
AD-A092 435 AIR FORCE INST OF TECH WRIGHT-PATTERSON AF8 OH F/G 12ji

COMPOSITE ALGORITHM FOR MIXED INTEGER CONSTRAINED NONLINEAR 0 EC(U)

UNCLASSIFIED AFIT-CI-80ID N

I 11111

IlI
, II/NONIE

UINCI ASS
SLCURITY CL ASSIFICATION OF THIS PAGE (Whei [o, to ED.srt. I

REPORT DOCUMENTATION PAGE 131.1., Al) '"j!1,11 1 IN s (R,.
I REPORT NUMBER 12 GOVT ACCESSION NO. 3 RkE(:IPII t4T'. ('ATAL :; M 04N,0[O k

80-ID .)D S..b.I,-e)

TITLE- (and Subtitle) ,5 yPL OF RE PO rT & RI 0 IL sD (0 OV'E - U

'A Composite Algorithm For Mixed Integer 1 09igii/DISSERTATION
Constrained Nonlinear Optimization,

6 PERFORMING 0-4 REP)PT NUMI _ k

7. AuTbOR(-) iCONTRACT OR GRANTNUMIIEH. .

Capt Daniel B.. Fox

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMEN4T PROJEC(T TA',
- -

,/ AREA 6 WORK*UNIT NUMULI-Htt

AFIT STUDENT AT: University of Illinois

I I. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

AFIT/NR jJan 80
WPAFB OH 45433 13, NU'MBER OF PAGES

14 MONITORING AGENCY NAME & AD ES front C.... ('.1149 Office) 15 SECURITY CLASS. (.1 this e.p-1)

'%woo UNCLASS

|Sa.- DELAWSIFCATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED< DTIC
SELECTE--

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) DEC 2 J1 ' i
'

3

KI-

C
IS. SUPPLEMENTARY NOTES

PPfV OD OPLILRELEASE: IAW AFR 190-17 AIr Force Institute of Techno" a "-. (0.4 PUB 17 Wright-Patterson AFB, Oot41Y3(A TC)

EDRIC C. LYNC Major, USAF 45433
[irgC',r -f Publin A felrs
19 KEY WORDS (Continue on reverse side if necessary aid Identify by block number)

C ,20 ABSTRACT (Continue ont reverse side It necessary and Identify by block number)

ATTACHED

8011. 24 10
DD JAN7 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASS

St, ITY CLASSIFICATION OF THIS PAGE (107-, iat. tuiere- ,

Accezs.
NTIS GRA i
DTIC T. Y

A COMPOSITE ALGORITHM FOR I c -

MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION i

Daniel B. Fox Diftrib.t!tr/

CAPT. USAF Availnbilkty (

Av'.11l Itn'
Department of Mechanical and Industrial Engineering D1 t Spacin;.

University of Illinois at Urbana-Champaign, 1980
Pages: 226 Depree awarded: Phl)

'A composite optimization algorithm applicable to mixed

integer, constrained, nonlinear problems is developed in

this research. One major component of the composite

algorithm is a modified version of the nonlinear simplex

method. Significant modifications are made to this

algorithm including the incorporation of a unidimensional

search procedure and the use of a new method to treat

constraints. Additional features of the composite algorithm

include new acceleration strategies, a new decomposition

approach, and a discrete grid algorithm.

The components of the composite algorithm are tested on

problems primarily selected to represent engineering design

optimization applications. The performance of the new

methods is compared to some existing techniques. Examples

of the application of combinations of the composite

components are included. The results indicate that the new

algorithms obtain superior solutions and in most cases are

more efficient than existing techniques. -The success of the

algorithm on problems of engineering design optimization

indicates a wide area of potential application.

A COMPOSITE ALGORITHM FOR
MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION

BY

DANIEL B. FOX

B.S., University of Illinois, 1969
M.S., Oklahoma State University, 1970

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1980

Urbana, Illinois

A COMPOSITE ALGORITHM FOR

MIXED INTEGER CONSTRAINED NONLINEAR OPTIMIZATION

Daniel B. Fox
CAPT. USAF

Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign, 1980

Pages: 226 Depree awarded: Phl)

A composite optimization algorithm applicable to mixed

integer, constrained, nonlinear problems is developed in

this research. One major component of the composite

algorithm is a modified version of the nonlinear simplex

method. Significant modifications are made to this

algorithm including the incorporation of a unidimensional

search procedure and the use of a new method to treat

constraints. Additional features of the composite algorithm

include new acceleration strategies, a new decomposition

approach, and a discrete grid algorithm.

The components of the composite algorithm are tested on

problems primarily selected to represent engineering design

optimization applications. The performance of the new

methods is compared to some existing techniques. Examples

of the application of combinations of the composite

components are included. The results indicate that the new

algorithms obtain superior solutions and in most cases are

more efficient than existing techniques. The success of the

algorithm on problems of engineering design optimization

indicates a wide area of potential application.

Ak IT I(E::,.AJ? I ASSI*;SMLNT

The purpose of this ucst ionnaire is to asc(..rtain the va I.tie and/or
contribution oft research accomplished by students or facully of the
Air Foce In-stitute of Technology (ATC). It would be greatly al)j)fC-ialed
if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Vatterson AFB Oil 45433

Research Title: A Composite Algorithn for Mixed Integer Constrained

Nonlinear Optimization

Author: Capt Daniel B. Fox

Research Assessment Questions:

I. Did this research contribute to a current Air Force project?

a. Yes b. No

2. Vo you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another agency
if AFIT had not?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency achieved/received by virtue of AFIT performing the
research. Can you estimate what this research would have cost if it had
been accomplished under contract or if it had been done in-house in terms

of manpower and/or dollars?

a. Man-years . b. $

4. Often it is not possible to attach equivalent dollar values to research,

although the results of the research may, in fact, be important. Whether or

not you werd able to establish an equivalent value for this research (3 above),

what is your ;stimate of its significance?

2. Highly b. Significant c. Slightly d. Of No
Significant Significant SignificaneL

5. AFIT welcomes any further comments you may have on the above questions,

or any additional details concerning the current application, future potential,

or other value of this research. Please use the back of this questionnaire

for your statement(s).

NAME GRADE POSITION

ORGANIZATION LOCATION USAF :;tcN 75-;oIi

iii

ACKNOWLEDGEMENTS

The author expresses his sincere appreciation to his

advisor, Professor Judith S. Liebman for advice and

encouragement provided throughout this research.

Suggestions from Professors N. Kachaturian, N. Miller, and

C. Pedersen proved exceptionally valuable and are also

appreciated. Special thanks are due my wife for her

patience and assistance. Financial support of the United

States Air Force and the University of Illinois Research

Board is acknowledged.

iv

TABLE OF CONTENTS

1. INTRODUCTION

1.*1 Purpose...I1

1.2 Statement of the Problem........................... 2

1.3 Notation and Conventions........................... 5

1.4 Definitions.. 6

1.5 Guide to the Remaining Chapters.................... 13

2. REVIEW OF THE LITERATURE

2.*1 Introduction.. 15

2.2 Design Optimization................................. 16

2.3 The Nonlinear Simplex Method...................... 25

2.4 Simplex Variations.................................. 26

2.5 A Discrete Search Algorithm........................ 32

3. DESCRIPTION OF THE ALGORITHM

3.1 Introduction.................................... 35

3.2 Additional Modifications to the Algorithm.......... 38

3.3 Auxiliary Techniques................ 55

3.4 Additional Search Algorithms 66

3.5 The Modified Complex Algorithm.................... 68

3.6 Initialization............................70

V

4. RESULTS

4.1 Introduction 71

4.2 Constrained Discrete Problems 76

4.3 Constrained Continuous Problems 85

4.4 Unconstrained Discrete Problems 92

4.5 Unconstrained Continuous Problems 97

4.6 Composite Algorithm Results 103

5. CONCLUSION

5.1 Summary .. 118

5.2 Suggestions for Further Research 120

LIST OF REFERENCES 125

APPENDIX I -- RESULTS 132

APPENDIX 2-- FORTRAN SUBROUTINES .o.................... 188

VITA .. 226

1 INTRODUCTION

1.1 Purpose

Many engineering design problems can be represented as

constrained nonlinear programming problems where all or some

variables are restricted to discrete values. The purpose of

this research is to develop a practical method for solving

mixed integer constrained nonlinear optimization problems

and to demonstrate the technique on some problems of

machine, thermal systems, and civil engineering design. The

basis for the optimization technique is the nonlinear

simplex method.

One important factor to consider when deciding if an

optimization method is practical is whether practitioners in

need of an optimization technique are likely to use the

algorithm. This decision is often a function of whether the

practitioner, not necessarly a specialist in optimization,

can understand the algorithm. Nonlinear programming is not

reliable in the way that linear programming is reliable. In

linear programming a properly formulated model will yield an

optimal solution using any of a number of available linear

programming packages. In nonlinear programming, except for

a few classes of well behaved problems, finding the optimal

2

solution depends on interaction with the user in order to

avoid some solutions that may be only local optima or not

optimal at all. This necessitates some familiarity by the

user with the internal workings of the algorithm as we'l as

with the model being optimized. For this reason, a simple

algorithm is often more desirable than a more complicated

one, even at the cost of some efficiency.

In this research a heuristic algorithm is developed for

the solution of mixed integer, constrained, nonlinear

programming problems. Straightforward methods have been

used to enforce the constraints and discreteness of

variables. A variety of search strategies, each employing

easily understood concepts, is combined into a methodology

which allows the designer to change strategies as the

algorithm proceeds. The whole of the options and strategies

available make up a composite algorithm.

The elements of the composite algorithm are tested using

both classical test functions as well as engineering design

problems selected from recent literature. Results are

compared with results from existing techniques.

1.2 Statement of the Problem

The general integer, constrained, nonlinear optimization

problem is usually stated as:

3

MINIMIZE: F(X)

SUBJECT TO: Gi(X) < 0 , i = 1,...,m

Hi(X) = 0 , i = 1,...,k

X(j) integer , j 1,...,n

The problems considered in this research may be stated

as:

MINIMIZE: F(X)

SUBJECT TO: Gi(X) < 0 , i =

with a specified subset of X discrete

In this research equality constraints are excluded for

two reasons. First, the complex algorithm that is a major

component of the composite algorithm developed in this

research does not allow equality constraints. Second, as

discussed by Taha [72], the inclusion of equality

constraints in discrete problems can bring into question the

very existence of solutions to what would be problems with

many solutions if either the equality constraints, or the

discrete requirement were dropped. However, the techniques

developed in this research do allow the solution of problems

with equality constraints in certain circumstances. There

is always the possibility of solving an equality constraint

for one of the variables of the problem. Then the

optimization problem can be restated, without the equality

constraint, in a reduced variable space. This procedure

includes what is a very common situation in structural

4

optimization where the objective function is written in

terms of the design variables but some of the constraints

may be written in terms of state variables. The design

variables are linked to the state variables by equality

constraints. In this case, since the state variables do not

enter into the calculation of the objective function, the

equality constraints may be considered to be a

transformation of the design variables into the state

variables. This transformation may be in closed form or

accomplished by simulation. Thus, the constraints written

in terms of the state variables may be considered to be

functions of the design variables after the transformations

have been applied. The optimization problem can then be

expressed without equality constraints.

In this research it is possible for only a subset of the

variables to be integer restricted while the remaining

variables are allowed to assume continuous values; and it is

possible for discrete variables to assume any set of equally

spaced values, not necessarily integer. Of course, a

discrete variable that P sumes nonequally spaced values can

always be transformed to one that is equally spaced. The

subset of variables restricted to discrete values may be the

entire set of variables of the problem, resulting in an all

discrete problem, or may be the empty set, resulting in an

all continuous problem.

5

Although the objective function F and the constraint

functions Gi are often analytic expressions, the algorithm

developed in this research requires only that they be

computable. Hence, these function values may result from

recursive calculations, simulation, or represent the output

of a so called "black box," a system which provides outputs

when given inputs, but for which the internal workings are

unknown.

1.3 Notations and Conventions

Certain conventions of the FORTRAN computer language

will be used in representing mathematical operations. For

example:

* is used to denote multiplication

/ is used to denote division

The angle brackets notation <a> is used to denote the

nearest integer value to a.

Examples: <1.3> - 1 <.2> = 0 <-1.3> - -1 <-2.8> - -3

For scaler a and vector V, where:

W(i) - a * V(i) for all i

the vector W is denoted

W -a * V

6

or

W = V * a

All of the optimization problems discussed in this

research are stated as minimization problems. Thus, the

optimal solution sought is the point with the smallest value

of the objective function that satisfies the constraints of

the problem. For clarity in exposition, the phrase "point

with smallest value of the objective function" is sometimes

replaced with "best point." Similarly, the phrase "worst

vertex" should be interpreted as "the vertex with the

largest value of the objective functi3n."

1.4 Definitions

This section provides definitions of terms used in the

discussion to follow.

Definition: Parameter space

The parameter space for an optimization problem with n

variables is a vector space of real n-tuples.

Definition: Subspace

A subspace is defined as the domain of a subset of the

variables.

Definition: Discrete subspace

The discrete subspace is the subspace of the discrete

variables.

7

Definition: Continuous subspace

The continuous subspace is the subspace of the continuous

variables.

Definition: Increment

An increment is the distance between discrete points along a

coordinate axis.

The primary reason for the definition of increments for

the discrete variables is to define the lattice of values

that the discrete varibles may assume. As will be seen

later, the increment is also used in calculating termination

criteria for both the modified complex algorithm and the

unidimensional search. In addition, the increment specifies

the stepsize used to calculate gradient approximations.

These last three uses of the increment prompt the following

definition of a pseudo-increment for continuous variables.

Definition: Pseudo-increment

A pseudo-increment is the smallest distance along a

coordinate axis of a continuous variable that is

significant. The determination of significance is the

responsibility of the designer.

The pseudo-increment serves the same functions as the

increment with the exception of defining a lattice. That

is, the pseudo-incremept is used to calculate termination

criteria and gradient approximations but does not restrict

the associated variables to a lattice.

8

Definition: Grid point

A grid point is a node of the lattice of the discrete

subspace. The values of the continuous variables are fixed,

but arbitrary.

Definition: Discreteunit neighborhood

Let I(i) be the increment of the (i)th variable. Let X be a

grid point with discrete components X(i) and continuous

components X(J).

The discrete unit neighborhood of a point X, UN(X), is a

set of points Y such that:

Y is a grid point with discrete components Y(i) and

continuous components Y(J)

and

X(i) - I(i) < Y(i) < X(i) + I(i) for all discrete

variables i

and

X(j) - Y(j) for all continuous variables j

Definition: Discrete diagonal neighborhood

The discrete diagonal neighborhood of a point X, DN(X), is a

set of points Y such that:

Y is a member of the discrete unit neighborhood of X

and

X(i) 0 Y(i) for any discrete variables i

9

Definition: NI discrete neighborhood

The NI discrete neighborhood of a point X, NI(X), is the set

difference between the discrete unit neighborhood of X and

the discrete diagonal neighborhood of X. That is:

{Nl(X)) - {UN(X)} - {DN(X)}

Example: Neighborhoods

The neighborhoods defined above are illustrated in two

dimensions ir Figure 1-1. In this figure:

{UN(X)} - (A,B,C,D,E,F,G,H,X}

{DN(X)} - (A,C,F,H}

{NI(X)} - {B,D,E,G,X}

Definition: Explicit constraints

Explicit constraints are constraints functions that may be

written in terms of a single variable. These are

constraints that express upper or lower bounds on variables.

Definition: Implicit constraints

Implicit constraints are constraint functions that are

functions of two or more variables.

Definition: Feasible point

A feasible point is a grid point for which all the explicit

and implicit constraint functions are satisfied.

Definition: Effective objective function

The effective objective function EF(X) is the modified

function minimized by the composite algorithm developed in

this research. It is developed in three stages:

10

C,
o IX(I

FU 0 X E
• + 4 + +

SF O H

• -+I + +I

0

ThO0 1 .00 2,.00 3.0
X([I)

FIGURE 1-1. NEI!GHBORMOOOS

11

STAGE 1

If any explicit constraints are violated at X

then:

EF(X) - M2 + (violations)

where

M2 is a large number

and

(violations) is the sum of the violations of the

explicit constraints at X.

STAGE 2

Assuming the explicit constraints are satisfied, then:

If any implicit constraints are violated at X

let:

EF(X) - Ml + (violations)

where

M1 is a large number

and

(violations) is the sum of the violations of the

implicit constraints at X.

STAGE 3

Assuming both the explicit and implicit constraints are

satisfied then

EF(X) - F(X)

where

F(X) is the original objective function of the problem.

12

Definition: Vicinity

The definition of vicinity depends on whether discrete

variables are present. If the variables are all discrete,

then the vicinity is the NI neighborhood. If all variables

are continuous, then the vicinity is a small hypersphere.

In the case of mixed discrete and continuous variables, the

vicinity is the union of the vicinity of the discrete

subspace and the vicinity of the continuous subspace.

Definition: Local optimum

A feasible point X is a local optimum if:

F(X) < F(Y) for all feasible Y in the vicinity of X

Definition: Global optimum

A feasible point X is a global optimum if:

F(X) < F(Y) for all feasible Y.

Definition: Complex

A complex is a figure in n-space represented by n+1 (or

more) points.

Definition: Regular simplex

A regular simplex in n-space is a complex of n+1 points with

the distance between a pair of points equal to the distance

between every other pair of points.

Definition: Centroid

The centroid of a set of points XI,X2,...,Xn is a point C

such that:

C(i) - (Xl(i) + X2(i) + . • + Xn(i)) / n

13

Thus each coordinate of the centroid is the arithmetic mean

of the corresponding coordinate of the set of points

defining the centroid.

1.5 Guide to the Remaining Chapters

Chapter 2 introduces the topic of design optimization

and discusses the treatments that have been used for

constraints and discrete variables. The nonlinear simplex

algorithm and its major modifications are reviewed.

Chapter 3 describes the elements of the composite

algorithm developed in this research. The new modifications

for the complex algorithm, the auxiliary techniques, and

additional search strategies are described in detail. The

chapter concludes with a detailed description of the

modified complex algorithm.

Chapter 4 contains an analysis of the results and is

divided into six sections. After the parameter settings

used to obtain the results are described in Section 1, the

results of the modified complex algorithm on four categories

of problems are analyzed. The four categories are:

constrained discrete, constrained continuous, unconstrained

discrete and unconstrained continuous. The last section

discusses results of the additional features of the

composite algorithm.

14

Chapter 5 summarizes the results and suggests areas for

additional research.

I- - -. ;--.--.-~~--A

15

2 REVIEW OF THE LITERATURE

2.1 Introduction

Design has historically been a trial and error process

based on experience with similar designs. Gradually

techniques for analysis have been devised which have

eventually become accurate enough to predict performance of

designs based on descriptions of the design. As the

analysis techniques have become more comprehensive, the

computer has been used to perform the computations necessary

for the analysis. An additional step towards automation was

taken when improved means were provided for the interaction

of the designer with the computer. This "computer aided

design" allows the designer to indicate design changes which

the computer analyzes and for which the results are

displayed. Thus, the designer can evaluate the results of

the analysis, make design changes, and iteratively arrive at

a design that is in some sense optimal. Recently there has

been increased interest in closing the design loop within

the computer by including in the analysis a measure of merit

or objective function which can be used to compare various

designs. A computer program can then vary the design

parameters and seek the parameters that define the optimal

16

design as measured by the objective function. Of course, an

objective function represents only an approximate measure of

the utility of a design, and in actual fact, the selection

of the final design must be tempered by the experience of

the designer. The worth of the optimization process lies in

its ability to optimize within limits set by the designer

and in providing alternative designs.

In this final phase, the design problem is cast in the

form of a mathematical optimization problem. Virtually

every mathematical optimization technique has been applied,

including purely analytical techniques, linear programming,

dynamic programming, and direct search. Depending on the

nature of the problem, auxiliary techniques including

Lagrange multipliers, penalty functions, linearization, and

rounding have all been used to aid in the solution of

problems.

2.2 Design Optimization

Some progress has been made in analytical optimization

in structural design, for example, in fully stressed design

[8] and more recently in the interpretation of failure modes

of structures as representing local optimal solutions of an

optimization problem [36]. These approaches, however,

require intensive analysis of the particular problem under

17

study and cannot be considered to be generally applicable

methods. Instead, the approach in this research is limited

to the use of a general purpose optimization algorithm on a

model of the design to be optimized.

Good introductions for those not familiar with how a

mathematical optimization problem is formulated from design

concepts are in Schmit [62], Fox (21] and Gallagher (23].

Two survey articles on the current state of the art in

optimal structural design, which include very extensive

references, are by Wasiutynski and Brandt (75] and Sheu and

Prager (65].

The success of many nonlinear optimization techniques is

predicated on the problem being in a certain form, whereas

most design problems result in a model of unknown form.

Conditions of continuity, differentiability, convexity or

freedom from numerical difficulties in the computation of

the objective function or constraints most often cannot be

assured in typical engineering design applications. A class

of nonlinear optimization techniques that makes few

assumptions about the form of the problem is the class of

direct search techniques. Most optimization algorithms,

particularly those that attain efficiency by extensive use

of the local topography of the objective function surface to

determine search directions, will converge to a local

optimum nearest the starting point (5]. This, of course,

includes the gradient based optimization methods. For this

18

reason, when the model to be optimized contains multiple

local optima, use of a direct search optimization method =ay

be preferable. Direct search has been demonstrated to be

appropriate for design optimization by Pappas and Allentuch

[48), Pappas and Amba-Roa [49], de Silva [141, and Weisman

and Wood [76). A particular direct search algorithm, the

simplex method, has been cited for having the potential for

locating optimal solutions far from the starting point [5).

2.2.1 Constraints in Design Optimization

Constraints in engineering design optimization have been

widely treated with penalty functions [57) [56] [44] [40].

Interestingly, an early paper developing the mathematical

basis for the penalty function concept was written in i943,

well before the use of computer optimization techniques

[12). The mathematics are developed by considering the

equilibrium for a plate or membrane under an external force.

The technique is based on replacing an unsolvable or

difficult problem P with an easily solved problem P1 with

solution SI. The approximation is then improved, resulting

in problem P2 with solution S2. Again, the approximation is

improved and the result is a series of problems Pn with

solutions Sn. If the sequence of problems is appropriately

selected, two useful properties result. First, knowledge of

19

the solution to the (n)th problem aids in the solution of

the (n+l)st problem. Second, the sequence of solutions Sn

tends to the solution of the problem P.

