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- | 1. Quantile Functions and Their Properties

Statisticians and probabilists have traditionally used i

distribution functions to study the properties of random

.

variables. Quantile functions (the inverses of distribution

functions) have in the past decade become increasingly used,

but their elegant properties do not seem to be summarized in

kb ity oo i

E - any reference.

Quantile functions are important for statistical data

analysis; their use was pioneered by Tukey (1965) and Wilk i

and Gnanadesikan (1968). Quantile functions are advocated by
Parzen (1979) as providing an approach to probability-based

data analysis.

Quantile functions are important in probability theory

o for the study of invariance principles (see Major (1978).

,3 Quantile functions as a distance between probability measures
i! -were used by Mallows (1972) and is applied to the asymp-
totic theory of bootstrap methods by Bickel and Freedman (1981).

RS Ry P G,

A general distribution function F(x), -= < x < =, defined

by F(x) = Pr {X < x], is characterized by the properties that

it is (1) non-decreacing; (2) continuous from the right
F(x) = F(x+0) = lim F(x+¢) ;

<g+>
and (3) F(-=) = 0 , F(=) = 1 . Its quantile function, denoted
Q) , 0<us<l, orFl(w, 0<uc<), is defined by

Q) = F'l(u) = inf (x:F(x) > u} .
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Q(u) is characterized by the properties that it is (1) non-

decreasing, and (2) continuous from the left.

An important example of a quantile function is the

following: Let F(x) be purely discrete, with jumps at
ii ] <ty < .. <ty and values
x F - =1, ..., k,
] (tj) uj » j
where 0 < U <<y 1. Then for j =1, 2, ..., k
(defining uy = 0)
Q(u)'tjo Uj_1<Uiuj.
The distribution function F(-) of é random variable X

is often assumed to be of the form

F(x) = FO (x_;_lf_ ’

e e e+ e Ak e s —

where FO(-) is a known standard distribution, and u and o are
unknown parameters (to be estimaéed), called location and scale

parameters respectively.

Theorem 1A. The quantile function Q(u) corresponding to ;
' -1
& F(x) = F°(§§E) is Q(u) = u + o Qo(u) , where Qo(u) = Fo (u) .
Proof: F(x) = Fo(EE) > u 1ff XE > qp(u) 1££ x > u + 0Qq(u).

Therefore u + 0Qy(u) equalsythe inf of all x such that F(x) > u .

[P

Quantile Functions of Standard Continuous Distributions.

Some important distribution functions are:

Standard Normal. For -e < x < =»

x - 2
0 = [ o) dy, e = g e BT
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Standard Exponential. For x > 0

X

Fg(x) = 1-e™ , £(x) = e

Stahdard Uniform. For 0 < x < 1

FO(x) =x , fo(x) =] .

Standard Cauchy. For -« < x < =

1

1

1+xz

ol

Fo(x) = L tanlx 4 Lo, gy =

The corresvonding quantile functions are . |

Standard Normal. ¢ l(u), 0 <uc<l

Standard Exponential. Qp(u) = Fo'l(u) = log (1-u)~1 .

Standard Uniform. Qo(u) =u .,

Standard Cauchy. Q,(u) = tann,(u-%)

To .illustrate how one computes a quantile function, con-

sider the standard exponential; one writes x = Qo(u) satisfies

u= Fo(x) = 1-e"*, whence l-u = ¥ , log (l-u) = -x .

We leave to the reader the proofs of the following basic

properties of quantile functionms.

Theorem 1B: [nverse Identities. For any x, X1, Xg in

-» < x <®» andu, Uy, Uy in0 <u<l;

(1) F(x) >u 1iff Q(u)
(2) F(x) < u 1iff Q(u)

ia

X 3

v

X

(3) F(x)) <u < F(xy) 1ff x; < Quy) < xy

(4) FQ(uw
(3) QF(x)

v

u

x .

