a connector, wiring or printed circuit board trace, but it is unlikely these would have escaped detection during ground testing. No value reason to suspect any specific failure mode is evident from the information available.


2.1 TELEMETRY, TRACKING AND COMMAND SUBSYSTEM

The telemetry, tracking and command (TT&C) subsystem performs the primary functions of radiating an RF carrier required for angle tracking and range and range rate determination of the satellite telemetry of measurements required for mission operations, and command of the various satellite subsystem modes of operation. Other functions include telemetry of measurements of subsystem parameters for engineering evaluation of satellite performance, telemetry of data which is useful in diagnosis of failure and/or data which simplifies satellite control facility (SCF) record keeping. A block diagram of the TT&C subsystem is shown in Figure 2-1.

2.2 TELEMETRY SUBSYSTEM

The downlink transmission path through the TT&C subsystem begins with the individual sensing element which is connected to the pulse code modulation (PCM) encoder and/or multiplexer. The encoder accepts all telemetry data (analog, bi-level and digital) from the spinning section, whereas the multiplexer (located on the despun platform) receives all data from the despun platform. The serial data stream from the multiplexer is routed through the slip ring assembly to the PCM encoder. The encoder and multiplexer operate in synchronism to encode and format all inputs into one PCM bit stream. Normally, the re ulting digital data output at 250 bits per second is routed to the encrypter for encryption. An encrypter bypass is provided, upon command, which will route the data directly from the encoder to the baseband assembly. The PCM data stream fed to the baseband assembly, either from the encrypter or encoder, is phase modulated on a 1.024 MHz subcarrier and combined with a ranging code into a composite output signal. This composite telemetry signal is then routed to the transmitter where it modulates the phase of the RF carrier. A spacecraft component layout, showing the location of the telemetry transmitter is shown in Figure 2-2.

ŝ

R5-214-80

ŗ

.

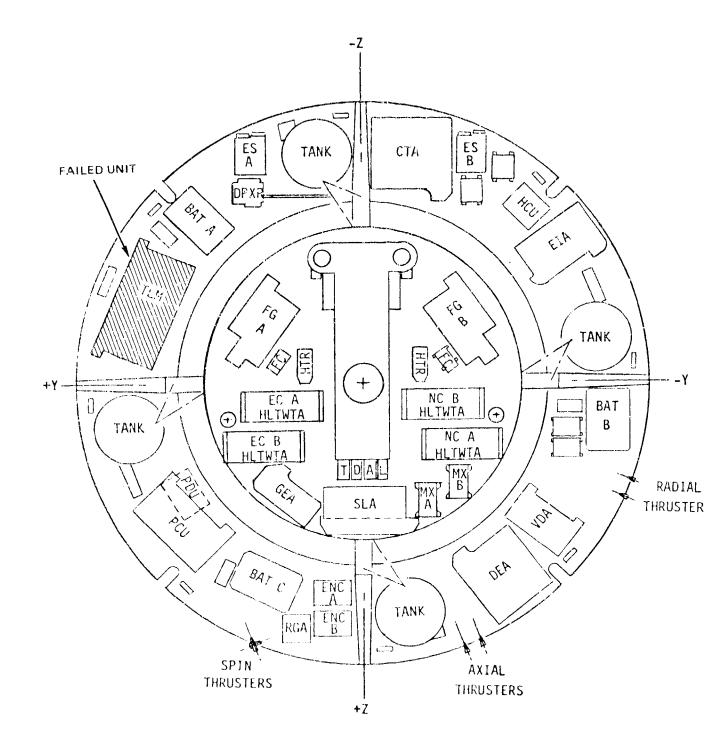


Figure 2-2. Spacecraft Component Layout

2...3

2.3 TRANSMITTER INTEGRATION AND TEST (1&T) HISTORY

At the time of failure, the satellite was operating with telemetry transmitter No. 1 (the A side of the redundant transmitter assembly); part number 256164-3, serial number 3-25. This unit was originally integrated onto satellite F-11 and was on board through the entire environmental test series including the post thermal-vac integrated systems test (IST). At this point, it was noted that the output power and mod index had degraded, both in the thermal-vac chamber during Phase 1 testing and during the subsequent IST, at which time the transmitter was removed and returned to manufacturing. — other TT&C related units were changed at this time and no further out-of-spec conditions were experienced on the F-11 satellite.

The unit was reworked by manufacturing to incorporate stability modifications (ECP 106) and retuned. It was then integrated into satellite F-14 after being subjected to the following reacceptance testing:

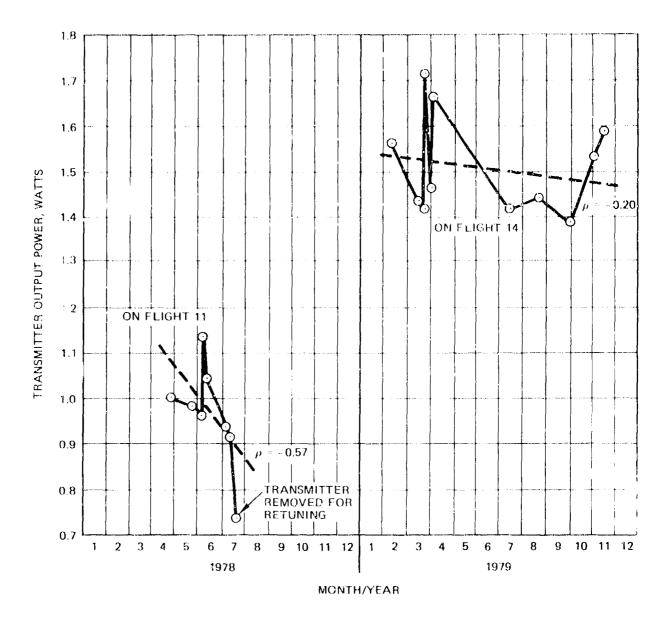
- a) Vibration 3 axes, one minute per axis, to acceptance limits per EV-2-23C
- b) Post vibration functional test per DR 12A-01
- c) Thermal vacuum test per DR-12A-01, plus two complete thermal cycles with soak time at the high acceptance temperature and at the low acceptance temperature for 24 hours per exposure during each cycle (4 day T-V test)
- d) Final functional test per DR-12A-01.

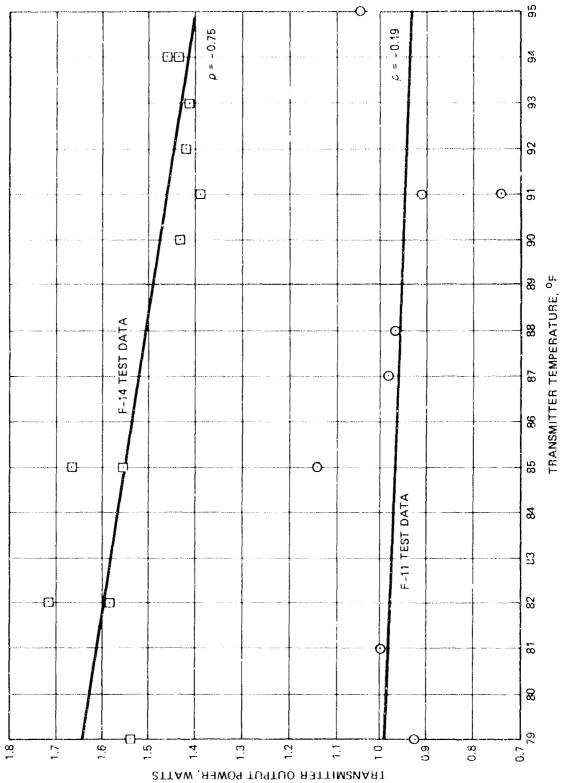
No anomalies were observed during reacceptance testing, subsequent integration testing or prelaunch checkout at Cape Kennedy. The results of integration testing on both F-11 and F-14 are shown in Table 2-1. Transmitter output power versus calendar time are shown plotted in Figure 2-3 together with least squares trend lines. Note the significant improvement in output power after retuning. The effect of temperature on output power is shown in Figure 2-4. There was very little correlation on Flight 11; somewhat more on Flight 14, but not enough to be considered significant.

Table 2-1.	1&T	History	of	Transmitter	3-25
------------	-----	---------	----	-------------	------

	Test	Date	TT&C Bus I	Conv + 15 V	Transmitter Power	Тетр	Mod Inde
	IST 1	42278	1.26	15.01	1.000	81	1.57
	IST 2	5-23-78	1.25	15.01	.983	87	1.52
	IST 3	6-09-78	1.28	15.01	.964	88	1.46
	TV Ø II EQ	6-11-78	1.30	15.01	1.130	85	-
	TV Ø II WS	6-12-78	1.29	14.97	1.040	95	-
	TV 🖉 I EQ	7-7-78	-	15.01	.933	79	1.48
	TVØIWS	7-9-78	-	15.01	.909	91	1.48
	IST 4	7-19-78	1.30	15.01	,739*	91	1.46
в)	0n F-14						
B)	<u>On F-14</u> Test	Date	TT&C Bus I	Conv + 15 V	Transmitter Power	Temp	Mod Inde
3)	Test IST 1	2-19-79				Temp 85	Mod Index
B)	Test		<u>Bus I</u>	<u>+ 15 V</u>	Power	_	
В)	Test IST 1 IST 2 IST 3	2-19-79	<u>Bus I</u> 1.30	+ 15 V 15.02 15.02 15.02	Power 1.56	85	1.60
В)	Test IST 1 IST 2 IST 3 TV Ø 1	2-19-79 3-17-79 3-24-79 3-28-79	Bus I 1.30 1.31 1.31	+ 15 V 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72	85 90 93 82	1.60 1.60 1.60 1.57
В)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79	Bus I 1.30 1.31 1.31 1.31 1.30	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46	85 90 93 82 94	1.60 1.60 1.60
B)	<u>Test</u> IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79	Bus I 1.30 1.31 1.31 - 1.30 1.29	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67	85 90 93 82 94 85	1.60 1.60 1.57 1.57
B)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2 HAT 1	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79 7-17-79	Bus I 1.30 1.31 1.31 1.30 1.29 1.28	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67 1.42	85 90 93 82 94 85 92	1.60 1.60 1.57 1.57 1.57
B)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2 HAT 1 HAT 1R	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79 7-17-79 8-23-79	Bus I 1.30 1.31 1.31 1.30 1.29 1.28 1.28	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67 1.42 1.44	85 90 93 82 94 85 92 94	1.60 1.60 1.57 1.57 1.57 - 1.58 1.60
B)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2 HAT 1 HAT 1 HAT 1 HAT ETR	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79 7-17-79 8-23-79 10-02-79	Bus I 1.30 1.31 1.31 1.30 1.29 1.28 1.28 1.28	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67 1.42 1.42 1.44 1.38	85 90 93 82 94 85 92 94 91	1.60 1.60 1.57 1.57 1.57
B)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2 HAT 1 HAT 1 HAT ETR OSF	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79 7-17-79 8-23-79 10-02-79 11-02-79	Bus I 1.30 1.31 1.31 1.30 1.29 1.28 1.28 1.28 1.28 1.28	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67 1.42 1.44 1.38 1.53] +	85 90 93 82 94 85 92 94 91 79	1.60 1.60 1.57 1.57 1.57 - 1.58 1.60
B)	Test IST 1 IST 2 IST 3 TV Ø 1 IST 4 TV Ø 2 HAT 1 HAT 1 HAT 1 HAT ETR	2-19-79 3-17-79 3-24-79 3-28-79 4-01-79 4-04-79 7-17-79 8-23-79 10-02-79	Bus I 1.30 1.31 1.31 1.30 1.29 1.28 1.28 1.28	+ 15 V 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02 15.02	Power 1.56 1.43 1.41 1.72 1.46 1.67 1.42 1.44 1.38 1.53	85 90 93 82 94 85 92 94 91	1.60 1.60 1.57 1.57 1.57

۱




Figure 2-3. Transmitter S/N 3-25 Output Power During Integration and Tost

R5-214-80

ĩ

?

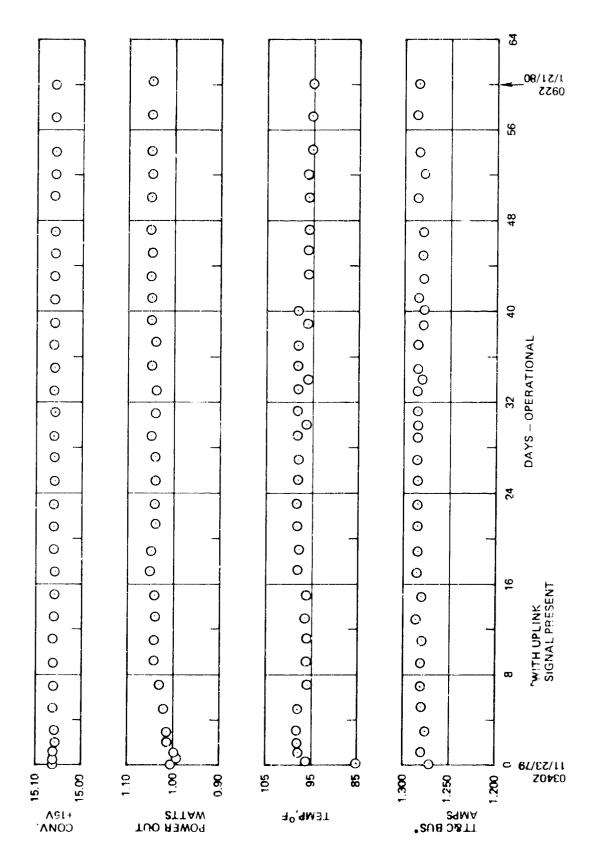
с Г

2 - 7

ى.

Figure 2-4. Transmitter S/N 3-25 Power vs Temperature

R5-214-80


÷,

ř

5 C.

2.4 TRANSMITTER ORBITAL PERFORMANCE

During its two months of orbital operation, transmitter 3-25 performed normally. A graph of serveral operating parameters is shown in Figure 2-5. Converter output voltage was steady at 15.06 V. Transmitter output power increased slightly during the first few days of operation and became steady at 1.05 W, a nominal value. Transmitter internal temperature increased initially when the transmitter was turned-on, then stabilized at a normal value, varying by only 2 to 3 degrees. TT&C bus current also was steady and normal. Thus, there was no evidence of degradation or anomalous behavior of the transmitter prior to the failure.

R5-214-80

ř

1

20

2-9

· ...

3. FAILURE ANALYSIS

3.1 POSSIBLE FAILURE CAUSES

Two general categories of possible failure causes exist: external and internal. These are diagrammed in Figure 3-1. Although there is no evidence to suggest any particular external failure cause, they were considered by the anomaly investigation team and are shown here for completeness. Radiation and particle impact were ruled out early as failure causes because they are remote and shielding is provided by the satellite structure and unit housings. The possibility of ground station failure was eliminated because the loss signal from the satellite was verified by a second ground station.

Based on past experience with electronic assemblies, it is more likely that the failure cause is internal. Of these, the transmitter itself, or its power converter, have the highest likelihood. Hence, efforts of the investigation team were concentrated in this area. Drift failure was ruled out quickly because, as seen in Figure 2-5, there was no indication of drift in any of the transmitter parameters. Drift from 1.05 W output power to less than 0.1 W would have had to occur in the 20.5 hours between telemetry samples.

An interconnection failure, such as a broken wire, open printed circuit board trace or improperly mating connector, would fit the observed sudden loss of signal; however, it is highly unlikely that these would not have been detected during ground testing if they existed prior to launch, and are unlikely to occur while the spacecraft is operating normally under relatively benign orbital conditions. Fuse failure is unlikely as there was no indication of any unusual power consumption in the TT&C subsystem. The possibility of corona, as was observed during F-15 thermal-vac testing, was discussed but considered unlikely since the transmitter would have vented completely long before two months in orbit. A diplexer failure is considered unlikely as this would be reflected on the redundant downlink.

Failure analysis efforts were considerably hampered by the loss of A-side telemetry measurements when the A transmitter stopped transmitting. The number of telemetered parameters is small and the frequency of telemetry samples from the SCF precludes observing any fast occurring events.

R5-214-80

1

......

