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NOTATION _
i a Radius of cylinder in z-plane e
ﬁ aq Coefficient in Laurent series (Bl) ?
pe b Distance from body center to fin tip ﬂ“
bq Coefficient in Laurent Series (B2) %
B Function in Equation (13) g
B, Function in Equation (14) %
¢ Radius of cirele in g=plane '
k Coefficient in Equation (4) '
! [
K, Total strength of the point vortices behind the ith fin O
L Coafficlients in Equationa (5) and (9) i %
m Total number of point vortices in the field ‘ E
M Number of point vortices representing a single discontinuity line ? %
0 Number of Eins , ;?
P Coefficlents In Equation (7) A
r,¢ Polar coordinates (r also coefficient in Equation (5)) ' F
¥
Re Reynolds number = 2bU/v y
sk Distance along discontinuity line of kth point vortax from first point ‘g
vortax in the line P
8 Coefficlent in Equation (6) %
As Segment length of discontinuity line after rediscretlzation @
S Length of dimcontinuity llne >
t Time -
k- toty Coefficlents in Kquation (9) £
i U,V Velocity vomponents k
E Constant velocity of the parallel flow .
3 Complex potential :
wp Contribution to w from parallel flow 1
Wo Contr’'bution to w [rom rotation !
: Wy Contribution to w from vortices E
W Constant velocity component in the Z-direction
X,y Cartesian coordinates {n z~plune
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Subacripts:

0

i
k
q

Angular velocity

= x + 1y
= x ~ iy
Auxiliary planea

L EATIE P .

Coordinate perpendicular to the X,y-plane
Angle of attack

Angle between line extending from the fin and line between tip and
first vortex

Strvength density of discontinuity line
Gamma function
= £ 4 1n

A\
v
b
o

= £~ dn

Cartesian coordinates in {-plane

Dihedral angle in Figure 2; also ¢ = ceie
Strength of vortex

Kinematic viecosity

Point on the circle in the g-plane

Coefficients in Equation (9)

Polar coordinates
Potential function
Stream function

Initial state
{th g
kth point vortex

qth coefficient in Laurent series
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PREFACE

This report is part of a continuing effort at the Computation,
Mathematice, and lLogistics Department, with support from IR-inhouse
funds and the 6.1 NAVSEA Mathematical Science Program, to atudy
vortex shedding from solid bodies in a fluid flow and to apply the
results to Navy problems, For the last ten years the major objective of
this effort has been to investigate vortex generation and shedding in
real fluids by the numerical solution of the Navier-Stokes equations.
These successful atudiea, which resulted in numerouas publicatiens in
the open literature, were originally rastricted to moderate Reynolds~-
number flows about simply-shaped bodies. Today two-dimensional
flows around bodies of quite arbitrary shape can be handled, but the
solution of the Navier-Stokes equations for high Reynolds numbers
etill cannot be obtained, Instead, ideal fluid flow models with their
well-known shortcomings must be used, This report describes one of
two preliminary studies to develop a computer program for vortex
shedding past arbitrarily shaped cylindrical bodies within the realm of
ideal-fluid modela. This report deals with vortex shedding from
finned cylinders, and the forthcoming mecond report by R. Shoaff will
address vortex shedding from arbitrarily shaped bodies excluding fins
and other sharp protuberances. These purely two-dimensional flows
then may be used in a strip theory to include at least gome aspects of
three-dimensional flows. The ultimate goal will be a computer code
for vortex shedding from three-dimensional bedies.
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A compucer program has been developed to simulate
vortex shedding from circular cylinders with evenly diastri-
buted fina. Thgse bodies may rotate continuously or oscillate
in a parallel gtream. The two-dimensional’ £low model consists
of point vortites inserted 4n an otherwiii potential~flow
i field. For tHe roll~-up 2! the line of ~vortices the rediscres-
tization scheme by Fink and Soh is uséd. Sample results are
presented fo vortexophgdding from,j’flat plate at angles of
attack of 45° and 90%, and from 5/6irculat cylinder with two
fins at an angle of attack of 45°, F

ADMINISTRATIVE INFORMATION //,

The work presented in this report was supported by the Independent Research
Program at the David W. Taylor Naval Ship Rasearch and Development Center under
Work Unit 1843-050, and the 6.1 NAVSEA Mathematical Sclences Program under Work
Unit 1808-010,

1, INTRODUCTION

The simulation of vortex shedding from bodies in potential f£low by means of
point=vortex models has attracted the attention of many researchers in the last
decade for a number of reasons. Persisting difficulties in solving the Navier-
Stokes equations for large Reynolds numbers, the availability of large computers,
and progress in the study of rolled-up discontinuity sheets have fostered the use
of point-vortex models. The extenslve literature on this subject includes recent

survey papers by Fink and Soh,!* Saffman and Baker,? Clements and Maull,’? Kato," and
Leonard, 5

Although the neglect of vipcosity limits the usefulness of point-vortex
methods, in many cases detalls of the flow field can be obtained and a fairly good
estimate of the force coefficients can be made.

This report presents the equations of motion for incompressible fluid flows
past abruptly started circular cylinders with n evenly distributed fins of equal
length. These cylinders may rotate continuously or they may oscillate. Some cases
i can be extended to elliptic cylinders. Point vortices are introduced into the
] potential flow around such cylinders to simulate the development and shedding of

*A complete listing of references is given on page 39,




vortices at the fins. A fixed interval of time elapses hetween successive intro-
ductions of point vortices. The computer program is checked for simple cases by
comparing its results with solutions from the literature. Results for force

coefficients and complicated flow problems of practical interest will be presented
at a later time in another paper.

