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NOTATION

a Radius of cylinder in z-plane

a Coefficient in Laurent series (B1)

b Distance from body center to fin tip

b Coefficient in Laurent Series (B2)

Fuq
B Function in Equation (13)

BFunction in Equation (14)

c Radius of circle in 4-plane

k Coefficient in Equation (4)

Ki Total strength of the point vortices behind the ith-fin

4 Coefficients in Equations (5) and (9)

m Total number of point vortices in the field

M Number of point vortices representing a single discontinuity line

n Number of fins

pq Coefficients in Equation (7)

rO Polar coordinates (r also coefficient in Equation (5))

Re Reynolds number - 2bU/v
Tak Distance along discontinuity line of kth point vortex from first point

vortex in the line

8 Coefficient in Equation (6)

Ai Segment length of discottinuity line after rediscretization

S Length of discontinuity line

t rime

t 1 ,t 2 Coefficients in Equation (9)

u,v Velocity components

U Constant velocity of the parallel, flow

w Complex potential

w Contribution to w from parallel flowp

wR Contr.'bution to w from rotation

w V Contribution to w from vortices

W Constant velocity component in the Z-ditection

xy Cartesian coordinates in z-plane

V



z x - iy

Z1,09z 3  Auxiliary planes

Z Coordinate perpendicular to the x,y-plane

C1 Angle of attack

B Angle between line extending from the fin and line between tip and
first vortex

y Strength density of discontinuity line
r Gamma function

t+

&,n Cartesian coordinates in C-plane
0 Dihedral angle in Figure 2; also a ceo
K Strength of vortex

V Kinematic viscosity

a Point on the circle in the C-plane

T1,T 2 Coefficients in Equation (9)

Or Polar coordinates

t Potential function

'p Stream function

W Angular velocity

Subscripts:

0 Initial state

i i thi fin

k kth point vortex

q qth coefficient in Laurent series
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PREFACE

This report is part of a continuing effort at the Computation,

Mathematics, and Logistics Department, with support from IR-inhouse

funds and the 6.1 NAVSEA Mathematical Science Program, to study

vortex shedding from solid bodies in a fluid flow and to apply the

results to Navy problems. For the last ten years the major objective of

this effort has been to investigate vortex generation and shedding in

real fluids by the numerical solution of the Navier-Stokes equations.

These successful studies, which resulted in numerous publications in

the open literature, were originally restricted to moderate Reynolds-

number flows about simply-shaped bodies. Today two-dimensional

flows around bodies of quite arbitrary shape can be handled, but the

solution of the Navier-Stokes equations for high Reynolds numbers

still cannot be obtained, Instead, ideal fluid flow models with their

well-known shortcomings must be used. This report describes one of

two preliminary sttudies to develop a computer program for vortex

shedding past arbitrarily shaped cylindrical bodies within the realm of

ideal-fluid models. This report deals with vortex shedding from

finned cylinders, and the forthcoming second report by R. Shoaff will

address vortex shedding from arbitrarily shaped bodies excluding fins

and other sharp protuberances. These purely two-dimensional flows

then may be used in a strip theory to include at least some aspects of

three-dimensional flows. The ultimate goal will be a computer code

for vortex shedding from three-dimensional bodies.

vii
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ABSTRACT

A compucer program has been developed to simulate
vortex shedding ýrom circular cylinders with evenly distri-
buted fins. Thase bodies may rotate continuously or oscillate
in a parallel tream. The ty'o-dimensiona//flow model consists
of point vorties inserted .in an otherwz4e potential-flow
field. For t e roll-up of the line ofAvortices the rediscre-
tization sche e by Pink ind Soh is uq'd. Sample results are
presented fo vortexy;4edding fromA/flat plate at angles of
attack of 45 and 90 , and from a 6ircular cylinder with two
fins at an angle of attack of 45 ._

ADMINISTRATIVE INFORMATION 1
The work presented in this report was supported by the Independent Research

