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1. Quantile Functions and Their Properties

Statisticians and probabilists have traditionally used

distribution functions to study the properties of random

variables. Quantile functions (the inverses of distribution

functions) have in the past decade become increasingly used,

but their elegant properties do not seem to be summarized in

any reference.

Quantile functions are important for statistical data

analysis; their use was pioneered by Tukey (1965) and Wilk

and Gnanadesikan (1968). Quantile functions are advocated by

Parzen (1979) as providing an approach to probability-based

data analysis.

Quantile functions are important in probability theory

for the study of invariance principles (see Major (1978).

Quantile functions as a distance between probability measures

were used by Mallows (1972) and is applied to the asymp-

totic theory of bootstrap methods by Bickel and Freedman (1981).

A general distribution function F(x), -- 5 x < -, defined

by F(x) - Pr [X < x], is characterized by the properties that

it is (1) non-decreasing; (2) continuous from the right

F(x) - F(x+0) - lim F(x+e)
0< .-)0

and (3) F(--) - 0 , F(-) - 1 . Its quantile function, denoted

Q(u) , 0 u 1 , or F 1 (u) , < u I, is defined by

Q(u) - F-1(u) -n mE x:F(x) >u
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Q(u) is characterized by the properties that it is (1) non-

decreasing, and (2) continuous from the left.

An important example of a quantile function is the

following: Let F(x) be purely discrete, with jumps at

tI < t2 < .. < tk and values

F( uj - 1, ... , k

where 0 < u < .. < uk I. Then for j i,2, ...,k

(defining u0 - 0)

Q (u) - tj ,u J-1 < u <uj

The distribution function F(-) of a random variable X

is often assumed to be of the form

F(x) - FO(X-M)

where F0 (.) is a known standard distribution, and u and a are

unknown parameters (to be estimated), called location and scale

parameters respectively.

Theorem lA. The quantile function Q(u) corresponding to

F(x) - FO(x-IJ) is Q(u) - w + a Q0(u) , where Q0 (u) - F0-1(u) •

Proof:: F(x) - FO(X-) ! u iff X_4 > Q(u) iff > V + aQ0(u).

Therefore U + aQo0 (u) equals the inf of all x such that F(x) > u

Quantile Functions of Standard Continuous Distributions.

Some important distribution functions are:

Standard Normal. For -< C x < -

*(I e-W 2J *(y) dy, *(x) -7

AJ
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Standard Exponential. For x > 0

Fo(x) - l-e-x  fo(x) - e-X

Standard Uniform. For 0 < x < 1

F0(x) = x , f0 (x) = .

Standard Cauchy. For - < x < -

F0(x) tanlx + , f0 (x) -

The corresponding quantile functions are

Standard Normal. o-l(U), 0 < U < 1

Standard Exponential. Q0 (u) = F0(u) = log (1-u)-1

Standard Uniform. Q0 (u) = u

Standard Cauchy. Q0 (u) - tanr (u- 1 )

Toillustrate how one computes a quantile function, con-

sider the standard exponential; one writes x - O0(u) satisfies

u W F0 (x) - l-ex, whence 1-u = e-x  log (1-u) - -x

We leave to the reader the proofs of thf- following basic

properties of quantile functions.

Theorem 1B: Inverse Identities. For any x, xI , x2 in

-- x < - and u, u 1 , u2 in 0 < u < 1

(1) F(x) > u iff Q(u) < x

(2) F(x) < u iff Q(u) > x

(3) F(x1 ) < u < F(x2 ) 1ff x, < Q(ul) < x 2

(4) FQ(u) _ u

(5) QF(x) I x
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Theorem iC: Continuity Points of 2:

(0) 9 is continuous from the left; Q(u) - 0o€0 .o

(1) FQ(u)- u if x - Q(u) is a continuity point of F

(2) QF(x) - x if u - F(x) is a continuity point of Q

(3) u is a continuity point of Q iff F((u) + e) > u

for all > 0;

(4) u is not a continuity point of Q iff u - F(x)