The formulas derived in this report and the computer program described here
can be applied in missile aerodynamics and ship hydrodynamics. In particular, cross
flows past cruciform fin configurations and past underwater vehicles with sails,
ruddars, atabilizers, bilge keels, and cables can be determined,
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2. CONFORMAL TRANSFORMATIONS

o

For the computation of the flow field the methiod of mapping the physical plane
z = x + 1y onto the circle plane { = £ + in is used. Numerical methods®s7+8 are
available which map an arbitrarily shaped body contour onto a circle by means of
the transformation z = £(3). While our work was in progress, Mendenhall, Spangler,
and Perkins® published a paper on vortex shedding from arbitrarily shaped bodies
using a numerical mapping technique for the Theodorsen transformation. V.A. Golovkin :
and M.A. Golovkin!? worked with Fredholm integral equations to compute the roll-up
of point vortices. In this report exact conformal transformations f(g) are applied
to avoid arrors due to the approximation of the body contour., Of course, these
exact transformations are restricted to certain classes of bodies. For a cylinder
with a circular cross=-gection of radius a and with n evenly distributed fina of
length b-a, Miles!! has given £(z) in the implicit form (mee Figure 1)

e

2y

TARLAN SRR RTET

TR

s
¥
¥

Z(n/2) + (aZ/z)(n/Z) - C(n/z) + (C2/C)(n/2) 1)

zc(n/z) - b(n/Z) + (u2/b)(n/2) (2)

where ¢ is the radius of the circle in the g{~plane. Equation (1) cen be written
in the explicit form

s
I O T

-

n n ] ] 12
I I LU Ly I L L L T L LI L (3)
I, | In general, this expresslon is not single-valued and care must be taken ln working :
with it. From Equation (3) it can be shown that (dz/dc)c_w -], . f
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For fins protruding in a dihedral configuration at an angle different from
90°, an approximate conformal mapping is given for n=2 in implicit form with an
auxiliary mapping in the zz-plana (Figure 2):

2 2 2

z+§—-z2-‘:—2-(b+-f;—-)co-e (4)
2 2
x [ 2
zz+,2-m-c+cfs+2 (5)

with

2
1 a
k 2(b -r)s:l.n )

L= %—(b--st)2 cos ©

r-/%RE , R--z-li(zzkakz)

1 . ip, -
8 5(Ay + By, ¢ Ay Ey)

k2 a2
E2 - E;.- -25+(b+b—-)sin 0 for E2 <0
kz a2
Az —jA;- 2a + (b + g—)sin o for A2 >0
r2
Ay = Ay + rwe=TF R
2
x L
Ey=E, ¢ E,-%/2 ~ 2 (6)

Here again, (dz/dg) fmo ™ 1. The derivation of this conformal tranaformation is
given in Appendix A.

In certain cases, for instance for two fine, the circular cylindrical body can
be replaced by an elliptic ecylinder:

’ 2 2
z-z1+Pz;—-3— €))]
) 1
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‘Figure 2 - Conformal Mapping of a Circle with Two Tins
in a Dihedral Configuration onto a Circle
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2 2
; ) _, . [~
f 2, + 421 L =7+ m (8)
; wharae
4 2 2
é\H 2,-;-[1' +m__1- _.S.P.ﬂ.L]
x 2 1 4t 2 41
E 1 2
2 2
e’ c-l[-\r +.S.P:ﬂ.)__+-r +Sml—]
] 2 1 411 2 412

i -l 2_ 2.2
; T 2(:14- ty =P *+q%)
—_—
T, " —;-(t2 + tg - p2 + q2 ) (9

(see Tlgure 3), Equations (7) through (9) are similar to those given by Bryson,!?
However, Bryson's formulae are not entirely correct, as shown by the case a=b,
t;®t,=a, s arbitrary (in Bryson's notation).

3. FLOW FIELD

3.1 COMPLEX POTENTIAL AND COMPLEX VELQCITY
In the problem under consideration the complex potential w = ¢ + 1y, where ¢
is the potential function and ¢ the stream function, can be written as

W wp + Wy + W (10)

where w_ represents the parallel flow around the body, Wy is the contribution due

to the presence of m vortices, and Ve is the term which takes account of the

rotation of the body. Since the complex potential ig by definftion the same in the
z- and {-planes, the contribution due to parallel flow is!?

2
L

4

vy " U(Ce-'iul + eiu) (11)

with U the constant velocity of the parallel flow and o the angle of attack
measured counterclockwise from the positive real axis. The term Wy representing

the m vortices is given by

m 2
wy =1 ¥ ok [log(s=5.)-logle=-59] (12) .
v kel K k T |
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where i denotes the strength of the kth vortex and Ck its position. Ek is the
complex conjugate of ck.

