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Abstract.

Scattering theory is developed for plane diffraction gratings.

The author's theory of Rayleigh-Bloch wave expansions is used to construct

wave operators and a scattering operator for such gratings. For gratings

that admit no surface waves, transient wave fields near the gratings are

shown to behave for large times like free waves and corresponding

asymptotic wave functions are calculated. These results are applied to

analyze the echoes from gratings of signals due to localized sources.

Finally, the echoes of sources remote from the grating are estimated and

shown to be completely characterized by the S-matrix and the signal

waveform.
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Introduction.

A theory of the scattering of acoustic and electromagnetic waves

by plane diffraction gratings was initiated in [5, 6]. That work developed

the theory of Rayleigh-Bloch (or R-B) waves for diffraction gratings.

Physically, the R-B waves describe the response of a diffraction grating

to an incident monochromatic plane wave. The principal result of [5, 6]

is an R-B wave expansion of arbitrary wave fields. The purpose of the

present report is to apply the results of [5, 6] to an analysis of the

scattering of transient wave fields by diffraction gratings. To simplify

the analysis it is assumed throughout this report that the grating

propagator A(G) admits no R-B surface waves. In the general case most

of the results of this report hold for states orthogonal to the subspace

spanned by the surface waves (see [5, (6.36)1). The scattering of R-B

surface waves is not analyzed in this report.

The report is organized as follows. §1 presents a review of the

* initial-boundary value problem for transient wave fields near a diffrac-

tion grating and its solution by means of the Hilbert space theory of

the grating propagator developed in [1, 3]. §2 presents a construction

of the wave operators for the pair consisting of the reduced propagator
A of [5] and the reduced propagator A for the degenerate grating.

p O,p

The results of §2 are used in §3 to construct the wave operators for the

pair consisting of the grating propagator A and the propagator A of the

degenerate grating. The results of §3 imply that transient wave fields

near gratings have asymptotic wave functions in the sense of the author's

monograph on scattering by bounded obstacles [3]. These functions, and

the corresponding asymptotic energy distributions are derived in 4. In
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§5 the S-matrix for the pair A and A0 is calculated. §6 contains an

analysis of the structure of the echoes produced by sources that are far

from the grating. The analysis shows that in this case the echo wave-

form is completely determined by the S-matrix and the signal waveform,

just as in the case of scattering by a bounded obstacle [4].

!C

j

.I

4 ___



§1. The Initial-Boundary Value Problem for the Scattered Fields.

The notation of (5, 6] will be used in this report. In particular,

X - (xy) 6 R2 and G is a domain in R2. Each transient acoustic or

electromagnetic wave field in G can be described by a real-valued

potential function u - u(t,X) that is a solution of the initial-boundary

value problem

(1.1) D2u Au - 0 for all t > 0 and XIE G
t

(1.2) Dvu - Vu - 0 (resp., u - 0) for all t > O, X E DG,

(1.3) u(O,X) - f(X) and Dtu(OX) - g(X) for all X e G

J Here t C R is a time-coordinate, 7 u - (DxuDyU) , Au - D2u + D2U, aGX yx iy

denotes the boundary of G and V(X) is a unit normal vector to aG at X.

u(t,X) may be interpreted as a potential for an acoustic field with

velocity v - Vu and excess pressure p - Dtu. With this interpretation the

boundary condition (1.2) corresponds to an acoustically hard (resp.,

soft) boundary. Alternatively, if u satisfies the Neumann condition then

(1.4) Ex - Dy , Ey - -Diu , Hz - Dtu

describes a TH electromagnetic field in a domain G bounded by a perfect

electrical conductor. Similarly, if u satisfies the Dirichlet boundary

condition then

(1.5) ax -Dyu , H - D u , E - Dtu
-Jy y x z t

describes a TE electromagnetic field in the same kind of domain. In

.4,9 3
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both the acoustic and electromagnetic interpretations the integral

(1.6) E(u,K,t) - f {(Dxu) 2 + (Dyu)2 + (Dtu) 2} dXdy

is interpreted as the wave energy in the set K at time t. Note that all

the physically observable quantities are determined by the derivatives

of the potential u. The state of the wave field at the initial time C1

t - 0 is defined by the initial conditions (1.3).

The initial-boundary value problem in its classical formulation

(1.1) - (1.3) will have a solution only if 3G and the functions f(X) and

g(X) are sufficiently smooth. However, for arbitrary domains G the

problem is known to have a unique generalized solution with locally

finite energy whenever the initial state f, g has this property. This

result was proved in [1]. In cases where the initial state has finite

energy,

(1.7) JG {(Dxf) 2 + (Dyf)2 + g2} dxdy <

a simple approach to the initial-boundary value problem is provided by

the grating propagator

S(1.8) A- (G) (resp., AD(G))

of [5, §1]. For arbitrary domains G C R2, A is a selfadjoint realization

in the Hilbert space L2(G) of the operator -A. Moreover, A > 0 and

D(A/ 2) - L,(G) (resp., L,(G)); see [5, 1l]. It follows that if

(1.9) f e L(G) (rap., L D(G)) and g 6 L2 (G)



then (1.7) holds and

(1.10) u(t,) (cos t AI 2) f + (A- 1/2 sin t A1/2) g

is the unique solution with finite energy (- solutions wFE) of (1.1) -

(1.3); see [3, 5]. In particular,

(1.11) u E C1(R,L2 (G)) n C(R,D(A'
1 2 ))

and the initial conditions hold in L2(G). The boundary conditions are

incorporated in the definition of D(A). The d'Alembert equation (1.1)

holds in a suitable weak form; see [3]. The transient wave fields

studied in this report are the solutions wFE defined by (1.9), (1.10).

It was shown in [3, Ch. 3] that solutions wFE in arbitrary

domains have a representation

(1.12) u(t,X) - Re {v(t,X)h , v(t,) = e h

provided that f and g satisfy (1.9) and g e D(A -1 2). The complex-valued

function h E D(A /2) is related to the initial state f, g by

(1.13) h = f + i A
1/2 g

:I

This representation is used in §4 below to determine the asymptotic

behavior for t ® of the transient wave fields (1.10).

The R-B wave expansions of [5, §6] can be used to construct

representations of the solutions wFE (1.10) and (1.12). In the case of

(1.12) the representations take the form

7

I

.-- * -_



• q
I 6

(1.14) v(t,X) 1.i.m. i +(X,P) e- itw(P) h(P) P
R2 h()d

where P (p,q) and the integral, together with its formal t-derivative,

converge in L2(G) [5, Theorem 6.5 and 6.6].

I
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§2. Construction of the Wave Operators for A and A
p 0p

The notation of [5, §3 and §5] is used in this section. The

purpose of the section is to prove the existence and completeness of the

wave operators

itA1/2 -itA 1/2

(2.1) W W,pM (A'/2 A J s-lim.e 0. ,J e p

where J L 2 (Q) - L (B ) is defined by

h(X) X E

(2.2) J h(X) -

,X B0 -0

This will be done by means of an explicit construction based on the

eigenfunction expansions for Ap and A0, p of [5, §3 and §5]. The principal

results are formulated as

Theorem 2.1. Let G be a grating domain [5, §1]. Let

p E (-1/2,1/2] and assume that a0 (Ap) = ). Then W+,p and Wp exist and

are given by

(2.3) W±,p 0,p ;,p

In particular, W+,p -L,(B0) are unitary operators and one has

1 (2.4) Ip(X) - W* M (,)W for all XER

Theorem 2.1 is primarily of technical interest in the theory of

scattering by diffraction gratings. It will be used in §3 to derive a

S1Pconstruction of the wave operators for A and A0.

7
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Theorem 2.1 will be proved by the method of [3, Ch. 7]. Only

the case of W+,p will be discussed, the other case being entirely

similar. To begin consider the wave function

itA1/2
(2.5) v(t,.) = e P h , h E L2 (2)

The eigenfunction expansion theorem for A of [5, Theorems 5.6 and 5.71p

implies that v(t,X) has the two representations

M f -itw(~'h+(p+m,q) d

(2.6) v(t,X) = l.i.m. J +(X,p+m,q) e- h (p+mq) dq

convergent in L2 (Q). As in [3, Ch. 7], the incoming representation will

be used to calculate the behavior of v(t,') for t - + . The eigenfunction

_ has the decomposition (5, (5.4) and (5.5)]