- F(x+c) for some x and e > 0 (in words, F(x) is

constant over an interval)

(5) if F is continuous and strictly increasing, then

every u in 0 < u < 1 is a continuity point of Q

(6) if F is discrete, then the values of F(x) at the

discontinuity points of F are the discontinuity

points of Q

(7) there are at most a countable infinity of points u

which are not continuity points of

Simulation and Representation. To simulate on a computer

a random sample Xl, ... , Xn from a distribution F(x), one ap-
proach is to simulate Ui, ... , Un from a standard uniform

distribution and form X1 - Q(Ul), ... , Xn - Q(Un) . The

validity of this algorithm is a consequence of the Repre-

sentation Theorem in which U denotes a standard uniform randomvariable.

Definition. Two random variables X and Y are said to be

identically distributed, denoted X R Y, if for every x in

-m C x ( -

.Fx(x) - Pr(X_4x) -Pz(Ycx) - Fy(x)

Theorem 1D: Representation Identity. X R Q(U).
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?roof: Since [O(U) < x] is equivalent to [U < F(x)]

Pr[Q(U) < x] - Pr[U < F(x)] - F(x).

Theorem E: Probability Integral Transformation. When F(.)

is continuous, F(X) 2 U

Proof: Since [F(X) > u] is equivalent to [X > Q(u)]

Pr[F(X) > u] P[X > O I-FQ(u) - 1-u.

The Representation Identity yields immediately a

formula for the evaluation of expectations and moments.

Theorem 1F: Expectation Identity.

E[g(X)] - E[gQ(U)] f g[Q(u)Idu
0

The 2
The mean u and variance a are given by

121
U J Q(u) du, a - f nQ(u)-j 2 du0 00

Another property of quantile functions is how they behave

under monotone transformations of random variables.

Let Y - g(X) where g(x) is a non-decreasing function

continuous from the left. Define

g (y) - sup {x: g(x) 1Y)

Then g(x) . y iff x < g- (y) Consequently

Fy(y) - Pr (Y~yj - Pr(g(X) < yJ - Pr[X < g- (y))

- FX(g 1(y))

Therefore

FY (Y) i u iff Fx(gl(y)) > U iff 8'1(y) t QX(u)

iff Y 1_ BQX(u) .

Therefore the smallest y such that Fy(y) > u equals %0X(u),

and the following theorem has been proved.
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Theorem 1G: Transformation Identity. Let g be a monotone

(increasing or decreasing) function which is continuous from

the left. The quantile function Qy(u) of 7 - (X) can be

expressed in terms of the quantile function Ox(u) of X as follows:

Qy(u) =g(QX(u)) if g increasing,

If X is continuous, then

Qy(u) - g(QX(l-u)) if g decreasing.

To treat the case of g decreasing, it sufficies to treat

the special case of g(x) =-x (since -g(x) is increasing if

g(x) is decreasing).

Theorem 1H: If X is continuous

Qx(u) -QX(l-U)

Proof: We first write non-rigorously

u = Fx(y) - l-Fx(-y) -Y = QX(l-u), QY() -QX(l-u).

To be more rigorous, we write

infly: FX(y) > u) - inffy: 1-u > F,-)

-- Sup{ Z: 1-u > F x(z)) - -QX(I-u)

Theorem 11: Applications of the TratisformatIoni Identtty:

Y =v+OX, QYM =)v+ OQX(u);

Y =-log X, QY(u) - -log Qx(l-u);

Y - 1/X , QY(u - I/Qx(l-u)

Theorem 13: Converse Transformation Identit~ If X is5 con-

tinuous, and g is increasing, and

then Qy(u) - v~ + ag(QX(u)) and Y 2 v + ag(X

Proof: Let x - QX(u). Then PrEY<u+ag(QX(u))j FXQX(u) -u.
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2. Convergence in Ouantile

Definition: Convergence in Distribution. A sequence of

random variables Xn, with distribution functions Fn(x), are

said to converge in distribution to X with distribution function

F(x), if

n Fn(x) - F(x) at all continuity points x of F(-).