The contribution wp can be obtained with a method described by Milne-
Thomson.!? For a body rotating with angular velocity w(t), the stream function
at a point o of the circle is given by

2
24y = lwzE= tu £(0) E(g——) = 1w B(0) (13)

where B(o) is called the boundary function, If B(o) is written in the form of a
Laurent series in o, then B(o) = Bl(c) + Bz(a) where B, contains the negative
powers of ¢ and B2 the non-nagative powers, With the aid of Cauchy's residue
theorem!3 it follows that

wR(c) - 1w al(c) (14)

Bryson!? has discussed Bl(C) for the came covered by Equation (3). The general
situation a ¥ 0 requires the evaluation of a double sum which converges slowly near
the body and more rapidly farther away (sec Appendix B). For a = 0 this double

sum can be reduced according to Bryson!? to

2
® gyl . ree -=<)
B0 = X LD p g 4y et ——Lf atn .251' (an0) (15)
=l MER n r(e+=41)

where I' {s the gamma function. Thia expression is undetermined for n = 1 and 2.
However, one easily obtains from Equation (3):

3 A
¢ e
Bl 4 C + .2 for nwl, a=0 (16)
c4
Bl - ZE for nw2, a=0 an

The angle of attack u 18 related to the angular velocity w by

t
a=ay+ [ wdt (18)
0

The complex conjugate velocity of the flow is given, except for the point

vortices themselves, by!

g—--u-iv.-.‘.’!._‘.‘.’!’.‘.& (19)




where

m dB
dw io _¢” da 1 ___1 1
ac = U(e e ) +1 kzl Kk(c ck 2)-+1w T3 (20)
g5
bk
n. D
71 31
4 2 -ax (21)
de n n
31 -3a
14 -c g
The velocity of the k™ vortex is, according to Routh's theorem (Milne-Thomson}?),
fﬁ.iﬁk.iﬁ&_ik ..Q._(g_c_k. (22)
_ t dt L, 2 "k dck dzk ! ;
with Do

When the reference frame is to be fixed to the body, the aolid-~body rotation

We - —;‘wz must ba added to the terms in Equation (10). The corvesponding
velocity is

%{t-iu‘é (23)

3.2 DIMENSIONLESS FORM OF THE COMPLEX VELOCITY
The complex velocity of the flow field, including that of the vortices,

Equations (19) and (22), is made dimensionless by U. For the coordinates and other
quantities with the dimension of length, the parameter 2b 1s chosen as the charnc-
teriatic length., In particular, the time t is made dimensionless by U/2b and the
vortex strength x by 1/2b U, The same notation is used for the nondimensional
quantities in the results (Section 6).
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4. VORTEX CENERATION AND SHEDDING

4.1 FEEDING MECHANILSM

The process of vortex generation requires the existence of a boundary layer
and its separation from the body, After separation the boundary layer becomas a
frea shear layer in which vorticity is concentrated in a thin layer for high
Reynoclda numbers, Such a layer rolls up in time by forming a vortex. In potential
flow, which does not allow the creation and elimination of vorticity, the roll=~up
is modeled by a diacontinuity line. Self-similarity of the discontinuity spiral
with advancing time im assumed for the initial period when the finiteneas of the
plate is not yet felt. This idea goes back to Prandtl,!* More recently, detailed
studles were made by Wedemeyar,'!'5 Blendermann,!® and Pullin.!” The discontinuity

spiral close to the center has the form r & ¢'2/3

and is, therefore, a hyperbolic
type of epiral with infinitely many turns,

Numerically, the discontinuity line itself is often approximated by a row of
point vortices (dimcrete~vortex model)., Earlier difficulties with such a model
have buen largely overcome by a rediscretization procedure developed by Fink and
Soh.! ‘This method is used in the present work.

At the wharp adge of a body flow always separates when it meets the body under
a nonzaro angle. The discontinuity line originates at the sharp edge., It grows in
time with new line elementr forming at the edge. In u discrete=vortex model new
point vorticem are introduced after the time interval At. The {eeding mechaniam
works 1in the following way!

(a) At time t+At vortices are convected away from the edge. Thelr new positionus
are computed with the ald of Equation (22).

(b) Each digcontinuity line is rediscretized in the physical plane so that every
vortex on it lies at the center of the segment represented by the vortex., If 8y im
the distance of vortex k along the line from the first vortex on the line, then

the total length S of the line la BM. where M ls the nuTber of vortices on the line.
The sagment length after rediscretization 1s given by As = §/(M~1) and so the new

positions of the vortices can be calculated from
ék = (k=1)As (24)
where ék 18 the distance after redlscretization of vortex k from the first vortex

on the line. The positions of the first and lust vortices are unchanged by the
rediscretization procedure.
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(¢) The strengths of the vortices are recalculated according to Shouffl8 to
account for the changed positions of the vortices. First, the strength denaity Y

near sach vortex hafore rediscretization is computed as

Kl/(a2 - 'l) 1f kwl
A 2xk/(lk+l - 'k-l) if 1<k<M (25)
k! (8 = 8_1) LE keM

For the redistributed vortices, the strength density is approximated by

~

8 -8
. k 4=l

where 2 has been determined so that s < 8, Thus, the strengths of the

IR
redistributed vortices ave ?kﬁé to a first approximation. But since the procedure
outlined so far does not neceasarily conmerve the total vortex atrength in each
discontinuity line, the deficit or excess strength is ramoved by adding an equal
amount of strength to each vortex, Hence, the new atrengthe are given by

A A " 1 M M ~ ~ )
€, =y A8+ = (8, = I vy,Aa) (27
A A

(d) In each diascontinuity line a new vortex is introduced betwaen the edge and the
first vortex at a point 1/3 of the distance from the edge in the physical plane.
The {=plane positions of all the vortices are calculated. Then the strengths of
the nascent vortices are determined by satisfying the Kutta-Joukowsky condition

dw .

‘i - 8

'dc)c'ci 0 (28)
at sach fin tip &y in the ¢-plane. For n fine n linear equations of Equatlon (28)
type muat be solved,

Accuracy is checked by computing the shape and position of the vortex apirul
and the increase of the total vortex strength at the ith fin with time for

various Ats
M
K,(t) = L
{ -

(29)

K
1 ik
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Figure 4a shows that with decreasing At the number of the inner loops increases,
but this does not seriously affect the shape and location of the spiral or its
strength (see Section 6 and Figures 4a, b, c).