Program at the David W. Taylor Naval Ship Research and Development Center under

Work Unit 1843-050, and the 6.1 NAVSEA Mathematical Sciences Program under Work

Unit 1808-010,

1. INTRODUCTION

The simulation of vortex shedding frota bodies in potential flow by means of

point-vortex models has attracted the attention of many researchers in the last

decade for a number of reasons. Persisting difficulties in solving the Navier-

Stokes equations tor large Reynolds numbers, the availability of large computers,

and progress in the study of rolled-up discontinuity sheets have fostered the use

of point-vortex models. The extensive literature on this subject includes recent

survey papers by Fink and Soh,l* Saffman and Baker, 2 Clements and Maull, 3 Kato," and

Leonard.5

Although the neglect of viscosity limits the usefulness of point-vortex

methods, in many cases details of the flow field can be obtained and a fairly good

estimate of the force coefficients can be made.

This report presents the equations of motion for incompressible fluid flows

past abruptly started circular cylinders with n evenly distributed fins of equal

length. These cylinders may rotate continuously or they may oscillnte. Some cases

can be extended to elliptic cylinders, Point vortices are introduced into the

potential flow around such cylinders to simulate the development and shedding of

*A complete listing of references is given on page 39.
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vortices at the fins. A fixed interval of time elapses between successive intro-

ductions of point vortices. The computer program is checked for simple cases by

comparing its results with solutions from the literature. Results for force

coefficients and complicated flow problems of practical interest will be presented

at a later time in another paper.

The formulas derived in this report and the computer program described here

can be applied in missile aerodynamics and ship hydrodynamics. In particular, cross

flows past cruciform fin configurations and past underwater vehicles with sails,

rudTdrs, stabilizers, bilge keels, and cables can be determined.

2. CONFORMAL TRANSFORMATIONS

For the computation of the flow field the method of mapping the physical plane

z x + iy onto the circle plane • - • + in is used. Numerical methods 0 ' 7' 8 are

available which map an arbitrarily shaped body contour onto a circle by means of

the transformation z a f(;). While our work was in progress, Mendenhall, Spangler,

and Perkins 9 published a paper on vortex shedding from arbitrarily shaped bodies
using a numerical mapping technique for the Theodorsen transformation. V.A. Golovkin

and M.A. GolovkinI0 worked with Fredholm inLegral equations to compute the roll-up

of point vortices. In this report exact conformal transformations f(;) are applied
to avoid errors due to the approximation of the body contour, Of course, these

exact transformations are restricted to certain classes of bodies. For a cylinder

with a circular cross-section of radius a and with n evenly distributed fins of

length b-a, Miles"1 has given f(r.) in the implicit form (see Figure 1)

(n/2) 2 n/2) . (n/2) + (c2/0)(n/2) (1)

2c (n/2) . b (n/2) + (a2/b)(n/2) (2)

where c is the radius of the circle in the r-plane. Equation (1) c'n be written

in the explicit form

-2 n n A 2

z - 2 n ( 42 + (c2 /2 24a nn (3)

In general, this expression is not single-valued and care must be taken in working

with it. From Equation (3) it can be shown that (dz/d4)= = 1.

2
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For fins protruding in a dihedral configuration at an angle different from

90%, an approximate conformal mapping is given for n-2 in implicit form with an
auxiliary mapping in the z2 -plane (Figure 2):

2 k

L_ h2a.
z - + _2 " (b + -) cone (4)

r 2  2
z2 + .2- Z/2 - ;+• -(5)

with a2

k = (b --- )sin 0

I -l(b-a) 2 cos 0

r / R (92 2X
r-/• R-2 (t2+4k2)

1 -¼~( 3- 3
6 (A3 + , E • (AE

k2 2
E2  k 2 a + (I,+a)sin 0 for 2 < 0

A2  - - 2a + (b+ a-)sin 0 for A2 > 0

A2
2r 2

A3 - 2  A 2 -9 2r2

2
E-E z2+ zt-T -2(6)

Here again, (dz/d4),=. 1. The derivation of this conformal transformation is

given in Appendix A.

