AD=A092 435 aAIR FORCE INST OF
A COMPOSITE ALGORI
JAN 80 D B FOX

UNCLASSIFIED AFIT=C1-80-1D

: .=
0,
agazads

TECH WRIGHT=PATTERSON AFB OM F/6 1
THM FOR MIXED INTEGER CONSTRAINED NONLINEAR 0==|

2/1
ETC(U)

ADA0H92435

T

DG FULECO

-~

LINCI ASS

SECURITY CL ASSIFICATION OF THIS PAGE (When IJulfotnh're(l)

REPORT DOCUMENTATION PAGE

READ INSTRUC TIONS
BEEFORE COMPLETTING FORM

T REPORT NUMBER |2 GOVT ACCESSION NO.
80-1D L

3 RECIPItyT'S

CAT AL NLMUE R

WD NN ERIEN
4 TITLE (and Subtitie)

A Composite Algorithm For Mixed Integer
Constrained Nonlinear Optimization,

S TYPE OF HEFORT 6 PI HIUU COVERED

—

TRES{4/DISSERTATION

6 PERFOMMING O4u REFOKT NUMBE K

7. AUTHOR(S)

Capt Daniel B.. Fox

8 CONTRACT OR GRANT NUMBEFI s,

3

, .
~
—

9 PERFQORMING ORGANIZATION NAME AND ADDRESS

AFIT STUDENT AT: \University of Illinois

10, PROGRAM ELEMENT PROJECT TAGK
AREA & WORKUNIT NUMBERS

11, CONTROLLING OFFICE NAME AND ADDRESS

| 12. REPORT DATE

AFIT/NR g
WPAFB OH 45433 A 80
226

from Controlligg Oflice)

14. MONITORING AGENCY NAME & AD ES

1Sa. DECL A’s_sT;:F‘ﬁiTl ON. DGWNGRADING

15. SECURITY CLASS. (of this report)
UNCLASS

SCHEDUL

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (uf the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

PP VEDCO PUBLI(} RELEASE: TAW AFR 190-17

EDRIC C. LYNCH/Major, USAF
ic Atfairs

Air Force Insmute

-Patterson AFB O H

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Contlnue on reverse side If necessary and identify by block number)

ATTACHED

8011 24 100

DD 3% 1473

EDITION OF ! NOV 65 1S OBSOLETE

UNCLASS

He IJRITV (‘LASSIFlCATION OF THIS PAGE WI el Date Fntersd

A COMPOSITE ALGORITHM FOR

MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION

Daniel B. Fox '

. -~
Accessa. i i;;(;r
TNTIS GRi%

DTIC Tr™2
Unapaouurcd
! Justificotion. .

CAPT. USAF " Availabilitty (27
T Avail apc o

Department of Mechanical and Industrial Engineering Dict

University of Illinois at Urbana-Champaign, 1980

Pages: 226 Deyree awarded: PhD

Specials

A composite optimization algorithm applicable to mixed
integer, constrained, nonlinear problems is developed in
this research. One major component of the composite
algorithm is a modified version of the nonlinear simplex
method. Significant modifications are made to this
algorithm including the incorporation of a unidimensional
search procedure and the use of a new method to treat
constraints. Additional features of the composite algorithm
include new acceleration strategies, a new decomposition
approach, and a discrete grid algorithm.

The components of the composite algorithm are tested on
problems primarily selected to represent engineering design
optimization applications. The performance of the new
methods 1s compared to some existing techniques. Examples
of the application of combinations of the composite
components are included. The results indicate that the new
algorithms obtain superior solutions and in most cases are
more efficient than existing techniques.ﬁ:The success of the
algorithm on problems of engineering design optimization

indicates a wide area of potential application.

-5 :

!

‘

BY e e

Distribution/

A COMPOSITE ALGORITHM FOR
MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION

BY
DANIEL B. FOX

B.S., University of Illinois, 1969
M.S., Oklahoma State University, 1970

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering
in the CGraduate College of the
University of Illinois at Urbana-Champaign, 1980

Urbana, Illinois

A COMPOSITE ALGORITHM FOR

MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION

Daniel B. Fox
CAPT. USAF

Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign, 1980

Pages: 226 Degree awarded: PhD

A composite optimization algorithm applicable to mixed
integer, constrained, nonlinear problems is developed in
this research. One major component of the composite
algorithm is a modified version of the nonlinear simplex
method. Significant modifications are made to this
algorithm including the incorporation of a unidimensional
search procedure and the use of a new method to treat
constraints. Additional features of the composite algorithm
include new acceleration strategies, a new decomposition
approach, and a discrete grid algorithm.

The components of the composite algorithm are tested on
problems primarily selected to represent engineering design
optimization applications. The performance of the new
methods 1is compared to some existing techniques. Examples
of the application of combinations of the composite
components are included. The results indicate that the new
algorithms obtain superior solutions and in most cases are
more efficient than existing techniques. The success of the
algorithm on problems of engineering design optimization

indicates a wide area of potential application.

AFIT KESEARCH ASSESSMENT S0—1_

The purpose of this guestionnaire is Lo ascertuin the value and/or
contribution of rescarch accumplishied by students or faculty of the
Air Force Institute of Technology (ATC). It would be preatly appreciated
if you would complcte the following questionnaire and return it tu:

AFIT/NR
Wright-Fatterson AFB UH 45433

Research Title: A Composite Algorithn for Mixed Integer Constrained

Nonlinear Optimization

Author: Capt Daniel B. Fox

Research Assessment Questions:
1. Did this research contribute to a current Air Force project?

a. Yes b. No
2. Do you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another agency
if AFIT had not?

a. Yes b. No
3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency achieved/received by virtue of AFIT performing the
research, Can you estimate what this research would have cost if it had
been accomplished under contract or if it had been done in-house in terms

of manpower and/or dollars?

a. Man-years . b. $

4. Often it is not possible to attach equivalent dollar values Lo research,
although the results of the research may, in fact, be important. Whether or
not you were able to establish an equivalent value for this research (3 above),
what is your estimate of its significance?

2. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. AFIT welcomes any further comments you may have on the above questions,

or any additional details concerning the current application, future potential,
or other value of this research., Please use the back of this questionnaire
for your statement(s).

NAME GRADE POSITION

ORGANTZATION LOCATION USAF SCN 75-20k

iii
ACKNOWLEDGEMENTS

The author expresses his sincere appreciation to his
advisor, Professor Judith S. Liebman for advice and
encouragement provided throughout this research.
Suggestions from Professors N. Kachaturian, N. Miller, and
C. Pedersen proved exceptionally valuable and are also
appreciated. Special thanks are due my wife for her
patience and assistance. Financial support of the United
States Air Force and the University of Illinois Research

Board is acknowledged.

1.

INTRODUCTION

Purpose

Statement of the Problen

Notation and C

Definitions

Guide to the Remaining

Introduction .
Design Optimiz
The Nonlinear
Simplex Variat

A Discrete Sea

Introduction .

Additional Modifications to the Algorithm

Auxiliary Tech

Additional Sea

The Modified Complex Algorithm

Initialization

TABLE OF CONTENTS

onventions

REVIEW OF THE LITERATURE

ation

Simplex Method .
ions

® o e 0 00005 0

rch Algorithm ..

DESCRIPTION OF THE ALGORITHM

niques

rch Algorithms

® e 00 0 0002080000l

e e 0 00000 00000000000

Chapters

® e 0 0

iv

13

15

16

25

26

32

35

38

55

66

68

70

4. RESULTS
4.1 Introduction cecsecoeccocceccocsns
4.2 Constrained Discrete Problems ...
4.3 Constrained Continuous Problems .
4.4 Unconstrained Discrete Problems .
4.5 Unconstrained Continuous Problems

4.6 Composite Algorithm Results «.c..

5. CONCLUSION

5.1 SUMMALY eceecovecssocscsnssscncsace

5.2 Suggestions for Further Research

LIST OF REFERENCES cscesvsccscccscoccnes

APPENDIX 1 - RESULTS e s s s e e e et b

APPENDIX 2 -- FORTRAN SUBROUTINES .,.....

VITA ® © 0 6 0 0 0 0 8 9 0880 S0 S PSP L LGOS

71

76

85

92

97

103

120

125

132

188

226

1 INTRODUCTION

1.1 Purpose

Many engineering design problems can be represented as
constrained nonlinear programming problems where all or some
variables are restricted to discrete values. The purpose of
this research is to develop a practical method for solving
mixed integer constrained nonlinear optimization problems
and to demonstrate the technique on sowme problems of
machine, thermal systems, and civil engineering design. The
basis for the optimization technique is the nonlinear
simplex method.

One important factor to consider when deciding 1if an
optimization method is practical is whether practitioners in
need of an optimization technique are likely to use the
algorithm. This decision is often a function of whether the
practitioner, not necessarly a specialist in optimization,
can understand the algorithm. Nonlinear programming is not
reliable in the way that linear programming is reliable. 1In
linear programming a properly formulated model will yield an
optimal solution using any of a number of available linear
programming packages. In nonlinear programming, except for

a few classes of well behaved problems, finding the optimal

solution depends on interaction with the user in order to
avoid some solutions that may be only local optima or not
optimal at all. This necessitates some familiarity by the
user with the internal workings of the algorithm as we'l as
with the model being optimized. For this reason, a simple
algorithm is often more desirable than a more complicated
one, even at the cost of some efficiency.

In this research a heuristic algorithm is developed for
the solution of mixed integer, constrained, nonlinear
programming problems. Straightforward methods have been
used to enforce the constraints and discreteness of
variables. A variety of search strategies, each employing
easily understood concepts, is combined into a methodology
which allows the designer to change strategies as the
algorithm proceeds. The whole of the options and strategies
available make up a composite algorithm.

The elements of the composite algorithm are tested using
both classical test functions as well as engineering design
problems selected from recent literature. Results are

compared with results from existing techniques.

1.2 Statement of the Problem

The general integer, constrained, nonlinear optimization

problem is usually stated as:

MINIMIZE: F(X)
SUBJECT TO: Gi(X) <0 , 1 = 1l,.00,m
Hi(X) = 0 , 1 = 1,...,k

X(j) integer , 3 = 1l,...,n

The problems considered in this research may be stated

as:

MINIMIZE: F(X)
SUBJECT TO: Gi(X) < 0 , i = l,...,m

with a specified subset of X discrete

In this research equality constraints are excluded for
two reasons. First, the complex algorithm that is a major
component of the composite algorithm developed in this
research does not allow equality constraints. Second, as
discussed by Taha [72], the inclusion of equality
constraints in discrete problems can bring into question the
very existence of solutions to what would be problems with
many solutions if either the equality constraints, or the
discrete requirement were dropped. However, the techniques
developed in this research do allow the solution of problems
with equality constraints in certain circumstances. There
is always the possibility of solving an equality constraint
for one of the variables of the problem. Then the
optimization problem can be restated, without the equality
constraint, in a reduced variable space. This procedure

includes what 1is a very common situation in structural

optimization where the objective function is written in
terms of the design variables but some of the constraints
may be written in terms of state variables. The design
variables are linked to the state variables by equality
constraints. In this case, since the state variables do not
enter into the calculation of the objective function, the
equality constraints may be considered to be a
transformation of the design variables into the state
variables. This transformation may be in closed form or
accomplished by simulation. Thus, the constraints written
in terms of the state variables may be considered to be
functions of the design variables after the transformations
have been applied. The optimization problem can then be
expressed without equality constraints.

In this research it is possible for only a subset of the
variables to be integer restricted while the remaining
variables are allowed to assume continuous values; and it 1is
possible for discrete variables to assume any set of equally
spaced values, not necessarily integer. Of course, a
discrete variable that A sumes nonequally spaced values can
always be transformed to one that is equally spaced. The
subset of variables restricted to discrete values may be the
entire set of variables of the problem, resulting in an all
discrete problem, or may be the empty set, resulting in an

all continuous problem.

———— "
———————

Although the objective function F and the constraint

functions Gi are often analytic expressions, the algorithm

developed in this research requires only that they be

computable. Hence, these function values may result from
recursive calculations, simulation, or represent the output
of a so called "black box," a system which provides outputs

when given inputs, but for which the internal workings are

unknown.

1.3 Notations and Conventions

Certain conventions of the FORTRAN computer language
will be used in representing mathematical operatioms. For

example:

* i3 used to denote multiplication

/ 1s used to denote division

The angle brackets notation <a> is used to denote the

nearest integer value to a.

Examples: <1.3> = 1 <.2> = Q0 <=1.3> = =1 <=2.8> = -3

For scaler a and vector V, where:

W(i) = a * V(i) for all i
the vector W is denoted

W= a * YV

or

W=V % g

All of the optimization problems discussed in this
research are stated as minimization problems. Thus, the
optimal solution sought is the point with the smallest value
of the objective function that satisfies the constraints of
the problem. For clarity in exposition, the phrase "point
with smallest value of the objective function" is sometimes
replaced with "best point." Similarly, the phrase "worst
vertex" should be interpreted as "the vertex with the

largest value of the objective function."

l¢s4 Definitions

This section provides definitions of terms used in the
discussion to follow.

Definition: Parameter space
The parameter space for an optimization problem with n
variables is a vector space of real n-tuples.

Definition: Subspace
A subspace is defined as the domain of a subset of the
variables.

Definition: Discrete subspace
The discrete subspace is the subspace of the discrete

variables.

Definition: Continuous subspace
The continuous subspace is the subspace of the continuous
variables.

Definition: Increment
An increment is the distance between discrete points along a
coordinate axis.

The primary reason for the definition of increments for
the discrete variables is to define the lattice of values
that the discrete varibles may assume. As will be seen
later, the increment is also used in calculating termination
criteria for both the modified complex algorithm and the
unidimensional search. In addition, the increment specifies
the stepsize used to calculate gradient approximations.
These last three uses of the increment prompt the following
definition of a3 pseudo-increment for continuous variables.

Definition: Pseudo-increment
A pseudo-increment is the smallest distance along a
coordinate axis of a continuous variable that is
significant. The determination of significance is the
responsibility of tﬁe designer.

The pseudo-increment serves the same functions as the
increment with the exception of defining a lattice. That
is, the pseudo-increment is used to calculate termination
criteria and gradient approximations but does not restrict

the associated variables to a lattice.

Definition: Grid point
A grid point is a node of the lattice of the discrete
subspace. The values of the continuous variables are fixed,
but arbitrary.

Definition: Discrete.unit neighborhood
Let I(i) be the increment of the (i)th variable. Let X be a
grid point with discrete components X(i) and continuous
components X(j).

The discrete unit neighborhood of a point X, UN(X), is a

set of points Y such that:

Y is a grid point with discrete components Y(i) and
continuous components Y(i)
and

X(4) - I(i) < Y(1) £ X(i) + I(i) for all discrete
variables 1
and

X(j) = Y(j) for all continuous variables j

Definition: Discrete diagonal neighborhood
The discrete diagonal neighborhood of a point X, DN(X), is a

set of points Y such that:

Y is a member of the discrete unit neighborhood of X

and

X(1i) # Y(i) for any discrete variables i

Definition: Nl discrete neighborhood
The N1 discrete neighborhood of a point X, NI(X), is the set

difference between the discrete unit neighborhood of X and

the discrete diagonal neighborhood of X. That 1is:
{N1(X)} = {(UN(X)} - {DN(X)}

Example: Neighborhoods

The neighborhoods defined above are illustrated in two

dimensions ir Figure l1=-1. 1In this figure:

{UN(X)) = {A,B,C,D,E,F,G,H,X}
{DN(X)} = {(A,C,F,H}
{N1(X)} = {B,D,E,G,X}

Definition: Explicit constraints
Explicit constraints are constraints functions that may be
written in terms of a single variable. These are
constraints that express upper or lower bounds on variables.
Definition: Implicit constraints
Implicit constraints are constraint functions that are
functions of two or more variables.
Definition: Feasible point
A feasible point is a grid point for which all the explicit
and implicit constraint functions are satisfied.
Definition: Effective objective function
The effective objective function EF(X) 1s the modified
function minimized by the composite algorithm developed in

this research. It is developed in three stages:

=] A 8
o] + +
8 0 X
. - + +
o~

~

><8 F G
-:T + +
o
(]
¢ T T
.00 1.00 2.00

X(1)
FIGURE 1-1. NEIGHBORHOODS

.00

10

e e ——— T ——

11

STAGE 1

If any explicit constraints are violated at X
then:

EF(X) = M2 + (violations)
where

M2 is a large number
and

(violations) is the sum of the violations of the
explicit constraints at X.

STAGE 2

Assuming the explicit constraints are satisfied, then:

If any implicit constraints are violated at X

let:

EF(X) = M1 + (violations)
where

Ml is a large number
and

(violations) 1is the sum of the violations of the
implicit constraints at X.

STAGE 3

Assuming both the explicit and implicit constraints are

satisfied then

EF(X) = F(X)

where

F(X) 1is the original objective function of the problem.

12

Definition: Vicinity

The definition of vicinity depends on whether discrete
variables are present. If the variables are all discrete,
then the vicinity is the Nl neighborhood. If all variables
are continuous, then the vicinity is a small hypersphere.
In the case of mixed discrete and continuous variables, the
vicinity is the union of the vicinity of the discrete
subspace and the vicinity of the continuous subspace.

Definition: Local optimum

A feasible point X is a local optimum if:

F(X) < F(Y) for all feasible Y in the vicinity of X

Definition: Global optimum

A feasible point X is a global optimum if:
F(X) < F(Y) for all feasible Y.

Definition: Complex
A complex is a figure in n-space represented by n+l (or
more) points.

Definition: Regular simplex
A regular simplex in n-space 1is a complex of n+l points with
the distance between a pair of points equal to the distance
between every other pair of points.

Definition: Centroid
The centroid of a set of points X1,X2,...,Xn 1is a point C
such that:

C(i) = (X1(4) + X2(4) + . . « + Xn(i)) / n

13

Thus each coordinate of the centroid is the arithmetic mean

of the corresponding coordinate of the set of points

defining the centroid.

1.3 Guide to the Remaining Chapters

Chapter 2 introduces the topic of design optimization
and discusses the treatments that have been used for
constraints and discrete variables. The nonlinear simplex
algorithm and its major modifications are reviewed.

Chapter 3 describes the elements of the composite
algorithm developed in this research. The new modifications
for the complex algorithm, the auxiliary techniques, and
additional search strategies are described in detail. The
chapter concludes with a detailed description of the
modified complex algorithm.

Chapter 4 contains an analysis of the results and is
divided into six sections. After the parameter settings
used to obtain the results are described in Section 1, the
results of the modified complex algorithm on four categories
of problems are analyzed. The four categories are:
constrained discrete, constrained continuous, unconstrained
discrete and unconstrained continuous. The last section
discusses results of the additional features of the

composite algorithm.

14

Chapter 5 summarizes the results and suggests areas for

additional research.

I o mdrsemmpani s o

LS

2 REVIEW OF THE LITERATURE

2.1 1Introduction

Design has historically been a2 trial and error process
based on experience with similar designs. Gradually
techniques for analysis have been devised which have
eventually become accurate enough to predict performance of
designs based on descriptions of the design. As the
analysis techniques have become more comprehensive, the
computer has been used to perform the computations necessary
for the analysis. An additional step towards automation was
taken when improved means were provided for the interaction
of the designer with the computer. This "computer aided
design'" allows the designer to indicate design changes which
the computer analyzes and for which the results are
displayed. Thus, the designer can evaluate the results of
the analysis, make design changes, and iteratively arrive at
a design that is in some sense optimal. Recently there has
been increased interest in closing the design loop within
the computer by including in the analysis a measure of merit
or objective function wiich can be used to compare various
designs. A computer program can then vary the design

parameters and seek the parameters that define the optimal

16

design as measured by the objective function. Of course, an
objective function represents only an approximate measure of
the utility of a design, and in actual fact, the selection
of the final design must be tempered by the experience of
the designer. The worth of the optimization process lies in
its ability to optimize within limits set by the designer
and in providing alternative designs.

In this final phase, the design problem is cast in the
form of a mathematical optimization problem. Virtually
every mathematical optimization technique has been applied,
including purely analytical techniques, linear programming,
dynamic programnming, and direct search. Depending on the
nature of the problem, auxiliary techniques including
Lagrange multipliers, penalty functions, linearization, and
rounding have all been used to aid in the solution of

problems.

2.2 Design Optimization

Some progress has been made in analytical optimization
in structural design, for example, in fully stressed design
[8] and more recently in the interpretation of failure modes
of structures as representing local optimal solutions of an
optimization problem [36]. These approaches, however,

require intensive analysis of the particular problem under

17

study and cannot be considered to be generally applicable
methods. Instead, the approach in this research is limited
to the use of a general purpose optimization algorithm on a
model of the design to be optimized.

Good introductions for those not familiar with how a
mathematical optimization problem is formulated from design
concepts are in Schmit [62], Fox [21} and Gallagher [23].
Two survey articles on the current state of the art in
optimal structural design, which include very extensive
references, are by Wasiutynski and Brandt (75] and Sheu and
Prager [65].

The success of many nonlinear optimization techniques is
predicated on the problem being in a certain form, whereas
most design problems result in a model of unknown form.
Conditions of continuity, differentiability, convexity or
freedom from numerical difficulties in the computation of
the objective function or constraints most often cannot be
assured in typical engineering design applications. A class
of nonlinear optimization techniques that makes few
assumptions about the form of the problem is the class of
direct search techniques. Most optimization algorithms,
particularly those that attain efficiency by extensive use
of the local topography of the objective function surface to
determine search directions, will converge to a local
optimum nearest the starting point (5]. This, of course,

includes the gradient based optimization methods. For this

18

reason, when the model to be optimized contains multiple
local optima, use of a direct search optimization method =zav
be preferable. Direct search has been demonstrated to be
appropriate for design optimization by Pappas and Allentuch
[48], Pappas and Amba-Roa [49], de Silva [l4], and Weisman
and Wood [76]. A particular direct search algorithm, the
simplex method, has been cited for having the potential for

locating optimal solutions far from the starting point [3].

2.2.1 Constraints in Design Optimization

Constraints in engineering design optimization have been
widely treated with penalty functions [37] [56] ([44] [40].
Interestingly, an early paper developing the mathematical
basis for the penalty function concept was written in 1943,
well before the use of computer optimization techniques
(12). The mathematics are developed by considering the
equilibrium for a3 plate or membrane under an external force.
The technique is based on replacing an unsolvable or
difficult problem P with an easily solved problem Pl with
solution Sl. The approximation is then improved, resulting
in problem P2 with solution S2. Again, the approximation is
improved and the result is a series of problems Pn with
solutions Sn. If the sequence of problems is appropriately

selected, two useful properties result. First, knowledge of

19

the solution to the (n)th problem aids in the solution of
the (n+1l)st problem. Second, the sequence of solutions Sn
tends to the solution of the problem P.

The use of penalty functions transforms a constrained
nonlinear optimization problem into a sequence of
unconstrained nonlinear problems. This is accomplished by
augmenting the objective function of the constrained problem
with penalty terms. The penalty terms are formed from the
constraints and multiplied by a penalty function parameter,
The augmented function is then optimized, using
unconstrained optimization techniques, for a sequence of
values of the penalty function parameter. The form of the
penalty terms and the sequence of the penalty function
parameter values are chosen such that the sequence of
solutions 0of the unconstrained problems converges to an
optimal solution of the original constrained problem [1]
{32}, Penalty function methods may be classified into two
catagories usually called internal and external. Some
algorithms employ a mixture of the two.

Exterior penalty function methods are sometimes referred
to as dual methods because they locate a series of optimal,
infeasible solutions and terminate when a feasible solution
is found ([16]1 [32] [78]. The use of "dual" as a name
alludes to the similarity in approach to the dual method of

linear programming. The exterior penalty method (and the

mixed methods as well) suffer a defect common to dual

20

methods in that if the algorithm is terminated prior to
completion, for example due to budget limitations on
computer usage or due to numerical difficulties in the
calculations, then no feasible solution may be available.
Another difficulty with exterior penaltv function
formulations is that it is necessary to evaluate the
objective function for infeasible points. In some cases
this may be impossible or may lead to numerical difficulties
in computation.

Interior penalty function methods, on the other hand,
are often referred to as primal methods because they begin
with a feasible solution and attempt to locate an optimal
solution while retaining feasibility [8] [16] [32].

Interior penalty methods have the advantage of always having
feasible, and hence potentially usable, solutions as
intermediate results. Discussions of the use of penalty
function methods specifically applied to design optimization
have been written by Moe [44] and also by Fox [21].

In spite of wide usage, penalty functions methods have
some potentially serious difficulties associated with them.
As Schuldt et. al. [64] observe, the problems of scaling the
objective function and constraints, selecting an appropriate
initial penalty factor, and determining the amount to reduce
the penalty factor between cycles, are problems for which
general procedures have not been developed. Improper

scaling between multiple constraints or between the

21

objective function and the constraints can result in the
penalty function method converging to a nonoptimal solution.
A more basic problem is that the addition of the penalty
term to the objective function may mean that the assumptions
implicit in the unconstrained optimization algorithm are
violated. 1In particular, Lasdon, Fox and Ratner [39]
comment that unidimensional search techniques which are
commonly used as part of most unconstrained optimization
algorithms and which are based on polynomial approximation
are probably inappropriate for objective functions that
include penalty terms. Davies and Swann [13] observe that
penalty functions insure the presence of steep valleys and
discontinuous derivatives, and that these features are
difficult to overcome, particularly with gradient based
algorithms. Murray [45] notes that the use of penalty
functions makes the problem progressively more
ill-conditioned as the solution is approached, and that
convergence 1is strongly dependent on the selection of the
penalty parameters.

Finally, since the penalty function method requires
solving a sequence of problems with different values of the

penalty parameter, the overall process may be inefficient.

22

2.2.2 Discreteness in Design Optimization

Until recently, discreteness in design optimization has

been most often treated either explicitly by branch and
bound or dynamic programming or implicitly by rounding to a
nearby integer solution. More recently, some explicit
treatments of discreteness in search techniques have been
attempted [10] [24] [25] [26] [40] (48] [66].

The branch and bound algorithm was originally proposed
by Land and Doig [38] for linear integer problems. The
basic concept is to enumerate the integer solutions in such
a way that groups of solutions, which cannot contain the
optimal solution, may be recognized without detailed
evaluation of all combinations of the discrete variables.
The nonoptimal groups are identified by solving a linear
subproblem and calculating a limiting value for the
solutions in that group (bounding). When the limiting value
i{s no better than a known solution then the group cannot

contain the optimal solution. By recognizing these

nonoptimal groups and dismissing those solutions from
further consideration, an optimal solution may be found
after evaluating only a fraction of the total number of
solutions represented by all combinations of the discrete
variables. Branch and bound algorithms have been successful
on linear integer and mixed integer problems because
efficient and reliable algorithms exists with which to solve

the linear subproblems.

23

In theory, thg concept of the branch and bound technique
may equally well be applied to nonlinear integer problems.
Unfortunately, except for problems where stringent
conditions on the form of the objective function and
constraints are known to hold, the situation for nonlinear
problems is quite different from that for linear integer
problems. The subpfoblems are now nonlinear, constrained,
optimization problems and solving them may be relatively
difficult. More importantly, the solution obtained may be
only a local rather than the global optimum. Even a small
integer problem may involve solving 100 subproblems. Any
one local optimum for a subproblem, which is wrongly
presumed to be a global optimum, may result in erroneously
discarding a group of solutions as not containing the
optimum when, in fact, the optimum may be in that group.

Thus, using a nonlinear programming algorithm to solve
the branch and bound subproblems and failing to locate the
global solution even occasionally may result in the branch
and bound approach finding suboptimal solutions to the
overall problem. In addition, the sheer number of nonlinear

'small problems can make

subproblems to be solved for even
the branch and bound approach infeasible.
Dynamic programming is limited to problem formulations

that are separable and becomes computationally inefficient

when the number of constraints exceeds four or five. Since

separability is not generally present in models for
engineering optimization, dynamic programming is not a
generally applicable optimization technique. For this
reason it is not considered further in this research.

The simplest and most prevalent technique for treating
integer variables is some form of rounding of the continuous
optimum. This is often combined with a search of the
neighborhood of the rounded solution [21] [31] [35] [41]

{731 [(48)]. ©Of course, obtaining a continuous optimum is
possible only if the discrete variables of the problem can
satisfactorily be treated as continuous. For example, if
the value of a variable denotes the use of a certain
material (with specific properties that affect the objective
function and constraints) then it is not clear what is
implied by the variable taking on a noninteger value. That
the rounded solution, even with neighborhood search, may not
be optimal is widely recognized [4) [27] [48] [21] [24]. A
major difficulty in constrained problems is that the rounded
solution may not only be suboptimal but may actually be
infeasible. Locating a feasible discrete point may in
itself be a nontrivial task.

Treating the discreteness of the variables explicitly in
a search algorithm has the advanfage of only requiring
evaluation of the objective function and constraints on the
allowable set of discrete points. It is this method that is
used in this research and the details of the method are

presented in the following chapter.

25

2.3 The Nonlinear Simplex Method

The nonlinear simplex method, not to be confused with
the simplex algorithm of linear programming, is a direct
search, descent method. It is based on a geometric
construct referred to, in the case of an n-dimensional
space, as an n~-dimensional simplex. The original work
published in 1962 by Spendley, Hext, and Himsworth {70] was
based on regular simplices, that is simplices with all line
segments of the same length. Although the particular
application was to a response surface problem, the authors
alluded to the applicability of the technique to
mathematical optimization.

The simplex method for minimization may be summarized as

follows:

1. Construct a regular simplex in the parameter space
of the variables of optimization and evaluate the

objective function at each vertex.

2. Find the centroid of the simplex without the worst

vertex (worst vertex being the vertex with the

highest objective function value).

26

3. Define a new simplex by eliminating the worst
vertex and adding a new vertex obtained by
reflecting the worst vertex through the centroid.

Evaluate the objective function at the new vertex

and return to step 2.

The elegant simplicity of this algorithm has led to a

large number of variations on the basic method.

2.4 Simplex Variations

Variations in the simplex method have been made to adapt
the technique as a general purpose mathematical optimization
technique. Additional modifications have been proposed to
allow for optimizing constrained problems and still other
modifications to adapt the algorithm to discrete problens.

Various minor modifications have been proposed to improve

the performance of the algorithm. These modifications are

discussed below.

2.4.1 Nelder and Mead Algorithm

In 1964 Nelder and Mead [46] extended the simplex
technique by allowing irregular simplices (line segments not

necessarly all the same length). This provided both a

degree of scale invariance and allowed for a form of

acceleration in the search. They also advocated using more

than n+l points as an aid in preventing the simplex from

collapsing into a subspace. Their modifications to the

simplex rules include:

If the reflected vertex is the best vertex (best
vertex being the vertex with the lowest objective
function value), then try an expansion step to
another vertex that is further along in the same

direction that yielded the reflected vertex.