4.2 INITIAL CONDITION

gtarting a vortex sheet at t=0 in a potential flow of congtant veloeity U
corresponda to the abrupt start of the body from rest to the veloecity -U., The
initial sheet for t = At can be taken from the self-similar solution for & vortex
spiral behind the edge of a lemi-infinita'platc. A trial-and-error approach,
however, shows that the development of the spiral row of point vortices is quite
insensitive to the placement of the firat vortex with respact to the subsequent
roll-up, The strength of the first vortex again is determined by the Kutta~
Joukowaky condition (28), The location of the first vortex, which is arbitrary,
can be described by the distance As away from the tip and tha angle B between the
extenslon of the fin and :an line drawn from the tip to the vortex. Although
variation in As (from As = =+ J25 to 0,03) was not noticeable in the results, small
but atill insignificant differences occurred when 3 was varied (Figure 5).

4,3 CUT-OFF PROCEDURES

The infinite turns in the vortex spiral cannot be rapresented by a row of point
vortices, and these turns are physically unrealistic anyway (Section 4.,4)., Some=
where the spiral has to be cut off. Investigations by Wedemeyer!® and Pullin!”
have revealed that the almost circular windings, which represeut the core of the
vortex, can be replaced by a single vortex. Even this single vortex appears not to
be necessary (Fink and Soh!). The overull solution ia quite insensitive to
arbitrary cut-off.

Another cut=off procedure ls necessary when the rolled-up apiral separates [rom
the body and becomes a detached vortex which swims away in the wake. Although the
development of a vortex row without the use of *he rediscretization technique some-
how takes care of this separation by itself (see Figure 7b, page 21), the line of
redistributed vortices has to be severed by a proper criterion. Shoaff!" uses the
condition dx/dt = min after a certain developing time of the vortex row. This
criterion has becn applied here with varying success (see Section 6), The
detached line is, by the way, also rediscretized. Shoaff's technique of replacing
the detached line after two body lengths by a singlc vortex has also been adopted,

12
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Figure 4 - Accuracy Teats with Flows Past a Flat Plate at
a = 90°

“esma At 0,10
- at = 0,06
men==~ At = 0,028
e &t = 0,01

Figure 4a - Diecontinuity Lines at t = 0,5 for Various At
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4.4 VISCOUS EFFECTS

The neglact of viscosity may rastrict the usefulness of the model. There are
thres major flow regions in which viscosity cannot be ignored, and the influence
of such neglect on the overall flow characteristics must be quastionad.

Infinitely many turns of the vortex spiral are obviously not realistic, since
during the creation of the vortex the core is in a state of solid-body rotation,
Moore and Saffman’® have discussed the structure of the vortex spiral and have
given estimates of the viscous core which is present from t=0 on. After separation
from the body the vortex decays through disaipation, and this effect is not '
simulated in the point-vortex model either.

Vortices or blobs of vorticity of opposite sign, which approach each other, are
eliminated or coalesce in a viscous fluid. Also, when vortices approach a solid
surface, they ara weakened or destroyed by the opposite vorticity produced at the
wall, None of these effects are simulated in the lnviscid-flow model,

4,35 OTHER SEPARATION POINTS

So far, flow separation has been considered only at the tips of the fina.
However, other separation pointu at the body surface may occur as, for instaace,
in the case of the circular cylinder with ona fin, Here, a separation point must
exist on the side of the body opposite the single fin, Separated regions may also
appear between fins whan n> 1.

The occurrence of saparation points can be predicted with the aid of boundary-
layer theory., Such a prediction method, together with a technique to provide for a
vortex sheet at the separation point, will be included in the cuvmputer code at a

later time.

5. FLOW CHART

The sequence of computations is indicated in the following flow chart. The
calculation of force coefficients is included.

6. SOME RESULTS

A computer program based on the equations of Sections 2 through 5 has buen
devaloped for circular cylinders under the reatriction n 2 4, However, most cases
of practical interest are covered under this restriction.
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Two samples have been selected for comparing results of the present computer

program with those from the literature, A third example gives new results, More
complicated cases of practical interest will be published later.

6.1 VORTEX SHEDDING FROM A FLAT PLATE AT o = 90°

Thias case is of particular interest since its results can be compared with
results of Fink and Soh,! which are based on a similar point-vortex mathod, and
with analytical results of Wedemeyerl!5 for a discontinuity line, at loast for the
initial phase of the roll-up. The results are presented in Figures 4c and 6.

In Figure 6 the rollw-up of the discontinuity line is shown at times t - 0,25, N
0.5, 0.75, 1.0, and 1.5 with At = 0,02, Up to t = 0.75 the curves are compared
with Wedemeyer's self-similar solution,!5 which 1a valid for a semi-infinite plata.
Trom t « 0,75 on, deviations occur because of the influence of the finiteness o/
the plate width, (According to Wedemeyer!S differences between infinitely wide
and finite-width plates become noticeable from t » 0,6 on,) For t = 1.0 and 1.5
the results are compared with those of Fink and Soh.! The agreement ia quite good.
In all cases the limiting curve for t = = by Halmholtz is shown, along which the
discontinuity spiral rolls up until it becomes unstable. It may be mentioned that
in this early phase the flow is symmetric, and no attempt has been made to induce
alternating vortex shedding through an initial asymmetric disturbance,