We then write

lirnXmjD xXn R X or Xn D X

Definition: A sequence of quantile functions Qn(.) is said

to converge in quantile to Q(-) if for ever-. continuity point u of

Q inO<u<l

lim
n-+- n (u) - Q(u)

Theorem 2A: Convergence in Distribution implies Convergence

in Quantile, and conversely.

Proof. Let u be a continuity point of Q(.) 0 < u < 1. Then one

can choose a sequence ck converging to 0 such that, for each

k, Q(u)-Ek and Q(u) + ck are continuity points of F(-) and

F[Q(u) - ek] < u < F[Q(u) + k ] .

Fix k. Convergence in distribution implies that one can choose

Nk such that for all n > Nk

Fn(Q(u) - ek ) < u < Fn(O(u) + ek )



-9-

Consequently for n > NJ

0() k Qn(u) < Q(u) + E

One can infer that On(u) --* Q(u)

That convergence in quantile implies convergence in dis-

tribution follows by interchanging F and Q in the foregoing

argument. A more probabilistic proof is the following. Let

U be a standard uniform random variable, and define

3n - Qn (U) , RO(U)

which satisfy Xn R Xn , 2 X By hypothesis, 0(u) - Q(u)

almost surely Lebesgue measure on (0,1) , since at most a

countable number of points are not continuity points of Q(.).
_ DTherefore Xn - X almost surely, Rn --- X , and F n(x) -# F(x)

at all continuity points of F(-) .

The foregoing argument is well known as the proof of a

special case of the Skorohod Representation Theorem [Serfling (1981)J.

Theorem. If lim X , one can choose random variablesn-oc n
2 defined on a conon probability space, such thatn

'Xn X , k " almost surely.

When Fn(,) converges to F(-) , the moments of F,(.) need

not converge to F(.). Criteria for converpence of moments can be ele-

gantly stated in terms of quantile functions.

Definition. For r > 1, define a distance between two

distribution functions F 1 and F2 , with respective quantile

functions Q, and Q2 , by

IVU I /Tdr(FIF 2) " dr(QiiQ 2) - {J0 Q(U) - Q2(u)Irdu}

This is an evaluation of the Vasershtein distance [(Major (1978)]
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Define "convergence in r-mean quantile" of Qa(') to Q(.)

denoted Qn -_ r 1 by

1
(dr(QnQ)}r f 0QO(u) - Q(u) Irdu -4 0 as n -.

0

Theorem 2B. Q if, and only if Qn(U) rdu

-- I 0IQ(u)Irdu and Qn(U) ---P Q(u) at continuity points of Q.

Proof. The "if" part of the theorem follows by inte-

gration theory, and in particular by Scheffd's theorem.

The fact that -. Q implies convergence of r-th moments

also follows by integration theory. The following lemma seems

novel and cmpletes the proof.

Lemma. If On -L* Q and Q(u) and Qn(u) are non-decreasing

functions of u, 0 < u < 1, then Qn(u) - Q(u) at continuity

points of Q.

Proof. We give a probabilist's proof. Let Q(u) and Qn(u)

be versions which are continuous from the left. Let U be stan-

dard uniform, and define Xn = Qn(U) , I - Q(U). One may argue

that Elln-Rh' --- 0; In -D# X; Fn(x) - F(x) at continuity
nnn

points of F(.); %n(u) - Q(u) at continuity points of Q.

It should be noted that

IF(X) - F2 (x)ldx f I1Q1(u) - Q2 (u)ldu < dr(QlQ 2) for r > 1.
0

Application to Sample Quantile Functions. Let X be a

random variable with distribution &-unction F(x) and quantile

function Q(u) - Fl(u). Let X1, ..., Xn be a random sample
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of X. The sample distribution function F(x), -- < x <

and the sample quantile function Q(u), 0 < u < 1 are defined by:

t(x) - fraction of X1 , ... , X < x,

Q(u) - F-I(u) - inf {x: F(x) > u)

It is well known that, as n - -

sup IF(x) - F(x)j -p 0 with probability one;

if EIXjr < f% ixir dP(x) --_ fIojxjr dF(x) with probability

one

Therefore, for r > 1 , EIXIr< - implies

fljo(u) - Q(u)lrdu t 0 with probability one.