In certain cases, 2or instance for two fins, the circular cylindrical body can

be replaced by an elliptic cylinder:

2 2
Z 1 + 4 (7)

4
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, .2 2

z +. (±)- 2 - t 2 (8)I 4z 4;

where

224T1  2 4T2

c * [ T + 4tI 2+T 2

2 1(t + 2 4T 2

121 - p +q )

T L(t2 + n) (9)
S•(2 2 2 2 -

(see Figure 3). Equations (7) through (9) are similar to those given by Bryson. 1 2

However, Bryson's formulae are not entirely correct, as shown by the case a-b,

tI a t2 - a, a arbitrary (in Bryson's notation).

3. FLOW FIELD

3.1 COMPLEX POTENTIAL AND COMPLEX VELOCITY
In the problem under consideration the complex potential w 0 + 1.0, where

is the potential function and * the stream function, can be written as

W nw Wp +w v + w R 0

where w represents the parallel flow around the body, wV is the contribution due;p V

to the presence of m vortices, and wR is the term which takes account of the
rotation of the body. Since the complex potential ia by definition the same in the

z- and r-planes, the contribution due to parallel flow is 1 3

2
Wp a U(ýe- ia + -- e (II)

with U the constant velocity of the parallel flow and a the angle of attack
measured counterclockwise from the positive real axis. The term wV representing

the m vortices is given by

m 2
w i : k [log(r- k (12)

k-i - ':r-6

6-

.hlnw",,rr £tj.Aa
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where K denotes the strength of the kth vortex and •k its position. Zk is the

complex conjugate of ;k'

The contribution wR can be obtained with a method described by Milne-

Thomson. 13  For a body rotating with angular velocity w(t), the stream function

at a point a of the circle is given by

2
21 - i a! a iw f (c-) - iwB(o) (13)

where B(a) is called the boundary function. If B(a) is written in the form of a

Laurent series in a, then B(a) a BI(a) + B2 (a) where B1 contains the negative

powers of o and B2 the non-negative powers. With the aid of Cauchy's residue

theorem1 3 it follows that

wR(4) U iW B1 () (14)

Bryson 12 has discussed B3() for the came covered by Equation (3), The general

situation a ÷ 0 requires the evaluation of a double sum which converges slowly near

the body and more rapidly farther away (see Appendix B). For a * 0 this double

sum can be reduced according to Brymon 1 2 to

iIl - - 2 sin -- , (a-o) (15)•- rn r( n-) P(•+2+l) n

where r is the gamma function. This expression is undetermined for n 1 and 2.

However, one easily obtains from Equation (3):

3 4
B 4 c-+ for n1-, a-O (16)

4
B1  -for n-2, a-0 (17)

The angle of attack a is related to the angular velocity w by

t
0&a 0 ,+ f W dt (1AI)

0

The complex conjugate velocity of the flow is given, except for the point

vortices themselves, by:

_dz d-•w dwd_(1)'
*u iv - - dT _ _ w (19)

2dt cz ddz

8

"". ..... ... .
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where

dw - 2  ic) m : dBd " -Wi + i kE1 • - -- )+ iW (20)

4k

2 " n- 2
da (21)n nn

The velocity of the kth vortex is, according to Routh's theorem (Milne-Thomson 1 3)"

dk k i d k

dt dt dt K - da (22)

with

dk dw +

When the reference frame is to be fixed to the body, the solid-body rotation

w -1w Z must be added to the terms in Equation (10). The corresponding

velocity is

i-~ iW (23)dt

3.2 DIMENSIONLESS FORM OF THE COMPLEX VELOCITY

The complex velocity of the flow field, including that of the vortices,

Equations (19) and (22), is made dimensionless by U. For the coordinates and other

quantities with the dimension of length, the parameter 2b is chosen as the charnc-

teristic length. In particular, the time t is made dimensionless by U/2b and the

vortex strength K by 1/2bU. The same notation is used for the nondimensional

quantities in the results (Section 6).