In Figure 4c the incresse in total vortex strength K with time for one half of

the plate is compared with the corresponding result by Fink and Soh.! Their data

are slightly larger and agree with those of Wedemeyer for a plate of finite width,

6.2 VORTEX SHEDDING FROM A FLAT PLATE AT o = 45°
Results for this case can also be compared with those in the literature, i
In Figure 7 the roll-up of the discontinuity line is shown for t = 0,5, 1.0, and '
2,0 with At = 0.05 and 18 compared with the curves by Belotserkovskii and Nisht,”0
who did not use & rediscretization procedure. The advantage of rediscretization is
particularly demonstrated for the roll-up behind the leading edge. In Figure 8
the same situation 1s presented at the slightly different times t = 0.39, 1.12, and
. 1.87 and the results are compared with the corresponding solutions of the Naviaer-
Stokes equations for Re = 2bU/v = 200. The flat plate is here approximated by a
thin elliptic cylinder of infinite length with a width-to-thickness ratio of 10 to
1. A discussion of the differences has already been published.2!
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In Figure 9a the total strength K. of the leading-edge vortex is compared

with that of the trailing-edge vortex tz. The absolute amount of tha latter is
slightly smaller so that the sum of the two is not zero (Figure 9b). This violates
the congervation law of vorticity. In reality, however, boundary layers contribute
to the generation of vorticity which would account for the difference. In an
inviscid-flow model a bound vortex can be introduced at the center of the circle

to balance the difference, Thim technique was studied with the prasent computer
program., Since the results were not significantly different, the incorporation of
such a bound vortex was abandoned.

Difficulties have been encountered with the cut-off procedurs, The trailing-
edge vortex could be separated with Shoaff's criterion (Section 4.3) and could
simulate vortex shedding satisfactorily. Howaver, the leading-edge vortex did not
move away fast enough after cut-off and interfered with the development of the new
vortex sheet. The problem has not yet been solved, but it may ba a consequence of
the rediscretization procedure,

6.3 VORTEX SHEDDING FROM A CIRCULAR CYLINDER WITH TWO
FINS AT o = 45°

In the final example the vortex shedding from a circular cylinder with two fins
at o = 45° was compared with that from a flat plate at o = 45°, Figure 10 displays

the davelopment of the discontinuity lines for both cases. Up to t » 0.6 the
leading-edge vortices do not show any visible dlifferences, but the trailing-edge
vortex for the flat plate im slightly atronger., Beyond t = 0,6 the lsading-edge
vortex 1s deformed by the prasence of the cylinder. The correcaponding data for the
total strengthse K1 and K2 in Figure 9 confirm that K2 is slightly smaller than Kz
for the flat plate.

The two-dimensional time development of the discontinuity linu in Figure 10 can
also be interpreted as a spacial growth in a threc-dimensional flow within the
frame-work of a atrip theory. Then, t is replaced by tha coordinate Z perpendicular
to the x,y-plane with the aid of the conatant velocity W in the Z-direction:

t = 2/W, A computer-penerated perspective view is presented in Figure 11.
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7. CONCLUSIONS AND SUMMARY

a. A computaer program has been developed to simulate, by means of a discrete-
vortex model, vortex shedding from a circular cylinder with up to four evenly
distributed fins.

b. A new approximate conformal transformation for a circular cylinder with two
dihedral fins (Figure 2) has been derived, and a conformal transformation for an
elliptic cylinder with two fina has been improved (Section 2).

c. A numerical method has been devisad for computing the coefficients of the
Laurent series, which are necessary to find the potential function for the rota-
tional motion of the body (Section 3.1 and Appendix B).

d. The feading machanism, that is, the introduction of the new point vortex near
the tip at each time step, is the crucial process in the whole model. Although the
shape and the location of the spiral discontinuity lines are quite insensitive to
various approximation schemes, the strengths of the discrete vortex rows are soma-
what weaker than those reported by Wedemeyer!5 and Fink and Soh.!

e. Although results for the force coefflcients are not reported here, preliminary
studies indicate that they are very sensitive to the kind of feeding mechaniam
used, This is ulso reflected in the different results of Belotserkovskil und
Nisht20 and Sarpkaya?? for the vortex shedding from an inelined plate,

£. The CP time in saconds on the TI=ASC is equal to 0.003 m? for bodies with two

fins.

8, PROPOSED EXTENSTONS AND REFINEMENTS TO THE PROGRAM

The usefulness of the computer program described can be anhanced by lncorpora-
ting the followlng extenasions and refinements:
a. Include the roll-up of discontinuity lines shed from the cylinder (other than
the tipa of the fins)., This requires bhuilding in a boundary=-layer code for du-
termining the point of separation and the amount of vorticity shed at that point,
b. Improve the feeding mechanism to obtain reliable force and moment coefflcients.
¢, Include the computation of force and moment coefficlents.
d. Investigate vismcous effects and make appropriate corrections.
e. Consider other conformal tranaformations of practical interest.
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APPENDIX A
' DERIVATION OF THE CONFORMAL MAPPING,
EQUATIONS (4) AND (5)

The derivation of the conformal mapping of the finned cylinder in Figure 2 onto
a circle is divided into the following steps:
(1) Conformal transformation of the original figure in the z~-plane onto the
auxiliary plane 2y in which the fins are mapped to arca of a hyperbola (Figure 12):
i a2
ﬁ 2, =2+ (Al)
i