The use of penalty functions transforms a constrained

nonlinear optimization problem into a sequence of

unconstrained nonlinear problems. This is accomplished by

augmenting the objective function of the constrained problem

with penalty terms. The penalty terms are formed from the

constraints and multiplied by a penalty function parameter.

The augmented function is then optimized, using

unconstrained optimization techniques, for a sequence of

values of the penalty function parameter. The form of the

penalty terms and the sequence of the penalty function

parameter values are chosen such that the sequence of

solutions of the unconstrained problems converges to an

optimal solution of the original constrained problem [1)

(323. Penalty function methods may be classified into two

catagories usually called internal and external. Some

algorithms employ a mixture of the two.

Exterior penalty function methods are sometimes referred

to as dual methods because they locate a series of optimal,

infeasible solutions and terminate when a feasible solution

is found (16] (32] (78]. The use of "dual" as a name

alludes to the similarity in approach to the dual method of

linear programming. The exterior penalty method (and the

mixed methods as well) suffer a defect common to dual

20

methods in that if the algorithm is terminated prior to

completion, for example due to budget limitations on

computer usage or due to numerical difficulties in the

calculations, then no feasible solution may be available.

Another difficulty with exterior penalty function

formulations is that it is necessary to evaluate the

objective function for infeasible points. In some cases

this may be impossible or may lead to numerical difficulties

in computation.

Interior penalty function methods, on the other hand,

are often referred to as primal methods because they begin

with a feasible solution and attempt to locate an optimal

solution while retaining feasibility [8] [16] [32].

Interior penalty methods have the advantage of always having

feasible, and hence potentially usable, solutions as

intermediate results. Discussions of the use of penalty

function methods specifically applied to design optimization

have been written by Moe [44] and also by Fox [21].

In spite of wide usage, penalty functions methods have

some potentially serious difficulties associated with them.

As Schuldt et. al. (64] observe, the problems of scaling the

objective function and constraints, selecting an appropriate

initial penalty factor, and determining the amount to reduce

the penalty factor between cycles, are problems for which

general procedures have not been developed. Improper

scaling between multiple constraints or between the

21

objective function and the constraints can result in the

penalty function method converging to a nonoptimal solution.

A more basic problem is that the addition of the penalty

term to the objective function may mean that the assumptions

implicit in the unconstrained optimization algorithm are

violated. In particular, Lasdon, Fox and Ratner [39)

comment that unidimensional search techniques which are

commonly used as part of most unconstrained optimization

algorithms and which are based on polynomial approximation

are probably inappropriate for objective functions that

include penalty terms. Davies and Swann [13] observe that

penalty functions insure the presence of steep valleys and

discontinuous derivatives, and that these features are

difficult to overcome, particularly with gradient based

algorithms. Murray [45) notes that the use of penalty

functions makes the problem progressively more

ill-conditioned as the solution is approached, and that

convergence is strongly dependent on the selection of the

penalty parameters.

Finally, since the penalty function method requires

solving a sequence of problems with different values of the

penalty parameter, the overall process may be inefficient.

22

2.2.2 Discreteness in Design Optimization

Until recently, discreteness in design optimization has

been most often treated either explicitly by branch and

bound or dynamic programming or implicitly by rounding to a

nearby integer solution. More recently, some explicit

treatments of discreteness in search techniques have been

attempted [10) [241 [25) [26) (40] (48] [66].

The branch and bound algorithm was originally proposed

by Land and Doig [38] for linear integer problems. The

basic concept is to enumerate the integer solutions in such

a way that groups of solutions, which cannot contain the

optimal solution, may be recognized without detailed

evaluation of all combinations of the discrete variables.

The nonoptimal groups are identified by solving a linear

subproblem and calculating a limiting value for the

solutions in that group (bounding). When the limiting value

is no better than a known solution then the group cannot

contain the optimal solution. By recognizing these

nonoptimal groups and dismissing those solutions from

further consideration, an optimal solution may be found

after evaluating only a fraction of the total number of

solutions represented by all combinations of the discrete

variables. Branch and bound algorithms have been successful

on linear integer and mixed integer problems because

efficient and reliable algorithms exists with which to solve

the linear subproblems.

23

In theory, the concept of the branch and bound technique

may equally well be applied to nonlinear integer problems.

Unfortunately, except for problems where stringent

conditions on the form of the objective function and

constraints are known to hold, the situation for nonlinear

problems is quite different from that for linear integer

problems. The subproblems are now nonlinear, constrained,

optimization problems and solving them may be relatively

difficult. More importantly, the solution obtained may be

only a local rather than the global optimum. Even a small

integer problem may involve solving 100 subproblems. Any

one local optimum for a subproblem, which is wrongly

presumed to be a global optimum, may result in erroneously

discarding a group of solutions as not containing the

optimum when, in fact, the optimum may be in that group.

Thus, using a nonlinear programming algorithm to solve

the branch and bound subproblems and failing to locate the

global solution even occasionally may result in the branch

and bound approach finding suboptimal solutions to the

overall problem. In addition, the sheer number of nonlinear

subproblems to be solved for even tsmall problems can make

the branch and bound approach infeasible.

Dynamic programming is limited to problem formulations

that are separable and becomes computationally inefficient

when the number of constraints exceeds four or five. Since

24

separability is not generally present in models for

engineering optimization, dynamic programming is not a

generally applicable optimization technique. For this

reason it is not considered further in this research.

The simplest and most prevalent technique for treating

integer variables is some form of rounding of the continuous

optimum. This is often combined with a search of the

neighborhood of the rounded solution [21] [31] [35] [41]

[73] [48]. Of course, obtaining a continuous optimum is

possible only if the discrete variables of the problem can

satisfactorily be treated as continuous. For example, if

the value of a variable denotes the use of a certain

material (with specific properties that affect the objective

function and constraints) then it is not clear what is

implied by the variable taking on a noninteger value. That

the rounded solution, even with neighborhood search, may not

be optimal is widely recognized [4] [27] [48] [21] [24]. A

major difficulty in constrained problems is that the rounded

solution may not only be suboptimal but may actually be

infeasible. Locating a feasible discrete point may in

itself be a nontrivial task.

Treating the discreteness of the variables explicitly in

a search algorithm has the advantage of only requiring

evaluation of the objective function and constraints on the

allowable set of discrete points. It is this method that is

used in this research and the details of the method are

presented in the following chapter.

25

2.3 The Nonlinear Simplex Method

The nonlinear simplex method, not to be confused with

the simplex algorithm of linear programming, is a direct

search, descent method. It is based on a geometric

construct referred to, in the case of an n-dimensional

space, as an n-dimensional simplex. The original work

published in 1962 by Spendley, Hext, and Himsworth (70] was

based on regular simplices, that is simplices with all line

segments of the same length. Although the particular

.application was to a response surface problem, the authors

alluded to the applicability of the technique to

mathematical optimization.

The simplex method for minimization may be summarized as

follows:

1. Construct a regular simplex in the parameter space

of the variables of optimization and evaluate the

objective function at each vertex.

2. Find the centroid of the simplex without the worst

vertex (worst vertex being the vertex with the

highest objective function value).

26

3. Define a new simplex by eliminating the worst

vertex and adding a new vertex obtained by

reflecting the worst vertex through the centroid.

Evaluate the objective function at the new vertex

and return to step 2.

The elegant simplicity of this algorithm has led to a

large number of variations on the basic method.

2.4 Simplex Variations

Variations in the simplex method have been made to adapt

the technique as a general purpose mathematical optimization

technique. Additional modifications have been proposed to

allow for optimizing constrained problems and still other

modifications to adapt the algorithm to discrete problems.

Various minor modifications have been proposed to improve

the performance of the algorithm. These modifications are

discussed below.

2.4.1 Nelder and Mead Algorithm

In 1964 Nelder and Mead [463 extended the simplex

technique by allowing irregular simplices (line segments not

necessarly all the same length). This provided both a

27

degree of scale invariance and allowed for a form of

acceleration in the search. They also advocated using more

than n+l points as an aid in preventing the simplex from

collapsing into a subspace. Their modifications to the

simplex rules include:

1. If the reflected vertex is the best vertex (best

vertex being the vertex with the lowest objective

function value), then try an expansion step to

another vertex that is further along in the same

direction that yielded the reflected vertex.

2. If the reflected vertex has the worst objective

function value, then try another vertex that is

retracted toward the centroid.

3. If the retracted vertex has the worst objective

function value, then contract the entire simplex by

moving every vertex towards the best vertex.

4. Stop the process when the simplex shrinks to a

sufficiently small size.

28

2.4.2 Box's Complex Algorithm

In 1965 Box (5] proposed a modified simplex method

called the complex method that could solve constrained

problems with an interior, that is, problems constrained

only by inequalities. In this algorithm the vertexes of the

simplex are constrained to remain within the feasible region

by the following rules:.

1. If a reflected vertex viola:es an explicit

constraint (a variable does not fall within its

lower and upper bounds), then that variable is set

just within its violated bound.

2. If the above rule is satisfied but an implicit

constraint (a constraint other than a simple bound

on a variable) is violated, then the vertex is

retracted towards the centroid until all

constraints are satisfied.

2.4.3 A Discrete Complex Algorithm

Beveridge and Schechter [4] suggest modifications of the

complex method of Box to solve integer nonlinear problems.

This method was further modified by Glankwahmdee (25] and

29

Glankwahmdee, Liebman and Hogg [261. In Glankwahmdee's

algorithm the following additional rules are used:

i. Each vertex is restricted to be at an integer point

by moving to the nearest discrete point.

2. A reflected point is retracted towards the centroid

if it either violates a constraint or has the worst

objective function value.

3. If a point in being retracted coincides with either

the original reflected point or the original vertex

to be rejected, then the original vertex is

restored and the centroid is located and a

reflected point is deLermined using the second

worst vertex (third worst vertex, etc).

4. The process is terminated either when the simplex

contracts to a single point or when rule 3 uses all

vertexes in the simplex without a vertex being

changed.

30

2.4.4 Unlimited Expansion Modification

Parkinson and Hutchinson (52] report a successful

variant of the Nelder and Mead algorithm that allows for

repeating the expansion step as long as the expansion vertex

is the best vertex.

2.4.5 Modifications to the Algorithm

Guin (29], after some experiments with Box's algorithm

suggested that the rule for setting variables just inside

their bounds sometimes caused premature termination of the

algorithm. For this reason it was suggested that this rule

be abandoned. Instead, explicit constraint violations were

treated just as implicit constraint violations and the rule

calling for retraction towards the centroid was applied.

Also suggested was that, for cases where the centroid is

infeasible (which can occur with non-convex constraint

sets), the entire complex should be contracted towards the

best vertex.

31

2.4.6 A Nonrandom Init-alization Procedure

The various simplex based algorithms discussed here

usually suggest a random procedure of some sort to define

the initial simplex. In contrast, Mitchell and Kaplan [43]

suggest a nonrandom method for defining the initial simplex.

The nonrandom simplex of 2n+l points is defined, given an

initial feasible point KO, as follows:

V(1,i) - XO(i) , i = 1,...,n

V(k+l,i) = XO(i) , i = 1,...,n , i # k , k = 1,...,n

V(k+l,k) = LB(k) , - 1,...,n

V(1+n+k,i) = XO(i) , i = 1,...,n , i # k , k=,..,n

V(l+n+k,k) = UB(k) , k = 1,...,n

where:

LB(k) is the lower bound for variable k

and:

UB(k) is the upper bound for variable k

If any of the vertexes defined above are infeasible they

are retracted half way toward the initial point as many

times as is necessary to locate a feasible point.

32

2.5 A Discrete Search Algorithm

2.5.1 Unconstrained Discrete Search

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg

[263 reported that an algorithm of descent along the integer

gradient combined with sectioning regeneration was the best

of several algorithms developed for unconstrained discrete

optimization. This algorithm, G-2, may be described as

follows:

1. Calculate a gradient approximation at the current

solution point.

2. Convert the gradient direction to an integer

direction. This procedure is described in Chapter

3, under "A New Method for Search Direction

Specification."

3. Perform a unidimensional search along the integer

direction.

4. If the search locates a better point, make it the

current solution and go to step 1; otherwise, go to

step 5.

33

5. Perform a regeneration step by applying the

unidimensional search along each of the coordinate

directions in turn until a better point is found or

all coordinate directions are tried.

6. If a better point is found, make it the current

solution and go to step 1; otherwise, go to step 7.

7. Stop.

2.5.2 Constrained Discrete Search

Chanaratna [10] and Chanaratna, Liebman, and

Khachaturian [40] report successes in the optimization of

some structural designs by adding interior penalty functions

to Glankwahmdee's G-2 algorithm. This algorithm, G-2/P,

uses a variant of the normal interior penalty function

formulation to allow the solution of discrete problems where

a constraint may be satisfied exactly at the optimal

solution. This is done by replacing the penalty term for a

particular constraint G(X):

PF - I./G(X)

by

34

PF - I./G(X) when G(X) # 0.

or

PF = I./EPS when G(X) - 0.

where EPS is a small constant. This modification prevents

the penalty term from being infinitely large when G(X)

equals zero.

35

3 DESCRIPTION OF THE ALGORITHM

3.1 Introduction

The goal of this research is to develop and test a

practical algorithm for design optimization where the

mathematical representation of the system to be optimized

may have a linear or nonlinear objective function, linear or

nonlinear constraints and some or all variables restricted

to discrete values. No assumptions are made concerning the

continuity, convexity or differentiability of the objective

function or constraints. The general nature of this problem

and the inclusion of discrete variables make obtaining the

optimal solution of the problem difficult. The approach

adopted to solve this problem was suggested by Taha [72].

"Experience with practical integer problems shows

that if a solution is to be found, manual

intervention during the course of the computations

is a must. This means that, depending on the

progress of the calculations, the user may find it

necessary to change search strategy in order to

take advantage of the available information. This

emphasizes the importance of including as many

feasible options as possible in the integer

36

programming code. These options should be

designed to exploit the different techniques

available for solving integer programming

problems, including heuristics. The collection of

these options, together with manual intervention

by the user, produce the so-called "composite"

algorithm. Naturally, the specific steps of the

algorithm are not fixed in advance but will

primarily depend on the experience of the user in

selecting the most effective strategies for

directing the search toward finding the optimal

solution. These strategies are usually based on

the information feedback from the computer and

also on the type of problem under investigation."

The major component of the composite algorithm developed

in this research is the nonlinear complex method

incorporating both new modifications and modifications to

the basic algorithm previously reported in the literature

but not previously combined.

The complex algorithm, five new modifications, four

auxiliary techniques, two additional search algorithms, and

the ability to change at will the algorithm parameters, are

implemented as an interactive, terminal-oriented, composite

computer program. The new modifications include the

following:

37

1. Incorporation of a unidimensional search procedure

into the complex algorithm.

2. A new method for specifying discrete points along a

search direction.

3. A new method for handling constraints.

4. A new termination criterion for the unidimensional

search component.

5. A new termination criterion for the complex

algorithm.

The four auxiliary techniques for use in conjunction

with the modified complex algorithm are:

1. Regeneration methods

2. Acceleration strategies.

3. A new decomposition method.

4. A grid approach.

The two additional search algorithms included in the

composite algorithm are:

38

1. Steepest descent

2. Sectioning

What follows is a description of the modifications of

the complex algorithm, the auxiliary techniques, and the

additional search algorithms. The chapter is concluded with

a detailed description of the modified complex algorithm.

3.2 Additional Modifications

3.2.1 Incorporation of Unidimensional Search

The reflection, expansion, and contraction rules, for

all the variations of the complex algorithm discussed in the

previous chapter, select new vertexes that are linear

combinations of a selected vertex of the current complex and

the centroid of the remaining vertexes. Thus, new vertexes

always lie on a line connecting the centroid and the

selected vertex. In this research these three rules have

been replaced by a unidimensional search. In general, the

base point of the search is taken as the selected (usually

the worst) vertex and the direction is defined as the line

from the selected vertex to the centroid of the remaining

39

vertexes. This formulation allows for movements similar to

reflection, expansion and retraction, in addition to

multiple expansions, as allowed in the Parkinson and

Hutchinson [52] algorithm, and for multiple retractions as

specified for infeasible points in Box's [53 algorithm.

The unidimensional search used is the golden section

method. The search method is comprised of two steps:

determining an interval within which the search will be made

(this is refered to as bracketing) and the search itself.

The bracketing procedure selects trial points at

geometrically increasing distances along the specified

direction and is described in detail by Avriel [1]. The

goal of the bracketing procedure is to obtain three points

that satisfy the following inequality:

F(X1) > F(X2) < F(X3)

Under conditions of unimodality of the objective function F,

the minimum of the objective function is known to be between

Xl and X3 if this inequality is satisfied. In general,

although unimodality is not known, a pretense of unimodality

is assumed. As a result of this assumption a local, rather

than global, minimum may be bracketed. The bracketing

procedure may be summarized as follows:

Let: XO be a given base point

D be a direction vector

S be the initial stepsize

X1 - XO

X2 - Xl + S * D

40

One of two cases are possible at this point. If F(X2) <

F(XI) then the objective function is decreasing in the

direction D and one may proceed.

If the above inequality does not hold, then the

objective function is not decreasing in the direction D. In

this case, the direction of search is reversed by the

following:

Interchange XI and X2

Let:

S = -S

In any case repeat the following steps as required.

Let:

S 2. * S

X3 = X2 + S * D

If F(X3) > F(X2) stop because then the bracket is

accomplished. Otherwise let:

X1 - X2

X2 - X3

The search procedure attempts to decrease the bracket

size so as to localize the minimum of the function along the

specified direction. Again, at least the pretense of

unimodality must be assumed. The golden section search

41

method and its relation to the Fibbonacci search method is

extensively discussed by Wilde and Beightler [77). The

procedure may be simmarized as follows:

Suppose the current bracket is at X1, X2, and X3 where:

F(X1) > F(X2) < F(X3)

Without loss of generality assume:

Xl < X2 < X3

Case 1:

X2 is in the left half of the interval between Xl and X3

Let:

XNEW(i) - Xl(i) + .618 * (X3(i) - Xl(i)) , i 1,...,n

Define a new bracket as follows:

If F(XNEW) < F(2)

then

Xl - X2

X2 = XNEW

else:

X3 - XNEW

Case 2.

X2 is in the right half of the interval between XI and X3

Let:

XNEW(±) - X3(i' + .618 * (Xl(1i) - X3(i)) , i - 1,...,n

Define the new bracket as follows:

If F(KNEW) < F(X2)

then

42

X3 - X2

X2 = XNEW

else:

X1 - XNEW

3.2.2 A New Method for Search Direction Specification

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg

[26) defined an integer direction as follows:

Let V be a n-vector representing a direction in n-space.

Let the relative direction vector DR be as follows:

DR(i) - V(i)/B

where: B - MIN { IV(i)I : i - 1,...,n)

Finally, let the integer direction M be:

M(i) - <DR(i)>

where <x> is the nearest integer to x.

For example:

V- (1.7 , .5)

DR - (3.4 , 1)

M(3 , 1)

Thus a direction vector is scaled to give a minimum

component of I and has all integer components. Points on a

line from a base point XB in the integer direction M may be

represented:

43

P = XB + Y * M

If the coordinates of XB are all integer, then points on tn'e

line have all integer components for integer values of the

scaler Y.

In addition, Glankwahmdee defines a subsequential search

interval in order to locate integer points aear the line

from the base point in the integer direction but falling

between successive integer values of Y. These points are

illustrated in Figure 3-1.

The integer direction as defined by Glankwahmdee has the

advantage of providing evenly spaced discrete points on a

line which makes the direction suitable for an efficient

integer search technique based on Fibonacci numbers. Two

disadvantages are that the discrete points may be widely

spaced, necessitating a second type of search within a

subsequential search interval, and that the integer

direction may diverge widely from the original search

direction. This second concept is illustrated in Figure

3-1. The second discrete point on the integer direction is

(7,3), whereas when x(2) takes on value 3 along the original

direction, x(1) would have value 7.8; and thus, the point

(8,3) is closer to the original direction than is the point

(7,3). The further along the integer direction a search

proceeds, the more widely the original direction and the

integer direction diverge.

4, b.. 4. 4- 4.3 4w'

48 4.s 4.3 4

o 0

S4. . 3. O 4. . . .

00. 0 t. 00 2. 00 3. 00 4. 00 5.00 8.00c 7. 00

0 - BASE POINT
I - POINT ON INTEGER DIRECTION (0,) FOR Yz1
2 - POINT ON INTEGER OIRECTION (3.1) FOR Y=2
S - POINTS ON SUBSEQUENTIRL SEARCH

INTERVAL ABOUT POINT I

FIGURE 3-1. POINTS ON INTEGFR DIRECT[ON ARO
IN SUBSEQUENT18L SERRCH INTERVFL

45

A third disadvantage of the integer direction is that,

by the definition, certain directions are forbidden.

Because the elements of the integer direction vector are

integer and the smallest element is equal to one, then in

two dimensions, for example, no direction between (I , 1)

and (I , 2) is defined. Likewise no direction between

(1 , 1) and (2 , 1) is defined. These forbidden directions

may encompass a substantial portion of the parameter space,

as illustrated in Figure 3-2. Within the 12 by 12 grid

illustrated, 52 of the 144 points are inaccessable by any

single unidimensional search when the integer direction is

used.