If the reflected vertex has the worst objective
function value, then try another vertex that is

retracted toward the centroid.

If the retracted vertex has the worst objective
function value, then contract the entire simplex by

moving every vertex towards the best vertex.

Stop the process when the simplex shrinks to a

sufficiently small size.

28

2.4.2 Box’s Complex Algorithm

In 1965 Box [5] proposed a modified simplex method
called the complex method that could solve constrained
problems with an interior, that is, problems constrained
only by inequalities. In this algorithm the vertexes of the
simplex are constrained to remain within the feasible region

by the following rules:»

1. If a reflected vertex viola:es an explicit
constraint (a variable does not fall within its
lower and upper bounds), then that variable is set

just within its violated bound.

2. 1If the above rule is satisfied but an implicit
constraint (a constraint other than a simple bound

on a variable) is violated, then the vertex is

retracted towards the centroid until all

constraints are satisfied.

-

2.4.3 A Discrete Complex Algorithm

Beveridge and Schechter [4] suggest modifications of the
complex method of Box to solve integer nonlinear problems.

This method was further modified by Glankwahmdee [25] and

29

Glankwahmdee, Liebman and Hogg {26]. 1In Glankwahmdee’s

algorithm the following additional rules are used:

Each vertex is restricted to be at an integer point

by moving to the nearest discrete point.

A reflected point is retracted towards the centroid

if it either violates a constraint or has the worst

objective function value.

If a point in being retracted coincides with either
the original reflected point or the original vertex
to be rejected, then the original vertex is
restored and the centroid is located and a
reflected point is deirermined using the second

worst vertex (third worst vertex, etc).

The process is terminated either when the simplex
contracts to a single point or when rule 3 uses all

vertexes in the simplex without a vertex being

changed.

30

2.4.4 Unlimited Expansion Modification

Parkinson and Hutchinson (52] report a successful

variant of the Nelder and Mead algorithm that allows for
repeating the expansion step as long as the expansion vertex

is the best vertex.

2.4.5 Modifications to the Algorithnm

Guin [29], after some experiments with Box’s algorithm
suggested that the rule for setting variables just inside
their bounds sometimes caused premature termination of the
algorithm. For this reason it was suggested that this rule
be abandoned. Instead, explicit constraint viclations were
treated just as implicit counstraint violations and the rule
calling for retraction towards the centroid was applied.
Also suggested was that, for cases where the centroid 1is
infeasible (which can occur with non-convex constraint
sets), the entire complex should be contracted towards the

best vertex.

31

2.4.6 A YNonrandom Init.alization Procedure

The various simplex based algorithms discussed here
usually suggest a random procedure of some sort to define
the initial simplex. In contrast, Mitchell and Kaplan [43]
suggest a nonrandom method for defining the initial simplex.
The nonrandom simplex of 2n+! points is defined, given an
initial feasible point X0, as follows:

V(l,1) = X0(i) , i = l,...,n

l,.¢e,n

X0(i) , 1 = l,eeeyn , i # k , k

1]

Vik+1l,1)

V(k+l,k) LB(k) , k¥ = 1l,.¢4,n
V(l+n+k,1i) = X0(i) , 1 = lyeeeyn , 1 # k , k¥ = l,...,n
V(l+n+k,k) = UB(k) , k¥ = l,.e.,n

where:

LB(k) is the lower bound for variable k

and:

UB(k) is the upper bound for variable k

If any of the vertexes defined above are infeasible they
are retracted half way toward the initial point as many

times as 1is necessary to locate a feasible point.

32

2.5 A Discrete Search Algoritha

2.5.1 Unconstrained Discrete Search

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg
{26] reported that an algorithm of descent along the integer
gradient combined with sectioning regeneration was the best
of several algorithms developed for unconstrained discrete
optimization. This algorithm, G-2, may be described as

follows:

l. Calculate a gradient approximation at the current

solution point.

2. Convert the gradient direction to an integer
direction. This procedure is described in Chapter
3, under "A New Method for Search Direction

Specification.”

3. Perform a unidimensional search along the integer

direction.

4, If the search locates a better point, make it the
current solution and go to step l; otherwise, go to

step 5.

33

5. Perform a regeneration step by applying the
unidimensional search along each of the coordinate
directions in turn until a better point is found or

all coordinate directions are tried.

6. If a better point is found, make it the current

solution and go to step l; otherwise, go to step 7.

7. Stop.

2.5.2 Counstrained Discrete Search

Chanaratna [10] and Chanaratna, Liebman, and
Khachaturian [40] report successes in the optimization of
some structural designs by adding interior penalty functions
to Glankwahmdee’s G-2 algorithm. This algorithm, G-2/P,
uses a variant of the normal interior penalty function
formulation to allow the solution of discrete problems where
a constraint may be satisfied exactly at the optimal
solution. This is done by replacing the penalty term for a
particular constraint G(X):

PF = 1./G(X)

by

34

PF = 1./G(X) when G(X) # 0.
or

PF = 1./EPS when G(X) = 0.
where EPS is a small constant. This modification prevents
the penalty term from being infinitely large when G(X)

equals zero.

35

3 DESCRIPTION OF THE ALGORITHM

3.1 Introduction

The goal of this research is to develop and test a
practical algorithm for design optimization where the
mathematical representation of the system to be optimized

may have a linear or nonlinear objective function, linear or

nonlinear constraints and some or all variables restricted
to discrete values. No assumptions are made concerning the
continuity, convexity or differentiability of the objective
function or constraints. The general nature of this problem
and the inclusion of discrete variables make obtaining the
optimal solution of the problem difficult. The approcach
adopted to solve this problem was suggested by Taha [72].

"Experience with practical integer problems shows

that if a solution is to be found, manual

intervention during the course of the computations

is a must. This means that, depending on the

progress of the calculations, the user may find it

necessary to change search strategy in order to

take advantage of the available information. This

emphasizes the importance of including as many

feasible options as possible in the integer

36

programming code. These options should be
designed to exploit the different techniques
available for solving integer programming
problems, including heuristics. The collection of
these options, together with manual intervention
by the user, produce the so-called "composite"
algorithm. Naturally, the specific steps of the
algorithm are not fixed in advance but will
primarily depend on the experience of the user in
selecting the most effective strategies for
directing the search toward finding the optimal
solution. These strategies are usually based on
the information feedback from the computer and

also on the type of problem under investigation."

The major component of the compecsite algorithm developed
in this research 1s the nonlinear complex method
incorporating both new modifications and modifications to
the basic algorithm previously reported in the literature
but not previously combined.

The complex algorithm, five new modifications, four
auxiliary techoniques, two additional search algorithms, and
the ability to change at will the algorithm parameters, are
implemented as an interactive, terminal-oriented, composite
computer program. The new modifications include the

following:

37

l. 1Incorporation of a unidimensional search procedure

into the complex algorithm.

2. A new method for specifying discrete points along a

search direction.

3. A new method for handling constraints.

4. A new termination criterion for the unidimensional

search component.

5. A new termination criterion for the complex

algorithm.

The four auxiliary techniques for use in conjunction

with the modified complex algorithm are:

1. Regeneration methods

2. Acceleration strategies.

3. A new decomposition method.

4. A grid approach.

The two additional searczh algorithms included in the

composite algorithm are:

38

l. Steepest descent

2. Sectioning

What follows is a description of the modifications of
the complex algorithm, the auxiliary techniques, and the
additional search algorithms. The chapter is concluded with

a detailed description of the modified complex algorithm.

3.2 Additional Modifications

3.2.1 Incorporation of Unidimensional Search

The reflection, expansion, and contraction rules, for
all the variations of the complex algorithm discussed in the
previous chapter, select new vertexes that are linear
combinations of a selected vertex of the current complex and
the centroid of the remaining vertexes. Thus, new vertexes
always lie on a line connecting the centroid and the
selected vertex. In this research these three rules have
been replaced by a unidimensional search. In general, the
base point of the search is taken as the selected (usually
the worst) vertex and the direction is defined as the line

from the selected vertex to the centroid of the remaining

———— T

39

vertexes. This formulation allows for movements similar to
reflection, expansion and retraction, in addition to
multiple expansions, as allowed in the Parkinson and
Hutchinson [52] algorithm, and for multiple retractions as
specified for infeasible points in Box"s [5] algorithm.

The unidimensional search used is the golden section
method. The search method is comprised of two steps:
determining an interval within which the search will be made
(this is refered to as bracketing) and the search itself.

The bracketing procedure selects trial points at
geometrically increasing distances along the specified
direction and is described in detail by Avriel (1l]. The
goal of the bracketing procedure is to obtain three points
that satisfy the following inequality:

F(X1) > F(X2) < F(X3)
Under conditions of unimodality of the objective function F,
the minimum of the objective function is known to be between
X1 and X3 if this inequality is satisfied. 1In geuneral,
although unimodality is not known, a pretense of unimodality
is assumed. As a result of this assumption a local, rather
than global, minimum may be bracketed. The bracketing

procedure may be summarized as follows:

Let: X0 be a given base point
D be a direction vector
S be the initial stepsize
X1l = X0

X2 = X1 + S *D

40

One of two cases are possible at this point. If F(X2) <
F(X1l) then the objective function is decreasing in the
direction D and one may proceed.

If the above inequality does not hold, then the
objective function is not decreasing in the direction D. 1In
this case, the direction of search is reversed by the
following:

Interchange X1 and X2

Let:

In any case repeat the following steps as required.
Let:
S = 2. * §

X3 = X2 + S * D

If F(X3) > F(X2) stop because then the bracket is
accomplished. Otherwise let:
X1 = X2

X2 = X3

The search procedure attempts to decrease the bracket
size so as to localize the minimum of the function along the

specified direction. Again, at least the pretense of

unimodality must be assumed. The golden section search

method and its relation to the Fibbonacci search method is

extensively discussed by Wilde and Beightler {77]. The
procedure may be s:mmarized as follows:
Suppose the current bracket is at X1, X2, and X3 where:
F(X1) > F(X2) < F(X3)
Without loss of generality assume:
Xl < X2 < X3

Case 1:

X2 is in the left half of the interval between X1 and X3

Let:

41

XNEW(i) = X1(i) + .618 * (X3(i) - XI1(1)) , L = 1l,...,n

Define a new bracket as follows:

If F(XNEW) < F(2)

then
X1 = X2
X2 = XNEW
else:
X3 = XNEW
Case 2.

X2 1is in the right half of the interval between Xl and X3
Let:
XNEW(1i) = X3(i" + .618 * (X1(i) - X3¢(1)) , 1+ = 1,...,n

Define the new bracket as follows:

If F(XNEW) < F(X2)

then

X3 = X2
X2 = XNEW
else:
X1 = XNEW

3.2.2 A New Method for Search Direction Specification

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg
{26]) defined an integer direction as follows:
Let V be a n-vector representing a direction in n-space.
Let the relative direction vector DR be as follows:
DR(1i) = V(i)/B
where: B = MIN { |V(i)| ¢ i = 1l,.4e,n}
Finally, let the integer direction M be:
M(i) = <DR(1i)>
where <x> 1s the nearest integer to x.
For example:
va= (1.7, .5)
DR = (3.4 , 1)
M= (3, 1)
Thus a direction vector is scaled to give a minimum
component of | and has all integer components. Points on a

line from a base point XB in the integer direction M may be

represented:

P = XB + Y * M
If the coordinates of XB are all integer, then points on tne
line have all integer components for integer values of the
scaler Y.

In addition, Glankwahmdee defines a subsequential search
interval in order to locate integer points aear the line
from the base point in the integer direction but falling
between successive integer values of Y. These points are
illustrated in Figure 3-1.

The integer direction as defined by Glankwahmdee has the
advantage of providing evenly spaced discrete points on a
line which makes the direction suitable for an efficient
integer search technique based on Fibonacci numbers. Two
disadvantages are that the discrete points may be widely
spaced, necessitating a second type of search within a
subsequential search interval, and that the integer
direction may diverge widely from the original search
direction. This second concept is illustrated in Figure
3-1. The second discrete point on the integer direction is
(7,3), whereas when x(2) takes on value 3 along the original
direction, x(1) would have value 7.8; and thus, the point
(8,3) is closer to the original direction than is the point
(7,3). The further along the integer direction a search
proceeds, the more widely the original direction and the

integer direction diverge.

X(2}

.00

nq + + + + + #S

31 + + #S R RS +

Q

3- RS Re + . + +

g

.00 1,00 2.00 3.00 4.00 §.00 8.00

X{1)

0 - BRSE POINT
1 -~ POINT ON INTEGER OIRECTION (23,1) FOR Y=1
2 - POINT ON INTEGER OIRECTION (3.,1) FOR ¥Y=2
S - POINTS ON SUBSEQUENTIRL SEARCH

[INTERVAL ABOUT POINT 1

FIGURE 3-1., POINTS ON [NTEGER OIRECTION RNO
(N SUBSEQUENTIAL SERRCH INTERVFL

r3

.00

A third disadvantage of the integer direction is that,
by the definition, certain directions are forbidden.

Because the elements of the integer direction vector are

integer and the smallest element is equal to one, then in
two dimensions, for example, no direction between (1 , 1)
and (1 , 2) is defined. Likewise no direction between

(1 , 1) and (2 , 1) is defined. These forbidden directions
may encompass a substantial portion of the parameter space,
as illustrated in Figure 3-2. Within the 12 by 12 grid
illustrated, 52 of the 144 points are inaccessable by any
single unidimensional search when the integer direction is
used.

As an alternative to the integer direction and
subsequential search interval, the following is used in this
research. Consider a normalized direction vector S and a
base point XB. For points P where:

P = XB 4+ Y * §
Let:

IP(i) = <P(i)> For i=1,...,n

Thus, for any scaler Y one finds a point IP that is the
discrete point nearest in each coordinate to the line from
the base point along the given direction. For a segment of
the line from XB along direction S, there are an infinite
number of scalers Y and a finite number of nearest discrete
points. In order to insure that unique discrete points are

determined, it is sufficient to increment Y by an amount:

X(2)

6.00

4.00

FLIGURE 3-2,

FORBLODEN POLINTS
(INDICATED BY @

47

b = 1/a
where:
a = MAX { |S(i)] : i=l,...,n}.

We now have a formulation that allows a single search method
to replace both the search along the integer direction and
the subsequential search.

In addition, this formulation allows for searching over
mixed integer spaces. Consider a normalized search
direction S and a base point XB in a mixed integer space.
Suppose the first m coordinates of the space are integer
while coordinates m+l to n are continuous. Then, as before,
let:

P = XB + Y * S

IP(i) = <P(i)> for i=1l,...,m

IP(i) = P(1i) for i = m+l,...,n

Thus the point IP is the nearest grid point to the point P

in the mixed integer space.

3.2.3 A Modified Method for Handling Constraints

As noted in the previous chapter, penalty function
methods for constraints pose several difficulties. Because
of these difficulties, this research uses an explicit method

of handling constraints adapted from the complex algorithm

[57.

48

Nelder and Mead [46] suggested that explicit
constraints, those expressing lower and upper bounds on
variables, could be treated in their algorithm by specifying
a very poor objective function value for any vertex that
violates those bounds. Box [5], in the complex algorithm,
handled implicit constraints by specifying retraction toward

the feasible region for any point violating the constraints.
Guin [29] in his proposed modification to the complex
algorithm, suggested that the retraction rule be used for
both implicit and explicit constraint violations. The ideas
of specifying a very poor objective function value for
infeasible points and of retraction toward the centroid for
infeasible points may be advantageously combined. By
incorporating a barrier function (a function with large
values for infeasible points) into the objective function,
the logic to provide for retraction of infeasible points mavy
be eliminated from the algorithm. In particular, when a
unidimensional search is incorporated into the algorithm, as
discussed above, the behavior of the complex method, with
barriers added to the objective function, is very similar to
using the complex retraction logic. If the search begins at
a feasible point and an infeasible point is subsequently
located during the unidimensional search, then the search
will automatically retract to a feasible point because of
the poor objective function value of the infeasible point.

If the search begins at an infeasible point and a feasible

49

point is then located, the infeasible point will be rejected
in favor of the feasible point on the basis of objective
function value. Finally, if the search begins at an
infeasible point and no feasible point is located, then an
additional modification is required.

In addition to a barrier, the effective objective
function used in this research includes a term that 1is
proportional to the sum of constraint violations. If a
unidimensional search begins at an infeasible point and no
feasible point is located, then the search will select the
point that has the minimum sum of constraint violations.
Minimizing the sum of constraint violations is a classical
heuristic for locating feasible points. If the initial
complex contains infeasible points, then the effective
objective function to be minimized, when those points are
selected as base points for searches, is the sum of the
constraint violations. This method allows the algorithm to
proceed automatically from finding a feasible point to
finding an optimal point.

The effective objective function minimized by the
algorithm is {llustrated, in a single dimension, in Figure
3-3. Inside the feasible region ﬁhe effective objective
function is simply the objective function of the problem
being optimized. At the boundary of the feasible region the
effective objective function is M where M is a large number

with respect to the objective function value in the feasible

EFFECTIVE OBJECTIVE FUNCTION

) FERSIBLE REGIGON -=»

N

X

FIOURE 3-3, EFFECTIVE OBJECTIVE FUNCTION

50

51

region. Outside the feasible region the effective objective
function is M + (violations) where M is as above and
(violations) is the sum of the constraints violated.

The effective objective function in the infeasible
region may be visualized as a funnel sloping towards the
feasible region. The feasible region may be thought of as a
well into which the search will fall when begun from ocutside
the feasible region. The boundary of the feasible region
may be considered a wall from which the search will rebound
when begun from inside the feasible region.

One further point deserves attention. If a
unidimensional search begins at, or locates, a feasible
point and subsequently locates a point at which a constraint
is violated, the evaluation of other constraints is

>

immaterial. That is, any constraint violation at all is
sufficient to assign a poor objective function value. The
opportunity therefore exists to reduce computational effort
on those searches that start from or have already found a
feasible point, by evaluating the constraints one at a time,
and stopping the evaluations as soon as an infeasiblity is
discovered. 1In fact, given that the search has started at
or found a feasible point, the evaluation of the effective
objective function may be done in three stages. First, the
point is checked against the upper and lower bounds for the

variables. If any bounds are violated, proceed no further

and assign the objective function a very poor value.

52

Second, the constraints are evaluated one at a time until a
violation is found or all are evaluated. TIf a violation is
found, proceed no further and assign a very poor value to
the objective function. Finally, if the point has been
determined to be feasible, compute the objective function
value.

It is clear that the effective objective function is
discontinuous at the boundary of the feasible region. As is
noted by Lasdon et. al. [39], a unidimensional search
procedure based on polynomial approximatica cannot be
expected to perform well on this type of objective function.
In this research, a golden section search is used because of
its insensitivity to discoantinuties. Also, it is relatively
efficient and offers flexibility in specifying termination

critera.

3.2.4 Termination Criteria for the Unidimensional Search

Component
Using the unidimensional search modification of the

complex method removes the need to select reflection and
contraction factors. But, there is a new question of how
accurately to locate the optimal point in any given search

direction.

The unidimensional search is terminated when one of two

criteria is satisfied. 1If a specified number of search

53

iterations have been performed, then the search is halted.
If the interval of uncertainty is reduced to the point that
further localization of the minimum is insignificant, then
the search is terminated. What constitutes an insignificant
change in the location of the minimum of the function along
a direction is determined as follows: Suppose the increments
(pseudo-increments in the case of continuous variables) of
the variables are I(i) , 1 = l,...,n. Along a direction D,

the points to be searched may be represented as:

P = X0 4+ S * D
where:

S is the stepsize

The smallest stepsize of interest is that which will
result in a change of one increment along one of the
coordinate axes. This step size (SMIN) may be calculated

as.:

SMIN = MIN {I(1) / D(1i) : i = l,es.,n}
where:

I(i) is the increment for the ith variable

D(i) is the ith component of the direction vector

for the unidimensional search
A stepsize smaller than SMIN is declared to be
insignificant. Thus, the unidimensional search halts when
the interval of uncertainty is a fixed percentage of the

original interval (when the search is halted after a fixed

54

number of iterations) or when the interval of uncertainty 1is
no larger than the increment (or pseudo~increment) in any

coordinate direction.

3.2.5 A New Algorithm Termination Criterion

A variety of termination criteria have been applied to
the complex algorithm. Generally the algorithm is
terminated when the variation in the objective function
values of the vertexes in the complex is "small" or,
alternatively, when the vertexes of the complex are "“close"
together. The first of these criteria can be quite problem
dependent due to wide variation in the scaling of objective
functions. The second is inappropriate when the parameter
space is discrete with different increments assigned to the
various coordinates. Here a measure based on average
distance between vertexes can be misleading unless distances
are normalized by the coordinate increments.

The termination criterion used in this research is based
on specifying what comprises a significant variation of each
variable. For discrete variables, a significant variation
of the variable is taken as the increment for that variable.
For each continuous variable, a pseudo-increment must be
specified. For the actual termination test the size of the

complex in each coordinate direction is determined. The

55

size is calculated as follows:

Let:

a(i) = MAX { V(j,1i) j = lyee.,nv}

.

b(i) = MIN { V(j,1) i = l,ee0,nv}

Where: nv is the number of vertexes in the complex
then the size s(i) in coordinate i is:

s(i) = a(i) - b(1i)
In testing for termination, the size of the current complex
along each coordinate axis is compared to the increment
(pseudo~increment in the case of continuous variables) for
the respective coordinates. The number of coordinates where
the extent of the current complex is less than the
respective increments size is summed. If this sum is
greater than a specified number (between 1 and n) then the

termination criterion is satisfied.

3.3 Auxiliary Techniques

3.3.1 Regeneration Methods

Two types of regeneration have been implemented. The
first uses alternate search directions and the second

contracts the entire complex towards the best vertex. These

56

methods were suggested by Glankwanmdee {25) and Nelder and
Mead [46] respectively.

The alternate direction regeneration defines a search
direction from the second worst vertex to the centroid of
the remaining vertexes and performs a search along that
direction. If the search is successful, the worst vertex is
replaced and regeneration is terminated. If the search
fails, then the third worst vertex is used, the fourth
worst, etc., until all vertexes have been used. If no

search is successful then the alternate direction

regeneration is considered to have failed.

The contraction method of regeneration defines a new
complex by moving every vertex one third of the way toward
the best vertex. The best vertex is of course unchanged by
this transformation which may be described as follows:

Let:
V be the matrix of coordinates describing the current
complex
where:
V(i,1i) 1is tﬁe ith coordinate of the jth vertex
nv is the number of vertexes in the complex
b is the index of the best vertex
then:
V(j,i) = V(b,1i) + .667 * (j,1) - V(b,1))}) ,
rounded to the nearest girid point,

j‘l,...,nv,i'l,.o.,n

57

All results in this research were obtained using both
regeneration methods sequentially when required. That 1is,
if regeneration was required then the alternate direction
method was tried first. If the alternate direction

regeneration failed then the contraction method was used.

3.3.2 New Acceleration Strategies

Another idea developed in the research 1is the use of
trajectory analysis as an acceleration strategv. Two types
of trajectories have been investigated, linear and
quadratic. The aim of these acceleration stratagies is to
identify an objective function valley and then search along
that valley to improve the solution.

The method used for valley identification is to assume
that the best vertexes of the complex will tend to be
located at or near a valley. This assumption is justified
because of another of the modifications to the complex
algorithm developed in this research, the incorporation of
the unidimensional search. When a unidimensional search
direction is used on an objective function that contains a
valley, unless the search direction is parallel to the
valley, the point along the direction with the best
objective function value will be a point near the bottom of

the valley. Thus, the use of unidimensional search to

wr
oo

locate the new vertexes of the coomplex will, if valleys are

present, tend to locate points in those vallevs.

3.3.2.1 Linear Trajectories

If two points are selected that appear to be at or near
a valley, then the line between them may provide a direction
along which acceleration is possible. In this research the
line between two best vertexes of the current complex is

used to define a linear trajectory.

3.3.2.2 Quadratic Trajectories

In general the valleys of an objective function surface
are not straight but curved. Quadradic trajectory analysis
attempts to identify a curving valley by fitting a quadratic
curve to three points assumed to be at or near the valley.
Generally the three best vertexes of the current complex are
used to define the trajectory.

The reader should note that this is not an attempt to

fit a quadratic curve to the objective function surface, a

procedure which requires evaluating the objective function
at (n+2)(a+l1)/2 points. Instead, this is an extension of

the linear trajectory search that allows for a curved

trajectorv. Just as in the case of the linear trajectorvy,

a

unidimensional search is used to locate points with improved

objective function values along the trajectory; Normally,
this procedure would require evaluating the objective
function at n(u+l)/2 points, but, by considering just two
variables at a time, three points suffice to define a

trajectory.

In calculating a quadratic approximation to an objective

function surface the roles of the dependent variable (the
objective function) and the independent variables (the
variables of the parameter space) are clearly delineated.
In calculating a trajectory, this is not the case. One of
the variables must be selected to play the role of the
independent variable while the remaining variables are
treated as dependent variables. Each dependent variable is
in turn, paired with the independent variable. In this two
dimensional space 2(2+1)/2 = 3 points are sufficient to
define a quadratic trajectory. When this has been done for
each of the n~l dependent variables a unidimensional search
can be used to examine new points definéd by extrapolating
along the trajectory. The variable k is selected to play

the role of the independent variable as follows:

Suppose A, B, and C are the points to be used toc define the
trajectory, and that
F(A) > F(B) > F(C)

then the variable k must be selected so that either

b

50

A(k) > B(k) > C(k)
or

A(k) < B(k) < C(xr)

If more than one variable satisfies this criterion, theun one
of these variables can be chosen arbitrarily to be the
independent variable. The restriction on the selection of
the independent variables insures that the objective
function is decreasing as the independent variable decreases
(the first case), or as the independent variable increases
(the second case). 1In either case, the presumption is nade
that further decreases in the objective function value are
possible if the independent variable is varied in the
indicated direction.

In summary, one variable is chosen to play the role of
the independent variable. By considering just one
coordinate at a time, three points are sufficient to define
a quadractic trajectory in each of the remaining variables.
Finally, a unidimensional search is used to vary the
independent variable and the objective {function of the
points on the trajectory thus defined is evaluated.

A quadratic trajectory is illustrated in the following
two dimensional example. Suppose the three points chosen to

define the trajectory are:

61

cC=(1, 2)
The (i)th coordinate of the points P on the desired
trajectory are defined by the equation:

P(i) = E(i) + F(i) * d + G(i) * d * (d + C(k) - B(k))
where:

d is the search variable

k is the subscript for the independent variable

The parameters E, F and G are defined as:

E(i) = C(i)
F(i) = B(i) = C(4)
B(k) - C(k)
A(i) = C(i)
G(i) = A(k) = C(k) = F(i)
A(k) - B(k)

Letting X(l) play the role of the independent variable and

carrying out the computations for this example yields:

Since F(k)=F(l)=1 and G(k)=G(l1)=0 then it is clear that the
search variable d is merely an offset of the independent
variable such that for d = 0 the point defined by the
equation above is point C. This allows point C, a point
with known objective function value, to serve as the base
point for the search. If a point with an unknown function

value were used as the base point, then one additional

62

function evaluation would be required on each search. For d
= 1 (independent variable increased by 1 from the base
point) we can calculate:

P=(2, 1)
As expected, the quadratic trajectory goes through the point
B. The quadratic trajectory is illustrated in Figure 3-4.
Using d as the search parameter, a unidimensional search is
used to search along the trajectory for the point with the
best objective functiom value.

Note that, just as in linear acceleration directions,
the values of the objective function at the points used to
define the trajectory are not used in computing the
trajectory. The points define a search space in a single
variable (the search variable). The search space, instead
of being a line, is a curve defined by the equations above.
A unidimensional search is performed to locate the point

along the curve with the best objective function value.

3.3.3 A New Decomposition Approach

Another idea explored is the use of a complex algorithm
in conjunction with a decomposition of the optimization
problem. For separable optimization problems the sectioning
(one variable at a time) search is an efficient search

technique. In problems with a large degree of interaction

2.00

H.00

.00 1.

FI1GURE 3-4.

00 2.00 3.00

QUADRATIC TRRJECTORY

63

between the variables, however, sectioning search becomes
inefficient, requiring a large number of iterations or
perhaps failing completely [77].

For optimization problems in which subsets of variables
interact but in which there is little or no interaction
between the subsets of the variables, an extension of the
sectioning search can be effective. Instead of a
unidimensional search along a single coordinate axis, a
complex search is made within a subspace defined by a subset
of variables.

The complex algorithm is particularly well suited for
this subspace search for two reasons. First, the complex
method is reported to be more robust in spaces of low
dimensionality (6]). Second, the subspace search may be
easily incorporated into the complex algorithm without
altering the logic implementing the algorithm. In order to
restrict the search to a subspace it is only necessary to
initialize the vertexes, defining the complex such that all
vertexes lie in the subspace. Since each new vertex that
enters the complex is a linear combination of vertexes in
the current complex, the search is automatically restricted
to the subspace. In order to expand the complex into the
full space (or a different subspace) it is only necessary to
redefine the coordinates of the vertexes of the complex. As
long as this is done so that the coordinates of the vertex

with the best objective value are unchanged, the overall

65

algorithm will always move to points of decreasing objective

function walue.

3.3.4 A Grid Approach

A frequently suggested approach to optimization of
functions ié to select a grid on the parameter space and to
calculate the objective function at every grid point. A
grid of smaller increments is then constructed in the
vicinity of the point with the best objective function
value. The process is continued until the grid size has
been reduced to a small size. In order to avoid an
exorbitant number of function evaluations, particularly when
the number of variables in the parameter space exceeds two
or three, the initial grid must be very coarse. This
increases the chances for failure of the method. 1In any
case the exhaustive evaluation of the grid points for
decreasing grid sizes results in an inefficient algorithm
for all but the smallest problems.

Given a discrete optimizing algorithm, a more efficient
alternative exists. Instead of computing the objective
function for every grid point, a discrete algorithm can be
used to locate the grid point with the best objective
function value. This procedure has been suggested by Cella

and Soosaar [9] and a version that used a discrete complex

66

algorithm was implemented by Simmons and Pike [66]. This
modified grid algorithm is available through the composite

algorithm simply by redefining the grid size and restarting

the discrete modified complex algorithm from the best point

found when the previous grid was used.

3.4 Additional Search Algorithums

3.4.1 A Steepest Descent Algorithm

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg
[26] defined an algorithm combining integer steepest descent
and regeneration based on sectioning that was an efficient
algorithm for unconstrained, integer optimization problems.
In the composite algorithm Glankwahmdee’s approach was
incorporated, but an alternative method of specifing the
discrete point along a search direction (described earlier
in this chapter) was used. When combined with sectioning
regeneration this implementation is refered to as SD/SECT.
This option was included in the composite algorithm
primarily for unconstrained problems, but it can be used for
constrained problems when begining from an interior point

before any constraints are encountered. The steepest

67

descent option performs the following steps:

1. Calculate a gradient approximation at the current

point.