Then, the points A through H and the corresponding pointa Al through Hl in

Figure 12 are given by
A=+a Al w4+ 2a
i _
5 B == ge 10 81 w - 2a cos ®
7; - 2 2
; Cw - pei® G, == (b +%cos 0+ 4(b - Lstn o
- D=3 D, = B
3 1 1
3 E=-a E, = - 2a (A2)
! G m beie G, »m = (b+2cos 0= 4(b - LYain 0
3 1 b b
k o=t HI.BI
A The lengths k and & are
o 2
| e L - ol .8l : s
- ko= 5 €, =6 w3 (b -5 sin 0 (A3) :
i |
! - Lo I SR / .
L=, 5 ((’1+Gl) b (b-a)” cos 0 (A ;

The hyperbolic arc ClBlcl is now approximated by the circular arc through these
points with the radius

R o= 2 (40 \A5)

(2) According to Betz?? this circular arc can be mapped onto a circle by means of

k2 ‘2
zy = .2—2- -z + (b + T) cos 0 (Ab)
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Figure 12 - Sequence of Conformal Mappings from a Circle with Two
Dihedral Fins onto a Circle
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with
2 2

A, ™ positive root of z, - E—'- 2a + (h + 5—0 cos B
2 2 29 b
B, wt+d /2?2 adts/Lyg, (A7)
2 2 2 2 2
etc.,
where
Mats, r-%‘(nz-nz)-/%az (AB)

(3) Now the figure in the zz-plane is mapped onto a straight line in the za—plane
by
2
-z X L3
e Tl Ry (A9)
All points of the figure lie on the real axis with

- V2R (A10)

etc.

(4) PFinally, the straight line in the za-plane is mapped onto the circle in the
Z=plane with radius ¢ by

L+ -z -8 (Al1l)

2
c_
¢
with
1
8 =3 (A3 + E3) (Al12)

c = 1 (A, - E

7 (A 3) (A13)

(See Figure 12.) Combining the four transformations to two, one arrives at
Equations (4) and (5).
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APPENDIX B

' LAURENT SERIES FOR LY

. The conformal mapping z = £() ie expressed in an infinite series of the form

z= L[ a (S)Q » wherea , =c ' (Bl)
q--l q'% -

The principal part of zz on the circle ¢ (see Equation (13)), which is required to
obtain Bl(c). is

PP(zz) = £ b (HY on |t] we (B2)
qu1 1 °

Since 1t 18 very laborious to determine aq and bq analytically, thease coefficients
are computed numerically, From Equation (Bl) it follows that on the circle

zw I a e 140 (83)
qe-1 9

where = ceie. Equation (B3) is a Fourler series whose coefficients can be
determined from

2
a = fh z 9 4o (B4)
q Ul 0 .
or in discretized form from
N 1q8
a N %% o e b (B5)
iml
The coefficlents nq are real 1if
2(0) = z(2n-0) (16)
because
w 2m o
a = QL-[ f z eiqed04-f z eiq0 de] ]
q 27 g T :
1
-:}~ f (z aiqﬂ + z n-iqe)de
Zn g _
n
= 117 Re(ze!%%)d0 (87)

0 4




Similarly, Equation (B2) becomes on the circle

[ <]
P.P.(z2) = L b e 40

(88)
qm1 9
,} whose coefficients bq are
2n
Y iq0
bq =5 g £z @ d8 (B9)
N 1q8 ;
n A9 - ]
N ™ Eilzzzz e j
Again, for the symmetry condition (B6) it can be shown in a way analogous to l f i
Equation (B7) that b_ is real. o

q
Ay an example, for a4 circular cylinder with two fins (n=2) and various ratios

a/b the coafficients nq and bq are displayed in Tables 1 and 2 for q-i through 50 |
with A6 = 2v/1080. For a/h = 0, aq - bq = () except a = 0.25, b1 = ¢ = (,0625, !
For the other extremum a/b = 1, 2 = { and thus all coefficients are zero. Deapite
the fineness of A0 the data in both tables are accurcte only to 5« 06 because of
round-off arrora.
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TABLE 1 - COEFFICIENTS aq FOR n = 2,
a:b = 0,2, 0.4, 0,6, 0.8

uq 0.2 0.4 0.6 0.8

1 W 2215€00¢ «1521F0 00 «752¢F-01 o1Q7&F- 01
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¢ - 2711€-02 W EP2VIFen? “oHPUANEfE e1163F-01
11 =y3192€-0¢ e8P 3QE-NZ s MARLF =02 ATASF. (2
1 +S50R0E-02 - 21FBF" ¢ ~obR2 LE-N2 STIAFe (2
18 = JRLFF=N2 - B2R0QE. "7 siNELF N WPEI0F=02
1? e1091E=02 e 1871€- 2% sUAL XF=0? WN2HPFe
19 sl ICLE-N2 o JRLTF=2¢ W RP2REBF 02 =si?§9F= 2
et -, 2UhE2E=-NE YR LLYd LR =, TAEUE -0 P20 2Fa 2
23 1997F-02 =2519F-02 27O (1 2 2R N4F= 02
2¢ -, 8021E-023 s 1LOQF- (¢ ~ 24T 7E-C2 e 2422F= (2
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30 +AOCLE="Y ey IRLOE=N1Y = ?LCOE=CY s1200Fe2
by - QECLIE-NY «10U2F=-22 WFQCUFE =Y WiN28Fe 2
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TABLE 2 - COEFFICIENTS bq FOR n = 2,