(2.7) *_(X,p+m,q) = j(y) o 0(X,p+m,q) + '(X,p+m,q)

where 0' is incoming. Combining (2.6) and (2.7) gives

++

(2.8) v(t,X) j(y) v0 (t,x) + v +(tX)

where

(2.9) v0(t,X) - l.i.m. J ,0(X,p+m,q) • -it'(p~ q) h (p+m,q) dq

converges in L2(B0 ) while

(2.10) v+ (t,X) =l.i.m. J I '(Xp+mq) e-itw(p+mq) h (p+mq) dq

converges in L2 (0). Note that the convergence of (2.6) and (2.9) implies
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+

that of (2.10). Moreover, v0 (t,X) is a wave function in L2 (B0) for the

reduced propagator A0, p of the degenerate grating; namely,

-itA 
1 /2

(2.11) v0 (t,) - e h+
0

where h, = vo(O,") e L2(B o ) is given by

(2.12) * h *

Op 0 op -9p

Theorem 2.1 will be shown to be a direct corollary of

Theorem 2.2. Under the hypotheses of Theorem 2.1 one has, for

all h e L2 ("),

(2.13) lim v+(t, .) = 0 in L2 (S)

and hence

+

(2.14) lim lv(t,.) - j(.) v0 (t,.)L = 0

Proof of Theorem 2.2. Equation (2.14) can be written

(2.15) lim e P - J* e 0,p _ h 0

t44-o ,p -p1 L2(Q)

where J L2 (B0 ) - L,(O), the adjoint of the operator J defined in

[5, (5.22)], is given by J* h(X) - J(y) h(X)Ij . Now the family of

operators appearing in (2.15) is uniformly bounded for all t E R. Hence

to prove that (2.15) holds for all h E L2 (Q) it will suffice to verify

it for all h from a dense subset of L2 (Q). It will be convenient to use

the dense subset D - P D0 where
0 0

(2.16) Vo C I q L2 (R0)
MEZ

I ~
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is the set of all g(q) ( {gm(q) m E Z) such that there is an M = M(g)

with the properties

(2.17) gm (q) _0 for Imi > M , and

(2.18) gm C CO(R 0 - E ) for Iml < M

where E is the exceptional set of [5, (5.15)]. Moreover, it willm,p

suffice to verify (2.15) for functions of the form

(2.19) h(X) = f0 4_(X,p+m,q) g(q) dq

where m is fixed and g EC - Em p) has support in an interval

I C R - Emp since the case of a general h e D_ then follows by

superposition. Thus the proof of Theorem 2.2 may be completed by showing

that if

(2.20) v+(tX) = J 4'(Xp+mq) e-itw(p+m'q) g(q) dq

where g E C0(R 0 - Emp) and supp g C I then (2.13) holds.

The definition of the function 0'(X,p+m,q) [5, (5.4), (5.5),

(5.13), (5.14)], together with [5, Theorem 4.15], implies that for fixed

m E Z one has

(2.21) C C(O x (R2 - E))

where E is the exceptional set of [5, (2.30)]. Moreover, the far-field

form of €' is

.4
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(2.22) 0'(X,p+m,q) = a£(p+m,q) e + P(X,p+m,q)
JUEL

where L is a finite set, independent of q E I (see [b, (9.33)ff] for the

notation). Note that

-iyqt 1 Tr iX(p+z )
(2.23) a£(p+m,q) e J e -  *'(xyp+mq) dx

It follows from (2.21) and (2.23) that

(2.24) a--+m,.) E C(RI - E)

Moreover, by [6, Lemma 9.31 there exists a constant U = (p,m) > 0 and

for each r' > r > h a constant C - C(I,p,m,r,r') such that, for p and m

fixed,

(2.25) ip_(X,p+m,q)l < C e-Py for all X E Qr' and q e I

Substitution of (2.22) in (2.20) gives

(2.26) v1. (t,X) - v+(t,X) + v+(tX

where

(2.27) v a-(p+m,q) e g(q) dqe

( v(tX) IL e

Note that, by (2.24), each a,(p+m,.) is continuous on the closed interval

I. Now each of the integrals in (2.27) has the form of a modal wave in

a simple waveguide; cf. [6, (9.63)ff]. It follows from [6, (9.69)]

applied to the finite sum in (2.27) that
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(2.28) lia IV+ -t0-) .0
+ 

L,(B0)

It remains to show that v 2 (t, - ) - 0 in L2 (Q) when t +o. This

will be done by applying (6, Lemma 9.5] to u - v2 - v - v1 . To this end
+ 4+

note that for all t E R one has v (t, °) E L2(a) by (2.10) and v1 (t,-)

2 + +e L2 (B0 ) by [6, (9.68)]. Thus v. (t,') - v+(t,*) - v (t, ") E L2 (a) for

all t E R which verifies [6, (9.75)].

The local decay property [6, (9.76)] follows from the local

compactness property of the grating domain G, assumed in [5, §I], and

the abstract decay theorem of (2]. The proof is the same as that of

[3, Theorem 5.5] and is therefore not repeated here.

Finally, (6, (9.77)] follows directly from the estimate (2.25)

and the representation

(2.29) v +(t,X) - f p_(X,p+m,q) e-itw( + m 'q) g(q) dq

which imply

(2.30) Iv+(t,X)I < -C e jg(q) dq for all XE ar, and t E R
I.I

This completes the proof of Theorem 2.2.

Proof of Theorem 2.1. The proof follows that of [3, Corollary

7.2]. In fact, the calculation given there, adapted to the present

problem, gives the estimate

.4
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j e - eitA 2 p L (B)

(2.31)

~itA 1/2 iA/

Ie P J* e o9p * (Dp h

1i~12  1iA/2

+ Re -iA P(4* (P h)1 + Re -iAp h
epp _,p L2(B0r) + hL2(,r)

The first term on the right in (2.31) tends to zero when t - + by (2.15).

The last two terms tend to zero when t - + by the local decay property

used in the proof of Theorem 2.2. It follows that the left-hand side of

(2.31) tends to zero when t +o which proves the existence of WZ, p and

equation (2.3). Finally, to verify (2.4) note that it can be written

(2.32) nlQ() - 0* 0 I () * for X C R
p +,p Op o,p o,p ±,p

by (2.3). The unitarity of 4+,p implies that an equivalent relation is

(2.33) #±,p 11(X) 0I,pTM(0) c( for XER

:Op 0,Vp

But this last equation is correct because the two sides coincide with

the operation

(2.34) {gm(q)} - {H(X - w2 (p+m,q)) gm(q)}

in Z G L2 (R0); see (5, Theorem 5.7]. This completes the proof.

14



§3. Construction of the Wave Operators for A and A0.

The notation of [5, §6] is used in this section. The purpose of

the section is to prove the existence and completeness of the wave

operators

(3.1) W ±- W±(A1/2 ,A1/2 ,G - s-li a itA
t ~J' e-itA±/2

where J : L2 (G) * L (R2) is defined by

GX 2
h(X) ,X rG ,

(3.2) JG h(X) -

0 ,XE -G.

The principal results of the section are formulated as

Theorem 3.1. Let G be a grating domain (5, §R] and let A - A(G)

admit no surface waves. Then W+ and W_ exist and are given by

(3.3) W+ - 0 $

In particular, W± : L2 (G) - L2 (R.) are unitary operators and one has

(3.4) fl(A) H ± r0(X) Wt for all A E R

The proof of Theorem 3.1 will be based on Theorem 2.1 and a series

of lemmas that relate the grating propagators A and A0 to the corresponding

families of reduced propagators Ap and A0 ,p , -1/2 < p 1 1/2.

The Mapping U. As a first step, the correspondence introduced in

[5, (6.10)] will be extended to a unitary mapping

U L2 (G) - L2 ((-l/2,l/21,L 2 (S)). To see how this may be done note that

if f e L2 (G) then4 15
t
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(3.5) f(x+2rZt,y)I L2 () for all t E Z, and

(3.6) 1 If(.+2t,.)l 2  * Ill 2  < I
(36 L2 (a) L2 (G)

Hence the Plancherel theory in the Lebesgue space L2((-1/2,1/2],L 2 (f2))

implies that the Fourier series

(3.7) F(x,yp)- a •-21rilp f(x+2wt,y)j2
tEZ

converges in this space and Parseval's relation is valid. Combining this

result and (3.6) gives

(3.8) IFIL2((_i/2,/,zjL 2 ( Q)) a IfiL2(G)

for all f 6 L2 (G).

Loma 3.2. The mapping U : L2 (G) - L ((-l/2, /2,L 2 ()) defined

by Uf - F and (3.7) is unitary.

Proof. The preceding discussion implies that Uf is defined for

all f 6 L 2 (G) and U is isometric. The suriectivity of U follows from

the Plancherel theory. Indeed, every F e L,((-1/2,1/2,L 2 ('1)) has a

Fourier development

(3.9) F(X,p)- - t  F() M

tez

convergent in L2 ((-1/2,1/2],L 2 (i1)). The Fourier coefficientsn (3.9) are

defined by the Bochner integrals

4 _______
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= 1/2 ip

(3.10) F2L(X) - 1/2 e27rilp F(X,p) dp ' L2((a)J-1/2

and Parseval's relation holds:

(3.11) iF12  IF 1F1 2L2 ((-1/. V2],L2('1)) RE (a)

Thus to construct f = U- I F one need only require that

f(x+27T2,y)ja IFt(X) E L2 (2), or

(3.12) f(X)i(2 ) = Ft(x-27ri,y) for all t E Z

Parseval's relation then guarantees that f = L2(G) and (3.12) implies

that Uf - F.

The next lemma makes it possible to construct operators T(A) from

the corresponding reduced operators T(A p) with p E (-1/2,1/2].