1A
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Theorem 1C: Continuity Points of Q:

(0) Q is continuous from the left; Q(u) = o}ffo 0O(u-¢) ;

(1) FQ(u= u if x = Q(u) is a continuity point of F ;

(2) QF(x) = x if u = F(x) is a continuity point of Q ;

(3) u is a continuity point of Q iff F(N(u) + ¢) > u
for all ¢ > 0 ;

(4) u is nét a continuity point of Q iff ; = F(x)
= F(x+e) for some x and ¢ > 0 (in words, F(x) is
constant over an interval) ;
if F is continuous and strictly increasing, then
every u in 0 < u < 1 is a continuity point of Q ;
if F is discrete, then the vﬁlues of é(x) at the
discontinvity points of F are the discontinuity
points of Q ;

(7) there are at most a countable infinity of points u
which are not continuity ﬁoints of Q .

Simulation and Representation. To simulate on a computer

a random sample xl, cees xn from a distribution F(x), one ap-

proach is to simulate Ul' ey Un from a standard uniform
distribution and form X, =y, ..., X, = Q(Un) . The

validity of this algorithm is a consequence of the Repre-

sentation Theorem in which U denotes a standard uniform randomvariable.
Definition. Two random variables X and Y are said to be

identically distributed, denoted X R Y, if for every x in

e < X ¢ o

. Fg(x) = Pr(Xsx) =Px¥<x) = Fy(x)

Theorem 1D: Representation Identicty. X ) Q).
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Proof: Since (0(U) < x] is equivalent to [U < F(x)]

Pr(QU) < x] = Pr(U < F(x)] = F(x).
Theorem lE: Probability Integral Transformation. When F(.)

is continuous, F(X) 2 U .

Proof: Since [F(X) > u] is equivalent to (X > Q(u)]

Pr(F(X) > u] = P[X > 0(u)] = 1-FQ(u) = l-u.
The Representation Identity yields immediately a

formula for the evaluation of expectations and moments.

Theorem 1F: Expectation Identity.

E[g(X)] = E[gQ(U)] = I; gl{Q(u) 1du

2

The mean u and variance o“ are given by

1 1
u= J'o Q(u) du, o2 = IolQ(u)-ul2 du
Another property of quantile functions is how they behave

under monotone transformations of random variables.

Let Y = g(X) where g(x) is a non-decreasing function

continuous from the left. Lefine

g 1(y) = sup {x: g(x) <y} .
Then g(x) < y iff x < g'l(y) . Consequently
Fy(y) = Pr (Y<yl = Pr(g(X) <yl = PriX < g™ (y)]

= Fy(s™Hy)) .
Therefore
Po(y) > u L£f Fy(g™ () > u 1££ g71(y) 2 Qulw)
1ff y > gQyp(uw) .

Therefore the smallest y such that FY(y) > u equals ng(u).

and the following theorem has been proved.
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Theorem 1G: Transformation Identity. Let g be a monotone

(increasing or decreasing) function which is continuous from

the left. The quantile function QY(u) of ¥ = g(X) can be

expressed in terms of the quantile function Ox(u) of X as follows:

Qy(u) = g(Qy(u)) if g increasing,

If X is continuous, then

Qy(w) = 8(Qy(1l-u)) if g decreasing.

To treat the case of g decreasing, it sufficies to treat
the special case of g(x) = -x (since -g(x) is increasing if

g(x) is decreasing).

Theorem lH: If X is continuous

Q_x(u) = - Qu(l-u)

Proof: We first write non-rigorously

u=Fy(y) = I-Fg(-y) , -y = Qgl-u), Qy(w) = -Qy(l-w).

To be more rigorous, we write

infly: F_y(y) > u} = infly: 1-u > F,(-y)}

= -sup{z: l-u > Fy(2)} = -Qu(i-u)

Theorem 1I: Applications of the Transformation Iden;ity:

Y=u+oX, Qyu)=u+ oQuu);
Y = -log X, Qy(u) = -log Qu(1l-u);
Y = 1/X , Qy(u) = 1/Qqp(1-u)

Theorem 1J: Converse Transformatiun Identity. If X is con-

tinuous, and g is increasing, and

Pri¥ < n+ og(x)] = Fy(x) , -=»<x <=,

then Qy(u) = p + 0g(Qe(w)) and Y & u + og(x)
Proof: Let x = Qx(u). Then Pr[Y§u+og(Qx(u))] - FxQx(u) =\,

.




T NPT b >

2. Convergence in Ouantile

Definition: Convergence in Distribution. A sequence of

random variables Xn, with distribution functions Fn(x), are

said to converge in distribution to X with distribution function
F(x), if

lim . .
— Fn(x) = F(x) at all continuity points x of F(-).