9
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4. VORTEX GENERATION AND SHEDDING

4.1 FEEDING MECHANISM

The process of vortex generation requires the existence of a boundary layer

and its separation from the body. After separation the boundary layer becomes a

free shear layer in which vorticity is concentrated in a thin layer for high

Reynolds numbers. Such a layer rolls up in time by forming a vortex. In potential

flow, which does not allow the creation and elimination of vorticity, the roll-up
is modeled by a discontinuity line. Self-similarity of the discontinuity spiral
with advancing time is assumed for the initial period when the finiteness of the

plate is not yet felt. This idea goes back to Prandtl. 14 More recently, detailed

studies wure made by Wedemeyer, 15 Blendermann,16 and Pullin.1 7 The discontinuity

spiral close to the center has the form r IV -2/3 and is, therefore, a hyperbolic
type of spiral with infinitely many turns.

Numerically, the discontinuity line itself is often approximated by a row of
point vortices (discrete-vortex model). Earlier difficulties with such a model

have been largely overcome by a rediscretization procedure developed by Fink and
Soh. 1 This method is used in the present work.

At the sharp edge of a body flow always separates when it meets the body under
a nonzero angle, The discontinuity line originates at the sharp edge. It grows in
time with new line elementp forming at the edge. In a discrete-vortex model new
point vortices are introduced after the Lime interval At. The feeding mechanism

works in the following wayt
(a) At time t+At vortices are convected away from the edge. Their new positLions

are computed with the aid of Equation (22).
(b) Each discontinuity line is rediscretlzed in the physical plane so that every
vortex on it lies at the center of the segment represented by the vortex. If ak is

the distance of vortex k along the Line from the first vortex on the line, then

the total length S of the line is sM, where M is the number of vortices on the line.

The segment length after rediscretization is given by A; - S/(M-1) and no the now

positions of the vortices can he calculated from

k (k-l)A;. (24)
where ak is the distance after redincretizatlon of vortex k from the firmt vortux

on the line. The positions of the first and last vortices are unchanged by the

rediscretization procedure.

10



(c) The strengths of the vortices are recalculated according to Shoaff1" LO

account for the changed positions of the vortices. First, the strength density -Yk

near each vortex before rediscretizat ion is computed as

K1/52- go 1 if k-1

Yk 2K k/(Bk+l -ak-i) if 1<k<i (25)

KM/aM- M-1 ) if kinM

For the redistributed vortices, the strength density is approximated by

k

redistributed vortices are sto a first approximation. But since the procedure

outlined so far does not necessarily conserve the total vortex strength in each

discontinuity line, the deficit or excess strength is removed by adding an equal

amount of strength to each vortex. Hence, the new strengths are given by

A M M
K a Y A; + E K t-) •y -As) (27)

(d) In each discontinuity line a new vortex is introduced between the edge and the

first vortex at a point 1/3 of the distance from the edge in the physical plane.

The c-plane positions of all the vortices are calculated. Then the strengths of

the nascent vortices, are determined by satisfying the Kuttd-Joukowaky condition

(LK) -o(0
dý

at each fin tip Ci in the 1-plane. For n Uns n linear equations of vquaeion (28)

type must be solved.

Kko

Accuracy dis cninuit by computing the shae andtposiedbti eno the vortex andrthL

adThe increase pofithen totall vortiexstarent aluat edthei in wthtie forentso

tye au be solved,.4

Ki-t) - , -29)



Figure 4a shows that with decreasing At the number of the inner loops increases*

but this does not seriously affect the shape and location of the spiral or its

strength (see Section 6 and Figures 4a, b, c).