2. Perform a unidimensional search along the direction

of the gradient.

3. Update the current solution with the results of the

search and return to step l.

The gradient approximation G at a point X is calculated

as follows:

G(i) = (F(X + Ri*I) - F(X)) / I(i)
if X + Ri*1 is a feasible point
else:

G(i) = (F(X) = F(X = Ri*I)) / I(1i)
if X - Ri*I is a feasible point
else:

G(1) = 0
where:

I is a column vector with

I(1i) = increment for variable i or

the pseudo=-increment for continuous variable 1§

Ri is a vector, the ith row of the identity matrix

658

3.4.2 Sectioning Algorithm

This algorithm varies one variable at a time by

selecting each of the coordinate directions in turn and
applying the unidimensional search procedure along each
direction selected. This algorithm is included primarily

for use as a regeneration method to be used in conjunction

with the steepest descent search method.

3.5 Modified Complex Algorithm

The continuous modified complex algorithm (CMC)

developed in this research may be described as follows:

1. Select algorithm parameters

a. Number of vertexes for complex

b. Increments for discrete variables

Ce Pseudo-increments for continuous variables
d. Number of coordinates for termination

2. Initialize the coordinates of the vertexes for the
initial complex and calculate the effective

function value for each vertex.

P
.

10.

69

Check the termination criteria; if satisfied go to

step lO; otherwise, go to step 4.

Determine the vertex with the worst objective
function value and the centroid of the remaining

vertexes.

Perform a unidimensional search from the worst

vertex in the direction of the centroid

If the objective function value resulting from the
search 1s better than the objective function value
of the worst vertex, then go to step 7; otherwise,

go to step 8.

Replace the worst vertex with the result of the

unidimensional search and go to step 3.

Apply the regeneration procedure.

If the regeneration procedure succeeded, go to step

3; otherwise, go to step 10.

Stop.

The modified complex algorithm can handle continuous

variables in two ways, either treating them as continuous

70

variables directly, or by a discrete approximation which

treats the variables as discrete but with a small increment.

3.6 1Initialization

The initialization required by the modified complex
algorithm consists of selecting the vertexes of the initial
complex. In this research a variation of the nonrandom
starting complex {43] was used. Given an initial point XO
that satisfies the explicit but not necessarily the implicit
constraints, the nonrandom starting complex consisting of

2n+]1 vertexes is generated as follows:

Let:
V(l,i) = X0(i) , 1 = 1,...,n
Vik+1l,i) = X0(1) , i = l,eee,n , i # k , k = l,.0.,n
V(k+l,k) = LB(k) , k = }l,.c.,n

where:
LB(k) 1is the lower bound for variable k
V(n+k+1l,1i) = X0(i) , i = l,eee,n , 1 # k , k = 1l,...,n
V(n+k+1l,k) = UB(k) , k = 1,...,n

where:

UB(k) i3 the upper bound for variable k

Some (or all) of the vertexes may be at infeasible points.

71

4 RESULTS

4.1 Introduction

In this chapter the results obtained by the algorithms
developed in this research are analyzed. The robustness and
efficiency of the algorithms are compared with algorithms
previously reported in the literature.

One difficulty in testing an algorithm, such as the
composite algorithm that provides so many opportunities for
user intervention, is that what is to be tested is not a
single algorithm but rather a multitude of algorithms, each
defined by the user actions taken in the course of solving
the problems. Because of this, the results reported here
are primarly results for elements that comprise the
composite algorithm. The major component of the composite
algorithm developed in this research is the modifed complex
algorithm. Accordingly the first four result sections
report performance of this algorithm on four categories of
problems. A fifth result section reports, by example, on
some of the auxiliary techniques available in the composite
algorithm. Hence, what is presented can not be a complete
analysis of the performance of the composite algorithm, but
is an attempt to convey some of the experience gained in the

use of the composite algorithm.

72

4.1.1 Test Problems

The goal of this research was the development of a
practical optimization algorithm applicable in engineering
design. Accordingly, the majority of the test problems were
selected to represent problems of this type. However, since
few engineering design problems are unconstrained,
additional unconstrained test problems have been selected
from the literature. Some of these are functions which have
been specifically designed to test features of unconstrained
optimization algorithms and have become '"classics" in the
field of optimization.

For the purposes of clarity and reproducibility, the
FORTRAN language subroutines used to compute tne objective
functions for the test problems (and constraint functions
for constrained problems) are listed in Appendix 2. For
those problems where the functions may be written as
relatively simple mathematical expressions, these
mathematical expressions are incorporated, along with the

detailed research results, in Appendix 1.

~1
w

4,1.2 Criteria for Evaluation

The algorithms tested in this research are compared both
in robustness (the ability to find an optimal solution) and
efficiency (speed of solution). With such a wide variety of
test problems as have been used in this research, no single
set of criteria for measuring robustness has been found to
be satisfactory. Instead, for each category of results, a
criterion has been selected which highlights the differences
between the algorithms tested. These criteria are discussed
at the beginning of each result section. In each case, a
criterion has been selected which is meaningful in the
context of engineering design optimization. For example,
solutions that are close in objective function value are
equal, for practical purposes. In general, a success
criterion is specified, and the robustness of an algorithm
is estimated by counting the number of problems for which
the algorithm finds a solution which meets the criterion.
For discrete problems, the number of times that algoritha
finds the best solution is also considered. Efficiency is
measured in number of function evaluations or, in the case
of constrained problems, number of function and constraint

evaluations.

4.1.3 Algorithms Used for Comparison

The generalized reduced gradient (GRG) algorithm is a
widely used gradient based algorithm for constrained
nonlinear problems. Ragsdell [55], after tests with 35
algorithms on 30 constrained non-linear problems, concluded
that three GRG algorithms tested were sucessful on more
problems and generally used less computer time than the
other algorithms tested. Hence, the GRG algorithm
represents a highly sucessful, efficient algorithm and will
be used for comparison in order to evaluate the algorithm
proposed in this research for contin:ous constrained
problems. The particular GRG code used was prepared in 1975
by L. S. Lasdon at Case Westerm Reserve University.

The flexible tolerance algorithm (FLEX) developed by
Paviani and Himmelblau [53] is a direct search algorithm for
constrained, nonlinear problems. It uses a variation on the
penalty function technique by varying the penalty parameter
as the algorithm proceeds, rather than between cycles. A
FORTRAN listing of the algorithm is given in an appendix to
Himmelblau ([32]. Two changes were made to the program as
listed in the reference. Between card number 1340 and 1350
the FORTRAYN statement:

INF = I
was added. In subroutine FEASBL, the variable SIZE, which
is undefined, is given the same value as the variable SIZE

in the main program.

b
(3%
"

rn

o]

-~

b
pa-
w
th
2l
.y
(D

d in

2

w

b

as

Q
[a %
e

£3

w
[
o
w

2]

]

O

0
[

a

[}

T4 - 1 1.
zLhaLsny, 4

a.

rouandiaz aad ¥

O

tinsns 2o0za

W

R bt Tnhi

aad Mzad algoriznz WM, is a dirsz
uncons-rained acnlinear prislznms.
2rograz used o odtain the compari
Himmeld>lau [32).

tained by Glankwahadee {23, usinag
{ the discrete cozmplex algorithn (C
eaveridze and Schechter (4., wers us3
The rasults odtained By the DMC alg
gradient, steepest descent aag sec
; developed »y Glankwahmdes [23] wa
poses on so0me uncoanstrained discret
tna was the most successful of the

laaxwanmdae.
gorithm, with penalty functions add
ints, nas hDean used Ior cmparison
screte problems. These results ar=
discrete s3nlution was chtained by
1] neighborhood search to the zontin
ined 57 GRG 2n some constrained non
5 alzorithm is labeled GRG/R/NI.

wn

w
1Y
[+
LB
0

s

oA
3 AN

u

Y

N

cn resu.ts

w

O
v
-
&3]
-

[6%
23
Q
(8}

Y

“an.

e}
poe

[a]

niaz

tn
(3]

applying
uous

linear

In order tao provide a consistent and reptrzacle
tsmparissna Sasis, it was necessary to ardizrarily f£ix =hz

tn
p
4]
[qF

7alues of certain parameters. Unless otherwise speci

Llowing parameter settings for the discrete modified

or
.
n
(31
O

(DMC) and coatinuous modifiad complex (CMC)

)
©
[£]
v
b
1Y
»

o
8
(ad
o
}a
ur

alzorichos were used to obtain the results citad

—

. Number »of fiunction evaluations allowed on anv one

unidimensinnal search is A.

ro

. Number of wvertexes for rhe complex is 2n+l.

[}
-
(%)

. Yumber of 2oordinates collapsed £or termination

rn

a-1 £or disarete problams and <{a+l,/4> for

continuous problems.
T

nese parameter values were selected on the basis of sone

preiliminary exploratory wor< witn the algoritnm.

4.2 Results: Constrained Discrete Problems

isrussed in this sectisn are £for

v
o)
19
la}
19
v
-
*
Mad
[
%
.

~onstrained, discrete, noanlinear problems wnich were solveld

g
"
W
a8
pa
L
ja]
cr
a1
(o)
+
&9
e
o}
(V8]
'V
ja}
[
|6
13
ye
w
[¥]
w
"
o]
O
O
[BY
[¥5]
L
%
(a1
)
15
(')
v
[V
e}
"t
b
o
3
%]

{3RG/R/N1j); =he iateger zradie

o]
(Al
™
wn
or
[
®
J
]
1]
o
[
D
2}
0
®
8]
v
EN
pa
o1
)

(%
§a
W
0
[a]
19
0
13

c2nalty functions algorithm (G=2/2;; aad the

nodified complex algorithm (DMC).

fur Zvaluation

¥
.
()
.
—
O
N
[}
(]
L
~n
[
[\4)
3

the three algorithms are ana.yzed Ior

(21

The rasults o
robustness and efficiency. In evaluating robustness, =ae

ions obtainad were put into one o5f three catagories.

w
[e]
b
[
(a4
P

The first catagory is Zor the best solution obtained by aay

2% the tar=22 alzgorithms. All otaner soiutions are

1Y
n.

catagoriz as acceptable or unacceptadble. The crizerion

Zor acceptadle solutions which was used for the
stnconstrained discrete problems (based on the objective
values of poiats in the N1 neighborhood of the best knowan
solution) was unsuitable because in many cases the best
znown soirution had few feasible poiants in its Nl
neizhborhood. However, the test problems represent

2nglineering optimization problems in which the optimal

abiective functions did not have value zero. In these

[ad)

problems, the objective functions are expressed ian terms 0
~ost, weight, yiz2ld or onther pnvsical attributes. Thas, {t

i3 meaningful to measure differences ian objective values as

percentage deviatizns fraom tha 225t 2nown solu<isn. The
acrual perczentaze d2vizcila zcasidered to e signifizant was
arbitrarily takea =2 52 ons percent. The criterian for

rty

iciency is the numder of function aad conszraiac

ef

evaluations.

4.2.2 Discussion

The results of the three algorithms on eleven
engineering design problems (for a total of fifteen sample
problems, since some alternative increment sizes for desizn
variables were explored) are summarized in Table 4-1. In
this table, the notation "*" indicates the best solution for
any of the three algorithms. An "A" indicates an acceptabla
solution and an "X" iadicates an unacceptable solution. Tne
notation "X,NFS" indicates those cases where the algzorithnm
failed to locate any feasible solution to a problem.

The DMC algorithm proved to be far more robust on these
discrete constrained problems than were the other
algorithms. The GRG/R/NLl solution was better than the DMC
solution in only two of the fiftreen examples and failed on
seven examples. G=-2/P was better than DMC on only one
problem and failed on eleven problems, although three of
thegse failures were on one problem, C-6. On problem C-6,

which was run using three different increments, an

A

uorInjos apqeidasorun - ¥ ‘uviinjos afqeidadse -y ‘uorInjos 3183aq - y RAY

4 11 L X Tviol

10 rd { ¥ TV10L
LR vl X £R1 ™ QAN Y €7 17-2
16/ 0% ¥ %l X 6901 X S/9 0T-"
0f 1< ¥ ‘8 X]9 % w7 6f1-D
B 6y ¥ Q11 v L! ¥ /2 R1~D
9K (g4 v 661 v 56 X /e L1-9
Y w7y ¥ 667 X SAN‘X /< a1-n
AR 1 X 271 X 67 ¥ /e qL=0
077 hol v SAN ‘X SL * s (a-0
U AT ¥ SANX i X /€ HREN]
11 6! ¥ SAN'Y 6L X /€ qa-7
ol 1 ¥ £¢17 X QQ X 9/¢ RDER
69 ne ¥ f. X 99 v 9/ G-
¢ 6 14 ¥ 6H0f, X 29 ¥ 1/¢ ag =~
QL1 (R v SIN'X 3 x V7 A
s by ¥ 17 ¥ €9 ¥ ol W=

SHOLIVIVIVA T SMNOTIVIVIVAY ALTIVN0 SNOTLYIVIVAY ALTIVIID SNOTLVINIVAY ALUIVAD SINTYHLISNOD WI1goNd

INT¥HINNOD) NOTLONIRA NOTIQTOS INTVHISNOY NOTENTOS INTVNISNOD - NOTITI0S - /STTIAVINVA
A0 WAl 10 NAINHNN NV (INV 40 UHWIN
NOTLONG NOTLONNA
J0 ATHNON 40 NHAWIN
) N S £ VA VAR b R

ssmapQel] A1A10SI(PAUIRIISUN) 10 S1[nsay [runTirInduwo)y - TEVL

[V 3}
)

rn
fad
.y
v

infeasible starting point resulted ia =he Zailure o

iar

(g

penalty funcrtion algorithm to locate any feasible solu

|81
W
-

2nt

3

Fa

The DMC algorithm proved to be generally more effic
as well. The number of function/constraint evaluations is
about the same for GRG/R/N1 and DMC on those problems where
both algorithms find acceptable solutions. For the few

problems where G-2/P achieved acceptable solutions, DMC used

only about 40 percent as many evaluations.

4.2.3 Details

In this section a problem by problem commentary on the
realative performances of the algorichms will be presented.
Again, only noteworthy or unusual circumstances will be
discussed.

Problem C-2 is a model of a two bar plane truss ia two
variables and two constraints. Oa problem C~2B, all three
algorithms fiad the same solution which is {mmediately
adjacent to the continuous solution. Noteworthy here is
that, with the variables treated as discrete, the DMC
algorithm requires fewer function evaluations than does GRG
in solving the continuous approximation.

Probler C=-3 i3 a design model for a journal bearing in
two variables and one constraint. Problem C=-3C f{llustrates

a difficulty with internal penalty function formulations.

W
[

(a4
)

rom the infeasible startiang poiat, no feasible solutic
could be found by G-2/P. Azain, the optimal soluzinn is
adjacent to the continuous optimum. From a feasibdle
starting point (Problem C-3D), the gradient based G-2/P
method terminates at the grid point nearest the contiauous
optimum which is not the discrete optimum.

Problem C-4B, which is problem B due to Box [3], shows
clearly a case in which the discrete optimal solution is far
removed from the continuous optimum. In particular, the
third design variable moves from its upper bound at the
continuous optimum to the lower bound at the discrete
optimum. However, when smaller increments are used for tae
design variables, the 5-2/P algorithm correctly moves the
rthird coordinate toward the lower bound, dut does not find
as good a solution as does DMC.

Problem C-5%5 is a model for desizn of a flywheel in three
variables and two constraints. ©On Problem C-6 three
alternative increments were tried. Ian both of the cases
with larger increments the DMC algorithm finds a point at
some distance from the continuous optimum and which had a
better value than that found by GRG/R/N1l. Only with the
smallest increment does rounding vield the best solution.
The failure of the interior penalty algorithm, G-2/P, is
attributed to the infeasible starting point.

Problem C~7 is a version of the "post office problem” to

maximize the volume of a rectangular shipping container

subject to a constraiant. The prodlem nhas three variazles.
P?roblam C~-7 was selecrted to illustrate a prodlao whizh caz
occur wnhen using the penalty foraulation on discrate
problems. In this case, the optimal discrete sclution is
the same as the continuous solution and the constraint iz
satisfied exactly at that point. Most penalty formulations
can not yield the optimum because the constraint is exactly
satisfied at the optimum and hence vields an infinitel~
larze penalty. The penalty formulation usad ia G-2/P was
modified in an attempt to overcome tiais difficulety, hut
G-2/P still failed to locate the optimum on this problem.
The GRG/R/N! yields the optimal solution (since ao rounding
was necessary). From the given starting point, DMC halts at
a point near the optimal solution with objective function
vailue within three percent of optimum.

Problem C-13 is an unpublished design model for a
reinforced concrete bridge. This problem has five variables
and seven constraints. roblem C-13 has a more complex
constraint set than do most of the other problems. Since no
feasible solution is found in the N1 neighborhood of the
rounded continuous optimum, GRG/R/N1 fails. The penalty
method also fails on this problem and terminates at a point
with an excessively large objective function value. The DMC
algorithm, however, finds a feasible solution with an

objective function value within three percent of the

continuocus optimun.

Problen C-17 1is a design model for a ra2infsrzed zoazret
beam with two wariables and tweo constralats. 2 znis
sroblem all three alzorithms found different sclutions.
solutions are close to one another and witnin cne percent 1
objective function value.

Precblem C-18 is a modification of problem C~-17. <Ihe

cost coz2fficients in the obiective aras different which

(S 1)
(8 1Y

erent point.

pa

results ian the optimal solution being at a d

nt nvased G=2,P

L]

Tais problem is another case where the gradi
algorichm located the same poiat as obtained by GRG/R/MNL,
while DMC located a different point with an iasigaificantily
better (by .l percent) objective function value.

Problem C~19 is a simple example problem for the design
of a hatch cover. The problem has two variables, two
constraints aand a total of only 80 grid poiats withia the
bounds specified for the variables, with some of these
points infeasible due to the constraints. The G=2/P
algorithm evaluates 82 points and does not find the optimal
solution. The source for this problem [(24] describes an
algorithm using penalty functions both for the constrainats
and for discretization. Their solution, which i{s the same
as that found by DMC in 21 objective function and 30
constraint evaluations, required 641 objective function and
f4l constraint evaluations.

Problem C-20 is a design model for a shell and tube

condengser which has six variables and five constraints.

This problem yields three different soluticas from the tnres
alzorithms. The DMC solutioz is clearly best;
GRG/R/NL. solutions are sevea aad ten percent worse,
respectively.

Problem C=-21 is a design model for a wooden frame. The
problem has two variables and three constraints. This
problem also had no feasible discrete solution in the N!
neighborhood of the rounded GRG solution causing GRG/R/V¥I! to
fail. G=2/P found the optimal solution, but DMC did not
Investigation revealed that one of the constraints
parallel=d the X(2) axis and that the complex collapsed

agaiast this constraint.

4,2.4 Conclusioans

The DMC algorithm was clearly superior in rcbustness and
efficlency to the other algorithms tested on these
constrained discrete problems. The GRG/R/N1 failures are
sartially attributed to its propensity to locate local
optimum near the starting point. Also, for problems where
the discrete optimum is not located near the continuous
optimum, this algorithm cannot be sucessful. The penalty
methaod, G=2/P, failed on problems where an infeasibdle
starting point was given. The use ol the gradieant to guide

the search results in directing the search in the direction

2f the 2zntinusus 2ptinal salunian. Tnotwa 2 tna o aStuz

- - - T o e m fol = T A - * -3 - - 2 m~n - - - ~ - e -
Sr3dlams, -2 ccoa2zad solutisns adiazans 29 th2 2 inut
solutisan wh2n 272 discreta oprtinmum lav 2lsewnere.

4.3 Resulets: Tonstrained Continuous 2radl

oy
W
2]
w

cion

r
[
T
o)
ya
3}
w
14
(]
v
ry
w
[0
=}
e
r
w
W
g]
[
0
[a]
0
v
19
ja)
i
I\
ey
e
)
rt
%
5
[
(@]
e
]

Lzoritnhm usad o approximate a continuou

[\
n
W
-
[\
()
"
o
T
[
3]
.

was dcne by treating all variables as discrece wizi a 3z2all
increment (.00Cl). The results of the DMC discrete
approximation are compared to the Flaxidla Tolarance FLIL,

algorithm and the Generalized Reduced Gradiaat (GR5)

algoritha on sixteen constrained anonlinear problams.

o

e

o2

40301 Criteria fer Evaluartion

The algorithm results are analvzed to obtaian measures oI
algzorithm rodbustness and efficiency. Robustness is measured
5y counting the number of solutions obtained by each
algorithm that meet a specified success criterion. An
alzorithm 13 credited with a success on a problem 1if the
s~ lution obtained nas an ohjective function value withia two

sercent of the best sbjective function value obtaiaed by an

-

re,

2f the thrae algnrithms. Efficiency {s measured {n tesrms o

the numhrer nf obiective funectinn and constraint evaluations.

e
v
iT
o
0

The results are sumaarized ia Tabdle 4-_. In zni

the acceprtabla solutions are denoted "A" aad thae
1nacceptadble solutions are denoted "X." 3By the statad
criterion for robustness, the GRG alzeorithm had five

failures; TLEX and DMC each had three Zailures. A
comparisna of ra2lacive efficiency achieved showed thnat FL
and DOMC use about the same numder af obieztive function
evaluations, duf =he number of counstraint evaluatioas
zverazes Sive times nore for FLEX. Althouznh the zradiaat
5ased GRG algorictam was not as ropust, its nigher eliii:ciea
was illustrated 57 cthe fact that tae 2MC algoritna r2quics

Yy

surteen times as aaany function evaluations.

The following paragraphs include a prodlem 5v problen
summary of the results obtalned. Nnlvs notewortZiy 2r unus

rrumstances will be discussed.

W

Problem C-1 {s a model of an alkvylatinn process. Tn

sriginal model nad ten wvariables a1nd iacluded thr:e equal

CRE
o

m
ros
"

3

0

ro-
T

unjInyos ;_Lﬁ.;.,.,‘..:..:: - X ‘uopIngos .¢~.~nu._.u..,.1 -V TLIN

/

4 4 S X ivlotl
RhY Rt X Gt RY X £e1 v ar-0
toll ORI X 6l Gt ¥ 513 v =0
lanl 94t v Gy 1021 v 01 X s1-0
AN RRRY v G0y 0% X 0t 1 A2 ¥el-o
(3 dRe v Logy it A4 | X il Bl
Qe LR v (66 ! gret v aitl X 1=
SR /R v aaelc EH9 v a¢ v ar-.
RNGR e 4 aq0¢ 1 iR ¥ Yh 12 h-
Sty R e X QU6 bt ¥ Pl v Ya-
Pl IS v Y00 L 3 by X <=
RN P A4 it Lt v G v St Vi=0
g (AR A K8/ 0r 9 v 1! ¥ P ¥a-1
s onl v avro LA Vv [N v $ o7 =
Yo REA Vv 16604 [P na Ay Q sy Y-
o [N v tth [0 e ¥ o v - oy -0
(VAN DA v P 17y A v 9 Y (. Yi-2
nos [t v AT thY v s v TT Y-
aons 1617 v PLTSO L | 191¢ v 6 \ L S vi-2

GHOT IV VAT SNOTIVIVIVATY ALTIVAD SNOTLVIIVAY SNOTIVIVIVA L LIT VA0 SNOTIVIVIVATL LIV SINTENISNOD W1 1908d
NIV oD NOT.LONNA NOTLUUTOS TNTVH TGN NOTLONAA N Lvias INIVHIGNON N TN ST IAVINVA
JOv N Ikt TO N IYGLIN J0 MIHRNON 1O IHAN UNY {ey N RN
HOTpow
RECR REE ML

N X414 ARG

.n.:.:;:;; anenut tuo ._,.::1‘:,.:.; 10y] ndﬂ_.nbz ﬂ.,_.».ﬂ~_1~_..~a4__,, ST IR AV A O

BN

e

Y
O
i

. i
-1

1]
o
9
a
1 ¥

w
ot

()]
'y
[
ol

s
N
m

«~
o

n

L]
o

a
a
A ¥

s

R
™

ol
fall

[0
o)
v 4

a

0

Wi

(%
ol
-
o d aqt
o 1t
[ol
jal e
(o} «
by e
[91 (a9
wd
[
£ o
[od} e d
aQ [
I 8
1 ¥ 4
Al O
o o
RS
QR v 4
o o
f1
EX| -
o +
Ly (2%
(B O
1 -
« [\Y
.o
[¥l
By
e
el on
a o
I o
[N
] i)
W e A
[\ N
1 X
- .
"m [}
(v} 'y
8]]
wd st
h w
| Y] 1 2]
Y Iyl
(0] n
[} o
[O
o) o}

a

¥

3

Iy

‘s

RE]
UR)
w4
kel

a

«
i1

(Bl
Iy

e}
[
a
1

u
a
w

Ral

4
(¢

8]
o
13
&n

hitl
c!
1t

ey

()

ot

a
M
a

1
«©y
8

DAl

X

el
(o4
ai
ol

4
]
U¥)

W

e
1G]
qt
44
L8]
Q

et

~%nz

ad’l

qa
Ko
&

a
1 ¥
[}

o

ced
&}

bn
o

i

Wi

o

q

4
o
EN

Q

KAl
rd
1]
o

¥

St
i

2038 .

1

g

L ¥

Q

1 9
I

I

o
1

e d
1)
0

o]

¥l

[alb]

variabl2s

=~ adiust

E}

O

traiat whi

cons

a
1 ¥

hil

a

.
X

AD=A092 435 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/6 12/1
. A COMPOSITE ALGORITHM FOR MIXED INTEGER CONSTRAINED NONLINEAR 0=-=ETC(U)
JAN 80 D B FOX
UNCLASSIFIED AFIT=CI=-80-1D

2073

ap
Agzaze

89

moves to a point distant from the starting point to attain
near feasibility and never recovers. On variation B, with a
feasible starting point, all three algorithms find
essentially the same solution.

On problem C-6, while GRG and FLEX arrived at
essentially the same solution, DMC found a solution with
virtually the same objective funccion value, but at a vastly
different point.

Problem C-8 is a chemical equilibrum problem that began
with ten variables and three equality constraints. After
solving the equality constraints, the resulting problem has
seven variables and six inequality constraints. Each
algorithm dete;mines a quite different solution and GRG
locates a point with an objective function value 2.2 percent
worse than obtained by the other algorithms.

Problem C-9 has five variables and ten linear inequality
constraints. The failure of the DMC algorithm on variation
A could be anticipated because four of the five variables at
the starting point lie on the boundary. Thus the non-random
starting complex begins with five of the eleven vertexes at
the same point. This redundancy results in premature
termination at a suboptimal solution. From a starting point
away from the boundry this difficulty does not occur. With
that exception, all algorithms locate essentially the same

solution.

90

Problem C~10 is a design model in five variables and six
constraints. The "optimal" solution provided in the source
[10] slightly violates two of the constraints. All three
algorithms find essentially the same solution, which differs
from that provided in the source.

Problem C-11 is a refinery heat integration problem in
six variables and four constraints. Each algorithm finds

‘quite different solutions, but FLEX and DMC find similar and
slightly better objective function values.

Problem C-12 is a version of the alkylation process in
problem C~1l. 1In this version there are only three variables
and seven constraints. FLEX and DMC find the same solution
while GRG locates a local solution very close to the
starting point which has an objective function value 25
percent worse than that obtained by the other algorithms.

Problem C-13 has five variables and seven constraints.
All three algorithms find quite different solutions, with
the GRG and DMC solutions superior and close in objective
function value.

Problem C~14 has nine variables and thirteen
constraints. GRG makes no progress from the given starting
point. FLEX and DMC find solutions with similar objective
function values.

Problem C-15 is a model for design of a welded structure
with four variables and five constraints. Here GRG and FLEX

find essentially the same solution while DMC terminates at

91

the non-optimal solution. In this case, the complex
flattens against a constraint and the algorithm terminates
prematurely. Restarting the algorithm from this point
resulted in finding essentially the same solution as the
other two algorithms.

Problem C-16 has six variables and three constraints.
The optimal solution provided in the reference slightly
violates one constraint. FLEX is unable to locate
near-feasible points even though several different values
for the initial tolerance criteria were tried. The poor
solution obtained by DMC is partially due to too large a
stepsize. Better solutions were obtained with smaller

stepsizes.

4.3.4 Conclusions

In summary, on these constrained continuous variable
problems, the direct search algorithms FLEX and DMC were
more robust, but less efficient than GRG. The GRG failures
are primarly due to the algorithm locating local optima near
the starting points. Conversly, the robustness of the DMC
algorithm is due, at least in part, to its ability to locate
local optima other than those near the starting point. Of
the three failures of the DMC algorithm, one (C=9) was

predictable because of the {nappropriate starting point.

92

While FLEX and DMC used about the same number of function
evaluations, FLEX used about five times as many constraint
evaluations.

Of course any serious attempt to obtain solutions to
these problems would use several starting points. This
would be likely to improve the robustness of all of the
algorithms but would particularly benefit the GRG algorithm
because of the tendency, discussed earlier, for
gradient~based methods to locate the nearest local optima.
Under these conditions the algorithms would be more equal in
robustness and the greater efficiency of the GRG algorithm

would be a decided factor in its overall superiority.

4.4 Results: Unconstrained Discrete Problems

The discrete modified complex (DMC) algorithm was used
to solve some all integer, unconstrained problems used by
Glankwahmdee [25]. The results of using the DMC algorithm
are compared to those reported for COMPLEX and G-2. Six
additional problems, which were not used by Glankwahmdee,
and which represent engineering design applications, were
solved with the G-2 algorithm as well as the related SD/SECT
algorithm. The results are compared to those obtained using

DMC.

W m——— e e e - e e

-~
_— - ——— e ————

93

4.4.1 Criteria for Evaluation

The robustness of the algorithms in this section 1is
measured by counting the number of problems for which the
algorithm locates an acceptable solution. Since several of
the problems have minimum objective function values of zero,
a success criterion based on the percentage deviation from
the optimal value is inappropriate. For these problems, an
algorithm is credited with a success if it locates a
solution with an objective function value less than the
median of the objective function value for the points in the
N1 neighborhood of the optimal solution. As usual,
efficiency is measured in number of objective function

evaluations.

4.,4.2 Discussion

The results of the COMPLEX, G-2 and DMC algorithms on
the problems used by Glankwahmdee are shown in Table 4-~3.
The most robust algorithm as measured either by the largest
number of optimal solutions or by the smallest number of
unacceptable solutions is G~2. The DMC algorithm is a close
second and represents considerable improvement over COMPLEX.