We then write

1im D
Noe Xn D X, or Xn —> X .

" Definition: A sequence of quantile functions Qn(-) is said
to converge in quantiig to Q(-) if for evewv continuity point u of
Qin0<¢cu=<l

tm g (u) = QCw)

Theorem 2A: Convergence in Distribution implies Convergence

in Quantile, and conversely.

Proof. Let u be a continuity point of 0(:) 0 < u < 1. Then one
can choose a sequence ¢ converging to 0 such that, for each

k, Q(u)-ek'and Q(u) + € are continuity points of F(-) and
FIQ(u) - ) < u < F[Q(u) + ¢]

Fix k. Convergence in distribution implies that one can choose

Nk gsuch that for all n > Nk

Fn(Q(u) - ck) <u < Fn(Q(u) + ek)

. pece ot T TR R A PP TR SO 12 | OORE)
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Consequently for n > N,
Q(u) - g < Q(u) < Qu) + ¢ .
One can infer that On(u) —>» Q(u)

- That convergence in quantile implies convergence in dis-
tribution follows by interchanging F and Q in the foregoing
argument. A more probabilistic proof is the following. Let
U be a standard uniform random variable, and define

X, = Q0 , &=o0W

which satisfy Xn D X, . 2 2x. By hypothesis, Q,(u) —» Q(u)
almost surely Lebesgue measure on (0,1) , since at most a
countable number of points are not continuityv points of Q(-).
Therefore'xn — X almost surely, Xn 2, 2 , and Ftsx) —p F(x)
at all continuity points of F(-)

The foregoing argument is well known as the proof of a

special case of the Skorohod Representation Theorem [Serfling (1981)].

Theorem. If :if X R x . one can choose random variables

Xn , R defined on a common probabilitv svace, such that

Xn P X, » T 2x , ;iﬂ Xn = X almost surely.

When Fn(') converges to F(-) , the moments of Fn(') need
not converge to F(.). Criteria for converrence of moments can be ele-
gantly stated in terms of quantile functions.

Definition. Feor r > 1, define a distance between two
distribution functions T, and F,, with respective quantile

functions Q and 0, , by

. , 1
de(FLLFp) = 45(Q1. Q) = {J 1Qy(w) - Q, (w) [Fauy /™

This is an evaluation of the Vasershtein distance [(Major (1978) )
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Define '"convergence in r-mean quantile” of Qn(') to Q(-) ,

denoted Qn 0, by
r 1 r |
{d_(Q,. Q1" = fo Q. (W) - Qu)|"du — 0 as n — = .

Theorem 2B. Qn-E» Q if, and only if f% Q, (w Tiu
— [ élQ(u)Irdu and Qn(ﬁ) — Q(u) at coatinuity points of Q.

Proof. The "if" part of the theorem follows by inte-
gration theory, and in particular by Scheffé's theorem.
The fact that Q, —£+.Q implies convergence of r-th moments
also follows by integration theory. The following lemma seems
novel and completes the proof.

Lemma. If Qn = Q and Q(u) and Qn(u) are non-decreasing

" functions of u, 0 < u < 1, then Qn(u) —7 Q(u) at continuity

points of Q.

Proof. We give a probabilist's proof. Let Q(u) and Qn(u)
be versions which are continuous from the left. Let U be stan-
dard uniform, and define Xn =Q, (1) , X = Q(U). One may argue
that Elxn-Xlr — 0; in L, X; F (x) — F(x) at continuity
points of F(-); Qn(u) — Q(u) at continuity points of Q.

It should be noted that
® 1l
[-JFl(x) - Fz(x)|dx = jolQl(u) - Qz(u)|du < dr(Ql'QZ) for r > 1.

Application to Sample Quantile Functions. Let X be a

random variable with distribution .unction F(x) and quantile

function Q(u) = F'l(u). Let xl. cee xn be a random sample
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of X. The sample distribution function ?(x), -@ < X < ®

and the sample quantile function Q(u), O < u < 1 are defined by:

F(x) = fraction of Xl, ey xn <X ;

Qu) = 1."'-l(u) = inf {x: F(x) > u} .