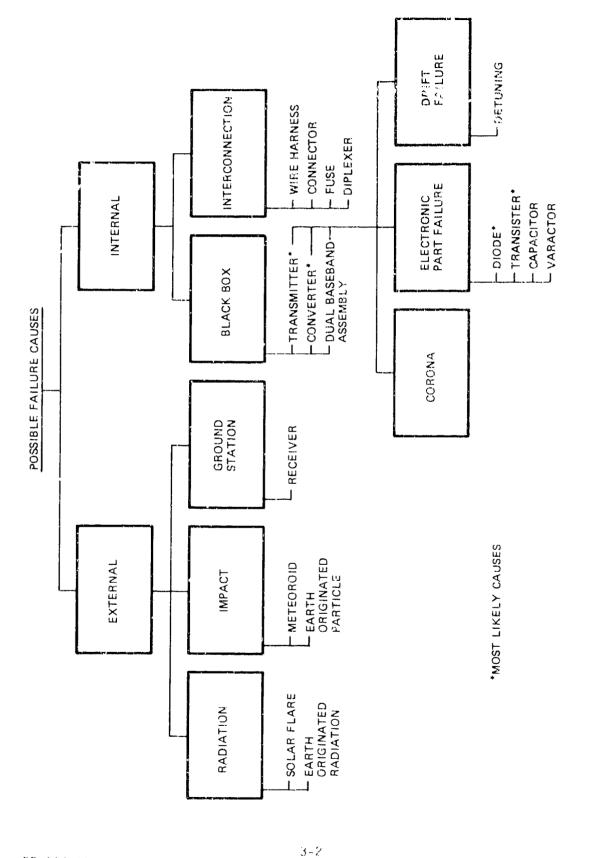


Figure 3-1. Diagram of Possible Failure Causes

R5-214-80

ł

İ

ř

1

ť,

•

1

.

* . . *

a complete a second

Further orbital diagnostic information might be obtained by monitoring current usage and battery depth of discharge at onset of the next eclipse. Another diagnostic approach discussed by the investigation team is to command the failed transmitter on for a period of time (say, 12 hours) and observe any charge in transmitter temperature to determine if power is being dissipated. However, no such recommendation was made as it has been the policy not to jeopardize the operation of the satellite in any way simply to obtain failure diagnostic information.

3.2 CONVERTER FULD-BACK

A possible failure mode investigated by the team is damage to the transmitter or dual baseband unit due to converter fold-back.

The overload characteristics of the converter were tested, using Qual Unit S/N 3-25. Care was used not to overstress the converter beyond its normal load capability.

The test data (Table 3-1) shows that the converter does not exhibit any fold-back characteristics. Instead, the output maintains regulation as the load is increased until the series pass transitor runs out of drive, then voltage starts to drop as the current increases. This happened to the -15 V output during test No. 2. Output oscilloscope traces are shown in Figure 3-2.

It was concluded that as the output load is increased, the input current increases until the input bus fuse blows, thus precluding damage to the transmitter or dual baseband unit.

3.3 F-14 UNIT FABRICATION TEST HISTORIES

Fabrication test histories of the failed transmitter and its power converter were reviewed to identify any possible anomalies which might provide clues for identifying the cause of orbital failure.

3.3.1 Transmitter

A review of the fabrication test history of transmitter S/N 3-25 revealed the following:

a) Assembly of the unit was completed in August 1977

R5-214-80

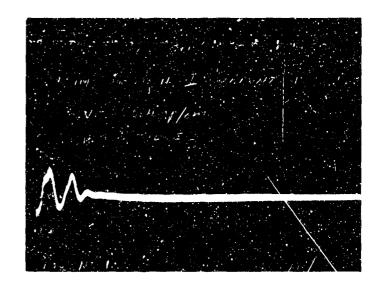
3-3

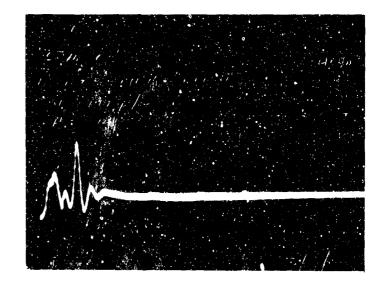
N

Transmitter Converter Overload Test Results - PN 266295-1 SN 3-25 Table 3-1.

į

ř


\$


Sec.

• •

		ະ ເບິ່ງ ເ ອີ ອີ	81.6	80 . 36	82.09	83.70	
		יי קי מ	8	с) Ф	8	සි	
		Oungu Power S	10.956	14 . 175	13.677	16.40	
		R av av	e en el construcción de la const	- 145	-t	10	
	-15 ¥	° 4 ⊢ E	ß	50	12	12	
		Eo. Vdc	15.039	13.585	15.035	15.034	
Gutput		44 4	w	α	ω	αο	•••
õ	15.0 ¥	,o≮ ₩ E	130	151	151	151	
		κ. άο,	14.988	14.969	14.982	14.983	
		R, ip,	22	28	28	35	
	25.0 ¥	Io,	318	402	402	£00	
		E ₀ , Vđc	27.978	27.952	27.947	27.927	
		d L L L L L L L L L L L L L L L L L L L	13.44	17.69	16.66	19.60	
		AC Fip*	90	5	90	n U	
	Input	lin, mA	€1) 14) ₩ 3 1	630	595	275.0	
		Ein, Vdc	28.00	28.00	28.00	28.00	
	Рі х	No N	-	د ع	ŝ	•••	

3-4

Eigure 3-2. Output Oscilloscope inaces from Converter Overload lests

R5-214-80

3.5

Figure 3-2. Output (Scilloscope Traces from Converter Overfood Jests (Continued)

' -ti

- b) Test Discrepancy Report (TDR) T31691 indicates low output power during fabrication test. This type of TDR is typical for the transmitter and is usually caused by alignment problems and/or air-variable capacitor wear-out.
- c) TDR T25594 indicates low output power during temperature/altitude test. The unit was opened and the output filter housing was found to be sensitive to pressure and shock. The output filter cavity was opened and repacked with pith balls. Power output was then normal. Several temperature cycles were performed with no power output anomalies. Although no hard evidence of a discrepancy was found, a possible cause of the anomaly was concluded to be due to pith ball contamination. The transmitter completed a full acceptance test sequence with no further anomalies.
- d) TDR TA5921 indicates an out-of-spec condition on the modulation index during IST No. 4 Satellite 9441. In addition, the transmitter output power had degraded about 200 mW, although this parameter remained in specification. The unit was returned to Manufacturing. No damage or defects were found. Minor realignment significantly increased power output and brought the mod index within specification. Extensive temperature testing did not reveal any sensitivity to temperature transitions. The unit passed all acceptance tests with no anomalies in October 1978.

The above described anomalies are typical for the DSCS II telemetry transmitter, as indicated by a review of other transmitter data packages. Nothing was discovered in the data review that would indicate a problem with the transmitter. A summary of the fabrication test data is shown in Table 3-2. Copies of the functional test data sheets for transmitter S/N 3-25 are shown in Appendix A.

3.3.2 Converter

The transmitter converter (PN 25629-3) S/N 3-61 unit test data package No. 856-1 was reviewed and is summarized in Table 3-3. A review of the data showed no degradation in output voltage levels during testing.

3.4 UNIT FAILURE HISTORIES FROM PAST FLIGHTS

Test discrepancy follow-up (TDE) reports written against the transmitter, converter, and dual-baseband units used on DSCS 11 and DSP were reviewed and categorized. In addition, five transmitter failures from the Particles and Fields project were also reviewed. The 118C transmitter for these three programs has essentially the same design.

R5-214-80

ŧ

		R OUT DC.		MOD (2.4	SIDEBAND SYMMETRY			
	Coh. Min. 800 mW	Non-Coh. Min. 800 mW	+28 Max. 340 mA	+15 Max. 120 mA		. 5.136 V . 7.704 V 500 KHz	olt	(2.4 RADIAN) Max. 10%
lst Acc. Test	000 IIIW	000 1114	540 104	120 114	100 M12	500 KHZ	TTUU KHZ	
Post T/C	1304	1272	200	85	6.495	6.430	5,870	3.9
Post Vib	1415	1399	210	86	6.152	6,153	5,807	2.9
Temp Alt	NA	1281	220	86	NA	NA	NA	NA
Th Vac Ha	1187	1187	260	86	5.732	6.410	5,903	4
Th Vac Lo	1344	1281	250	86	5.463	5.478	5.934	3.9
Post Env	1302	1323	270	38	6.015	6.010	5.769	1.9
2nd Acc. Test (After I.T. Return)								
Final Fab	1330	1360	250	102	6,550	6.615	6.850	<1
тс ні	925	955	205	101	6.927	6.833	7.168	1
το Γο	1440	1465	280	102	5.727	6.0	5,961	3
Post T/C	1545	1360	250	101	6,1562	6.672	6,960	1
Post Vib	1300	1340	245	101	6.512	6.657	7.025	r
Temp Alt	NA	1296	240	101	NA	NA	NA	NA
Th Vac Hi	972	1008	210	110	7.002	7.048	7.318	0
Th Vac Lo	1530	1611	285	102	6.236	6.260	6.068	2
Post Env	1424	1484	240	102	7.043	7.068	7.023	1

Table 3-2. Summary of Fabrication Test Results for Transmitter S/N 3-25

R5-214-80

Param	eter	Test						
Output	Limit	Final Fab	Pre En V	Post Vib	TV Low	TV High	Post En V	
+28 Vdc	+27.44 +28.56	28.18	28.17	28.06	28.12	28.09	28.08	
+15 Vdc	+14.70 +15.30	15.02	14.96	15.02	15.01	15.03	15.02	
-15 Vdc	14.70 -15.30	-14.80	-14.89	-15.13	-15.13	-15.14	-15.12	

Table 3-3. Converter S/N 3-61 Test History

3.4.1 DSCS II Transmitter Failures

Failure reports written against DSCS II telemetry transmitter, P/N 256164, all dash numbers, S/N 2-1 through 3-34 were divided into six categories: (1) No power; (2) Low power; (3) Fluctuating power; (4) Modulation problems; (5) Bandpass, frequency, or spurious response problems; (6) Other. The first three categoies deal with the output power parameter, while the last three relate to other aspects of the output spectrum as well as miscellaneous problems. The details are tabulated in Appendix B, Attachment 1. The first three categories are then each subdivided by failure cause. These are shown in Attachment 2 of Appendix B.

A total of 96 TDFs were written against the telemetry transmitter. Of these, 32 TDFs were related to the output power parameter, and 64 were related to some other parameter. Of the 32 output power TDFs, only one dealt with a no-power situation (S/N 2-1; due to a procedural problem in thermal-vacuum test, a longer soak time was added).

3.4.2 DSP Transmitter Failures

A similar review was performed on the DSP 0.8 W transmitter, P/Ns 235855, 246027-5, 246027-6, S/N 2-1 through 029. The same six categories mentioned above were used. Details of this can be found in Appendix B,

R5-214-80

Attachment 3. The subdivision of the first three categories by failure cause is found in Attachment 2. Of the 107 TDFs written against the transmitters, 63 TDFs were related to the output power parameter and 44 dealt with other parameters. Of the 63 TDFs relating to output power, 20 TDFs discuss the no-power situation. Of the 20 no-power TDFs, seven were out-of-tune transmitters, two were caused by employee error, five were caused by corona, two were caused by outgassing/moisture, one was caused by a faulty transistor, one was caused by a loose screw on transformer T2, one was caused by a converter failure, and one failure cause was unknown. See Appendix B, Attachment 2 for the breakdown of failure causes.

3.4.3 Particles and Fields Satellite Transmitter Failures

Also reviewed were five TDRs written against the Particles and Fields (P&F) satellite transmitter. Two concerned a no-power output condition. The failure cause was an open junction of a part on the low-power board. The part, TRW Semiconductor C255185-011, 2N4428, was retro-fitted on DSCS II hardware after this P&F failure.

3.4.4 Converter and Dual Baseband Assembly Failures

DSCS II and DSP converter failure history was reviewed. DSCS II converter P/N 256295 and DSP converter P/N 237974 had 18 and 44 TDFs, respectively. Of the 18 DSCS II TDFs, three concerned a complete loss of output: (1) -15 V to 0.0 caused by a too-long screw, corrected by E.O; (2) +28 V to 0.0 caused by a shorted diode which was considered a one-time occurrence; (3) all outputs to 0.0 caused by a shorted transformer, also considered a one-time occurence. Of the 44 DSP TDFs, six concerned a complete loss of output: (1) no outputs due to a broken wire (considered workmanship); (2) a short in the converter power board during integration testing; (3) -15 V to 0.0 due to a too-long screw corrected by E.O; (4) no output, caused by operator error; (5) no output to the receiver due to a damaged J2 connector on the converter; (6) same as 5.

Finally, the dual-baseband unit failures were reviewed. Of the five DSCS II TDFs written, all were related to the RF output spectrum (such as intermittent output, or out-of-tolerance power versus frequency) rather than an input parameter (such as input current). Earlier failure analysis

determined that RF output problems could not result in the orbital anomaly of F14. Of the DSP TDFs written, all were also related to the RF output spectrum rather than an input paramter.

3.4.5 Conclusions From Unit Failure Histories Review

A review of the falure history of transmitters, converters, and dual-baseband units on DSCS II, DSP and Particles and Fields projects revealed relatively few failure modes which could result in the complete loss of transmitter output. In the past, transmitters lost power by detuning, corona, part-failure, outgassing or moisture, and the loose screw. DSCS II transmitters had no hardware failures resulting in a complete loss of power.

Several DSP converters failed in a fashion that would result in a complete loss of transmitter signal. Some of the failure causes mentioned earlier (a broken wire, a short in the converter power board, and a damaged connector) figure as possible F-14 anomaly causes. The two DSCS II converter failures caused by a shorted diode and shorted transformer are also possible F-14 anomaly causes. It is very unlikely these faults could have escaped detection during unit test and integration and test of the satellite.

The history of the dual-baseband units reveals no possible failures such that a condition of no transmitter output power would exist.

3.5 CRITICAL PART FAILURE HISTORY

In an attempt to identify one or more piece-parts which could be suspected of having caused the orbital failure, transmitter and converter schematics were reviewed to identify critical parts whose failure would produce the observed conditions. Since a very large number of parts could have caused the failure, the critical parts listed were limited to the higher failure rate parts. Many lower failure rate parts, such as standard resistors and capacitors, could also have been the failure cause, though much less likely. Government alerts and TRW historical parts failure data were reviewed to determine if any of these critical parts had been problem parts in the past.

3-11

3.5.1 Transmitter Critical Parts

After reviewing the transmitter schematics (297452, 297451), the following piece parts were identified along with the type of failure and its effect on the transmitter performance.

A. Low Power Board (Schematic 297452)

1. Voltage Regulator

				_
Ref.	Part No.	Part Type	Failure	<u>Result</u> Loss of carrier
Q1	C255270-011 C255172-011	Transistor Transistor	Short/Open Short/Open	Loss of carrier
Q2				
2.	Switching Circ	cuit		
CR1 CR4	CR255212-011	Diode	Short/Open	Loss of carrier
3.	Buffer Amplif	<u>ier</u>		
Q4	C255169-021	Transitor	Short/Open	Loss of carrier Loss of carrier
VR4	C25507-071	Diode	Short/Open	2033 01 2011
4.	Doubler Ampli	fier		
05	C255169-021	Transistor	Short/Open	Less of carrier Loss of carrier
CR5	C255116-011	Diode	Short/Open	LUSS OF CUTTON
5.	Modulation Ar	nplifier		
06	C255169-021	Transistor	Short/Open	Loss of carrier Loss of carrier
VR5	0.255097-031	Diode	Short/Open	Loss of carrier
VR6	C255122-021	Diode	Short/Open	Loss of carrier
CR6, CR7	C255104-131	Diode	Short/Open	
6.	Buffer Ampli	fier		
Q7	0255169-021	Transitor	Short/Ope n	Loss of carrier
7	. <u>Final Amplif</u>	ier		
Q8	C255185-011	Transitor	Short/Open	Loss of carrier

3-12

R5-214-80

and a construction of the

B. High Power Board (Schematic 297451)

1.	Low-Level Qua	drupler		
CR1, CR2	C255104-031	Varactor	Short/Open	Loss of carrier
2.	Low-Level Amp	lifier		
Q2	C255164-011	Transistor	Short/Open	Loss of carrier
3.	<u>High-Level Am</u>	plifier		
Q3	0255163-021	Transistor	Short/Open	Loss of carrier
4.	Quadrupler			
CR3, CR4	C255115~011	Varactor	Short/Open	Loss of carrier

3.5.2 Converter Critical Parts

After reviewing the transmitter converter schematic (256513) the following piece parts were identified along with the type of failure and its effect on the converter performance. In general, any part failure resulting in a loss of the command relay contact closure would result in a turn-off of the converter.