Lemma 3.3. For all bounded Borel functions T(X) defined for

X > 0 and for all f e L2(G) one has

(3.13) (U T(A)f)(.,p) - T(A p) Uf(*,p) E L2(a)

for almost every p E (-1/2,1/2].

Proof. The result will be derived from the R-B wave expansions

for A and Ap and the corresponding Plancherel relations. To this end

let f,g 6 L2(G) and write Uf - F and Ug - G. Moreover, assume that

O+g EL 2  (R0). Then Lemma 3.2 and the results of (5, 15 and §6J

imply
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(U Y(A)f,G) - (i(A)f,g).- (R+ T(A)f, 04g)-R T(W2 (P)) T+(P) 4(P)dP

(3.14)

~1/2 _ _ _ _ _

" Z l/Y(,Z(p,q)) ?+(p,q) -+(pq) dq dp
I~ r-lIZ

" p12  4."(wp+m,q)) '4 +rma,q) 1 (p~m, q) dq dp

mE-Z -1/2 F

1/ 2 1

- I I ~ (w(p+,q)) 1+(p+m,qTp ̂(p+m,q)dq dp

S-1/2 me +

= -i/2 (1 (Ap) F(*,p),G(',p))L2(O ) dp

Note that the hypothesis g^+ E L2 (R) implies that the m-summation and

interval of q-integration in (3.14) are finite. Moreover, since such

functions A are dense in L2(Rz) the relation (3.14) holds for all

GIE L2 ((-1/2,l/2],L 2(W)). On taking G(X,p) - GI(X) G2 (p) in (3.14)

where G1 E L2( ) and G2 (p) E L2 (-1/2,1/2] are arbitrary one gets (3.13).

The mapping U obviously depends on the grating domain G U = UG.
t 2

In the special case G - R2 let U0 - UR2. With this notation one has

Lemma 3.4. The operators U, U0 , JG and JQ satisfy

(3.15) U0 JG - JQ U

Proof. The definition of U implies that

(3.16) (Ja Uf)(X,p) - e- itp JQ (f(x+27rt,y)j,)

Rez
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(3.17) (U0 JG f)(Xp) - 0 -2ritp (J f(x+2r',y) 1B),

for all f e L2 (G). These obviously define the same function, which

implies (3.15).

The next lemma will be used to relate the wave operators for A

and A, to those for Ap and A p .

Lemma 3.5. For all f 6 L2 (G) one has

(3.18) U0 ((D $+ f)(',p) - 0* *, Uf(',p) E L2 (B0 )0 o,p -0p

for almost every p e (-1/2,1/2].

Proof. The relation [5, (6.11)] can be written

(3.19) (0±f)(p4mq) - ($,p F(,p))m (q) - (1_+,p Uf(''P))M(q)

The relation was proved in (5] for all f E L2°(G). However (3.19), as

a relationship in Z , L2 (R0 ), extends immediately from the dense set

L2om(G) to all of L2(G). In particular, specializing (3.19) to G - R0

fives

(3.20) (00 fa)(p+m,q) - (Do~p U0 fo(''P))m(q)

for all fo E L (R2). Substituting fo - 0* 0+ f in (3.20) gives

(3.21) (U * * f) (" 'p))(q) - 0 f(p+m,q) - Uf(.,P))m(q)

in Z* L2 (Ro), by (3.19). Thus

* (3.22) *0 (U 0  0 &,f)(.,p) - , Uf(.,p)

for almost every p E (-1/2,1/21. (3.22) is equivalent to (3.18)..9

L 4--...
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Lemmas 3.2-3.5 will now be shown to imply Theorem 3.1. The main

step in the proof is described by

Theorem 3.6. For every h G L2 (G) and H Uh one has

I JG e-itA1 /2 h e-itA°'2 * h12 )ii ~ ~ G e -e(D + h 2R)

(3.23)

Il/2 -itA/2 -itA/21-/2J e P H(.,p)- e 0 lp * ,PD H(.,p)1 2() dp

Proof. Lemma 3.2 implies that
-iA /2 -iA°/2

IG itA/ h itAO/ 12~
1i GUe h - e- (* -D+ hL2(R 2)

(3.24)
I1 / 2 ] 1iA/ 2  -i1o / 2

IU(JG eit h - eitA• (D Dh)(,p) 2 (Bo) dp
f#-1/2 laGe h e0+ )2( O

Moreover, Lemmas 3.4 and 3.3 imply

(Uo G e h)(.,p) (J U e h)(-,p)

(3.25)
-itA 1/2

J e P U h(.,p)

Finally, Lemmas 3.3 and 3.5 imply

~_itA1/2
(U0 e-iA/ , o~).,)p U0 (0: c*h)(.,p)

(3.26)

- e 09p 0* o U h(.,p)

Combining (3.24), (3.25) and (3.26) gives (3.23).

Proof of Theorem 3.1. Lemma 3.2 implies that H(.,p) 6 L2 (Ja) for

almost every p 6 (-1/2,1/2]. Hence the integrand on the right hand side
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of (3.23) tends to zero when t - ; by Theorem 2.1 (see (2.31)).

Moreover, the operators appearing in the integrand are all bounded

with bound 1 and hence one has

ita I/2 itA'12

op ±,p He0* 0 -,p) I < 2 IH(.,P)IL
I~~~~ e (,)e0p +,p L2(B 0 )  012()

(3.27)

for all t e R and almost every p E (-1/2,1/2]. Thus the existence of W

and W_, and the relation (3.3), follow from (3.23) and Lebesgue's

dominated convergence theorem. The final statement of Theorem 3.1,

equation (3.4), follows from (3.3) and the eigenfunction expansions for

A and A0 , exactly as in the proof of Theorem 2.1.



§4. Asymptotic Wave Functions and Energy Distributions.

In this section the existence of the wave operators W+ is shown

to imply that transient wave fields in grating domains G are asymptotically

equal in the energy norm, for t + , to transient wave fields in the
2

degenerate grating domain R0 . The latter are then shown to be the

restrictions to RZ of free waves in R2 . Such free waves possess asymptotic

wave functions in the sense of the author's monograph on scattering by

bounded obstacles [3]. These results are shown below to imply that

transient wave fields u(t,X) with finite energy in grating domains

possess asymptotic wave functions

(4.1) uk(t,X) r1/2 Fk(r-t,e) , k - 0,1,2

(where X = (r cos 6,r sin 6)) such that if (t,x,y) - (X0,X1,X2) and

Dk - a/aXk for k - 0,1,2 then

(4.2) lim IDku(t,) - u0(t,)IL (G) 0, k - 0,1,2

Moreover, the 4aveforms Fk(Te) are calculated from the initial state

f(X), g(X) of u(t,X). Finally, (4.2) and the results of [3, Ch. 8] are

used to calculate the asymptotic distributions of energy for transient

wave fields in grating domains.

The starting point for the calculation of the asymptotic wave

functions (4.1) is the complex-valued wave function v(t,X) defined by

(1.12), (1.13). The existence of the wave operator W+ defined by (3.1)

implies that

(4.3) i -s itA 12 h - •-itA. /2 W+ h 23t 440

23
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in the sense of convergence in L2 (G). Moreover, if h E D(A1 2 ) then the

analogue of (4.3) holds for the first derivatives. This result may be

formulated as a generalization of the corresponding result for exterior

domains [3, Theorem 7.5], as follows.

Theorem 4.1. Let G satisfy the hypotheses of Theorem 3.1 and

let h E D(A'/2). Then v(t,-) = e h is a solution wFE in G,

+ (A 1/2 +ho h W+ h eD o v(t,*) = e- itA h+ is a solution wFE in R2 and

(4.4) lim IDk v(t,') - Dk vo(t,.)IL2(G) = 0 for k - 0,1,2

The proof is precisely the same as the one for exterior domains

given in [3] and is therefore omitted.

The initial state ho - W+ h for the wave field v0 (t,X) satisfies

+ +A
(4.5) o= (DO ho h = h_

by (3.3). Thus v0 has the R-B wave representation (see (1.14))

(4.6) Vo(t,X) J 4o(X,P) e-it(P) h_(P) dP

To show that v0 (t,X) has a continuation to a wave field wFE in R
2 the

Neumann and Dirichlet cases will be treated separately.

The Neumann Case. Here one has

N 1 e- i ye(4.7) No(XP) - 1x,P) -T e eX+eiqy +

and substitution in (4.6) gives, after a simple transformation,

' 1 ei(xp+yq-tw (p ,q))(4.8) vo(tX) e ho(p,q) dpdq
2T fR24 V
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where

h_ (p,q) , (p,q) E RO

(4.9) ho (p,q)
h_(p,-q), (p,-q) R.