It is well known that, as n — = ,

sup |f(x) - F(x)] — 0 with probability one;

—=m<X<®

if E[X|T <= , [ |x|T df(x) — [7_|x|® dF(x) with probability
one .

Therefore, for r > 1 , E|X|T< = implies
fé|Q(u) - Q(u)|Tdu — 0 with probability one.

Application to Extreme Value Distributions of Uniform

Random Variables. In section 5 the following representations

of quantile functions will be used; it illustrates the use

of quantile functions to demonstrate convergence in distribution..

Let Ul’ ey Un be standard uniform random variables.
Let Z = n Min(U,,... Un)' For any x > 0
1-Fp(x) = Primin(U;,...,U) > %] = {Pr{u; > :‘—1]}n

= (1 - g)“ )

One can solve for x = Qz(u) , and obtain:

Qy(w) = nil - (1-wl/™ .

For Ocy<l , yl/® = (108 )/ o g 4 %— log y + 8 -12-(103 2 %—
: n
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where 0 <|9l<1 . Consequently
Qz(u) = - log (l-u) + En(u)
where €n(u) = e%llog (1-u)|2 (l-u)'l - 0, Since - log(l-u)

is the quantile function of a standard exvonential random variable
;{, we conclude that n min(Ul,...,Un) —24 £.
For Z = n{max (Ul""’Un)'l} , one derives the quantile

function

1/n 1

QZ(u) = n{u -1} = - log u ™ + en(u)

where En(u) ~— 0 as n — «, using the fact that

Primax(U;,...,U)) <1 -2} = (PrfU; <1 -3 = (1 - 5t

Since - log u'l is the quantile function of - £ we conclude

that n{max(Ul,...,Un) -1} —29 - E

——d o k.
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3. Density Quantile Functions

A continuous random variable is,traditjonally described

by its probability density function f(x) = F'(x) . In the

quantile domain more insightful descriptions are given by

E _ the density-quantile function

Q) = f(QQ) , 0<cuc<l

and the quantile-density function

| q(u) = Q' (u) , 0 <u <l .
‘ Differentiating the identity FQ(u) = u , one obtains

£Q(u) qu) =1 .

An important technique for computing £fQ(u) is as follows:
(1) compute Q(u); (2) differentiate to form q(u); (3) take

_ the reciprocal.

Another iuportant function is the score function
| J(u) = - (£Q)' (u)
f | The Fisher score function is defined by

Tﬂ v(x) = - é; log £(x) = - 2%{;% .
' One may verify that
J(u) = y(Q(u)) .
Density-quantile functions have many imnortant statistical
applicitions. From the point of view of probability theory,

we believe that their major insight is to nrovide definitions

of the tail behavior of probability laws. An important charac-

teristic of a distribution function F(x) is the behavior of
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1-F(x) and F(-x) as x tends to =, which we call its tail
behavior. The study of extreme value distribntions indicate
that one can divide distributions into three main kinds of
tail behavior:

(1) short tails (or limited type),

(2) medium tails (or exponential ty=e),

(3) 1long tails (or Cauchy type).

Definition: A function L(u) is called slowly varying

at u = 0 if for every y > 0

Eé%%% —» lasu—>0.

An example of a slowly varying function is L(u) = {-log uib.

Definition: A densit uantile function is said to have
AT UL LS 100 q

a left tail exponent @y and a right tail exnonent a, if,

as u —» 0 ,

Ll(u) = u-alfQ(u) is slowly varyving,
¢H) .
Lyp(u) = u 2fQ(l-u) is slowly varying.
The exponents @y and a, can be any real numbers.
A function £Q(:.) satisfying (1) is called regularly
varying (see Sencta (1976)).

Theorem 3A: If tail exponents defined by (see Parzen (1979))

a. = lim _uJ(u
1  u+0 u

(2) )

a. = 1im (1-u)J(u
2 u-l u
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exist, then (1) holds. Formulas (2) provide a constructive,
rather than a descrintive, definition of tail exponents; they

apply when the density-quantile function is differentiable.

Proof: 1In the theory of regularly varying functions it
is known that (2) implies (1) kee Seneta (1976), p. 7]1; we briefly
indicate the argument. Let

Note that g(t) — 0 as t — 0 .