The only DMC failure (problem U-8A) arose from the

combination of a starting point'virtually centered in the

94

uoiInTos s7qeidaddeun - ¥ ‘uorIn[os 3[qe3dadde - Y ‘uolInfos 3saq -~ 5 XIA

—t

9
VA v £9Y
%6 X 09¢
[¥4 v AR
9¢¢ v ol
€8 ¥ (%4
Lt \{ vy
SHl ¥ 00l
G6 A 09
68 ¥ 8¢t
19 % 6¢
G6 v 61
16 \4 194
68 * 1S
96 * 19
SNOILVOTIVAL ALIIVAD SNOILYNTVAZ
NOILONNA NOILNT0S NOTLONAA
J0 YIFHAN JO0 ¥ITHAN
Ohd

+SwaTqold 31919ST(] ‘PIUTEIISUOIUN I0J SI[NSsay [euorleindmo)

~ O

X LR LR R T

NO11AT10S

89t
00¢
07t
ste
9%
0§
QL
vel
oy
L9
(e
£y
LS
LY

ALTIVND SNOILVATVAR
NOT1ONNA
J0 NIAWNN

~ 3

QXK

NOTLNT0S

X314W0D

NN AN NNNNNNT T O N

X TvlOoL
» TV1OL

q8-0
V8-l
vi-n
v9-01
ve-n
a%-Q
av-1
V-0
ve-a
o rad!]
4z-a
vZ-n
g41-Nn
vi-i

ALITvAD SITAVIYVA WI'1904d
40 d3ITHAN

‘E=% 3719Vl

95

region specified by the upper and lower bounds of the
variables and the use of the nonrandom starting complex.
The symmetry of the initial complex under these conditions
results in search directions along which no objective
function improvement is possible. Only one move was made
and the algorithm terminated at a point immediatly adjacent
the starting point. It is noteworthy that use of a random
starting complex resulted in finding acceptable solutions in
three successive trials (using different random number
sequences). An acceptable solution was also found when an
alternative starting point was used with the nonrandom
starting complex (problem U-8B).

The increase in robustness of the DMC algorithm over the
COMPLEX algorithm is achieved at the expense of more
function evaluations. For those problems where both COMPLEX
and DMC achieved at least an acceptable solution, DMC used
about half again as many function evaluations. A comparison
between G-2 and DMC shows that DMC uses about twice as many
function evaluations.

The results of the G-2, DMC and SD/SECT algorithms on
the six engineering design problems are summarized in Table
4-4. No unacceptable solutions were found by any of the
three algorithms, however, G-2 found fewer optimal
solutions. On three of the problems, G-2 terminated at
solutions near the optimal solution but did not quite reach
the optimum. G-2 and SD/SECT used about the same number of

function evaluations while DMC used about one third more.

O
o

uo13nies arqeidadoeun - X

‘uojanjos ajqeidadde - y

‘fuotIntos 3s3q - ¥y XA Id

0 0 0

S 9 €

SOl x 99 ¥ XA v

%01 Y 8¢ ¥ 0¢ ¥

uer » 6% » L€ ¥

uetl ¥ 99 x 06 4

a% ¥ %9 » it v

£yl ¥ Y6 x 19 x
SNOILVATVAT ALITTVAD SNOILIVAIVAZ XA111vND SNOILVATVAZ AL11TvRd
NOIIONNd NO1IN10S NOILONNd NOILNTOS NOIIONNd NOI1AT0S

30 WIIHAN 30 YIGHUNN J0 ¥IATHAN
IHd

«swaTqold u81sag 2319IDS[Q paujellsuody) 103 SI[NSIY Teuoiieindwo)

NN ™M

SIT9VINVA
J0 ¥YITHAN

X TVlol
x TVIOL

v1-0
g€~
ct~n
11-n
01-n
g6=1

W371804d

ty-% 31EVL

97

4.4.3 Conclusions

The DMC algorithm is about as robust but is less
efficient than the G=-2 algorithm on these unconstrained
discrete problems. The SD/SECT algorithm located the best
solution more often than did G-2, which often halted at a
nearby suboptimal point. As previously discussed, the
ability to locate optimal solutions away from the starting
point may make DMC a desirable algorithm to use on some

unconstrained discrete problems.

4.5 Results: Unconstrained Continuous Problems

A selection of unconstrained problems in continuous
variables were solved using the CMC, NM, and DMC algorithms.

The DMC algorithm was used in the discrete approximation

(increment .001 for each variable).

4.5.1 Criteria for Evaluation

All six problems in this section have objective function

minima of zero. Because of this, a measure of robustness

38

based on a percentage deviation of the objective function
from the optimal is not meaningful. The robustness
criterion used for these problems is based on the number of
problems for which an algorithm finds acceptable solutions.
An acceptable solution is defined as a solution with an
objective function value less than .00l. Efficiency 1is

measured by the number of objective function evaluations.

4.5.2 Discussion

When the continuous modified complex (CMC) algorithm was
used, disappointing results were obtained. The algorithm
often failed. After making some progress toward the optimal
solutions, the complex collapsed; and the algorithm
terminated without reaching the optimal solution. However,
when the normal reflection, expansion and retraction was
used in place of the unidimensional search, as in the Nelder
and Mead algorithm [46], then optimal solutions were usually
found. The results of the CMC algorithm and the Nelder and
Mead (NM) algorithm are compared in the first 2 columns of
Table 4-5.

More detailed examination of the operation of the

modified algorithm revealed that the unidimensional search

i

99

uorinios arqeidasoseun — ¥ ‘uorinjos afqeidadoe - y xAY

0 0 K X Tviol
86¢ 1 14 $9¢ v arh X £ sl-n
ey v 6081 v ezt X i a4-n
GL1¢ \4 0L v 0£6l X 4 49-1
4% v 86¢ v Sty v 4 3%-n
LET1 A4 9% 4 hhG1 X < av-a
9¢¢ v 7Ll v 861 v < ac-n

SNOTLVATVAY AL1TVOD SNOTILVATVAA AI1vad SNOTLYOTvAY IL1IvAD SITAVIAVA WATHOUd
NOTIONNA NOILINTOS NOTILONNA NOTLOTOS NOT.LON 1A NOILATOS JO dIFWNN
JO MIGWNN J0 YTHWNN J0O AITHAN

JHa WN IHD

cSWaTqod SNONUTIUOY ‘pauTeLlIsuodW) 10) SI[nsay {ruorieindwo)y :i¢-y A7GVlL

100

increased the tendency of the complex to collapse into a
subspace. This collapse was the result of successive
unidimensional searches locating new vertexes of the co@plex
along a nearly straight portiom of an objective function
valley. This, in turn, led to premature termination of the
algorithm at suboptimal solutions due to an inability to
further improve the objective function within the subspace
defined by the complex. Since all new points entering the
complex are linear combinations of points in the current

complex, then if the cowmplex is within a subspace, no number

of iterations can locate solutions ocoutside that subspace.

As an illustration of this consider problem U~-4D
(Rosenbrock’s function) which terminates after 1599 function
evaluations. After the first 415 function evaluations the
coordinates of the five vertexes of the complex have a
«99991 correlation coefficient. This means that for any of
the five points in the complex, the second coordinate value
can be predicted from the first with accuracy to two decimal
places. After 840 function evaluations the correlation has
increased to .99998. This implies that the second
coordinate of any point in the complex can be predicted from
the first coordinate to four decimal places. Thus, the
complex has effectively collapsed intc a subspace, in this
case a line. The remaining iterations were spent in a
search along this line which did not contain the optimal

solution for the problem.

101

These results would have been discouraging but for
another discovery. When the variables are treated as
discrete, as in the discrete modified complex (DMC)
algorithm, even if in small increments, rather than
continuous, the tendency of the complex to collapse into a
subspace is counteracted. This can be explained as follows.
When linear combinations of points in the complex are
rounded to the nearest discrete point, points outside the
subspace can be located. This process is illustrated in
Figure 4-1. Suppose that all points in the complex lie in a
subspace defined by the line from (0. , 0.) to (4. , 3.) A
discrete search along that line might yield, for example,
the point (2. , 1l.), which does not lie within the original
subspace. Once a point outside the subspace has entered the
complex, other points outside the subspace can be
represented by linear combinations of these points.

The results of the DMC algorithm are shown in the last
column of Table 4-5. Compared to the Nelder and Mead
algorithm, DMC is as robust but requires more function
evaluations. On the average, DMC uses more than twice as

many function evaluations as does the NM algorithm.

o
< +
‘:-1 + + +
Q
o
. + + +
o
~ &8
N - + + + +
— OV
>
o
o
bt + + + +
Q
o
o T . T m
. 00 1.00 2.00 3.00 4.00
X(01)
FIGURE 4-1., INTRGUUCTION OF POINTS
EXTERNARL TO A SUBSPACE

103

4.5.3 Conclusions

Overall these results indicate that the DMC algorithm 1is
about as robust, but less efficient than the Nelder and Mead
algorithm for continuous variable, unconstrained problems.

On these problems, the CMC algorithm is unreliable.

4.6 Results: Composite Algorithm Options

In this section some sample results of the composite
algorithm will be presented. These results are intended
merely to indicate the potential of the composite approach,
but not to analyze comprehensively the performance of all of
ﬁhe composite options. The examples in this section are
illustrative of four composite algorithm options: (1) use of
rounded continuous solutions as starting points, (2)
decomposition by searching subspaces, (3) a grid approach
using discrete search, and (4) trajectory analysis, which

may be linear or quadratic.

4.6.1 Rounded Continuous Starting Points

In solving discrete or mixed discrete problems it is

often fruitful, for those problems which can be solved as

—

104

continuous variable problems, to look for optimal discrete
solutions in the vicinity of the continuous optimum. While
there can be no assurance that a better solution does not
exist elsewhere, the number of successes attributed to the
GRG/R/N1 algorithm on constrained discrete problems suggests
that solutions worthy of a design engineer’s consideration,
although perhaps not optimal, may be located in the vicinity
of the continuous optimum. As noted previously, a major
difficulty in the case of complicated constraint sets may be
locating a feasible point near the continuous optimum. A
method for searching the vicinity of the continuous optimum
is to round the coutinuous optimal solution to the nearest
grid point and to use this point, which may be infeasible,
as a starting point for the DMC algorithm. This may be done
because the effective objective function formulation used in
this research allows the search to proceed over infeasible
as well as feasible points.

When this technique is applied to problem C-20 the
solution obtained has an objective function value of
1168.028 after 315 objective function evaluations and 377
constraint evaluations. An additionmal 1056 objective
function and constraint evaluations were required by GRG to
locate the initial continuous solution. This digcrete
solution, which 18 in the vicinity of the continuous
solution, has an objective function value five percent

better than the best solution previously located.

105

This technique is, of course, a heuristic and there is
no guarantee that an optimal solution will be found. For
example, when this technique is applied to problem C-~13 the
solution obtained has objective function value 49306.4 after
168 function and 209 constraint evaluations. Note that an
additional 136 objective function and constraint evaluations
were required by GRG to obtain the original continuous
solution. This solution is four percent worse in objective
function value than is the solution obtained by using DMC
alone. In this case the DMC search locates a superior
solution that is remote from the continuous optimal

solution.

4.6.2 Decomposition by Subspace Search

The decomposition strategy, discussed under auxiliary
techniques in Chapter 3, was tried on problem U-16. The
objective function for this problem is constructed such that
the six variables are in two groups. The first three
variables interact with each other as do the last three but
there is no interaction between the two groups. The results
reported below were obtained by alternately searching the
subspaces defined by the first three and the last three
variables. Twenty DMC ifterations were used in each subspace

search.

106

The results are summarized in the plot in Figure 4-2
which shows the value of the objective functicn vs the
number of function evaluations for both the DMC algorithm
and the decomposition method. The decomposition approach 1is
much more efficient on this problem.

Problem U-17 is a variation on problem U=-16 with a mild
degree of interaction between the two groups of variables.
The results, which are illustrated in Figure 4-3, are
similar to those for problem U-16 with the decomposition
method again being more efficient.

Problem U-18 is another variation on problem U-16 with
an even greater degree of interaction between variables than
in problem U-~17. Figure 4-4 compares the results of the
decomposition approach and the DMC algorithm. The
interaction present is still mild and the decompostion
algorithm is still more efficient than the DMC algorithm
alone.

Figure 4-5 illustrates the fact that the efficlency of
the decomposition approach 13 related to the degree of
interaction between the groups of variables. The plot
compares the progress of the decomposition algorithm on
problems U-16, U-17 and U-18. Problem U-16, with the least
interaction, is solved more efficiently than either of the
other problems while problem U-18, with the most interaction

is solved less efficiently than the other two problems.

(PROBCEM U-16)

FUNCTION VALUE

14.00

12.00
A

X - OMC/DECOMPOSITION
Y - DnC

10.00
-4

8.00
i

6.00

4.00

A

-

2.00

8' Y L L SR ¥
%30.00 40.00 60.00 60.00 70.00 80.00
NUMBER OF FUNCTION EVALUAT(ONS =10°

FIGURE 4-2, CHANOE [N FUNCTION VALUE v$
NUMBER OF FUNCTION EVALURTI [ONS
PROBLEN U-16

107

108

Q
o
:_::.
Q
a
N X ~ OMC/DECOMPOSITION
Y - OHC
~o
o
Y-S
=
i
|
S8
el
58
21
>
2
=28
5
-4
s
W
8
0;-1
8
hy T Y T o _."I
S0.00 40.00 60.00 60.00 70.00 80.00
NUMBER OF FUNCTION EVALURTIONS =10

FIGURE 4-3. CHANGE IN FUNCTION YRLUE v3
NUMBER OF FUNCTION EVALURTIONS
PROBLEM U-17

(PROBLEM U-18)

FUNCTION VALUE

109

00

14.
1

i

12.00

X - OMC/DECOMPOSITION
Y - onc

10.00
o~

6. 8.
i L

4.00

2.00

8 T Y Tt)
0.00 40.00 60.00 60.00 70.00 80.00
NUMBER OF FUNCTION EVALUATIONS =10Q°

FIGURE 4-4, CHANGE IN FUNCTION YRLUE v3
NUMBER OF FUNCTION EVALURTIONS
PROBLEM U-18

FUNCTION VALUE

0.58 0.60

0.56

0.54

0.52

iL

0.04
i

0.02

8

% - PROBLEhM U-18
X - PROBLEM U-17
Y - PROBLEM U-16

o 7 T Y T
400.00 490.00 6560.00 640.00 720.00 800.00

NUMBER OF FUNCTION EVALUATI(ONS

FIGURE 4-5, CHANGE [N FUNCTION YRLUE VS

NUMBER OF FUNCTION EVALURTIONS

111

Of course, problems U=-16 and U-17 were designed so that
Fhey could be efficiently solved by the decomposition
technique. Problem U-6C, on the other hand, is a widely
known unconstrained test problem. Study of the objective
function for this problem reveals that the two fourth power
terms, which are proportional to the differences between the
variable pair X(2),X(3) and the pair X(l),X(4), are dominant
fot the initial point. As the above pairs of variables come
close together, and in particular as all the variables
become small, the second power terms dominate. In these
second power terms the pairs X(1),X(2) and X(3),X(4)
interact within pairs but not between pairs. This problem
was solved by using the decomposition procedure and the
above observations to guide the selection of the subspaces
to be gsearched. The results are summarized in the plot in
Figure 4-6. Once again the decomposition method is more
efficient than the DMC algorithm alone.

The examples above clearly illustrate that for problems
with sets of variables with little or no interaction between
sets of variables the decomposition approach is more
efficient than the DMC algorithm. Also illustrated is the
fact that the efficiency of the decomposition algorithm is
highest when the interaction between groups of variables is

lowest.

(PROBLEM U-6)

FUNCTION VRLUE

14.00

N X - OMC/DECOMPOSITION
Yy - oac

12.00

10.00
A

8. 00

1

6.00

1

4.00

A

.0a
el

2

[}

.

3
. . re— N4
.00 20.00 40. 00 60.00 80.00

—
100.00

NUMBER OF FUNCTION EVALUATIONS x10°

FIGURE 4-6, CHANGE [N FUNCTION VALLUE V3
NUMBER OF FUNCTION EVALURTIONI
PROBLEM U-6C

112

4.6.3 A Grid Algorithm

The grid algorithm described in Chapter 3 was tried on
problem C-4A. The initial grid had increments of .1 in each
coordinate and subsequent grids with increments of .0l and
<001 were used. After convergence of the DMC algorithm for
a given grid, the next smaller increments were selected, the
non-random complex generated using the previous solution as
the base point, and the DMC algorithm restarted. A solution
very close to that obtained by the DMC algorithm alomne with
objective function value of =-5.267 was obtained after 94l
objective function and 1174 constraint evaluations. This is
about half the number of function and constraint evaluations
used by the DMC algorithm alone.

On problem C-7A the reduction in number of function and
constraint evaluations was less. A solution with objective
function value =-3.295 was obtained by the grid algorithm
after 373 objective function and 481 constraint evaluations.
This represents a reduction in objective function and

constraint evaluations of about 10 percent.

4.6.4 Acceleration by Trajectory Analysis

The linear and quadratic trajectory analysis methods

were described in Chapter 3. The results of applying these

114

techniques, reported below, were gathered by using an
acceleration search over ‘the trajectory after each 10
iterations of the DMC algorithm. 1In each case where the
search along the trajectory located a solution better than
the current best solution, the current best vertex in the
complex was replaced by the new point.

The progress of the DMC algorithm, as well as the DMC
algorithm with trajectory ;nalysis, on problem C-1 is
illustrated in Figure 4-7. The three algorithm variations
arrive at three different local optima. The best solution
was found by the algorithm variant using quadratic
trajectory analysis and the worst was found by the algorithm
using linear trajectory analysis.

The results of using the trajectory based acceleration
on problem U~4D are illustrated in Figure 4-8. On this
probplem all three algorithm variations arrive at the same
solution but the algorithm variation using quadratic
trajectories terminated after 907 function evaluations. The
DMC algorithm required 1137 function evaluations and the
variation using linear trajectories required 1329. That is,
using quadratic trajectory analysis required 20 percent
fewer and using linear trajectory analysis required 17
percent more function evaluations than did the DMC algorithm
alone. Thus, the quadratic trajectoryv acceleration can
result in locating the optimal solution with fewer function

evaluations. For problems with multiple local optima, the

(PROBLEM C-1)

FUNCTION VALUE

-1600.00

-1120.00
4

4

X -~ OMC
Y ~ DMC/QUAORATIC TRAJECTORY
¥~ ~ DMC/LINERAR TRRUECTORY

-1200.00

A

-1280.00

-1360.00
A

Y

~1440 0N

i

-1520.00

i

1680.00

20.00 100.00 180.00 260.00 340.00 420.00
NUMBER OF FUNCTION EVALUATIONS =x10'

FIGURE 4-7. CHANGE I[N FUNCTION VALUE V3
NUMBER OF FUNCTION EVRALURJIONS
PROBLEM C-1

28.00
)

X - oMC

24.00

20.00
e 4

(PROBLEM U-4)
16.00

12.00

-

FUNCTION VALUE
8.

.00

4
A

8

Y -~ OMC/QUAORATIC TRAJECTORY
¥ - OHC/LINEAR TRAJECTORY

. 00 40.00 80.00 120.00 160.00

NUMBER OF FUNCTION EVALURTIONS

FIGURE 4~8, CHANGE IN FUNCTION VALUE VS
NUMBER OF FUNCTION EVYALUATIONS
PROBLEM U-40

x10

‘230.00

117

technique can divert the search so that different solutions

may be located from the same initial complex. The fact that
linear trajectories were less successful than the quadratic

trajectories can be attributed to the tendency of the linear
trajectory to introduce linear dependencies into the

complex.

4.6.5 Conclusions

The above sampling of composite algorithm options has
illustrated some successful applications. The ability of
the effective objective function formulation to allow search
from infeasible starting points was used to exploit the fact
that useful solutions to discrete problems are sometimes
found near the continuous optimum. A successful
decomposition algorithm was easy to implement simply by
initializing a starting complex to lie in a subspace. The
grid algorithm, based on the discrete search algorithm, was
demonstrated. Finally the quadratic acceleration scheme was
shown to be a useful addition to the DMC algorithm. Somne

further ideas are discussed in the next chapter.

5 CONCLUSION

5.1 Summary

In this research a composite algorithm applicable to
mixed integer constrained nonlinear problems has been
developed. Throughout this research, the goal of solving
engineering design problems has been used to guide the
design of the algorithm. The composite algorithm is
implemented as an interactive computer program that allows
the designer to be involved in the optimization search. The
major component of the composite algorithm is a version of
the complex algorithm that incorporates modifications
previously proposed, but not previously combined, as well as
new modifications. The new modifications include the
incorporation of a unidimensional search component, a new
method for handling constraints based on an effective
objective function formulation of the problem, and new
termination criteria for the algorithm. Additional
algorithmic elements incorporated into the composite
algorithm include a new acceleration strategy based on
trajectory analysis, a new decomposition approach, and a

sequential grid reduction algorithm.

The modified complex algorithm has been tested on a
variety of problems primarily selected to represent
engineering design applications. Results of some options of
the composite algorithm are reported by example. The
results indicate that the modified complex algorithm is a
useful method for solving discrete, constrained, nonlinear
optimization problems and is more efficient than penalty
function extensions to discrete unconstrained algorithms.
Although the algorithm can successfully solve mixed integer
problems as well, it was shown that the use of discrete
approximation (treating variables as discrete with small
stepsize) was superior to treating the continuous variables
explicitly as continuous.

Some auxiliary techniques for the composite algorithm
were useful adjuncts to the complex algorithm. 1In
particular, the quadratic trajectory acceleration strategy
was demonstrated to require fewer function evaluations than
the DMC algorithm without acceleration. 1In addition, the
acceleration proved useful in redirecting the path of the
search so that, for problems with a number of local optima,
different solutions could be located. The decomposition
approach proposed is applicable to problems with a specific
structure. These problems can be solved more quickly by
successivly searching subspaces defined by groups of
interacting variables than by searching over all variables

simultaneously. The grid algorithm results in solving some

120

problems using fewer objective function and constraint
evaluations than used by the DMC algorithm alone. Finally,
the effective objective function formulation for
incorporating problem constraints allows infeasible starting
points to be used. This is particularly useful when a
feasible starting point is not readily available, or for
searching for a discrete solution in a specific vicinity

such as near the continuous optimum.,.

5.2 Suggestions for Further Research

In this research some new concepts for a search
algorithm have been implemented and tested. The suggestions
for additional research discussed below fall into three
areas: (1) ideas for improving efficiency of the
implementation of the algorithm, (2) suggestions for more
general applicability of concepts developed in this
research, and (3) some additional research ideas.

The alternative direction regeneration scheme for the
complex algorithm was suggested by Beveridge and Schechter
[4) and is an important part of the algorithm. Although
efficacious it sometimes requires a large number of function
(and for constrained problems, constraint) evaluations. On
certain problems a large proportion of the total number of

evaluations are due to this regeneration scheme. Two

121

approaches are suggested for improving efficiency. Either
an alternate regeneration method could be substituted or
criteria could be developed to regulate the use of the
existing method.

The discussion in Chapter 3 of the effective objective
function formulation for handling constraints makes note of
the fact that some efficiency can be gained by evaluating
the constraints sequentially. Even greater efficiency could
result from reordering constraint evaluations. The earlier
the violated constraint is evaluated the greater the savings
in computation. The simplest way to implement this is to
request that the designer program the coanstraints most
likely to be violated first. However, the designer may not
know which constraints these will be. A second approach is
to modify the program to store a simple history of which
constraints are most often violated. Based on this history
the order of evaluation of the constraints could be set
dynamically by the program.

The decomposition approach developed in this research
could use any search algorithm for search over the subspace.
In addition, the technique may be applicable to a wide
variety of problems because, at certain stages of solution,
the required conditions for lack of strong interaction
between subsets of variables may be temporarily satisfied.
What 1is needed is a method to automatically select the

subspace to be searched, letting groupings of the variables

122

into subspaces change as the search progresses.

The trajectory analysis acceleration scheme developed in
this research may also be applied to other search
algorithms. Any sequence of solutions that show a trend in
the objective function can be used for potential
acceleration by extrapolation.

The aim of the quadratic acceleration scheme is to
identify and search afong a valley of the objective
function. The current algorithm limits the total number of
objective function evaluations on any one unidimensional
search, thus, the accuracy 1in locating the lowest point in
the valley is limited. It may be that, for those
unidimensional searches that are used to locate points that
are later used in defining a quadratic trajectory,
additional accuracy in locating a minimum is justified. The
addicional accuracy in locating the minimum on the
unidimensional searches should yield a more accurate
identification of the valley and hence more progress may be
made in searching along the trajectory. The trade-off
between the accuracy on the unidimensional searches (and
simultaniously the number of objective function evaluations)
and the success of the quadratic trajectory extrapolation
should be investigated.

Another trade off to be evaluated is the size of the
initial complex and the robustness of the modified complex

algorithm. The nonrandom starting complex used 1in this

123

research was made as large as possible by setting variables
to the bounding values (see Chapter 3). Of course the
variables could be set any percentage of the distance from
the initial point to the boundry. The large initial complex
is expected to result in the most thorough search of the
feasible region. A smaller initial complex might be
expected to shorten the search, that is, convergence
criteria should be satisfied after fewer objective function
evaluations.

The following modification to the complex algorithm
could prevent the distortion of the complex which occurs
when a unidimensional search locates a point that is remote
from the other points in the complex. Rather than
proceeding with this distorted complex, it might be
advantageous to create a new complex about this point. This
could be done either by translating the existing complex or
by using the complex initialization scheme.

Finally, it can be noted that as the complex algorithm
proceeds, redundancies can occur in the complex vertexes.
That is, the same, or nearly the same, point may be present
as more than one vertex. This can be avoided by
periodically generating a new complex with the
initialization scheme or by using a solution found by the
quadratic trajectory acceleration scheme to replace a

redundant vertex.

124

In summary, this research has developed and implemented
a new optimization algorithm which is particularly suited
for engineering design problems. The algorithm is
implemented in the form of an interactive, composite
algorithm. Elements of the algorithm employ straightforward
techniques to enforce discreteness of variables and problenm
constraints. The algorithm has been tested using problems
selected to represent engineering design applications, and
the success of the algorithm on these problems is most

promising.

{1]

{2]

(3]

(4]

[5]

[6]

(7]

(8]

[91]

[10]

(11}

(12]

125

REFERENCES

Avriel, M., Nonlinear Programming Analysis and Methods,
Prentice-Hall Inc., 1976

Bartle, R. G., The Elements of Real Analysis, John Wiley
and Sons, 1964

Beightler, C. S. and Philips, D. T., Applied Geometric
Programming, John Wiley and Sons, 1976

Beveridge, G. S. and Schechter, R. S., Optimization:
Theory and Practice, McGraw-Hill, 1970

Box, M. J., "A New Method of Constrained Optimization
and a Comparison with Other Methods'", Computer Journal,
Vol‘ 8, No. l, Apr. 1965, ppc 42-52

Box, M. J., "A Comparison of Several Current
Optimization Methods, and the Use of Transformations in
Constrained Problems", Computer Jourmnal, Vol. 9, No. 1,
May 1966, pp. 67-77

Buffa, E. S., "Empirical Tests of Constrained Nonlinear
Optimization Algorithms", Decision Sciences, Vol. 8,
No. 2, Apr. 1977, pp. 445-464

Carroll,C.W., "The Created Response Surface Technique
for Optimizing Nonlinear Restrained Systems",
Operations Research, Vol. 9, No. 2, Mar-Apr. 1961, pp.
168-184

Cella, A. and Socosaar, K., "Discrete Variables in
Structural Optimization", in Optimum Structural Design,
ed. Gallagher, R. H. and Zienkiewicz, 0. C., John Wiley
and Sons, 1973

Chanaratna, V., "Discrete Structural Optimization",
Ph. D. Dissertation, Department of Civil Engineering,
University of Illinois, 1978

Colville, A. R., "A Comparative Study of Nonlinear
Programming Codes", IBM N.Y. Science Center Report
320-2949, Jun. 1968

Courant, R., "Variational Methods for the Solution of
Problems of Equilibrium and Vibrations", Bulletin of
the American Mathematical Society, Vol. 49, Jan.=Dec.
1943, pp. 1-23

(13]

(14]

[15]

[16]

[(17]

{18}

(191}

(20]

[21]

{22]

[23]

(24]

Davies, D. and Swann, W. H., "Review of Constrained
Optimization", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 247-258

de Silva, B. M. E., "The Application of Nonlinear
Programming to the Automated Minimum Weight Design of
Rotating Disks", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 115-1350

Eason, E. D. and Fentoun, R. G., "A Comparison of
Numerical Optimization Methods for Engineering Design",
Transactions of the ASME, Journal of Engineering for
Industry, Vol. 96, Ser. B, No. 1, Feb. 1974, pp.
196-200

Fiacco, A. V. and McCormick, G. P., Nonlinear
Programming: Sequential Unconstrained Minimization
Techniques, John Wiley and Somns, 1967

Fiacco, A. V. and McCormick, G. P., "The Sequential
Unconstrained Minimization technique for Nonlinear
Programming, A Primal-Dual Method", Management Science,
Vol. 10, No. 2, Jan. 1964, pp. 360-365

Fletcher, R., "A Review 0of Methods for Unconstrained
Optimization", in QOptimization, ed. Fletcher, R.,
Academic Press, 1969

Fletcher, R., "Function Minimization without Evaluating
Derivatives - a Review"'", Computer Journal, Vol. 8§, No.
1, Apr. 1965, pp. 33-41

Fletcher, R. and Powell, M. J. D., "A Rapidly
Convergent Descent Method for Minimization", Computer
Journal, Vol. 6, No. 2, Jul. 1963, pp. 163-168

Fox, R. L., Optimization Methods for Engineering
Design, Addison-Wesley, 1971

Gallagher, R. H., "Fully Stressed Design", in Optimum
Structural Design, ed. Gallagher, R. H. and
Zienkiewicz, 0.C., John Wiley and Sons, 1973, pp. 19=32

Gallagher, R. H., "Terminology and Concepts", in
Optimum Structural Design, ed. Gallagher, R. H. and
Zienkiewicz, 0.C., John Wiley and Sons, 1973, pp. 7-17

Gisvold, K. M. and Moe, J., "A Method for Nonlinear
Mixed-Integer Programming and its Application to Design
Problems", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 94, Ser. B, No. 2, May
1972, pp. 353=364

[25]

(27]

[28]

[29]

(31]

{32]

{33]

(34]

[35]

127

Glankwahmdee, A., "Unconstrained Nonlinear Discrete
Search”", Ph. D. Dissertation, Department of Mechanical
and Industrial Engineering, University of Illinois,
1976

Glankwahmdee, A., Liebman, J. S. and Hogg, G. L.,
"Unconstrained Discrete Nonlinear Programming",
Engineering Optimization, Vol. 4, No. 2, 1979, pp.