The Dirichlet Case. Here if o is normalized by

(4.10) io(X,P) D =1ipx iqy _ -iq

then substitution in (4.6) again gives (4.8), but with

h_(p,q) , (p,q) E R,

(4.11) ho (p,q)

[- (p,-q), (p,-q) 0

Thus in both cases vo(t,X) has a continuation (4.8) to a wave

field in R2. Moreover, the hypothesis h E D(AI/2 ) of Theorem 4.1 implies

that h_(p,q) and p2+q2 h_(p,q) are in L2(R
2) and hence h0 (p,q) and

V'+T h0 (p,q) are in L2(R
2). It follows that the extended wave field

(4.8) is a solution wFE in R2 . Thus the results of [3, Ch. 2] are

applicable and allow the construction of asymptotic wave functions

(4.12) vk(t,X) r - 1 2 Hk(r-t,6) , k - 0,1,2

such that

4 (4.13) lim IDk v 0 (t,') - Vk(t,')i (R2 ) - 0, k - 0,1,2

By restricting the functions to G one obtains

Corollary 4.2. Under the hypotheses of Theorem 4.1 one has

(4.14) lim jDkV(t,') - vk(t,)IL (C) - 0, k - 0,1,2

k
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where the function v0 are given by (4.12) with waveforms H defined by

1 T
(4.15) H0  e h(w cos 6,W sin )(-iw)1 2 di

convergent in L2 (R x [0,n]), and

(4.16) HI(T,e) = -H0 (T,e) cos 6 , H2(Ta,) = -H0(T,e) sin 6

Equations (4.14) follow from (4.4) and (4.13) by the triangle

inequality. Equations (4.13), (4.15) and (4.16) follow directly from

[3, Ch. 2]; see the proof of [3, Theorem 2.10].

To obtain corresponding results for the real-valued wave field

u(t,X) generated by the initial state f,g one need only take the real

part of v(t,X) and use equation (1.13) which relates h to f and g. This

leads to

Theorem 4.3. Let G satisfy the hypotheses of Theorem 3.1. Let

f E D(AI/2 ) and g E L2 (G) and define asymptotic wave functions

(4.17) uk(t,X) r -1/2 Fk(r-t,6) , k f 0,1,2

by

F0 (T,e)

(4.18)

- Re (w eiT[_wcos e,wsin e) - ,f (w cos e,wsin 6)](-iw)/2 dwj

convergent in L2 (R x [0,7]), and

(4.19) FI(T,e) - -F 0 (T,e) cos e , F2 (T,e) -- F0 (T,e) sin 6)
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Then the solution wFE (1.10) generated by f and g satisfies

(4.20) lim IDk u(t,') - uk(t')IL(G) , k - 0,1,2

Proof. To begin, assume that g e D(A- I/2 ) and define h by

(1.13). Then h E D(A1/2 ) and Corollary 4.2 is applicable to
-ital/2

v(t,') - e h. Moreover,

(4.21) I h (P) - 1PI f_(P) + i _ (F)

which implies that Fk ' Re Hk and hence

(4.22) u (t,X) - Re {vk(t,X)} , k - 0,1,2

Thus (4.20) follows from (4.14) by the triangle inequality. To remove

the restriction that g G D(A- I/2 ) note that D(A- 112 ) is dense in L2 (G),

by the spectral theorem. Moreover, one has (see (3, Theorem 2.5])

uo(t,')AL2(G) < IvO(t,' )L(R) < IHo| = 1Ho1

(4.23)

= f J h_(w cos e,w sin )6 dd

- jh_(p)1 2 dPJ = a piI h_(P)L2(R2)

< I lPif (P)l + Q 0 - IA'/2 fB + Igi

Similarly,

(4.24) Iuk(t,')L(G) < IUO(t,D ) < I A /2 fI + Igi , k - 1,2

Finally, the conservation of energy theorem implies that

:4
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I DkU (t,'*)lL2(G; )  <E(u,G,t) I2 E(u,G,0) 112

(4.25)

S(IA1/z f12 + jg 2) I/ < IA 12 ft + Ig| , k - 0,1,2

It follows from (4.23), (4.24) and (4.25) that (4.20) can be extended to

all f e D(A /2 ) and g C L2(G) by a well-known density argument (see, e.g.,

[3, Proof of Theorem 2.6]).

Theorem 4.3 permits the extension to grating domains of the

results on asymptotic energy distributions in exterior domains given in

[3]. The principal results are formulated below. The proofs are

identical to those of [3] and are therefore omitted.

Corollary 4.4 (Scattering into Cones). Let

(4.26) r - {x - (r cos e,r sin e) : r > 0 and a E r0}

where ro is a Lebesgue-measurable subset of [0,7], and let X0 E R
2. Then

under the hypotheses of Theorem 4.3 the limit

(4.27) E(u,G n (r + X0)) - lim E(u,G n (r + X0 ),t)

exists and

(4.28) r(u,G n (r + x0)) = J 1jPj f_(P) + i ̂ _(P)1 2 dPfr

Corollary 4.5 (Transiency of Energy in Slabs). Let

(4.29) Z - {X : d, _ X X0 < d2 l}

where d and d, (> d,) are constants and Xo E R
2 is a unit vector. Then4! under the hypotheses of Theorem 4.3 one has
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(4.30) lia E(u,G 0 Z,t) = 0

Note that Corollary 4.5 implies the transiency of the energy in

bounded sets since every bounded set K C R2 is contained in a slab

(4.29).

*I

S

'$



§5. Construction and Structure of the S-Matrix.

The scattering operator associated with the pair A. A. is the

linear operator S : L2(R2) - L2(R2) defined by

(5.1) S - W+ w!

The corresponding operator in L2(R ) defined by

(5.2) S -0 S t0

is the Heisenberg operator, or S-matrix, for the pair A, A,. From the

representation W± 0* 0- of Theorem 3.1 one has

(5.3) - 0*

The unitarity of W± and (D imply that S and S are unitary operators in

L2(Ro). The purpose of this section is to calculate S. Specifically,

it will be shown how S can be constructed from the scattering coeffi-

cients {c (p,q)} of the R-B waves 'P+(x,y,p,q) and the relationships

among these coefficients imposed by the unitarity of S will be determined.

The role of the S-matrix in the scattering of transient fields by

gratings will be developed in §6.

If h e L2(G) then (5.3) implies that the functions h+ - $+ h and

h_ - ' h satisfy

(5.4) h~ Sh

Thus S may be calculated by calculating the relationship between h and

h+. This will be done by using the incoming and outgoing R-B wave

31
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-itA1/2
representations of v(t,-) - e h to calculate in two different ways

the asymptotic wave function in L2(G) associated with v(t,.); say

(5.5) vc(tX) - r112 H(r-t,e)

The function H E L2 (R x [0,1]) is uniquely determined by the condition

(5.6) l+ Iv(t,.) - v0(t,.)IL2(G) ' 0

see [3, Theorem 2.51. The equality of the representations of H obtained

from the incoming and outgoing representations of v(t,.) provides the

required relationship between h- and h+.

First Calculation of H. Theorem 3.1 implies that

(5.7) lm - Iv(t,-) - v0 (t,.)IL,(G) - 0

where v0(t , - ) - e- i A r/2 h. is the wave function in L 2(R
2) of Theorem 4.1.

Proceeding as in the proof of Corollary 4.2 one shows that (5.5), (5.6)

hold with

1 I iT W co , sin )(-iW) 1/2
(5.8) H(T,) (2w) e h(w cos ew sin

The convergence v0 (t,-) - vO(t,*) - 0 in L2 (R
2) was proved in

[3, Theorem 2.6].

A Classification of the R-B Waves. The second calculation of H

will be based on the outgoing representation

(5.9) v(t,X) = 1.i.m. -p(XP • i r a ( p h(P)

IP+ (, P)e h (P)dPRO 
I

The R-B wave has the expansion for y > h [5, (2.26)]

i$
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+(x,y,p,q) - (27r) - l ei(px-qy) +(p+(). 2 <p +q2 4(P'q) ey

(5.10)

ippx e-{ (p+9) 2 -p2 -q2 1/2 y

(p+21) 2 >p 2 +q2

where

(5.11) (py,qp) - (p + L,{p 2 + q2 _ (p + Z) 2 }1 /2 )

The first sum in (5.10) is a superposition of a finite number of outgoing

plane waves, while the second sum is an exponentially decreasing function

of y for (xy) E R2 - E [6, Lemma 9.3]. In the calculation of the

asymptotic wave function (5.5) from (5.9) and (5.10) a difficulty arises

because the number of terms in the first sum varies with (pq) E R2 .

This number changes at the points (p,q) E E and is constant on the

components of the set R2 - E. It will therefore be convenient to classify0

the R-B waves by means of these components. Note that (p,q) e E if and

only if q > 0 and

(5.12) q p2 + q2 _ (p + L)2 _ 0 , k e Z - {0}

The set IT, so defined is the portion lying in R2 of the parabola with

focus at (0,0) and vertex at (-2/2,0). The curves ir and irm are disjoint

if Xm > 0 and intersect orthogonally if Xm < 0. Thus if

0m- R2 n {(p,q) Jp + ml < Vp2 +q 2 < lP+ m + 11}

(5.13)

0 n R n {(p,q) :p - nj < Vp+ I p - n - 11)-n 0
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where m,n - 0,1,2,'", then 0 is the domain between im and wM+1' O-n is

the domain between W and IT and the sets-n -n-i

(5.14) 0 -On 0 m ,n , 0,1,2,..-,m,ni m -n

are the components of R2 - E0

(5.15) R 2 E 0  .
m,n-0

Note that (p,q) E 0m n if and only if the expansion (5.10) of *+(x,y,p,q)

contains exactly m + n + 1 outgoing plane waves with the propagation

directions (p,,q,), -n < I < m.