Then
. o
£ 1og fo(w = -F5eh, = B+ 2,

-0
é% log {u 1fQ(u)} = 5%?1

u
log Lyu) - log I{w) = [ . ACAP T

log Li{yu) - log Lfu)| < {yu‘_‘{ﬁ;u le(t) |} |log y |—> O.

In the study of the asymptotic distribution of sample
maxima and minima, it is convenient to introduce a tail exponent
Y=a -1.

We call a the density-quantile tail exponent and y the quantile

tail exponent. We define the following tvnes of tail behavior:

o ha am i S ke, Ma i




-16-

y<0, a<1l short tails (or limired type)

, @ =1 { medium tails (or exnr~mential type)

y>0, a>1 long tails (or Caucihy type) 3

Yy < -1,a < 0 | super-short tails .

g! The basic eristence theorem of extreme value theory, due

| to Frechet (1927), Fisher and Tippett (1928), and Gnedenko (1947)

‘ can be expressed as follows.

f | Theorem 3B. The distributions that can arise as the asymptotic
distribution of an extreme value are, un t~ a location and scale :

: | parameter, the distributions of the following functions of a
standard exponential random variable, £, whichh have the quan-

tile functions listed.

% Tail Behavior Maximum Minimum
& Medium Tail - log ¢ log ¢
y=0, a=1 - log log ul log log (1-1.1)"1

Gumbel distributioq

%
1

Short Tail -g”Y gY
vy <0, ac<l ~{log u l}Y {log (1-w)~1y~"

Weibull distributionﬂ
for -1 <y <0

Long Tail g”Y -7
y>0,a>1 {log u )Y -{log (1-u)~1yY
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The density quantile functions and right and left density-

quantile tail exponents are listed in the following table:

Tail Behavior Maximum Minimum
Medium Tail u log u-l (1-u) log (1-u)'1

g ; y =0 Left a«=1, Right a=1 Left a=1, Right a=1
% Short Tail -% u{log u'l}-(1+Y) -% (1-u){log (1-u)-1}'(1+7)
N y <0 Left a=1, Rizht a=l+y Left a=1l+y, Right a=1
|

| Long Tail L utlog u-1y- (4 L (1-wtlog (1-w 1y (Y
B y >0 Left a=1, Right a=1l+y Left c¢=1+4+y, Right a=l

Characterization of moments that exist for given tail

exponents. When AW 0 , the quantile function Q(u) is
at u = 0, a regularly varying function with index Yy, in
the sense that Q(u) = u-YlL(;) where L(u) is slowly varying:
when Yy 2 0 the quantile function is, at u = 1, a regularly

varying function with index y, in the sense that

Y2
Q(l-u) = u “L(u)

The integral of a regularly varying function of index v has

the same convergence properties as u”Y . Therefore the k-th

absolute moment

1
/s lQ(u) {Kdu < = L£f k < 1/y; and k < 1/y, .
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When v, < 0 and v, < 0 , then all moments are finite.

Similarly ona may prove the following theorem mentioned
by Stigler (1974).

Theorem 3C. Let Q(u) be regularly varying with positive
left and right tail exponents. Let k and § be constants so
that k§ = 1. Then [§ |Q(uw) |¥du < = if and only if

[}

1 -
[ {u(l-w}® dqu) = f (F(x) (1-F(x))}%dx < =
0 . e
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4, Extreme Value Distribution Theory

In this section we summarize some of the basic results of
the theory of extreme values, and show how increased insight
into their proofs and application is obtained by thinking in
terms of quantile functions, and density-quantile functiomns.

Let xl,...,xn be a random sample of a random variable

X, and let
Max(n) = Max(Xl,...,Xn) , Min(n) = Min(Xl,...,Xn)

The aim is to determine if

(1) me(n) (an“’an) = Pr L-——r—r—, ‘<_ X

@) Fyyneny (utd) = Prj—g— < "] = H@

n’ Sn’ dn and distribution

functions G(x) and H(x), all of which are to be determined.

holds for suitable constants a,, b

In terms of convergence of quantile functions, (1) and (2)

are equivalent to
3) bl:{q (Max(n);ul - a ) 2 6 lew) ,

®) F- QMin(m);ul - ¢} 2 vl ,
n

where hereafter we write Q(X;u) to denote the quantile function
of a random variable X.
We state theorems which summarize the theory of extreme
value distributions in a table. Theorem 4A states the nor-
malizing constants in terms of a general quantile function Q.