Part No	Part Type	Failure	Result
Oscillator Drive A	1 Board		
C255489-2661 C255160-011 C255162-011 C255172-011 C255102-021	Capacitor Transistor Transistor Transistor Zener Diode	Short Short/Open Short/Open Short/Open Short/Open	Open Input Fuse Low Voltage Output Low Voltage Output Los Voltage Output Low Voltage Output
Power Output Board	(SA) I		
C255196-011 C255196-011 C255174-021 (Q5) C255174-021 (Q5)	Transistor Transistor Transistor Transistor	Short CE Open Ce Open Short	Open Input Fuse No Output Voltage No +15 V Output +15 V Output Increase to approx +17 V
0255489-2546	Capacitor	Short	+15 V goes to zero may blow input fuse
0255489-2661	Capacitor	Short	+28 V goes to zero, +15 V goes low may blow input fuse
	3	3-13	

R5-214-80

· · · ·

3.5.3 Parts History Review

GIDEP Alerts, reliability action requests (RAR) and destructive physical analysis (DPA) history of the critical components used in DSCS IJ that could have caused the failure were reviewed. The following critical parts, taken from the lists in Sections 3.5.1 and 3.5.2, were researched:

	<u>Part Type</u>	Part No.	<u>Generic Part No.</u>
1.	Diode, Voltage Regulator (Zener)	C255097-031 -071	1N 74 8A 1N 752A
2.	Diode, Varactor	C255104-031	PC100
3.	Diode, Varactor	C255115-021	VAB802EC
4.	Diode, Switching	C255116-011	1N3600
5.	Diode, Temp Compensated Ref.	C255122-021	1N4295A
6.	Diode, Step Recovery	C255212-011	PPA-023
7.	Transistor, NPN UHF Amp	C255163-021	2N4430
8.	Transistor, NPN Med. Power UHF Amp	C255164-011	2N4429
9.	Transistor, NPN High Speed Switch	C255169-021	2N2369
10.	Transistor, NPN	C255172-021	2N 2 2 2 7 A
11.	Transistor, NPN Low Power UHF	C255185-011	2N4428
12.	Transistor NPN Darlington Amp	C255270-011	2N 999

The review of the critical parts revealed several GIDEP Alerts, RARs and unsatisfactory DPAs. A total of four GIDEP Alerts have been written on zener diodes of the same type and voltage as the C255097-031 and -071 but none of the suppliers was used by TRW on the DSCS II Project. Other GIDEP Alerts were written on parts in the same series as the C255097 family from suppliers that DSCS II used, but these were old lot date codes and technical steps have since been taken by the suppliers and TRW specification modifications have been made to minimize the possibility of problem repetition in later parts.

3-14

R5-214-80

÷

GIDEP Alerts of 2N2222A transistors or the military version of this part (which is the same basic type as the C255172-021) were located, but only one alert was from a supplier used by DSCS II. This particular alert was on parts manufactured in 1968 and could not have been used on this satellite. Again, manufacturing changes by the supplier have eliminated the problem in later lots.

Only one RAR (No. 37) was found on any of critical parts used. This was written on a JANTXV2N2222A for parts made in 1972 by a supplier not used on DSCS II for the C255172-021 part.

Two unsatisfactory DPAs were found on critical part types. The first was on one transistor type C255169-021 (similar to 2N2369) which was manufactured by an approved source, Motorola. The cause of the DPA being unsatisfactory was metallization bridging between the base bonding pad and one of the emitter fingers. There was a very slight separation between the pad and finger so that the unit was probably not electrically shorted. This part was very old (lot date code 6813) and the lot was not used. It was scrapped.

The other unsatisfactory DPA was for a step recovery diode C255212-011 which was manufactured by Hewlett-Packard. Two of the diodes in the DPA sample contained a particle of sufficient size to cause shorting between the anode ribbon and the cathode side of the die or mounting pedestal. The lot of parts was 100 percent screened visually internally and all parts with particles removed. However, none of the parts from this lot (lot date code 7511) were used on DSCS II. In the meantime Hewlext-Packard was apprised of the problem and made significant improvements in the cleanliness of the assembly operation and also in their preseal inspection procedures and equipment.

There were additional unsatisfactory DPAs on parts used by other projects at TRW which are similar to the critical parts such as diode type JANTXV1N3600 or transistor type JANTXV2N2222A. In all such cases however the parts were manufactured by suppliers not used by DSCS II, or were of older lot date codes than the parts used.

Based on this review of TRW and industry part failure information, it was concluded that there is no historical evidence to indicate a specific component part as the cause of the TT&C failure.

3 - 15

3.6 INVESTIGATION OF TEMPERATURE DATA

In an attempt to obtain additional clues regarding the cause of failure, the investigation team took a close look at telemetered temperatures in the vicinity of the failed transmitter and compared them with predicted values using the DSCS II analytical thermal model.

Table 3-4 shows the receiver internal temperature for several days before and after the failure. The receiver temperature sensor is in the same assembly housing as the transmitters, and its telemetry was not affected by switchover to the redundant transmitter. Note that the temperature dropped 5 degrees after the failure, then rose to a stable level at 82-83°F. This reflects shutdown of transmitter No. 1 and warm-up of transmitter No. 2. The stabilization temperature after the failure is lower because transmitter No. 2 is located farther away from the temperature sensor within the receiver than is transmitter No. 1.

Date	Time (Z)	Temp °F	
1-15	0426	86 °	-
1-15	1014	86 °	
1-15	2300	86.9	
1-16	1024	° 88	Transmitter
1-17	0419	86 °	No. 1 ON
1-18	1100	86 °	
1-19	0609	° 63	
1-20	1722	° 08	
1-21	0932	85 °	

Table 3-4. TTC Receiver Temperature Before and After Failure

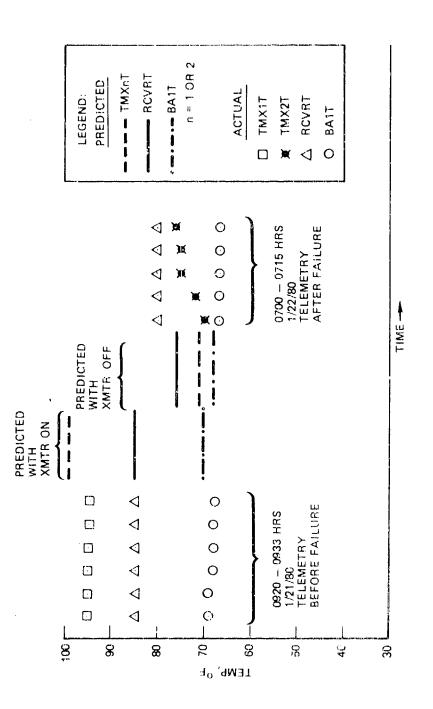
Transmitter #1 Failed During This Period

1 -22	0702	° 08
1-23	0655	83 °
1-24	0224	83 °
1-25	1253	83 °
1-26	0058	83 °
1-27	2204	<u>82 °</u>
1-28	0352	83 °
1-29	0743	83°
1-30	1017	82 °
1-31	0559	82 °

Transmitter No. 2 ON

Telemetered temperature measurements for transmitters No. 1 and 2, the receiver and battery No. 1 are shown plotted in Figure 3-3 for several minutes before and after the failure. This figure clearly shows the warm-up of transmitter No. 2.

A thermal analysis was performed using the DSCS II F13-16 spun platform analytical thermal model to predict the effect of transmitter operation on adjacent flight sensor temperatures. The condition analyzed was Winter Soltice, beginning of life in orbit. Table 3-5 tabulates the predicted flight sensor temperatures. In the analytical thermal model, both transmitter No. 1 and transmitter No. 2 are lumped into one isothermal node, therefore, only one temperature is predicted and applied to both transmitters. These temperature predictions are shown plotted as horizontal lines in Figure 3-3.


Table 3-5.	Predicted	Temperatures	with	Transmitter	ON	and OFF

Flight Sensor	Predicted	Temperature, °F
right sensor	XMIT ON	XMIT OFF
2-78, TMX11	99	71
2-80, TMX2T	99	71
2-82, RCVRT	85	76
2-24, BA11	70	68

Before the failure, transmitter No. 1 was operating at 95°F, 4°F below the predicted 99°F. This was not considered significant since it is within the accuracy of the measurements and analytical predictions. The receiver and battery were operating very close to the predicted values.

After the failure, transmitter No. 2 temperature was very close (within $1^{\circ}F$) to its predicted value in the off condition. This indicated that neither the transmitter nor its converter was dissipating power. However, this does not necessarily infer that the converter failed causing loss of power to the transmitter, because failure of the transmitter could also reduce power output of the converter causing it to coel down. The receiver temperature dropped to within 4°F of predicted. Battery number one temperature changed only 1-2°F as predicted. Thus, nothing unusual could be inferred from this temperature data.

R5-214-80

3-18

R5-214-80

1

•

, İ

· .

•

ř

þ

\$

. .

3.7 TRANSMITTER POWER OUTPUT COMPARISONS

The most indicative paramter for measuring transmitter performance is output power, measured in watts. The transmitter is designed to nominally produce 1 watt. However, the sensitivity of the transmitter to tuning has resulted in considerable fluctuation in output power from unit to unit.

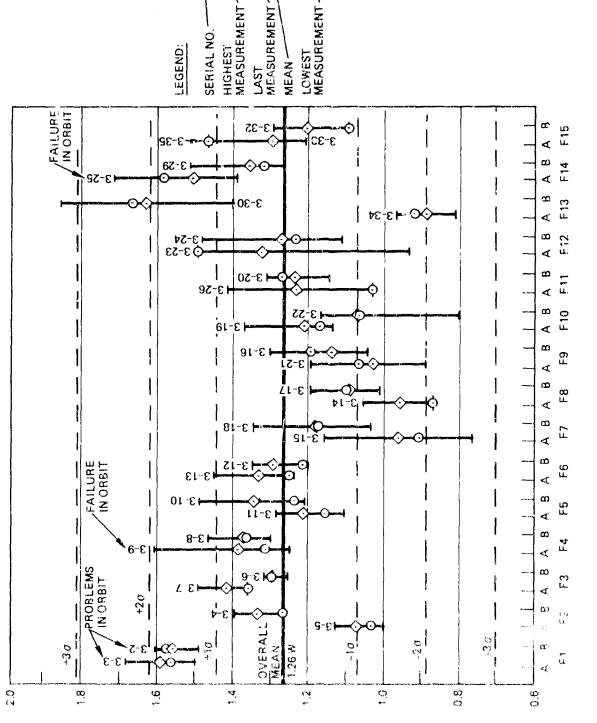

Records from Integration and Test for each DSCS II spacecraft through Flight 15 were researched and transmitter test measurement values were tabulated. This data is shown in Appendix C. For Flights 7 through 12, it was necessary to apply a correction factor to the power output measurements to convert power measured at the diplexer to output power for the transmitter. This correction factor curve is shown in Figure C-1. (Appendix C)

Figure 3-4 provides an overall picture of transmitter output power for 30 transmitters. Shown for each transmitter are the range of power values measured, the mean value and the last value measured during I&T. Note that output power has varied from less than 0.8 W to over 1.8 W, a range variation of 100 percent from the nominal design power. For comparison purposes, Figure 3-4 also shows an overall mean (i.e. mean of the mean values) for all transmitters and one, two and three sigma deviations from the mean. The mean value is 1.26 W, one sigma is 0.185 W.

In general, Flights 1 through 5 tended to have transmitter powers above the mean, Flights 7 through 12 were generally below the mean and Flights 13 through 15 were above the mean. Flight 13 is a notable exception; the A-side transmitter (S/N 3-34) was one of the lowest power transmitters tested while the B-side transmitter (S/N 3-30) was the highest.

Of particular interest is that the mean output power of the failed transmitter on Flight 14 (S/N 3-25) during I&T was one of the highest even measured. Only transmitter 3-30 on Flight 13 and the two transmitters on Flight 1 (which had problems in orbit) had higher average output. Transmitter 3-9 on Flight 4 (which failed in orbit) also had some relatively high power measurements, although the Tast measurement in I&T was near the overall mean. This raised the question of whether high transmitter output power was correlated with failure.

R5-214-80

XX-X

TRANSMITTER OUTPUT POWER, WATTS

Figure 3-4. TIC Transmitter Output Power History During 1&T

3-20

· ...

R5-214-80

The problems experienced with Flight 1 transmitters were of a completely different nature from the failures on Flight 4 and 14. Both Flight 1 transmitters turned off intermittently during eclipses. Difficulties were also encountered getting them turned on again. These problems were traced to an open circuit caused by thermal expansion and contraction in the plated-through holes of a non-redundant part of the transmitter turn-on circuit. Subsequently, the design was changed to incorporate redundancy in this circuit and the plated-through hole manufacturing process was improved. The transmitter failure symptoms on Flight 4 and 14, however, appear to be nearly identical (see Section 4).

To assure that the transmitter power variations shown in Figure 3-4 are not just due to normal random variations, statistical significance tests were performed on the data in Appendix C. First an analysis of variance was conducted on the output power measurements made during I&T on the 30 transmitters. This analysis is summarized in Appendix D. As might be expected, the results show that the observed variation in output power is significant and it is highly unlikely that all transmitters come from the same statistical population. Although all transmitters are of the same design, their performance is highly dependent on their tuning.

A second statistical test was performed to determine if the two transmitters which failed abruptly in orbit (S/N 3-9 and S/N 3-25) had significantly higher output power than the average of non-failed transmitters (excluding Flight 1). This analysis is shown in Appendix E. The results indicate that the observed higher output power of the two failed transmitters is statistically significant and there is less than a 5 percent chance that this observation is due just to random fluctuation. The mechanism of failure and how it is related to output power has not been determined.

R5-214-80

3-21

4. REVIEW OF OTHER ORBITAL TRANSMITTER FAILURES

Two other transmitter failures, similar in nature to the failure on Flight 14, have occurred in orbit. They are transmitter No. 1 (S/N 3-9) in DSCS II Flight 4 and transmitter No. 2 on DSP Flight 4.* These are essentially the same design as the DSCS II transmitters. As discussed in Section 3.7, the transmitter problem experienced on DSCS II Flight 1 had very different symptoms. They were traced to a likely cause, were reproduced by ground test and, thus, were not considered similar to the other failures.

4.1 DSCS II FLIGHT 4 TRANSMITTER FAILURE

At 1240Z August 25, 1976, transmitter one on Satellite 9434 failed (no downlink carrier output with uplink carrier "signal presence").

Due to satellite power limitations, transmitter No. 1 was being turned off at the end of each pass and was normally turned on by a "signal presence" command at the beginning of each pass.

Accordingly the Satellite Control Facility:

- 1) Sent the downlink "on" command at 1315Z without success (this bypasses signal presence circuits)
- 2) Selected transmitter No. 2 at 1435Z. This command was successful and transmitter No. 2 has been left on ever since.

Prior to the failure, there was no indication of a pending problem. Transmitter No. 1 had been cycled on and off approximately 250 times prior to failure. The failure could have been in the transmitter itself or its power converter. It was not possible to isolate it to either unit.

A review was made of the history of selected critical parts used in the transmitter and its converter; however, no significant evidence was found to link the orbital failure with a specific part.

At this point a numerologist would argue that the cause of the failure is obvious: all flight numbers containing the digit "4" are subject to transmitter failure!

It did not appear that there were significant changes in either the transmitter or its converter other than those necessary to accommodate unavailability of original parts. There were several transmitter and two converter ECPs incorporated since Satellite 9434. They are listed below together with comments as to possible effect.

ECP No. and Effectivity	ECP Title
21 (9437)	Varactor Diode Replacement (Due to parts availability)
	Replaced the pair of varactors used in the X4 multiplier (output stage) with the same part used in the DSP 1.6 W transmitter. Some circuit changes were also necessary.
34 (9437)	Change of TT&C Transmitter Crystal
	Change of value of an inductor shunting the crystal to accommodate the crystal manufacturer's product being procured for DSCS II.
68 (9439)	Communications Converter Transformer Inspectability Improvement
	Added shims under transformers and inductors to improve inspectability for "solder balls."
76 (9439)	TT&C RCVR/XMITR Interface Spec Change
	Reduced manufacturing problems associated with receiver tuning (did not impact transmitter).
88/123 (9443)	S-Band Diplexer Supplier and Design Change
	Replaced Wavecom with Teledyne unit. ECP 123 added a 20K resistor to spacecraft harness to control source impedance of power monitoring circuit of Teledyne Diplexer (did not impact transmitter).
98 (9443)	Single Configuration Transponder Converter
	Made both Tx and Rx converters alike with minor increase in power dissipation (converter manufacturability improvement).