Second Calculation of H. In calculating S it will suffice to
A 

2determine S h+ for functions h+ of a dense set in L2 (R,) because S is

known to be unitary. For this purpose it will be convenient to use

AA

functions h+ 6 CG0(RO - E). For such functions, suph+ is a compact

subset of the set (5.15). Hence, supp h+ meets only finitely many of

AAthe sets 0 and each component of supp h+ lies in one of these sets.m,n

Thus in calculating S h+ it will be enough to consider the case where

A

(5.16) supp h+ - K C 0 r n , m and n fixed

The case of a general h+ C C0 (R - E) may then be obtained by super-

position. With this hypothesis the wave function (5.9) becomes

(5.17) v(t,X) - JK ,+(x,P) eitw(P) h+(P) dP

The asymptotic wave function (5.5) for v(t,X) will be calculated

from (5.17) by substituting the expansion (5.10) and determining the
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behavior for t - + of the terms in the resulting sum. For this

purpose a bound is needed for the remainder in (5.10) that is uniform

in (p,q) E K. Thus a refinement of [6, Lemma 9.3] is needed since the

latter is valid for fixed p only. The following generalization of

(6, Lemma 9.3] will be proved.

Lemma 5.1. Define the remainder oG(X,p,q) for all X E G and

(pq) E 0 by
m, n

I ~xq) m + i(p~x~q~y) +Xpq

(5.18) tP+(Xp,q) = (27r)-  i(pxqy)+ I ci(p,q) e + +(Xpq)

Then for each compact set K C 0 and each r' > r > h there exista, n

constants w - w(K) > 0 and C - C(K,r',r) such that

(5.19) [a+(X,p,q)l < C • - Wy for all X E R2, and (p,q) e K

r

Proof. Only the case of a+ will be discussed since the other

case then follows from the relation [5, (2.25)]. The proof will parallel

that of [6, Lemma 9.3]. Note that [5, (6.5)] implies that

(5.20) o+(x,y,p,q) , e p+(x - 2Z.,y,p,q) , (x,y) E S( M

where p+ is defined by [6, (9.39)] with

(5.21) L' - (k E Z : X < -n - 1 or Z > m + l}

for all (p,q) e 0 Thus to prove (5.19) it is enough to show that

(5.22) IP+(Xp,q)I < C e-Wy for all X E r' and (p,q) E K

Proceeding as in [6, Proof of Lemma 9.3], one has
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(5.23) 10',(rp,q) I2 < Co(27r)-IbP.(-,p,q) 12 for all X e L'0 1;h,r

where C. = C 0(h,r). Now the right-hand side of (5.23) is a continuous

function of (pq) R2 E by [5, Theorem 6.1]. Thus there exists a

C1 " C,(K,r) such that

(5.24) [+(rp,q) < C, for all (p,q) e K and 4 E L'

Next, since K is a compact subset of 0 there exist constantsm,n

4+ - W+(K) > 0 and P_ P i_(K) > 0 such that

(p + Z)2 - p 2 _ q-2 > 2 for all (p,q) E K and Z > m + 1

(5.25)

(p + g)2 - p2 
- q2 > P2 for all (p,q) E K and I < -n - 1

whence

(5.26) (p j) 2 
_ -2 _ q 21112 > li(K) - Min (p+(K),Ij_(K)) > 0

for all (p,q) 6 K and Z E L'. It follows that for all X E S1r' and

(p,q) E K one has

1 (x,p,q)j J < l (y,p,q) l
i 2-CL'

(5.27)

j I;p(r~p,q)I exp (-(y-r) ((p+)2-pi-q2)1 / 2 1

- C, I exp f-(y-r) ((p+)2-p2-q2)1 / 2 )
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< C1 , exp {-(y-r')((p+t..)2-p2-q
2 )112} exp {-(r'-r) ((p+) 2p2q)1/2}

(5.27 cont.)

<C, e- ( y - r ) (K)  exp -r-)( )2_p 2_q 2) 1/2 }

JEL

Now

(5.28) Z(r'-r,p,q) exp {-(r'-r)((p+9)2-p2q2) 1/2}
Lt'

is a continuous function of (p,q) E 0 and hence for each compactm, n

K C 0 there is a constant M(r' - r,K) such that

(5.29) Z(r'-r,p,q) < M(r'-r,K) for all (p,q) E K

Combining (5.27), (5.28) and (5.29) gives (5.22) with

(5.30) C - C,(K,r) e r ' (K) M(r'-r,K)

Second Calculation of R (continued). Substitution of (5.18)

into (5.17) gives the decomposition

(5.31) v(t,X) - v (t,X)+ I vZUt(t,X) + v,(t,X) , t E R , XE G
Z--n

where

(5.32) Vn (tX) e 2 ei(pxqy-rL(pq)) h+(pq) dpdq

I~~i i(P£x zY-tw(P'q)) + h(~)dd

(5.33) v" (t,X) - e • h4(p,q) dpdq , and
JK
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(5.34) va (t,X) - JK ei(pq) +(X,p,q) h(p,q) dpdq

Recall that by assumption h+ 6 CO(RO - E) satisfies (5.16) and cx(p,q)

E C(R2 - E) (see (2.23), (2.24)). Thus the integrands in the above

integrals are all continuous. The second calculation of H will now be

carried out by calculating the asymptotic wave function in L2 (G) of each

term on the right-hand side of (5.31).

The Partial Wave vin (tX). The change of variables (p',q')

= (p,-q) in (5.32) gives

in I i(p'x+q'Y-tw(P', q')) ^ '

(5.35) vin (tX) = ' h+(p',-q') dp'dq'

where K' - t(p',q') (p,q) E K} C R2 - R2. Thus v in(t,X) is a free

wave in RZ and hence has an asymptotic wave function r- 1/2 Hin(r - t,e)

with waveform defined by [3, Theorem 2.6]

(5.36) Hin(Te) I i() fo h(W cos e,-w sin e)(-iW)1/ 2 dw

b H~in(,)^
In particular, H=(Te) 0 for 0 < 0 < n because K' - supp h+(p,-q)

2 _ 2CR - Ro

OutThe Partial Waves vZ (t,X). To interpret these terms let Z E Z

and consider the mapping X£ defined by

(5.37) (p£,qZ) - XZ(p,q) - (p + .,{p 2 + q2 (p + Z)2}I/2 )

X is analytic on the domain

-i . .. .
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(5.38) D(X£) = {(p,q) :pr + q7 > Lp + Z, q > 0}

and maps it bijectively onto the range

(5.39) R(X) {(pZ,q) : pL + qL > p - , > 0}

Moreover,

(5.40) X1 X_ , x e z

and the Jacobian of X is

3(PZ, q£) q
(5.41) p

3(p,q) q£

Note that w(p,q) is invariant under X z

(5.42) w(p,,q,) p2 + q= p2 + q2  w(p,q)

It is easy to verify that

(5.43) Xz 0 mn 0 0mZ,n+X for -n < i < m

Hence the hypothesis K C 0 implies that

(5.44) Xz K - Kz C 0m-Z,n+t for -n < Z < m

*i In particular, one has

(5.45) Kj n K- for j 0 Z

On making the change of variables (p,q) - (pt,q,) X2,(p,q) in

(5.33) one finds the representation

9 ... . - I [ l l l - , ' 's .-- , .. . . . . . . .
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(5.46) v"(tX) e C(p,q)h+(p, dp dq
Kz q

out-

where (p,q) =X X(pt,qk) in the integrand. Thus vo (t,X) is also a

free wave in RZ and has an asymptotic wave function r-1 /2 HZ(r-t,e) with

waveform defined by

(5.47) HZ(T,e) = (27)172 -  e H(w,) dw

and

(5.4) H£w, 0 2 -iw1/2 qZ +  ^
(5.48) Hzwe) 27 -iw) q- cz(p,q) h+(p,q) (pq)-X1 (wcosewsin0)

A simple calculation shows that

2 ( 2) 12 "I qt
(5.49) =H Z(RXLO i]) (Tr f jc(p,q) h+(p,q) q dp dq

where q. is defined by (5.37). In particular, H. E L,(R x [0,7])

because the integrand in (5.49) is continuous on K.