4.2 INITIAL CONDITION

Starting a vortex sheet at t-0 in a potential flow of constant velocity U

corresponds to the abrupt start of the body from rest to the velocity -U. The

initial sheet for t - At can be taken from the self-similar solution for a vortex

spiral behind the edge of a semi-infinite plate. A trial-and-error approach,

however, shows that the development of the spiral row of point vortices is quite

insensitive to the placement of the first vortex with respect to the subsequent

roll-tip. The strength of the first vortex again is determined by the Kutta-

Joukowaky condition (28). The location of the first vortex, which is arbitrary,

can be described by the distance As away from the tip and the angle B between the

extension of the fin and •th Uine drawn from the tip to the vortex. Although

variation in As (from As J125 to 0.03) was not noticeable in the results, small

but still insignificant differences occurred when 0 was varied (Figure 5).

4.3 CUT-OFF PROCEDURES

The infinite turns in the vortex spira: cannot be represented by a row of point

vortices, and these turns are physically unrealistic anyway (Section 4.4). Some-

where the spiral has to be cut off. Investigations by Wedemeyer 1 5 and Pullin1 7

have revealed that the almost circular windings, which represent the core of the

vortex, can be replaced by a single vortex. Even this single vortex appears not to

be necessary (Fink and Sohl). The overall solution 1.s quite insensitive to

arbitraty cut-off.

Another cut-off procedure Is necessary when the rolled-up spiral separates from

the body and becomes a detached vortex which swims away in the wake. Although the

development of a vortex row without the use of' he rediscretization technique some-

how takes care of this separation by itself (see Figure 7b, page 21), the line of

redistributed vortices has to be severed by a proper criterion. Shoaff"t t uses the

condition dK/dt - min after a certain developing time if the vortex row. This

criterion has been applied here with varying success (see Section 6). The

detached line is, by the way, also rediscretized. Shoaff's technique of replacing

the detached line after two body lengths by a single vortex has also been adopted.

12



Figure 4 - Accuracy Tests with Flows Past a Flat Plate at
ct 900
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Figure 5 - Accuracy 'rests with Flown Past a Flat Plate at
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Lines at t = 2 with At - 0.025 for Three Different O's.
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4.4 VISCOUS EFFECTS

The neglect of viscosity may restrict the usefulness of the model. There are

three major flow regions in which viscosity cannot be ignored, and the influence

of such neglect on the overall flow characteristics must be questioned.

Infinitely many turns of the vortex spiral are obviously not realistic, since

during the creation of the vortex the core is in a state of solid-body rotation.

Moore and Saffman1" have discussed the structure of the vortex spiral and have

given estimates of the viscous core which is present from t-0 on. After separation

from the body the vortex decays through dissipation, and this effect is not

simulated in the point-vortex model either.

Vortices or blobs of vorticity of opposite sign, which approach each other, are

eliminated or coalesce in a viscous fluid. Also, when vortices approach a solid

surface, they are weakened or destroyed by the opposite vorticity produced at the

wall. None of these effects are simulated in the invimcid-flow model.

4.5 OTHER SEPARATION POINTS

So far, flow separation has been considered only at the tips of the fins.

However, other separation points at the body surface may occur as, for instaace,

in the case of the circular cylinder with one fin, Here, a separation point must

exist on the side of the body opposite the single fin. Separated regions may also

appear between fins when n >1.

The occurrence of separation points can be predicted with the aid of boundary-

layer theory. Such a prediction method, together with a technique to provide for a

vortex sheet at the separation point, will be included in the computer code at a

later time.

5. FLOW CHART

The sequence of computations is indicated in the following flow chairt. The

calculation of force coefficients is included.

6. SOME RESULTS

A computer program based on the equations of Sections 2 through 5 has been

developed for circular cylinders under the restriction n 1 4. However, most cases

of practical interest are covered under this restriction.
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Two samples have been selected for comparing results of the present computer

program with those from the literature. A third example gives new results. More

complicated cases of practical interest will be published later.