۰,

4-2

. . '

ECP No. and Effectivity	ECP_Title
106 (9441)	TLM Transmitter Producibility
	An attempt to reduce the effort required to tune the transmitter (design effect considered negligible).
120/124	Battery Charge Control Mode

The only impact was to change the main hus voltage from 32.4 V to 31.8 and 33.8 V respectively. This did not have an effect on the converter.

4.2 DSP FLIGHT 4 TRANSMITTER FAILURE

(9441/9443)

On 13 July 73, Flight 4 transmitter 28 (S/N 007) failed abruptly, going from full data with no discrepancies in one data frame to fully off with no transmission in the next. After 31 days of operation, the carrier stopped instantaneously and without warning within the sampling interval of the telemetry. After multiple attempts to command it on, Link 2A was commanded on and has been operating since.

Orbital tests checked for temperature influence, RF switch intermittancy, and coherent oscillator switching. Ground test history showed S/N 007 typical of Phase I transmitters, with their relatively large number of misalignments, Johansen capacitor failures, corona and operator errors.

Early in Phase II the DSP instituted the following relevant changes:

- a) RF cable impedance matching to transmitters
- b) Improved Johansen capacitors
- c) 3-point (frequency) tuning
- d) Revised Acceptance Test Program.

A concerted effort was made to evaluate the possible failure modes but no evidence was found which could provide a unique failure signature and identify a specific failure cause. It was concluded it was not possible to isolate the problem with the orbital data available or with unit and part ground test history.

4-3

5. ANOMALY INVESTIGATION TEAM

The following TRW personnel constituted the orbital anomaly investigation team for the Flight 14 transmitter failure:

G. E. Neuner	Chairman
R. Alborn	Orbital Operations
G. Van der Cąpellen	Transmitter Unit Engineer
R. Montague	Converter Unit Engineer
D. Hutchinson	Integration and Test
J. Wrobleski	System Effectiveness
J. Streisand	Engineering
R. Doyle	Parts, Materials and Processes

Other significant contributors to the investigation were:

R. Glynn	Orbital Operations
R. J. Henrich	Reliability
J. Sharp	System Engineering
A. H. Sharp	DSP
B. Burdiak	Reliability
H. Pan	Thermal Analysis

.

.1

;

, {

ŗ,

١.

Ì

6. BIBLIOGRAPHY

6.1 DSCS II FLIGHT 14 TRANSMITTER FAILURE

10C DSCS-E4-107. from J. L. Streisand, Subject: Reacceptance Test of Transmitter S/N 3-25, 17 October 78.

IOC DSCS-G7-024, from D. W. Hutchinson, Subject: I&T History of TT&C Transmitter S/N 3-25, 12 February 30.

10C 80.8724.2-001, from R. L. Montague, Subject: Review of Fabrication Test History of Transmitter Converter S/N 3-61, 18 February 80.

IOC 80.8724.2-002, from R. L. Montague, Subject: Transmitter Converter Fold-Back, 19 February 80.

IOC 80.8724.2-003, from R. L. Montague, Subject: Identification of Critical Piece Parts That Could Cause Converter Failure, 19 February 80.

IOC DSCS-C4-226, from A. G. Van der Capellen, Subject: Review of Fabrication Test History of 777 Telemetry Transmitter S/N 3-25, 21 February 80.

IOC 80-8715.1.3-04, from H. M. Pan, Subject: 777, 9444 Predicted Orbital Temperatures for Flight Sensors in the Vicinity of the S-Band Transmitter with the Transmitter Operating and Not Operating, 25 February 80.

IOC DSCS-C4C-268, from G. A. Van der Capellen, Subject: Identification of Critical Piece Parts that Would Cause Transmitter Failure, 6 March 80.

IOC DSCS-C4C-267, from G. A. Van der Capellen, Subject: Review of Fabrication Test History of 777 Telemetry Transmitter S/N 3-25, 6 March 80.

IOC 80.8724.2-005, from R. L. Montague, Subject: Fabrication Test History of Transmitter Converter S/N 3-61, 7 March 80.

100 DSCS-D2-2249, from B. Burdiak, Subject: DSCS and M-35 Transmitter, Converter and DBU Failure History, 10 March 80.

IOC 5512-108/80 DSCS-D3-2215, from R. Doyle, Subject: Review of History of Critical Component Parts Used in DSCS II that Would Cause Telemetry Transmitter Failure, 30 April 80.

6.2 DSCS II FLIGHT 4 TRANSMITTER FAILURE

IOC DSCS-D2-772, from R. J. Henrich, Subject: Action Item Response for A.I. No. 5 Launch Readiness Review Team, 3 Dec 76.

IOC DSCS-Dx-276, from J. A. Nisenbaum, Subject: Failure of 9434 Telemetry Transmitter, 22 November 76.

6-1

R5-214-80

6.3 DSP FLIGHT 4 TRANSMITTER FAILURE

IOC 35.83-340 dated 5 December 73, Flight 4 Link 28 Anomaly Close Out.

IOC 35.83-339 dated 24 August 73, Flight 4 Link 2B Anomaly.

IOC 35.52-341411 dated 25 July 73, 0.8 W Transmitter S/N 7 Anomaly on Launch 4.

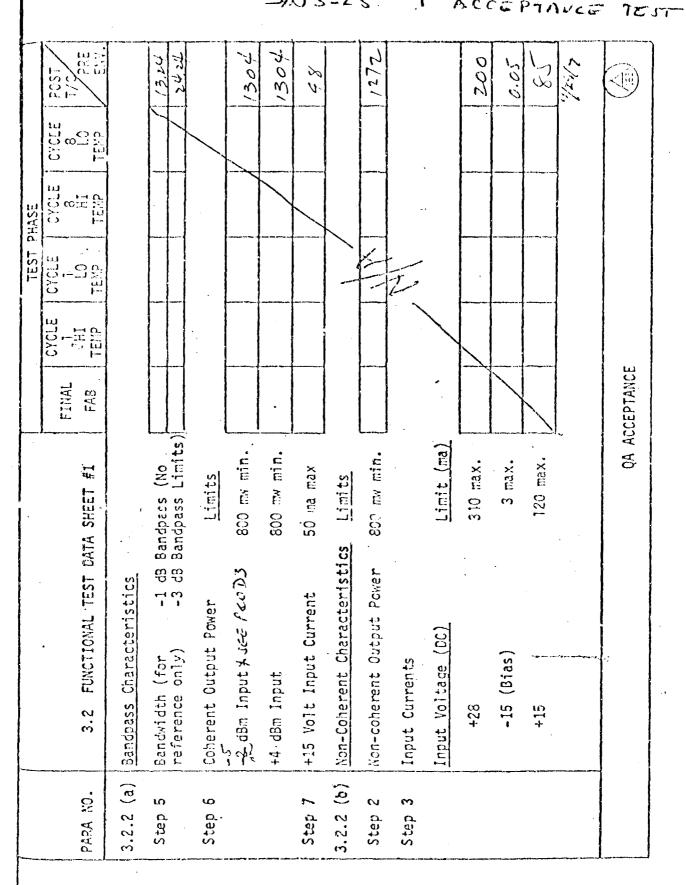
IOC 35.57-18211 dated 20 July 73, Review of Link 2 Transmitter and Converter, Model 35, Phase I.

IOC 35-83-288 dated 18 July 73, Preliminary Operations Anomaly Report, Flight 4 Link 2B Transmitter. APPENDIX A

Functional Test Data Sheets

For

Transmitter S/N 3-25


A-1

.

د

5/03-25

1St ACCEPTANCE

j.

2 Contraction

. A-2

1302 72.43 した。こ 11 1.2 1.2 1323 200 . . . 1809 1805 1 20 17.H 00 ∇ N 1344 265 522V アガモノ か ちかみ 0.05 0.05 0 X 125 ¥/ 4 4 $\tilde{\omega}$ T , v v v 13.00 13.26 11 87 いちてら 1187 50 ა გ A/A1 N O 1 N O 1 N O 1 N O 1 N O 1 N O PHASE Te. 220 0.05 TEST -165/3 ٤ 1281 TEKP N/A Fi/A A/M A/N<u>V</u>? ∞ 15.33 27.70 1399 0 2 20:0 Q はしん 5171 十十十 ドバ M/APOST VIB Ì \sim QA ACCEPTANCE -1 dB Bancpass (No -3 dB Bandpass Limits) Limit (ma) 800 mw min. 800 mw min. 800 nu min. З тах. 340 max. 120 max. 50 ma max 3.2 FUNCTIONAL TEST DATA SHEET #1 Limits Limits Non-Coherent Characteristics Coherent Output Power -S -S dBm Input + see Pc2 D3 Non-coherent Output Power Bandpass Characteristics APP. SEE PCO DE +15 Voit Input Current Input Voltage (DC) Bandwidth (for reference only) -15 (Bias) Input Currents +4 dBm Input +15 +28 3.2.2 (a) 3.2.2 (b) PARA NO. Step 7 Step 3 Step 2 ŵ 6 Step Step

. A-3

Ì

DR-12A-01 C.

Part of PCO D4 Page 2 of 3 (B) 1601 1.164 通い 1.0.1 -0.4% -0:1% 22 72 H/H R/A 21 TOLERANCE LIMITS NOT APPLICAEL 1 8/N 11/A A.Y đ 5.23 N/A A/11 Ś K/AR/A 2 N/A ∇ / W AING INFORMATION ONLY. N/A A/N · for -2 unit. V [2] 2.277_ 14 Actual Frequency (F15) ±66khz (F15) = 2.2725 ghz for -1 unit. 2.272 Collector Current - Engineering information 0.09 - 0.23 Y on Test Set DVM х . r: a. . . -0.5 to 2.5 VDC Engineering Limits 1.5 to 3.5 VD3 2.0 to 5.0 VDC TLN Output Limits = 2 HOTE 1) DVM INDICTION WILL BE NEGATIVE. 21 COLLECTOR CURRENTS: ARE FOR ENGI HIGH/LOW TERPERATURE TEST. 5 1 > 5 0.10 - 1.70 0.23 - 0.46 ghz Oscillator Frequency Temperature Monitor Unit Temperature (F15) = 2.2775Temperature Arbient tem 4611 5 80 5 20 3.2.2 (d) 3.2.2 (c) 9 ★ Step 4 5 3.2.2 (cont) Step * 1 (3³) 1 A--4

and the second second

1 1

Part of PCC D-4

3 3 of Page (i) E 752 ±0.120 しょう -0:40 212.212 35 150 Г 0 POST A/2 N/A ~ -494 -0.494 -1,266+1,291 -0.132 3.908 A/H N/A TERP 0 どび ERANCE LIMITS NOT -.153 1,20 2.0.2 N/A N/A <u>م</u> 144 17 22 22 2.066/1864 • N/A 3 NA N/A 'N/A N/N ALT 0 V +0.126 ふんでのは122 1240 2722 N/A N/APOST VIB A/H 504 112 COLLECTOR CURRENTS ARE FOR ENGINEERING "INFORMATION-DNLY. NOTE(2) 2.272-2:277-Collector Current - Engineering information F. 0.09 - 0.23 V on Test Set DVM 2~4 46:2 (F15)=2.2775 ghz for -2 unit. (F15)=2.2725 ghz for -1 unit.ShET 1.5 to 3.5 VDC 2.0 to 5.0 VDC 0.5 to 2.5 VộC Engineering Limits Actual Frequency (F15) ±66khz TLM Output Limits = z FUNCTIONAL STEST DATA DVM INDICATION WILL BE NEGATIVE (-0.10 +1.70 V ") = 0.23 - 0.46 V ILGA, LUM TENY VACUUM TES Oscillator Frequency Temperature Monitor Unit Temperature lemperature 3.2 Ambient High Iten 80 5 3 3 6 3.2.2 (d) 3.2.2 (b) (cont) ----3.2.2 (c) PARA NO. * Stop 4. က - 101 × Step

A--5

č

c.(9 2'

.

PACA NO.		3.2 FUNCTIONAL	L TEST LÀTA SHEET #1	FINAL KI- FAB TEMP	LO- TEMP	THE STREET	0-10-00	TIC PRE
•						$\frac{1}{2}$		3
3.2.2 (e)		Modulation Characteristics	eristics	•		٩		
:	Free	Med. Ind. Radians	All Conditions .	•	e	•		•
	8 1.	1.45	3.088 - 4.632					3.872
	8	2.0	4.264 - 6.396			\mathbf{P}		21210
	8	2.4	5.136 - 7.704					6.495
	3 0	1.45	3.086 - 4.632		-		Ī	3.820
	200	2.0	4.264 - 6.396		11.1			5/161
,	200	2.4	5.136 - 7.704	\ ·				6.430
•	1100	1.45	3.038 - 4. 532	\leq				3.605
	1100	5.0	. 4.264 - 5.396	<				1750
E	1100	2. 4	5.136 - 7.704					5.870
Step 7	Sideb	Sideband Symmetry						
•	Mod. Index	Limits		·		•		• •
	1.45	s10%	-			H	$\overline{\mathbf{n}}$	29.
	2.0	s10%	•		. W/W			
	2	<102		1				

			~						
		-	11.4 - Dage		Post	TEMP ALT	HI- TEMP VAC		POST
PARA NO.	3.2	FUNCTIONAL MEST	TEST DATA SHEET #1						
							•		
3.2.2 (e)	Modulation	on Characteri	ristics	•					
	Freg No KHz 3	Mod. Ind. Radians	i All Conditions .	. :	• •				
	1 100 110	1.45	3.088 - 4.632	· -	3.769	N/A	4.062	3,33/	3.640
	100 2	2.0	4.264 - 6.396		9.990	N/A	5,450	5.450 4.538	4.971
	100	2.4	5.135 - 7.704		12,5/12	N/A	1.732	5.413	6.015
	200 200	1.45	3.083 - 4.632	. .	3.675	N/A	3.914	3.331	3,605
	500 2	2.0	4.264 - 6.396		4.878	N/A	5,304	4.553	4.986
	500		5.136 - 7.704	• • •	6.153	N/A	6.410	5.475	6,016
	1100		3.088 - 4.632	•	3.527	N/A	3,696	3.663	3.484
	1100	5.0	4.264 - 6.396		4.670	N/A	1284	4.493	4.826
	1100	2.4	5.136 - 7.704		5.307	N/A	5.933	5934	5.769
Step 7	Sidebanc	Sideband Symmetry							f
•	Nod. Index	Limits	•						
	1.45	8018 N			01.01 90	N/A	4 %	350	290
	2.0	≤10% ≤			1.010	N/A	4,73	190	160
	י די ני	2019 1019 19	·.		2 %	N/A	4 %		150
							11/1		

, i

1.

1

UN-JAN-UL U

.

A-7

· ...

-

					()					•			
POST T/C PRE ENV			760		> 60	→ → 4 5		0.0	4.29		N/A	N/A	N/A	N/A	1.c/2
CYCLE CYCLE TEMP	-		1			Î					И/А	N/A	N/A	N/A	
СКСГ Н ТЕМР ТЕМР						1/1/2		t/N	1/12		N/A	N/A	N/A	N/A	
TEMP			A/M								N/A	N/A	. N/A	N/A	
TEKP	• •	-									N/A	N/A	N/A	N/A	
FINAL FAB											ć.		Y.		QA ACCEPTANCE
3.2 FUNCTIONAL TEST DATA SHEET #1		Spurious Response (Nodulation Off)	Limit: 245 d3 below carrier	Mismatched Load Test (Modulation Off)	Limit	Spurious Response ≥45 dB belov carrier	Mode Switching Levels	Non-Coherent Limit: More positive than -5.0 mv	Concrent Limit: rev 15.9 -my max. Kseeveel	Bonding Resistance	JI 0.010 R Max	. 32 0.010 n Max	33 0.010 R Max	J4 0.010 R Mex	GA AC
Para No.		3.2.2 (r)	Step 1	3.2.2 (g)		Step 4	3.2.2 (h)	Step 1	S 11 10 10 10	3.2.4					

1

1

DR-12A-01 C

· .