95-107

Glover, F., and Sommer, D., "Pitfalls of Rounding in
Discrete Management Decision Problems'", Decision

Science, Vol. 22, No. 4, Dec. 1975, pp. 455=460

Grey, D. S., "Boundry Conditicus in Optimization
Problems'", in Recent Advances in Optimization
Techniques, ed. Lavi, A. and Vogl, T. P., John Wiley

and Sons, 1965

Guin, J. A., "Modification of the Complex Method of
Constrained Optimization", Computer Journal, Vol. 10,
No. 4, Feb. 1968, pp. 416~417

Hati, S. K. and Rao, S. S., "Determination of Optimum
Machining Conditions - Deterministic and Probilistic
Approaches'", Transactions of the ASME, Jourmnal of
Engineering for Industry, Vol. 98, Ser. B, No. 1, Feb.

1976, pp. 354-359

Heinin, C., "Computational Techniques for Optimizing
Systems with Standby Redundancy", Naval Research

Logistics Quarterly, Vol. 19, No. 2, Jun. 1972, pp.
293-308 .

Himmelblau, D. M., Applied Nonlinear Programming,
McGraw=-Hill, 1972

Himmelblau, D. M., "A Uniform Evaluation of
Unconstrained Optimization Techniques:, in Numerical
Methods for Non-Linear Optimization, ed. Lootsma, F.

A., Academic Press, 1972, pp. 69-97

Hooke, R. and Jeeves, T. A., "Direct Search Solution of
Numerical and Statistical Problems'", Journal of the
Association for Computing Machinery, Vol. 8, No. 2,

Apr. 1961, pp. 212-229

Ibaraki, T., Ohashi, T. and Mine, H., "A Heuristic
Algorithm for Mixed-Integer Programming Problems", in
Mathematical Programming Study 2, North-Holland

Publishing Co., 1974, pp. 115-136

[36] Khachaturian, N. and Horowitz, B., "Properties of
Optimal Structures", Proceedings of the Symposium on
Applications of Computer Metnods in Engineering, ed.
Wellford, L. C. Jr., University of Southern California,
Vol. 1, Aug. 1977, pp. 533-=-542

{37] Kuester, J. L. and Mize, J. H., Optimization Techniques
with Fortran, McGraw=-Hill, 1970

[38] Land, A. N., and Doig, A. G., "An Automatic Method of

Solving Discrete Programing Preblems'", Econometrics,
Vol 28, No. 3, Jul. 1960, pp. 497-520

(39] Lasdon, L. S., Fox, R. L. and Ratner, M. W. , "An
Efficient One-Dimensional Search Proceedure for Barrier
Tunctions", Mathematical Programming, Vol. 4, Yo. 3,
Jun. 1973, pp. 279-296

A,
o~
o

—

Liebman, J. S., Chanaratna, V., and Khachaturian, N.,
"Discrete Optimization in Structural Design",
Proceedings of the Symposium on Applications of
Computer Methods in Engineering, ed. Wellford, L. C.
Jr., University of Southern California, Vol. 1, Aug.
1977, pp. 553-562

{41] Luus, R., "Optimization of System Reliability by a ¥ew
Nonlinear Integer Programing Procedure'", IEEE
Trancactions on Reliabilitv, Vol. R74, No. 1, Apr.
1975, pp. l4=-16

(42] Mischke, C. R., An Introduction to Computer-aAided
Design, Prentice-~Hall Inc., 1968

{43] Mitchel, R. A. and Kaplan, J. L., "Nonlinear
Constrained Optimization by a Nonrandom Complex
Method", Journal of Research of the National Bureau of
Standards, Engineering and Instrumentation, Vol. 72C,
No. 4, Oct.-Dec. 1978, pp. 249-258

[44] Moe, J., "Penalty~-Function Methods", in COptimum
Structural Design, ed. Gallagher, R. H. and
Zienkeiwicz, 0. C., John Wiley and Sens, 1973, pp.
143-177

{45] Murray, W., "An Algorithm for Constrained
Minimization", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 247-258

Fos
o

Nelder, J. A. and Mead, R., "A Simplex Method for
Function Minimization", Computer Jourmnal, Vol. 7, No.
l‘, Jan. 1965, PP 308-313

~
-~
-~
—

(48]

[49]

{50]

[51]

[52]

[53]

[55]

[56]

(57]

129

Pappas, M., "Use of Direct Search in Automated Optimal
Design'", Transactions of the ASME, Journal of
Engineering for Industryvy, Vol. 94, Ser. B, No. 2, May
1972, pp. 395-401

Pappas, M. and Allentuch, A., "Mathematical Programming
Proceedures for Mixed Discrete~Continuous Design
Problems, Transactions of the ASME, Journal of
Engineering for Industry, Vol 96, Ser. B, No. 1, Feb.
1974, pp. 201-209

Pappas, M. and Amba-Roa, C. L., "A Direct Search
Algorithm for Automated Optimum Structural Design",
AIAA Jourmnal, Vol. 9, No. 3, Mar. 1971, pp. 387-393

Pappas, M. and Moradi, J. Y., "An Improved Direct
Search Mathematical Programming Algorithm'", Transaction
of the ASME, Journal of Engineering for Industry, ¥Vol.
96, Ser. B, No. 4, Nov. 1975, pp. 1305-1310

Parkinson, J. M. and Hutchinson, D., "A Consideration
of Non-gradient Algorithms for the Unconstrained
Optimization of Functions of High Dimensionality", in
Numerical Methods for Non-linear Optimization, ed.
Lootsma, F. A., Academic Press, 1972, pp. 69-97

Parkinson, J. M. and Hutchinson, D., "An Investigation
into Efficiency of Variants on the Simplex Method", in
Numerical Methods for Non-linear Optimization, ed.

Lootsma, F. A., Academic Press, 1972, pp. 115-135

Paviani, D. A. and Himmelblau, D. M., "Constrained
Nonlinear Optimization by Heuristic Programming",
Operations Research, Vol. 17, 1969, pp. 872-882

Powell, M. J. D., "An Efficient Method for Finding the
Minimum of a Function of Several Variables Without
Calculating Derivatives:, Computer Jourmnal, Vol. 7, No.
2, Jul. 1964, pp. 155-162

Ragsdell, K. M., "On Some Experiments Which Delimit the
Utility of Nonlinear Programming Algorithms", Working
Paper, Purdue University, 1978

Ramamoorty, M. and Rao, P. J., "Comparative Study of
Optimization Methods for the Design of Polyphase
Reluctance Motors', Engineering Optimization, Vol. 3,
No. 1, 1977, pp. 51=60

Rao, S. S. and Kumar, A., "Optimization of Cold Rolling
by Nonlinear Programming:, Transactions of the ASME,
Journal of Engineering for Industry, Vol. 100., Ser. B,
No. 2, May 1978, pp. 186=-192

{58]

[59]

[60]

{61]

[62]

[63]

[64]

[65]

[66]

(67]

[68]

130

Reiter, S. and Rice, D. B., "Discrete Optimizing
Solution Proceedures for Linear and Nonlinear Integer
Programming Problems'", Management Science, Vol. 12, No.
11, Jul. 1966, pp. 829-850

Rockafeller R. T., Convex Analysis, Princeton
University Press, 1970

Root, R. R. and Ragsdell, K. M., "A Survey of
Optimization Methods Applied to the Design of
Mechanisms", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 98, Ser. B, No. 3, Aug.
1976, pp. 1036-1041

Rosenbrock, H. H. and Storey, C., Computational
Techniques for Chemical Engineers, Pergamon Press, 1966

Schmit, L. A., "Automated Design", International
Science and Technologv, No. 54, June 1966, pp. 63-78
and 115-117

Schmit, L. A. Jr., Kicher, T. P. and Morrow, W. M.,
"Structural Synthesis Capability of Integrally
Stiffened Waffle Plates'", AIAA Journal, Vol. 1, No. 12,
Dec. 1973, pp. 2820-2836

Schuldt, S. B., Gabriele, G. A., Root, R. R., Sangren,
E. and Ragsdell, K. M., "Application of a New Penalty
Function Method to Design Optimization'", Transactions
of the ASME, Jourmnal of Engineering for Industry, Vol.
99, Ser. B. No. 1, Feb. 1977, pp. 31-36

Sheu, C. Y. and Prager, W., '"Recent Developments in
Optimal Structural Design'", Applied Mechanics Review,
Vol. 21, No. 10, Oct. 1968, pp. 985-992

Simmons, L. M. and Pike, D. H., "A Mixed Integer Direct
Search Technique for the Optimization of Constrained
Non-linear Objective Functions", Working Paper,
University of Tennessee

Seireg, A., "A Survey of Optimization of Mechanical
Design", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 94, Ser. B, No. 2, May
1972, pp. 495-499

Shaono, D. F. and Weil, R. L., "Management Science: A
View from Nonlinear Programming", Communications of the
Association for Computing Machinery, Vol. 15, No. 7,
Jul. 1972, pp. 542-549

(69]

(70]

[71]

[72]

(73]

(74]

[75]

[76]

(77]

(78]

131

Smith, E. A. and Carpenter, W. C., "A Feasible
Direction Method Based on Zoutendijk’s Procedure P1",
Engineering Optimization, Vol. 3, No. 2, Jan. 1978, pp.

109~-112

Spendley, W. and Hext, G. R., and Himsworth, R. R.,
"Sequential Applications of Simplex Designs 1in
Optimization and Evolutionary Operation”,
Technometrics, Vol. 4, No. 4, Nov. 1962, pp. 441-461

Stoecker, W. F., Design of Thermal Systems,
McGraw=-Hill, 1971

Taha, H. A., Integer Programming Theory, Applications,
and Computations, Academic Press, 1975

Tillman, F. A., Ching-Lia, H. and Way, K., "Determining
Component Reliability and Redundancy for Optimum Systenm
Reliability", IEEE Transactions on Reliability, Vol.
R26, WNo. 3, Aug. 1977, pp. 162-165

Tuthill, S., ME393 Project Report to Prof. C. 0.
Pederson, University of Illinois, 1978

Wasiutynski, Z. and Brandt, A., "The Present State of
Knowledge in the Field of Optimum Design of
Structures'", Applied Mechanics Reviews, Vol. 16, No. 5,
May 1963, pp. 341=350

Weisman, J. and Wood, C. F., "The Use of Optimal Search
for Engineering Design", in Recent Advances in
Optimization Techniques, ed. Lavi, A. and Vogl, T. P.,

John Wiley and Sons, 1965, pp. 219-228

Wilde, D. J. and Beightler, C. S., Foundations of
Optimization, Prentice-Hall Inc., 1967

Zangwill, W. I., "Nonlinear Programing Via Penalty
Functions", Management Science, Vol. 13, No. 5, Jan.
1967, pp. 344-358

132

APPENDIX 1.

This appendix contains the detailed numerical results
that are summarized in Chapter 4. The source of each
problem and a short description are given. Where the
objective function (and for constrained problems, the
constraint functions) is/are not simple expressions the
reader is referred to Appendix 2 where the FORTRAN code for
computing the objective and constraint functions is given.
Finally, for each algorithm tried on a problem, the number
of objective and constraint function evaluations, the
objective function value and the solution vector obtained
are given.

Problems labeled C-~l to C-21 are the constrained test
problems. Problems labeled U-~l to U-15 are the

unconstrained test problems.

133

PROBLEM PAGE PROBLEM PAGE
c-1 134 U-1 165
c-2 135 U~2 167
c-3 137 U-~3 170
c-4 139 U~4 171
c-5 141 U-5 174
c-6 142 U-6 175
c-7 145 U-7 177
c-8 147 U-8 179
c-9 148 U-9 181
c-10 150 U-10 182
c-11 151 U-11 183
c-12 152 U-12 184
c-13 153 U-13 185
c-14 155 U-14 186
c-15 157 U-15 187
c-16 158
c-17 160
c-18 161
c-19 162
c-20 163

c=-21 164

134

PROBLEM: C-1
SOURCE: Beightler and Phillips [3], example 11.15, Alkylation process.

VARIABLES: 5

CONSTRAINTS: 14

MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 1. < X(1) < 2000.

1. < X(2)

in

16000.

—
.
A

< X(3) < 120.
1. < X(4) < 5000.
90. < X(5) < 95.
1.2 < X(6) < 4.
145. < X(7) < 162.
INCREMENTS: (.00l , .00l , .00l , .00l , .00l , .00l , .001)
STARTING POINT: (1745. , 12000. , 110. , 3048. , 92.8 , 3.6 , 145.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 29/29 -942.207 = F(1744.9969 , 11999.9999 , 109.9815 ,
3048.0032 , 93.1549 , 93.1549 , 3.6 , 145)
FLEX 3161/146566 ~1594.666 = F(1761.791 , 13584.0 , 78.4221 ,
3083.435 , 94.9969 , 1.6019 , 153.4129)
DMC 2151/2829 -1586.508 = F(1769.790 , 13695.600 , 78.781 ,

3089.990 , 94.999 , 1.613 , 153.317)

135

PROBLEM: C=2

SOURCE: Fox [21], design of two bar truss.

VARIABLES: 2

CONSTRAINTS: 2

MINIMIZE: F = .6 * 3.14159 * X(2) / 4. * .1 * SQRT(900. + X(1)**2)

SUBJECT TO: see Appendix 2

k%% VARTATION A *#**
BOUNDS: 10. < X(1) < 35.
b < X(2) < 12.
INCREMENTS: (.001 , .00l)

STARTING POINT: (30. , 10.)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 57/57 12.813 = F(20.2369, 7.5134)
FLEX 820/3893 12.812 = F(20.2369, 7.5134)

DMC 141/200 12.813 = F(20.235 , 7.514)

136

**k% VARIATION B *%*
BOUNDS: as in variation A
INCREMENTS: (1. , 1l.)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 63/63 13.387 = F(19. , 8.)
G-2/P 212/212 13.387 = F(19. , 8.)
DMC 28/38 13.387 = F(19. , 8.)

137

PROBLEM: (C-3

SOURCE: Eason and Fenton [15], problem 6, Journal Bearing Design.
VARIABLES: 2

CONSTRAINTS: 1

MINIMIZE: F=(.44 * X(1)**3/X(2)**2 + 10. * X(1) + .592 * X(1)/X(2)**3)/10.

SUBJECT TO: 8.63 * X(2)**3 / X(l) ~l. < 0.

*%x%x VARIATION A %=
BOUNDS: .l < X(i) < 5. , i=1,2
INCREMENTS : (.001, .001)

STARTING POINT: (2.5 , 2.5)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 63/63 1.621 = F(1.2873 , .5305)
FLEX 321/2252 12.813 = F(20.237 , 7.513)
DMC 338/573 1.621 = F(1l.291 , .531)

%k YARTATION B %*%*
BOUNDS: as in variation A
INCREMENTS: as in variation A

STARTING POINT: (3. , .7)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 94/94 1.621 = F(1.2873 , .5305)
FLEX 210/933 1.621 = F(1.2886 , .5307)

DMC 195/294 1.621 = F(1.298 , .532)

%% VARIATION C **%

BOUNDS: as in variation A

INCREMENTS:

(.1 'y ol)

STARTING POINT: (2.5 , 2.5)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT
GRG/R/N1 99/99 1.672 = F(1.125 , .5)
G=2/P NO FEASIBLE SOLUTION
DMC 87/178 1.672 = F(1.125 , .5)
% VARIATION D *
BOUNDS: as in variaticns A
INCREMENTS: (.1 , .1)
STARTING POINT: (3. , .7)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 68/68 1.672 = F(1.125 , .5)
G=2/P 309/309 1.736 = F(1.25 , .5)
DMC 51/93 1.672 = F(1l.125 , .5)

138

139

PROBLEM: C-4

SOURCE: Box [5], problem A. Himmelblau [32], problem 13.

VARIABLES: 5

CONSTRAINTS: 6

MINIMIZE: F = (CO + Cl * X(1) + C2 * X(1l) * X(2) + C3 * X(1) * X(3) +

C4 * X(1) * X(4) + C5 * X(1) * X(5)) * (-.000001)

SUBJECT TO: 0. < CO6*X(1) + C7*X(1)*X(2) + C8*X(1)*X(3) +C9*X(l) * X(4) +
Cl0 * X(1) *X(3) < 29400Q.

AND: 0. < CLI*X(1) + CL2*X(1)*X(2) + CI3*X(1)*X(3) + Cla*X(l) *
X(4) + CI5 * X(1) * X(5) < 294000.

AND: 0. < Cl6*X(1l) + CL7*X(1)*X(2) + CL8*X(1)*X(3) + Cl9*X(1) *

X(4) + C20 * X(1) * X(5) < 277200.

kkk VARTATION A ***
B0UNDS: 0. < X(l) < 5.
1.2 < X(2) < 2.4
20. < X(3) < 60.
9.0 < X(4) < 9.3

6.5 < X(5)

in

7.
INCREMENTS: (.001 , .00l , .001 , .00l , .00L)

STARTING POINT: (2.52 , 2. , 37.5 , 9.25, 6.8)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 60/60 ‘50208 - F(A.S}?A ’ 2.4 [y 60. 9 9-3) 7)
FLEX 1720/50991 -5.262 = F(4.5584 , 2,3383, 59.999 , 9.2997 , 7.
DMC 2180/2593 -5.276 = F(4.559 , 2.379 , 59.894 , 9.299 , 6.996)

140

k%% VARIATION B **%*
BOUNDS: as in variation A
INCREMENTS: (1. , 1. , l. 4 l. , l.)
STARTING POINT: as in variation A
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 66/66 -4.806 = F(5. , 2. , 59. , 9. ,
G-2/P 38/38 -4.704 = F(5. , 2. , 60. , 9. ,
DMC 69/69 -4.837 = F(5. , 2. , 20. , 9. ,
k%% VARIATION C *%%
BOUNDS: as in variations A
INCREMENTS: (.25, 25, .25, .25, .25)
STARTING POINT: as in variation A
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 66/66 -5.028 = F(4.5 , 2.25 , 60. , 9.25
G=2/P 153/153 ~5.054 = F(4.5 , 2.25 , 20. , 9.25
DMC 91/102 -5.153 = F(4.75, 2. , 28.75 , 9.25

7.)
7.)

7.)

y 7+)
y Te)

» 7e)

141

PROBLEM: C-5

SQOURCE: Box [3], problem B.

VARIABLES: 2

CONSTRAINTS: 3

MINIMIZE: F = =((9. = (X(l) = 3)*%2) * X(2)**3 / (27, * SQRT(3.)))
SUBJECT TO: 0. < X(l) + SQRT(3.) * X(2) < 6.

AND: X(2) - X(1) / SQRT(3.) < 0.

BOUMDS: 0. < X(i) < 100. , i =1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (l. , .5)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 19/19 -l. = F(3. , 1.7321)
FLEX 354/2740 -l. = F(3. , 1.7320)

DMC 142/212 -l. = F(3. , 1.732)

PROBLEM: C~6

SOURCE: Eason and Fenton [13], problem 7, Tlwwheel desizn.
VARIABLES: 3

CCNSTRAINTS: 2

MINIMIZE: F = (=.0201 * X(1)**4 * X(2) * X(3)**2) / l.E7
SUBJECT TO: X(l)**2 * X(2) - 675. < 0.

AND: (X(1) * X(3))**2 / 1.E7 - .419 < O,

k%% VARTATION A ***

30LNDS: 0. < X(1) < 36.

(=)
.
A

< X(2) < 5.

125.

o
.
"N

< 0)3)

A

INCREMENTS: (.001 , .00l , .301)
STARTING POINT: (22.3, .5+, 125.)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 71/71 -5.685 = F(16.3756 , 2.5172 , 125.)

FLEX 630/7808 ~-5.682

DMC 530/704 -5.6846= F(31.669, .673 , 64.635)

F(17.187 , 2.2842 , 119.102)

% VARIATION B **%*
BOUNDS: as in variation A
INCREMENTS: (l. , 1. , l.)
STARTING POINT: as in variation A

NUMBER OF

FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG/R/N1 75/75 ~4.770 = F(15. , 3.
G-2/P NO FEASIBLE SOLUTION
DMC 79/114 -5.151 = F(25. , 1.
*%% VARIATION C **%*
BOUNDS: as in variation A
INCREMENTS: (.5 , .5, .5)
STARTING POINT: as in variation A
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATTIONS RESULT
GRG/R/N1 75/75 ~5.146 = F(16. , 2.5
G=2/P NO FEASIBLE SOLUTION
MC 109/148 ~5.294 = F(36. , .5

143

125)

56.)

144

*%% VARTATION D **%*
BOUNDS: as in variation A

INCREMENTS: (.25, .25, .25)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 75/75 -5.475 = F(16.25 , 2.5 , 125.)
G=2/P NO FEASIBLE SOLUTION

DMC 169/220 -5.436 = F(36. , .5, 56.75)

PROBLEM: C~7

~

145

SOURCE: Eason and Fenton [l5], problem 2, post office parcel.

VARIABLES: 3
CONSTRAINTS: 2
MINIMIZE: ~X(1) * X(2) * X(3) * .00l

SUBJECT TO: 0. < X(1) + 2. * (X(2) + X(3)) <72.

*%% VARIATION A **%*

BOUNDS: 0. < X(1) < 20.

o
.
A

< X(2) < 1.

o
.
A

< X(3) < 42,
INCREMENTS: (.00l , .00l , .001)

STARTING POINT: (l0. , 1Q. , 10.)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 25/25 =3.3 = F(20. , 1l. , 15.)
FLEX 373/3796 -3.3 = F(19.9990 , 10.9977

DMC 417/512 -3.299 = F(19.982 , 11.0 ,

, 15.0028)

15.009)

146

*%k% GVARTIATION B *%*%
BOUNDS: as in variation A
INCREMENTS: (1. , 1. , 1l.)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 29/29 -3.3 = F(20. , 1l1l. , 15.)
G-2/P 126/126 -3.075 = F(20. , 1ll. , l4.)
DMC 91/117 -3.2 = F(20. , 10. -, 16.)

147

PROBLEM: C~8
SOURCE: Himmelblau [32], problem 4, Chemical equalibrum.
VARIABLES: 7
CONSTRAINTS: 6
MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 0. < X(1) < 2.
0. < X(5) £ .5

0.

A

X(1) < 1. , 1 =2,3,4,6,7
INCREMENTS: (.001 , .00l , .00l , .00l , .00l , .00l , .001)

STARTING POINT: (.25 , .25, .25, +25, .25, .25, .25)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 89/89 ~46.566 = F(.2214 , .3429 , .3159 , 0. , .5, 0. ,
.2231)
FLEX 272/6004 -47.623 = F(.7170 , .1761 , .6976 , .0038 , .4878 ,

.0205 , .0009)
DMC 1815/1944 =47.761 = F(.042 , .142 , .788 , .00l , .486 ,

.001 , .018)

PROBLEM: C=9

SOURCE: Eascn and Fenton [15], problem l.
Colville [l1]), problem 1.

VARIABLES: 5

CONSTRAINTS: 10

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

148

Himmelblau [32], problem 10.

*%% VARIATION A *%%*
BOUNMDS: 0. < X(i) < 100. , i = 1,...,5
INCREMENTS: (.00l , .00l , .00l , .00l , .00l)
STARTING POINT: (0. , 0. , 0. , 0. , 1.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 113/113 ~32.349 = F(.3 , .3335 , .4, .4283 , .2240)
FLEX 395/9653 ~32.348 = F(.3 , .3329 , .4, .4272 , .2253)
DMC 714/948 ~26.891 = F(0. .389 , .250 , .721, .257)

149

*%% VARIATION B *%*
BOUNDS: as in A
INCREMENTS: as in A
STARTING POINT: (1. , 1. , 1. , l. , lJ)
NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 95/95 -32.349 = F(.3 , .3335, .4, .4283 , .2240)
FLEX 812/17056 -32.349 = F(.3, .3335, .4, .4283 , .2240)
DMC 703/1076 -32.131 = F(.283, .340, .392 , .449 , .216)

150

PROBLEM: C-10
SOURCE: Eason and Fenton [15], problem 3. Himmelbleu (32], problem ll.,
Colville [1l1], problem 3
VARIABLES: 5
CONSTRAINTS: 6
MINIMIZE: 5.3578547 * X(3)**2 + .8356891 * X(1) * X(5) + 37.293239 * X(1) -
40792.141
SUBJECT TO: 0. < 85.334407 +0056858 * X(2) * X(5) +.0006262 *X(1)* X(4) =~
.0022053 * X(3) * X(5) < 92.
AND: 90. < 80.51249 + 0071317 * X(2) * X(5) + .0029955 * X(1) * X(2)
+ .0021813 * X(3)**2 < 110.
AND: 20. < 9.300961 + 0047026 * X(3) * X(5) + .0012547 * X(1l) * X(3)
+ .0019085 * X(3) * X(4) < 25.
BOUNDS: 78. < X(1) < 102.
33. < X(2) < 45,

27.

Ia

X(1) < 45. , i = 3,...,5
INCREMENTS: (.00l , .00l , .00l , .00l , .0Ol)

STARTING POINT: (78.62 , 33.44 , 31.07 , 44.15 , 35,32)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 236/236 -30501.315 = F(78.5445 , 33.44 , 30.6952 , 44.15 ,
35.2458)
FLEX 684/21906 -30665.54 = F(78. , 33. , 29.9953 , 45. |,
36.7758)
DMC 871/1035 -30661.929 = F(78. , 33. , 30.018 , 44.999 ,
36.719)

151

PROBLEM: C-11
SOURCE: Himmelblau [32], problem l4. Colville [11l], problem 5.
VARIABLES: 6
CONSTRAINTS: 4
MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 1. < X(i) < 30000. , i =1,...,4
-500. < x(5) < 30000.
INCREMENTS: (.001 , .001 , .00l , .001 , «001 , .001)
STARTING POINT: (8000. , 3000. , 14000. , 2000. , 300. , 10.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 109/109 258540.002 = F(9067.2894 , 3998.8284 , 14537.013 ,
4192.7656 , 155.8287 , -84.3802)
FLEX 3316/72997 248694.6 = F(15639.23 , 4356.786 , 15999.52 ,
3427.736 , 221.037 , -276.938)
DMC 3448/4756 247862.952 = F(13999.5 , 4000. , 15969.9 ,

2756.56 , 209.542 , =231.954)

PROBLEM C-12
SOURCE: Himmelblau (32], problem 7.
VARTABLES : 3
CONSTRAINTS: 14
MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 200. < X(1) < 2000.
1000. < X(2) < 16000.
l. < X(3) < 120.

INCREMENTS: (.00l , .001 , .QO0L)

152

Colville [1l1], problem 8.

STARTING POINTS: (1745. , 12000. , 110.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG 134/1364 -870.659 = F(17644.5231 , 12000.2622 , 107.7669)
FLEX 372/4407 -1162.037 = F(1728.371 , 16000. , 98.1267)

DMC 386/431 -1162.036 = F(1728.370 , 16000. , 98.140)

153

PROBLEM: C-13

SOURCE: Unpublished, B. Famili, reinforced concrete bridge design.

VARTABLES: 5

CONSTRAINTS: 7

MINIMIZE: F = 2448. * X(1) * X(2) + 1224. * X(3) * X(4) + 7344, * X(5)

SUBJECT TO: .0435 - X(2) / X(1) < 0.

AND: 00667 - X(4) / X(3) < 0.

AND: 555.678*X(2) + 277.84*%X(3) = 2.5*X(1)*X(2)**3 - ,5*X(1)*X(2) *
X(3)**2 = X(1) * X(2)**2 * X(3) - .0833 * X(3)**3 * X(4) < 0.

AND: 7615.6 = .0833*X(3)**3*%X(4) ~ 2.5 X(L)*X(2)**3 - ,5*¥X(1l) *
X(2) * X(3)**2 ~ X(1) * X(2)**2 * X(3) < 0.

AND: 395.92%X(2) + 197.96*X(3) = S5*X(1)*X(2)*X(3)**2 - 2.5 * X(1) *
X(2)**3 = X(1) * X(2)**%2 * X(3) = .0833 * X(3)**3 * X(4) < 0.

AND: .0833*%X(5)**2 + ,0000283*X(1)**2 + .78*X(5) = .00948*X(l) < 0.

AND: .0222 * X(2) + .Olll * X(3) - 1. < 0.

k%% VARIATION A *#**
BOUNDS: 4. < X(1) < 20.
L3124 < X(2) < 2.
20. < X(3) < 80,
3126 < X(4) < 1.
.1 < X(5) < 3.
INCREMENTS: (.001 , .00l , .0O1 , .001 , .00l)

STARTING POINT: (18. , 1.8, 60. , .7, 2.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT
GRG 130/130 46156.583 = F(l4.7648 , .6423 , 46,8366 , .3124
.6853)
FLEX 408/13145 61586.68 = F(17.5910 , .7652 , 53.6286 , .3574%
.7028)
DMC 74G9/644 46684.291 = F(7.203 , 1.231 , 48.723 , .325, .
% VARIATION B *
BOUNDS: as in variation A
INCREMENTS: (l. , .0625 l. , 0625, .00l)

STARTING POINT:

ALGORITHM
GRG/R/N1
G=2/p

DMC

NUMBER OF
TUNCTION/
CONSTRAINT
ZVALUATIONS
136/136
299/299

424/494

as in variation A

RESULT
NO FEASIBLE SOLUTION
86392.368 = F(l5. , 2. , 20. ,

47401.848 = F(7. , .9375 , 56. , .375,

b

7

14

6

A
-

/

,,..‘
(W)}
wn
atnthniine

PROBLEM =14

SOURCE: Himmeldalu [32], problem lh.

VARIABLES: 9

CONSTRAINTS: 13

MINIMIZE: F = =.5*%(X(1)*X(4) = X(2)*X(3) + X(3)*X(9) - X(5)*X(9) +
X(5) * X(8) = X(6) * X(7)

SUBJECT TO: X(3)**2 + X(4)**2 - 1. < 0.

AND: X(9)**2 - 1. < 0.
AND: X(5)%%2 + X(6)%**2 - 1. < 0.

AND: K(L)**2 + (X(2) = X(9))**2 = 1. < O.

AND: (X(1) = X(3))%*2 + (X(2) = X(6))**2 - 1. < 0.
A (X(1) = X(7))**2 + (X(2) X(8))**2 - 1. < Q.
AND: (X(3) X(5))**2 + (X(4) - X(6))**2 = 1. < 0.
AYD: (X(3) = X(7))**2 + (X(4) - X($))**2 - 1. < 0.
AND: X(7)**2 + (X(8) = X(9))**2 - 1. < 0.

AND: X(2) * X(3) = X(1) * X(4) < 0.

AND: -X(3) * X(9) < O.

AND: X(5) * X(9) < 0.

AND: X(6) * X(7) - X(5) * X(8) < 0.