As an alternative to the integer direction and

subsequential search interval, the following is used in this

research. Consider a normalized direction vector S and a

base point XB. For points P where:

P - XB + Y * S

Let:

IP(i) = <P(i)> For i=l,... ,n

Thus, for any scaler Y one finds a point IP that is the

discrete point nearest in each coordinate to the line from

the base point along the given direction. For a segment of

the line from XB along direction S, there are an infinite

number of scalers Y and a finite number of nearest discrete

points. In order to insure that unique discrete points are

determined, it is sufficient to increment Y by an amount:

;t

-0

0:o 4o 2 00 4. 00 a ? 4 9'.0 4.0 4 0

4 ~ ~ ~ ~ ~ X I I ? 4 ?4 ? 4

Fg UE32 OR IDNP IT
~~~7J(ND CA E BY ;t) 4 ? ? 4?



47

b = 1/a

where:

a = MAX { IS(i)i

We now have a formulation that allows a single search method

to replace both the search along the integer direction and

the subsequential search.

In addition, this formulation allows for searching over

mixed integer spaces. Consider a normalized search

direction S and a base point XB in a mixed integer space.

Suppose the first m coordinates of the space are integer

while coordinates m+1 to n are continuous. Then, as before,

let:

P = XB + Y * S

IP(i) = <P(i)> for i=l,...,m

IP(i) = P(i) for i = m+l,...,n

Thus the point IP is the nearest grid point to the point P

in the mixed integer space.

3.2.3 A Modified Method for Handling Constraints

As noted in the previous chapter, penalty function

methods for constraints pose several difficulties. Because

of these difficulties, this research uses an explicit method

of handling constraints adapted from the complex algorithm

5].



48

Nelder and Mead [46] suggested that explicit

constraints, those expressing lower and upper bounds on

variables, could be treated in their algorithm by specifying

a very poor objective function value for any vertex that

violates those bounds. Box [5), in the complex algorithm,

handled implicit constraints by specifying retraction toward

the feasible region for any point violating the constraints.

Guin [29) in his proposed modification to the complex

algorithm, suggested that the retraction rule be used for

both implicit and explicit constraint violations. The ideas

of specifying a very poor objective function value for

infeasible points and of retraction toward the centroid for

infeasible points may be advantageously combined. By

incorporating a barrier function (a function with large

values for infeasible points) into the objective function,

the logic to provide for retraction of infeasible points may

be eliminated from the algorithm. In particular, when a

unidimensional search is incorporated into the algorithm, as

discussed above, the behavior of the complex method, with

barriers added to the objective function, is very similar to

using the complex retraction logic. If the search begins at

a feasible point and an infeasible point is subsequently

located during the unidimensional search, then the search

will automatically retract to a feasible point because of

the poor objective function value of the infeasible point.

If the search begins at an infeasible point and a feasible



49

point is then located, the infeasible point will be rejected

in favor of the feasible point on the basis of objective

function value. Finally, if the search begins at an

infeasible point and no feasible point is located, then an

additional modification is required.

In addition to a barrier, the effective objective

function used in this research includes a term that is

proportional to the sum of constraint violations. If a

unidimensional search begins at an infeasible point and no

feasible point is located, then the search will select the

point that has the minimum sum of constraint violations.

Minimizing the sum of constraint violations is a classical

heuristic for locating feasible points. If the initial

complex contains infeasible points, then the effective

objective function to be minimized, when those points are

selected as base points for searches, is the sum of the

constraint violations. This method allows the algorithm to

proceed automatically from finding a feasible point to

finding an optimal point.

The effective objective function minimized by the

algorithm is illustrated, in a single dimension, in Figure

3-3. Inside the feasible region the effective objective

function is simply the objective function of the problem

being optimized. At the boundary of the feasible region the

effective objective function is M where M is a large number

with respect to the objective function value in the feasible



50

z

0

b..Iz
UL-

C--
t o-FEASIBLE REGION

0LUJ

C.)
U

U-
LLJ

x
FIGURE 3-3. EFFECTIVE OBJECTIVE FUNCTION



51

region. Outside the feasible region the effective objective

function is M + (violations) where H is as above and

(violations) is the sum of the constraints violated.

The effective objective function in the infeasible

region may be visualized as a funnel sloping towards the

feasible region. The feasible region may be thought of as a

well into which the search will fall when begun from outside

the feasible region. The boundary of the feasible region

may be considered a wall from which the search will rebound

when begun from inside the feasible region.

One further point deserves attention. If a

unidimensional search begins at, or locates, a feasible

point and subsequently locates a point at which a constraint

is violated, the evaluation of other constraints is

immaterial. That is, any constraint violation at all is

sufficient to assign a poor objective function value. The

opportunity therefore exists to reduce computational effort

on those searches that start from or have already found a

feasible point, by evaluating the constraints one at a time,

and stopping the evaluations as soon as an infeasiblity is

discovered. In fact, given that the search has started at

or found a feasible point, the evaluation of the effective

objective function may be done in three stages. First, the

point is checked against the upper and lower bounds for the

variables. If any bounds are violated, proceed no further

and assign the objective function a very poor value.



52

Second, the constraints are evaluated one at a time until a

violation is found or all are evaluated. If a violation is

found, proceed no further and assign a very poor value to

the objective function. Finally, if the point has been

determined to be feasible, compute the objective function

value.

It is clear that the effective objective function is

discontinuous at the boundary of the feasible region. As is

noted by Lasdon et. al. [39), a unidimensional search

procedure based on polynomial approximaticn cannot be

expected to perform well on this type of objective function.

In this research, a golden section search is used because of

its insensitivity to discontinuties. Also, it is relatively

efficient and offers flexibility in specifying termination

critera.

3.2.4 Termination Criteria for the Unidimensional Search

Component

Using the unidimensional search modification of the

complex method removes the need to select reflection and

contraction factors. But, there is a new question of how

accurately to locate the optimal point in any given search

direction.

The unidimensional search is terminated when one of two

criteria is satisfied. If a specified number of search



53

iterations have been performed, then the search is halted.

If the interval of uncertainty is reduced to the point that

further localization of the minimum is insignificant, then

the search is terminated. What constitutes an insignificant

change in the location of the minimum of the function along

a direction is determined as follows: Suppose the increments

(p-seudo-increments in the case of continuous variables) of

the variables are I(i) , i = L,...,n. Along a direction D,

the points to be searched may be represented as:

P =XO + S * D

where:

S is the stepsize

The smallest stepsize of interest is that which will

result in a change of one increment along one of the

coordinate axes. This step size (SMIN) may be calculated

as:

SMIN - MIN (I(i) / D(i) : i = 1,...,n)

where:

I(i) is the increment for the ith variable

D(i) is the ith component of the direction vector

for the unidimensional search

A stepsize smaller than SMIN is declared to be

insignificant. Thus, the unidimensional search halts when

the interval of uncertainty is a fixed percentage of the

original interval (when the search is halted after a fixed



54

number of iterations) or when the interval of uncertainty is

no larger than the increment (or pseudo-increnent) in any

coordinate direction.

3.2.5 A New Algorithm Termination Criterion

A variety of termination criteria have been applied to

the complex algorithm. Generally the algorithm is

terminated when the variation in the objective function

values of the vertexes in the complex is "small" or,

alternatively, when the vertexes of the complex are "close"

together. The first of these criteria can be quite problem

dependent due to wide variation in the scaling of objective

functions. The second is inappropriate when the parameter

space is discrete with different increments assigned to the

various coordinates. Here a measure based on average

distance between vertexes can be misleading unless distances

are normalized by the coordinate increments.

The termination criterion used in this research is based

on specifying what comprises a significant variation of each

variable. For discrete variables, a significant variation

of the variable is taken as the increment for that variable.

For each continuous variable, a pseudo-increment must be

specified. For the actual termination test the size of the

complex in each coordinate direction is determined. The



55

size is calculated as follows:

Let:

a(i) = MAX { V(j,i) : j = 1,...,nv}

b(i) = MIN { V(j,i) : j = 1,...,nv}

Where: nv is the number of vertexes in the complex

then the size s(i) in coordinate i is:

s(i) - a(i) - b(i)

In testing for termination, the size of the current complex

along each coordinate axis is compared to the increment

(pseudo-increment in the case of continuous variables) for

the respective coordinates. The number of coordinates where

the extent of the current complex is less than the

respective increments size is summed. If this sum is

greater than a specified number (between I and n) then the

termination criterion is satisfied.

3.3 Auxiliary Techniques

3.3.1 Regeneration Methods

Two types of regeneration have been implemented. The

first uses alternate search directions and the second

contracts the entire complex towards the best vertex. These



56

methods were suggested by Glankwahmdee [25) and Nelder and

Mead [46) respectively.

The alternate direction regeneration defines a search

direction from the second worst vertex to the centroid of

the remaining vertexes and performs a search along that

direction. If the search is successul, the worst vertex is

replaced and regeneration is terminated. If the search

fails, then the third worst vertex is used, the fourth

worst, etc., until all vertexes have been used. If no

search is successful then the alternate direction

regeneration is considered to have failed.

The contraction method of regeneration defines a new

complex by moving every vertex one third of the way toward

the best vertex. The best vertex is of course unchanged by

this transformation which may be described as follows:

Let:

V be the matrix of coordinates describing the current

complex

where:

V(,',i) is the ith coordinate of the jth vertex

nv is the number of vertexes in the complex

b is the index of the best vertex

then:

V(j,i) - V(b,i) + .667 * (j,i) - V(b,i))

rounded to the nearest gr-id point,

j ,...,nv , i w 1,...,n



5 7

All results in this research were obtained using both

regeneration methods sequentially when required. That is,

if regeneration was required then the alternate direction

method was tried first. If the alternate direction

regeneration failed then the contraction method was used.

3.3.2 New Acceleration Strategies

Another idea developed in the research is the use of

trajectory analysis as an acceleration strategy. Two types

of trajectories have been investigated, linear and

quadratic. The aim of these acceleration stratagies is to

identify an objective function valley and then search along

that valley to improve the solution.

The method used for valley identification is to assume

that the best vertexes of the complex will tend to be

located at or near a valley. This assumption is justified

because of another of the modifications to the complex

algorithm developed in this research, the incorporation of

the unidimensional search. When a unidimensional search

direction is used on an objective function that contains a

valley, unless the search direction is parallel to the

valley, the point along the direction with the best

objective function value will be a point near the bottom of

the valley. Thus, the use of unidimensional search to



58

locate the new vertexes of the complex will, if valleys are

present, tend to locate points in those valleys.

3.3.2.1 Linear Trajectories

If two points are selected that appear to be at or near

a valley, then the line between them may provide a direction

along which acceleration is possible. In this research the

line between two best vertexes of the current complex is

used to define a linear trajectory.

3.3.2.2 Quadratic Trajectories

In general the valleys of an objective function surface

are not straight but curved. Quadradic trajectory analysis

attempts to identify a curving valley by fitting a quadratic

curve to three points assumed to be at or near the valley.

Generally the three best vertexes of the current complex are

used to define the trajectory.

The reader should note that this is not an attempt to

fit a quadratic curve to the objective function surface, a

procedure which requires evaluating the objective function

at (n+2)(n+l)/2 points. Instead, this is an extension of

the linear trajectory search that allows for a curved



59

trajectory. Just as in the case of the linear trajectory, a

unidimensional search is used to locate points with inproved

objective function values along the trajectory. Normally,

this procedure would require evaluating the objective

function at n(r+1)/2 points, but, by considering just two

variables at a time, three points suffice to define a

trajectory.

In calculating a quadratic approximation to an objective

function surface the roles of the dependent variable (the

objective function) and the independent variables (the

variables of the parameter space) are clearly delineated.

In calculating a trajectory, this is not the case. One of

the variables must be selected to play the role of the

independent variable while the remaining variables are

treated as dependent variables. Each dependent variable is,

in turn, paired with the independent variable. In this two

dimensional space 2(2+1)/2 = 3 points are sufficient to

define a quadratic trajectory. When this has been done for

each of the n-i dependent variables a unidimensional search

can be used to examine new points defined by extrapolating

along the trajectory. The variable k is selected to play

the role of the independent variable as follows:

Suppose A, B, and C are the points to be used to define the

trajectory, and that

F(A) > F(B) > F(C)

then the variable k must be selected so that either



60

A(k) > B(k) > C(k)

or

A(k) < B(k) < C(k)

If more than one variable satisfies this criterion, then one

of these variables can be chosen arbitrarily to be the

independent variable. The restriction on the selection of

the independent variables insures that the objective

function is decreasing as the independent variable decreases

(the first case), or as the independent variable increases

(the second case). In either case, the presumption is made

that further decreases in the objective function value are

possible if the independent variable is varied in the

indicated direction.

In summary, one variable is chosen to play the role of

the independent variable. By considering just one

coordinate at a time, thr-e points are sufficient to define

a quadratic trajectory in each of the remaining variables.

Finally, a unidimensional search is used to vary the

independent variable and the objective function of the

points on the trajectory thus defined is evaluated.

A quadratic trajectory is illustrated in the following

two dimensional example. Suppose the three points chosen to

define the trajectory are:

A= (3 ,3)

B=( 2,1)



61

C=( 1,2)

The (i)th coordinate of the points P on the desired

trajectory are defined by the equation:

P(i) = E(i) + F(i) * d + G(i) * d * (d + C(k) - B(k))

where:

d is the search variable

k is the subscript for the independent variable

The parameters E, F and G are defined as:

E(i) = C(i)

F(i) = B(i) - C(i)

B(k) - C(k)

A(i) - C(i)

G(i) = A(k) - G(k) - F(i)
A(k) - B(k)

Letting X(1) play the role of the independent variable and

carrying out the computations for this example yields:

E = (1, 2 )

F=( 1,-I)

G = ( 0 , 1.5

Since F(k)=F(1)=1 and G(k)=G(1)=O then it is clear that the

search variable d is merely an offset of the independent

variable such that for d - 0 the point defined by the

equation above is point C. This allows point C, a point

with known objective function value, to serve as the base

point for the search. If a point with an unknown function

value were used as the base point, then one additional



62

function evaluation would be required on each search. For d

= I (independent variable increased by I from the base

point) we can calculate:

P= (2,1.)

As expected, the quadratic trajectory goes through the point

B. The quadratic trajectory is illustrated in Figure 3-4.

Using d as the search parameter, a unidimensional search is

used to search along the trajectory for the point with the

best objective function value.

Note that, just as in linear acceleration directions,

the values of the objective function at the points used to

define the trajectory are not used in computing the

trajectory. The points define a search space in a single

variable (the search variable). The search space, instead

of being a line, is a curve defined by the equations above.

A unidimensional search is performed to locate the point

along the curve with the best objective function value.

3.3.3 A New Decomposition Approach

Another idea explored is the use of a complex algorithm

in conjunction with a decomposition of the optimization

problem. For separable optimization problems the sectioning

(one variable at a time) search is an efficient search

technique. In problems with a large degree of interaction



63

0

0

0

0
0

C,J

X
'CD

0

C

0

Th.0o 1.00 2.00 3.00 4.00
Xt I )

FIGURE 3-4, QURORRTIC TRAJECTORY



64

between the variables, however, sectioning search becomes

inefficient, requiring a large number of iterations or

perhaps failing completely [77].

For optimization problems in which subsets of variables

interact but in which there is little or no interaction

between the subsets of the variables, an extension of the

sectioning search can be effective. Instead of a

unidimensional search along a single coordinate axis, a

complex search is made within a subspace defined by a subset

of variables.

The complex algorithm is particularly well suited for

this subspace search for two reasons. First, the complex

method is reported to be more robust in spaces of low

dimensionality (6]. Second, the subspace search may be

easily incorporated into the complex algorithm without

altering the logic implementing the algorithm. In order to

restrict the search to a subspace it is only necessary to

initialize the vertexes, defining the complex such that all

vertexes lie in the subspace. Since each new vertex that

enters the complex is a linear combination of vertexes in

the current complex, the search is automatically restricted

to the subspace. In order to expand the complex into the

full space (or a different subspace) it is only necessary to

redefine the coordinates of the vertexes of the complex. As

long as this is done so that the coordinates of the vertex

with the best objective value are unchanged, the overall



65

algorithm will always move to points of decreasing objective

function value.

3.3.4 A Grid Approach

A frequently suggested approach to optimization of

functions is to select a grid on the parameter space and to

calculate the objective function at every grid point. A

grid of smaller increments is then constructed in the

vicinity of the point with the best objective function

value. The process is continued until the grid size has

been reduced to a small size. In order to avoid an

exorbitant number of function evaluations, particularly when

the number of variables in the parameter space exceeds two

or three, the initial grid must be very coarse. This

increases the chances for failure of -he method. In any

case the exhaustive evaluation of the grid points for

decreasing grid sizes results in an inefficient algorithm

for all but the smallest problems.

Given a discrete optimizing algorithm, a more efficient