The Partial Wave v,(t,X). Equation (5.31) may be written

in m
(5.50) v0 (t,X) - v(t,X) - v (t,X) - z vUt (t,X)

for all t E R and X E G. Moreover, it has been shown that

v(t,X) - r-1 /2 H(r- t,8) + o(1)
(5.51) in

v (t,X) - o(l)

vout (t,X) - r-1 2 H (r-t,8) + o(1)

I 4
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where each term o(l) E L2 (G) for all t E R and tends to zero in L2 (G)

when t + . These results imply that

(5.52) va(tX) r- 1/ H (r-t,e) + o(i)

where o(l) 0 in L2 (G) when t - + and

m
(5.53) H (r,O) - H(T,e) - I HZ(T,e) in L2 (R x [0,r])a=-n

On the other hand (5.34) and Lemma 5.1 imply that

(5.54) jv,(t,x)j I< C. e - ) y for all t E R and X E Rr2

where

(5.55) Ca = C J lh+(p,q)l dp dq

and u = p(K) > 0 and C = C(K,r',r) are the constants of the lemma. The

second calculation of H will now be completed by showing that (5.52) and

(5.54) imply

Theorem 5.2. H (T,6) E 0 and hence

m

(5.56) H(T,e) = I H2(T,e) in L2(R x [0,Tr])
£X=-n

Proof. Let e be an arbitrary number in the interval 0 < £ < ff/2

and consider the sector

(5.57) F - {(x,y) - (r cos e,r sin e) £ < 6 < - }

t£
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By (5.52), the local decay of asymptotic wave functions [3, p. 32] and

the triangle inequality, one has

I vU(t,X)I2 dX J IH (r-t,)1 2 r-I dX + o(1)fGnF Fr C
(5.58) E

-;I a: lHa(r-t,8)1 2 d6 dr + o(l)

= J j H(T,6)12 dO dT + o(l)
-t F

where o(l) - 0 when t - . Thus passage to the limit in (5.58) gives

(5.59) tim for lV,(t,X) 2 dx _ IH r(T,6) 12 de dT

On the other hand, writing R2  - ((x,y) : x E R, a < y < b} , one has
a,b

I 1v a(t,X)12 dX J IV0Y(t,X) 12 dX + J vaF(tX)I12 dXj
Eo k

(5.60)

< C2 e 2pr sin r dr d6 + o(I)

for every fixed k > r' > r by (5.54) and the local decay property for v0.

Passage to the limit t - +oo in (5.60) gives by (5.59),

(5.61) J f IHo(T,6)1 dO dT < C2 ef 21ir sin r dr d6

for every k > r'. Note that Ca, P and the left-hand side of (5.61) are

independent of k. Now, sin 0 > sin E > 0 for e < e < n - e and hence
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f e-24rsine r dr d6 < f e-2 pr sine r dr d6

(5.62) k

J7 -e e-21ir sin e 6d -O E e- 2Ur sin e d<JJ e~~sn r de dr = (it - 2c) Je1riCr dr
k e k

But the last integral tends to zero when k o with e fixed. Thus (5.61)

implies that H (T,8) - 0 in R x [e,ir-e] and (5.56) follows since

e E [0,7r/2] is arbitrary.

Corollary 5.3. For all h E L2 (G) such that supp h+ C 0m, n

= closure of 0 one has the two relationsm,n

m +
(5.63) h (pq) = 21T c (X (pq)) h+(XZ (p,q)) qq

2--n --

for almost every (p,q) E R 2 where (p_,q X(p,q).

Proof. The case where supp h+ C m,n is considered first. In

this case it will suffice to prove (5.63) for functions h E L2(G) such

that h+ E C0(R ° - e) and supp h+ - K C On since such functions are

dense in the subspace of L2 (G) defined by supp h+ C Um,n For such

functions the relation (5.56) and the Fourier representations (5.8) for

H(T,8) and (5.47), (5.48) for HZ (T,) imply that

h_(wcos 6,w sin 8)

(5.64)

m c+ (X sin 62 n (X(cos e,w sin 8))h.,(X_ (wcos , wsin 8)) CO sine
ft-(cos8-io,) 2as

"yt for almost every ( ,8) G R0 x [0,rr]. Making the substitutions

k-L ...
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p w w cos 9, q w sin 9 in (5.64) gives (5.63) in the case

supp h+ C Om, n

The second case of (5.63) can be derived by calculating the
_itA1I2

asymptotic wave functions for v(t,-) - e h when t - - , using

the method given above. A simpler derivation may be based on the

relations '_(X,p,q) - +(X,-p,q) and c-(p,q) - c+(-p,q) of [5, (2.25)

and (2.29)]. Indeed, if supp h C 0 and g(X) - h(X) then these
m, n

relations imply that ^_+(p,q) - +(p,q) and hence relation (5.63) with

the upper sign for g implies (5.63) with the lower sign for h.

The Structure of S. It will be convenient to use the notation

(5.65) gm,n(P) , Xm,nn(P) g(P)

where Xm,n is the characteristic function of the set 0mn . Clearly, the

operator Pm,n in L2 (R2) defined by

(5.66) P g = gm,n ' m,n = 0, 1, 2,... ,

is an orthogonal projection and different operators of the family have

orthogonal ranges. Moreover, the relation (5.15) implies that the

family is complete because e is a null set; i.e.,

(5.67) p - 1 .
m,n-O m,n

It follows that for all g E L2 (R2) one has

(5.68) S g , ^S(g m,n)
m,n-O

Thus S is completely determined by
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Theorem 5.4. For all g 6 L2 (R0) one has

m
(5.69) S(g m,n ) =  n (S gM,)n)m_,n+ , and

2--n

(5.70) (Sm,n)m,n+ (p,q) - 2Tr - --q c(X x (p,q)) gCm, (Xz(p,q))
_Z z

Similarly, one has

m

(5.71) 
*(g ) = m ( g n+

m, n I. ( m, n'm-.,n+ and

(5.72) ( g* gm,n)m-_,n+Z (p,q) - 2'r" q c(X 2 (p,q)) g m, (X1 (p,q))

In particular, if supp g C then
m,n

m

(5.73) supp S g U supp * L m-2,r+2.

Proof. Equations (5.69), (5.70), (5.71) and (5.72) follow
A

immediately from Corollary 5.3, the relations S h+, h+ S* h_ and

the observation that when supp h+- C , then the Zth term in the sum in
mn

(5.63) has its support in 0 (5.73) follows from (5.69) and
m-2.,n+k

(5.71).

The unitarity of S and (5.70), (5.72) impose restrictions on the
'1 ±

scattering coefficients c2 . To calculate them it will be convenient to

calculate S and S directly from (5.70) and (5.72), respectively. This

gives the following alternative representations of S and S.
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Theorem 5.5. For all g C: L (R2) one has

(5.74) (S* ' mt~~ pq - 2wT c Z(p~q) g m C X- (p, q))

and similarly

(5.7) (S gm,nmtnt (pq - 21r c- L(p,q) g ~ (X-(p q))

Proof. For all f,g E L2(R2) one hasj

(f,(S g) ) - Cfmn ,S g) - (S(f m),g)

(5.76)
m

by (5.70). On making the change of variables (p',q') - (p~z q_.)

= -L (p,q) in the last integral and noting that q _,- 3p,'/~~)

one has

(f'(S g)m0) 27r L£-n JO c L(p',q')f~ mn (p',q') g mjtn.j(Xz(p q))dp dq'

m,n
(5.77)

-( f(p,q) (2, c +(p,q) gm£+ (XC(piq))) dp dq

because supp g C.'ttXZ) C 0 .Since f 6 L (R2) is arbitrary, (5.77)
m ~ 2 m,n2

implies that

m
(5.78) (*g) (p. q) 27 cj(p,q) g X(~)m,nx Xn+ Zin4
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To derive (5.74) note that for all Z, m, n, m, n > 0

(5.79) (g;,nE)m-1,n+t "m-k,rn 'n+X,n gm,'n

where 6jk is the Kronecker symbol. Noting that 6u-£,m 6n+2.,

- 6 .,m- m 
62,n-n - 6 mm,n-n 6 ,m-m, (5.78) and (5.79) imply

(S -) (p,q) - 2W 6 1--
m,) m,n m-m,n-n p m

(5.80)

= 2 6r - c -(p,q) gm-,-(X -(pq))
m-m,n-n in-in mn in-i

This clearly is zero unless m - m = n - n 2 where -n < m < , which

implies (5.71). Moreover, setting (m,n) (m - Z,n + X) in (5.80) gives

(5.74). The proof of (5.75) is obtained by the same method, beginning

with (5.72).

The two representations of S and S* of Theorems 5.4 and 5.5 hold

for arbitrary g E L2 (R2). It follows that the scattering coefficients

must satisfy the relations

(5.81) q c£(Xt (p,q)) = q_. c; (p,q)

for all (p,q) E 0 M_,n+£  Moreover, the unitarity of S and Theorems 5.4

and 5.5 imply

Theorem 5.6. The scattering coefficients c- of the R-B waves
Z.

,(X,p,q) satisfy the identities

'1 (5.82) c ± (p,q) c_ (X(p,q))q- (27)- 2 q andn Z -k k n~
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m 
-

(5.83) c±(Xx(p,q)) c _Z(XZ(p,q))q t 
- (27r) q- 1 6k,0

for all (p,q) E 0 and all k such that -n < k < m.
mn - -

These properties may be verified by simple calculations using

the relations

(5.84) (S(f m,n),S(gm-k,n+k)) - 6,o(fm,n'gm, n) , and

(5.85) (S*(fm,n),S*(gm-k,n+k)) - 6k, (fm,n'gm,n)

and the constructions of S and S described in Theorems 5.4 and 5.5.

Relation (5.83) also follows from relations (5.81) and (5.82).