DR-12A-01 C

· · · · ·

	3.2 FUNCTIONAL TEST DATA SHEET #1	LSO4	TEMP ALT	HI- TEMP VAC	LO- TERP VAC	POST EKV
		· .				
3.2.2 (f)	Spurious Response (Modulation Cff)					
Step 7	Limit: ≥45 d3 below carrier	-20	760	760	7620	260
3.2.2 (g)	Misriticed Load Test (Modulation Off)					
	Limit.					
step 4	Spurious Response 🛛 🤞 de low carrier	760	N/A	260	760	>60
3.2.2 (h)	Mode Switching Levels					
Step I	Non-Coherent Limit: More positive than -5.0 mv	0.0	N/A 0	0.00	0:00	0.0
Step 2	Coherent Limit: Fe,5+5+9 mv max. Y-ske Pro Dr	3.91	N/A 4	20.1	3.77	400
\$ \$	Bonding Resistance					
	JI 0.010 R Max	N/A	N/A -	N/A	N/A	0.006
	J2 0.010 Max	N/A	N/A	N/A	N/A	0.008
	13 0.010 Ω Kax	N/A	N/A	N/A	N/A	5.008
	XrM 0.010 0 Max	R/A	N/A	N/A	N/A	0.006
	ACCEPTANCE		ζ (⊉)	(D)		

....

							•			•-				DR-12	A-01 D	
		1</td <td>3</td> <td>77-</td> <td></td> <td>2"</td> <td>A.</td> <td>Ac</td> <td>೧೯</td> <td>PTI</td> <td>ANC</td> <td>138</td> <td>TC</td> <td>5 ST</td> <td></td> <td></td>	3	77-		2"	A.	Ac	೧೯	PTI	ANC	138	TC	5 ST		
		•		C	141	-, 18	じっ	UR.	~)	• • •	•				CT5	10-23-78)
POST T/C PRE ENV.		19.0		1345	13 75	N/A		1360		a nan ann an	0500	0.05	/0/	(
CYCLE CYCLE LO TEMP	/	51.5		1460	1470	N/A		145			250	0.0	201	1011-10		
ASE CYCLE BI HI TEMP	и х Х	15.31	-	940	955	N/A		965-	•		016	0,0	101			
TEST PH CYCLE	а И И	31.90		2/11	1500	N/A		1465			280	0.0	201	· (and the second	
CYCLE 0 HI TEMP	۲ ۱	18.32		925	955	N/A		955			205	0, 0	(0(
FIRAL	57. 57	14.53		1330	1370	14		1360			250	6.0	102		QA ACCEPTANCE	
SHEET #1		Bandpass (No Bandpass Limits)	Limits	800 mv min.	800 mw min.	50 ma max .	Limits	300 : w min. [Limit (ma)	340 max.	3 пах.	1_0 mex.		QA AC	
L TEST DATA	istics	-1 d3 Ban -3 d3 Ban	wer		·		Characteristics	50-10 20		t				·		
3.2 FUNCTIONAL TEST	Bandpass Characteristics	Bandwidth (for reference only)	Coherent Output Power	5 d3m Input	+4 dBm Input	+15 Voit input Current	Non-Coherent Chara	Non-coherent. Output	input Currents	Input Voltage (DC)	+23	-15 (Bias)	+15			
PAPA NO.	3.2.2 (a) <u>5</u>	Step 5	Step 6 C	•	-4-	56p 7 +	3.2.2 (b)	Step 2 S	Step 3	<u>+</u> +1				,		

. A-10

ř

\$

1

Ś

Ċ

- marine and a second se

, ì

DR-12A-01D

		-				K F	~	1	<u> </u>	N			0			15	12]
Linit.	;	POST ENV		18.9		5/	9751	N/A		7821			740	0	705	10.23	- 37	1
		LO- TEMP VAC			<u></u>	- 6	2	A.V.	/::	3 · c	. 1 5	den	Ϋ.	N-	\leq	ł	(R < 1.400	
	PHASE	HI- TEMP VAC			\sim	<u>ب</u> ل	2.4	VIN	<u>р</u> .	0·1	83	I	/ N		<u></u>	B	14:43	
	TEST	TEMP		N/A N/A		N/A	N/A	N/A		1296			240	0.05	101	. (sta st	
		POST VIB		19.0		1302	13 40	N/A		1340			245	0,001	181	(*	E	
									-			·					QA ACCEPTANCE	
-		RA SHEET #1		Bandpass (No Bandpass Limi ts)	Limits	800 mw min.	800 mw min.	50 ma max	Limits	600 mw min.		Limit (ma)	340 max.	З тах.	20 max.		QA AC	
		AL TEST DATA	cteristics		Power			Current	Characteristics	utput Power		7				•		· · · · · · · · · · · · · · · · · · ·
		3.2 FUNCTIONAL	Banúpass Characte	Bandwidth (for reference only)	Coharent Output 7	d3m Input .	+4 d8m Input	+15 Yolt Input Cu	Non-Coherent Char	Non-cohement Outp	Input Currents	Input Voltage (DC)	+28	-15 (Bias)	+15			
				Band refe	Cohe	ۍ ۲	で せ +	19 + -		- 402	Inpu	ndu t	ang a - anna in i chailtean		مر د بر بالمراجع المراجع الم			
		FARA NO.	3.2.2 (a)	Step 3	Step 6	₩° (Le 10: LE* - Mickel	18 (1 ×, 1-1), 10 (1),100,000	Step 7	3.2.2 (b)	Step 2	S S M	at the second second second	.v. ava.u.**	an - stan wan, waa	-			

ţ

.

															مەر	7 E.C. > C- 0 g	DE 12A La B	- 25-427 01 9 <u>12</u>
r PHASE				21.4 -2.04 22.07 82.1 35.6 - 24.05 35.34 35.01		992 1530 1008 1620	1010 1638 1026 1710	N/A N/A N/A N/A SN/A	41	1003 1511 100 8 1656 0	0.1	स =	210 295 215 285 2	0 0 0.05 0.05 5	110 102 102 103 103	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ACCEPTANCE	
		3.2 FUNCTIONAL TEST DATA SHEFF #1	Bandpass Characteristics	Eandwidth (for -1 dB Bandpass (No -1 dB Bandpass (No -3 dB Bandpass Limits)	Coherent Output Power Limits	-5 dBm input 800 mm min.	+4 dBm Input · 800 mm min.	+15 Volt [sput Current 50 me max	Non-Coherent Cnaracteristics Limits	Non-coherent Output Power 800 mm mfn.	Input Currents	Input Voltage (CC) Limit (ma)	+28 340 max.	-15 (Bias) 🖇 🖓 🖓 -15	+15 i.co max.	-	QA ACCEN	
	(PARA NO.	3.2.2 (a)	Step 5	Step 5			Step 7	3.2.2 (b)	Step 2	Step 3	Y						

A--12

													DR	-124-0	ULD.			
				Ę														
TEST PHASE	CYCLE CYCLE CYCLE CYCLE POST I HI- LO- HI- LO- TEMP TEMP TEMP EXU	() *		4.143 3.469 4.158 3.485 3.990	5-645 4, 720 5.585 4.742 45.407	6. 9.27 5, 727 6.926 5. 7986.562	4.090 53,698 4.098 3.685 4.022	8 5.57 5.000 5.618 4.93 5.508	6.833 1.000 6.848 6.000 6.672	4,308 3,600 4,335 3.574 4,173	7 5.869 4.910 5.895 4.888 5.728	2 7,155 5,961 7.207 5.484 6.760			0 1% 2% 21% 3% 1%	190 3 5, 212	No 100 120 120 120 1	
	FINAL TEST DATA SHEET #1 FA3	eristics	All Canditions	3.083 - 4.632	4.264 - 6.396 5.380	. 5.136 - 7.704 6.550	3.058 - 4.332 4.000	4.264 - 6.396 57.468	5.136 - 7.704 6.615	3.083 - 4.632	4.264 - 6.395 57.607	5.136 - 7 704 6.850		-	0/2	1 %		DA ACCROFACT
	3.2 FUNCTIONA	Modulation Characte	Freq Mod. Ind. KHz Radiens	100 1.45	100 2.0	100 2.4	500 1.45	500 2.0	500 2.4	1100 1.45	1100 2.0	1100 2.4	Sideband Symmetry	Mod. Index Limits	1.45 ≤10%	0 ≤10%	2.4 ≤10%	
	PASA NO.	 3.2.2 (e)	14 4										Step 7 S					

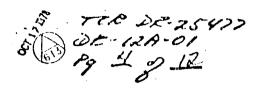
DR-12A-01 D

				46.54.01	Her					26.2	1	7 Salis			13	.,			}
	POST ENV		 		1 2 0 X 6	5, 3: -	1.043	4 036	7975	7.060	×, ×k5	Sunt -	1.023		X7 PAC	c / /	1 70	1 - 10	1253
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			d	2	-~	/	р.	0.1	83) d Y	111) ~			120		6.9
PHASE	HI- ERD KAC		 	-J.	2_1		.0	. O.	R	ЬE	V1	v -)	Ň	£17			6.9
TEST PH			•		N/A	ï./A	R/A	N/A	N/A	::/A	N/A	11/A	13/A			11/F	1 ii/A	N/A	
	POST VIB				3.921	5.362	6.512	1001/2	5.475	6.657	5/21/2	5.784	7.025			1 30	130	é? T	
																			QA ACCEPTANCE
		T - FOL OALA ONDOL #1	teristics	All Conditions	3.038 - 4.632	4.264 - 6.336	5.136 - 7.704	3.068 - 4.632	4.264 - 6.396	5.135 - 7.704	3.088 - 4.632	4.264 - 6.395	5.136 - 7.704						Of A
		PUPULIUME	Modulation Characteri	Mod. Ind. Radiens	1.45	2.0	2.4	1.45	2.0	2.4	1.45	2.0	2.4	Sideband Symmetry	Limits	N. 03	N10%	и 103	
	¢ (3.2	Modulati	Freq Mo Kaz		100 2	100 2	200	500 2	500 2	1100 1	1100 2	1100 2	Sidebanc	Mod. Index	1.45	2.0	2.4	
	(; ; ;	.00 HAR	 3.2.2 (e)											Step 7	-				

Ì

... †

ί


۱,

2011

A-14

U8-12A-010

ļ

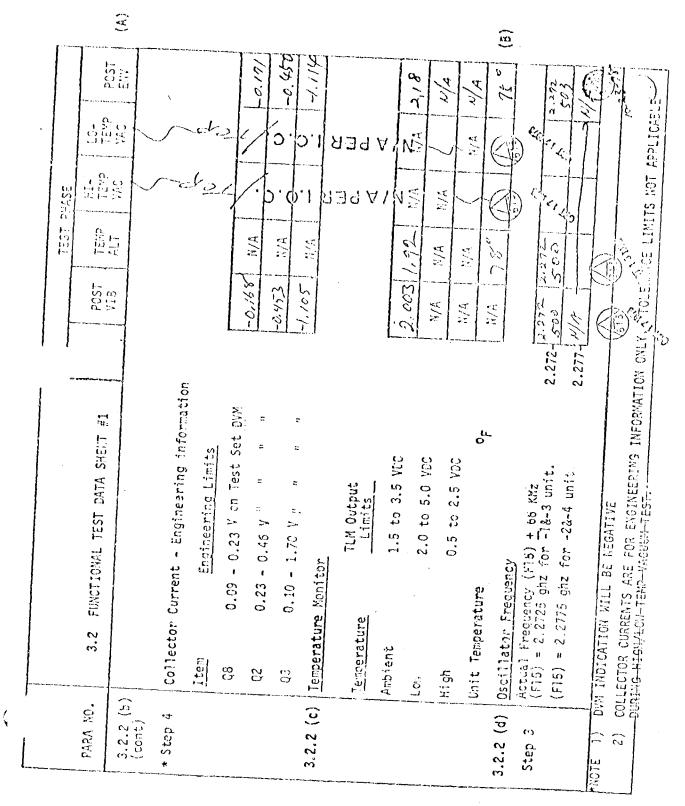
E			-	Ç					
		•			••	TEST Pr	PHASE		
				FIIAL	CYCLE LIT-	ш	B CYCLE	3.25 25 25	POST TVO PRE
FARA NO.	e.	2 FUNCTIONAL	TEST DATA SHEET #1	FA3	1 EMP	TENP	TEVP	6 221	
3.2.2 (e)	Nodulat	ation Characteristics	<u>istics</u>	,					·
	Freq KHz	Mod. Ind. Redians	All Conditions .	· · · · · · · · · · · · · · · · · · ·					
	100	1.45	3.088 - 4.632		16214	3.194	4.292	3. 8.7	
	100	2.0	4.254 - 6.396		5.8012	5.115	5.854	5.227	
	100	2.4	5.136 - 7.734		1.02	61235	2112	6.213	
	500	1.45	3.038 - 4.632		4,235	3.926	4.251	3.77	/
	500	2.0	4.264 - 5.396	-2	5,999	کا د زد)	5.807	51118	
	500	2.4	5.136 - 7.704	(2	7.0%	6:20	7.073	2105	d
	1100	1.45	5.088 - 4.632	2	4:43%	3.626	c/.35.5	3.64/3	12
	1100	2.0	4.2ô4 - 5.356	/.	1-0.2	からな	6.037	4. 595	· . L
	1100	2.4	5.136 - 7.704	».o	138	51013	7.534	6.065	Э.
Step 7	Sideb	Sideband Symmetry		.15					0.1
	Mod. Index	Limits		1397					ЯЭd
	1.45	≤10%		₹? 7 / N	0 %	1.1	212	23	V,
	5.0	s10%		C .	0 %	15%	~ i 2°	22	€¢ N
	2.4	s10%			0	5 <mark>~0</mark>	«12	et :	52
			QA A	<u>04 ACCEPTANCE</u>	10-201		A CONTRACTOR	44 () () ()	
							-	Ъ	

Ì

,

ł

1		
PARA ND.	3.2 FUNCTIONAL TEST DATA SHEET #1 FAB HI- LO- HI- LO- HI- LO- HI- LO- HE- FOR	3
3.2.2 (b) (cont)		
* Step 4	Collector Current - Engineering in °crmation	
	Item Engineering Limits	
- 4 4	Q8 0.09 - 0.23 V on Test Set DVM -0.161 -0.162 -0.165 -0.162 -0.166 -0.169	•
	Q2 0.23 - 0.45 V " " " " -0,449-C.373 -0,460 -0.358-C.460 -0.456	
	Q3 0.10 - 1.70 V. " " " -1. 108 -0. 595 -1.276 -0.918 -1.279 -1.121	
3.2.2 (c)	Temperature Moniton	
	TLM Output Temperature Limits	
	Ambient 1.5 to 3.5 VDC 2. /22 N/A N/A N/A N/A 2./26	
	0	
	10 02	(8)
3.2.2 (d)	Oscillator Frequency	
Step 3	Actual Frequency (F15) + 66 KHz (F15) = 2.2725 ghz for -1 & -3 unit. 2.272 500.1 $4/54$ $5/22$ $4/52$ $5/22$ $5/22$ $5/27$	
	(F15) = 2.2775 ghz for -2 & -4 unit. 2.277- $\sqrt{7}$	
NOTE: 1) 2)	DVM INDICATION WILL BE NEGATIVE COLLECTOR CURRENTS ARE FOR ENGINE INFORMATIC: ONLY AN TOLERAYCE LINES NE APPLICASLES	4 . 1 9 - 100
	4 ¥ 100	
)	