alternative exists. Instead of computing the objective

function for every grid point, a discrete algorithm can be

used to locate the grid point with the best objective

function value. This procedure has been suggested by Cella

and Soosaar [9] and a version that used a discrete complex



66

algorithm was implemented by Simmons and Pike [66]. This

modified grid algorithm is available through the composite

algorithm simply by redefining the grid size and restarting

the discrete modified complex algorithm from the best point

found when the previous grid was used.

3.4 Additional Search Algorithms

3.4.1 A Steepest Descent Algorithm

Glankwahmdee [25] and Glankwahmdee, Liebman and Hogg

[26] defined an algorithm combining integer steepest descent

and regeneration based on sectioning that was an efficient

algorithm for unconstrained, integer optimization problems.

In the composite algorithm Glankwahmdee's approach was

incorporated, but an alternative method of specifing the

discrete point along a search direction (described earlier

in this chapter) was used. When combined with sectioning

regeneration this implementation is refered to as SD/SECT.

This option was included in the composite algorithm

primarily for unconstrained problems, but it can be used for

constrained problems when begining from an interior point

before any constraints are encountered. The steepest



67

descent option performs the following steps:

1. Calculate a gradient approximation at the current

point.

2. Perform a unidimensional search along the direction

of the gradient.

3. Update the current solution with the results of the

search and return to step 1.

The gradient approximation G at a point X is calculated

as follows:

G(i) = (F(X + Ri*t) - F(X)) / I(i)

if X + Ri*l is a feasible point

else:

G(i) = (F(X) - F(X - Ri*I)) / I(i)

if X - Ri*I is a feasible point

else:

G(i) = 0

where:

I is a column vector with

I(i) - increment for variable i or

the pseudo-increment for continuous variable i

Ri is a vector, the ith row of the identity matrix



68

3.4.2 Sectioning Algorithm

This algorithm varies one variable at a time by

selecting each of the coordinate directions in turn and

applying the unidimensional search procedure along each

direction selected. This algorithm is included primarily

for use as a regeneration method to be used in conjunction

with the steepest descent search method.

3.5 Modified Complex Algorithm

The continuous modified complex algorithm (CMC)

developed in this research may be described as follows:

1. Select algorithm parameters

a. Number of vertexes for complex

b. Increments for discrete variables

c. Pseudo-increments for continuous variables

d. Number of coordinates for termination

2. Initialize the coordinates of the vertexes for the

initial complex and calculate the effective

function value for each vertex.



69

3. Check the termination criteria; if satisfied go to

step 10; otherwise, go to step 4.

4. Determine the vertex with the worst objective

function value and the centroid of the remaining

vertexes.

5. Perform a unidimensional search from the worst

vertex in the direction of the centroid

6. If the objective function value resulting from the

search is better than the objective function value

of the worst vertex, then go to step 7; otherwise,

go to step 8.

7. Replace the worst vertex with the result of the

unidimensional search and go to step 3.

8. Apply the regeneration procedure.

9. If the regeneration procedure succeeded, go to step

3; otherwise, go to step 10.

10. Stop.

The modified complex algorithm can handle continuous

variables in two ways, either treating them as continuous



70

variables directly, or by a discrete approximation which

treats the variables as discrete but with a small increment.

3.6 Initialization

The initialization required by the modified complex

algorithm consists of selecting the vertexes of the initial

complex. In this research a variation of the nonrandom

starting complex (431 was used. Given an initial point XO

that satisfies the explicit but not necessarily the implicit

constraints, the nonrandom starting complex consisting of

2n+l vertexes is generated as follows:

Let:

V(I,i) - XO(i) , i = 1,...,n

Vkk+l,i) - XO(i) , i = 1,...,n , i k , k 1... n

V(k+l,k) - LB(k) , k = 1,...,n

where:

LB(k) is the lower bound for variable k

V(n+k+l,i) - XO(i) , i - 1,...,n , i # k , k ,...,n

V(n+k+l,k) - UB(k) , k - 1,...,n

where:

UB(k) is the upper bound for variable k

Some (or all) of the vertexes may be at infeasible points.



71

4 RESULTS

4.1 Introduction

In this chapter the results obtained by the algorithms

developed in this research are analyzed. The robustness and

efficiency of the algorithms are compared with algorithms

previously reported in the literature.

One difficulty in testing an algorithm, such as the

composite algorithm that provides so many opportunities for

user intervention, is that what is to be tested is not a

single algorithm but rather a multitude of algorithms, each

defined by the user actions taken in the course of solving

the problems. Because of this, the results reported here

are primarly results for elements that comprise the

composite algorithm. The major component of the composite

algorithm developed in this research is the modifed complex

algorithm. Accordingly the first four result sections

report performance of this algorithm on four categories of

problems. A fifth result section reports, by example, on

some of the auxiliary techniques available in the composite

algorithm. Hence, what is presented can not be a complete

analysis of the performance of the composite algorithm, but

is an attempt to convey some of the experience gained in the

use of the composite algorithm.



72

4.1.1 Test Problems

The goal of this research was the development of a

practical optimization algorithm applicable in engineering

design. Accordingly, the majority of the test problems were

selected to represent problems of this type. However, since

few engineering design problems are unconstrained,

additional unconstrained test problems have been selected

from the literature. Some of these are functions which have

been specifically &esigned to test features of unconstrained

optimization algorithms and have become "classics" in the

field of optimization.

For the purposes of clarity and reproducibility, the

FORTRAN language subroutines used to compute the objective

functions for the test problems (and constraint functions

for constrained problems) are listed in Appendix 2. For

those problems where the functions may be written as

relatively simple mathematical expressions, these

mathematical expressions are incorporated, along with the

detailed research results, in Appendix I.



73

4.1.2 Criteria for Evaluation

The algorithms tested in this research are compared both

in robustness (the ability to find an optimal solution) and

efficiency (speed of solution). With such a wide variety of

test problems as have been used in this research, no single

set of criteria for measuring robustness has been found to

be satisfactory. Instead, for each category of results, a

criterion has been selected which highlights the differences

between the algorithms tested. These criteria are discussed

at the beginning of each result section. In each case, a

criterion has been selected which is meaningful in the

context of engineering design optimization. For example,

solutions that are close in objective function value are

equal, for practical purposes. In general, a success

criterion is specified, and the robustness of an algorithm

is estimated by counting the number of problems for which

the algorithm finds a solution which meets the criterion.

For discrete problems, the number of times that algorithm

finds the best solution is also considered. Efficiency is

measured in number of function evaluations or, in the case

of constrained problems, number of function and constraint

evaluations.



74

4.1.3 Algorithms Used for Comparison

The generalized reduced gradient (GRG) algorithm is a

widely used gradient based algorithm for constrained

nonlinear problems. Ragsdell [55], after tests with 35

algorithms on 30 constrained non-linear problems, concluded

that three GRG algorithms tested were sucessful on more

problems and generally used less computer time than the

other algorithms tested. Hence, the GRG algorithm

represents a highly sucessful, efficient algorithm and will

be used for comparison in order to evaluate the algorithm

proposed in this research for contin ous constrained

problems. The particular GRG code used was prepared in 1975

by L. S. Lasdon at Case Westerm Reserve University.

The flexible tolerance algorithm (FLEX) developed by

Paviani and Himmelblau [53] is a direct search algorithm for

constrained, nonlinear problems. It uses a variation on the

penalty function technique by varying the penalty parameter

as the algorithm proceeds, rather than between cycles. A

FORTRAN listing of the algorithm is given in an appendix to

Himmelblau [32]. Two changes were made to the program as

listed in the rcference. Between card number 1340 and 1350

the FORTRAN statement:

INF - I

was added. In subroutine FEASBL, the variable SIZE, which

is undefined, is given the same value as the variable SIZE

in the main program.



-e U;eder and 'ed algorithm ';M, is a dire:: sear:h

a gor it m f c r un cons- r a i ne non I in ear or orems A T -

listing of tne program used to obtain the zomparison resul s

is included in :immelblau '32:.

Results obtained by Glankwahmdee '25:, using a

modification of the discrete complex algorithm COMPLEX)

suggested by Beveridge ant Schechter 74" , we r e  -sed fo

comparison to toe results obtained hi the DMC aLgorithn.

An integer gradient, steepest descent ant sectioning

agorith m (0-2) developed by Glankwahmcee 5 was used for

comparison purposes on some unconstrained distrete problems.

The 0-2 algorithm was the most successful of the algorithms

eve'oped by Glankwanmdee.

The G-2 algoritnm, with penalty functions added to

nandle onstraints, nas :een used for comparison on some

tonstrained disorete problems. These results are labeled

Finall ., a discrete solution was obtained by applying a

rounding and 'Ml neighborhood search to the rontinuous

o' _t:ons ot) ained b , RG on some constrained nonlinear

oroblens. This algorithm is labeled GRG/R/Ni.



. -. ?araneters

:n oroer to provide a consistent and reportaole

nzparbson oasis, it was necessary to arbitrarily fx

va. .ues of certain parameters. Unless otherwise specified

the following parameter settings for the discrete modified

:omplex (DMC) and continuous modified complex (CMC)

algorithms were used to obtain the results cited in this

re s ea r -I.

I. Number of finction evaluations allowed on any one

unidimensional search is 6.

2. Number of vertexes for toe complex is 2n-l.

. Number of *coordi.nates collapsed for termination Ls

n-I for discrete problems and <(n-U,4> for

continuous problems.

These parameter values were selected on the basis of some

preliminary exploratory work witn the algorithm.

i. 2 Results: Constrained Discrete Problems

T-e restults discussed in this section are for

-oon trained, disr-ete, nonlinear problems wh ih were solveI



using three ifferent alg~ Ir th 9'he generalizec reI.Ze

gradie nt, ro nding and neig orho searc57 Dr'.

( RG/R/I ; the integer gradient, steepest escent wih

penalty functions algorithm (G-2,'?) ; anl the d iscrete

modified complex algorithm (DMC.

.2. I Criteria fcr Evaluation

The results of the three algorithms are analyzed for

robustness and efficiency. In evaluating robustness, the

solutions obtained were put into one of three caragories.

:he first catagory is for the best solution obtained by any

of the three algorithms. All other solutions are

categorized as acceptable or unacceptable. The criterion

for acceptable solutions which was used for the

:nconstrained discrete problems (based on the objective

values of points in the NI neighborhood of the best known

solution) was unsuitable because in many cases the best

known solution had few feasible points in its NI

neighborhood. However, the test problems represent

engineering optimization problems in which the optimal

objective functions did not have value zero. in these

problems, the objective functions are expressed in terms of

cost, weight, yield or other physical attributes. Thua, it

is meaningful to measure differences in objective values as



percentage deviaiIons frim tse oast known so';tio. on

actual per-entige e', .2 at. cnsidered to be sgn fi:an: as

arbitrarily taken to De one percent. he criterion for

efficienc; is t"e nu=ber of function and constraint

evaluations.

4.2.2 Discussion

The results of the three algorithms on eleven

engineering design problems (for a total of fifteen sample

problems, since some alternative increment sizes for design

variables were explored) are summarized in Table 4-1. In

this table, the notation "*" indicates the best solution for

any of the three algorithms. An "A" indicates an acceptable

solution and an "X" indicates an unacceptable solution. The

notation "X,NFS" indicates those cases where the algorithm

failed to locate any feasible solution to a problem.

The DMC algorithm proved to be far more robust on these

discrete constrained problems than were the other

algorithms. The GRG/R/NI solution was better than the DMC

solution in only two of the fifteen examples and failed on

seven examples. G-2/P was better than DMC on only one

problem and failed on eleven problems, although three of

these failures were on one problem, C-6. On problem C-6,

which was run using three different increments, an



- ~Z z -- C

7 5- -4Z'-C

'KI K K1C 'K-K X' -K ~-9-K 4C -4

z

IC I

CC

t) r4 -- -4

3N C)



infeasible starting point resulted in the failure of t-e

penaltv function algorithm to locate any feasible solutions.

The DMC algorithm proved to be generally more efficient

as well. The number of function/constraint evaluations is

about the same for GRG/R/NI and DMC on those problems where

both algorithms find acceptable solutions. For the few

problems where G-2/P achieved acceptable solutions, DMC used

only about 40 percent as many evaluations.

,.2.3 Details

In this section a problem by problem commentary on the

relative performances of the algorithms will be presented.

Again, only noteworthy or unusual circumstances will be

discussed.

Problem C-2 is a model of a two bar plane truss in two

variables and two constraints. On problem C-2B, all three

algorithms find the same solution which is immediately

adjacent to the continuous solution. Noteworthy here is

that, with the variables treated as discrete, the DMC

algorithm requires fewer function evaluations than does GRG

in solving the continuous approximation.

Problem C-3 is a design model for a journal bearing in

two variables and one constraint. Problem C-3C illustrates

a difficulty with internal penalty function formulations.



From the infeasible starting point, no feasible solution

could be found by G-2/P. Again, the optimal soluti-n 4s

adjacent to the continuous optimum. From a feasible

starting point (Problem C-3D), the gradient based G-2/P

method terminates at the grid point nearest the continuous

optimum which is not the discrete optimum.

Problem C-4B, which is problem B due to Box [52, shows

clearly a case in which the discrete optimal solution is far

removed from the continuous optimum. _n particular, the

third design variable moves from its upper bound at the

continuous optimum to the lower bound at the discrete

optimum. However, when smaller increments are used for the

design variables, the C-2/P algorithm correctly moves the

third coordinate toward the lower bound, but does not find

as good a solution as does DMC.

Problem C-6 is a model for design of a flywheel in three

variables and two constraints. On Problem C-6 three

alternative increments were tried. In both of the cases

with larger increments the DMC algorithm finds a point at

some distance from the continuous optimum and which had a

better value than that found by GRG/R/NI. Only with the

smallest increment does rounding yield the best solution.

The failure of the interior penalty algorithm, G-2/P, is

attributed to the infeasible starting point.

Problem C-7 is a version of the "post office problem" to

maximize the volume of a rectangular shipping container



subject to a constraint. 7he problem has three vari1aLes.

Problem C-7 was selected to illustrate a problam whiz- can

occur when using the penalty fornulation on discrete

problems. 'n this case, the optimal discrete solution is

the same as the continuous solution and the constraint iL

satisfied exactly at that point. Most penalty formulations

can not yield the optimum because the constraint is exactly

satisfied at the optimum and hence yields an infinitely

large penalty. The penalty formulation used in G-2/P was

modified in an attempt to overcome this difficulty, but

G-2/P still failed to locate the optimum on this problem.

The GRG/R/NI yields the optimal solution (since no rounding

was necessary). From the given starting point, DMC halts at

a point near the optimal solution with objective function

value within three percent of optimum.

Problem C-13 is an unpublished design model for a

reinforced concrete bridge. This problem has five variables

and seven constraints. Problem C-13 has a more complex

constraint set than do most of the other problems. Since no

feasible solution is found in the NI neighborhood of the

rounded continuous optimum, GRG/R/Nl fails. The penalty

method also fails on this problem and terminates at a point

with an excessively large objective function value. The DMC

algorithm, however, finds a feasible solution with an

objective function value within three percent of the

continuous optimum.



roblem C-17 is a design model for a rein frced zon rete

beam with two variables and two constraints. Qn thIs

oroblem all three algorithms found different solutions. 7e

solutions are close to one another and within one percent in

objective function value.

Problem C-18 is a modification of problem C-17. The

cost coefficients in the objective are different which

results in the optimal solution being at a different Point.

This problem is another case where the gradient based G-2/P

algorithm located the same point as obtained by GG/R/NI,

while DMC located a different point with an insignificantly

better (by .1 percent) objective function value.

Problem C-19 is a simple example problem for the design

of a hatch cover. The problem has two variables, two

constraints and a total of only 80 grid points within the

bounds specified for the variables, with some of these

points infeasible due to the constraints. The G-2/?

algorithm evaluates 82 points and does not find the optimal

solution. The source for this problem [241 describes an

algorithm using penalty functions both for the constraints

and for discretization. Their solution, which is the same

as that found by DMC in 21 objective function and 30

constraint evaluations, required 641 objective function and

641 constraint evaluations.

Problem C-20 is a design model for a shell and tube

condenser which has six variables and five constraints.



This problem yields three different solutions from the taree

aLorithms. The DMC solution is clearly best; the G-2/? an,

GRG/R/N! solutions are seven and ten percent worse,

respectively.

Problem C-21 is a design model for a wooden frame. The

oroblem has two variables and three constraints. This

problem also had no feasible discrete solution in the N!

neighborhood of the rounded GRG solution causing GRG/R/N1 to

fail. G-2/P found the optimal solution, but DMC did not

Investigation revealed that one of the constraints

paralleled the X(2) axis and that the complex collapsed

against this constraint.

4.2.4 Conclusions

The D',C algorithm was clearly superior in robustness and

efficiency to the other algorithms tested on these

constrained discrete problems. The GRG/R/NL failures are

partially attributed to its propensity to locate local

optimum near the starting point. Also, for problems where

the discrete optimum is not located near the cont4inuous

optimum, this algorithm cannot be sucessful. The penalty

method, G-2/P, failed on problems where an infeasible

starting point was given. The use of the gradient to guide

the search results in directing the search in the direction



3f the nni u pt i a I so -ut in n tw' Df Z: e 5 - -

:r;j .ems , G-i 9 L;>atec s~Luti~rns ais~-n: : ~ :tt.t;

3 o ,t n w -en t e is rre te ontim um -n a7 aeIseaw-e re.

.. 3 Results: C onstrained Continuous ?r ob ems

1 hs sec ion results are presentel rsr are - e d

a grithm used o approximate a continuous angorio. is

was aone by t:eating all variables as discre:e wJit a smal

increment (.00I) . he results of the DMC discrete

aporoximation are compared to the Flexib'le Tolerance F

algorithm and the Generalized Reduced Gradiant (GR')

algorithm on sixteen constrained nonlinear problems.

-. 3.1 Criteria for Evaluation

The algorithm results are anal:zed to obtain measures of

algorithm robustness and efficiency. Robustness is measured

o:7 counting the number of solutions obtained by each