It is well known in the theories of scattering by potentials and

by bounded obstacles that the S-matrix S is a direct integral of a

family of unitary operators S(w) that act on the "energy shell"

p2 + q2 w 2 . The analogous property of the S-matrices for diffraction

gratings is evident from Theorem 5.4 and the properties of the mappings

X . The operator S(w) in this case is given by (cf. (5.75))

t n(5.86) g(wcosewsine) = 2w c (wcos e,wsin 6) g(X (Wcos e,wsin 0))

when supp g C 0 m,n . If s(O) - g(w cos 6,w sin e) is an arbitrary func-

tion with supp s C {8 : (w cos e,w sin 8) e } then (5.86) can be
in, n

written

~n
(5.87) (S(W)s)(e) - 27 r c (w cos 8,w sin 6) W

--M
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where - e(w,6) is defined as the unique angle such that 0 < 69 ir and

(5.88) x cos 8,w sin e) - (w cos 6,,w sin 6d

For general s E L2 (0,r), S(w)s is obtained from (5.87), (5.88) by super-

position. The unitarity of 5(w) in L2 (0,n) can be verified by direct

calculation using (5.87), the analogue for S*(w) and Theorem 5.6.

i)



§6. The Scattering of Signals by Diffraction Gratings.

The results of §4 and §5 are applicable to the echoes that are

produced when signals generated by localized sources are scattered by a

diffraction grating. The structure of such echoes is analyzed in this

section. Most of the section deals with the case, often realized in

applications, where the sources are far from the grating. In particular,

it is shown that in this case the influence of the grating on the echoes

is completely described by the S-matrix.

It will be assumed that the sources of the signals are localized

near a point (O,y0 ) e G and act during a time interval T < t < 0. The

resulting wave field u(tX) is then characterized by its initial values

u(OX), Dtu(OX) in G. To make explicit their dependence on yo the

initial values will be assumed to have the form

u(0,X) - f(X'y0 ) = fo(xy-y0 )

(6.1)
D tu(0,X) -g(Xyo) E go(x'y-yo)

for all X - (x,y) E G where y, > 0,

(6.2) f • L L'com(G) , Lcom(G)

g 2

and f(X,yo) = g(X,y o) E 0 for (x,y-yo) 4 G. Note that for y. 0 one has

f(',y0 ) e D(A'2), g(.,yo) E L2 (G) and hence u(t,X) is a solution wFE in

G. The functions f(',y 0), g(',y 0 ) will also be used as initial values

for free waves in R2 and for wave fields in the degenerate grating

domain R,. In each case the domain under consideration will be clear

from the context or will be stated explicitly. For brevity, the

~51.9
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coordinate y0 will be suppressed except in places where the y0-dependence

is under discussion.

The Signal Wave Field. In the absence of a diffraction grating

the initial state fo, go will generate a signal wave field us(t,X) in R2 .

The first derivatives of us(t,X) have asymptotic wave functions (3,

Theorem 2.10]

(6.3) Dk us(t,X) - r- 1/2 sk(r-t,e) + o(l), k - 0,1,2

where the waveforms sk(T,8 ) e L2 (R x [-Il,7r) are given by

(6.4) s0 (T,@) = Re {(24) , e ho(W Cos e,W sin e)(-iw)1/2 ,

Si(Te) - -s0 (T,e) Cos e, S2 (Te) ' -S0 (Te) sin e and the terms o(l) - 0

in L2 (R
2) when t - c. The function

(6.5) OM(P) - go(P) - iW(P) D f0(P)

where D denotes the Fourier transform in L2(R
2 ). In particular, the

Fourier transform in L2(R x [-r,7]) of the signal waveform s 0 (T,e) is

(6.6) %o(W,8) (-iW) /
2 ho(w cos e,w sin e)

It can be verified that if f0 and go are real-valued then s0(- ,e)0

s0(w ,) and hence (6.6) generates a real-valued signal.

When yo is large the signal arriving at the grating surface is

described by the signal waveform s0 (T,e) through (6.3). The problem of

signal design is to construct a source or "transmitter" whose waveform

s0 (T,6) approximates a prescribed function. The solution of this problem

is the task of the transmitter design engineer.
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The Echo Wave Fields. In the presence of a diffraction grating

with domain G the initial state f,g will generate a total wave field

u(t,X) whose asymptotic behavior for t - +- is described by Theorem 4.3.

In particular,

(6.7) D, u(t,X) - r-1/2Fo(r - t,e) + o(1) in L2 (G), t -+co,

where Fo(tQ) E L2(R x [0,1]) is defined by

(6.8) F0 (T,6) = Re d/4 e h_(w cos d sin dw

and

(6.9) h(P) = _(P) - iW(P) f(P)

The echo wave field u e(t,X) is defined by

(6.10) u e(t,X) = u(t,X) - u s(t,X) , t > 0 ,X E G.

Thus the echo is described for large t by

(6.11) Dou e(t,X) - r-1 /2 eo(r-t,e) + o(l) in L2 (G), t -

where e0 - FO - so E L2 (R x [0,r]) is given by

{ 1 Io iTW ^SC( co , i )_ 1/2 dW>

(6.12) eo(T,6) - Re 0(2 e1  h- ( cos _w sin )(-iw) }

with

sc ,s(6.13) h- (P) h_(P) _ h(P) . c( ) i(p) 'fsc(p)

I.'
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The last functions can be written in terms of the R-B diffracted plane

waves

(6.14) t_(Xp) _ inc(x,P) + SC(xP)

as (5, (2.24)]

(6.15) 9sc(p) - SC(X,P) g(X) dX

with the analogous representation for fsc.

Tht Echoes of Signals from Remote Sources. Equations (6.12) -

(6.15) provide a construction of the echo due to an arbitrary distribu-

tion of sources. The principal goal of this section is to determine how

this construction may be simplified when the sources are far from the

grating; i.e., y0 - -. To this end recall the decomposition of Lemma

5.1. Substituting equation (5.18) in (6.15) gives

m
(6.16) jSc(pq) - 27 1 - c(p,q) ^(p ,-q,) + pn(p,q) , (p,q) 0 0m,n

where = ' g is the Fourier transform in L2 (R
2 ) and

(6.17) p(p,q) E p(p,q;g) a_(X,p,q) g(X) dX , (p,q) E R2 - E
JfG

Note that if the unitary operator R : L2 (R
2) - L2 (R

2) is defined by

(6.18) R f(x,y) - f(x,-y)

then
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(6.19) (¢ R f)(p,q) = (R f)(p,q) - f(p,-q)

Hence (6.16) implies that for all (p,q) E 0,n one has

,,sc
g_ (P) = 2 r n c (P) (R g1(P d + 0m,nCP)

(6.20)
n

= 2w (P) (R ̂ )m+,n_(XZ(P)) + Pm,n(P)

n A

E 9 SR ) (P) + p (P)
nm (S(R ^)m+Z,n-Z m,n 

m,n

R glm,n(P) + m,n(P)

by Theorems 5.4 and 5.5. Proceeding in the same way with w(P) fS (P)

and recalling that w(P) = w(P£) one finds

(6.21) hSC(P) - (S R h)(P) + p(P;h) , P E R0 - E

where

(6.22) p(P;h) = P(P;g) - iw (P) p(P;f)

The estimate (5.19) of Lemma 5.1 clearly implies that

p(P;h(',y0 )) - 0 when y0 - -, uniformly for P in any compact subset of

R2 - E. This result is not strong enough to yield a corresponding

estimate of the echo waveform e0 (z,e) defined by (6.12) and it is

natural to conjecture that p(';h(',y0 )) - 0 in L2 (Rz) when y0 - co.

Unfortunately, if one assumes only that A(G) admits no surface waves

then this property does not follow from the results of [5,6] because no

information was obtained concerning the behavior of _(X,P) for P near

:4
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the exceptional set E. However, in those cases where the analytic

continuation of the resolvent of Ap has no singularities on a(A p) (i.e.,

Zp a(A p) = 0 for every p E (-1/2,1/2]) the limiting absorption theorem

[5, Corollary 4.17] is valid on all of a(A p) (see [5, Theorem 4.15]) and

[5, Theorem 6.1] can be improved to state that ip(,,P) exists and

P - p(.,P) E L2.' (A,G) is continuous for all P E U0. This improvement

of [5, Theorem 6.1] implies

Theorem 6.1. Let A(G) have no surface waves and, in addition,

assume that

(6.23) Ep f O(Ap) p for all p E (-1/2,1/2]

Then for every go E L2 (G) one has

(6.24) (-sc(,y0 ) = S R g(.,y 0) + o(l) in L2 (R7), y0  cD

Similarly, for all f0 E LI(G) one has

(6.25) w(-) fsc(.,y0 ) = w(-) S R f(.,y 0 ) + o(l) in L2 (R2), y0

The proof of Theorem 6.1 will be based on the following extension

of Lemma 5.1.