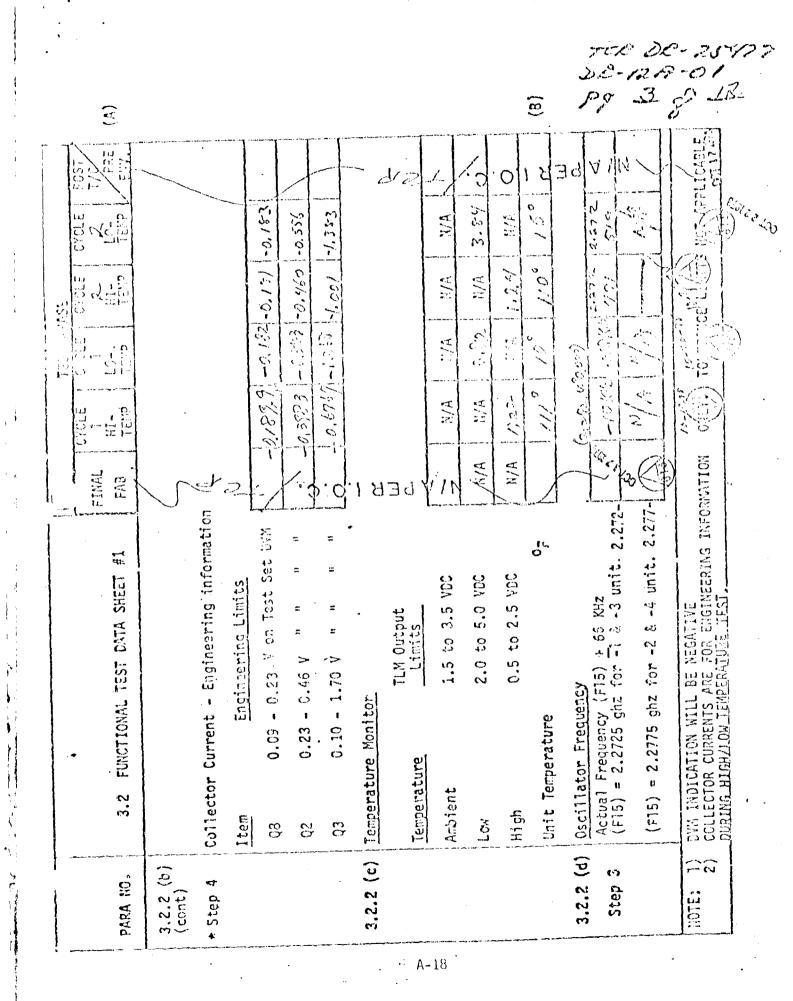

DR-12A-01D

, ····

South Street Stree

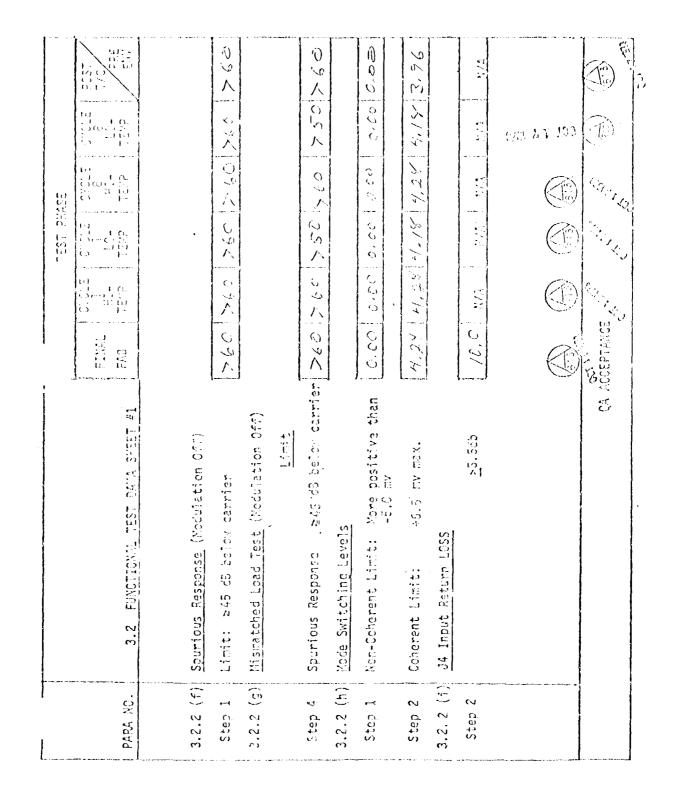
741

DR-12A-01 D



č

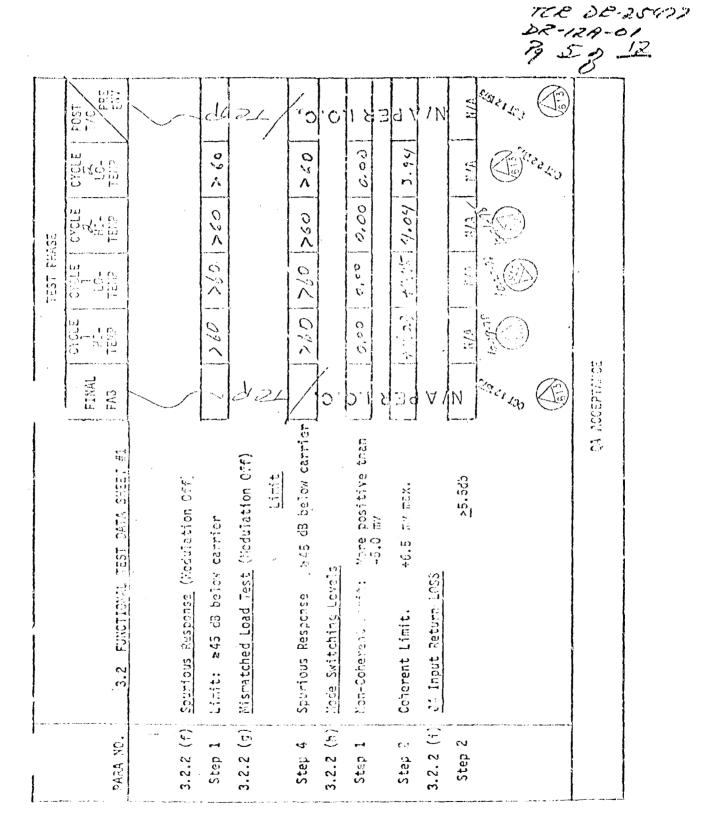
A-17


.

- -

and the second second

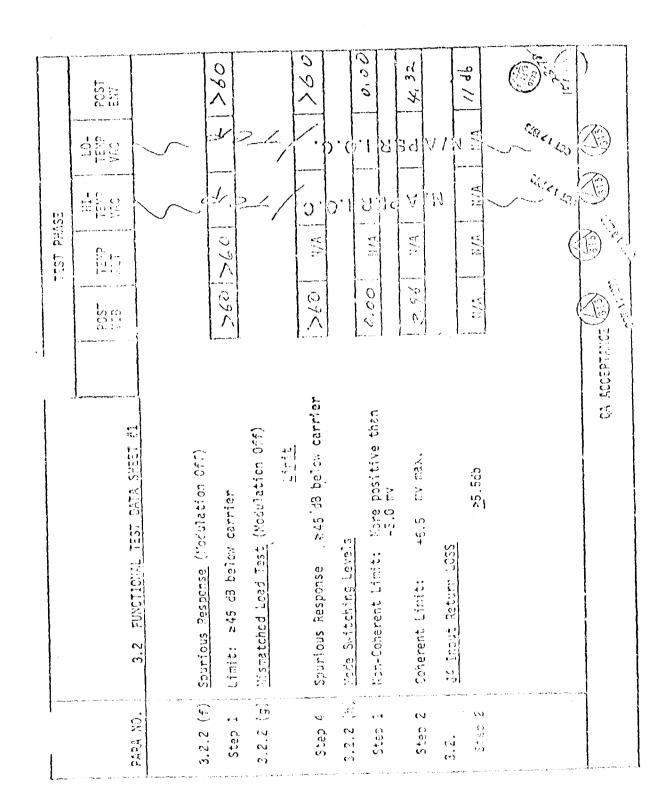
DR-12A-01 D



j i

> Commence

A-19


and the state of the state of the state of the state of the state of the state of the state of the state of the

DR--12A-01D

3-25

INT. RETURN

i i

ĩ

•Ļ

200

h-21

APPENDIX B

Tabulation of Unit Failure Histories for DSCS II, DSP Particles and Fields Satellite TT&C Transmitters, Converters Pual Baseband Assemblies

			0505-11		Atrachin	ent 1
2-1	No Power No non-coho power added Tonger temp soak T/V	Low Power	Fiuctuating Power Discontinuities corrected by tuning QUAL T/V	Modulation	Bandpass on Spurs Non-symmetrical bandpass corrected by tuning T/V Spurs corrected by tuning T/V	Other
3-2			Intermittent caused by a faulty connecto INT	·		
3-5					Bandpass incorrect, corrected by tuning AMB Spurs corrected by tuning T/V	
3-6					Discontinuities in bandpass caused by procedure VIB	
3-7			Discontinuities corrected by tuning VIB			Crystal intermittent corrected by tuning INT
3-8					Frequency OCT: wrong crystal VIB Discontinuities variable caps T/V Spurs corrected by alignment T/V	, ,
3-9	· · · · · · · · · · · · · · · · · · ·				Bandpass break- up caused by poor workman- ship V1B	
				B- 2		

DSCS 11

Atrachment 1

DSCS	ΙĨ	
------	----	--

.

ť

•

)

ſ

Attachment 1

1	No	Low	Fluctuating		Bandpass on	
	Power	Power	Power	Modulation	Spurs	Other
					Spurs use-as-is	
3-10					INT	
					Spurs use-as-is	
					INT	
Ĭ					Bandpass	
3-11					break-up caused by test	
1					equipment	
				-	VIB Bandpass break~	
					up corrected	
					by tuning T/V	
					Discontinuties	
					corrected by	
i					tuning T/V	
3-12					Spurs use-as-is	
3516					INT - 1/V	
					Spurs corrected by tuning	
,					VIB	
					Spurs caused by worn variable	
ĺ					caps	
					Τ/ν	
		ĺ	High power variable caps		Improper band- pass corrected	
2 1 2			AMB		by tuning	
3-13					T/V Improper band-	· ·
					pass corrected	
					ry tuning T/V	
					Discontinuties	
·					corrected by tuning	
					5/V Spurs corrected	
				1	by tuning	
					F/V Spurs corrected	
					by tuning	
					T/V	
3-14		Slight drop due to Tl				No current (inpu- due to broken
		tap broken				cap
		INT				VIB
			1		ĺ	
				B- 3		
		1	1	1	1	ł

		,	05	CS II	A	ttachment l
3-15	No Power	Low Power Slight drop due to T1 tap broken INI	Fluctuating Power	Modulation Modulation 001 T1 tap cold worked T/V Modulation 001 corrected by tuning T/V	Bandpuss on Spurs	Other Bonding resistance caused by workman- ship AMB
3-16		Low power; pro- cedure change INT			Spurs corrected by tuning T/V	
3-18						Heat sink temp low oue to test equip- ment T/V
3-19		ow power due to procedare problems INT	during vibra- tion due to variable caps VIB	corrected by tuning T/V	Spurs Corrected by tuning AMR Bandpass break- up corrected by tuning T/V Bandpass break- up corrected by tuning T/V	
3-20	,		Inconsistent sylgard on caps data review Power fluctua- tion corrected by ECP 106 INT		break-8- due to sylgard on caps T/V	High current; non- repeatable T/A C/N OOT: use INT NOISE Pedestal OO: use INT C/N OOT; use INT
3~21					Spurs use-as-is INT occurred 6 times	
				B- 1		

	ې د چې د د د مېروند وېو و وې وې وې وې وې وې وې وې وې وې وې	•		PSCS II		Attachiant 1
	No Pover	Low Power	Fluctuating Power	Modulation	Bandpass on Spurs	Other
3-22			Intermittent worn variable caps AMB Intermittent; worn variable caps AMB			
3-23		Low power due to corona T/V	Marginal power drifting down corrected by ECP 106			
3-24		Low power				Low gain in PWR A corrected by de- sign changes AMB Instability in neutralized buffer corrected by de- sign changes AMB
3-25		due to variable cap wearout AMB Low power due to possible pith ball con- tamination AMB Power degraded; unknown INT - T/V				
3-26		Power degraded; unknown INT			Incom ect band- pass; incorrect capacitor AMB	
3-27		.02 watts worn variable caps AMB		Modulation Ou., design TEMP	-	High current due to miswire AMB
3-28		Low power corrected by tuning AMB		в- 5		

 $\mathbf{r}^{\mathbf{t}}$

3-31 Low power corrected by tuning AMB to start - design AMB 1 Cow power corrected by tuning INT Caps AMB AMB 3-32 Low power corrected by tuning AMB Pressure guage malfunction test equipment T/V 3-33 Low power corrected by tuning AMB Modulation 001; FEI crystcl AMB 3-33 Low power corrected by tuning AMB FEI crystcl AMB			DSCS	· II	At	tachment 1
3-30 Low power corrected by tuning TEMP Spurs corrected by tuning TEMP High r15 current- warable caps by tuning 3-31 Low power corrected by tuning AMB Non-symmetrical corrected by tuning Oscillator falle to start - design AMB 3-31 Low power corrected by tuning Non-symmetrical corrected by tuning Oscillator falle to start - design AMB 3-32 Low power corrected by tuning Pressure guage malfunction test equipment T/V 3-33 Low power corrected by tuning Modulation 001; FEI crystcl 3-34 Low power corrected by tuning Modulation 001; FEI crystal corrected by tuning 3-34 Low power caused by test procedure Modulation not stable due to	Power	l.ow Power	Pewer Intermittent; variable caps and crystal	Modulation	Bandpass en Spurs	
3-31 Low power corrected by tuning AMB Non-symmetrical bandpass due to variable caps Oscillator failed to start - design AMB 3-32 Low power corrected by tuning INT Pressure guage malfunction test equipment I/V 3-32 Low power corrected by tuning AMB Pressure guage malfunction test equipment I/V 3-33 Low power corrected by tuning AMB Hodulation 001; FEI crystcl AMB 3-33 Low power corrected by tuning AMB Nodulation 001; FEI crystcl AMB 3-34 Low power to possible corona INT - T/Y Modulation 001; Yariable caps IFMP Oscillator failed to start design AMB 3-34 Low power to possible corona INT - T/Y Modulation 001; Yariable caps IFMP Oscillator failed to start design AMB 3-34 Low power to possible corona INT - T/Y Modulation coll due to FEI crystal caused by test procedure Modulation not stable due to Variable caps Oscillator failed to start design AMB	3-30	corrected by tuning			by tuning TEMP Spurs corrected by tuning	variable caps wearout
3-32 INT Pressure guage malfunction test equipment T/V 3-33 Low power AMB Modulation 001; FEI crystal AMB 3-33 Corrected by tuning AMB Hodulation 001; FEI crystal AMB 3-34 Low power to possible corona INT - T/Y Modulation 001; FEI crystal AMB 3-34 Low power to possible corrected by tuning AMB Modulation 001; FEI crystal AMB 3-34 Low power to possible corrected by tuning AMB Modulation 001; Variable caps 3-34 Low power corrected by tuning AMB Modulation CO1; Modulation CO1; Modulation CO1 due to FEI crystal TEMP 1 Tress to procedure INT Stable due to Variable caps	3-31	corrected by tuning AMB Low power corrected by tuning			Non-symmetrical bandpass due to variable caps	Oscillator failed to start - design AMB
3-33 Corrected by tuning AMB FEI crystal AMB Low power due to possible corona INT - T/Y AMB 3-34 Low power corrected by tuning AMP Modulation COT; variable caps IEMP Oscillator faile to start design AMB 3-34 Low power corrected by tuning AMP Modulation COT; variable caps IEMP Oscillator faile to start design AMB Iow power caused by test procedure INT Iow power crystal IEMP Oscillator faile to start design AMB	3-32	INT Low power corrected by tuning				malfunction test equipment
3-34 Low power corrected by tuning AMP Low power caused by test procedure INT Low power caused by test procedure Corrected by tuning AMB Modulation COT due to FEI crystal TEMP Modulation not TEMP Modulation not Stable due to variable caps	3-33	corrected by tuning AMB Low power due to possible corona		FEI crystal		
B~6	3-34	Low power corrected by tuning AMP Low power caused by tes procedure		variable caps TEMP Modulation COI due to FEI crŷstal TEMP Modulation not stable due to varieble caps TEMP	E	

1

.

.i*

.

72

•

· 7

;

.

<u>,</u>

\$

₽.