algorithm that meet a specified success criterion. An

algorithm is credited with a success on a problem if tne

slution obtained has an objective function value within two

percent of the best objective function value obtained by any

of the three algorithms. Efficiency is measured in terms o

the number of objeotive function and constraint evaluations.



-. 3.: Discussion

The results are summarized in Table -2. :n this ta':)e

the acceptable solutions are denoted "A" and the

unacceptable solutions are denoted "X." 3:; the stated

zriterion o fr r bustness, the GRG agorihm had fiv e

failures; FLEX and D C each had three failures. A

co -arison of re lacive efficiency achieved shwed that FLEX

an4 DMC use about t'e same number of ob 4 ective function

evaluations, but the number of constraint evaluations

averages five times more for FLEX. Althou.h the rad.ent

based RG algoritnm was not as robust, its h ger eff i:ien c

was illustrated b; the fact that the DM0 algorihm required

fourteen times as -anv function evaluations.

i. 3.3 Details

The following paragraphs include a problem by oroblem

summary of the results obtained. Only noteworthy or unusual

czrcumstances will be discussed.

Problem C-I is a model of an al vlati-n processi. he

original model had ten var.ibles 3ni in(-luded thrl2e equality



-- x

..4. ;_4 zZ

Z 7-

77. -" Z
r-. Z

- I -I .! I I I .

, <



- ., ra nt .e -. ;7e W IS r e r- -' ate :

eCu1 i-_ -. nstraz-:s ::r :;.ree t.e ten- ",ar'ia l

t.ti. n a i n seven3 .

egn :".. ne-'alltv ,::"s-raz..s f "h ,~ L  z- h : n

t e arta es rez-'ed 7. oling 7 g

onstra nt,, resu ted r. a total or r:t-r een inea'- a

on st :aats .S th.oug toe "ontima " s mto. e

7ta- S 7e s r~ is superior to t at fun . ere, I

sat sf te cn stra:nts .

-em u ustrates a a m oVn d-f. , -fit

roe nt oased tecnnaiues wnifh is that -e- -- Va

ver efffioiencL7 to a local optimal solution near one

starting Doint. The ireco searc teonnicues , ile less

4 _iet n n mnun7er of function evalu ,ations, do not Make a

-ea -Iorg pcunse to :- nearest !oOaL soLution, boo waner

more about .ne so-ution space an: th s StIm'e pOn

s 1 -t iions fur ter -onne startin pocint

An exrbitant ni mber o n onstr-aint eva ua-ins tor -.

F -X a'ori tin reveals the difficulty on " -Catong 1 eas I

or near reasib e so ltions. oe variables tn this orob l

ar ose rntrrelat y eai uzons, 5

toat a di st i-g the variac es to satis y one 'onstr r.n

els n vioat.ng an)tner constraint whn

roouo -3s fIrtAer ad-3 '1 Ment to too iroao-o;

n or t-3:A, whi> nh-,as In In i:

I.s:71 ;n1 scnr~ o I~n I. I- I iii



AOGZ435 AIR FORCE INST OF TECHA WRIGHT-PATTERSON AFS ON F/G 12, 11
COMPOSITE ALGORITHM FOR MIXED INTEGER CONSTRAINED NONLINEAR 0_-ETC(tJ)

UNCLASSIFIED AFIT-CI-ID l

211

.3 hMEN l

"EE11EIMNNEEEEEEEEII
EIIllMENEMII



89

moves to a point distant from the starting point to attain

near feasibility and never recovers. On variation B, with a

feasible starting point, all three algorithms find

essentially the same solution.

On problem C-6, while GRG and FLEX arrived at

essentially the same solution, DMC found a solution with

virtually the same objective function value, but at a vastly

different point.

Problem C-8 is a chemical equilibrum problem that began

with ten variables and three equality constraints. After

solving the equality constraints, the resulting problem has

seven variables and six inequality constraints. Each

algorithm determines a quite different solution and GRG

locates a point with an objective function value 2.2 percent

worse than obtained by the other algorithms.

Problem C-9 has five variables and ten linear inequality

constraints. The failure of the DMC algorithm on variation

A could be anticipated because four of the five variables at

the starting point lie on the boundary. Thus the non-random

starting complex begins with five of the eleven vertexes at

the same point. This redundancy results in premature

termination at a suboptimal solution. From a starting point

away from the boundry this difficulty does not occur. With

that exception, all algorithms locate essentially the same

solution.



90

Problem C-10 is a design model in five variables and six

constraints. The "optimal" solution provided in the source

[101 slightly violates two of the constraints. All three

algorithms find essentially the same solution, which differs

from that provided in the source.

Problem C-Il is a refinery heat integration problem in

six variables and four constraints. Each algorithm finds

quite different solutions, but FLEX and DMC find similar and

slightly better objective function values.

Problem C-12 is a version of the alkylation process in

problem C-I. In this version there are only three variables

and seven constraints. FLEX and DMC find the same solution

while GRG locates a local solution very close to the

starting point which has an objective function value 25

percent worse than that obtained by the other algorithms.

Problem C-13 has five variables and seven constraints.

All three algorithms find quite different solutions, with

the GRG and DMC solutions superior and close in objective

function value.

Problem C-14 has nine variables and thirteen

constraints. GRG makes no progress from the given starting

point. FLEX and DMC find solutions with similar objective

function values.

Problem C-15 is a model for design of a welded structure

with four variables and five constraints. Here GRG and FLEX

find essentially the same solution while DMC terminates at



91

the non-optimal solution. In this case, the complex

flattens against a constraint and the algorithm terminates

prematurely. Restarting the algorithm from this point

resulted in finding essentially the same solution as the

other two algorithms.

Problem C-16 has six variables and three constraints.

The optimal solution provided in the reference slightly

violates one constraint. FLEX is unable to locate

near-feasible points even though several different values

for the initial tolerance criteria were tried. The poor

solution obtained by DMC is partially due to too large a

stepsize. Better solutions were obtained with smaller

stepsizes.

4.3.4 Conclusions

In summary, on these constrained continuous variable

problems, the direct search algorithms FLEX and DMC were

more robust, but less efficient than GRG. The GRG failures

are primarly due to the algorithm locating local optima near

the starting points. Conversly, the robustness of the DMC

algorithm is due, at least in part, to its ability to locate

local optima other than those near the starting point. Of

the three failures of the DMC algorithm, one (C-9) was

predictable because of the inappropriate starting point.



92

While FLEX and DMC used about the same number of function

evaluations, FLEX used about five times as many constraint

evaluations.

Of course any serious attempt to obtain solutions to

these problems would use several starting points. This

would be likely to improve the robustness of all of the

algorithms but would particularly benefit the GRG algorithm

because of the tendency, discussed earlier, for

gradient-based methods to locate the nearest local optima.

Under these conditions the algorithms would be more equal in

robustness and the greater efficiency of the GRG algorithm

would be a decided factor in its overall superiority.

4.4 Results: Unconstrained Discrete Problems

The discrete modified complex (DMC) algorithm was used

to solve some all integer, unconstrained problems used by

Glankwahmdee [25]. The results of using the DMC algorithm

are compared to those reported for COMPLEX and G-2. Six

additional problems, which were not used by Glankwahmdee,

and which represent engineering design applications, were

solved with the G-2 algorithm as well as the related SD/SECT

algorithm. The results are compared to those obtained using

DMC.



93

4.4.1 Criteria for Evaluation

The robustness of the algorithms in this section is

measured by counting the number of problems for which the

algorithm locates an acceptable solution. Since several of

the problems have minimum objective function values of zero,

a success criterion based on the percentage deviation from

the optimal value is inappropriate. For these problems, an

algorithm is credited with a success if it locates a

solution with an objective function value less than the

median of the objective function value for the points in the

NI neighborhood of the optimal solution. As usual,

efficiency is measured in number of objective function

evaluations.

4.4.2 Discussion

The results of the COMPLEX, G-2 and DMC algorithms on

the problems used by Glankwahmdee are shown in Table 4-3.

The most robust algorithm as measured either by the largest

number of optimal solutions or by the smallest number of

unacceptable solutions is G-2. The DMC algorithm is a close

second and represents considerable improvement over COMPLEX.

The only DMC failure (problem U-8A) arose from the

combination of a starting point virtually centered in the



94

oz .

i z >

-x 4 Ac Ic -k 4 x 1

-u I cc~ = '

.: z >

C,11

U 3

u = ~ I NC4 NC

00

CI) M '4I'T' - 0
coI I I I Ino

UZ p



95

region specified by the upper and lower bounds of the

variables and the use of the nonrandom starting complex.

The symmetry of the initial complex under these conditions

results in search directions along which no objective

function improvement is possible. Only one move was made

and the algorithm terminated at a point immediatly adjacent

the starting point. It is noteworthy that use of a random

starting complex resulted in finding acceptable solutions in

three successive trials (using different random number

sequences). An acceptable solution was also found when an

alternative starting point was used with the nonrandom

starting complex (problem U-8B).

The increase in robustness of the DMC algorithm over the

COMPLEX algorithm is achieved at the expense of more

function evaluations. For those problems where both COMPLEX

and DMC achieved at least an acceptable solution, DMC used

about half again as many function evaluations. A comparison

between G-2 and DMC shows that DMC uses about twice as many

function evaluations.

The results of the G-2, DMC and SD/SECT algorithms on

the six engineering design problems are summarized in Table

4-4. No unacceptable solutions were found by any of the

three algorithms, however, G-2 found fewer optimal

solutions. On three of the problems, G-2 terminated at

solutions near the optimal solution but did not quite reach

the optimum. G-2 and SD/SECT used about the same number of

function evaluations while DMC used about one third more.



96

00

-,4

w0 -- T10(1acI
oJ ON D c 0
I-I~ 4cIcft' - UCCrf

I 0.

0

z
z0

C N t = I ~~f -eO u

4--3
0'-

0

0.

-4d W

z t



97

4.4.3 Conclusions

The DMC algorithm is about as robust but is less

efficient than the G-2 algorithm on these unconstrained

discrete problems. The SD/SECT algorithm located the best

solution more often than did G-2, which often halted at a

nearby suboptimal point. As previously discussed, the

ability to locate optimal solutions away from the starting

point may make DMC a desirable algorithm to use on some

unconstrained discrete problems.

4.5 Results: Unconstrained Continuous Problems

A selection of unconstrained problems in continuous

variables were solved using the CMC, NM, and DMC algorithms.

The DMC algorithm was used in the discrete approximation

(increment .001 for each variable).

4.5.1 Criteria for Evaluation

All six problems in this section have objective function

minima of zero. Because of this, a measure of robustness



98

based on a percentage deviation of the objective function

from the optimal is not meaningful. The robustness

criterion used for these problems is based on the number of

problems for which an algorithm finds acceptable solutions.

An acceptable solution is defined as a solution with an

objective function value less than .001. Efficiency is

measured by the number of objective function evaluations.

4.5.2 Discussion

When the continuous modified complex (CMC) algorithm was

used, disappointing results were obtained. The algorithm

often failed. After making some progress toward the optimal

solutions, the complex collapsed; and the algorithm

terminated without reaching the optimal solution. However,

when the normal reflection, expansion and retraction was

used in place of the unidimensional search, as in the Nelder

and Mead algorithm [462, then optimal solutions were usually

found. The results of the CMC algorithm and the Nelder and

Mead (NM) algorithm are compared in the first 2 columns of

Table 4-5.

More detailed examination of the operation of the

modified algorithm revealed that the unidimensional search



99

zS

0r- C14 n -COc

00 -T -, .
C'n

In N

CC

0- C' CA C-4-,i

z ->

-r 7



100

increased the tendency of the complex to collapse into a

subspace. This collapse was the result of successive

unidimensional searches locating new vertexes of the complex

along a nearly straight portion of an objective function

valley. This, in turn, led to premature termination of the

algorithm at suboptimal solutions due to an inability to

further improve the objective function within the subspace

defined by the complex. Since all new points entering the

complex are linear combinations of points in the current

complex, then if the complex is within a subspace, no number

of iterations can locate solutions outside that subspace.

As an illustration of this consider problem U-4D

(Rosenbrock's function) which terminates after 1599 function

evaluations. After the first 415 function evaluations the

coordinates of the five vertexes of the complex have a

.99991 correlation coefficient. This means that for any of

the five points in the complex, the second coordinate value

can be predicted from the first with accuracy to two decimal

places. After 840 function evaluations the correlation has

increased to .99998. This implies that the second

coordinate of any point in the complex can be predicted from

the first coordinate to four decimal places. Thus, the

complex has effectively collapsed into a subspace, in this

case a line. The remaining iterations were spent in a

search along this line which did not contain the optimal

solution for the problem.



101

These results would have been discouraging but for

another discovery. When the variables are treated as

discrete, as in the discrete modified complex (DMC)

algorithm, even if in small increments, rather than

continuous, the tendency of the complex to collapse into a

subspace is counteracted. This can be explained as follows.

When linear combinations of points in the complex are

rounded to the nearest discrete point, points outside the

subspace can be located. This process is illustrated in

Figure 4-1. Suppose that all points in the complex lie in a

subspace defined by the line from (0. , 0.) to (4. , 3.) A

discrete search along that line might yield, for example,

the point (2. , 1.), which does not lie within the original

subspace. Once a point outside the subspace has entered the

complex, other points outside the subspace can be

represented by linear combinations of these points.

The results of the DMC algorithm are shown in the last

column of Table 4-5. Compared to the Nelder and Mead

algorithm, DMC is as robust but requires more function

evaluations. On the average, DMC uses more than twice as

many function evaluations as does the NM algorithm.



102

+-+ +

+ + +

CD

0
0

* + +- +- -

- 4'

0

Th,0o 1.00 2.00 3.00 4.00

X( I

FIGURE 4-1. INTRODUCTION OF POINTS
EXTERNRL TO R SUBSPRCE



103

4.5.3 Conclusions

Overall these results indicate that the DMC algorithm is

about as robust, but less efficient than the Nelder and Mead

algorithm for continuous variable, unconstrained problems.

On these problems, the CMC algorithm is unreliable.

4.6 Results: Composite Algorithm Options

In this section some sample results of the composite

algorithm will be presented. These results are intended

merely to indicate the potential of the composite approach,

but not to analyze comprehensively the performance of all of

the composite options. The examples in this section are

illustrative of four composite algorithm options: (1) use of

rounded continuous solutions as starting points, (2)

decomposition by searching sub3paces, (3) a grid approach

using discrete search, and (4) trajectory analysis, which

may be linear or quadratic.

4.6.1 Rounded Continuous Starting Points

In solving discrete or mixed discrete problems it is

often fruitful, for those problems which can be solved as



104

continuous variable problems, to look for optimal discrete

solutions in the vicinity of the continuous optimum. While

there can be no assurance that a better solution does not

exist elsewhere, the number of successes attributed to the

GRG/R/NI algorithm on constrained discrete problems suggests

that solutions worthy of a design engineer's consideration,

although perhaps not optimal, may be located in the vicinity

of the continuous optimum. As noted previously, a major

difficulty in the case of complicated constraint sets may be

locating a feasible point near the continuous optimum. A

method for searching the vicinity of the continuous optimum

is to round the continuous optimal solution to the nearest

grid point and to use this point, which may be infeasible,

as a starting point for the DMC algorithm. This may be done

because the effective objective function formulation used in

this research allows the search to proceed over infeasible

as well as feasible points.

When this technique is applied to problem C-20 the

solution obtained has an objective function value of

1168.028 after 315 objective function evaluations and 377

constraint evaluations. An additional 1056 objective

function and constraint evaluations were required by GRG to

locate the initial continuous solution. This discrete

solution, which is in the vicinity of the continuous

solution, has an objective function value five percent

better than the best solution previously located.



105

This technique is, of course, a heuristic and there is

no guarantee that an optimal solution will be found. For

example, when this technique is applied to problem C-13 the

solution obtained has objective function value 49306.4 after

168 function and 209 constraint evaluations. Note that an

additional 136 objective function and constraint evaluations

were required by GRG to obtain the original continuous

solution. This solution is four percent worse in objective

function value than is the solution obtained by using DMC

alone. In this case the DMC search locates a superior

solution that is remote from the continuous optimal

solution.

4.6.2 Decomposition by Subspace Search

The decomposition strategy, discussed under auxiliary

techniques in Chapter 3, was tried on problem U-16. The

objective function for this problem is constructed such that

the six variables are in two groups. The first three

variables interact with each other as do the last three but

there is no interaction between the two groups. The results

reported below were obtained by alternately searching the

subspaces defined by the first three and the last three

variables. Twenty DMC iterations were used in each subspace

search.



106

The results are summarized in the plot in Figure 4-2

which shows the value of the objective function vs the

number of function evaluations for both the DMC algorithm

and the decomposition method. The decomposition approach is

much more efficient on this problem.

Problem U-17 is a variation on problem U-16 with a mild

degree of interaction between the two groups of variables.

The results, which are illustrated in Figure 4-3, are

similar to those for problem U-16 with the decomposition

method again being more efficient.

Problem U-18 is another variation on problem U-16 with

an even greater degree of interaction between variables than

in problem U-17. Figure 4-4 compares the results of the

decomposition approach and the DMC algorithm. The

interaction present is still mild and the decompostion

algorithm is still more efficient than the DMC algorithm

alone.

Figure 4-5 illustrates the fact that the efficiency of

the decomposition approach is related to the degree of

interaction between the groups of variables. The plot

compares the progress of the decomposition algorithm on

problems U-16, U-17 and U-18. Problem U-16, with the least

interaction, is solved more efficiently than either of the

other problems while problem U-18, with the most interaction

is solved less efficiently than the other two problems.



107

00

*-q 0

z
0-

'36.00 40 00 60.00 600 00 00
NUMBEROFFNTO VLA OS 10

rtGURE 4-2. CIIRNOC IN rUNCTION VALUE VS

NUflBCR or uNC r iON EVRLUFrX FNS
PROSLEfl U-16



108

0

q

X - OMC/OECOMPOSITION

Y - OIC

-j

ID

S0

C-

,:0. 00 40.00 60.00 60'.00 76.00 80.00
NUMBER OF FUNCTION EVALUATIONS RIO'

riGURE 4-3. CHANGE IN FUNCTION VALUE VS

NUMBER or FUNCTION EVALUATIONS

PROBLEM U-17



109

a

0

X - OMC/OECOMPOIrION

Y - oMc

O

a

u0

.AJE

.J

0

z

I-.

NUMEROF FUNCT10N EVALUATIONS RIO'

FiOIAC 4-4. CHARNGE IN FUNCTION VALUE VS
NUMBECR OF FUNCTION EVALUAT ION3
PROBLEM U-10



110

0

40

IK - PROBLEI U-18

X - PROBLEM U-17
Y - PROBLEM U-16

(D

In'

ui W

z
6-C

z

C!