Application to Extreme Value Distributions of Uniform

Random Variables. In section 5 the following representations

of quantile functions will be used; it illustrates the use

of quantile functions to demonstrate convergence in distribution.

Let U1 , ... , Un be standard uniform random variables.

Let Z - n Min(Ul,...,Un). For any x > 0

lFz(x) = Pr[min(U..." Un) 
>  l- {Pr[U 1 > }n

(1 - x)n .

One can solve for x - Qz(u) , and obtain:

Qz(u) - n{l - (1-u)1/n }

1 /n (log 1 /n + 1+ ory 2 1~~~For O<y<l , yl/ elO y)/ + 0 1o y+ --(log y)

n.
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where 0 <191< 1 Consequently

PO'u) = - log (l-u) + En(U)

where F (u) = Oe.Ilog (l-u) 12 (l-u)-I  0 Since log(l-u)n n
is the quantile function of a standard ex~oential random variable

~, we conclude that n min(UI,. Un) - .

For Z = n{max (UI .... Un)l} , one derives the quantile

function

1/n -1Qz(u) = n{uI  }= log u + (u)
• " n

where cn(u) - as n - , using the fact that

Pr[max(UI, .... Un) < 1 - = {Pr[U ( ) n
_ n nrU< n~

Since - log u-1 is the quantile function of - we conclude

that n{max(U I .... Un) -} _



3. Density Quantile Functions

A continuous random variable is, traditionally described

by its probability density function f(x) = F'(x) . In the

quantile domain more insightful descriptions are given by

the density-guantile function

fQ(u) = f(Q(u)) ,0 < u <

and the quantile-density function

q(u) - Q'(u) , 0< u <

Differentiating the identity FQ(u) = u , one obtains

fQ(u) q(u) = 1

An important technique for computing fQ(u) is as follows:

.(1) compute Q(u); (2) differentiate to form' q(u); (3) take

the reciprocal.

Another iwportant function is the score function

J(u) - - (fQ)'(u)

The Fisher score function is defined by

*(x) d log f(x) - f'(x)

One may verify that

J(u) - *(Q(u))

Density-quantile functions have many irmnortant statistical

applications. From the point of view of probability theory,

we believe that their major insight is to orovide definitions

of the tail behavior of probability laws. An important charac-

teristic of a distribution function F(x) is the behavior of
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l-F(x) and F(-x) as x tends to =, which we call its tail

behavior. The study of extreme value distributions indicate

that one can divide distributions into three main kinds of

tail behavior:

(M) short tails (or limited type),

(2) medium tails (or exponential ty-:'),

(3) long tails (or Cauchy type).

Definition: A function L(u) is called slowly varying

at u - 0 if for every y > 0

---> las u -4 0Liu)

An example of a slowly varying function is L(u) - (-log u}

Definition: A density quantile function is said to have

a left tail exponent a1 and a right tail exnonent a2 if,

as u -Y 0

L1 (u) = u -fQ(u) is slowly varying,

(1)

L2 (u) = u fQ(l-u) is slowly varying.

The exoonents a, and a2 can be any real numbers.

A function fO(.) satisfying (1) is called regularly

varying (see Seneta (1976)).

Theorem 3A: If tail exponents defined by (see Parzen (1979))

- 1im -UJ(U)U1 u0 "~

(2)
i (u-u.ju)2 U01 IQ(u)



-15-

exist, then (1) holds. Formulas (2) provide a constructive,

rather than a descrintive, definition of tail exponents; they

apply when the density-quantile function iG differentiable.