	!	BGS 11				Atta Sp	chuarit 2
	No Power	t.ew Power	Fluctuating Power	.	No Power	Lew Power	Eluctuating Power
Tuning		7	2				3
Variable Capacitors		2				3	5 .
Operator/ rocedure/ Workmanship	}	3			2	4	· · · · · · · · · · · · · · · · · · ·
Design Problems			3				
Corona		2			5	6	
Parts (Otber than Capacitors)			1		1	1	5
Outgassing Moisture					2	1	
T1 XFormer TAP Broken		2					
Locse Locki Screw on 72	ng				1		
Induced Failure					1]
Pith Ball Contaminatio	on	1					
Unknown/ Unverified		2			1	2	
TOTAL]	19	12		20	29	14

B-7

		L.	DSP		Attachment (}
	No Power	Low Power	Fluctuating Power	Modulation	Bandpass on Spurs	Other
]		Low power due to noisy variable caps QUAL Low power,	Intermittent; variable caps ACC	Modulation 001 parts BENCH Modulation 001 corrected by	Frequency OOT procedure QUAL	
		procedure QUAL Low power; mishandling ACC		tuning ACC	Course uswistly	Various problems
2-2	No output; tuning EE				caps QUAL Bandwith OOT unconfirmed	wrong test cable: ACC
					ACC Bandwith OOT unconfirmed ACC Bandpass in-	
					correct; tuning ACC Bandpass erra- tic tuning QUAL	
003	No output E-B open PT4-7204-02 XSISTOR BENCH No output; operator	Low power; tuning ACC Very low power; tuning ACC	Intermittent; tuning BENCH Intermittent tuning BENCH			
-	BENCH	Low power corrected by tuning BURN-IN Low power		Modulation OOT corrected by tuning ACC	Bandpass in- correct; corrected by tuning ACC Spurs correc c by tuning ACC Bandpass	
005	corona ACC No output; converter- induced failure EE No ouput corrected by tuning ACC	variable cap BENCH Low power corrected by			break-up corrected by tuning ACC	
				B-8		

en forsk net se s

			DSP		Attachment	. 3
	Ro Power	Low Power	Fluctuating Power	Modulation	Bandpass on Spurs	Other
006		Low output corona ACC	Intermittent variable caps ACC	Modulation 001 corrected by tuning ACC Modulation 007 not verified ACC	Bandpass in- correct, test equipment ACC Spurs corrected by tuning ACC Bandpass in- correct, corrected by	Voltage OGY test equipment ACC
007	No output corrected by tuning BENCH No output	Low power corona ACC Low power corona	Intermittent corrected by tuni:g BENCH	Modulation OOT cold solder joint ACC	tuning ACC	High current damaged wire ACC
	corrected by tuning BENCH	ACC Low power corrected by tuning ACC				0
008		Low power corrected by tuning ACC Low power corona ACC	Intermittent loose diode ACC			Current OOT spec change ACC
009	÷	Low power corrected by tuning BENCH				Current OOT spec change ACC
010					Spurs corrected by tuning ACC	
011	No power test set-up T/A No power corona T/A				Bandpass break-up corrected by tuning T/V Bandpass shift corrected by tuning AMB	
	No output; loosell lock- ing screw	Low power corrected by tuning	Intermittent; faulty XSISTOR AMB			
012	VIĔ No power outgassing T/V	INT Low power corrected by tuning VIB	Intermittent; variable caps VIB Intermittent variable caps AMB Fluctuations-AM S. JNT INT			

And the second

5

, (

ř

١

Sections from the

and a second

			DSP	•	Attachment	3
013	No Pover No output corona 1/V	Low Power Low power corrected by tuning V1B	Fluctuating Power	Modulation	Bandpass on Spurs	Other Possible damage in stores INT
014	No output moisture T/V No power unknown INT - T/V	Low power corrected by tuning VIB	Power increase broken feed- thru VIB	Modulation OOT variable caps AMB		
015		Low power not verified T/V		Modulation OOT shorted wire AMB		
016	No power corrected by tuning TEMP No power corona T/A	Low power outgassing T/A Low power bad XSISTOR T/A Low power variable caps AMB	Fluctuations faulty diode INT	variable caps AMB	Bandpass break- up corrected by tuning TEMP	
017		Low power corona T/V		corrected by	Bandpass break- up corona T/V	
018	No power multipaction T/V	.ow power due to poor workmanship INT	Fluctuations; faulty XSISTOR INT Intermittent variable caps AMB		Spurs corona TEMP	Test equipment AMB
020	No output corrected by tuning T/V	Low output procedure T/V			Bandpass break- up corrected by tuning TEMP	
022	No output corrected by tuning T/V					
				B-10		

1

A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF

ì

\$

ļ.

•1.,

				DSP		Attachment 3
1	No Power	Low Power	Fluctating Power		Bandpass on	Other
024		Low power in work INI				l
025				Modulation OOT aging varactor in work INT		Noise during VII loose screw VIB +28V not drawing current missing wire AMB
27					Bandpass break-up; variable cap VIB	
28					Unsymmetrical bandpass; design AMB	
29					Unsymmetrical bandpass design AMB Spurs corrected by luning	
					by tuning INT	-
				0.11		
				8-11		

Y Carlos

APPENDIX C

NSCS II TT&C Transmitter Integration and Test History

, 1

ş

j.

\$

)

1

í,

•!

TT&C TRANSMITTER MISTORY FLT-1

l

ļ

ł ;

1

				, 	······································					
Com Ho	TEST	DATE	PUS I	50NU +151	TOUTR	TENP	MODEX	XMTP	5/11	3/2
¢°,	15T1	6-8-71	11713	15.00	4.62	NO DAYA	1.57	A	3-3	
. 6	15T2	6-26.71	0.740	15,00	1,68		1.6z			
, ۶	1513	7-2-71	1.723	15.05	1.50		1.62			
Ň	1554	7-18-71	0.135	15,00	1.55		1.58			
· 7.6	P	1-25-11		15,00	1.59		1.60			
27	1556	9-3-71	0.735	15,00	1.57		1.60			
					N=1,59					
		(0=.06					
	ISTI		L	15.00	1.60		1.52	B	3-2	1.
	1ST 2			15,00	1.57		1.58			
	1053			15,00	1.49		1.51			
	1554			15,00	1.50		1.57			
	1575	·····		15.00	1.51		1.52			-
	15T 6		L	15,00	1.53		1.57			
					N= 1,56					
					5:.05					
	1									
			1							
]		 							
			<u> </u>							
		:		1		Ì		•		
				1		1	· · · · ·		:	
	1	1		1						
		1		:		1			1	
	•	-				1				
				i				:		
		1		1 1 1						
						\$				

C-2

Trac	TRANSMITTE	R HISTORY	FLT- 2
	,		1

3

r

1

		, I	,						
TEST	DATE	BUST	50NV +151	FOULER	TEMP	MODINIOEX	KATE	5/1	5/2
15T-1	7-9-71	0.69	15.02		NO DATA		H	3-5	-
157-2	2.23-71	0.74	15.03	1.06		1.52			
157-3	8-3-71	0,68	15:03	1.00		1.55			
155-4	3-7-71	0.693	15.03	1.13		1.54			
157-5	1-16-71	0.673	15.03	1.01	<u>``</u>	1.57			
				ñ= 1.01					
				0 06	1				
			<u> </u>						
1571	(/	15.02	1,39		1.52	Ê	3-4	2
ISTI			15.03	1.35		1.50			
1.5T.3			15,03	1.50		1.50			<u> </u>
157.4			15.03	1.33	j	1.50			
157-5			15.03	1.27		1,50			
				N + 1.33					
				0-0.05					
			· · · · · · · · · · · · · · · · · · ·						
								L	L
						1			
	1								

C-3

1 1 1

1 . .

TEST	DATE	BUS I	CONP +15	FOWER	TEMP	MODINUEX	XMTR	5/1	5/2
ISTIK	9-29-73	0.70	15.02	1.41	NO DATA		A	3-7	3
	5-22-73		15.02	1, 38		1.58			
15T20	6-1973	1,27	15,02	1.34		1.54			
157 3C	7-13-73	1.26	15.01	1.40		1.52		} 	
1st Bez	7-30-73	1.26	15,01	1.13	 	1.54			
7V W	3-1-73	1.31	15.01	1.49	Į	1.55			·
TVE	5-1-72	1.30	15.01	1.47		1.58		ļ	
15146	<u>2,4-73</u>	1.26	15.02	1,42		1.54			
HAT IST	9-7-73	1.26	15,01	1.36		1.52			
				R: 1.41	5 = .05				
1STIL			15,01	1.26		1.62	B	3-6	3
15710			15.01	1.32		1.58			
IST2C			15.02	1.27		1.57	 		+
IST3C			15.02	1.31		1.52			
157362	 	ļ	15.01	1.32		1.54			
71/11			15.01	1.3Z		1.52		ļ	
TUE			15.01	1.31	l	1.60			
1-1 46		Į	15.02	1.31	\	1.54			+
THAT IST		ļ	15.02	1.30	l	1.55			
 				A= 1,30					
		l		J 5 . 02	L			_	
		1	<u> </u>	<u> </u>					1

TTAC TRANSMITTER MISTORY FLT-3

l.

.

TTAC TEANSMITTER MISTORY FLT & South

1

	1		1				_	~	
TEST	DATE	RUS I	TONU TISU	FOUER	TENP	NOFX	XMTR	5/1	5/2
155 IB	8-10-72	0.72	15.03	1.25	NO DAM		A	3-9	4
IST2B	9-5-72	0.713	15,03	1, 27	<i>_</i>	1.58			
157 3B	10-1272	0,695	15.02	1,30	\	1.53			ļ
IST IC	5-9-73	1.24	15.02	1.36		1.5.8			
157-20	6.7.75	1.31	15.03	1.39	· /	1.57			l
IST 3C	6-30-73	1.30	15.02	1.39	<u> </u>	1.48			<u> </u>
TV-U)	6-23-73	1.30	15,03	1.42		1.52			<u> </u>
7V-F	6-25-73	1.32	15.03	1.62		1.53			<u> </u>
15T 40	7-5-73	1.31	15,03	1.49	Í	1.52			
HAT1	8-18-73	1.30	15703	1.32		1,55			L
				x = 1.38	J= .11				
1571B			15,00	1,40	 	1.61	E	:-8	4
15T2B			15,00	1.30	L	1,60			
155 3B			15,00	1.30		1.57			
ISTIC		\	15,00	1.27		1.51		L	
15T 2C			15.00	1.33		1.59		· · · · · · · · · · · · · · · · · · ·	
15T 3C		ļ!	15,00	1. 36		1.47			ļ
IU-W			15,00	1.38		1.5%			
TU-F		ļ	15,00	1,47		1.60			
15+4C			15.00	1.44		1.52			
HATI			15,00	1.36		1.39			
				A. 1.27	0- + .06				1

t - 5

TTAC PANSMITTER MISTORY FLT 5

·			CONT	XAITE		4/00		·····	
TEST	CAT 5	FTEC FUE I	CONY	POWER	TENP	INDEX	KATE	5/11	3/2
157.1	1-24-74	1:25	14,93	1,23	NO DATH	11.52	A	3-11	5
1552A	3.26.74	1,31	14.73	1,23		1, 54			
15T2B	6-14-74	1,25	15.00	1.23		1,50			
1513	7-23-14	1.25	15,00	: 23		1.50			
TVW	7-17-74	1.25	15.06	1,27		1.55		1	
TVE	7-19-14	1.27	15.06	1,29		1. 50			
IST 3B	5-25-14	1,25	14.93	1.13		1.50			
TV-W	8.27.74		15.06	1, 18		1. 50			
TVE	8-28 74		15.06	1. :9		1.50			
15T4	8-2974	1.25	14.93	1,21	1	1.52			
HATIA	10-3-74	1.25	14.93	1.106	1	1. 52			
HATIB	11-14-70	1.25	15:02	·····	F=11.21 0:,06	1.56			
1571			15,06	1. 45		1. 55	В	3-10	5
155 24			15,06	1.36		1.60			
157 54		1	15.06	1.35		1.5.8			
157 5			15:06	1.36		1.60			
12 (1)			15.06	1.43		1.76			
115			15,04			1.65			
1. 3 K		1	1	1.29		1.57		• •••••	-
TVW			15,06	1		1.67			-
TVE		1	15.06			1.64		t	
1.5T 4		1	1	1. 21		1.60			
1111T 1A	.	·	15,06		•	1.52		A	
-117 113		 /		1, 23		1.5Z		n - In The West of America - The A	
and the second second									

À ∈ 1, 24

C- ti

i				CONV	201-110	++				1 - 7
	iEsT.	DATE	ELL I	CONU T'S	YATT KE FOUER	TEMP	TALLEX	XUTR	5/1	3/2
	13T1	2 23 74	1.27	15,10		NO-DOTA	1.57	A	3-13	6
	ISTZ	41-74	1.29	15,00	1,24		1. 58	·		
	IST 2B	6-29-74	11,25	15,00	1,33		1. 57			
N	157.3	3-1-74	1, 24	15.00	1.29		1.54			
11	7 V-W)	3-3,7	1.03	15,00	1,33		1.58			
	TU-M	5-10-74	1,27	15,00	1.36		1.58			
•	15T 4	3-12-74	1.26	15.00	1. 40		1.54			
1×17	7V-W	P.14.74	1.26	15.13	1,38					
	TV-E	3-14-74	1.27	15,13	1,45					
	1/171	1-27-74	1.25	15,00	1.25		1.56			
					N = 1,33	o= : , 07				
	1571		/	15.00	1.53		1.57	B	3-12	6
	1572			15,00	1.29		1.57			
	15T 2B		<u>,</u>	15,00	1.27		457			
ΔT	151-3			15.00	1.20		1.58			-
$\mathcal{P}I$	70.00			15,00	1.29		1.60			
	TV-E		1	15.00	1.35		1.60			
1 -	15T-4	1	[15,00	1.27		1. 39]	· • • • • • • • • • • • • • • • • • • •
ĬI	iv w			15,10	1.29				1	
	TV-E,		1	, 5. 0.1	1. 35		·	*		
	HHT		/	15,00	1,52		1,60			

TYACTEANSMITTER HISTORY FLT-6

.

C

Marian -

X 1.19

o . 95

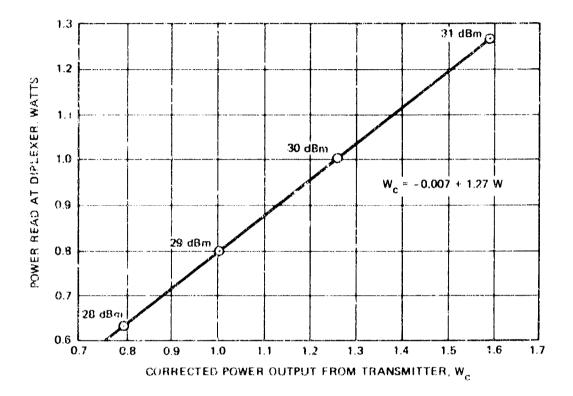


Figure C-1. Transmitter Output Power Correction for Flights 7 through 12

i

ì

1

Ì

č

4

TTAC TRANSMITTER MISTORY FLT 7

1

,

\$

\$

1

•

Ń

 \tilde{c}

1

							· ··- -		1 7
755T	DATE	BUCT	7.00V. 7/50	FOUCK	TEMP		XMTR		5/2
1571	10-11-76	1.24		11/161	170	1.55	p.	5-14	FET 7
IST Z	12-8-71-	1.25	15.00	58/ 78	870	1.54	······································		
15r 3	12-12-76	1.25	15.00	41/ 79	82'	1,55			
TV-E	12-21-76	1.24	15.0	1.16/.92	8Z *	1.50			
	12-22-16			1.02/.81	88°	1.47			
	12-18-76			91/.72	93°	1.56		1	
				x = .96					
			and a second second second second second second second second second second second second second second second	0-=-13					
		1							
1571		1	15.00	1.10/.SZ	510	1.18	B	3-18	FLT 7
15T Z		<u> </u>	15.00	1.03/5Z	SZO	1.57			
1:13				1.1 (.38	72"	1.57		Ī	
71-1.		1	15,00	132/1.05	750	1.53	1		
TV-W	<u> </u>		15,13	1341.06	32°	1.60	T		
15T.4	1		15.00	NY 73	310	1.59]	
+			†	F = 1.18		[
				or=.13					
	+							1	
	1	1	+	1				-	1
+		<u> </u>	+	·					1
	<u> </u>			<u>+</u>			+		+
•		+	-	+	<u> </u>	<u>+</u>			
	.I	1	1	<u>د</u>	1	L	l	┛	

i.