Theorem 4B provides more trecise formulas for normalizing

RS




sequence of Theorem 4A:

constants, assuming certain asymptotic expressions for Q(u).

We then outline the extreme value distributions of some

frequently encountered probability distributions.

The reader should verify the following important con-

Max(X;,..., X ) has the same
n

right tail exponent as X and Min(Xl,...,Xn) has' the same left

tail exponent as X.

Theorem 4A. Let o« be the right tail'éxponent (or left

tail exponent) of the density-quantile function fQ(u) of a

random variable X with quantile function N(u). Let vy = a - 1.

Then the maximum (minimum) has the followine asymptotic dis-

variable):

tribution (where ¢ denotes a standard exoonential random

Density Quantile Maximum Minimum

Tail Exponent

Medium Tail |4ax(n)-Q(1-) | Mam-ad 4
T . — - logt T T~ —* logg
a=1 Q(1-55)-0(1-2) ;) AR

vy=20

Short Tail Max (a)-Q(1l)

a <1 Q(1)-Q(1-3)
y<0
Weibull -1<y<0

D, v -"-itIt(n)-Q(O) D,
0(3)-Q(0)

Long Tail
a>1 <1 QQ1-
y>0
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One verifies that the conditjong on £fQ(u) in the

foregoing table imply the following conditions on the quantile

function Q(u), which are shown in section 5 to be necessary and

sufficient conditions for the atove asymptotic distributionz to hold:

Tail Exponent

Maximum :
for every y

as n —> o

Minimum :
for every y,

as N ——) o

Medium Tail | o %) qa1-L) e ter s ad-ad ) log y
y =0 a(1-20)-a(1-D) | G-
Short §a11 Q(1-D-o1) - . - R
< —Yy s
Y Q(L-2)-Q(1) Q) -(0)
Long Tail Q(l'%) Y Q(%) —_— y-y
y :
v>0 Q1-D QG

Theorem 4B, Sufficient conditions for asymptotic distri-

butions are that the quantile functions have the following

representations (where B > 0):

Maximum
As u — 1

Minimum
As u —» 0

Medium Tail

y=0

Q(u) ~ A+B{log (1l-u)~l)f

Q(u) ~ A-B{log u~l)®

Short Tail
vy<90

Q(1)-Q(u) ~ B (1-u)”"

O(u) - Q(0) ~ B u”"

Long Tail

vy>0

Q(u) ~ A+B (1-u)"~Y

RN T i T T P

Q(u) ~A-Bu?

Py YT o e - o
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Under these sufficient conditions, the extreme value

asymptotic distributions are as follows:

Min(n)+B{log n}® D

_ B
Medium Tail | Max(n)-B{log n}” D Ok D o1oge
2g(log n)

- —=-log &
y =0 38(log n)° ™+

Short Tall | by “Max(n)-(1)3 & ™Y | la™Y0utn(m)-Q0)) B ¢

Yy <0
Long Tail Max(n) D, .-v | Min(n) D, -
y>0 3n" 2nY

It should be noted that for medium tail distributions whose

quantile function has the special representation given in Theorem 4p

the extreme value distribution depends on the parameter 8
which we call a shape parameter. The scale divisor b, such
that (Max(n) - an)/bn tends to a limiting distribution has
the following behavior:

ngle Divisor b, Tail Exponent y and Shape Parameter 8

Constant vy=0, B8 -1

Tends to 0 Yy<Oory=0, 8<1

Tends to = y>0ory=0, 8>1

e o s g, AT R} SN RN




To state the asymptotic distribution of extreme values

of familiar standard probability laws let us introduce two

. * * , .
important constants a_  and bn which occur in the tail repre-
1

(u)

3 . -1 A} _ * _ *
- | Lemma: ¢ (1-%) = a bn log y, where

sentation of ¢~

(21og m)%- 7 (2 log n) ¥(log log n+4m)

.k -
i b = (2log n) % .
j Proof: Let u = o'l(l-g) +~ Then ¢ (x) ~ (1/x)¢(x) implies
uﬁ = 2log n - log 2n - 2log u - 2log x ‘
‘ log v = L log 2 + % log log n + o(l)
> Vn T 7 108 7 L0g log