Proof: In the theory of regularly varying functions it

is known that (2) implies (1) Oee Seneta (1976), p. 7]; we briefly

indicate the argument. Let

uJ(u) _a

Note that g(t) -4 0 as t -1 0

Then

d lo Q;) J(u) +~u
au - =K -u u

d - -al

d log {u fQ(u)) - g(U)

log Ljyu) - log Liu) - Fyu dtyu t

I log Ljyu) - log Lpu) < R a (t) I)I log y I"3 O.<ut<u

In the study of the asymptotic distribution of sample

maxima and minima, it is convenient to introduce a tail exponent

We call a the density-guantile tail exponent and y the quantile

tail exponent. We define the following types of tail behavior:
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Y < 0, a < 1 short tails (or linit-A type)

y - 0 a - 1 medium tails (or e::n'n-ential type)

y > 0, a > 1 long tails (or Cauchvj type)

y < -1, a < 0 super-short tails

The basic e-istence theorem of extreme value theory, due

to Frechet (1927), Fisher and Tippett (1928), and Gnedenko (1947)

can be expressed as follows.

Theorem 3B. The distributions that can arise as the asymptotic

distribution of an extreme value are, up t- R location and scale

parameter, the distributions of the following functions of a

standard exponential random variable, E, which have the quan-

tile functions listed.

Tail Behavior Maximum Minimum

Medium Tail - log log

y - 0, a - 1 - log log u-1  log log (1-u)-I

Gumbel distribution

Short Tail .

Y< 0, a < 1 -(log ul}-Y (log (-11 "Y

Weibull distribution

for -1 < y < 0

Long Tail ' -Y

Y > 0, a > 1 (log u l-Y -(log (-u) l} "
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The density quantile functions and right and left density-

quantile tail exponents are listed in the following table:

Tail Behavior Maximum Minimum

Medium Tail u log u-1 (1-u) log (l-u)- I

Y 0 Left a=l, Right a=l Left a=l, Right a-l

Short Tail -i u{log u-1 }(l+Y) - (l-u){log (l-u)-l}(l+y)
Y

Y < 0 Left a-l, Right a-l+y Left m=l+y, Right a=l

Long Tail u{log ul)}- (l+Y) (l-u){log (l-u)l - (l+Y)
Y Y

y > 0 Left a=l, Right a=l+y Left c,.-l+y, Right a-l

Characterization of moments that exist for given tail

exponents. When yI > 0 , the quantile function Q(u) is

at u = 0, a regularly varying function with index Yl, in

the sense that ?(u) = u- iL(u) where L(u) is slowly varying:

when Y2 > 0 the quantile function is, at u -I, a regularly

varying function with index Y2 in the sense that

Q(l-u) = u Y2L(u)

The integral of a regularly varying function of index y has

the same convergence properties as u-  . Therefore the k-th

absolute moment

f IQ(u)[kdu < iff k < 1/yI and k < l/y 2

0



When Y 0 and Y2< 0 ,then all moments are finite.

Similarly one may prove the followinR theorem mentioned

by Stigler (1974).

Theorem 3C. Let Q(u) be regularly varying with positive

left and right tail exponents. Let k and 6 be constants so

1 k
that k6 -1. Then f0  Q(u)l du < if and only if

I S

f {u(l-u)}6 dQ(u) -f{F(x)(l-F(X))} dx<
0 -
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4. Extreme Value Distribution Theory

In this section we summarize some of the basic results of

the theory of extreme values, and show how increased insight

into their proofs and application is obtained by thinking in

terms of quantile functions, and density-quantile functions.

Let Xl1 ... ,Xn be a random sample of a random variable

X, and let

Max(n) - Max(X1,...,Xn) , Min(n) - Min(X1 ,...,X n )

The aim is to determine if

rMax(n)-an D()FMax(n) (an+bnx) - Pr E n - DX]~x

n DI
I [Min(n) - c I D

(2) FMin(n) (cn+dnx) - Pr dn H

holds for suitable constants an, bn, cn, dn and distribution

functions G(x) and H(x), all of which are to be determined.