0400.00 480.00 660.00 4.00 7.00 0.0
NUMBER OF FUNCTEON EVALUATEONS

FIGURE 4-5, CHIANGE IN FUNcrioN VALUE VS
NUMBER OF ruNcriON EVALUArION3



III

Of course, problems U-16 and U-17 were designed so that

they could be efficiently solved by the decomposition

technique. Problem U-6C, on the other hand, is a widely

known unconstrained test problem. Study of the objective

function for this problem reveals that the two fourth power

terms, which are proportional to the differences between the

variable pair X(2),X(3) and the pair X(1),X(4), are dominant

fot the initial point. As the above pairs of variables come

close together, and in particular as all the variables

become small, the second power terms dominate. In these

second power terms the pairs X(1),X(2) and X(3),X(4)

interact within pairs but not between pairs. This problem

was solved by using the decomposition procedure and the

above observations to guide the selection of the subspaces

to be searched. The results are summarized in the plot in

Figure 4-6. Once again the decomposition method is more

efficient than the DMC algorithm alone.

The examples above clearly illustrate that for problems

with sets of variables with little or no interaction between

sets of variables the decomposition approach is more

efficient than the DMC algorithm. Also illustrated is the

fact that the efficiency of the decomposition algorithm is

highest when the interaction between groups of variables is

lowest.



112

0
0

X - OMC/OECOMPOSITION

y - oac

UD0

LaJ

uCO

Z)0:-w

z
m

'0.oo 20.00 40.oo 60.00 80.00 100.00
NUMBER OF FUNCTION EVALUATIONS 110

FIGURE 4-5, ChiRNG IN FUNCTION VALUE V3

NUUBER OF FUNCTION EVRLURTION3

PROBLEM U-6C



113

4.6.3 A Grid Algorithm

The grid algorithm described in Chapter 3 was tried on

problem C-4A. The initial grid had increments of .1 in each

coordinate and subsequent grids with increments of .01 and

.001 were used. After convergence of the DMC algorithm for

a given grid, the next smaller increments were selected, the

non-random complex generated using the previous solution as

the base point, and the DMC algorithm restarted. A solution

very close to that obtained by the DMC algorithm alone with

objective function value of -5.267 was obtained after 941

objective function and 1174 constraint evaluations. This is

about half the number of function and constraint evaluations

used by the DMC algorithm alone.

On problem C-7A the reduction in number of function and

constraint evaluations was less. A solution with objective

function value -3.295 was obtained by the grid algorithm

after 373 objective function and 481 constraint evaluations.

This represents a reduction in objective function and

constraint evaluations of about 10 percent.

4.6.4 Acceleration by Trajectory Analysis

The linear and quadratic trajectory analysis methods

were described in Chapter 3. The results of applying these



114

techniques, reported below, were gathered by using an

acceleration search over -the trajectory after each 10

iterations of the DMC algorithm. In each case where the

search along the trajectory located a solution better than

the current best solution, the current best vertex in the

complex was replaced by the new point.

The progress of the DMC algorithm, as well as the DMC

algorithm with trajectory analysis, on problem C-I is

illustrated in Figure 4-7. The three algorithm variations

arrive at three different local optima. The best solution

was found by the algorithm variant using quadratic

trajectory analysis and the worst was found by the algorithm

using linear trajectory analysis.

The results of using the trajectory based acceleration

on problem U-4D are illustrated in Figure 4-8. On this

problem all three algorithm variations arrive at the same

solution but the algorithm variation using quadratic

trajectories terminated after 907 function evaluations. The

DMC algorithm required 1137 function evaluations and the

variation using linear trajectories required 1329. That is,

using quadratic trajectory analysis required 20 percent

fewer and using linear trajectory analysis required 17

percent more function evaluations than did the DMC algorithm

alone. Thus, the quadratic trajectory acceleration can

result in locating the optimal solution with fewer function

evaluations. For problems with multiple local optima, the



115

0

0

7" x - 0 c
Y - OMC/QUAOR~rIC TRAJECTR0Y

0

c OMC/LINERR TRAJECTORY

c

| "

0

=0

NU FROF UNCIO EIC/OUOT[CN tR rrI0Y
~0

FIGURE 4-7. CHANGE IN FUNCTION VALUE Y3
NUMBER OF FUNCTION ELILUF[ONS

PROBLEM C-1



116

Nt0

(30

0 .

c.J

0

IN0
'00 000 9'6 12-0 10.02oO

cr BRO UNTO VLUTOS xO

FIUE45 HNEI uciNVLEV
NUBRo ucoO V~~iN

0RBEMU4



117

technique can divert the search so that different solutions

may be located from the same initial complex. The fact that

linear trajectories were less successful than the quadratic

trajectories can be attributed to the tendency of the linear

trajectory to introduce linear dependencies into the

complex.

4.6.5 Conclusions

The above sampling of composite algorithm options has

illustrated some successful applications. The ability of

the effective objective function formulation to allow search

from infeasible starting points was used to exploit the fact

that useful solutions to discrete problems are sometimes

found near the continuous optimum. A successful

decomposition algorithm was easy to implement simply by

initializing a starting complex to lie in a subspace. The

grid algorithm, based on the discrete search algorithm, was

demonstrated. Finally the quadratic acceleration scheme was

shown to be a useful addition to the DMC algorithm. Some

further ideas are discussed in the next chapter.



118

5 CONCLUSION

5.1 Summary

In this research a composite algorithm applicable to

mixed integer constrained nonlinear problems has been

developed. Throughout this research, the goal of solving

engineering design problems has been used to guide the

design of the algorithm. The composite algorithm is

implemented as an interactive computer program that allows

the designer to be involved in the optimization search. The

major component of the composite algorithm is a version of

the complex algorithm that incorporates modifications

previously proposed, but not previously combined, as well as

new modifications. The new modifications include the

incorporation of a unidimensional search component, a new

method for handling constraints based on an effective

objective function formulation of the problem, and new

termination criteria for the algorithm. Additional

algorithmic elements incorporated into the composite

algorithm include a new acceleration strategy based on

trajectory analysis, a new decomposition approach, and a

sequential grid reduction algorithm.



119

The modified complex algorithm has been tested on a

variety of problems primarily selected to represent

engineering design applications. Results of some options of

the composite algorithm are reported by example. The

results indicate that the modified complex algorithm is a

useful method for solving discrete, constrained, nonlinear

optimization problems and is more efficient than penalty

function extensions to discrete unconstrained algorithms.

Although the algorithm can successfully solve mixed integer

problems as well, it was shown that the use of discrete

approximation (treating variables as discrete with small

stepsize) was superior to treating the continuous variables

explicitly as continuous.

Some auxiliary techniques for the composite algorithm

were useful adjuncts to the complex algorithm. In

particular, the quadratic trajectory acceleration strategy

was demonstrated to require fewer function evaluations than

the DMC algorithm without acceleration. In addition, the

acceleration proved useful in redirecting the path of the

search so that, for problems with a number of local optima,

different solutions could be located. The decomposition

approach proposed is applicable to problems with a specific

structure. These problems can be solved more quickly by

successivly searching subspaces defined by groups of

interacting variables than by searching over all variables

simultaneously. The grid algorithm results in solving some



120

problems using fewer objective function and constraint

evaluations than used by the DMC algorithm alone. Finally,

the effective objective function formulation for

incorporating problem constraints allows infeasible starting

points to be used. This is particularly useful when a

feasible starting point is not readily available, or for

searching for a discrete solution in a specific vicinity

such as near the continuous optimum.

5.2 Suggestions for Further Research

In this research some new concepts for a search

algorithm have been implemented and tested. The suggestions

for additional research discussed below fall into three

areas: (1) ideas for improving efficiency of the

implementation of the algorithm, (2) suggestions for more

general applicability of concepts developed in this

research, and (3) some additional research ideas.

The alternative direction regeneration scheme for the

complex algorithm was suggested by Beveridge and Schechter

(4] and is an important part of the algorithm. Although

efficacious it sometimes requires a large number of function

(and for constrained problems, constraint) evaluations. On

certain problems a large proportion of the total number of

evaluations are due to this regeneration scheme. Two



121

approaches are suggested for improving efficiency. Either

an alternate regeneration method could be substituted or

criteria could be developed to regulate the use of the

existing method.

The discussion in Chapter 3 of the effective objective

function formulation for handling constraints makes note of

the fact that some efficiency can be gained by evaluating

the constraints sequentially. Even greater efficiency could

result from reordering constraint evaluations. The earlier

the violated constraint is evaluated the greater the savings

in computation. The simplest way to implement this is to

request that the designer program the constraints most

likely to be violated first. However, the designer may not

know which constraints these will be. A second approach is

to modify the program to store a simple history of which

constraints are most often violated. Based on this history

the order of evaluation of the constraints could be set

dynamically by the program.

The decomposition approach developed in this research

could use any search algorithm for search over the subspace.

In addition, the technique may be applicable to a wide

variety of problems because, at certain stages of solution,

the required conditions for lack of strong interaction

between subsets of variables may be temporarily satisfied.

What is needed is a method to automatically select the

subspace to be searched, letting groupings of the variables



122

into subspaces change as the search progresses.

The trajectory analysis acceleration scheme developed in

this research may also be applied to other search

algorithms. Any sequence of solutions that show a trend in

the objective function can be used for potential

acceleration by extrapolation.

The aim of the quadratic acceleration scheme is to

identify and search atong a valley of the objective

function. The current algorithm limits the total number of

objective function evaluations on any one unidimensional

search, thus, the accuracy in locating the lowest point in

the valley is limited. It may be that, for those

unidimensional searches that are used to locate points that

are later used in defining a quadratic trajectory,

additional accuracy in locating a minimum is justified. The

addicional accuracy in locating the minimum on the

unidimensional searches should yield a more accurate

identification of the valley and hence more progress may be

made in searching along the trajectory. The trade-off

between the accuracy on the unidimensional searches (and

simultaniously the number of objective function evaluations)

and the success of the quadratic trajectory extrapolation

should be investigated.

Another trade off to be evaluated is the size of the

initial complex and the robustness of the modified complex

algorithm. The nonrandom starting complex used in this



123

research was made as large as possible by setting variables

to the bounding values (see Chapter 3). Of course the

variables could be set any percentage of the distance from

the initial point to the boundry. The large initial complex

is expected to result in the most thorough search of the

feasible region. A smaller initial complex might be

expected to shorten the search, that is, convergence

criteria should be satisfied after fewer objective function

evaluations.

The following modification to the complex algorithm

could prevent the distortion of the complex which occurs

when a unidimensional search locates a point that is remote

from the other points in the complex. Rather than

proceeding with this distorted complex, it might be

advantageous to create a new complex about this point. This

could be done either by translating the existing complex or

by using the complex initialization scheme.

Finally, it can be noted that as the complex algorithm

proceeds, redundancies can occur in the complex vertexes.

That is, the same, or nearly the same, point may be present

as more than one vertex. This can be avoided by

periodically generating a new complex with the

initialization scheme or by using a solution found by the

quadratic trajectory acceleration scheme to replace a

redundant vertex.



124

In summary, this research has developed and implemented

a new optimization algorithm which is particularly suited

for engineering design problems. The algorithm is

implemented in the form of an interactive, composite

algorithm. Elements of the algorithm employ straightforward

techniques to enforce discreteness of variables and problem

constraints. The algorithm has been tested using problems

selected to represent engineering design applications, and

the success of the algorithm on these problems is most

promising.



125

REFERENCES

[1] Avriel, M., Nonlinear Programming Analysis and Methods,
Prentice-Hall Inc., 1976

[2] Bartle, R. G., The Elements of Real Analysis, John Wiley
and Sons, 1964

[3) Beightler, C. S. and Philips, D. T., Applied Geometric
Programming, John Wiley and Sons, 1976

[41 Beveridge, G. S. and Schechter, R. S., Optimization:
Theory and Practice, McGraw-Hill, 1970

[51 Box, M. J., "A New Method of Constrained Optimization
and a Comparison with Other Methods", Computer Journal,
Vol. 8, No. 1, Apr. 1965, pp. 42-52

[6) Box, M. J., "A Comparison of Several Current
Optimization Methods, and the Use of Transformations in
Constrained Problems", Computer Journal, Vol. 9, No. 1,
May 1966, pp. 67-77

[71 Buffa, E. S., "Empirical Tests of Constrained Nonlinear
Optimization Algorithms", Decision Sciences, Vol. 8,
No. 2, Apr. 1977, pp. 445-464

[8] CarrollC.W., "The Created Response Surface Technique
for Optimizing Nonlinear Restrained Systems",
Operations Research, Vol. 9, No. 2, Mar-Apr. 1961, pp.
168-184

[9) Cella, A. and Soosaar, K., "Discrete Variables in

Structural Optimization", in Optimum Structural Design,
ed. Gallagher, R. H. and Zienkiewicz, 0. C., John Wiley

and Sons, 1973

[10] Chanaratna, V., "Discrete Structural Optimization",
Ph. D. Dissertation, Department of Civil Engineering,
University of Illinois, 1978

[11] Colville, A. R., "A Comparative Study of Nonlinear
Programming Codes", IBM N.Y. Science Center Report
320-2949, Jun. 1968

[121 Courant, R., "Variational Methods for the Solution of
Problems of Equilibrium and Vibrations", Bulletin of
the American Mathematical Society, Vol. 49, Jan.-Dec.
1943, pp. 1-23



126

[13] Davies, D. and Swann, W. H., "Review of Constrained
Optimization", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 247-258

[14] de Silva, B. M. E., "The Application of Nonlinear
Programming to the Automated Minimum Weight Design of
Rotating Disks", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 115-150

[15] Eason, E. D. and Fenton, R. G., "A Comparison of
Numerical Optimization Methods for Engineering Design",
Transactions of the ASME, Journal of Engineering for
Industry, Vol. 96, Ser. B, No. 1, Feb. 1974, pp.
196-200

[16] Fiacco, A. V. and McCormick, G. P., Nonlinear

Programming: Sequential Unconstrained Minimization
Techniques, John Wiley and Sons, 1967

[17) Fiacco, A. V. and McCormick, G. P., "The Sequential
Unconstrained Minimization technique for Nonlinear
Programming, A Primal-Dual Method", Management Science,
Vol. 10, No. 2, Jan. 1964, pp. 360-365

[18) Fletcher, R., "A Review of Methods for Unconstrained
Optimization", in Optimization, ed. Fletcher, R.,
Academic Press, 1969

[19] Fletcher, R., "Function Minimization without Evaluating
Derivatives - a Review", Computer Journal, Vol. 8, No.

1, Apr. 1965, pp. 33-41

[201 Fletcher, R. and Powell, M. J. D., "A Rapidly

Convergent Descent Method for Minimization", Computer
Journal, Vol. 6, No. 2, Jul. 1963, pp. 163-168

[21] Fox, R. L., Optimization Methods for Engineering
Design, Addison-Wesley, 1971

[22] Gallagher, R. H., "Fully Stressed Design", in Optimum
Structural Design, ed. Gallagher, R. H. and
Zienkiewicz, O.C., John Wiley and Sons, 1973, pp. 19-32

[231 Gallagher, R. H., "Terminology and Concepts", in
Optimum Structural Design, ed. Gallagher, R. H. and
Zienkiewicz, O.C., John Wiley and Sons, 1973, pp. 7-17

[24] Gisvold, K. M. and Moe, J., "A Method for Nonlinear
Mixed-Integer Programming and its Application to Design
Problems", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 94, Ser. B, No. 2, May
1972, pp. '53-364



127

(25) Glankwahmdee, A., "Unconstrained Nonlinear Discrete
Search", Ph. D. Dissertation, Department of Mechanical
and Industrial Engineering, University of Illinois,

1976

[26] Glankwahmdee, A., Liebman, J. S. and Hogg, G. L.,
"Unconstrained Discrete Nonlinear Programming",
Engineering Optimization, Vol. 4, No. 2, 1979, pp.
95-107

[27] Glover, F., and Sommer, D., "Pitfalls of Rounding in
Discrete Management Decision Problems", Decision
Science, Vol. 22, No. 4, Dec. 1975, pp. 455-460

[28) Grey, D. S., "Boundry Conditions in Optimization
Problems", in Recent Advances in Optimization
Techniaues, ed. Lavi, A. and Vogl, T. P., John Wiley
and Sons, 1965

[29] Guin, J. A., "Modification of the Complex Method of
Constrained Optimization", Computer Journal, Vol. 10,
No. 4, Feb. 1968, pp. 416-417

[30) Hati, S. K. and Rao, S. S., "Determination of Optimum

Machining Conditions - Deterministic and Probilistic
Approaches", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 98, Ser. B, No. 1, Feb.
1976, pp. 354-359

[31] Heinin, C., "Computational Techniques for Optimizing

Systems with Standby Redundancy", Naval Research
Logistics Quarterly, Vol. 19, No. 2, Jun. 1972, pp.
293-308

(32] Himmelblau, D. M., Applied Nonlinear Programming,
McGraw-Hill, 1972

(33] Himmelblau, D. M., "A Uniform Evaluation of
Unconstrained Optimization Techniques:, in Numerical

Methods for Non-Linear Optimization, ed. Lootsma, F.
A., Academic Press, 1972, pp. 69-97

(34] Hooke, R. and Jeeves, T. A., "Direct Search Solution of

Numerical and Statistical Problems", Journal of the
Association for Computing Machinery, Vol. 8, No. 2,

Apr. 1961, pp. 212-229

[35] Ibaraki, T., Ohashi, T. and Mine, H., "A Heuristic
Algorithm for Mixed-Integer Programming Problems", in
Mathematical Programming Study 2, North-Holland
Publishing Co., 1974, pp. 115-136



128

[36] Khachaturian, N. and Horowitz, B., "Properties of
Optimal Structures", Proceedings of the Symposium on
Applications of Computer Methods in Engineering, ed.
Wellford, L. C. Jr., University of Southern California,
Vol. 1, Aug. 1977, pp. 533-542

[37] Kuester, J. L. and Mize, J. H., Optimization Techniques
with Fortran, McGraw-Hill, 1970

[38] Land, A. N., and Doig, A. G., "An Automatic Method of
Solving Discrete Programing Preblems", Econometrics,
Vol 28, No. 3, Jul. 1960, pp. 497-520

[39] Lasdon, L. S., Fox, R. L. and Ratner, M. W. , "An
Efficient One-Dimensional Search Proceedure for Barrier
Functions", Mathematical Programming, Vol. 4, No. 3,
Jun. 1973, pp. 279-296

[40] Liebman, J. S., Chanaratna, V., and Khachaturian, N.,
"Discrete Optimization in Structural Design",
Proceedings of the Symposium on Applications of
Computer Methods in Engineering, ed. Wellford, L. C.
Jr., University of Southern California, Vol. 1, Aug.
1977, pp. 553-562

[41) Luus, R., "Optimization of System Reliability by a New
Nonlinear Integer Programing Procedure", IEEE
Trancactions on Reliability, Vol. R74, No. 1, Apr.
1975, pp. 14-16

[42] Mischke, C. R., An Introduction to Computer-Aided
Design, Prentice-Hall Inc., 1968

[A31 Mitchel, R. A. and Kaplan, J. L., "Nonlinear
Constrained Optimization by a Nonrandom Complex
Method", Journal of Research of the National Bureau of
Standards, Engineering and Instrumentation, Vol. 72C,
No. 4, Oct.-Dec. 1978, pp. 249-258

[44] Moe, J., "Penalty-Function Methods", in Optimum
Structural Design, ed. Gallagher, R. H. and
Zienkeiwicz, 0. C., John Wiley and Sons, 1973, pp.
143-177

[45] Murray, W., "An Algorithm for Constrained
Minimization", in Optimization, ed. Fletcher, R.,
Academic Press, 1969, pp. 247-258

[463 Nelder, J. A. and Mead, R., "A Simplex Method for