Probability
Distribution Maximum Minimum

‘ and Quantile

| Function Right Tail Exponent Left Tail Exponent
y * X e *
= Normal (2log n) {Max(n)-an} (2log n) {Mln(n)+an}

o1 (u) L, - 10g ¢ 2y 10g ¢,

a=1, B8 =20.5

a=1,8=0.5

3 ; Exponential Max(n) - log n n Min(n)
b ! .
log (l-u)~1 L, _10g ¢ 2, ¢,

o=1, 8=1 a=20

Uniform n{Max(n) - 1} . n Min(n)
u L‘C —D’E' ‘t

a=0
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1-8 B 8
Weibull B(loz n) {Max(n)-(log n)"} n"Min(n)
{log(l-u)'l}B — - log ¢ - EB
0<B<1l a=1, B8=28 a =8
Cauchy x Max (n) “,Min(n)
n n
Q(uw) = tann(u-%) -1 -1
— £ — £
»_COS Tu
sin 7u o= 2 a = 2
ne L
Tu

as u —» 0

Finally, we give an example which illustrates how one

.uses the quantile approach to identify the asymptotic extreme

value distributions of a continuous distribution function F(x).
The procedure is: (1) compute Q(u), £fQ(u), J(u); (2) compute
left and right tail exponents a; and a, which identifies the
type of extreme value distributions; (3) compute Q(l/n) and
0(1-(1/n)) which Jd2termines the norming constants.

Example: One-sided stable distribution of index.1/2 has

distribution function

F(x) = 2 (1 - o(x"%)]
One obtains Q(u) by solving u = F(x) for x = Q(u):

Qw = (07112

£Q(uw) = 00 1 (1-P (o7 1-P13

Iw = 3 oota-P? - Jetta-pt




—

— s e e o wmeat PR S v i - il

-25.

The tail exponents are computed to be
ay =1 (medium tails), a, = 3(long tails) .

One infers that

Min(n) - Q(1/n) D
QTI7%37_:QQTT%5) — log £ ,

Max(n) D -2
- n *

To compute N(l1 - (1/n)) , define q(u) = {¢0'1(u)}'1 .
Then for u near 1

-1 u 1‘0.5“ 1
¢""(1-5) = fo 5 q(u)du = 7(1-u)q(2) ,

Qw + (20071012 1-w)"2 = 2 1.2
We conclude that

Max(n)/ 20?2 By g2,

To find the norming constants of Min(n), write

D = (o7t - B2 = et - b, 108 (/20172

2 *

Q(1/ne) - Q(1/n) ~ —Bx ~ 2(log n)~2

%n

We conclude that

Flog )2 Min(n) - Q(1/m)} 25 log .

Similarly one may find the extreme value distributions of

the lognormal distribution with quantile function Q(u) = exp 0'1(u).
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5. Quantile Derivation of Extreme Value Distributions.

Let Xl,...,X.n be a random sample of a random variable X
with quantile function Q(u). In this section we outline a
derivation of the distribution of max (X,...,X ) and
min (X;,...,X,) by quantile methods. ‘

Tail exponents of density-quantile functions have been
introduced as criteria tﬁat can be easily aoplied in practice
to determine the asymptotic extreme value distributions of
continuous random variables. They are only sufficient con-.
ditions. The following conditions expressed in terms of
quantile functions are necessary and éufficient conditions
for convergence, and apply to arbitrary distributionms.

Definition: A quantile function Q(u) , 0 <uc<1,
Belongs to the class described below if it satisfies the
condtion given for any y > 0 and any sequance ¥, tending
to y as n tends to = .

Left Short Tail, with left quantile tail exponent y <0,
if Q(0) is finite and

y
Lm QAGED-QO)

= -0

- vy

or equivalently u'{Q(u) - Q(0)} is slowly varying at u = 0.
Right Short Tail, with right quantile tail exponent y <0,
£ff Q(1) is finite and

y
Tum A-H-QD)
BT Q(1-3)-Q()

-y

b 4

or equivalently (1-u)Y{Q(u) - Q(1)} is slowly varying atu=1.