In terms of convergence of quantile functions, (1) and (2)

are equivalent to

(3) 6 (Q [Max(n);u] - a I A* G-'(u)
n

n(4) nn (Q[Min(n);u] c cn ) H-- 1 (u),

where hereafter we write Q(X;u) to denote the quantile function

of a random variable X.

We state theorems which summarize the theory of extreme

value distributions in a table. Theorem 4A states the nor-

malizing constants in terms of a general quantile function Q.

Theorem 4B provides more precise formulas for normalizing
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constants, assuming certain asymptotic expressions for Q(u).

We then outline the extreme value distributions of some

frequently encountered probability distributions.

The reader should verify the following important con-

sequence of Theorem 4A: Max(X1 ,..., X ) has the same
n

right tail exponent as X and Min(X1 ,...,Xn) has' the same left

tail exponent as X.

Theorem 4A. Let a be the right tail exponent (or left

tail exponent) of the density-quantile function fQ(u) of a

random variable X with quantile function 0(u). Let y - a - 1.

Then the maximum (minimum) has the folloiinR 2symptotic dis-

tribution (where & denotes a standard exoonential random

variable):

Density Quantile Maximum .inimum

Tail Exponent

dium Tail :ax(n)-Q(l-I) Xi(n)-Q(i

n -Log&~Min-()..- log&

Yin 0

Short Tail Max(n)-Q(1 .o -C-y Min(n)-Q(0) _D, &-Y

S C1Q1Q(- -Q (0)
y<O0

Weibull -l<y<O

Long Tail Max(.) _ &-y ,in(n) -o -Y -
s>O Il

• -. .Q..--)
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Proof. One verifies that the conditi.ons on fQ(uj in the.

foretoint table imp~ly the following conditions on the quantile

function Q(u), which are shown in section 5 .to be necessary and

sufficient conditions for the above asymptotic distributions to hold:

Maximum: Minimum:
for every y for every y.

Tail Exponent a nasn --

Medium Tail Q(lzQlA. ()-Q()
- Ilog y -log y

ne Q( - 9

Short Tail () QO
Y'o n y-Y n( )Q(O

Vil)-Q(l) Q- QO

Long Tail Q(l-Y-) Q (Y-)

Theorem 4B.Sufficient conditions for asyMtotic distri-

butions are that the quantile functions have the following

representations (where B > 0):

Maximum minimum
As u --- 1 As u --. 0

Medium Tail Q(u) -- A+B~log (1-u)-4}B Q(u) '.A-B~log u1)

V 0

Short Tail Q(l)-Q(u) A- B (1-U)~ 0(u) -Q(O) '. B N

Long Tail Q(u) -- A+B (1-u)-y Q(u) ". A - N u



...... ' ~ .... ........- ..- - - - -
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Under these sufficient conditions, the extreme value

asymptotic distributions are as follows:

Medium Tail 8ax(n)-B{log n} _D o in(n)+Bf{lo n) D

Y " 0  BO(log n)s-  *B(log n)lE

Short Tail 1) _.- In --7

Y 0 3ny Eny

It should be noted that for medium tail distributions whose

quantile function has the special representation given in Theorem 4B

the extreme value distribution depends on the parameter 8

which we call a shape parameter. The scale divisor bn such

that (Max(n) - an)/bn tends to a limiting distribution has

the following behavior:

Scale Divisor bn Tail Exponent y and Shape Parameter 8

Constant y- , B =I

Tends to 0 y < 0 or y - 0 , I

Tends to y > 0 or y-0, > 1



To state the asymptotic distribution of extreme values

of familiar standard probability laws let uO introduce two

important constants an and bn which occur in the tail repre-

sentation of 1-1(u)
-_ = * -*b*

Lemma: (P- ) =n bn log y, wheren n n

a = (2 log n) - 7(2 lop n)-I(log log n+4r)

bn  (2log n)

Proof: Let un ( 1-E)'. Then 0 (x) nu (i/x),(x) implies

2un  21og n - log 2w - 21og un -21og x

log un = log 2 + log log n + o(l)
nI Y

Probability
Distribution Maximum Minimum
and Quantile
Function Right Tail Exponent Left Tail Exponent