BOUNDS: =1. < X(i) < 2. , i = 1,...,8
0. < X(9) < 2.
INCREMENTS: (.00l , .00l , .00l , .00l , .001 , .00l , .00l , .00l , .001)

STARTING POINT: (O, , O. , 0. , 0. , 0. , 0. , 0. , 0. , 0.)

ALGORITHM
GRG

s 0¢)
FLEX
DMC

NUMBER OF
FUNCTION/
CONSTRAINT
EVALUATIONS

16/10

1701/40049

1563/1957

-.866

[
w

]

F(-.9890 , .1

.9895 ,
F(=-.411

.906 ,

«1442

479

, =5

226

157

PROBLEM: C~15

SOURCE: Ragsdell and Phillips [55}, optimal welded structure.
VARIABLES: 4

CONSTRAINTS: 5

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: .125 < X(i) < 10. , i = 1,4

.125

In

X(i) < 3. , 1 =2,3
INCREMENTS: (.001 , .00l , .00l , .001)
STARTING POINTS: (4. , 2. , l. , 7.)
NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 345/345 2.381 = F(8.2915 , .2444 , 2444 , 6.2184)
FLEX 1125/12919 2.381 = F(8.2914 , .2444 , 2444 , 6.2181)
DMC 1388/1793 2.602 = F/8.281 , .245 , .189 , 9.017)

158

PROBLEM: C-~16

SOURCE: Himmelblau {32}, problem 22. U.S. Steel problem.

VARIABLES: 6

CONSTRAINTS: 4

MINIMIZE: &4.3*X(1) + 31.8*X(2) + 63.3*X(3) + 15.8*%X(4) + 68.5*%X(5) +
4.7 * X(6)

SUBJECT TO: 32.97 - 17.1%X(1) = 38.2%X(2) - 204.2%X(3) = 212.3%X(4) ~

623.4*%X(5) = 1495.5*%X(6) + 169.*X(1)*X(3) + 3580.*X(3)*X(5) +

3810.%X(4)*X(5) + 18500.*X(4)*X(6) + 24300.*X(5)*X(6) < 0.

AND: 25.12 = 17.9 * X(1) - 36.8 * X(2) - 113.9 * X(3) -
169.7 * X(4) = 337.8 * K(5) - 1385.2 * X(6) + 139. * X(1) *
X(3) + 2450, * X(4) * X(5) + 16600.% X(4) * X(6) +
17200. * X(5) * X(6) < O.
AND: -124.08 + 273.% X(2) + 70. * X(4) + 819.% X(5) -
26000.% X(4) * X(5) < O.
AND: -173.02 = 159.9 * X(1) + 311. * X(2) - 587.% X(4) -
391.% X(5) - 2198.* X(6) + 14000.% X(1) * X(6) < O.
BOUNDS: 0. < X(1) < .31
0. < X(2) < .046
0. < X(3) < .068
0. < X(4) < .042
0. < X(5) < .028
0. < X(6) < .0134
INCREMENTS: (.00l , .00l , .00l , .001 , .00l , .001)
STARTING POINT: (.212 , .043 , .065 , .033 , .018 , ,012)

ALGORITHM

GRG

FLEX

DMC

NUMBER OF
FUNCTION/
CONSTRAINT
EVALUATIONS
133/133

48/5353

328/598

RESULT

4,071

5.271

5.494

F(Oa y
F(.1771
0131)

F(.054 ,

0. , .063,

.0169 , .0576

.028 , .066

0.

b4

159

0.

0.

L]

.0124 ,

.002

.0134)

.0010 ,

b4

.012)

160

PROBLEM: C-17

SOURCE: Chanaratna [l0], Reinforced Concrete Beam.
VARTIABLES: 2
CONSTRAINTS: 1
MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 1. < X(1) <77
12, < X(2) < 40,
INCREMENTS: (1. , 1.)
STARTING POINT: (74. , 24.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 94/94 379.2 = F(65. , 16.)
G~2/? 159/159 381.96 = F(66. , 15.)

DMC 53/86 381.486 = F(67. , l4.)

PROBLEM: C-18

SOURCE: Chanaratna (10], Reinforced Concrete Beam.
VARIABLES: 2

CONSTRAINTS: 1

MINIMIZE: see Appendix 2
SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(1) < 77.
12. < X(2) < 40.
INCREMENTS: (1. , 1.)

STARTING POINT: (74. , 24.)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 77/77 499.32 = F(63. , 17.)
G-2/P 118/118 499.32 = F(63. , 17.)

DMC 49/68 499.2 = F(65. , 16.)

161

PROBLEM: C~19
SOURCE: Gisvold and Moe [24], Hatch cover.
VARIABLES: 2
CONSTRAINTS: 4
MIMINIZE: see Appendix 2
SUBJECT TO: see Appendix 2
BOUNDS: 1. < X(l) < 20.
. < X(2) < 4.
INCREMENTS: (1. , 1.)
STARTING POINT: (7. , 3.)

NUMBER OF

FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 68/68 109 = F(7. , 2.)
G~2/P 82/82 124.64 = F(5. , 4.)

DMC 21/30 109 = F(7. , 2.)

162

163

PROBLEM: C-20

SOURCE: Unpublished, R. L. Judd, Shell and Tube Condenser.
VARIABLES: 6

CONSTRAINTS: 5

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(i) < 6. , 1 =1,2

2.

A

X(3)) < 5.

1.

A

X(1) < 100. , 1 = 4,5
100. < X(6) < 6200.
INCREMENTS: (1. , 1. , l. , 1. , l. , 1.)
STARTING POINT: (5. , 3. , 4. , 4. , 5. , 800.)
NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 1069/1069 1352.602 = F(6. , 6. , 2. , 3. , 37.
G-2/P 145/145 1317.687 = F(b. , 4. , 3. , 2. , 25.

DMC 405/751 1227.655 = F(6. , 5. , 2. , 3. , 30.

799.)
684.)

612.)

164

PROBLEM: C-21

SOURCE: Chanaratna (l0], wooden frame

VARIABLES: 2

CONSTRAINTS: 3

MINIMIZE: 1152. * X(1l) + 864. * X(2)

SUBJECT TO: =(1.8 = 2.25 / X(1) ~ 5832. / ((12. + 5.33*%X(2)**3 / X(l)**3)*

X(1)**2) < 0.

AND: =(1.8 = 4.5/((8. + 3.56%X(2)**3/X(1)**3)*X(2)) - 5832/((12. +
5.33%%X(2)**3 / X(1)**3) * X(2)**2 < 0

AND: -1.8 = 4.5/((8. + 3.56*%X(2)**3/X(1)**3)*X(2)) ~(729. =~ 35832/
((12. +45.33 * X(2)**3 / X(1)**3) 8X(2)**2) < 0

BOUNDS: 1. < X(i) < 100. , i=1,2

INCREMENTS: (1. , 1l.)

STARTING POINT; (30. , 30.)

NUMBER OF
FUNCTION/
CONSTRAINT
ALGORITHM EVALUATIONS RESULT
GRG/R/N1 78/78 NO FEASIBLE SOLUTION
G-2/P 183/183 20448 = F(2. , 21.)

DMC 74/85 24768 = F(2. , 26.)

165

PROBLEM: U-1l

SOURCE; Glankwahmdee [25], problem 1. Adapted from Kuester and Mize

VARIABLES: 2

MINIMIZE: F = -(3803.84 + 138. * X(1) + 239.92 * X(2) - 123.08 *
X(1)**2 - 203,64 * X(2)**%2 - 182.25 * X(1) * X(2))

BOUNDS: -100 < X(i) < 100, i=1,2

INCREMENTS: (l. , 1.)

STARTING POINT: (30. , 10.)

%%k VARIATION A *#x*

NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 47 -3754.2 = F(~1l. , 1l.)
G=-2 61 -3840.12 = F(0. , l.)
DMC 96 -3840.12 = F(0. , l.)

*%% VARIATION B ***
BOUNDS: ~-100 < X(i) < 100 , i = 1,2
INCREMENTS: (1. , 1.)

STARTING POINT: (10. , 30.)

NUMBER OF
TUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 57 -3587.7 = F(2. , 0.)
G-2 51 -3040.12 = F(0. , 1.)

DMC 89 -3040.12 = F(0. , 1.)

[37].

*%% VARIATION C **%*

BOUNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS:

(.001 , .001)

STARTING POINT: (10. , 30.)

ALGORITHM

M

G-2

DMC

166

NUMBER OF

FUNCTION

EVALUATIONS RESULT
191 -3877.358 = F(.186115 , .555804)
186 -3877.358 = F(.186 , .506)
209 -3877.358 = F(.186 , .506)

*%% VARIATION D *#**

BOUNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS:

(.001 , .001)

STARTING POINT: (30. 10.)

ALGORITHM

NUMBER OF
FUNCTION
EVALUATIONS RESULT

187 -3877.358 = F(.186133 , .505795)

233 -3877.358 = F(.186 , .506)

244 -3877.358 = F(.186 .506)

167

PROBLEM: U=2
SOURCE: Glankwanmdee {25], problem 2. Himmelblau [32], number 28.
VARIABLES: 2
MINIMIZE: F = (X(L)**2 + X(2) = 11.)**2 + (X(1) + X(2)*%2) = 7.)%*2
*%%x VARTATION A *%**
BOUNDS: -100. < X(i) <100. , i =1,2
INCREMENTS: (l. , 1l.)
STARTING POINT: (-10. , =10.)
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 43 26 = F(2. , 2.) =TF(3. , 3
G-2 25 8. = F(~4. , =3.)
DMC 91 8. = F(=4 , =3.)
% VARIATION B *
BOUNDS: =-100. < X(i) < 100. , i =1,2
INCREMENTS: (l. , l.)
STARTING POINT: (-10. , 10.)
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 37 50. = F(3. , =3.)
G-2 19 2. = F(=3. , 3.)
DMC 95 2. = F(=3. , 3.

kx% UARTATION C %k
30UWDS: ~100. < X(i) < 190, , i = 1,2
INCREMENTS: (1. , 1.}
STARTING POINT: (8. , 3.)
NUMBER OF
FUNCTION
ALGORITHEM EVALUATIONS RESULT
COMPLEX 67 0. =F(3. , 2.)
G=2 39 0. =F(3. , 2.)
DMC 89 0. =F(3. , 2.)
k%% VARTATION D &+
300NDS: -100. < X(i) < 100. , i = 1,2
INCREMENTS: (.00l , .00l)
STARTING POINT: (-10. , =10.)
YUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
™ 174 1.59E-8 = F(=3.7793 , =3.2732)
G=2 108 4,10E~5 = F(-3.780 , =3.284)
DMC 236 S 49E-6 = F(=3.779 , -3.283)
cMC 198 3.01E-6 = F(=3.7795 , =3.2834)
*%% VARIATION E ***
BOUNDS: =100. < X(i) < 100. , i = 1,2
INCREMENTS: (.00l , .0C1)

STARTING POINT: (-10.

, 104)

168

ALGORITHM

%8}

pMC

INCREMENTS:

NIMBER OF

TARTING POINT: (8. , 3.)

ALGORITHM

TUNCTION
ZVALUATIONS RISCLT
i72 7.86E~8 = F(3.00023 , 1.99%993)
32 4.22E~6 = F(=2.805 , 3.131,
274 0 =F(3. , 2)
k%% VARIATION F *%%*
30UNDS: =-100. < X(i) < 1680. , i =1,2
(.001 , .00L)
NUMBER OF
FUNCTION
EVALTUATIOYS RESULT
190 1.47E-7 = F(2.99997 , 1.99994)
71 1.70E~5 = F(3. , 1.999)

PROBLEM:

SCURCE:

TARIABLES:

U=3

3lanxwahndee

r

MINIMIZE: T o= ((. % X(1)%*2 + 2,
K(2)%*2 = 7,)%%2
*%% VARTATION
207NDS: 100, < X(1) < in0.

INCRIMENTS:

da .

STARTING

ALGORITHM

COMPLZIX

30UNDS:

INCREMENTS:

STARTING POINT:

ALGORITHM

™

POINT:

-100.

(fa , 1
(=10, =12,y

WUMBER OF
FUNCTION

ZVALUATIONS RESCLT
+0 J. =T
33 D. =7
39 0. =TF

*** VARTATION
< K(1) < 100.
(.001 , .001)
(=10, , -10)
NUMBER OF

FUNCTION

EVALUATIONS RESULT
2.10E-7
5.80E=-3

4. 10E=53

[}

]

/]

#

AP

[2530, problem 3, sroblem U-2 scaled

¥ K(2) ~ 1l.o%%2 4+ (3,
A * %k
i= 1,2
(e, 1a)
(l. y Lse)
(Lo, 14
3 k%%

1,2

F(.99997 , 1.00003)

~.4

O

*

L00

-

PRLILIM: -l

3TURCZ Glankwanhmdea y Drcolem 4. Himmelhiag (1l y QUMD
dosendrock’s funatisn.,

VARIAZLEZ: 2

HINIMIZE: 7 = 150, * (K02) = L(L)y**2)*%x2 - (1, - I SOUDLLY

30NTS: =100, < (i) < 106, , 1= 1,2
INCREMEINTS: (1., 1.
STARTING 20INT: (=12, s 1Te

NUMBER OF
FUNCTION

|
ALGORITHM ZVALUATIONS RESULT

COMPLEX 224 3. = T4, , 16,5
G=2 o i = 712, y L)
Mr EM 3. = T4, 15,
*kEk TVARIATINN 3 *x%
30NDS: -i5. < K1) < 10, » 1= 1,2

STARTING POINT: (=1.2 , 1.)
NUMBER OF
FUNCTION

ALGORITHM ZTALUATIONS RESULT

TONZLEX 7D 3= F (.2, T4y

=2] B = F(.2 , 0.
M 33 Teoo= 0L, 1.y

REX O OVARIATION T ks
3JOUNDE: <lT0 < XL o< D0, o= oLl
INCREMENTS: (L. |, 1.,

STARTING POINT: (10. , 30.,
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COM2LEX 30 38, = F(-3.
iy 24 9. = F(-8.
oMo 1 54, = Tl9, |
*xk UARTATION D #4x

3CUNDS: -i00 < X(i) < 100. , i = 1,2

CHCREMENTS: (.00l , .50l

AUTNT (=120, LD

to

NUMBEZR CF
TUNCTION

ZIVALUATIONS }E

o
O
w
m
)
0
[}

2
(W]
+-
3

[e 4]
r—
~i
1
t
(el}
]

9.54 = F(3.5579

XXX VARTATION £ a#x
33NDS: -10. < X(f) < 10, , i = 1,2
DNCREMENT3: (L0011, .001)

CTARTING 2OINT: (-1.2 1.,

F(1.009

FOL.OCGL , 1.0002)

» 1.013)

, 12.4858)

P

NTMBER OF
TUNCTION

ALGORITHM EVALUATIONS RISTLT

i~
a0
-

.

1
O
Q]

i
(¢ 9
[}

R 34 F(.999% , 2995,

5=2 314 3.17E-3 = F(.991 , .982)
cMC 413 2.24E-8 = F(l.0001 , 1.3006G3)

MC 432 C. = F(l. , L)

kkdk JARIATION F *%*
30UNDS: -13C0. < X(i) < 100. , & = 1,2
INCRZIMENTS: (.20l , .00L;
STARTING POINT: (10. , 30)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

M 544 3.98E-8 = F(.99995 , .99988)

]
(3]

50 20.2 = F(5.497 , 30.225)

MC 1085 0. =°%5(l. , L3

50, 2roblexm 3. Adaptad from Himmeldlau

MINIMIZE: see Appendix 2

k YARTIATION A ***

BOUVDS: =100. < X(i) < 100. , i = i,2

NUMBER OF
FUNCTION
ALGORITEM EVALUATIONS RESULT

COMPLEX A L84 = F(l. , l.)
5=2 43 .84 = F(l. , 1.)

MC 33 .84 = F(l. , L)

*%k% VARIATION 3 **%
30LDS: ~1G0. < X(i); < 100. , i = 1,2
INCREMENTS: (.00L , .0Q01)
STARTING POINT: (i0. , 10.)
NUMBER OF
FUNCTION
ALGORITHM ZVALUATIONS RESULT
M 162 169043 = F(1.7953 , 1.3779)
=2 209 .1h9044 = F(1.796 , 1.378)

B {8 207 169045 = F(1.795 , 1.3738)

3
LA -

’

S

PRGBLEM: U-6

SOURCE: Glan

=
~4
(W)

kwahmdee {[253], problem 6. Himmelblau (32], number 26.

fletcher and Powell [20].

VARIABLES: 4

MINIMIZE: F

30UWDS: ~10

INCREMENTS:

STARTING POIL

ALGORITHM

COMPLEX

G-2

DMC

BOUNDS: -120

INCREMENTS:

STARTING POI

ALGORITHM

M

G~2

cMe

DMC

= (X(1) + 10.

X(3))**4 + 10.

ke

*OR(2))**2 + 5. * (X(3) - X(4))**2 + (X(2) - 2.

* (X(1) X(4))**4

VARIATION A *%*

0. < X(i) €100. , 1 =1,.00,4

(e , 1.
NT: (9. ,
NUMBER OF

FUNCTION
EVALUATTIONS

Yok &

l. , 1l.)

, =6 , 8.)

RESULT
690. = F(-12. , 1. , =-l. , =12.)
0. = F(O- > 0. N 0. N Oo)

17. =F(l. , 0. , L. , 1o

VARIATION B *%*

o S X(1) £100. , 1 =1,...,4

(.001 , .001

NT: (9. ,
NUMBER OF
FUNCTION
EVALUATIONS

704

9133

1930

2175

.001 , .000)

, =6. , 8.)

RESULT

l.41E-7 = F(.00476 , ~.00044 , .0053 , .0054)
.0l125 = F(.056 , =-.005 , .034 , .034)

11.28 = F(=-.3521 , =.0925 , =.4775 , .4912)

3.34E-7 = F(-.02 , .002 , =-.01 , =.01)

176

k% VARIATION C ***
BOUNDS: =100. < X(i) < 100. , i = L,..0,4
INCREMENTS: (.00l , .00l , .00l , .COL)

STARTING POINT: (3. , =-l. , 0. , l.)

NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESCULT
N 422 5.89E~8 = F(=-.000848 , .000065 , =-.000972 ,
-.001033)
DMC 1202 -1,46E-7 = F(.010 , ~.001 , -.001 , =-.001)

x%% VARIATION D *%*
BOUNDS: -100. < X(i) < 100. , 1 = 1,...,4
INCREMENTS: (.00l , .00l , .00l , .00L)

STARTING PQINT: (l0. , ~10. , 10. , -10)

NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
NM 487 7.42E-7 = F(-.014031 , .001396 , -.013520 ,
-.013648)
DMC 2772 4.38E-7 = F(-.020 , .002 , -.003 , =-.003)

-
~1
~1

PROBLEM: U~7
S2URCE: Glanxwahmdee [23], probolaa 7. Adapted from Himmelblau
number 8. WwWood’s function.
VARIABLES: 4
MINIMIZE: F = 100. * (X(2) = X(L)**%2)**2 + (1. = X(1))**2 +
90. * (X(4) = X(3)**2)*%2 4+ (1., = X(3))**2 +
[0.1 * ((X(2) = L.)*%2 + (X(4) = l.)**2) +

19.8 * (X(2) = 1.) * (X(4) = 1.)

k%% VARIATICON A *k*
BOUMWDS: -100. < X(i) < 100. , i =1,...,4
INCREMENTS: (l. , l.o , 1. , Ll.)
STARTING POINT: (-9, , =3. , =9. , =3.)
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 220 0o =7(l. , L. , 1. , 1)

G-Z 112 Oa

[}
g5
—~
—
.
-
—
.
-
p—a
-
—
.
~

DMC 215 8, = F(-1l. , 1. , =1lo , l.)

[RRY
W)

EE £

30UNDS: ~100.
INCREMENTS: (.00l , .00l
STARTING POINT: (-9. ,
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS
NM 1809
G=-2 2206
cMC 1271
DMC 4211

VARIATION B

< X(1) < 100.

-3.

% J %

i = 1l,004,%

L

~d

3

.00l , .001)

, =9. , =3.)
RESULT
6.23E-8 = F(1.00006 , 1.00015 , .999931 , .999867)
8.46E-5 = F(.996 , .992 , 1.003 , 1.006)
7.84 = F(-.6283 , .3917 , =1.2215 , 1.4886)
3.60E-6 = F(.999 , .998 , 1.00l , 1.002)

PROBLEM: U-§
SOURCE: Glankwahmdee [23], number 8.
VARIABLES: 5

MINIMIZE: see Appendix 2

*x% VARTATION A *#*
BOUNDS: -100. < X(i) < 100. , i = 1,...,5
NCREMENTS: (1. , 1. , 1. , 1. , L.
STARTING POINT: (0. , 0. , 0. , 0. , L.}
NUMBER OF

FUNCTIOY
ALGORITHM EVALUATIONS RESULT

COMPLEX 200 -51. =F(l. , 1ls , L.
G-2 360 -729 = F(0. , ll. , 23.
DMC 94 -1. = F(0. , Q. 0. ,
*%% VARIATION B **=*
B0UNDS: -100. < X(i) £100. , i =1,...,5
INCREMENTS: (l. , 1. , l. , 1« , L&)
STARTING POINT: {15, , 17. , 20. , 25. , 6l.)
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
COMPLEX 368 -731, = F(0. , 13. , 24.
G=-2 463 -734, = F(0. , 12. , 21.
oMC 724 =727 = F(O0. , ll. , 24.

» 18.
Y 16.

17.

’ 6’)

8.)

*xk VARTATION T k**x

- -~ « s =
3 WS -7 <« {7i) < o0 A
e g e - " - - PN
NOREMINTI: 1.o000 , 30D, JT0L G0, W00

STARTING POINT: (5., S, 2¢ 5, T¢ , iey
NUMBER QF
FUNCTION

ALGORITHM EVALUATIONS RESTLT

™ A77 -739.823

]

F(=.2320 , 1l.4351 , 22.2725 , 1h.3357

5..143)
G=2 1439 -739.823 = F(~.230 , ll.5385 , 21,287 , 15.333 ,

oMC 30

w
~1
O

~739.823 F(=.232 , 11.489 , 22,273 , 16.343 ,

k%% VARTATION D #*%
30TNDS: -130. < X(i) < 100. , i
INCREMENTS: (.001 , .0CL , .00l , .001L , .00l
STARTING 20INT: (15. , 17. , 20. , 25. , 6l.)
NUMBER OF
FLNCTION
ALGORITHM EVALUATIONS RESULT
NI 763 -739.823 = F(-2320 , 1l.4872 , 22.2730 , 16.3401 ,
6.11469)
G-2 2723 -739.823 = F(-.232 , 11.439 , 22.273, 16.540 ,
6.115)

MC 56172 -739.823 = F(=-.233 , 11.489 , 22.273 , 16.541 ,

SIURCE: Stzesker OO example 3 nen 5
TLer il AC.2 3-., Ammcnia 37:vizae Tink.
TARIAZILIS: 2
NTMTo S, o . -
MINIMIZE: T = 400, % {(1)**.,9 = L300, + 2I.*IZAP((=3533
9, .

10UWDS: 1.

INCREMENTS:

Xk VARIATION A A*x

STARTING POINT: /3. , 30.-

3QUNDS: 1.

NUMBER OF
FUNCTION

ZVALTATIONS RESTLT
e . cng = ...
159 5339.2528 = 7(3,9524 sy 3.3R494)

€%}
O
w
wi
(WS
N
[
.
o}
Nel
i
Lt
]
rig
—
O
.
[
o0
=~
—
-
()
.
[ey]
[
(O8]
w
~

*kk VARIATICN B %%k

<KLy <1000, o= 1,2

STARTING POINT: (3. , 30.)

ALGORITHM

5

I
=i

NUMBER OF
FUNCTION
EVALUATIONS RESCLT
Al 3339.385 = 7(h. , 35.)

37 5339.383 = F(A, | 3,

5

Ja

N
w
w
Ne]
.
s}
JO
w

[}
n3
—
)
.

-
ur
.
—

T

3CLNDS: 4. < Xli: < i, L=l e, 3

[y iigg P N . s e)

- -~y T R =

STARTING P2QINT: (1&, y 3., 1A,
NIMBZIR OF
TUNCTION

ALGORITHM IVALCUATIONS RISCLT

G~2 37 1433, 8 = F(la : 7
3 ~433.827 = F(ls. , 1% ., 17.;

oMC 33 1+35.098 = F(20. , 1%. , l4.,

[V2)
[w]
Ul<
o
o)

T As 1435.098 = F(20, , 9. , LA

(A

N

Wy

-~

iy
ct

[al
)

~ =
)
“Je

e,
T

201

G

ARTIN

5T

—

™

2283.394 =

-
-—

M

2

o
e

[
b
IR
b
I
y .

I
o

<

G
(V21

e -
-
.
LIPS

[N

o N

Y

A

AD~AD92 435 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH

A COMPOSITE ALGORITHM FOR MIXED INTEGER CONSTRAINED NONL INEA
JAN 80 D B FOX
UNCLASSIFIED AFIT=CI=-80-1D

L

F/6 12/1
R O=~ETC(U)

NL

185

PROBLEM: U-13

SOURCE: Eason and Fenton {15], Minimum inertia gear train.
VARIABLES: 2

MINIMIZE: F = .1 * (12, + X(1)**2 + (1. + X(2)**2 / X(1)**2 +

(X(L)**2 * X(2)*%2 + 100.) / (X(1l) * X(2))**4)

*%% VARIATION A %%+
BOUNDS: .5 < X(1) < 3. , i = 1,2
INCREMENTS: (.001 , .001)
STARTING POINT: (5 , .5)

NUMBER OF

FUNCTION
ALGORITHM EVALUATIONS RESULT

NM 102 1.74415 = F(1.74352 , 2.02931)
cMC 176 1.74415 = F(1.7435 , 2.0297)
DMC 171 1.74415 = F(l.744 , 2.029)

*%% VARIATION B *#%*
BOUNDS: .5 < X(4) < 3. , 1 =1,2
INCREMENTS: (.1 , .1)

STARTING POINT: (.5 , .5)

NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
G=-2 50 1.745 = F(l.7 , 2.)
DMC 52 1.746 = F(1.7 , 1.9)
SD/SECT 38 1.745 = F(1.7 , 2.)

PROBLEM: U-14

SOURCE: Rosenbrock and Storey [61], Heavy Water Plant.

VARIABLES: 3

MINIMIZE: see Appendix 2

BOUNDS: 1. < X(1) < 20.
250. < X(2) < 500.
223. < X(3) < 295.

INCREMENTS: (1. , 1. , l.)

STARTING POINT: (10. , 370. , 259.)

NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
G=-2 123 19673.527 = F(7.
DMC 129 19673.44]1 = F(7.
SD/SECT 86 19673.441 = F(7.

, 319. ,
, 320. ,
, 320, ,

186

258.)
258.)

2584)

187
PROBLEM: U-15
SOURCE: Fletcher and Powell [20]. Helical valley.
VARIABLES: 3
MINIMIZE: see Appendix 2
BOUNDS: -10 < X(i) < 10. , i = 1,2
-2.5 < X(3) £ 7.5
INCREMENTS: (.001 , .001 , .001)
STARTING POINT: (-1. , 0. , 0.)
NUMBER OF
FUNCTION
ALGORITHM EVALUATIONS RESULT
W™ 365 1.07E~7 = F(1.00002 , -.00012 , -.00017)
CcMC 936 1.269 = F(1.0542 , -.0081 , -.1103)

DMC 1398 0. =F(l. , 0. , 0.)

188

APPENDIX 2.

The purpose of this appendix is to insure that results
from this research can be reproduced. The FORTRAN function
subprograms used to compute the objective function (and for
constrained problems the constraint functions) are included
here. If there should be inadvertent disagreement between
the problem description in Appendix ! and here in Appendix 2
then Appendix 2 should be considered authoratative. |

In every function subprogram the objective function
value is computed following FORTRAN statement number 1000.
To obtain this value the function subprogram is called with
the parameter K in the calling sequence equal to 0. To
evaluate constraints, in constrained problems, the function
is called with K set to 1, 2, ..., m where m is the number
of constraints. The parameter K is used in the COMPUTED GO
TO statement in order to branch to the approprate code to
calculate the specified constraint function. Thus the
evaluation of m constraint functions and the objective
function requires m+l calls to the FORTRAN function
subprogram.

Problems labeled C~1 to C=~2]1 are the constrained test
problems. Problems labeled U=l to U-18 are the

unconstrained test problems.

PROBLEM

c-8

c-9

Cc-10

c-11

Cc-12

Cc-13

FUNCTION
NAME

ALKY
BART
BEARIL
BOXA
BOXB
FLY
POST
CHEM1
CcoLl
CcoL3
COLS
CoL38
FAM2
RAC
RP
STEEL
CH3
CH3B
GM1
STEAM

CHl

PAGE

190

191

192

192

193

194

195

195

196

197

198

199

206

206

209

PROBLEM
U=-1
U-2
U-3
U=-4
U=5

U=-6

U-9

U-10
U=-11
U-12
U-13
U-14
U~15
U-~16
U-17

U-18

FUNCTION

NAME
AGl
AG2
AG3
AG4
AGS
AG6
AG7
AGS8
AMMO
DUCT1
DUCT4
DUCTY
GEARIL
WATER
POW2
OBJT3
OBJT4

OBJTS

PAGE

210
210
210
211
211
212
212
212
213
214
218
219
221

222

223
224

224

189

190

Problem: C~1

500

REAL FUNCTION ALKY(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE
Cl = .063
C2 = 5.04
€3 = .035
C4 = 10.
C5 = 3.36
DAL = 099
D4U = 1./D4L
D7L = D4L
D7U = D4U
DIL = .9
D9U = 1./DIL
DIOL = D4L
DI1OU = D4U
PRINT(IOUT,*)" ALKYLATION PROCESS"
CONTINUE
EVERYTIME CALCULATIONS HERE
X1l = X(1)
X2 = X(2)
X3 = X(3)
X4 = X(4)
X7 = X(5)
X9 = X(6)
X10 = X(7)
X5 = 1.22 * X4 - X1
X6 = (98000.*X3) / (X3* 1000. + X4 * X9)
X8 = (X2 + XS5) / X1
1F(K .EQ. 0) GO TO 1000
co 10 (1,2,3,4,5,6,7),K
CONTINUE
_ CONSTRAINTS HERE
C = X1* (1.12 + .13167%X8 - .00667*X8**2)
ALKY = D4L*X4 - C
IF(ALKY .LT. 0.) ALKY = C = D4U*X4
RETURN
CONTINUE
C = 86.35 + 1.089 * X8 = .038 * X8%*2 + .325%(X6 - 89.)
ALKY = D7L * X7 - C
IF(ALKY .LT. 0.) ALKY = C - D7U * X7
RETURN
CONTINUE
C = 35.82 = .222 * X10

191

ALKY = DI9L * X9 - C
IF(ALKY .LT. 0.) ALKY = C - D9U * X9
RETURN
4 CONTINUE
C =3, % X7 - 133,
ALKY = DIOL * X10 - C
IF(ALKY .LT. 0.) ALKY = C - DIQU * XI0
RETURN
5 CONTINUE
ALKY = X5 - 2000.
IF(ALKY .LT. O0.)ALKY = 1. - X5
RETURN
6 CONTINUE
ALKY = X8 - 12.
IF(ALKY .LT. 0.) ALKY = 3. -~ X8
RETURN
7 CONTINUE
ALKY = 85. - X6
IF(ALKY .LT. 0.) ALKY = X6 - 93,
RETURN
1000 CONTINUE
ALKY = «(Cl * X4 * X7 = C2 * X1 = C3 * X2 = C4 * X3 - C5 * X5)
RETURN
END

Problem: C-2

REAL FUNCTION BART(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, LIN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

1F(FLAG) GO TO 500

PRINT(IOUT,*)" R.L. FOX 2 BAR TRUSS"

FLAG = .TRUE.

c ONE TIME CALCULATIONS HERE

P = 33.