a:b = 0,2, 0.4, 0.6, 0.8

bq 0.2 0.4 0.6 0.8
e 037wt =1 ebud TE=uy «322¢E=V1 ¢ 9395E=(2
“ sdalre=y2 sltnlcei} 0228 0wE"04 o ATw2E=(2
© “od233e =y s 3Ivfobk=02 ellowt={04 o IT24E-02
8 edddop =2 o 3upde=(2 seleldk=y2 s Gu2AE=(2
10 =olit/ie=y2 e1407e=02 ¢32useel2 en9idE~)2
e slnlne =il ednnotey 2 = 327%c=ud e Ju9BE=02
1w 2032 =03 “s12nye=i2 =.9b3le~C3 e 2099E=~02
16 sed959c=(3 LI LEY LR willie=02 « J8B9E=-Q3
18 en3lc =043 «9275E=03 1P 0uEeGE o, bLobE=-04
£ =e1202c+03 0512703 2005~ L3 s F142E=03
e “ololec=03 =o??2duc=y 3 *e50uTe=4d3 ey 1000E=02
2w 128 7ug =0 d ey Jiulc=C3 =,1055E=02 s {11u5E=02
e sl 397L=ud «5734c~C3 ~sow4JE~(I “s30u7e~d2
é8 e8122€ =d= 17 ioE~(3 e191Ce=03 “y 12¢9€«(3
3 0527 ~lw w 4772603 vil2%e=03 “s 3630E~CS
32 olreni=(3 w450 E~C e2hdIE=08 = lovRE~Qb
Je elddbreud LR R IV “sC379e=de e ?T53E=03
Jo weatTz=lUn LI LT T TN =enl3dc=(3 evo9lE~03
46 =sB8ulitele “oJSAuc=03 “~sn0d5t=03 e 5u?lt=03
%0 edlu3e =0 et 25l b 7350« (u e 5157€=43
%l wodtuec =iyl Y-LALT LR v32wile=il e3432E-03
LX) sndalp =i selilirele RE T X I e 2l 97c=03
Y] o 3b0He =0 =el2en70.=03 sl3lui=id e 2723¢ = 0w
Y ] agtd7 U =in chiodreulk = l1liue=J3 ey 1453E=(3
56 eBISLL ~ve 2113r=13 *odd357e=4d3 s 2?unc =03

38




REFERENCES

1. Fink, P.T. and W.K. Soh, "Calculation of Vortex Sheets in Unsteady Flow
and Applications in Ship Hydrodynamics." Tenth Symposium on Naval Hydrodynamics,
1974, 463,

2, Saffwan, P.G, and G.R. Baker, "Vortex Interactions." Ann. Rev. Fluld
Mech. 11 (1979, 95,

3. Clements, R.R. and D,J. Maull, "The representation of sheets of vorticity
by discrete vortices." Prog. Aerospace Sci. 16 (1975), 129,

4. Kato, N., "Numerical Study on Transient and Quasi~steady Separated Flows
Behind a Flat Plate and a Circular Cylinder by Potential Vortex Models." Ph.D,-
Dissertation, Dept. of Naval Architecture, University of Tokyo, Nov., 1979,

5. Leonard, A., "Vortex Methods for Flow Simulation." To be published in
Journal Comp, Phya.

6. Dawson, C.W, and J.S, Dean, "CMAP: A Program to Conformally Map the Unit
Gircle onto a Simple Closed Curve." Computation, Mathematics, and logistica
Department, David W. Taylor Néval Ship Remearch and Development Center. Unpublished
computer program, 1971,

7. Grassmann, E., "Numerical Experiments with a Mathod of Successive Approxi-
mation for Conformal Mapping." Zeitschrift fur Angewandte Mathamatik und Phyaik 30
(1979), 873,

8. Chakravarthy, S. and D. Anderson, "Numerical Gonformal Mapping." Mathe-
matice of Computation 33 (1979), 953.

9. Mendenhall, M,R,, S5.B. Spangler, and 8.C., Perkinn, "Vortoex Shedding trom
Circular and Noncircular Bodles at High Angles of Attack." Journ. ALAA, No. 79-00l0,
1979,

10. Golovkin, V.A. and M.A, Golovkin, "Numerical solution for unsteady
separated inviscid incompresasible flow past an arbitrary body." Sixth Intern. Conf,
on Numerical Methods in Fluid Dynamics. Lecture Notes in Physica, No. 90, Springer-
Verlag, 1979, 253,

11, Miles, J.W., "On Interference Factors for Finned Bodiew." Journ. Acro,
Sci. 19 (1952), 287.

39




T R, e LR T A B Y

prte et o g L N G e S e e e

e Bt -

T TR

12, Bryson, A.E., "Evaluation of the Inertia Coefficients of the Cross
Section of a Slender Body." Journ. Aer. Sei. 21 (1954), 424,

13. Milne=Thomson, L.M., "Theoretical Hydrodynamics." The MacMillan Co.,
New York, Fifth edition, 1968.

14, Prandtl, L., "Uber die Entstehung von Wirbeln in der idealen Flussigkedit."
Vortrage aus dem Gebiet der Hydro- und Aerodynamik, Innsbruck, 1922, Berlin, 1924.

15, Wedemayer, E., "Ausbildung eines Wirbelpaares an den Kanten einer Platte."
Ingenieur-Archiv 30 (1961), 187.