Function Minimization", Computer Journal, Vol. 7, No.
4, Jan. 1965, pp. 308-313



129

[47) Pappas, M., "Use of Direct Search in Automated Optimal
Design", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 94, Ser. B, No. 2, May
1972, pp. 395-401

[48] Pappas, M. and Allentuch, A., "Mathematical Programming
Proceedures for Mixed Discrete-Continuous Design
Problems, Transactions of the ASME, Journal of
Engineering for Industry, Vol 96, Ser. B, No. 1, Feb.
1974, pp. 201-209

[49] Pappas, M. and Amba-Roa, C. L., "A Direct Search

Algorithm for Automated Optimum Structural Design",
AIAA Journal, Vol. 9, No. 3, Mar. 1971, pp. 387-393

[50) Pappas, M. and Moradi, J. Y., "An Improved Direct
Search Mathematical Programming Algorithm", Transaction
of the ASME, Journal of Engineering for Industry, Vol.
96, Ser. B, No. 4, Nov. 1975, pp. 1305-1310

[51) Parkinson, J. M. and Hutchinson, D., "A Consideration
of Non-gradient Algorithms for the Unconstrained
Optimization of Functions of High Dimensionality", in
Numerical Methods for Non-linear Optimization, ed.
Lootsma, F. A., Academic Press, 1972, pp. 69-97

[52] Parkinson, J. M. and Hutchinson, D., "An Investigation
into Efficiency of Variants on the Simplex Method", in
Numerical Methods for Non-linear Optimization, ed.
Lootsma, F. A., Academic Press, 1972, pp. 115-135

[53] Paviani, D. A. and Himmelblau, D. M., "Constrained
Nonlinear Optimization by Heuristic Programming",
Operations Research, Vol. 17, 1969, pp. 872-882

[54] Powell, M. J. D., "An Efficient Method for Finding the
Minimum of a Function of Several Variables Without
Calculating Derivatives:, Computer Journal, Vol. 7, No.
2, Jul. 1964, pp. 155-162

[55] Ragsdell, K. M., "On Some Experiments Which Delimit the
Utility of Nonlinear Programming Algorithms", Working
Paper, Purdue University, 1978

[56] Ramamoorty, M. and Rao, P. J., "Comparative Study of
Optimization Methods for the Design of Polyphase
Reluctance Motors", Engineering Optimization, Vol. 3,
No. 1, 1977, pp. 51-60

[57) Rao, S. S. and Kumar, A., "Optimization of Cold Rolling
by Nonlinear Programming:, Transactions of the ASME,
Journal of Engineering for Industry, Vol. 100., Ser. B,
No. 2, May 1978, pp. 186-192



130

(58] Reiter, S. and Rice, D. B., "Discrete Optimizing

Solution Proceedures for Linear and Nonlinear Integer

Programming Problems", Management Science, Vol. 12, No.
11, Jul. 1966, pp. 829-850

[59] Rockafeller R. T., Convex Analysis, Princeton
University Press, 1970

[60] Root, R. R. and Ragsdell, K. M., "A Survey of
Optimization Methods Applied to the Design of

Mechanisms", Transactions of the ASME, Journal of
Engineering for Industry, Vol. 98, Ser. B, No. 3, Aug.
1976, pp. 1036-1041

[61] Rosenbrock, H. H. and Storey, C., Computational
Techniques for Chemical Engineers, Pergamon Press, 1966

[62] Schmit, L. A., "Automated Design", International
Science and Technology, No. 54, June 1966, pp. 63-78

and 115-117

(63] Schmit, L. A. Jr., Kicher, T. P. and Morrow, W. M.,

"Structural Synthesis Capability of Integrally
Stiffened Waffle Plates", AIAA Journal, Vol. 1, No. 12,
Dec. 1973, pp. 2820-2836

[64] Schuldt, S. B., Gabriele, G. A., Root, R. R., Sangren,
E. and Ragsdell, K. M., "Application of a New Penalty

Function Method to Design Optimization", Transactions

of the ASME, Journal of Engineering for Industry, Vol.
99, Ser. B. No. I, Feb. 1977, pp. 31-36

(65] Sheu, C. Y. and Prager, W., "Recent Developments in

Optimal Structural Design", Applied Mechanics Review,

Vol. 21, No. 10, Oct. 1968, pp. 985-992

(66] Simmons, L. M. and Pike, D. H., "A Mixed Integer Direct

Search Technique for the Optimization of Constrained
Non-linear Objective Functions", Working Paper,
University of Tennessee

[67] Seireg, A., "A Survey of Optimization of Mechanical
Design", Transactions of the ASME, Journal of

Engineering for Industry, Vol. 94, Ser. B, No. 2, May
1972, pp. 495-499

[68] Shanno, D. F. and Weil, R. L., "Management Science: A
View from Nonlinear Programming", Communications of the

Association for Computing Machinery, Vol. 15, No. 7,
Jul. 1972, pp. 542-549



131

(69] Smith, E. A. and Carpenter, W. C., "A Feasible
Direction Method Based on Zoutendijk's Procedure PI",
Engineering Optimization, Vol. 3, No. 2, Jan. 1978, pp.
109-112

(70] Spendley, W. and Hext, G. R., and Himsworth, R. R.,
"Sequential Applications of Simplex Designs in
Optimization and Evolutionary Operation",
Technometrics, Vol. 4, No. 4, Nov. 1962, pp. 441-461

[71] Stoecker, W. F., Design of Thermal Systems,
McGraw-Hill, 1971

[721 Taha, H. A., Integer Programming Theory, Applications,
and Computations, Academic Press, 1975

(73] Tillman, F. A., Ching-Lia, H. and Way, K., "Determining
Component Reliability and Redundancy for Optimum System
Reliability", IEEE Transactions on Reliability, Vol.
R26, No. 3, Aug. 1977, pp. 162-165

(74] Tuthill, S., ME393 Project Report to Prof. C. 0.
Pederson, University of Illinois, 1978

[75) Wasiutynski, Z. and Brandt, A., "The Present State of
Knowledge in the Field of Optimum Design of
Structures", Applied Mechanics Reviews, Vol. 16, No. 5,

May 1963, pp. 341-350

[76] Weisman, J. and Wood, C. F., "The Use of Optimal Search
for Engineering Design", in Recent Advances in
Optimization Techniques, ed. Lavi, A. and Vogl, T. P.,
John Wiley and Sons, 1965, pp. 219-228

(77] Wilde, D. J. and Beightler, C. S., Foundations of
Optimization, Prentice-Hall Inc., 1967

[78] Zangwill, W. I., "Nonlinear Programing Via Penalty
Functions", Management Science, Vol. 13, No. 5, Jan.
1967, pp. 344-358



132

APPENDIX 1.

This appendix contains the detailed numerical results

that are summarized in Chapter 4. The source of each

problem and a short description are given. Where the

objective function (and for constrained problems, the

constraint functions) is/are not simple expressions the

reader is referred to Appendix 2 where the FORTRAN code for

computing the objective and constraint functions is given.

Finally, for each algorithm tried on a problem, the number

of objective and constraint function evaluations, the

objective function value and the solution vector obtained

are given.

Problems labeled C-i to C-21 are the constrained test

problems. Problems labeled U-i to U-15 are the

unconstrained test problems.



133

PROBLEM PAGE PROBLEM PAGE

C-i 134 U-I 165

C-2 135 U-2 167

C-3 137 U-3 170

C-4 139 U-4 171

C-5 141 U-5 174

C-6 142 U-6 175

C-7 145 U-7 177

C-8 147 U-8 179

C-9 148 U-9 181

C-10 150 U-10 182

C-11 151 U-1I 183

C-12 152 U-12 184

C-13 153 U-13 185

C-14 155 U-14 186

C-15 157 U-15 187

C-16 158

C-17 160

C-18 161

C-19 162

C-20 163

C-21 164



134

PROBLEM: C-I

SOURCE: Beightler and Phillips [3], example 11.15, Alkylation process.

VARIABLES: 5

CONSTRAINTS: 14

MINIMIZE: see Appendix 2

SLTBJECT TO: see Appendix 2

BOUNDS: 1. < X(1) < 2000.

1. < X(2) < 16000.

1. < X(3) < 120.

1. < X(4) < 5000.

90. < X(5) < 95.

1.2 < X(6) < 4.

145. < X(7) < 162.

INCREMENTS: (.001 , .001 , .001 , .001 , .001 , .001 , .001)

STARTING POINT: (1745. , 12000. , 110. , 3048. , 92.8 , 3.6 , 145.)

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 29/29 -942.207 - F(1744.9969 , 11999.9999 , 109.9815

3048.0032 , 93.1549 , 93.1549 , 3.6 , 145)

FLEX 3161/146566 -1594.666 = F(1761.791 , 13584.0 , 78.4221 ,

3083.435 , 94.9969 , 1.6019 , 153.4129)

DMC 2151/2829 -1586.508 - F(1769.790 , 13695.600 , 78.781 ,

3089.990 , 94.999 , 1.613 , 153.317)



135

PROBLEM: C-2

SOURCE: Fox [21], design of two bar truss.

VARIABLES: 2

CONSTRAINTS: 2

MINIMIZE: F = .6 * 3.14159 * X(2) / 4. * .1 * SQRT(900. + X(1)**2)

SUBJECT TO: see Appendix 2

*** VARIATION A ***

BOUNDS: 10. < X(1) < 35.

4. < X(2) < 12.

INCREMENTS: (.001 , .001)

STARTING POINT: (30. , 10.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 57/57 12.813 - F(20.2369, 7.5134)

FLEX 820/3893 12.812 = F(20.2369, 7.5134)

DMC 141/200 12.813 - F(20.235 , 7.514)



136

*** VARIATION B ***

BOUNDS: as in variation A

INCREMENTS: (I. , I.)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG/R/NI 63/63 13.387 = F(19. , 8.)

G-2/P 212/212 13.387 - F(19. , 8.)

DMC 28/38 13.387 = F(19. , 8.)



137

PROBLEM: C-3

SOURCE: Eason and Fenton [15], problem 6, Journal Bearing Design.

VARIABLES: 2

CONSTRAINTS: 1

MINIMIZE: F-(.44 * X(1)**3/X(2)**2 + 10. * X(1) + .592 * X(1)/X(2)**3)/10.

SUBJECT TO: 8.63 * X(2)**3 / X(1) -I. < 0.

*** VARIATION A ***

BOUNDS: .1 < X(i) < 5. , i=1,2

INCREMENTS : (.001, .001)

STARTING POINT: (2.5 , 2.5)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 63/63 1.621 - F(1.2873 , .5305)

FLEX 321/2252 12.813 F(20.237 , 7.513)

DMC 338/573 1.621 - F(1.291 , .531)

*** VARIATION B ***

BOUNDS: as in variation A

INCREMENTS: as in variation A

STARTING POINT: (3. , .7)

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 94/94 1.621 - F(1.2873 , .5305)

FLEX 210/933 1.621 - F(1.2886 , .5307)

DMC 195/294 1.621 - F(1.298 , .532)



138

*** VARIATION C ***

BOUNDS: as in variation A

INCREMENTS: (.1 , .1)

STARTING POINT: (2.5 , 2.5)

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/Nl 99/99 1.672 - F(1.125 , .5)

G-2/P NO FEASIBLE SOLUTION

DMC 87/178 1.672 - F(1.125 , .5)

VARIATION D ***

BOUNDS: as in variations A

INCREMENTS: (.1 , .1)

STARTING POINT: (3. , .7)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 68/68 1.672 - F(1.125 , .5)

G-2/P 309/309 1.736 - F(1.25 , .5)

DMC 51/93 1.672 - F(1.125 , .5)



139

PROBLEM: C-4

SOURCE: Box [5], problem A. Himmelblau [32J, problem 13.

VARIABLES: 5

CONSTRAINTS: 6

MINLMIZE: F - (CO + CI * X(1) + C2 * X(1) * X(2) + C3 * X(1) * X(3) +

C4 * X(1) * X(4) + C5 * XC1) * X(5)) * (-.000001)

SUBJECT TO: 0. < C6*X(I) + C7*X(1)*X(2) + C8*X(1)*X(3) +Cg9*X() * X(4) +

CIO * X(1) *X(5) < 294000.

AID: 0. < CII*X(1) + C12*X(1)*X(2) + C13*X(1)*X(3) + CI4*X(1) *

X(4) + C15 * X(1) * X(5) < 294000.

AND: 0. < C16*X(1) + C17*X(I)*X(2) + C18*X(1)*X(3) + C19*X(1) *

X(4) + C20 * X(1) * X(5) < 277200.

*** VARIATION A ***

BOUNDS: 0. < X(C) < 5.

1.2 < X(2) < 2.4

20. < X(3) < 60.

9.0 < X(4) < 9.3

6.5 < X(5) < 7.

INCRE ENTS: (.001 , .001 , .001 , .001 , .001)

STARTING POINT: (2.52 , 2. , 37.5 , 9.25 , 6.8)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 60/60 -5.208 - F(4.5374 , 2.4 , 60. , 9.3 , 7)

FLEX 1720/50991 -5.262 - F(4.5584 , 2.3383 , 59.999 , 9.2997 , 7.)

DMC 2180/2593 -5.276 - F(4.559 , 2.379 , 59.894 , 9.299 , 6.996)



140

*** VARIATION B 
**1

BOUNDS: as in variation A

INCREMENTS: (I. , 1. , 1. , 1. , 1.)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 66/66 -4.806 = F(5. , 2. , 59. , 9. , 7.)

G-2/P 38/38 -4.704 = F(5. , 2. , 60. , 9. , 7.)

DMC 69/69 -4.837 = F(5. , 2. , 20. , 9. , 7.)

*** VARIATION C **

BOUNDS: as in variations A

INCREMENTS: (.25 , .25 , .25 , .25 , .25)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 66/66 -5.028 - F(4.5 , 2.25 , 60. , 9.25 , 7.)

G-2/P 153/153 -5.054 - F(4.5 , 2.25 , 20. , 9.25 , 7.)

DMC 91/102 -5.153 = F(4.75 , 2. , 28.75 , 9.25 , 7.)



141

PROBLEM: C-5

SOURCE: Box [5], problem B.

VARIABLES: 2

CONSTRAINTS: 3

MINLMIZE: F = -((9. - (X(1) - 3)**2) * X(2)**3 / (27. * SQRT(3.)))

SUBJECT TO: 0. < X(1) + SQRT(3.) * X(2) < 6.

AND: X(2) - X(1) / SQRT(3.) < 0.

BOUNDS: 0. < X(i) < 100. , i = 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (1. , .5)

NiUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 19/19 -1. - F(3. , 1.7321)

FLEX 354/2740 -1. - F(3. , 1.7320)

DMC 142/212 -1. - F(3. , 1.732)



PROBLLM: C-6

SOURCE: Eason and Fenton F15', problem 7, Fl ;wheel design.

VARIABLES: 3

CCNSTRAINTS: 2

MINLMIZE: F = (-.0201 * X(1)**4 * X(2) * X(3)**2) / I.E7

SUBJECT TO: X(1)**2 * X(2) - 675. < 0.

AND: (X(1) * X(3))**2 / 1.E7 - .419 < 0.

* ** VARIATION A

3OUNDS: 0. < K(l) < 36.

0. < X(2) < 5.

0. < X)3) < 125.

INCRIMENTS: (.001 , .001 , .901)

STARTING POINT: (22.3 , .5-, 125.)

NLMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULLT

GRG 71/71 -5.685 = F(16.3756 , 2.5172 , 125.)

FLEX 630/7808 -5.682 = F(17.187 , 2.2842 , 119.102)

DMC 530/704 -5.6846- F(3i.669, .673 , 64.635)



143

*** VARIATION B ***

BOUNDS: as in variation A

INCREMENTS: (I. , 1. , 1.)

STARTING POINT: as in variation A

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/N1 75/75 -4.770 = F(15. , 3. , 125)

G-2/P NO FEASIBLE SOLUTION

DMC 79/114 -5.151 F(25. , 1. , 81.)

*** VARIATION C ***

BOUNDS: as in variation A

INCREMENTS: (.5 , .5 , .5)

STARTING POINT: as in variation A

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 75/75 -5.146 = F(16. , 2.5 , 125)

G-2/P NO FEASIBLE SOLUTION

DMC 109/148 -5.294 = F(36. , .5 , 56.)



144

*** VARIATION D ***

BOUNDS: as in variation A

INCREMENTS: (.25 , .25 , .25)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 75/75 -5.475 = F(16.25 , 2.5 , 125.)

G-2/P NO FEASIBLE SOLUTION

DMC 169/220 -5.436 = F(36. , .5 , 56.75)



145

PROBLEM: C-7

SOURCE: Eason and Fenton [15], problem 2, post office parcel.

VARIABLES: 3

CONSTRAINTS: 2

MINIMIZE: -X(1) * X(2) * X(3) * .001

SUBJECT TO: 0. < X(1) + 2. * (X(2) + X(3)) < 72.

*** VARIATION A ***

BOUNDS: 0. < X(1) < 20.

0. < X(2) < 11.

0. < X(3) < 42.

INCREMENTS: (.001 , .001 , .001)

STARTING POINT: (10. , 10. , 10.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 25/25 -3.3 - F(20. , 11. , 15.)

FLEX 373/3796 -3.3 = F(19.9990 , 10.9977 , 15.0028)

DMC 417/512 -3.299 = F(19.982 , 11.0 , 15.009)



146

*** VARIATION B ***

BOUNDS: as in variation A

INCREMENTS: (1. , 1. , 1.)

STARTING POINT: as in variation A

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG/R/NI 29/29 -3.3 = F(20. , 11. , 15.)

G-2/P 126/126 -3.075 = F(20. , 11. , 14.)

DMC 91/117 -3.2 - F(20. , 10. ", 16.)



147

PROBLEM: C-8

SOURCE: Himmelblau [32], problem 4, Chemical equalibrum.

VARIABLES: 7

CONSTRAINTS: 6

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 0. < X(1) < 2.

0. < X(5) < .5

0. < X(i) < 1. , i = 2,3,4,6,7

INCREMENTS: (.001 , .001 , .001 , .001 , .001 , .001 , .001)

STARTING POINT: (.25 , .25 , .25 , .25 , .25 , .25 , .25)

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 89/89 -46.566 = F(.2214 , .3429 , .3159 , 0. , .5 , 0.

.2231)

FLEX 272/6004 -47.623 = F(.7170 , .1761 , .6976 , .0038 , .4878

.0205 , .0009)

DMC 1815/1944 -47.761 - F(.042 , .142 , .788 , .001 , .486

.001 , .018)



148

PROBLEM: C-9

SOURCE: Eason and Fenton [15], problem 1. Himmelblau f321, problem 10.

Colville [ I1 problem I.

VARIABLES: 5

CONSTRAINTS: 10

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

*** VARIATION A ***

BOUNDS: 0. < X(i) < 100. , i 1,...,5

INCREMENTS: (.001 , .001 , .001 , .001 , .001)

STARTING POINT: (0. , 0. , 0. , 0. , 1.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 113/113 -32.349 = F(.3 , .3335 , .4 , .4283 , .2240)

FLEX 395/9653 -32.348 - F(.3 , .3329 , .4 , .4272 , .2253)

DMC 714/948 -26.891 = F(O. , .389 , .250 , .721 , .257)



149

*** VARIATION B **

BOUNDS: as in A

INCREMENTS: as in A

STARTING POINT: (1. , i. , i. , . , 1.)

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 95/95 -32.349 F(.3 , .3335 , .4 , .4283 , .2240)

FLEX 812/17056 -32.349 = F(.3 , .3335 , .4 , .4283 , .2240)

DMC 703/1076 -32.131 = F(.283, .340, .392 , .449 , .216)



150

PROBLEM: C-10

SOURCE: Eason and Fenton [15), problem 3. Himmelbleu (32], problem 11.,

Colville (11], problem 3

VARIABLES: 5

CONSTRAINTS: 6

MINIMIZE: 5.3578547 * X(3)**2 + .8356891 * X(1) * X(5) + 37.293239 * X(1) -

40792.141

SUBJECT TO: 0. < 85.334407 +0056858 * X(2) * X(5) +.0006262 *X(1)* X(4) -

.0022053 * X(3) * X(5) < 92.

AND: 90. < 80.51249 + .0071317 * X(2) * X(5) + .0029955 * X(1) * X(2)

+ .0021813 * X(3)**2 < 110.

AND: 20. < 9.300961 + .0047026 * X(3) * X(5) + .0012547 * X(1) * X(3)

+ .0019085 * X(3) * X(4) < 25.

BOUNDS: 78. < X(1) < 102.

33. < X(2) < 45.

27. < X(i) < 45. , i = 3,...,5

INCREMENTS: (.001 , .001 , .001 , .001 , .001)

STARTING POINT: (78.62 , 33.44 , 31.07 , 44.15 , 35.32)

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 236/236 -30501.315 = F(78.5445 , 33.44 , 30.6952 , 44.15

35.2458)

FLEX 684/21906 -30665.54 - F(78. , 33. , 29.9953 , 45.

36. 7758)

DMC 871/1035 -30661.929 - F(78. , 33. , 30.018 , 44.999

36. 719)



151

PROBLEM: C-1I

SOURCE: Himmelblau [32], problem 14. Colville [11], problem 5.

VARIABLES: 6

CONSTRAINTS: 4

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(i) < 30000. , i =,...,4

-500. < x(5) < 30000.

INCREMENTS: (.001 , .001 , .001 , .001 , .001 , .001)

STARTING POINT: (8000. , 3000. , 14000. , 2000. , 300. , 10.)

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 109/109 258540.002 = F(9067.2894 , 3998.8284 , 14537.013

4192.7656 , 155.8287 , -84.3802)

FLEX 3316/72997 248694.6 - F(15639.23 , 4356.786 , 15999.52

3427.736 , 221.037 , -276.938)

DMC 3448/4756 247862.952 = F(13999.5 , 4000. , 15969.9

2756.56 , 209.542 , -231.954)



152

PROBLEM C-12

SOURCE: Himmelblau (32], problem 7. Colville (11, problem 8.

VARIABLES : 3

CONSTRAINTS: 14

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 200. < X(1) < 2000.

1000. < X(2) < 16000.

1. < X(3) < 120.

INCREMENTS: (.001 , .001 .001)

STARTING POINTS: (1745. , 12000. , 110.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 134/134 -870.659 F(1744.5231 , 12000.2622 , 107.7669)

FLEX 372/4407 -1162.037 F(1728.371 , 16000. , 98.1267)

DMC 386/431 -1162.036 - F(1728.370 , 16000. , 98.140)



153

PROBLEM: C-13

SOURCE: Unpublished, B. Famili, reinforced concrete bridge design.

VARIABLES: 5

CONSTRAINTS: 7

MINIMIZE: F = 2448. * X(1) * X(2) + 1224. * X(3) * X(4) + 7344. * X(5)

SUBJECT TO: .0435 - K(2) / X(l) < 0.

AND: .00667 - X(4) / X(3) < 0.

AlD: 555.678*X(2) + 277.84*X(3) - 2.5*X(1)*X(2)**3 - .5*X(1)*X(2) *

X(3)**2 - X(1) * X(2)**2 * X(3) - .0833 * X(3)**3 * X(4) < 0.

AND: 7615.6 - .0833*X(3)**3*X(4) - 2.5 X(1)*X(2)**3 - .5*X(1) *

X(2) * X(3)**2 - X(1) * X(2)**2 * X(3) < 0.

AND: 395.92*X(2) + 197.96*X(3) - .5*X(1)*X(2)*X(3)**2 - 2.5 * X(1) *

X(2)**3 - X(1) * X(2)*'2 * X(3) - .0833 * X(3)**3 * X(4) < 0.

AND: .0833*X(5)**2 + .0000283*X(I)**2 + .78*X(5) - .00948*X() < 0.

AND: .0222 * X(2) + .0111 * X(3) - 1. < 0.

*** VARIATION A ***

BOUNDS: 4. < X(1) < 20.

.3124 < X(2) < 2.

20. < X(3) < 80.

.3124 < X(4) < 1.

.1 < X(5) < 3.

INCREMENTS: (.001 , .001 , .001 , .001 , .001)

STARTING POINT: (18. , 1.8 , 60. , .7 , 2.)



NLMB ER OF

FlU:NCTION/

CONSTRAINT

ALGORIT'M EVALUAT:ONS RESLLT

GRG 130/130 46156.583 = F(14.7648 , .6423 , 46.8366 , .3124

.6853)

FLEX 408/13145 61586.68 F(17.5910 , .7652 , 53.6286 , .3576

.7028)

DMC 749/644 46684.291 = F(7.203 , 1.231 48.723 , .325 , .762)

*** VARIATION B ***

BOUNDS: as in variation A

INCREMENTS: (I. , .0625 , 1. , .0625 , .001)

STARTING POINT: as in variation A

NZBER OF
FUNCTION/

CONSTRAINT
ALGORITH-M EVALUATIONS RESL1T

GRG/R/N1 136/136 NO FEASIBLE SOLUTION

G-2/P 299/299 86392.368 = F(15. , 2. , 20. , .3125 , .722)

DMC 424/496 47401.848 - F(7. , .9375 , 56. , .375 , .767)



155

PROBLEM 

5-RCE: Himne-)alu .32, problem 16.

.LBTAB TS : 9

CONSTRJ 1 N'TIS: 13

MINIMIZE: F = -. 5*(X(1)*X(4) - X(2)*X(3) + X(3)*X(9) - X(5)*X(9) +

X(5) * X(8) - X(6) * X(7)

SLJECT TO: X(3)**2 + X(4)**2 - 1. < 0.

AD: X(9)**2 - 1. < 0.

A;D: X(5)**2 + X(6)**2 - 1. < 0.

AND: X(I)**2 + (X(2) - X(9))**2 - 1. < 0.

AND: (X(1) - X(5))**2 + (X(2) - X(6))**2 - 1. < 0.

A,': (X(1) - X(7))**2 + (X(2) X(8))**2 - 1. < 0.

AN.D: (X(3) X(5))**2 + (X(4) - X(6))**2 - 1. < 0.

AiD: (X(3) - X(7))**2 + (X(4) - X(S))**2 - 1. < 0.

AND: X(7)**2 + (X(8) - X(9))**2 - 1. < 0.

AND: X(2) * X(3) - X(1) * X(4) < 0.

AND: -X(3) * X(9) < 0.

AND: X(5) * X(9) < 0.

AND: X(6) * X(7) - X(5) * X(8) < 0.

BOUNDS: -1. < X(i) < 2. , i - 1,... ,8

0. < X(9) < 2.

:NCREMENTS: (.001 , .001 , .001 , .001 , .001 , .001 , .001 , .001 , .001)

STARTING POINT: (0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.)



156

NUMBER OF

FFUNCT!ON/

CON STRAINT
A .GORTHM EVALUATIONS RESULT

GRG 10/10 0.0 = F(. , 0. , 0 , . 0. 0. 0.

0.)

FLEX 1701/40049 -. 866 = F(-.9890 , .1479 , -. 6197 , -. 7849

-.9895 , .1442 , -. 6226 -. 7826 ,0.)

DMC 1563/1957 -. 865 = F(-.4I1 , -. 211 , .573 , -. 819 , -. 423

-. 906 , .584 , -. 112 , .899)



157

PROBLEM: C-15

SOURCE: Ragsdell and Phillips [551, optimal welded structure.

VARIABLES: 4

CONSTRAINTS: 5

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: .125 < X(i) < 10. , i = 1,4

.125 < X(i) < 3. , i = 2,3

INCREMENTS: (.001 , .001 , .001 , .001)

STARTING POINTS: (4. , 2. , 1. , 7.)

NUMBER OF

FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG 345/345 2.381 = F(8.2915 , .2444 , .2444 , 6.2184)

FLEX 1125/12919 2.381 = F(8.2914 , .2444 , .2444 , 6.2181)

DMC 1388/1793 2.602 = F'8.281 , .245 , .189 , 9.017)



158

PROBLEM: C-16

SOURCE: Himmelblau (32], problem 22. U.S. Steel problem.

VARIABLES: 6

CONSTRAINTS: 4

MINIMIZE: 4.3*X(1) + 31.8*X(2) + 63.3*X(3) + 15.8*X(4) + 68.5"*X(5) +

4.7 * X(6)

SUBJECT TO: 32.97 - 17.1*X(1) - 38.2*X(2) - 204.2*X(3) - 212.3*X(4) -

623.4*X(5) - 1495.5*X(6) + 169.*X(1)*X(3) + 3580.*X(3)*X(5) +

3810.*X(4)*X(5) + 18500.*X(4)*X(6) + 24300.*X(5)*X(6) < 0.

AND: 25.12 - 17.9 * X(1) - 36.8 * X(2) - 113.9 * X(3) -

169.7 * X(4) - 337.8 * X(5) - 1385.2 * X(6) + 139. * X(1) *

X(3) + 2450. * X(4) * X(5) + 16600.* X(4) * X(6) +

17200. * X(5) * X(6) < 0.

AND: -124.08 + 273.* X(2) + 70. * X(4) + 819.* X(5) -

26000.* X(4) * X(5) < 0.

AND: -173.02 - 159.9 * X(1) + 311. * X(2) - 587.* X(4) -

391.* X(5) - 2198.* X(6) + 14000.* X(1) * X(6) < 0.

BOUNDS: 0. < X(1) < .31

0. < X(2) < .046