6.1 VORTEX SHEDDING FROM A FLAT PLATE AT a - 90*

This came is of particular interest since its results can be compared with

results of Fink and Soh,1 which are based on a similar point-vortex method, and

with analytical results of Wedemeyer 1 5 for a discontinuity line, at least for the
initial phase of the roll-up. The results are presented in Figures 4c and 6.

In Figure 6 the roll-up of the discontinuity line is shown at times t - 0.25,

0.5, 0.75, 1.0, and 1.5 with At - 0.02. Up to t - 0.75 the curves are compared
with Wedemeyer's self-similar solution," 5 which is valid for a semi-infinite plato.
From t - 0.75 on, deviations occur because of the influence of the finiteness e
the plate width. (According to Wedemeyer 1 5 differences between infinitely wide
and finite-width plates become noticeable from t - 0.6 on.) For t - 1.0 and 1.5

the results are compared with those of Fink and Soh. 1 The agreement iA quite good.
In all. cases the limiting curve for t - • by Helmholtz is shown, along which the
discontinuity spiral rolls up until it becomes unstable. It may be mentioned that
in this early phase the flow is symmetric, and no attempt has been made to induce

alternating vortex shedding through an initial asymmetric disturbance.

In Figure 4c the Increase in total vortex strength K with time for one half of
the plate is compared with the corresponding result by Fink and SoBh. 1 Their data
are slightly larger and agree with those of Wedemeyer for a plate of finite width.

6.2 VORTEX SHEDDING FROM A FLAT PLATE AT a - 450

Results for this case can also be compared with those in the liternture.

In Figure 7 the roll-up of the discontinuity line is shown for t - 0.5, 1.0, and

2,0 with At - 0.05 and is compared with the curves by Belotserkovskii and Nisht,2 0

who did not use a rediscretization procedure. The advantage of rediscretization is

particularly demonstrated for the roll-up behind the leading edge, In Figure 8

the same situation is presented at the slightly different times t w 0.39, 1.12, and

1.87 and the results are compared with the corresponding solutions of the Navier-

Stokes equations for Re - 2bU/v - 200. The flat plate is here approximated by a

thin elliptic cylinder of infinite length with a width-to-thickness ratio of 10 to
1. A discussion of the differences has already been published. 2 1
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In Figure 9a the total strength K of the leading-edge vortex is compared

with that of the trailing-edge vortex K2 . The absolute amount of the latter is

slightly smaller so that the sum of the two is not zero (Figure 9b). This violates

the conservation law of vorticity. In reality, however, boundary layers contribute

to the generation of vorticity which would account for the difference. In an

inviscid-flow model a bound vortex can be introduced at the center of the circle

to balance the difference. This technique was studied with the present computer

program. Since the results were not significantly different, the incorporaLion of

such a bound vortex was abandoned.

Difficulties have been encountered with the cut-off procedure. The trailing-

edge vortex could be separated with Shoaff's criterion (Section 4.3) and could

simulate vortex shedding satisfactorily. However, the leading-edge vortex did not

move away fast enough after cut-off and interfered with the development of the new

vortex sheet. The problem has not yet been solved, but it may be a consequence of

the radiscretization procedure.

6.3 VORTEX SHEDDING FROM A CIRCULAR CYLINDER WITH TWO
FINS AT a a 45*
In the final example the vortex shedding from a circular cylinder with two fins

at a - 45* was compared with that from a flat plate at a - 45*. Figure 10 displays

the development of the discontinuity lines for both cases. Up to t - 0.6 the

leading-edge vortices do not show any visible differences, but the trailing-edge

vortex for the flat plate is slightly stronger. Beyond t * 0.6 the leading-edge

vortex is deformed by the presence of the cylinder. The corresponding data for the

total strengths KI and K2 in Figure 9 confirm that K2 is slightly smaller than K2

for the flat plate.