B = 30.

T=,l

E = 30000.

PI = 3,14159
500 CONTINUE

c EVERYTIME CALCULATIONS HERE

H = X(1)
D = X(2) / 4.
IF(K .EQ. 0) GO TO 1000
GO TO (1,2),K
1 CONTINUE

c _ CONSTRAINTS HERE

F = (P/(PI*T))*SQRT(B**2 + H#%2)/(H*D)

192

BART = F - 100.

RETURN

2 CONTINUE
BART = F = PI*%2 % E * (D¥%2 +4 Th*2)/(8.%(B**2+H**2))
RETURN

1000 CONTINUE
BART = .6 * PI # D * T * SQRT(B**2 + H**2)
RETURN
END

Problem: C-3
REAL FUNCTION BEARI(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, I0UT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOQUT,*)" EASON AND FENTON 6: JOURNAL BEARING DESIGN"
FLAG = .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

1 CONTINUE

c _ CONSTRAINTS HERE
BEARL = 8.62 * X(2)**3 / X(1) - 1.
RETURN

1000 CONTINUE
BEARL = (.44*X(1)**3 / X(2)%**2 + 10./X(1l) + .592%X(1)/X(2)*%*3)/10.
RETURN
END

Problem: C-4
REAL FUNCTION BOXA(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, 1IN, I0UT, 10TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
1F(FLAG) GO TO 500
PRINT(IOUT,*)" BOX PROBLEM A, HIMMELBLAU NO. 13"
FLAG = .TRUE.

C ONE TIME CALCULATIONS HERE

CO = =24345.
Cl = -8720288.849
€2 = 150512.5253

C3 = -156.6950325
C4 = 476470.3222
CS5 = 729482.8271

193

C6 = ~145421.402
C7 = 2931.1506
C8 = =~40.427932
C9 = 5106.192

= 1243517%1084
Cl2 = 4360.53352
C13 = 12.9492344
Cl4 = 10236.884
C15 = 13176.786
Cl6 = -326669.5104
Cl7 = 7390.68412
C18 = -27.8986976
C19 = 16643.076

C20 = 30988.146
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
Go 1O (1,2,3),K
1 CONTINUE
__ CONSTRAINTS HERE
X6 = C6 * X(1) + C7 * X(1) * X(2) + C8 * X(1) * X(3) +
1 C9 * X(1) * X(4) + Cl0 * X(1) * X(5)
BOXA = -X6
IF(BOXA .LT. 0.) BOXA = X6 - 294000.
RETURN
2 CONTINUE
X7 = CLL * X(1) + Cl12 * X(1) * X(2) + C13 * X(1) * X(3) +
1 Cl4 * X(1) * X(4) + C15 * X(1) * X(5)
BOXA = -X7
IF(BOXA .LT. 0.) BOXA = X7 - 294000.
RETURN
3 CONTINUE
X8 = Clé * X(1) + C17 * X(1) * X(2) + C18 * X(1) * X(3) +
1 CL9 * X(1) * X(4) + C20 * X(L) * X(5)
BOXA = -X8
IF(BOXA .LT. 0.) BOXA = X8 - 277200.
RETURN
1000 CONTINUE
BOXA =(CO + Cl1 * X(1) + C2 * X(1) * X(2) + C3 * X(1) * X(3) +
1 G4 * X(1) * X(&4) + C5 * X(1) * X(5))*(~.000001)
RETURN
END

Problem: C-5

REAL FUNCTION BOXB(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, I0TT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

194

DATA SQR3/1.732050808/
IF(FLAG) GO TO 500
PRINT (IOUT,*)"BOX BRROBLEM B"
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2),K
1 CONT INUE
B = X(1) + SQR3 * X(2)
BOXB = -B
IF(BOXB .LT. 0.) BOXB = B - 6.
RETURN
2 CONTINUE
BOXB = X(2) - X(1) /SQR3
RETURN
c __ CONSTRAINTS HERE
1000 CONTINUE
BOXB = —((9. = (X(l) = 3.) **2) * X(2)**3/(27. * SQR3))
RETURN
END

Problem: C~6

REAL FUNCTION FLY(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, I0TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOUT,*)" EASON & FENTON 7: FLYWHEEL DESIGN"
FLAG = ,TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2),K
1 CONTINUE
c _ CONSTRAINTS HERE
FLY = X(1)**2 * X(2) - 675.
RETURN
2 CONTINUE
FLY = (X(1) * X(3))**2/1.E7 - .419
RETURN
1000 CONTINUE
FLY = (~=.0201 * X(1)**%4 * X(2) * X(3)**2)/1,E7
RETURN
END

195

Problem: C-7

500

1000

REAL FUNCTION POST(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOUT,*)" EASON & FENTON 2: MAX SIZE POST BOX"
FLAG = .TRUE.
CONTINUE
IF(K «EQ. 0) GO TO 1000
CONTINUE
_ CONSTRAINTS HERE
C = X(1) + 2. * (X(2) + X(3))
POST = -C
IF(POST .LT. 0.) POST = C - 72.
RETURN
CONTINUE
POST = - X(1) * X(2) * X(3) * .001
RETURN
END

Problem: C-8

500

901

—

REAL FUNCTION CHEMI(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS. JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

DIMENSION Y(10),C(10)

LOGICAL FLAG

DATA FLAG/.FALSE./

DATA C/=6.089 , =17.164 , -34.054 , =-5.914 , =-24.721
1 , =14.986 , =24.1 , ~10.708-, =26.662 , =22.179/
IF(FLAG) GO TO 500

PRINT(IOUT,*)" CHEMICAL EQUILIBRIUM, HIMMELBLAU NO. 4"
FLAG = .TRUE.

CONTINUE

EVERYTIME CALCULATIONS HERE

DO 901 I = 1,6

Y(I) = X(I)

Y(8) = X(7)

Y(7) = Lo = Y(4) = 2.%Y(5) = Y(6)

Y(10) = 2. = Y(1) = 2. * Y(2) = 2. * Y(3) - Y(6)
Y(9) = (l. = Y(10) = ¥¢3) = Y(7) - Y(8))/2.

IF(K .EQ. 0) GO TO 1000

Go TO (1,2,3),K

CONTINUE
_ CONSTRAINTS HERE

CHEML = -Y(7)

IF(CHEM]l .LT. O.) CHEMl = Y(7) - 1.

RETURN

CONTINUE

196

CHEM]1 = - Y(10)
IF(CHEM]l .LT. O.) CHEM1 = Y(10) - 1.
RETURN
3 CONTINUE
CHEM1 = -Y(9)
IF(CHEM! .LT. 0.) CHEMl = Y(9) - .5
RETURN
1000 CONTINUE
SiM = Q.
DO 20T = 1,10
20 SOM = SUM + Y(I)
F =0.
DO 301 = 1,10
IF(Y(1) .LT. l.E-9) GO TO 30
F=F+Y(I) * (C(I) + ALOG(Y(I) / StM))
30 CONTINUE
CHEM] = F
RETURN
END

Problem: C-9

REAL FUNCTION COL1(X,K)
COMMON/PRINT/IBRKT,IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

DIMENSION E(5) , €(5,5) , D(3) , A(10,5) , B(l0)
LOGICAL FLAG

DATA FLAG/.FALSE./

IF(FLAG) GO TO 500

DATA E/~15. , =27. , =36. , -18. , =12./

DATA (C(1,J),J=1,5)/30. , =20. , =-10. , 32. , =10./
DATA (C(2,J),J=1,5)/=20., 39. , -6. , =31., 32./
DATA (C(3,J),J=1,5)/=10., =6. , 10. , =6. , ~10./
DATA (C(4,J),J=1,5)/32. , =31. , =6. , 39. , =20./
DATA (C(5,J),J=1,5)/=-10., 32. , -10. ,-20. , 30./
DATA D/4. , 8. , 10. , 6. , 2./

DATA (A(1,J),J=1,5)/-16. , 2., 0., l., 0./
DATA (A(2,J),J=1,5)/ 0. , =2., 0., 4, 2./
DATA (A(3,J),J=1,5)/-3.5, 0., 2., 0., 0./
DATA (A(4,J),J=1,5)/ 0. , =2., 0., =4. , =l./
DATA (A(5,J),Jd=1,5)/ O« , =9. , =2. , l. , =2.8/
DATA (A(6,J),J=1,5)/ 2., 0., =4., 0., 0./

DATA (A(7,J),Jd=1,5)/=1. , =l. , =l. , =l., =l./
DATA (A(8,J),J=1,5)/=1. , =2+ , =3. , =2. , =l./
DATA (A(9,J),J=1,5)/1. , 2., 3., 4., 5./
DATA (A(10,J),J=1,5)/1. , 1., 1o, lo, 1./
DATA B/=40. , =2. , =225 , =be , =~bu , =l. ,

1 -40. , -60. , 5. , 1./

PRINT (IOUT,*)" COLVILLE 1"

FLAG = .TRUE.

197

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

1 CONTINUE
c __ CONSTRAINTS HERE
cl = 0.

DO 110 J = 1,5

Cl = Cl + A(K,J)*X(J)
110 CONTINUE

COL1 = B(K) - Cl

RETURN
1000 CONTINUE

Fl = 0.

F2 = 0.

F3 = 0.

DO 250 J = 1,5

Fl = F1 + E(J) * X(J)

F3 = F3 + D(J) * X(J)**3

DO 220 I = 1,5

F2 = F2 + C(I,J) * X(J) * X(I)
220 CONTINUE
250 CONTINUE

COLl = F1 + F2 + F3

RETURN

END

Problem: C-10

REAL FUNCTION COL3(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, I0TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" COLVILLE 3"
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
Go To (1,2,3),K
CONTINUE
C __ CONSTRAINTS HERE
C = 85.334407 + .0056858% X(2)*X(5) + .0006262% X(1)*X(4)
1 - .0022053 * X(3)*X(5)
COL3 = =C
1F(COL3 .LT. 0.) COL3 = C=92.
RETURN
2 CONTINUE
C = 80.51249 + .0071317 * X(2) * X(5) + .0029955 * X(1) * X(2)
1 + .0021813 % X(3)#**2
COL3 = -(C - 90.)
IF(COL3 .LT. 0.) COL3 = C=110.

—

198

RETURN
3 CONTINUE
C = 9.300961 + .0047026 * X(3) * X(3) + .0012547 * X(1) * X(3)
1 + .0019085 * X(3) * X(4)
COL3 = -(C-20.)
IF(COL3 .LT. 0.) COL3 = C=25.
RETURN
1000 CONTINUE
COL3 = 5.3578547 * X(3)**2 + .8356891 * X(1)*X(5)
1 + 37.293239 * X(1) - 40792.141
RETURN
END

Problem: C-11

REAL FUNCTION COL5(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
DIMENSION W(6)
LOGICAL FLAG
DATA FLAG/.FALSE./
DATA W/4*1. , 2% 100./
IF(FLAG) GO TO 500
PRINT (IOUT,*)" COLVILLE 5"
FLAG = .TRUE.
<00 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4),K
CONTINUE
__ CONSTRAINTS HERE
CAPT1 = (.0285*% X(1) + 300.) / (.1425E-3 * X(1) + l.)
Tl = 500. - CAPT1
T3 = FCALL(T1 , 350. , .915 , .936E-4 , X(3))
COL5 = =(T3 = 300.)
RETURN
2 CONTINUE
T2 = FCALL(200. , 300. , 1.5, .333E=3, X(2))
T4 = PCALL(T2 , 350. , .8 , l.25E=3 , X(4))
COL5 = =(T4 - 300.)
RETURN
3 CONTINUE
CAPT1 = (.0285*% X(1) + 300.) / (.1425E=3 * X(1) + 1.)
CAPT2 = FCAPH(200. , 300. , 1.5 , .333E=3 , X(2))
CAPTJ]l = .7*CAPTIl + .3 * CAPT2
CAPT6 = FCAPH(80. , CAPTJl , 0. , 3.E=4 , X(6))
COL5 = CAPT6 - 250.
RETURN
4 CONTINUE
CAPT1 = (.0285% X(1) + 300.) / (.1425E=3 * X(1) + 1l.)
Tl = 500. - CAPTI

[

199

T2 = FCALL(200. , 300. , 1.5, .333E-3 , X(2))
CAPT4 = FCAPH(T2 , 350. , .8 , 1.25E~3 , X(4))
CAPT3 = FCAPH(TLl , 350. , .915 , .936E-4 , X(3))
CAPTJ2 = .8 * CAPT3 + .2 * CAPT4
CAPTS> = FCAPH(80. , CAPTJ2 , 0. , 3.75E~4 , X(5))
COL5 = CAPT5 - 280.
RETURN
1000 CONTINUE
F=0.
DO 40 I = 1,6
zZ =0.
IF(X(I) .LT. 0.) GO TO 35
Y = X(1)/2000.
Z = FLOAT(IFIX(Y))
1IF(Z .EQ. ¥) GO TO 35
Z = 2+1
35 CONTINUE
F=F + (2.7 * X(I) + 1300. * 2) * W(I)
40 CONTINUE
COLS = F
RETURN
END

Problem: C-12

REAL FUNCTION COL8(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, I0UT, I0TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" COLVILLE 8 PROCESS OP™."
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
Go TO (1,2,3,4,5,6,7),K
CONTINUE
c _ CONSTRAINTS HERE
Y2 = 1.6 * X(1)
110 Y3 = 1.22 * Y2 - X(1)
Y6 = (X(2) + Y3) / X(1)
Y2CALC = X(1) * (112, + 13.167 * Y6 - .6667 * Y6**x2) * .0l
IF(ABS(Y2CALC - Y2) ~ .001) 130,130,120
120 Y2 = Y2CALC
GO To 110
130 CONTINUE
COL8 = - Y2
IF(COL8 .LT. 0.) COL8 = Y2 - 5000.
RETURN
2 CONTINUE

—

200

COL8 = -Y3
IF(COL8 .LT. 0.) COL8 = Y3 = 2000.
RETURN

3 CONTINUE
Y4 = 93.

1100 Y5 = 86.35 + 1.098 * Y6 - .038 * Y6**2 + ,325 * (Y4 - 89.)
Y8 = =133, + 3. * Y5
Y7 = 35.82 - .222 * Y8
Y4CALC = 98000. * X(3) / (Y2 * Y7 + X(3) * 1000.)
IF(ABS(Y4CALC - Y4) - .0001) 1300,1300,1200

1200 Y4 = Y4CALC
GO TO 1100

1300 CONTINUE
COL8 = 85. -~ Y4
IF(COL8 .LT. 0.) COL8 = Y4 - 93.
RETURN

4 CONTINUE
COL8 = 90. -~ Y5
IF(COL8 .LT. 0.) COLS8
RETURN

5 CONTINUE
COL8 = 3. - Y6
IF(COL8 .LT. 0.) COL8
RETURN

6 CONTINUE
COL8 = .0l - Y7
IF(COL8 .LT. O.) COLS
RETURN

7 CONTINUE
COL8 = 145. - Y8
IF(COL8 .LT. 0.) COL8
RETURN

1000 CONTINUE
COL8 = -(.063 * Y2 * ¥5 - 5.04 * X(1) = 3.36 * Y3 -
1 .035 * X(2) - 10. * X(3))
RETURN
END

Y5 - 95.

Y6 - 12.

Y7"40

YS - 162.

Problem: C~13

REAL FUNCTION FAM2(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, LIN, IOUT, I0TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" FAMILI BRIDGE DESIGN"
FLAG = ,TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000

201

GO TO (1,2,3,4,5,6,7),K
1 CONTINUE
FAM2 = ,0435 = X(2) / X(1)
RETURN
CONTINUE
FAM2 = .00667 - X(4) / X(3)
RETURN
C _ CONSTRAINTS HERE
3 CONTINUE
FAM2 = 555.678 * X(2) + 277.84 * X(3) = 2.5 *
1 X(1) * X(2)**%3 = ,5 % X(1) * X(2) * X(3)#*2 -
2 X(1) * X(2)**2 * X(3) - .0833 * X(3)**3 * X(4)
RETURN
A CONT INUE
FAM2 = 7615.6 = 0833 * X(3)%*3 * X(4) = 2.5 * X(l) *
1 X(2)**3 = .5 % X(1) * X(2) * X(3)**2 -
2 X(l) * X(2)**2 * X(3)
RETURN
5 CONTINUE
FAM2 = 395.92 * X(2) + 197.96 * X(3) = .5 * X(1) *
1 X(2) * X(3)*%2 = 2.5 *® X(1) * X(2)**3 ~ X(1) *
2 X(2)**2 * X(3) - .0833 * X(3)*%3 * X(4)
RETURN
6 CONTINUE
FAM2 = .0833 * X(5)**2 + .0000283 * X(1)**2 + .78 - X(5) -
1 .00948 * X(1)
RETURN
7 CONTINUE
FAM2 = ,0222 * X(2) + .Olll * X(3) - 1.
RETURN
1000 CONTINUE
FAM2 = 2448, * X(1) * X(2) + 1224. * X(3) * X(4) +
1 7344. * X(5)
RETURN
END

[25]

Problem: C-14

REAL FUNCTION RAC(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOUT,*)" RAC TP 302, HIMMELBALU NO. 16"
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
Go 10 (1,2,3,4,5,6,7,8,9,10,11,12,13),K
1 CONTINUE

202

c _ CONSTRAINTS HERE
RAC = X(3)**2 + X(4)**2 = 1,
RETURN

2 CONTINUE
RAC = X(9)**2 -~ 1.
RETURN

3 CONTINUE
RAC = X(5)%%2 + X(6)%%2 - 1,
RETURN

4 CONTINUE
RAC = X(1)**2 + (X(2) = X(9))**2 < 1.
RETURN

5 CONTINUE
RAC = (X(1) = X(5))**2 + (X(2)
RETURN

6 CONTINUE
RAC = (X(1) = X(7))**2 + (X(2)
RETURN

7 CONTINUE
RAC = (X(3)
RETURN

8 CONTINUE
RAC = (X(3)
RETURN

9 CONTINUE
RAC = X(7)%*%2 + (X(8) = X(9))**2 -~ 1.
RETURN

10 CONTINUE
RAC = X(2) * X(3) ~ X(1) * X(4)
RETURN

11 CONTINUE
RAC = -X(3) * X(9)
RETURN

12 CONTINUE
RAC = X(5) * X(9)
RETURN

13 CONTINUE
RAC = X(6) * X(7) = X(5) * X(8)
RETURN

1000 CONTINUE
RAC = =.5 % (X(1)*X(4) = X(2)*X(3) + X(3)*X(9) - X(5)*X(9)
1 + X(5)*X(8) = X(6)*X(7))
RETURN
END

]
—
.

X(6))%**2

X(8))#*2

|
—
.

X(6))%**2

]
-
.

X(5))**2 + (X(4)

]
—
.

X(7))%*2 + (X(4)

X(8))**2

Problem: C=~15

REAL FUNCTION RP(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, 1IN, IOUT, 10TT

DIMENSION X(20)

500

Q-

1000

203

LOGICAL FLAG

DATA FLAG/.FALSE./

IF(FLAG) GO TO 500

PRINT (IQUT,*)" RAGSDELL AND PHILLIPS, OPT WELD STRUCT"
CAPF = 6000.

CAPL = 14,

CAPE = 30.E6

CAPG = 12.E6

FLAG = .TRUE.

ONE TIME CALCULATIONS HERE

CONTINUE

X3 = X(1)

X4 = X(2)

X1l = X(3)

X2 = X(4)

IF(K .EQ. 0) GO TO 1000

GO T0 (1,2,3,4,5),K

CONTINUE
__ CONSTRAINTS HERE

SIGMA = (6. * CAPF * CAPL) / (X4 * X3 * X3)

RP = SIGMA - 30000.

RETURN

CONTINUE

CAPI = (X3 * X4 *%*3) / 12,

ALPHA = (CAPG * X3 * X4%%3) / 3,

PC = (4.013 * SQRT(CAPE*CAPI*ALPHA))/(CAPL*CAPL)

PC = PC*(l. - X3/(2.*CAPL) * SQRT(CAPE*CAPI/ALPHA))

RP = CAPF = PC

RETURN

CONTINUE

RP = X1 - X4

RETURN

CONTINUE

DEL = (4. * CAPF * CAPL**3)/(CAPE*X3%**3 * X4)

RP = DEL - .25

RETURN

CONTINUE

CAPM = CAPF * (CAPL + X2 / 2.)

CAPR = SQRT ((X2 * X2) / 4o + ((X3 + X1) / 2. Y*%2)
CAPJ = 2.%(.707*X1*X2*((X24X2/12.) + ((X3 + X1)/2.) **2))
TAUP = CAPF / (SQRT(2.) * X1 * X2)

TAUPP = CAPM * CAPR / CAPJ

TAU = SQRT (TAUP*TAUP+2.* TAUP*TAUPP*(X2/(2.*CAPR))+TAUPP*TAUPP)
RP = TAU - 13600.31

RETURN

CONTINUE

RP = 1.10471 * X1*X1*X2 + .6735%X3*%X4 + 04811 * X2*X3*X4
RETURN

END

204

Problem: C-16

REAL FUNCTION STEEL(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT(IOUT,*)" US STEEL, HIMMELBLAU NO. 22"
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
G0 1O (1,2,3,4),K
CONTINUE
C __ CONSTRAINTS HERE
STEEL = 32.97 = 17.1 * X(1) ~ 38.2 * X(2) - 204.2 * X(3) -
1 212.3 * X(4) ~ 623.4 * X(5) - 1495.5 * X(6) +
2 169. * X(1) * X(3) + 3580. * X(3) * X(5) +3810. * X(4) *
3 X(5) + 18500. * X(4) * X(6) + 24300.* X(5) * X(6)
RETURN
2 CONTINUE
STEEL = 25.12 - 17.9 * X(1) - 36.8 * X(2) - 113.9 * X(3) -
1 169.7 * X(4) - 337.8 * X(5) - 1385.2 * X(6) + 139. * X(l) *
2 X(3) + 2450. * X(4) * X(5) + 16600.*% X(4) * X(6) +
3 17200. * X(5) * X(6)
RETURN
3 CONTINUE
STEEL = =124.08 + 273.% X(2) + 70. * X(4) + 819.* X(5) -
1 26000.* X(4) * X(5)
RETURN
4 CONTINUE
STEEL = -173.02 = 159.9 * X(1) + 31l. * X(2) - 587.* X(4) -
1 391.* X(5) - 2198.* X(6) + 14000.* X(1) * X(6)
RETURN
1000 CONTINUE
STEEL = 4.3 * X(1) + 31.8 * X(2) + 63.3 * X(3) + 15.8 * X(4) +
1 68.5 * X(5) + 4.7 * X(6)
RETURN
END

—

Problem: C-=17

REAL FUNCTION CH3(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, LIN, IOUT, IOTT
DIMENSION X(20)

DIMENSION A(77)

LOGICAL FLAG

DATA A/ <2, .31, ob , 44 , .6
1 1., 1.2, 1.26, 1.32, 1.4 ,
2 1.8, 1.86 , 2. , 2.17 , 2.2,

, 62, .79, .8, .88 , .93,
1.55 , 1.58 , 1.6 , 1.76 ,
2.37 , 2.4, 2.48 , 2.6 ,

205

2.64 , 2.79 , 2.8
3.52, 3.6 , 3.72

, 3., 3.08, 3.1, 3.16 , 3.41 ,
, 3.95, 3.96 , 4. , 4.03 , 4.2,
4.34 , 4.4 , 4.65 , 4.74 , 4.8 , 4.84 , 5. , 5.28 ,
5.4 , 5.53 , 5.72, 6. , 6.16 , 6.32 , 6.6 , 7. , 7.11 ,
7.2, 7.8, 7.9, 8. , 8.4, 8.69, 9. , 9.48 , 10.27 ,
11. , 11.06 , 11.85, 12. , 13. , l4. , 15. /
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" CH3 REINFORCED CONCRETE BEAM"
FLAG = .TRUE.
500 CONTINUE
X1 = A(IFIX(X(1l) + .1))
X2 = X(2) / 2.
IF(K .EQ. 0) GO TO 1000

W~ O W& W

1 CONTINUE

C _ CONSTRAINTS HERE
CH3 = =(X1 = .2458 * X1**2 / X2 = 6.)
RETURN

1000 CONTINUE
CH3 = 29.4 * X1 + 18. * X2
RETURN
END

Problem: C-18

REAL FUNCTION CH3B(X,K)

COMMON/PRINT/IBRKT, LPOW, IMS, JMSP, IIN, IOUT, IOTT

DIMENSION X(20)

DIMENSION A(77)

LOGICAL FLAG

DATA A/ «2 , 31 , «b , 44 , .6, «62 , .79 , .8, .88 , .93,
1. , 1.2, 1.24 , 1.32, 1.4, 1.55, 1.58 , 1.6 , 1.76 ,
1.8 , 1.86 , 2. , 2.17 , 2.2, 2.37 , 2.4 , 2.48 , 2.6 ,
2.64 , 2,79 , 2.8 , 3., 3.08, 3.1, 3.16 , 3.41 ,
3.52, 3.6, 3.72, 3.95, 3.96 , 4. , 4.03 , 4.2 ,
4036 , 4.b , 4,65 , 4,74 , 4.8 , 4.84 , 5. , 5.28 ,
5.4 , 5.53, 5.72, 6. , 6.16 , 6.32 , 6.6 , 7. , 7.11 ,
7.2, 7.8, 7.9, 8., 8.4, 8.69 , 9. , 9.48 , 10.27 ,
11. , 11.06 , 11.85 , 12. , 13. , l4. , 15. /

DATA FLAG/.FALSE./

IF(FLAG) GO TO 500

PRINT (IOUT,*)" CH3B REINFORCED CONCRETE BEAM"

FLAG = .TRUE.

500 CONTINUE

X1 = A(IFIX(X(1) + .1))

X2 = X(2) / 2.

IF(K .EQ. 0) GO TO 1000

CONTINUE

C _ CONSTRAINTS HERE

CHIB = =(X1 = .2458 * X1**2 / X2 = 6.)

W~ XS -

—

1000

RETURN

CONTINUE

CH3B = 44.4 * X1 + 18. * X2
RETURN

END

Problem: C-19

500

1000

REAL FUNCTION GM1(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
DIMENSION DH(4)
LOGICAL FLAG
DATA FLAG/.FALSE./
DATA DH/15. , 25. , 40. , 60./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" HATCH COVER"
FLAG = ,TRUE.
CONTINUE
TF = X(1)/10.
H = DH(IFIX(X(2) + .1))
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4),K
CONTINUE
GM1 = 1800./H - 450.
RETURN
CONTINUE
GM1 = 4500./ (TF * H) - 700.
RETURN
CONTINUE
GM1 = 4500./(TF * H) - 700. * TF**2
RETURN
CONTINUE
GMl = 5.62 / (7. * TF * H **2) -~ ,0025
RETURN
CONTINUE
GMLl = H + 120. * TF
RETURN
END

Problem: C-20

REAL FUNCTION STEAM(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

DIMENSION DT(6) , WT(6) , GMUT(23)

LOGICAL FLAG

DATA FLAG/.FALSE./

206

500

—

IF(FLAG) GO TO 500
DATA GMUT/3.73 , 3.17 , 2.71, 2.36 , 2.08 ,

207

1.85, 1.66

1 1.49, 1.36 , 1.24 , 1l.14 , 1.04 , .97 , .9, .84,

2 .78 , .738 , .695 , .654 , .618 , .585 ,
DATA DT/.625 , .75, 1. , 1.25 , 1.5, 2./
DATA WT/ .134 , .109 , .083 , .065 , .049 ,
PRINT (IOUT,*)" STEAM CONDENSER"

SPA = 2.
SP = SPA - l4.7
TSAT = 126,08

HFG = 1022.2

TWI = 70.
M = 5380

PI = 3.14159

RSK = 160.

RF = .001

HO = 2290.

FLAG = .TRUE.

CONTINUE
D = DT(IFIX(X(1l) + .1))
W= WI(IFIX(X(2) + .1))
L = X(3)*4.

N = X(4)

SN = X(5)

SW = X(6)

SW = X(6)
RI = (D/2. - W) / 12.
SWP = SW * 62.4 * 60. / 7.48
DELT = (HFG * M) /SWP
RO = D/24.

IF(K .EQ. 0) GO TO 1000
Go TO (1,2,3,4,5),K
CONTINUE

_ CONSTRAINTS HERE
STEAM = 2,*%W = D
RETURN
CONTINUE
TWO = TWI + DELT
STEAM = TWO - TSAT
RETURN
CONTINUE
Ve SW / (7.481 * 60. * PI * RI*k*2 * SN)
TBAR = TWI + DELT/2.