16, Blendermann, W., "Der Spiralwirbel am translatorisch bewegten
Kreisbogenprofil," Schiffstechnik 16 (1969), 3,

17, Pullin, D.I,, "The large-scale structura of unsteady self-similar rolled-
up vortex sheets," Journ., Fluid Mech. 88 (1978), 401,

18, Shoaff, R.L., "A Discrate Vortex Analyeis of Flow About Stationary and
Tranasversely Oscillating Circular Cylinders." Ph.D. Thesis, Naval Postgraduato
School, Monterey, California, Dec. 1978,

19, Moore, D,W, and P.G, Saffman, "Axial flow in laminar trailing vortices."
Proc. Roy. Soc. London A 333 (1973), 491,

20, Belotserkovakii, S.M. and M.I. Nisht, "Investigation of Special Features
of Flow Over a Flat Plate at Large Angles of Attack.'" Fluid Dynamics 8 (1973), 772,

21. Lugt, H.J. and H.J. Haumaling, "The Acceleration of Thin Cylindrical
Bodies in a Viscous Fluid." ASME Journ. Appl. Mechanics 100 (1978), 1.

22, Sarpkaya, T., "An inviscid model of two-dimensional vortex shedding for
transient and asymptotically ateady saparated flow over an inclined plate.'" Journ.
Fluid Mech. 68 (1975), 109,

23, Beti. A., "Konforme Abbildung." Springer-Verlag, 2. Aufl, 1964.

40




Coples

12

INITIAL DISTRIBUTION

APG
1 Lib

CHONR
1 Code 102/R. Lundegard
1 Code 430/J.C.T, Pool
USNA
1 Dept. Mech. Engr/
R.A. Granger
1 Lib
NAVPGSCOL
1 T. Sarpkaya
1 Lib
NAVWARCOL
USNROTC, ADM MIT

NCSC
1 D.E, Humphraya

NSWC, White Oak/Li:
NSWC, Dahlgren/Lib
NAVSEA

1 SEA 03C/J. Huth

1 SEA 03R1/J. Schuler

1 SEA 3212/wW. Sandberg

1 SEA 63R3/T. Plerce
NAVAIR/440, W, Volz
NAVSHIPYD BREM/Lib
NAVSHIPYD CHASN/Lib
NAVEHIPYD MARE/Lib
NAVSHIPYD NORVA/Lib
NAVSHIPYD PEARL/Lib
NAVSHIPYD PTSMH/Lib

DT1C

Copies

2

AFFDL
1 A, Filore
1 W, Hankey

NASA Headquarters
1 EM=-7/R, Dressler

NASA AMES
1 T, Leonard
1 U, Mehta
1 Lib

NASA Langley
1 D, Buashnell
1 Lib

U. of California/Dept Naval Avch
1 J.V. Wehausen

U. of Cincinnati/K. Ghia

Harvard U,/Dapt of Math
1 G, Birkhoff

Johna Hopkina U., APL/V, O'Brien

Iowa Inat, of Hydraulic Res,
1 L, Landweber

Hydronautics, Inc,
7210 Pindell School Road
Laurcel, MD 20810
1 M. Tulin

Nielsen Enginecring & Res, Inc,
Mountain Viaew, CA 94043

Scientific Raas. Asmocilatces, Inc,
P.0. Box 498
Glastonbury, CT 06033

1 §.J. Shamroth

5. L gr T

S T

W
Lo
r

il




Copies

P N T = TR N TR

- -

[

25

10

CENTER DISTRIBUTION

Code Name

012 R. Allen
012.2 B. Nakonechny
012.3 D, Jewell

1500 W. Morgan
1501 R. Shoaff
154 J. McCarthy
1544 = R, Cumming
1552 T. Wang

156 G. Hagen
1564 J. Feldman

1600 H. Chaplin
1606 6. De los Santos

1800 G.H, Gleissner
1802,1 H.J. Lugt
1802.2 F.N. Frenkiel
1809.3 D, Harris
184 J.W. Schot

1843 H.J. Hauseling
1843 J. Telate

1844 S.K. Dhir

1900 M. Sevik
1901 M. Strasberg
1960 D. Feit

5211.1 Reports Distribution
522.1 Unclassified Lib (C)
522,2 Unclaasified Lib (A)

42

T




A

D"’NSRDC WSU&.S THREE ""ﬂ’ﬁs OF REPOHTS

e Dmsnoc nemms (A FORMAL SERICS, CONTAIN INFGRYATIO
- NICAL VALUE, THEY. uaav A CONSECUTIVE RUMERITAL 't:?”*m::
?}:?}42253 ‘.'.*LA“““ “"’Vﬂﬂkf a1 8 THE ‘JRIG:EA?’ G we-'mﬁmm?w

B GEPARTM’E&TA‘ ’%Ei‘ﬂﬁlm :ZSEM!FQ”‘FM, u-'mi:S CONTAIN 3*’:’4"5'\” THH BT
§NARY TEMPOF!A.;Y oR #ROPﬂSETAﬁY NATURE OR OF LINITLY INVIRIST O 8
‘!"‘:a’“’ r_;gg;qw A'k DrPAﬂ?’Vf"NTA&. Mﬁs‘%ﬂ’%’.ﬁﬁiﬁ&i 3""‘#‘?%?}{3;‘ TION,

-

" c? LIMITED USE AND INTEREST. THEY ARE. PRIMARILY WORKING PAPERS
TERANAL USE. THEY CARRY AN IDENTIFYING HUWSER WHICH INDICATES THELE
MUMERICAL SODE OF THE QRIGINATING DEPARTMERT. ANY DISTRIZUTION OU
MUST BE APPROVED BY THE HEAD OF THE GRIGINATING DEPARTMENT O
BASIS. |

o CARDL e

3. TECHM C#.L -...?“.‘.".‘MNDA A!\ i&FGRMAi, $E?5”A CONTAN TESHNICAL DU AT