The two-dimensional time development of the discontinuity line in Figure 10 can

also be interpreted as a spacial growth in a three-dimensional flow within the

frame-work of a strip theory, Then, t is replaced by the coordinate Z perpendicular

to the x,y-plane with the aid of the constant velocity W in the Z-direction:

t - Z]W. A computer-generated perspective view is presented in Figure 11.
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Figure 11 - Projection of the Situation in Figure 10
with the Aid of a Strip Technique
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7. CONCLUSIONS AND SUMMARY

a. A computer program ha. been developed to simulate, by means of a discrete-

vortex model, vortex shedding from a circular cylinder with up to four evenly

distributed fins.

b. A new approximate conformal transformation for a circular cylinder with two

dihedral fins (Figure 2) has been derived, and a conformal transformation for an

elliptic cylinder with two fins has been improved (Section 2).

c. A numerical method has been devised for computing the coefficients of the

Laurent series, which are necessary to find the potential function for the rota-

tional motion of the body (Section 3.1 and Appendix B).

d. The feeding mechanism, that is, the introduction of the new point vortex near

the tip at each time step, is the crucial process in the whole model. Although the

shape and the location of the spiral discontinuity lines are quite insensitive to

various approximation schemes, the strengths of the discrete vortex rows are some-

what weaker than those reported by Wedemeyer1 5 and Fink and Soh. 1

e. Although results for the force coefficients are not reported here, preliminary

studies indicate that they are very sensitive to the kind of feeding mechanism

used, This is also reflected in the different results of Belotoerkovskii and

Nisht 20 and Sarpkaya 2 2 for the vortex shedding from an inclined plate.

f. The CP time in seconds on the Ti-ASC is equal to 0.003.m 2 for bodies with two

fins,

8. PROPOSED EXTENSTONS AND RIPINEMENTS TO THE PROORAM

The usefulness of the coMrputer program described can be enhanced by Lncorpora-

ting the following extensions aMd refinements:

a, Include the roll-up of discontinuity lines shed from the cylinder (other thaun

the tips of the finn), This requires building in a boundary-layer code fur du-

termining the point of separation and the amount of vorticity shed at that point.

b. Improve the feeding mechanism to obtain reliable force and moment coefficieLs.

c. Include the computation of force and moment coefficie~nts.

d. Investigate viscous effects and make appropriate corrections.

e. Consider other conformal transformations of practical interest.
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APPENDIX A
DERIVATION OF THE CONFORMAL MAPPING,

EQUATIONS (4) AND (5)

The derivation of the conformal mapping of the finned cylinder in Figure 2 onto

a circle is divided into the following steps:

(1) Conformal transformation of the original figure in the z-plane onto the

auxiliary plane z,, in which the fins are mapped to arcs of a hyperbola (Figure 12):

2+ _(Al)

Then, the points A through H and the corresponding points A1 through H1 in

Figure 12 are given by

F A +a A + 2a

B -a- 1 0  1 -- 2a coo 6
"C - be C - (b +- -)coo + i(b - )sin 0

D B D1  B I)

E - a E -- 2a

F - as10  F1  B 1

G- ,bei0 Gi-- (b + a)coo 0 -i(b- a)sin e

H •H B

The lengths k and 2 are

k - (C - (b a in 0 (A3)
41 1 G1  2 (b siU

1 +1 2.•-D - •(C.1 G1  - (b-a)2 cos 0 (A/i)

Trhe hyperbolic arc C B G1 is now approximated by the circular arc through Lhieise

points with the radius

R u *¥ (4k 2 + 92 )Ai)
22

(2) According to Betz 2 3 this circular arc can be mapped onto a circle by means of

2 1Ahb
22
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S~with
k22Aw h positive root of z - 2a + (b + 2 Cos

A2  2 z 2a b o

B NA+ /4k2+X2 + /F
B2  2 2 + 7 " -+ (A72

atet.

where

M Z r -I(BD2 -D 2 ) - (A8)

(3) Now the figure in the z 2 -plane is mapped onto a straight line in the z 3 -plane

by
2

Sm+ (A9)"3 "2 2

All points of the figure lie on the real axis with

2A + rA3 2  2 A - Z/2

t 2

B " 2 " + r R- (AlO)
3 2 2 B - k/2

2i

etc.