Kl = (TBAR/10.) - 3

K2 =K1l + 1

R = TBAR/10. = (3. + FLOAT(K1))

GMU = GMUT(K1) + R * (GMUT(K2)- GMUT(K1))
RE = 300. * 62.4 * 2, * RI * V / GMU
STEAM = 3000. - RE

RETURN

CONTINUE

V =5SW / (7.481 * 60. * PI * RI**2 * SN)

.555 , .528/

.035/

208

TBAR = TWI + DELT/2.
Kl = (TBAR/10.) - 3
K2 = K1 + 1
R = TBAR/10. = (3. + FLOAT(X1))
GMU = GMUT(K1) + R * (GMUT(K2)~- GMUT(K1))
RE = 300. * $2.4 * 2, * RI * V / GMU
TWO = TWI + DELT
TBAR = TWI + DELT/2.
DELTMX = TSAT - TWI
DELTMN = TSAT - TWO
IF(DELTMN .LE. l.) DELIMN = 1.
THMIN = (DELTMX - DELTMN)/ALOG(DELTMX/DELTMN)
A0 = PI #D *#L SN *N / 12,
HI = (150. * (1. + .OLI*TBAR) * VA*,8)/(24. * RI)**,2
U= 1./((RO/RI)*1./HI + RF) + ((RO/RSK) * ALOG(RO/RI))
1 + l./HO
Q0 = U * A0 * THMIN
STEAM = (HFG * M) - Q0
RETURN
5 CONTINUE
TBAR = TWI + DELT/2.
Kl = (TBAR/10.) - 3
K2 = K1 +1
R = TBAR/10. - (3. + FLOAT(X1))
GMU = GMUT (K1) + R * (GMUT(K2)- GMUT(K1))
RE = 300. * 62.4 * 2, * RI * V / GMU
V=SW/ (7.481 * 60, * PI * RI**2 * SN)
SF = .0014 + .125 / RE**,32
DELP = (SF * V%*2 * L) / (32,2 * RI)
DELPE = V**2 / 64.4
DELPC = V**2 / 128.8
H =(DELP + DELPE + DELPC) * N
F = 62.4 *H / 144, - SP
WM = (F*D) / (8000. + .8%*F)
STEAM = WM - W
RETURN
1000 CONTINUE
DS = SQRT(3. * D**2 * SN * N / 144.)
TS = (ABS(SP) * DS) / 32.E3 + .0104
TE = (ABS(SP) * DS) / 64.E3 + .0104
WS = (PIADS * L * TS + PI * DS**2 * TE) * 489,
CS = 1.1 * ws
CT = 1.5 * L * PT * SN * N # (D**2 ~ (D ~ 2*W)*%2) * 322 / 4,
HP = .19 + .00045 * SW * H
CPM = 820. * HP **,467
STEAM = CS + CT + CPM
RETURN
END

209
Problem: C-21

REAL FUNCTION CHI(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOUT,*) "CHl, TIMBER FRAME"
FLAG = .TRUE.
500 CONTINUE
IF(X .EQ. 0) GO TO 1000
X12 = X(1) **2
X22 = X(2) **2
X23 = X22 * X(2)
X13 = X12 * X(1)
XXX = X23 / X13
Fl = 5832. / (l12. + 5.33 * XXX)
F2 = 4.5 / ((8. + 3.56 * XXX) * X(2))
GO TO (1,2,3),K
1 CONTINUE
C CONSTRAINTS HERE
CH1 = =(1.8 -~ 2.25/X(1) - F1/X12)
RETURN
2 CONTINUE
CHl = -(1.8 = F2 - F1.X22)
RETURN
3 CONTINUE
CHl = -(1.8 - F2 - (729. - F1)/X22)
RETURN
1000 CONTINUE
CHL = 1152. * X(1) + 864. * X(2)
RETURN
END

210

Problem: U-1

REAL FUNCTION AGL(X,K)
COMMON/PRINT/IBRKT,IPOW, IMS, JMSP, 1IN, I0UT, I0TT
DIMENSION X(20)

LOGICAL FLAG
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT (IOUT,*)"AG 1, KUESTER & MIZE"
FLAG = .TRUE.
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE
AGl = -(3803.84 + 138 * X(1) + 239.92 * X(2) ~ 123.08 * X(1)**2 -
1 203.64 * X(2)*%*2 - 182.25 * X(1) * X(2))
RETURN
END

Problem: U=2

REAL FUNCTION AG2(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)"AG 2, HIMMELBLAU 28"
FLAG = .TRUE.
500 CONTINUE
IF(X .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE
AG2 = (X(L)*%*2 + X(2) = 1ll.)*%2 + (X(1) + X(2)*%2 —~ 7,)%%2
RETURN
END

Problem: U-3

REAL FUNCTION AG3(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" AG3, AG2 SCALED"
FLAG = .TRUE.
500 CONTINUE

1000

IF(K .EQ. 0) GO TO 1000

CONTINUE

CONTINUE

AG3 = (9. * X(1)**2 + 2, * X(2) - ll.)**2 +
(3. % X(1) + 4. * X(2)**x2 = 7,)**2

RETURN

END

Problem: U-4

500

1000

500

1000

REAL FUNCTION AG4(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, I0TT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

IF(FLAG) GO TO 500

PRINT(IOUT,*)"AG 4, HIMMELBLAU 19, ROSENBROCKS"
FLAG = .TRUE.

CONTINUE

IF(K .EQ. 0) GO TO 1000

CONTINUE

CONTINUE

AG4 = 100. * (X(2) = X(L)**2)**2 + (1. ~ X(1))**2

RETURN
END

Problem: U-5

REAL FUNCTION AGS5(X,K)

COMMON /PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

IF(FLAG) GO TO 500

PRINT (IOUT,*)" GLANKWAHMDEE NO. 5, HIMMELBLAU NO.

FLAG = .TRUE.
CONTINUE

IF(X .EQ. 0) GO TO 1000

CONTINUE

CONTINUE

F1 = (X(1) = 2.)%%2 + (X(2) - l.)**2

Gl = X(1)**2/(=4.) = X(2)**2 + 1.
IF(ABS(Gl) .LT. l.E=6) Gl = SIGN(l.E-6,Gl)

HI = X(1) - 2. * X(2) + 1.

AG5 = Fl + .04/Gl + Hl**2/.2

RETURN

END

211

31"

I 212

Problem: U=6

REAL FUNCTION AG6(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, 1IN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IQUT,*)"AG # 6, HIMMELBLAU #26"
FLAG = .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

1 CONTINUE

1000 CONTINUE
AGE=(X(1) + 10.%X(2))**2 + 5.%(X(3) = X(4))**2
AGH = AGH + (X(2) =~ 2.*X(3))**4 + 10.%(X(1) = X(4))**4
RETURN
END

Problem: U-~7

REAL FUNCTION AG7(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, 1IN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

IF (FLAG) GO TO 500

PRINT (IOUT,*)" AG 7"

FLAG = .TRUE.

c ONE TIME CALCULATIONS HERE

500 CONTINUE

C EVERYTIME CALCULATIONS HERE
IF(K .EQ. 0) GO TO 1000

1 CONTINUE

1000 CONTINUE
AG7 = 100. * (X(2) = X(l)**2)%**2 4+ (1, = X(1))**2 +
1 90. * (X(4) = X(3)**2)**2 + (1. = X(3))**2 +
2 10.1 % ((X(2) = Ll.)%%2 4+ (X(4) = 1.)%**2) +
3 19.8 * (X(2) = 1l.) * (X(4) - L.)
RETURN
END

Problem: U-8

REAL FUNCTION AG8(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT

20

DIMENSION X(20)

DIMENSION C(5),D(5,5),W(5)
LOGICAL FLAG

DATA FLAG/.FALSE./

DATA C/-15. , =27. , =36. , -18. , =12./
DATA (D(1,I),I=1,5)/35. , =-20.

DATA (D(2,1),I=1,5)/-20, , 40. , -6. , -31. , 32./
DATA (D(3,1),I=1,5)/-10. , ~6. , 1ll. , =6. , -10./
DATA (D(4,1),I=1,5)/32. , =-31. , -6. , 38. , =20./
DATA(D(5,1),I=1,5)/-10. , 32. , -10. , -20. , 31l./

IF(FLAG) GO TO 500
PRINT(IOUT,*)" GLANKWAHMDEE NO. 8"
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE
CONTINUE
EVERYTIME CALCULATIONS HERE
IF(K .EQ. 0) GO TO 1000
CONTINUE
CONTINUE
DO I0 I = 1,5
W(I) = 0.
DO 5J =1,5
W(I) = W(I) + D(I,J) * X(J)
CONTINUE
CONTINUE
F = 0.
DO 201 = 1,5
F=TF+ (C(I) +W(I)) * X(I)
CONTINUE
AG8 = F
RETURN
END

Problem: U-9

REAL FUNCTION AMMO (X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" STOECKER: AMMONIA STORAGE TANK"
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE
CONTINUE
EVERYTIME CALCULATIONS HERE
IF(K .EQ. 0) GO TO 1000
CONTINUE
CONTINUE
AMMO = 400. * X(1)#*,9 4+ 1000. +

-10. , 32. , -10./

213

214

1 22. * (EXP((~3950. / (X(2)+460.)) + 11.86)=-14.,7) **1,2
1 4+ 144. * (80. = X(2)) / X(1)

RETURN

END

Problem: U-10

REAL FUNCTION DUCTI1(X,K)
COMMON/PRINT/IBRKT,IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (IOUT,*)" DUCT LAYOUT "
FLAG = .TRUE.
C ONE TIME CALCULATIONS HERE

R12 =
R23 =
R36 =
R34 =
R27 =
R78 =

30.
20.
65.
25,
20.
20,

R710 = 35.
RO = 2.
F = .017
ETA = .8
Q12 = 6500.
Q23 = 3000.
Q27 = 3500.
Q36 = 2000.
Q34 = 1000.
Q78 = 2000.
Q710 = 1500.
500 CONTINUE
c EVERYTIME CALCULATIONS HERE
X12 = X(1) / 12.
X23 = X(2) / 12.
X27 = X(3) / 12.
IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE
DUCTL = 1.E9
c UPSTREAM PRESSURE AT 2
RD12= RDUCT(RO,F,R12,X12)
PU2 = .85 - RD12%(Q12/4000.)%%2
c BRANCH AND DOWNSTREAM PRESSURES AT 2
BLAM2 = BLAM(Q23,Q12,X23,X12)
RB2 = RUTOB1(RO,BLAM2,Q23,Q12,X23,X12)
PB2 = PU2 - RB2*(Q23/4000.)**2
RD2= RUTOD (ETA,RO0,Q27,Ql2,X27,X12)

215

PD2 = PU2 - RD2*(Q27/4000.)%%2
C UPSTREAM PRESSURE AT 3
RD23= RDUCT(RO,F,R23,X23)
PU3 = PB2 ~ RD23*%(Q23/4000.)**2
C UPSTREAM PRESSURE AT 7
RD27= RDUCT(RO,F,R27,X27)
PU7 = PD2 ~ RD27*(Q27/4000.)**2
c DETERMINE SMALLEST ACCEPTABLE SIZES FOR REMAINING FITTINGS
c OUTLET 6
DO 1010 ID = 6,24
X36 = FLOAT(ID) / 12.
RD3 = RUTOD(ETA,R0,Q36,Q23,X36,X23)
PD3 = PU3 ~ RD3I*(Q36/4000.)**2
EL = 12.19*X36 + R36
RD36= RDUCT(RO,F,EL,X36)
P6 = PD3 - RD36*(Q36/4000.)**2
IF(P6 .GE. .1) GO TO 1020
1010 CONTINUE
C INSUFFICIENT DUCT SIZE
DUCT! = DUCT1- P6
1020 DO 1030 ID = 6,24
X34 = FLOAT(ID) / 12.
BLAM3 = BLAM(Q34,Q23,X34,X23)
RB3 = RUTOB1(RO,BLAM3,Q34,Q23,X34,X%23)
PB3 = PU3 - RB3*(Q34/4000.)**2
RD34= RDUCT(RO,F,R34,X34)
P4 = PB3 ~ RD34%(Q34/4000.)%*2
IF(P4 .GE. .1) GO TO 1040
1030 CONTINUE
DUCT1 = DUCTl- P4
1040 DO 1050 ID = 6,24
X78 = FLOAT(ID) / 12.
RD7 = RUTOD(ETA,R0,Q78,Q27,X78,X27)
PD7 = PU7 - RD7#(Q78/4000.)#%%2
RD78= RDUCT(RO,F,R78,X78)
P8 = PD7 - RD78%(Q78/4000.)**2
IF(P8 .GE. .l1) GO TO 1060
1050 CONTINUE
DUCT1 = DUCT1- P8
1060 DO 1070 ID = 6,24
X710 = FLOAT(ID) / 12.
BLAM7 = BLAM(Q710,Q27,X710,X27)
RB7 = RUTOB1(RO,BLAM7,Q710,Q27,X710,X27)
PB7 = PU7 = RB7*(Q710/4000,)%%*2
EL = 12.19 * X710 + R710
RD710= RDUCT(RO,F,EL,X710)
P10 = PB7 ~ RD710%(Q710/4000,)**2
IF(P10 .GE. .1) GO TO 1080
1070 CONTINUE
DUCT1 = DUCTl~ P10
1080 CONTINUE
X(4) = X36 * 12,

216

X(5) = X34 * 12,

X(6) = X78 * 12,

X(7) = X710 * 12.

IF(DUCT] .NE. 1.E9) RETURN

DUCT! = COST(X12,R12) + COST(X23,R23) + COST(X36,R36) +
1 COST(X34,R34) + COST(X27,R27) + COST(X78,R78) +

2 COST(X710,R710)

RETURN

END

REAL FUNCTION COST(X,L)
REAL L

DATA PI/3.14159/
F=1.2*% ,906

IF(X .GT. 1.125) F = 1.2 * 1.156
IF(X .GT. 1.875) F = 1.2 * 1.406
IF{X .GT. 3.04) F = 1.2 * 1.656
IF(X .GT. 4.21) F = 1.2 * 2,156
IF(X «GT. 5.04) F = 1.2 * 2,656
F=F%*1.35

COST = PL * X *# L * F

RETURN

END

REAL FUNCTION BLAM(QB,QU,DB,DU)

BLAM = .51*(VEL(QB,DB)/VEL(QU,DU))**2 + 1,
RETURN

END

REAL FUNCTION VEL(Q,D)
VEL = Q/AF(D)

RETURN

END

FUNCTION RDUCT(RO,F,L,D)

RESISTANCE FOR STRAIGHT DUCT ELEMENT
RO=AIR DENSITY, KG/M**3

F=FRICTION FACTOR

L=LENGTH OF DUCT,M

DIAMETER OF DUCT,M

e A e R e e e e sk e vk g ok o o s e e e e de gk e e oo e e e Ak ke ek ke ok

THIS AND THE FOLLOWING FUNCTIONS CALCULATE THE RESISTANCE
TERM FOR DUCT ELEMENTS WHICH CORRESPONDS TO THE EQUATION:

P1-P2= R*Q**2

WHERE Pl AND P2 ARE THE STATIC PRESSURES AT ! AND 2,
AND Q IS THE VOLUME FLOW RATE.

OOO0O00O0O000000000000A0Nn

217
C THE FUNCTIONS ARE SET UP FOR THE SI UNIT SYSTEM
C WITH Q IN M*%*3/S D IN M, P IN PASCALS,AND RO IN KG/M**3 1
c
C
C TO USE IN THE ENGLISH SYSTEM, CALL THE FUNCTIONS
c WITH (Q/4000) HAVING Q IN CUBIC FT PER MIN, RO=RO/RO(STD)
c WHERE RO(STD) IS THE DENSITY AT 60 F (.075 LBM/CU FT),
C P IN INCHES OF WATER COLUMN, AND D IN FEET
C************************************** *R
C
c
REAL L
A=AF (D)
RDUCT=RO*F*L/ (2.*D*A%*2)
RETURN
END
FUNCTION RUTOB1(RO,CU,QB,QU,DB,DU)
C
C UPSTREAM TO BRANCH RESISTANCE USING LOSS COEFFICIENT BASED ON
C UPSTREAM VELOCITY
c RO=AIR DENSITY KG/M**3
c CU=L0OSS COEFFICIENT
C QB & QU VOLUME FLOW IN BRANCH AND UPSTREAM, M**3/S
C DB &DU BRANCH AND UPSTREAM DIAMETERS, M
C
AB=AF(DB)
AU=AF (DU)
VBOVU=QB*AU/ (QU*AB)
VBOVUS=(VBOVU) **2
RUTOB 1=R0O/ (2. *AB**2) * (VBOVUS-1.+CU) /VBOVUS
RETURN
END
FUNCTION RUTOD(ETA,RO,QD,QU,DD,DU)
C
c UPSTREAM TO DOWNSTREAM RESISTANCE WITH REGAIN EFFICIENCY
c OF ETA.
C RO=AIR DENSITY KG/M**3
c QU &QD UPSTREAM AND DOWNSTREAM VOLUME FLOW RATES, M**3/S
C DU & DD UPSTREAM AND DOWNSTREAM DIAMETERS, M
c
AD=AF (DD)
AU=AF (DU)
VUOVD=QU*AD/ (QD*AU)
RUTOD=ETA*RO/ (2. *AD**2)* (1, -(VUOVD)**2)
RETURN
END
FUNCTION AF(D)
C
o AREA CALCULATION FOR CURCULAR DUCT OF DIAMETER D

.

PI=3.14159
AF=PLAD**2/4.
RETURN

END

Problem: U-11

500

1000

REAL FUNCTION DUCT4(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT (I0UT, *)" DUCT LAYOUT 4"
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE

R12 = 30.
R23 = 20.
R36 = 65.
R34 = 25,
R27 = 20.
R78 = 20.
R710 = 35.
RO = 2.
F = .017
ETA = .8
Ql2 = 6500.
Q23 = 3000.
Q27 = 3500.
Q36 = 2000.
Q34 = 1000.
Q78 = 2000.
Q710 = 1500.
CONTINUE

EVERYTIME CALCULATIONS HERE
X12 = X(1) / 12.
X23 = X(2) / 12,
X27 = X(3) / 12.
IF(K .EQ. 0) GO TO 1000
CONTINUE
CONTINUE
DUCT4 = 1.E9
UPSTREAM PRESSURE AT 2
RD12= RDUCT(RO,F,R12,X12)
PU2 = .258 - RDL2*(Ql12/4000.)**2
BRANCH AND DOWNSTREAM PRESSURES AT 2
BLAM2 = BLAM(Q23,Q12,X23,X12)
RB2 = RUTOB1(RO,BLAM2,Q23,Q12,X23,X12)
PB2 = PU2 - RB2*(Q23/4000.)*%2

218

219

RD2= RUTOD(ETA,R0,Q27,Q12,%X27,X12)
PD2 = PU2 - RD2%*(Q27/4000.)%*%2
Cc UPSTREAM PRESSURE AT 3
RD23= RDUCT(RO,F,R23,X23)
PU3 = PB2 - RD23*%(Q23/4000,)*%*2
c UPSTREAM PRESSURE AT 7
RD27= RDUCT(RO,F,R27,X27)
PU7 = PD2 = RD27%(Q27/4000.)*%2
DETERMINE SMALLEST ACCEPTABLE SIZES FOR REMAINING FITTINGS
OUTLET 6
DO 1010 ID = 6,35
X36 = FLOAT(ID) / l2.
RD3 = RUTOD(ETA,R0,Q36,Q23,X36,X23)
PD3 = PU3 -~ RD3*(Q36/4000.)%**%2
EL = 12.19%X36 + R36
RD36= RDUCT(RO,F,EL,X36)
P6 = PD3 - RD36%(Q36/4000.)*%*2
IF(P6 .GE. .1) GO TO 1020
1010 CONTINUE
C INSUFFICLENT DUCT SIZE
DUCT4 = DUCT4~ P6
1020 DO 1030 ID = 6,35
X34 = FLOAT(ID) / 1l2.
BLAM3 = BLAM(Q34,Q23,X34,X23)
RB3 = RUTOB1(RO,BLAM3,Q34,Q23,X34,X23)
PR3 = PU3 - RB3*%(Q34/4000.)*%*2
RD34= RDUCT(RO,F,R34,X34)
P4 = PB3 - RD34*(Q34/4000.)*%*2
1IF(P4 .GE. .1) GO TO 1040
1030 CONTINUE
DUCT4 = DUCT4- P4
1040 DO 1050 ID = 6,35
X78 = FLOAT(ID) / 12.
RD7 = RUTOD(ETA,R0,Q78,Q27,X78,X27)
PD7 = PU7 - RD7*(Q78/4000.)**2
RD78= RDUCT(RO,F,R78,X78)
P8 = PD7 -~ RD78*%(Q78/4000.)**2
IF(P8 .GE. .l) GO TO 1060
1050 CONTINUE
DUCT4 = DUCT4- P8
1060 DO 1070 ID = 6,35
X710 = FLOAT(ID) / 1l2.
BLAM7 = BLAM(Q710,Q27,X710,X27)
RB7 = RUTOB1(RO,BLAM7,Q710,Q27,X710,X27)
PB7 = PU7 = RB7*(Q710/4000.,)%**2
EL = 12,19 & X710 + R710
RD710= RDUCT(RO,F,EL,X710)
P10 = PB7 - RD710%(Q710/4000,)**2
1F(P10 .GE. .l) GO TO 1080
1070 CONTINUE
DUCT4 = DUCT4~ P10
1080 CONTINUE

Qo

220

X(4) = X36 % 12.

X(5) = X34 * 12.

X(6) = X78 * 12.

X(7) = X710 * 12,

IF(DUCT4 .NE. 1.E9) RETURN

DUCT4 = COST(X12,R12) + COST(X23,R23) + COST(X36,R36) +
1 COST(X34,R34) + COST(X27,R27) + COST(X78,R78) +

2 COST(X710,R710)

RETURN

END

See problem U~-10 for subroutines RDUCT, RUTOB1, RUTOD,
AF, COST, BLAM, and VEL.

Problem: U-12

500

1000

REAL FUNCTION DUCTY9(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, 10Uy, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" DUCT LAYQUT 9 .264 IN. H20 TOTAL FAN PRESSURE"
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE

RO = 2.
F = .017
ETA = .8
R12 = 20.
R23 = 10.
R28 = 15.
R36 = 10.
R35 = 30.
Ql2 = 2500.
Q23 = 1750.
Q28 = 750.
Q36 = 750.
Q35 = 1000.
CONTINUE

EVERYTIME CALCULATIONS HERE
X12 = X(1) / 12.
X23 = X(2) / 12.
IF(K .EQ. 0) GO TO 1000
CONTINUE
CONTINUE
DUCT9 = 1.E9
RD12 = RDUCT(RO,F,R12,X12)
PU2 = .264 ~ RD12 * (Ql2 / 4000.) *#2
RD2 = RUTOD(ETA,R0,Q23,Q12,X23,X12)
PD2 = PU2 - RD2 * (Q23 / 4000.) #*2
RD23 = RDUCT(RO,F,R23,X23)

221

PU3 = PD2 - RD23 * (Q23 / 4000,) **2
DO 1010 ID = 6,35
X28 = FLOAT(ID) / 2.
BLAM2 = BLAM(Q28,Q12,X28,X12)
RB2 = RUTOB1(RO,BLAM2,Q28,Q12,X28,%X12)
PB2 = PU2 - RB2 * (Q28 / 4000.) **2
EL = 12.19 * X28 + R28
RD28 = RDUCT(RO,F,EL,X28)
P8 = PB2 - RD28 * (Q28 / 4000.) #*2
IF(P8 .GE. .12) GO TO 1020
1010 CONTINUE
DUCT9 = DUCT9 - P8
1020 DO 1030 ID = 6,35
X36 = FLOAT(ID) / 12.
BLAM3 = BLAM(Q36,Q23,X36,X23)
RB3 = RUTOBL(RO,BLAM3,Q36,Q23,X36,X23)
PB3 = PU3 - RB3 * (Q36 / 4000.) **2
RD36 = RDUCT(RO,F,R36,X36)
P6 = PB3 = RD36 * (Q36 / 4000.) *%*2
IF(P6 .GE. .12) GO TO 1040
1030 CONTINUE
DUCT9 = DUCT9 -~ P6
1040 DO 1050 ID = 6,35
X35 = FLOAT(ID) / 12.
RD3 = RUTOD(ETA,R0,Q35,Q23,X35,X23)
PD3 = PU3 - RD3 * (Q35 / 4000.) **2
EL = 12.19 * X35 + R35
RD35 = RDUCT(RO,F,EL,X35)
P5 = PD3 - RD35 * (Q35 / 4000.) *=».
IF(P5 .GE. .12) GO TO 1060
1050 CONTINUE
DUCT9 = DUCT9 - P5
1060 CONTINUE
X(3) = X28 * 12.
X(4) = X36 * 12.
X(5) = X35 * 12.
IF(DUCT9 .NE. 1.E9) RETURN
DUCT9 = COST(X12,R12) + COST(X23,R23) + COST(X28,R28) +
1 COST(X36, R36) + COST(X35, R35)
RETURN
END
See problem U-10 for subroutines RDUCT, RUTOB1l, RUTOD,
AF, COST, BLAM, and VEL.

Problem: U=13

REAL FUNCTION GEARI(X,K)
COMMON/PRINT/1BRKT, IPOW, IMS, JMSP, 1IN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG

222

DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" EASON AND FENTON: MIN. INERTIA GEAR TRAIN"
FLAG = .TRUE.
C ONE TIME CALCULATIONS HERE
500 CONTINUE
IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE
GEARL = 1% (12.4X(1)**2 4+ (1. + X(2)**2)/X(1)*%2 + (X(1)**2
1 *X(2)**2 + 100.) / (X(1) * X(2))**4)
RETURN
END

Problem: U-14

REAL FUNCTION WATER(X,K)
COMMON/PRINT/IBRKT, IPOW,IMS,JMSP, IIN, IOUT, I0TT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" ROSENBROCK AND STOREY HEAVY WATER PLANT"
FLAG = ,TRUE.
c ONE TIME CALCULATIONS HERE
500 CONTINUE
IF(K .EQ. 0) GO TO 1000

1 CONTINUE

1000 CONTINUE
RN = X(1)
R = X(2)
T = X(3)

ALP = EXP(508./T - .382)

BET = R / 1400.

PHI = ((ALP - 1.)/ALP)*(ALP*BET)** (RN+l.) + BET - 1.

F = (PHI*(1.-BET))/(.6*%(1.-BET)*(ALP*BET - 1.) + .4*PHI)
H=2. + 3. *EXP(16.875 = T/14.4)

WATER = (300. * R + 4000. * RN * H + 80000.) / (18.3%(F~1.))
RETURN

END

Problem: U-15

REAL FUNCTION POW2(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

LOGICAL FLAG

DATA FLAG/.FALSE./

500

1000

10

20
90

223

IF(FLAG) GO TO 500
PRINT(IOUT,*)'" FLETCHER AND POWELL, HIMMELBLAU NO. 34"
FLAG = .TRUE.
ONE TIME CALCULATIONS HERE
PI = 3.141592654
CONTINUE
EVERYTIME CALCULATIONS HERE
IF(K .EQ. 0) GO TO 1000
CONTINUE
CONTINUE
IF(ABS(X(2)) «GT. l.E-6) GO TO 10
TH = O.
GO TO 90
IF(ABS(X(1)) .GT. l1.E=-6) GO TO 20
TH = .25
GO TO 90
TH = ATAN(X(2)/X(1))/(2.*PI)
CONTINUE
IF(X(l) JLT. Q) TH = TH + .5
POW2 = 100. * ((X(3) ~ 10. * TH)**2 + (SQRT(X(Ll)**2 +
X(2)*%2) = L.)**2) 4 X(3)**2
RETURN
END

Problem: U-16

500

55

REAL FUNCTION OBJT3(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, 1IN, I0UT, IOTT
DIMENSION X(20)

DIMENSION A(6,6)

LOGICAL FLAG

DATA (A(1,I),I=1,6)/3*1. , 3*0./
DATA (A(2,I),I=1,6)/3*1l. , 3*0./
DATA (A(3,1),I=1,6)/3*%1, , 3*%0./
DATA (A(4,1),I=1,6)/3*%0. , 3*1./
DATA (A(5,1),I=1,6)/3*%0. , 3*1./
DATA (A(6,1),I=1,6)/3*%0. , 3*1./

IF (FLAG) GO TO 500
PRINT(IOUT,*)" SEPERABLE TEST FUNCTION"
FLAG = .TRUE.

CONTINUE

F = Q.

DO 55 I = 1,6

DO 55 J = 1,6

F=F + A(L,J) * X(I) * X(J)
CONTINUE

OBJT3 = F

RETURN

END

224

Problem: U=-17

REAL FUNCTION OBJT4(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, MSP, 1IN, IOUT,10TT
DIMENSION X(20)
DIMENSION A(6,6)
LOGICAL FLAG
DATA (A(l,1),I=1,6)/3%1. , 3*%.01/
DATA (A(2,1),I=1,6)/3*%1. , 3*.01/
DATA (A(3,I),I=1,6)/3%1. , 3*.01/
DATA (A(4,1),I=1,6)/3*%.01 , 3*1./
DATA (A(5,1),I=1,6)/3%.01 , 3*1./
DATA (A(6,1),I=1,6)/3*%.01 , 3*1./
IF (FLAG) GO TO 500
PRINT(IQUT,*)" SEPERABLE TEST FUNCTION"
FLAG = .TRUE.
500 CONTINUE

F = 0.
DO 551 = 1,6
DO 55 J = 1,6

F=TF + A(I,J) * X(I) * X(J)
55 CONTINUE

OBJT4 = F

RETURN

END

Problem: U-18

REAI. FUNCTION OBJT5(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN, IOUT, IOTT
DIMENSION X(20)

DIMENSION A(6,6)

LOGICAL FLAG

DATA (A(1,I),I=1,6)/3%1. , 3%.1/
DATA (A(2,1),I=1,6)/3%1. , 3%,1/
DATA (A(3,I),I=1,6)/3*1., , 3*.1/
DATA (A(4,1),1=1,6)/3%,1 , 3*1./
DATA (A(5,1),I=1,6)/3%.1 , 3*l./
DATA (A(6,1),I=1,6)/3*%.1 , 3*1./

IF (FLAG) GO TO 500
PRINT(IOUT,*)'" SEPERABLE TEST FUNCTION"
FLAG = .TRUE.
500 CONTINUE
F = 0.
DO 551 =1,6
DO 55 J = 1,6
F=F + A(I,J) * X(I) * X(J)
55 CONTINUE

225

OBJTS = F
RETURN

SR M Bk A e 3 o e o <

VITA

Daniel B. Fox was born on December 10, 1946 in Hinsdale,
Illinois. He received his B.S. degree in Engineering
Physics from the University of Illinois in January 1969. As
a second lieutenant in the U.S. Air Force he completed a
M.S. degree in Industrial Engineering - Operations Research
at Oklahoma State University in the summer of 1970. While
at 0.5.U. he became a member of Alpha Pi Mu, the industrial
engineering honorary fraternity. From 1970 to the spring of
1974 he worked as an operations research analyst on the
director’s staff of the National Se: urity Agency. Captain
Fox then attended Squadron Officers School at Maxwell Air
Force Base, Alabama. In July 1974 he began work as a test
engineer on a LORAN and inertial navigation and weapon
delivery system for the Air Force at Eglin Air Force Base,
Florida. 1In the summer of 1977 he entered the Ph.D. program
in Operations Research in the Department of Mechanical and
Industrial Engineering at the University of Illinois,
Champaign-Urbana. He 1is currently employed as an assistant
professor in the Operational Sciences Department of the
School of Engineering at the Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio.