				,						
	TEST	DATE	EUS I	CONY +15	FOUEP	TENP	MODINUEX	XMTR	5/1	5/2
	<u>1571</u>	10-38 76		15.00	1.00/34	27.4	1.5%	12	3-14	8
	:ST 2	12-23-76	1.24	15.00	98 /277	30.6	1,60			
	1553	1.6-17	1.20	15.00	96/763	17.40	1.56			
	TV-E	1-8-77		15.00	12/90	74. d°	1.60			
	TV-41	1-11-77	1.205	15,00	96.76	80,6°	1.60			
	1574	1-13-77	1.216	15.00	8 70	31.4	1.60			
C.II.	7V-E	1-16-77	1.20	15.00	\$ 1.74	760	-47			
	TU-W	1-18-17	1.23	15.00	,87,697	34		-		
,	1ST 2B	3-15-77	1.30	15.00	1. ¹⁸ /17	84	1,59			
	HISTI	3-23-27	1.30	15.00	1.16	<u>R</u> 11	1.50			
	HIST 2	4-13-77	1.29	15.00	149.14	80.6	1.47			
			x, = .96	0,= ,06	N= 1.10	0-=.24				
	IST /			14.23	1.0 5.37	<u></u>	1.43	Ľ	3-17	?
	1172		· · · · · · · · · · · · · · · · · · ·	14.92	1.0/3011	350	1.56			
	1553			14.92	101/82	86 "	1.57			
	TV.F			14.87	1.19/75	77.6	1.60			
	TV W			14.87	1.13/20	<u>55</u> 2	1.58			
-	1574			15.06	10/92	aq.11 2	1.59			
ØIT.	71-5			15.06	11/95	74"		-		L
	TV. W			15.06	110/07	510				
	15726	1		14.73	11.40	27?	1.58			
	HISTI		L	14.93	N1.40	21°	1.57			
	HISTE			14.93	1. 2 1	310	1.64			

TT&C TRANSMITTER HISTORY FIT &

4

13

Ì

ř

ì, C

 $\tilde{\pi}_{1} = 1.09$ $\tilde{\chi}_{2} = 1.27$ $\sigma_{1} = 0.7$ $\sigma_{2} = 0.27$

6-10

TTAC TEANSMITTER MISTORY FLT. 9

i

		L	/						
7EST	DATE	BUST	CONV TISV	FOULTR	TEMP	MIDEX	XMTP	5/N	5/2
IST1	6-3-17	1.27		1.10/872	33°	1.00	A	3-21	2
1STIA	10-5-77	1.26	14.94	.93/736	330	1,60			
IST Z	11-3-71	1,26	14.95	93/737	340	1.60			
1.5×3	11-1077	1,26	14.94	SA 705	B.1°	1.55			
TUFE	11-13 77	1.28	14.95	1.19 447		1.60			
TV-W	1-1571	1,27	14.95	1.13/200	14. 3°	1,58			
137 4	11-17-77	1.27	14.94	1.06/345	360	1.55			
				F=1.03					
				0=.12					
<u>1571</u>		/	14.92	1.64 33	360	1.52	E.	3-16	1
1511A		í	14.92	1.06 /340	850	1.54			
157 Z			14.92	1.06	35 0	1. 53			
1513			14.92	1: 1.344	860	1. 49			
TUE		/	14.92	130 1.03	79.8°	1.50			
TU-W	Í			1.12 967	74.3	1.54			
15r4			14.92	1.19 1917	860	1.50			
				N= 1.13					
	l			0-:.10					
L									
L	[
								}	
1									
							and the straight of the straight of the		

÷

	TTAC	TEHNS.	NITE	C H	STORY	FLT			
YMTR	755 T	INTE	BUS I	115 V	E Set The	1EN1 P	1086	Sple	1 / /
Ĥ	15 T 1	7-1-27	1,32	14193	1.22 /97	93	1.60	FIO	3-11
	IST A	11-14-27	1,32	14.93	1.13/20	37	1.60		
	IST Z	11-19-77	1.30	14.93	13/90	87°	1.60		
	157 3	11-30-77	1.30	14,93	1,20/.75	870	1.58		
	TV-EQ	12-03-17	-	14.93	13/1.09	38"	1.57		
	TV-WS	12-15-77	**	15.00	12/1.02	900	1.16 1		
	157-4	12-16-17	1.32	14.93	11/. 73	35 °	1.53		
				,	$\ddot{x} = 1, 21$				
					o:,09				

11.94 1.1.193 511 FIO میں رہے ہو میں ایک ایک مرکب 1.645 7-177 1.32 \mathcal{E} 1571 \$40 11-14-27 1.32 14.94 14 1.37 1.66 IST IN .94 0 14.94 101/37 1.66 11-19-17 1.30 1512 36 14.94 1.13/190 1.6 : 11-30-77 1.30 157 3 15.07 1.81.70 51 1.66 12-03-77 ~ T1-20 15.07 .80 .64 , 54 2 1.65 12:05:77 71-105 12-16-17 1.22 14 93 100/ 20 240 1.53 158-4 J= 1.07 0- .12

, **`**

1 e

-

ř |

\$

ġ

C-12

			1.	1						
	TEST	DATE	BUSI	CONU +15V	POWER	TENP	NOFX	KMTR	5/11	5/2
	1551	42-73	1.26	15.01	1.26/1.0	510	1.54	A	325	FIT-11
	1572	5-23-78	1.25	15.01	1.24/733	. 370	1.51		3-26	
	1313	6-02 28	1.28	15.01	1.21/1964	<u>58</u> °	1.47			
0I	TV-E	6-07 78	1.30	15.01	1.42.13	.95-0	~			
لمسدخت	TV-W	6-11-78	1.29	14.97	131.04	15 °	<u></u> .			
ΦI	TVE	7-7-18	[15.01	1.34/983	73.79°	1.17			
4.2	TUN	7-9-78	-	15,01	1.14/907	910	1.47			
	1274	7-19-18	1.30	15.01	1.03/31-	86 0	1.42 *			
					N= 1.23	$\sigma = .11$				
	1571			19.97	1.19/14/1	32.0	4.62	Ŀ	3-20	FLT-1
	15FZ		1	14.97	1.14 .206	330	1.64			
	155 3			14,03	1.10/ 1.9	200	1.6.1			
ØI	TIE			1497	1.27/1.006	510				
المعسلة التغز	TVW			14.97	123/15	94°	~			
ØE.	715			14.97	13/1.04	11.39	1.60			
(gen all	TUN			14.97	1.2. 0	590	1160			
	15 4			14.96	121,001	10	1.57			
					A : 1.23	07.06				
		L	<u> </u>							

TT&C TRANSMITTER. HISTORY FLT !!

¥ 107 12 210, 81 Miles

1

) }

ř

1

ł

1

.

·				1.72 <i>201-72</i> 7			•		+
755T	DATE	Eust	CONU TIST	PAUTR	TEMP	ALO D INDEX	XMTR	5/1	3/0
157 1	5-11-78		14.97	.93.732	79 0	4:3	A	3-23	ELT.IL
IST Z	7-19-78	1.23	14.7	1.37.09	870	1.52			
1573	7-25-18	1.1.9	14.97		920	1,50			
TVE		1.30	15.10	134.09	33°	1.50			
TV.W		1.29	15,10	1.421.11	12.°	1.56			
IST4	731-78	I	14.97		850	1.58			
				X=1.32					
				0=,20					
IST I			15.01	1.98,772	24		E	3-24	FLTM
ISTZ			15,14	1.11 . 5 .	23				
15T 3			15.14		1				
THE				134.10	77.4°				
TI-W				1.23/.98	10.0				
1ST. 4			15.01	1.23/15	89"				
				1.26					
				: ,15					
			1						
		1				t		1	
			·	-			<u>†</u>		
-	-	-		to provide the transmission					
				· · · · · · · · · · · · · · · · · · ·	1	L	\$.	

TTAC TRANSMITTER HISTORY FLT-12

.

,

TTSC	TEANSMITTER	HISTORY	FLT- 13
------	-------------	---------	---------

	1	≠ <i>z ⊈</i> ⊂ ⇒ L	CMO S		•		•		
TEST	DATE	Eus T	715	YNTK FOUEP	TENP	MODEX	XMTR	5/N	5/2
157-1	3-31-77		15,02	,633 / 344		1.62	A	3-34	-27 . 1
155-2	4-20.79		15.02	622/ 379	B1.40	1.60]
15T-3	5-05-19		15,02	567/301	77.40	1,60			
71-11	5-06-19	1.25	15,02	1590/	011-0	1.60			
TV-E	5-12-19	1.23	15.01	1903/973	79.3°	1.60			
IST.d	5-11-79	1.23	15.02	05× /23	73.2°				
			A . 63	14. 88					
			1	.258				**************************************	
			10-=	.018					
157-1	1	/	15.01	1.29/.862	30.6	1.7	ŕ	5-2	12 -
157-2			15.01			1.7			
157.3			15.01	1.125/1.625	75	1.62			
TVU			15.01	9691.40	18.2	1.66			
TU-E			15,02	1.18/1.706	50.6	1.5%			
15T-4			15.01	1.1.604	77.8	1.61			
			- 7 € 1.19 - 0 ± 111	N= 1.63 ~15			_		
			J.Y.	· · · · · · · · · · · · · · · · · · ·					
			A	047					
							· · · · · · · · · · · · · · · · · · ·		
				I					
1									
			· · · · · · · · · · · · · · · · · · ·	- Constant and the second seco	•	And and a second second second second second second second second second second second second second second se	₽	·····	•

ř

١

r

a anna a shara a

00
XMTIR
1
7
1
Li_

5/2			-			1 1			•			
s/n	3-29											
XMIR	80								•			
MOP	1.60	0	65.	1.60	1.61	N/A	1.60	.60				
TEMP	مھر - ۲	6-3	53	72	Ľ	7	84	م ۲	375	6223	_a	
XMATR Pewer	1.3./912	1.72/.929	1.24/.886	1.52/1.09	1.22/.929	1.50/1.05	1.26/.887	1.32 /.929	AN=. 399375	Dr= .027229	1 = 952	0. = 076
151+	15.10	ای ۱۰	15.10	15.10	15.10	15.10	15.10	15.10			A 1.35	01.10
	1.30	121	1.37	2</td <td>1.30</td> <td>1.25</td> <td>1.2.1</td> <td>1.28</td> <td></td> <td></td> <td>X</td> <td>6</td>	1.30	1.25	1.2.1	1.28			X	6
DATE	2-20-79	3-16-79	3-24-79	3-30-79	4-01-79	4-04-79	62-21-2	4				
TEST	37	1572	5+3	TV Ø1	157 4	TVØII	HIST I	HIST IR \$-23-79	_			

C-16

TRACTEANSMITTER MISTORY FLT IS

·····	()	FUS I	CONV +154	ZNTK	TENP	NICD	XMTR	5/11	512
IST-1	DATE 1-21-19		+/30	1901E1 966	30.60	1.61	A	3-33	15
151-1 15T-2			14.93	1876 1.72 1903	770	1,58		2-3-5	
TV 2	12-11- 74		14.80	1903/26	79.8				t
157-3	12-19-19		15,06	.903/ 	19.8	1.59			
TY 1	12-18-19		15.06	.93/1.29	510	1.60			
	12-20 19		14.93	.93/1.27	77*	1.62			
	2.07-30		19.93	146*	36°*	1.64*			
			N = ,90 ST .03	N = 1.29					
15T-1			14.95	. 506/ ///5 . 137/	14.4 "	1.74	Ľ	3-32	15
155-Z	/	1	14.95	137/12	79°	1.70			
TV-2			14.95	19/1.51	_27.3°				
1553			14.10	.356/1.7:3	<u> </u>	1.7:			
711		ļ	14.75	1.0.65 1.27	<u>52 °</u>	1.75			
1.5T L/	ļ	· · · · · · · · · · · · · · · · · · ·	14.9%	1.65					
HAT 1			14.75	1.12	860	1.70			
	<u> </u>	 	N	7. 1.20					
		_							-
		_	1						
									
	<u></u>	<u> </u>		<u> </u>	l				<u> </u>

* UNIT STATIST

i

ŕ

)

١

1

`.

r

 the gran is a second

against and thomas are an a

.

APPENDIX D

Analysis of Variance of DSCS II Transmitter Output Power Measurements During Integration and Test

. Later is

 \hat{r}

ONE-WAY ANALYSIS OF VARIANCE ON TRANSMITTER OUTPUT POWER

Objective: To determine if observed variation in transmitters is statistically significant.

Data: 30 normal populations, with equal variances 30 unequal sample sizes, one from each population

 $n_i (i = 1, 2, ..., 30)$

 $N = n_1 + n_2 + \dots + n_{30}$

Null Hypothesis: $\mu_1 = \mu_2 = \cdots = \mu_{30}$

Alternative Hypothesis: At least two of the means are unequal Results from T1-59 Program ST-15:

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Between Samples	$v_1 = 30 - 1 = 29$	SSB = 13.01	$MSB = \frac{13.01}{29} = 0.449$
Error	$v_2 = 230-30 = 200$	SSE = 2.26	$MSE = \frac{2.26}{200} = 0.0113$
Total	229	551 = 15.27	

Test Statistic:

$$f = \frac{MSB}{MSE} = \frac{0.449}{0.0113} = 39.7$$

$$v_1 = 29, v_2 = 200$$

From F Table: $f_{0.01, 29,200} = 1.7$

Since 39.7 >> 1.7, the null hypothesis must definitely be rejected. It may be concluded that the observed variation in transmitter output power from unit to unit is statistically significant and at least two of the transmitters do not come from the same population. APPENDIX E Statistical Significance Test on Output Power of Failed Transmitters

E-1

ř

TEST FOR FAILED TRANSMITTERS HAVING SIGNIFICANTLY HIGHER POWER OUTPUT DURING 1&T

(Normal Distribution, Unequal Variances)

Ref: Nartvella P 3-36

1) Let
$$\alpha = 0.10, 0.05, 0.01$$

2) $\overline{x}_{A} = 1.22, s_{A}^{2} = 0.16^{2} = 0.0256, n_{A} = 26$
 $\overline{x}_{B} = 1.45, s_{B}^{2} = 0.09^{2} = 0.0081, n_{B} = 2$
3) $V_{A} = \frac{s_{A}^{2}}{n_{A}} = \frac{0.0256}{26} = 0.000985$
 $V_{B} = \frac{s_{B}^{2}}{n_{B}} = \frac{0.0081}{2} = 0.00405$
4) d.o.f. $f = \frac{(V_{A} + V_{B})^{2}}{\frac{V_{A}^{2}}{n_{A} + 1} + \frac{V_{B}^{2}}{n_{B} + 1}} - 2 = 2.61$
5) $f' = 3, t_{0.90}^{\prime} = 1.638, t_{0.95}^{\prime} = 2.353, t_{0.99}^{\prime} = 4.541$
6) $u = t_{1-\alpha}^{\prime} \sqrt{V_{A} + V_{B}} = 0.116$
 $= 0.107$
 $= 0.005$
 $= 0.322$ $\alpha = 0.01$

7) $\overline{x}_{B} = \overline{x}_{j}$ 1.45 = 1.22 = 0.23, which is greater than u for $\alpha > 0.10$ and 0.05. Group B mean is significantly higher at $\alpha = 0.05$ level of significance.

R5-214-80

ř

Flight/Side	<u>s/N</u>	Watts
2A	3-5	1.07
28	3-4	1.33
ЗА	3-7	1.41
38	3-6	1.30
4B	3-8	1.37
5 A	3-11	1.21
5B	3-10	1.34
6A	3-13	1.33
6B	3-12	1.29
7A	3-15	0.96
7B	3-18	1.18
8 A	3-14	0.96
8 B	3-17	1.09
9A	3-21	1.03
9B	3-16	1.13
10A	3-19	1.21
1 OB	3-22	1.07
11A	3-26	1.23
1 1B	3-20	1.23
12A	3-23	1.32
1.2B	3-24	1.26
13 A	3-34	88.0
1 3B	3-30	1.63
14B	329	1.35
15A	3-33-39	1.29
15B	3-32	1.20

.•

DATA: Me	an transmitter	r output po	wer durir	ng 1&T
GROUP A:	Transmitters	operating	normally	in orbit.

n = 26

, i

۰,

Ì

1

x = 1.22

 $\sigma = 0.16$

E-3

and a set and

Flight/Side	S/N	Watts	Rank
4٨	3-9	1.38	25
14A	3-25	1.51	27
		$n = 2, \overline{x} =$	1.45. $\sigma = 0.09$

GROUP C: Transmitters which failed or had problems in orbit

Flight/Side	S/N	Watts	Rank
4A	3-9	1.38	25
14A	3-25	1.51	27
1A	3 - 3	1.59	29
18	3-2	1.56	28
		$n = 4, \bar{x} =$	1.51, $\sigma = 0.09$

Statistics for all transmitters:

Means $\overline{x} = 1.26$ Means s = 0.185 Means n = 30

95% conf. limits on \overline{x} :

Upper: $\overline{x} + Z_{\alpha/2} \frac{s}{\sqrt{n}} = 1.26 + 1.96 \frac{0.185}{\sqrt{30}} = 1.326$ Lower: $\overline{x} - Z_{\alpha/2} \frac{s}{\sqrt{n}} = 1.194$ $\overline{x} + 1s = 1.442$, + 2s = 1.627, + 3s = 1.811 $\overline{x} - 1s = 1.072$, -2s = 0.887, -3s = 0.703

E-4

R5-214-80