(4) Finally, the straight line in the z3-Plane is mapped onto the circle in the
ý-plane with radius c by

2
C + z3 (All)

with
1 (A3 + E3 ) (A12)

*1c - (A3 - E3) (A13)

(See Figure 12.) Combining the four transformations to two, one arrives at

Equations (4) and (5).
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APPENDIX B

LAURENT SERIES FORw

The conformal mapping z a f(4) in expressed in an infinite series of the form

zm E a (-c) , where a- a (El.)
qM-1 q~

The principal part of z; on the circle a (see Equation (13)), which is required to

obtain BW.is

P..() Z b (~q on RIJ - (B2)
qinl q

Since it is very laborious to determine aq and b analytically, theme coefficients
q q

are computed numerically. From Equation (81) it follows that on the circle

Z. a a- iqo (B 3)
qw-l q

where *ce .Equation (B3) is a Fourier series whose coefficients can be

determined from

a 1 f "' eqe d (1B4
q 0¶od

or in discretized form from

N iqBe
211 ae(15

The coefficienta a are real if
q

W() -z(2ii-O) (06r)

because

f 2. j ''d +i dQ* 0 iqu do]

.1 it, z iq9 +- ;-iqf6\)d
2n0

I fl Re(zu 1q8 )do (13)
Tie
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Similarly, Equation (B2) becomes on the circle

P.P.(Ki) b E b i(8)
qml q

whose coefficients bq are

b i f Z; eiqe de (B9)q 2v 0

Ae N iqO1

* Again, for the symmetry condition (B6) it can be shown in a way analogous to

"Equation (B7) that b in real.q
As an example, for a circular cylinder with two fins (n-2) and various ratios

a/b the coefficients a and b are displayed in Tables 1 and 2 for q-1 through 50
q q 4

with A6 - 2n/1080. For a/b 0 0, a b a 0 except a1 - 0.25, b -c , 0.0625.
q q1

For the other extremum a/b 1 1, a - • and thus all coefficients are zero. Despite

the fineness of AO the data in both tables are accurate only to ± 5 - 06 because of

round-off errors.
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TABLE 1 - COEFFICIENTS a FOR n *2,

a;b -0.2, 0.4, 0.6, 0.8

Uq 0.2 0.4 0.6 0.B

I *2215FeO6 elst1ploo 07579p-a1 .QEjlO

8 32flE-O1 972321- GqýIf- *tRkoF- at

2f p11EC * IF~-CpI7 OF I¶ IO .I S llOWO1

11 -*31q2E-q2 *s?!9E-n2 *.A 4F -02 qW0

17 *OACE-0 2 16S7F- ?2 4ý2.'4ifP- O2 4111 AF- 0

It -.2deI2F.-f2 -,qpqP-C2 stafE*-Q2 o.prlrvo?

25 -46021E-03 4140CF-C -e2'47?E-e2 =,?422F-02
27 .ijf*V3 *11s*F*CE .*'(FOroll~ -GIR62E.O2

at -4.12F?F*02 a *1h3~r ft.2,aor-3
43PUE-ol 0 1 p 0,442E-0

37 -1 iCE0 -oi3F T11 2 V-sF 2 *1?23rmO2

jW -.L.21PE-01 si*1'2fr'C2 49ff0
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TABLE 2 - COEFFICIENTS b FOR ni 2,
asb .2v0*4,0*6 0.

b~ 0. 0.2.04,06 0.68.

0.2jw -ý 0.4 06 F aI G2t- I 935.028

2 2it- eow~ .lmohla't1 .J2247-le)1II -0
2 .$3463c-o ".6~~ .1,#3lit-j 2 6o*2AE-02

8A d~~r-(i 3 LL Ili.O2 .db4q.-03

3 oo~ *,4 -'.0 *J?20.5 3 ijji Oi.?J- 43 4FC3
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