Lemma 6.2. Under the hypotheses of Theorem 6.1, for every

compact set K C R and every r' > r > h there is a constant C - C(K,r,r')0

such that

(6.26) Ja+(X,P)j < C for all X e R2, and P E K

r

Proof of Lemma 6.2. It clearly suffices to prove the lemma for

the case K - 0m,n* On examining the proof of Lemma 5.1 one finds that

the continuity of P - p±(*,P) for all P e iT implies that (5.24) holds
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for K 0. Moreover, (5.25) holds for all P E 0  with 4+ -_ 0.

Thus (6.26) follows from (5.27) with p(K) - 0.

Proof of Theorem 6.1. Note first that if the translation

operator Ty L2(G) -* L2 (G) is defined for each y0 > 0 by T y go

" g(',y 0 ) then (6.24) is equivalent to the statement that

(6.27) s-urm ((_ - 0 - S R O)Ty a 0

y 0y0

Moreover, the family of operators in (6.27) is uniformly bounded for all

y> 0. Hence by a familiar density argument (cf. [3, proof of Theorem

2.6]) it will suffice to establish (6.24) for all go in a dense subset

of L2(G). The set CO(G) will be chosen for this purpose. Thus the

proof will be completed by showing that if go E CT(G) and

P(Pg(',Y0 )) = SC(p'y 0 )- S R j(.,y 0 )(P)

(6.28)

q F _(X,P) g(X,yo) dX , P E R2

'G

then

(6.29) lyJm Ip(P,g(',y 0 ))I 2 dP - 0
22

To prove (6.29) it will be convenient to decompose R2 as the disjoint
0

union

(6.30) R- D(y) U (D'(y) n E6) u (D'(y) - E6 )

where

I
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D(y) - R2 nP { p j : y}

(6.31)

D'(Y) = R02 r)P :IPI <y} , and

E- R2 n(P :dist (P, ) < 6

With this notation the integral in (6.29) can be written

(6.32) J2 lp(p,g&-,yo))1 2 dP = II(y,yo) + 12(Y,6,YO) +i I3(Y'6'YO)JRO

where

(6.33) II(Y'y0 ) =fDy lp(p,g(,.y0 )1
2 dP

(6.34) 12(YSIYO) = fDynE p(p,g(.,y0 ))1
2 dP and

(6.3) 1(y,,y 0  = D' (y) - E

To estimate I,(Y,y0) note that (5.18) implies that (A + Jp1 2) G_(X,p) =0

22

P(Pg(,Y))_ I-jP2  oa(X,P) Ag(X,y0 ) dX

- -j~j i.(g(,y0)) a - ( ,) A()-S ) R(g., 0 )(

iss
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On squaring (6.36), integrating over D(y) and using the inequality
+ z2 + 312 < 4(1~1 2 + 12 + IZ312) one finds

I(y,yo) < I tPI -  j(Ag)_ - (Ag)^ - S' R(Ag) 12 dP

(6.37)

< 4y -(t_(Ag(.,yo))1 2 + i4(Ag(-,y 0 )I 2 + IS R(Ag(.,y 0 ))l 2 )

<12y- 4 g~g(.,yo)1
2  ,, 12y - 4 IAgi2

- L2(G )

for all Yo > 0. In particular, II(y,y0 ) is small for large y,

uniformly in y0 > 0.

Now consider 12 (ypd,y0 ). Lemma 6.2 and equation (6.28) imply

that for all P E D'(y) one has

Ip(Pg-,y0 )j < C(D'(y),r,r') JG 1g0(xy-yo)I dx dy
(6.38)

Cl(y,r,r') JIgo(X)I dX - C2 (go,y,r,r')

Combining this and (6.34) gives

(6.39) 12 (y,d,y o) < C2(go,y,rr') JD'(y) n E ,

for all y, > 0, where IMI denotes the Lebesgue measure of a set M C R2.

Finally, note that Lemma 5.1 implies that p(P,g(.,yo)) - 0 when

y o , uniformly for P E D'(y) - E6 , when y > 0 and 6 > 0 are fixed.

Thus

(6.40) lim I3(y,6,yo) - 0 , y and 6 fixed

y o..

LL!
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To complete the proof of (6.29) let E > 0 be given and use (6.37)

to choose a y = y0  yo(e,go) > 0 such that II(y,yo) < E/3. Next use

(6.39) with y - yo(e,g0 ) fixed to choose 6 6- 60 (e,go) > 0 so small

that I2(Yo,&o,y0 ) < e/3. Both of these estimates hold uniformly for all

Yo > 0. Finally, choose Y0 - Y0 (e,go) so large that I 3 (yo,60 ,y0 ) < E/3

for all y0 > YO. This is possible by (6.40). With these choices (6.32)

implies that

(6.41) IR lp(P,g(-,y0))12 dP < C for all y0 > Y0 (e,go
)

which proves (6.29) and therefore (6.24). Finally, to prove (6.25) one

notes that if f(',y 0) E L2(G) then w(P) f (P,y0 ) E L2 (R2) and the

preceding argument can be applied to this function. This completes the

proof of Theorem 6.1.

An Estimate of the Echo Waveform. Under the hypotheses of

Theorem 6.1 one has the estimate

^SC. S

hC(-,Y o )_ g_ (',YO) - iw(.) f- (*,Yo)

(6.42)

= S R g(',y0 ) - iw') S R f(',yo) + o(l)

S SR h(',y 0 ) + o(l)

where o(l) * 0 in L2 (R2) when y0  
" Moreover, the mapping e L2 (R2)

e0 E L2 (R x [0,Tr]) defined by (6.12) is bounded with bound 1 [3, (2.84)].

It follows that

(6.43) eo(T,e)-Re f(2 ) 0z S R h) ( wRh 6)(wcos ,sinyo)( -iw)1 /2 dwJ +o(l)
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where o(i) * 0 in L2 (R x (0,w]) when yo , = " Now

h(p,q,yo) - ^(p,q,yo) - iw(p,q) f(p,qyo)

(6.44)

- eiqyo[^g(p,q) - iw(p,q) fO(p,q)]

.iqyo h0(p,q)

and hence by (6.6)

(-iw)1/2 R h(wcos e,wsin e,y.) - (_i)1/2 h(wcos e,-wsin e,yo)

(6.45)
e-iwYo sin ( /L h, (wcos 6, -w sin e)

= 2 e " y ° sin eSo(co,-e)

Combining (6.43) and (6.45) gives

(6.46) eo(-r,) - Re {(2l'iTW e-yiyO sin S() o(w,-6)d} + o(1)

Thus under the hypotheses of Theorem 6.1 the echo waveform is determined

by the signal waveform, the S-matrix for the grating and the range

parameter y0, with an error that tends to zero in energy when y0  o.

Pulsed Beam Signals. For many applications it is desirable to

have a transmitter whose waveform s0 (T,e) is sharply limited in both

direction and frequency. The relation (6.6) shows that this could be

achieved by choosing f0 and go such that supp ho - RK where K C 0m,n and

m and n are suitably chosen. Of course, this condition cannot be satis-

fied with sources that are confined to a compact set, since h0(P) is then

analytic. However, it may be possible to choose f0 and go such that
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(6.47) ho(p,q) - a(p,q) + b(p,q)

where

(6.48) supp a RK C RO
m, n

(6. 9) a(, O) _ (-i ) 1/2 a(wcos ,w sin )

defines the desired waveform sa and
0

(6.50) IbiL2 (R2) <

If this transmitter design problem has been solved then the corresponding

echoes will satisfy

(6.51) eo(T,0) - e o e) + 01 +

where

(6.52) ea(r,) - Re 1/2 es e SM() a(w,-)d}

while

(6.53) go 1L2(Rx[0,'] ) < e for all y0 > 0 , and

(6.54) lim 8i0lL-(Rx[0,.] ) w 0, Yo (R[,I]

Angular Dispersion of Echoes from Gratings. The notation

(6.55) r. . {P - (wcos e,wsine) : w > 0 and a, < e < S

will be used to denote the smallest sector such that K C r, -n < I < m.

.4
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The hypothesis K K0 C 0 me n implies that the sectors r2 are disjoint and

m

(6.56) rj r 2cRo

L--n

Moreover, (6.48), (6.49) and (6.52) and Theorem 5.4 imply that one has

(6.57) supp r - 1 2 ea(r-t,6) C J r

for all t > 0. Thus, apart from the error terms in (6.51), the echo

waveform is concentrated in the sectors r. Note that in the case of a

degenerate grating with Neumann (resp., Dirichlet) boundary condition

one has S 1 1 (resp., S - -1) and hence r-'/ e (r-t,8) = ±r01 sa(r-t,O)

has support in r0. This is a well-known property of the specular

reflection of a beam by a plane. In the case of a non-degenerate grating,

where S # ±1, one has only (6.57) and secondary reflected beams will

appear in the sectors r., Z # 0. Their waveforms can be calculated

explicitly using (6.52) and (5.87). They are distortions of the signal

waveform s0 (,e) whose forms are determined by the scattering coeffi-

cients c.(wcos e,w sin 6). This phenomenon of the angular dispersion of

pulsed beams by diffraction gratings is the counterpart for transient

wavefields of the phenomenon of the diffraction of monochromatic beams

into the higher order grating directions.
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