Normal (2log n) {Max(n)-a*} (2log n)k{Min(n)+a n }

1(u) D4 log log

a = 1 , B = 0.5 a - 1 , B = 0.5

Exponential 11ax(n) - log n n Min(n)

log (l-u)-- 1 log 2 . 0,

Uniform n{Max(n) - i} n Min(n)

a 0 0=D_. D. .... . . .
S. . .. . ... . . .. ....-.. . . .... . .". . .. . . .. . . I- ' II. . ... ' ' '. ...
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Weibull B(Iog n) 1 -(Max(n)-(log n)o }  n Min(n)

{log(l-u) 1)8 - - log

0<<1= , a = B a -

Cauchy Max(n) 7 Min(n)
n n

Q(u) = tan r(u-z) -1 -1

,Cos iru
sin nu a 2 a 2

ffu

as u -- 0

Finally, we give an example which illustrates how one

uses the quantile approach to identify the asymptotic extreme

value distributions of a continuous distribution function F(x).

The procedure is: (1) compute Q(u), fQ(u), J(u); (2) compute

left and right tail exponents a1 and a2 which identifies the

type of extreme value distributions; (3) compute Q(l/n) and

Q(1-(l/n)) which determines the norming constants.

Example: One-sided stable distribution of index 1/2 has

distribution function

F(x) - 2 (l -(x

One obtains Q(u) by solving u - F(x) for x -Q(u):

Q(u) - {$'I(i- )-2

fQ(U) - Of~ (1 U{ (1 -))

J(u) - ~ ,(..)2-L,(U)



'=T-7 - .-77. 6".

The tail exponents are computed to be

a -.(medium tails), a2 - 3(lona tails)

One infers that

Min~n) -Ql/n) D log E,QC1/ne) -Q(I/n)

Max(n) D 2

To compute Q(l - (1/n)) , define q(u) - 60)- .

Then for u near I

1-0.5u 1,i(I-u) ff q(u)du Z (l-u)q(O) .

0.5

Q(u) • {2,-I(0)0 2 (lu)2 = IT (l-u) 2

We conclude that

2 _D4 &-2
Max(n)/ 1 n

iT

To find the norming constants of Min(n), write

Q {an - bn log (y/2 N1-2

2bn*
Q(l/ne) - Q(l/n) n h " 2(log n-

an

We conclude that

7 (log n) 2 {Min(n) - Q(l/n)) - log C.

Similarly one may find the extreme value distributions of

the lognormal distribution with quantile function Q(u) - exp 0-1(u).
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5. Quantile Derivation of Extreme Value Distributions.

Let Xl,... ,Xn be a random sample of a random variable X

with quantile function Q(u). In this section we outline a

derivation of the distribution of max(i,...,Xn) and

min (X1 ,... ,Xn) by quantile methods.

Tail exponents of density-quantile functions have been

introduced as criteria that can be easily applied in practice

to determine the asymptotic extreme value distributions of

continuous random variables. They are only sufficient con-.

ditions. The following conditions expressed in terms of

quantile functions are necessary and sufficient conditions

for convergence, and apply to arbitrary distributions.

Definition: A quantile function Q(u) , 0 < u < 1

belongs to the class described below if it satisfies the

condtion given for any y > 0 and any sequ-nce Yn tending

to y as n tends to .

Left Short Tail, with left quantile tail exponent y < 0,

if Q(O) is finite and

yn
lim Q( -)-Q(0)

Q( I) -Q(0)

or equivalently uY{Q(u) - Q(0)) is slowly varying at u - 0.

Right Short Tail, with right quantile tail exponent y < 0,

ff Q() is finite and

- -- Q(l- )-Q(l)

or equivalently (l-u)'Y Q(u) - Q(l)) is slowly varying at u - I
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Left Long Tail, with left quantile tail exponent y >0

if Q(O) - and

lir Q ( -Y

n-oo Q (1)
n

or equivalently uYQ(u) is slowly varying at u - 0

Right Long Tail, with right quantile tail exponent y > 0

ifQ() and

Yn

Q(1- Q~

or equivalently (l-u)YQ(u) is slowly varying at u - 1.