-27-

Left Long Tail, with left quantile tail exponent vy >0
if Q(0) = -> and

Y.
lim Q(??) - y-y

:a or equivalently u'0(u) is slowly varying at u = 0 .

; i Right Long Tail, with right quantile tail exponent y > 0
| if Q(1) = « and '

3 y.
a lim Q(l-_ﬁg)

n-+o

2 — =y
f | Q(1-3)

or equivalently (l-u)YQ(u) is slowly varying at u = 1.

Medium Tail, with quantile tail exponent vy = 0 , if

e Q- - a-d
Right tail usl T T~ = logy
Q(l-tTe_) - Q(l-ﬁ)
Yn 1
QA=) - QA3)
Left tail tig ? ? = log ¥y
Q) - AP
By representing X; = Q(Ui) where U;,...,U, are standard

uniform variables we have the basic representation:

Qmax (X;,...,X); ul = Q(Qmax (Uy,...,0,);ul)

Qmin (X;,...,X;): u] = Q(QImin (U;,...,U.);ul)

To write an expression for the quantile function of extreme

values of uniform random variables, let £ be a standard ex-

b b K (1t o  _n i =

;; .ponential random variable, and define

1 Ro(w) = log (i-w)"! = QrEsul, Ry(w) = log ul =-qr-t:u)
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Of use later will be the fact that Rl(u) = Qo(l-u) . At the
end of section 3 it is shown that at each u in 0 < u < 1,

asympotically, as n — = ,

QImin(Up,...,U)sul = & Ro(w) , Ro(w) = Ry(w) + e (W)

1 - = Ry(u , Ry(w = R (u) + e_(u)

Bl

Q[max(Ul,...,Un);u]

where en(u) denotes z remainder teqding to 0 as n ~ =

The asymptotic distributions of extreme values stated
in section 4 is proved using quantile functions by the following
argument.

Long tailed distribution with quantile tail exponent y > 0 .

[min(X),..,%) ] QRyw/m) -
Q| =7 T Ty » -{Ry(w)}
(max(Xp,...,X) 7 Q(1-(1/m)R; (W) -y

Short tailed distribution with quantile tail exponent y <0 .

Enin(xl....,xn)-Q(O) ~ Q[Ro(u)/n] -Q(0) .
N YO RI(O) ‘ :I = oy — (Rp(w)}

max(Xl,...,X )-0(1) Q(1- (l/n)Rl(u)) -Q(1) -y
Yy Y T Ty R
Medium tail distribution (v = 0)

ﬂnin(Xl,...,Xn)-Q(lln) Q(Ro(u)/n) -N(1 /n)

Y —qirmeaarm Y T Tame Ry T o8 R

max(X),...,X)-Q(L-(1/n)) ] Q(l-Ry(2)/n)-Q(1-(1/n))
Q. QUI-(I7/me))-q(I-7/n)y Y|~ ~(I/ney)-Q(I-{I/n

-—i-log'Rl(u)
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Faster Convergence. To speed up the rate of convergence

to the asymptotic distribution one can consider powers of
extreme values, using the following lemma. [Compare Weinstein (1973)]
Lemma. Let Mh be a sequence of random variables, a., bn> 0

sequences of constants, and Z a random variable such that

M -a
D
4 -‘—BS—B _— Z ,
n n

Then for any k > 9

k  k
AL My -4q D

n -
kbnan
Proof: Verify that

(%), .1 - k-li-1 e k.oq _ o K
Qlz,™" ;u) {kbnan } {QIM, “sul - a, }

b
-1 n k
- {kbn/an} {(1+;; Q[Zn;u]) -1}

L
= QIZ;u] + 0(;;) — Q[2Z;u]
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The criteria stated in Section 4 as suflicient
conditions for extreme value distributions of absolutely
continuous distribution include quantile domain versions of
the following classic sufficient conditions {see Galambos

(1979), p. 93]:

lim  xf(x) _ 1
(1) x LFm "5
@ e %[1-1-' x ] - lin {1+ (1-F£,%f; (x)}, 0
X

Letting x = N(u), and q(u) = 1/£Q(u) , one can rewrite -
(1) and (2)

» e Gmweaw
© M e

(3) is a sufficient condition for Q(u) to be regularly varying

with index v, while (4) is a sufficient conlition for £Q(u) to
be regularly varying of index 1.
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