Medi~um Tail, with quantile tail exponent y - 0 , if

Yn Q(l-nl)
lim n l-i-

Right tail u~l -- lg

Left tail lim - -log y

By representing Xi - Q(Ui) where UI,... ,Un are standard

uniform variables we have the basic representation:

Qfmax (X, , ; uJ - Q(Q[max (Ul,... ,Un);u)

Q(min (Xl,...,Xn); ul - Q(Q[min (U,....Un);uJ)

To write an expression for the quantile function of extreme

values of uniform random variables, let be a standard ex-

ponential random variable, and define

Io(u) - log (l-u1 - Q(C;ul, R1 (u) - los u1-mQ(-;u1



- - - . 2Z -
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Of use later will be the fact that R,(u) !.,(l-u) At the

end of section 3 it is shown that at each u in 0 < u < 1

asympotically, as n P- O

Q~min(U 1 1. ,U);u) R! R~ 0(u) ' '(u)'= RO(u) + en(u)

Q[max(U 11....Un);u] = - nRl~u) , R,( = R,(u) + n)

where F-n (u) denotes a remainder tending to 0 as n -

The asymptotic distributions of extreme values stated

*1 in section 4 is proved using quantile functions by the following

argument.

Long tailed distribution with guantile tail exponent -y > 0

* min(X 1 '.,Xn) 1 Q(i0 (u)/n) -

Q [max17;*u) ;u] -QfI/n.T-.) -tR (u)}Y

Short tailed distribution with guantile tail exponent y < 0

Fmin(Xi,, i'Xn)-Q(O) 1-Q[R0 (u) 'ni-Q(O) -

~L (1/n)-Q(OY Q'lnj - 'q~U

jax(Xl 1 *,Xn) Q(l) Q1 I/ ) i~ ) -Q(l) -

Medium tail distribution (Y - 0)

rin(Xi1,... , n )-Q(l/n) 1 Q(R0 (u)/n)- (l /n)
Q Q(lfne)-Q(1/n) uj Q(lfne)-Q(lfn) -- log R0 (u)

rax(X 1 ... "vXn)-Q(l-(l/l)) 1Q(l-Rl(u)/n)-Q(l-(l/n))
Q(1-(l/ne))-Q(l-(ln)y) iUJ- Q(1-(l/ne3)-Q(l-(l/n))

-t-log'R(u)
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Faster Convergence. To speed up the rate of convergence

to the asymptotic distribution one can consider powers of

extreme values, using the following lemma. [Compare Weinstein (1973)1

Lemna. Let Mn be a sequence of random variables, an, bn> 0

sequences of constants, and Z a random variable such that

Mn-an D

zn n
bnlan -i 0.

Then for any k >0

Z (k) -Mnk-ank D.p Za kbnan -

Proof: Verify that

Q[Z(k);ul - {kb a k-l1l{Q[ k u]- ank}

- (kb /a I- 1 -a Q Z ( u)k -!)

= Q[Zn;ul + O(an)-- Q[Z;u .

ni
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The criteria stated in Section 4 as sufficient

conditions for extreme value distributions of absolutely

continuous distribution include quantile domain versions of

the following classic sufficient conditions (see Galambos

(1979). p. 93]:

(1) lim xf(x) =1
(1)x IT--F) T

(2) urn d li-mx (1-Frn ia( _____

Letting x - Q(u), and q(u) - 1/fQ(u) , one can rewrite

(1) and (2)

(3) lira (l-u)q(u) Y
0u-.l Q(u)

(4) im (1-u)J(u),. 1(4) u -fq1u)

(3) is a sufficient condition for .Q(u) to be regularly varying

with index Y, while (4) is a sufficient condition for fQ(u) to

be regularly varying of index 1.
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