0. < X(3) < .068

0. < X(4) < .042

0. < X(5) < .028

0. < X(6) < .0134

INCREMENTS: (.001 , .001 , .001 , .001 , .001 , .001)

STARTING POINT: (.212 , .043 , .065 , .033 , .018 , .012)

mm _MI



159

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG 133/133 4.071 = F(0. , 0. , .063 , 0. , 0. , .0134)

FLEX 48/5353 5.271 = F(.1771 , .0169 , .0576 , .0124 , .0010

.0131)

DMC 328/598 5.494 F(.054 , .028 , .066 , 0. , .002 , .012)



160

PROBLEM: C-17

SOURCE: Chanaratna [10], Reinforced Concrete Beam.

VARIABLES: 2

CONSTRAINTS: I

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(1) < 77

12. < X(2) < 40.

INCREMENTS: (1. 1.)

STARTING POINT: (74. , 24.)

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRC/R/Nl 94/94 379.2 - F(65. , 16.)

G-2/P 159/159 381.96 - F(66. , 15.)

DMC 53/86 381.486 F(67. , 14.)



lbI

PROBLEM: C-18

SOURCE: Chanaratna [10], Reinforced Concrete Beam.

VARIABLES: 2

CONSTRAINTS: 1

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: I. < X(1) < 77.

12. < X(2) < 40.

INCREMENTS: (1. , 1.)

STARTING POINT: (74. , 24.)

NUMBER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 77/77 499.32 = F(63. , 17.)

G-2/P 118/118 499.32 = F(63. , 17.)

DMC 49/68 499.2 = F(65. , 16.)



162

PROBLEM: C-19

SOURCE: Gisvold and Moe [24], Hatch cover.

VARIABLES: 2

CONSTRAINTS: 4

MIMINIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(1) < 20.

1. < X(2) < 4.

INCREMENTS: (1. , 1.)

STARTING POINT: (7. , 3.)

NUMB ER OF
FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/NI 68/68 109 - F(7. , 2.)

G-2/P 82/82 124.64 - F(5. , 4.)

DMC 21/30 109 - F(7. , 2.)



163

PROBLEM: C-20

SOURCE: Unpublished, R. L. Judd, Shell and Tube Condenser.

VARIABLES: 6

CONSTRAINTS: 5

MINIMIZE: see Appendix 2

SUBJECT TO: see Appendix 2

BOUNDS: 1. < X(i) < 6. , i = 1,2

2. < X(3)) < 5.

1. < X(i) < 100. , i = 4,5

100. < X(6) < 6200.

INCREMENTS: (I. , 1. , 1. , 1. , 1. , 1. )

STARTING POINT: (5. , 3. , 4. , 4. , 5. , 800.)

NUMBER OF
FUNCTION/

CONSTRAINT
ALGORITHM EVALUATIONS RESULT

GRG/R/N1 1069/1069 1352.602 - F(6. , 6. , 2. , 3. , 37. , 799.)

G-2/P 145/145 1317.687 - F(6. , 4. , 3. , 2. , 25. , 684.)

DMC 405/751 1227.655 - F(6. , 5. , 2. , 3. , 30. , 612.)



164

PROBLEM: C-21

SOURCE: Chanaratna (10], wooden frame

VARIABLES: 2

CONSTRAINTS: 3

MINIMIZE: 1152. * X(1) + 864. * X(2)

SUBJECT TO: -(1.8 - 2.25 / X(1) - 5832. / ((12. + 5.33*X(2)**3 / X(1)**3)*

X(1)**2) < 0.

AND: -(1.8 - 4.5/((8. + 3.56*X(2)**3!X(1)**3)*X(2)) - 5832/((12. +

5.33**X(2)**3 / X(1)**3) * X(2)**2 < 0

AND: -1.8 - 4.5/((8. + 3.56*X(2)**3/X(1)**3)*X(2)) -(729. - 5832/

((12. +5.33 * X(2)**3 / X(1)**3) 8X(2)**2) < 0

BOUNDS: 1. < X(i) _ 100. , i 1,2

INCREMENTS: (I. , 1.)

STARTING POINT; (30. , 30.)

NUMBER OF

FUNCTION/
CONSTRAINT

ALGORITHM EVALUATIONS RESULT

GRG/R/N1 78/78 NO FEASIBLE SOLUTION

G-2/P 183/183 20448 - F(2. , 21.)

DMC 74/85 24768 - F(2. , 26.)



165

PROBLEM: U-i

SOURCE; Glankwahmdee [25), problem 1. Adapted from Kuester and '-Iize [372.

VARIABLES: 2

MINIMIZE: F = -(3803.84 + 138. * X(1) + 239.92 * X(2) - 123.08 *

X(1)**2 - 203.64 * X(2)**2 - 182.25 * X(1) * X(2))

BOUNDS: -100 < X(i) < 100 , i=1,2

INCREMENTS: (1. , 1.)

STARTING POINT: (30. , 10.)

*** VARIATION A ***

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

COMPLEX 47 -3754.2 = F(-1. , 1.)

G-2 61 -3840.12 = F(O. , 1.)

DMC 96 -3840.12 = F(O. , 1.)

*** VARIATION B ***

BOUNDS: -100 < X(i) < 100 , i - 1,2

INCREMENTS: (I. , 1.)

STARTING POINT: (10. , 30.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

COMPLEX 57 -3587.7 - F(2. , 0.)

G-2 51 -3040.12 - F(0. , 1.)

DMC 89 -3040.12 = F(O. , 1.)



166

*** VARIATION C ***

BOUNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (10. , 30.)

NUMBER OF

FUNCTION
ALGORITHM EVALUATIONS RESULT

M 191 -3877.358 = F(.186115 , .555804)

G-2 186 -3877.358 - F(.186 , .506)

DMlC 209 -3877.358 = F(.186 , .506)

*** VARIATION D ***

BOUNDS: -100. < X(i) _ 100. , i = 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (30. 10.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 187 -3877.358 = F(.186133 , .505795)

G-2 233 -3877.358 = F(.186 , .506)

DMC 244 -3877.358 = F(.186 .506)



167

PROBLEM: U-2

SOURCE: Glankwahmdee 725:, problem 2. Hi=elblau [321, number 28.

VARIABLES: 2

MINLMIZE: F = (X(I)**2 + X(2) - 11.)**2 + (X(1) + X(2)**2) - 7.)**2

*** VARIATION A ***

BOUNTDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS : (I. , 1.)

STARTING POINT: (-10. , -10.)

NUMBER OF
FUNCTION

ALGORIT1HM EVALUATIONS RESULT

COMPLEX 43 26. - F(2. , 2.) = F(3. , 3.)

G-2 25 8. F(-4. , -3.)

DMC 91 8. = F(-4 , -3.)

*** VARIATION B **

BOUNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS: (1. , 1.)

STARTING POINT: (-10. , 10.)

NUMBER OF

FUNCTION
ALGORITHM EVALUATIONS RESULT

COMPLEX 37 50. * F(3. , -3.)

G-2 19 2. = F(-3. , 3.)

DMC 95 2. = F(-3. , 3.)



i68

VARIATION C

3OUNDS: -110. < X(i) < 100. , i = 1,2

INCREMENTS: (I. ,

STARTING POINT: (8. , 3.)

NUMBER OF
FUNCTION

ALGOR I THEM EVALUATIONS RESULT

COMPLEX 67 0. = F(3. , 2.

G-2 39 0. = F(3. , 2.)

DMC 89 0. - F(3. , 2.)

VARIATION D ***

BOLNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (-10. , -10.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

TM 174 1.59E-8 = F(-3.7793 , -3.2732)

G-2 108 4. 1OE-5 - F(-3.780 , -3. 284)

DMC 236 5.49E-6 - F(-3.779 , -3.283)

CMC 198 3.01E-6 - F(-3.7795 , -3.2834)

* VARIATION E ***

BOUNDS: -100. < X(i) < 100. , i = 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: (-10. , 10.)



169

EMB ER OF

FUNCTION
Ah0O.RiP EVALUATIONS RESUL

NM 172 7.86E-8 = F(3.00003 , 1.99993)

0-2 32 4.22E-6 = F(-2.805 , 3.131)

DMC 274 0. = F(3. , 2.)

*** VARIATION F ***

BOUNDS: -100. < X(i) < 100. , i = 1,2

1'.CREMENTS: (.001 , .001)

STARTING POINT: (3. , 3.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 190 1.47E-7 = F(2.99997 , 1.99994)

G-2 71 1.70E-5 = F(3. , 1.999)

DMC 335 0. = F(3. , 2.)



SOUR E: lankwandee '25, , prolilen 3, pro-bjem '--2 scalec

- - K, X(1)* ~ 2. *X(
2
, i 2- 3 * --

X(2)**2 7.**-

SVARIATION A *

0'' D S: -1C <X < <). ,i ,

~LkR:NGPOINT: (-. -1)

UMBER OF

FUN;CTION'
.LG0RIT.LM E-:V.A LU:ATION.1S RESULT

COMIPLEX 4 0 0. F(I. , )

, 238 L. ( ,1 .

DM0 39 0. =F(l.

SVARIATION 3**

BOUNS: -00. < X(i4) < 100. ,i = 1,2

N CREMENTS: (.001 , .001)

7AR7ING POINT: ( -10. ,-10)

NUMBER OF
FUNCT ION

A LGORITHM EVALUATIONS RESULT

NM197 2. 10E-7 F(.99997 , .00005)

0-228 -SOE-5 7(l. ,.999')

XIC 220r 4-IOE-5 =F(-1.260O , -1.642)



?FC¢.3 L 5E2M: 7-2

S27?.CE: }irkame 2g , prshLe -.. .E-mmeLbLau. "II " -

?.snrsck< s functi:

A.RIABLES : 2

,:.... Z:F = 1O(. * (( - X(I}*'2)*,2 - (1. - X1)*

VAR:ATION A

......S: -LI0. < X(i) <100. ,i = 1,2

STA-RTING ?0O ",T: (-,2. , 1 .

NMB ER OF
FUN.C T 1

ALGRT hM EVALUATIONS RESULT

COMPLEX "34 9. = F(W. , 16.

S - 2 " 1 0 1 . = F ( 2 -

LMr; 9. = F(4. , 16.~

• ** AR:AT:ON 3

RO--'N-S: - • C. /( _ 1. , i = 1,2

[:NcREMEN,-S: ( .1. , .1)

START:NG POINT: (-1.2 1 .)

NUMBER OF

- zLiO H ' EVALUAT:ONS RESULT

nbnPLEX 7p .5 = F(.2 ,C.

.8 = F(.2 , 0.

:,f ' 5 . = F(1. , .



NLMBER OF

FUNCT I ON
HM EVALUATIONS RESULT

.M, EX 35 = F(-. , EX.)

49. - 36.)

'64. = 3. .)

VARIATION D

3,C..,u3: -100 < Xi) _ iO0. , 
= 1,?

I'U-.M '; (. 1 O , 0 l

NUM3-ER OF

ALGR: -';A 7 
"AT -NS S ...

546 8.05E-8 = F(.00 , 1.02)

--- 916 8.17E-5 = F(I.009 1.013)

HC i599 9.54 = F(3.5579 , 12.4358)

DMC 1137 0. = F(1. , 1.)

**VAR 7 AT IONE**

DUDS: -10. < X<(i) < 10. , i o1,2

:N;eREMFNT3: (. 0 0 1 , .00)

1:ART ::;e ?PIN:: ( -1. 2 1.



''MB3E R OF
F UNC TTION

.L OR :7:L" L.AUA:ONS R ISUL

TM 348 . = F(.999 ,.96)

-2 " .i7E-5 F F , 9K)

2Mc .45 2.24E-8 = F(1.0001 , .03)

DMC A32 n. - F(i. , 1.)

*** VARIATION F

3OU'DS: -CC. < X(i) < 100. , 1 1,2

:NCRZMENTS: (.]01 , .001)

S:'ARTING PO:IT: ( 10. , 30)

NUMBER OF
FUNCTION

L R OT'-lM EVALUATIONS RESULT

NM 63.98E-8 = F(.99995 , .99988)

0-2 50 20.2 = F(5.497 , 30.225)

DiC 1085 0. F( . , 1.)



2.2CE: (lankwanmdee "2 5, pr Lem 5.e

number 31.

VARALES: 2

MINIMIZE: see Appendix 2

*** VARIATION A ***

BOUYDS: -100. < X(i) < 100. , i = 1,2

D.CRMENS: (i. , 1.)

START:NG PO-T: (10

NLMBER OF

F NCTION
AL3OR ,-iM EVALUAT1ONS RESULT

COMPLEX L1 .84 = F(i. , 1.)

!-243 3 4 = 1( . , .)

DMC 83 .8g. = F(1. , 1.)

*** VARIATION 3 ***

30U'-DS: -100. < X(i) < 100. , i = 1,2

1NCREMENTS: (.001 , 00L)

STARTING ?OINT: (10. , 10.)

NUMBER OF

FUNCTION
ALGORITHM EVALUATIONS RESULT

.Y 162 .169043 = F(1.7953 , 1.3779)

,-2 209 .169044 - F(1.796 , 1.378)

DM0 207 .169045 - F(1.795 , 1.373)



175

?ROBLEM: U-6

SOURCE: Glankwahmdee [25:, problem 6. Himmelblau [32], number 26.

Fletcher and Powell [201.

VARIABLES: 4

MINLMIZE: F - (X(1) + 10. * X(())*'2 + 5. * (X(3) - X(4))**2 + (X(2) - 2. *

X(3))**4 + 10. * (X(1) X(4))**4

*** VARIATION A ***

3OUN'DS: -100. < X(i) < 100. , i =,...,4

INCRE ENTS: (1. , 1. , 1. , 1.)

STARTING POINT: (9. , 5. , -6. , 8.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

COMPLEX 215 690. = F(-12. , 1. , -1. , -12.)

G-2 140 0. = F(O. , 0. , 0. , 0.)

DMC 226 17. - F(I. , 0. , 1. , 1.)

• ** VARIATION B **

BOUNDS: -100. < X(i) < 100. , i = 1,...,4

INCREMENTS: (.001 , .001 , .001 , .001)

STARTING POINT: (9. , 5. , -6. , 8.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 704 1.41E-7 F(.00476 , -. 00044 , .0053 , .0054)

G-2 933 .01125 F(.056 , -. 005 , .034 , .034)

CMC 1930 11.28 F(-.3521 , -.0525 , -. 4775 , .4912)

DMC 2175 3.34E-7 - F(-.02 , .002 , -.01 , -.01)



176

**) VARIATION C **

BOUNDS: -100. < X(i) < 100. , i =

INCREMENTS: ( .001 , .001 , .001 , .001)

STARTING POINT: (3. , -1. , 0. , 1.)

NUMBER OF
FUNCTION

ALGORITIM EVALUATIONS RESULT

NM 422 5.89E-8 = F(-.000848 , .000065 , -. 000972

-.001033)

DMC 1202 -1,46E-7 = F(.O10 , -. 001 , -.001 , -.001)

*** VARIATION D ***

BOUNDS: -100. < K(i) < 100. , i - 1,...,4

INCREMENTS: (.001 , .001 , .001 , .001)

STARTING POINT: (10. ,-10. , 10. , -10)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 487 7.42E-7 - F(-.014031 , .001396 , -.013520

-.013648)

DMC 2772 6.38E-7 - F(-.020 , .002 , -.003 , -.003)



177

PRO3LKEM: U-7

S2URCE: Glankwahmdee :25 , problan 7. Adapted from Hinnelbau :32;

number 8. Wood's function.

VARLABLES: 4

MINIMIZE: F = 100. * (X(7) - X(!)**2)**2 + (I. - X(1l))**2 +

90. * (X(4) - X(3)**2)**2 + (I. - X(3))**2 +

10.1 * ((X(2) - 1.)**2 + (X(4) - 1.)**2) +

19.8 * (X(2) - 1.) * (X(4) - 1.)

• ** VARIATICN A ***

BOUN'DS: -100. < X(i) < 100. , i =

iNCREMENTS: (I. , 1. , 1. , 1.)

STARTING POINT: (-9. , -3. , -9. , -3.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

COMPLEX 20 0. (1. , 1. , 1. , .)

G-2 112 0. = F(1. , 1. , 1. , 1.)

DMC 215 8. = F(-I. , 1. , -1. , 1.)



173

*** VARIATION B *

BOLNDS: -100. < X(i) < 100. , i =

INCREMENTS: (.001 , .001 , .001 , .001)

STARTING POINT: (-9. , -3. , -9. -3.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 1809 6.23E-8 = F(1.00006 , 1.00015 , .999931 , .999867)

G-2 2206 8.46E-5 = F(.996 , .992 , 1.003 , 1.006)

CMC 1271 7.84 = F(-.6283 , .3917 , -1.2215 , 1.4886)

DMC 4211 3.60E-6 = F(.999 , .998 , 1.001 , 1.002)



179

PROBLEM: U-8

SOURCE: Glankwahmdee :25,, number 8.

VARIABLES: 5

MINIMIZE: see Appendix 2

*** VARIATION A ***

BOUNDS: -100. < X(i) < 100. , i ,...,5

INCREMENTS: (I. , 1. , 1. , 1. , 1.)

STARTING POINT: (0. , 0. , 0. , 0. , 1.)

NUMBER OF
FUNCTI ON

ALGORITHM EVALUATIONS RESULT

COMPLEX 200 -51. = F(1. , 1. , 1. , 1. , 1.)

G-2 360 -729 . F(O. , 11. , 23. , 17. , 7.)

DMC 94 -1. = F(O. , 0. , 0. , 1. , 1.)

*** VARIATION B **

BOUNDS: -100. < X(i) < 100. , i =,...,5

INCREMENTS: (1. , 1. , 1. , 1. , 1.)

STARTING POINT: (15. , 17. , 20. , 25. , 61.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

COMPLEX 368 -731. - F(O. , 13. , 24. , 18. , 6.)

G-2 463 -734. - F(O. , 12. , 21. , 16. , 5.)

DMC 724 -727 - F(O. , 11. , 24. , 17. , 8.)



*** "/RIT73 *

3 ?.: .: -l",. X'i < .

-,-ART:-G- ?OT- . C0 . . , . , -3.

NL3ER OF
- UNC !-ON

AILGO R ITHM EVALUATIONS RESULT

"M 677 -739.823 = F(-.2320 ,1.i.4891 22.2725 , 16.5397

-239 -739.823 = -(-.230 , 11.85 , 22.67 , i6.533

6.113)

DMC 30379 -739.823 = F(-.232 , 11.489 , 22.273 , . ,

6.115)

*** VARIATION 3 ***

BOLNDS: -S00. < X(i) < 00. , = .

:Nc....N.S: (.001 , .0 1 , .001 , .001 , .001)

ST R I G ?0:';T: (15. , 17. , 20. , 2 _5.. 6 . .

MLUMBER OF

UNCTION

-LGOR 14-M EVALUATIONS RESULT

NM 763 -739.823 - F(-2320 , 11.4872 , 22.2730 , 16.3401

6.11469)

0-2 2723 -739.823 = F(-.232 , 11.439 , 22.273 , 16.540

6.L15)

3MC 56172 -739.823 - F(-.233 , 11.489 , 22.273 , 16.541

6.115)



- 9 ~ - 0

(X~2) rnJ.) + 1.86) 1.7* .2+-..*

r3* -X(2) Xi

** VAR: A7101 A *

3,OUDS:i..< i( < 1 0. , = ,

STARTING ?'N 3. ,50.

NTNBER OF

Al G-,R : T TH EVALL'A::;-NS R :

NM -6 39-2323 F(5.9536 , .36.96,

2A.Ic ; 93 339,.6923 F'. 2841 '39)

DMC 37,) 5339.2528 = 35.954 , 5.i62';

VAR:AT:C4 3 *

303UNDS: I. < X(i) < 100. ,i=1,2

NCREZME lS . ( I. II )

STRTG?O)'-NT: (3. ,50.)

NUMBER OF
-7UNCTION

A-L,(P TILM EVALCAT D;)IS RESULT

,261 5339.385 - -(. 5.

M097 5339. 385 - F("6. ,.

D> SC 9" 7339.385 - F(6. 5.



- - - -
2f

,'A:A3LEs: 3

M:.NL ::X : see Appendix

3,-':t DS: . < . , X(i :3
:-NCRL-ME.'i: : ri. ,-1 , 1.

3":A2::TNG ?Q:N:: (13 . , 13. , 11 .,

-UNCTZ-;

A' CR:L-N -VALUA::Q5T S RESUL

1-2 !-,35.827 = F(18. , 19. 17.)

Z)MC 74 1235.098 = F(20. , 19. , 16.,

3D/EG: 6- 1435.098 =F 19. 16.



L r. -.

3QU-2S: 6,. < X' < 25. , i =

-:",A LC T , N-

:NCREME ;:3 1..

---9 3 .59-:, = " ,. 3 '

DC 2271.999 F'22

zD,,SECT 2,933.57 = F23. , 22.;



ff.';..- ZZ s ee .':setd,:x

o . - 77.g - - - . " .: = ., , ' ,

I C-
:I2421B i



A COMPOSITE ALGORITHM FOR MIXED INTEGER CONSTRAINED NONLINEAR 0--ETC(U)

UNCLASSIFIED AFITC-80-ID N

11111



185

PROBLEM: U-13

SOURCE: Eason and Fenton [15], Minimum inertia gear train.

VARIABLES: 2

MINIMIZE: F = .1 * (12. + X(1)**2 + (1. + X(2)**2 / X(1)**2 +

(X(1)**2 * X(2)**2 + 100.) I (X(1) * X(2))**4)

•** VARIATION A ***

BOUNDS: .5 < X(i) < 3. , i - 1,2

INCREMENTS: (.001 , .001)

STARTING POINT: ( .5 , .5)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 102 1.74415 = F(1.74352 , 2.02931)

CMC 176 1.74415 - F(1.7435 , 2.0297)

DMC 171 1.74415 - F(1.744 , 2.029)

• ** VARIATION B ***

BOUNDS: .5 < X(i) < 3. , i = 1,2

INCREMENTS: (.1 , .1)

STARTING POINT: (.5 , .5)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

G-2 50 1.745 - F(1.7 , 2.)

DMC 52 1.746 - F(1.7 , 1.9)

SD/SECT 38 1.745 - F(1.7 , 2.)



186

PROBLEM: U-14

SOURCE: Rosenbrock and Storey [61], Heavy Water Plant.

VARIABLES: 3

MINIMIZE: see Appendix 2

BOUNDS: 1. < X(1) < 20.

250. < X(2) < 500.

223. < X(3) < 295.

INCREMENTS: ( 1. , 1. , 1.)

STARTING POINT: (10. , 370. , 259.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

G-2 123 19673.527 - F(7. , 319. , 258.)

DMC 129 19673.441 - F(7. , 320. , 258.)

SD/SECT 86 19673.441 - F(7. , 320. , 258.)



187

PROBLEM: U-15

SOURCE: Fletcher and Powell [201. Helical valley.

VARIABLES: 3

MINIMIZE: see Appendix 2

BOUNDS: -10 < X(i) < 10. , i = 1,2

-2.5 < X(3) < 7.5

INCREMENTS: (.001 , .001 , .001)

STARTING POINT: (-I. , 0. , 0.)

NUMBER OF
FUNCTION

ALGORITHM EVALUATIONS RESULT

NM 365 1.07E-7 - F(1.00002 , -.00012 , -.00017)

CMC 936 1.269 - F(1.0542 , -.0081 , -.1103)

DMC 1398 0. - F(I. , 0. , 0.)



188

APPENDIX 2.

The purpose of this appendix is to insure that results

from this research can be reproduced. The FORTRAN function

subprograms used to compute the objective function (and for

constrained problems the constraint functions) are included

here. If there should be inadvertent disagreement between

the problem description in Appendix 1 and here in Appendix 2

then Appendix 2 should be considered authoratative.

In every function subprogram the objective function

value is computed following FORTRAN statement number 1000.

To obtain this value the function subprogram is called with

the parameter K in the calling sequence equal to 0. To

evaluate constraints, in constrained problems, the function

is called with K set to 1, 2, ..., m where m is the number

of constraints. The parameter K is used in the COMPUTED GO

TO statement in order to branch to the approprate code to

calculate the specified constraint function. Thus the

evaluation of m constraint functions and the objective

function requires m+1 calls to the FORTRAN function

subprogram.

Problems labeled C-I to C-21 are the constrained test

problems. Problems labeled U-i to U-18 are the

unconstrained test problems.



189

FUNCTION FUNCTION
PROBLEM NAME PAGE PROBLEM NAME PAGE

C-i ALKY 190 U-i AGI 210

C-2 BART 191 U-2 AG2 210

C-3 BEARI 192 U-3 AG3 210

C-4 BOXA 192 U-4 AG4 211

C-5 BOXB 193 U-5 AG5 211

C-6 FLY 194 U-6 AG6 212

C-7 POST 195 U-7 AG7 212

C-8 CHEMI 195 U-8 AG8 212

C-9 COLI 196 U-9 AMMO 213

C-10 COL3 197 U-10 DUCTI 214

C-1I COL5 198 U-i DUCT4 218

C-12 COL8 199 U-12 DUCT9 219

C-13 FAM2 200 U-13 GEARI 221

C-14 RAC 201 U-14 WATER 222

C-15 RP 202 U-15 POW2 222

C-16 STEEL 204 U-16 OBJT3 223

C-17 CH3 204 U-17 OBJT4 224

C-18 CH3B 205 U-18 OBJT5 224

C-19 GMI 206

C-20 STEAM 206

C-21 CHI 209



190

Problem: C-I

REAL FUNCTION ALKY(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
FLAG - .TRUE.

C ONE TIME CALCULATIONS HERE
C1 - .063

C2 - 5.04
C3 - .035
C4 = 10.
C5 - 3.36
D4L - .99
D4U - I.ID4L
D7L - D4L
D7U - D4U

D9L - .9
D9U - 1./D9L

DiOL - D4L
DIOU - D4U

PRINT(IOUT,*)" ALKYLATION PROCESS"
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

Xl - X(1)
X2 - X(2)
X3 - X(3)
X4 - X(4)
X7 - X(5)
X9 - X(6)
X1O - X(7)
X5 - 1.22 * X4 - Xl
X6 - (98000.*X3) / (X3* 1000. + X4 * X9)
X8 - (X2 + X5) / Xl
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4,5,6,7),K

1 CONTINUE
C CONSTRAINTS HERE

C - XI* (1.12 + .13167*X8 - .00667*X8**2)
ALKY - D4L*X4 - C
IF(ALKY .LT. 0.) ALKY - C - D4U*X4
RETURN

2 CONTINUE
C - 86.35 + 1.089 * X8 - .038 * X8**2 + .325*(X6 - 89.)
ALKY - D7L * X7 - C
IF(ALKY .LT. 0.) ALKY - C - D7U * X7
RETURN

3 CONTINUE
C - 35.82 - .222 * XIO



191

ALKY - D9L * X9 - C
IF(ALKY .LT. 0.) ALKY - C - D9U * X9
RETURN

4 CONTINUE
C - 3. * X7 - 133.
ALKY - DIOL * X10 - C
IF(ALKY .LT. 0.) ALKY - C - DIOU * X10
RETURN

5 CONTINUE

ALKY - X5 - 2000.
IF(ALKY .LT. 0.)ALKY - 1. - X5
RETURN

6 CONTINUE
ALKY - X8 - 12.
IF(ALKY .LT. 0.) ALKY - 3. - X8
RETURN

7 CONTINUE
ALKY - 85. - X6
IF(ALKY .LT. 0.) ALKY - X6 - 93.
RETURN

1000 CONTINUE
ALKY - -(Cl * X4 * X7 - C2 * Xl - C3 * X2 - C4 * X3 - C5 * X5)
RETURN
END

Problem: C-2

REAL FUNCTION BART(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS,J3MSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" R.L. FOX 2 BAR TRUSS"
FLAG - .TRUE.

C ONE TIME CALCULATIONS HERE
P - 33.
B - 30.
T -. 1
E - 30000.

PI - 3.14159
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

H - X(l)

D - X(2) / 4.
IF(K .EQ. 0) GO TO 1000
GO TO (1,2),K

I CONTINUE
C CONSTRAINTS HERE

F a (P/(PI*T))*SQRT(B**2 + H**2)/(H*D)



192

BART = F - 100.
RETURN

2 CONTINUE
BART - F - PI**2 * E * (D**2 + T**2)/(8.*(B**2+H**2))
RETURN

1000 CONTINUE
BART = .6 * PI * D * T * SQRT(B**2 + H**2)

RETURN
END

Problem: C-3

REAL FUNCTION BEARI(X,K)

COMMON/PRINT/IBRKT,IPOW,IMS,JMSP,IIN,IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" EASON AND FENTON 6: JOURNAL BEARING DESIGN"
FLAG = •TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

I CONTINUE
C CONSTRAINTS HERE

BEAR1 - 8.62 * X(2)**3 / X(1) - 1.
RETURN

1000 CONTINUE
BEARI - (.44*X(1)**3 / X(2)**2 + 10./X(1) + .592*X(1)/X(2)**3)/1O.
RETURN
END

Problem: C-4

REAL FUNCTION BOXA(X,K)
COI4ON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, lOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" BOX PROBLEM A, HIMMELBLAU NO. 13"
FLAG - •TRUE.

C ONE TIME CALCULATIONS HERE
CO - -24345.
C1 - -8720288.849
C2 - 150512.5253
C3 - -156.6950325
C4 - 476470.3222
C5 - 729482.8271



193

C6 = -145421.402
C7 = 2931.1506
C8 - -40. 427932
C9 = 5106.192

C12 4360.53352
C13 12.9492344
C14 10236.884
C15 13176.786
C16 -326669.5104
C17 7390.68412
C18 -27.8986976
C19 16643.076
C20 30988.146

500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3),K

I CONTINUE
C CONSTRAINTS HERE

X6 = C6 * X(1) + C7 * X(1) * X(2) + C8 * X(1) * X(3) +
I C9 * X(1) * X(4) + C10 * X(1) * X(5)
BOXA - -X6
IF(BOXA .LT. 0.) BOXA X6 - 294000.
RETURN

2 CONTINUE
X7 - C11 * XG) + C12 * X(1) * X(2) + C13 * X(1) * X(3) +
I C14 * X(1) * X(4) + C15 * X(1) * X(5)

BOXA = -X7
IF(BOXA .LT. 0.) BOXA - X7 - 294000.
RETURN

3 CONTINUE
X8 - C16 * X(1) + C17 * X(1) * X(2) + C18 * X(1) * X(3) +

1 C19 * X(I) * X(4) + C20 * X(1) * X(5)
BOXA - -X8
IF(BOXA .LT. 0.) BOXA - X8 - 277200.
RETURN

1000 CONTINUE
BOXA -(CO + Cl * X(1) + C2 * X(1) * X(2) + C3 * X(1) * X(3) +
I C4 * X(1) * X(4) + C5 * X(1) * X(5))*(-.000001)
RETURN
END

Problem: C-5

REAL FUNCTION BOXB(XK)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN,IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./



194

DATA SQR3/1. 732050808/
IF(FLAG) GO TO 500
PRINT(IOUT,*)"BOX PROBLEM B"
FLAG -. TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2),K

I CONTINUE

B - X(l) + SQR3 * X(2)
BOXB = -B
IF(BOXB .LT. 0.) BOXB - B - 6.
RETURN

2 CONTINUE
BOXB = X(2) - X(1) /SQR3
RFTURN

C CONSTRAINTS HERE

1000 CONTINUE
BOXB = -((9. - (X(1) - 3.) **2) * X(2)**3/(27. * SQR3)

RETURN
END

Problem: C-6

REAL FUNCTION FLY(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, lOUT, IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT(IOUT,*)" EASON & FENTON 7: FLYWHEEL DESIGN"

FLAG - .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000

GO TO (1,2),K
I CONTINUE
C CONSTRAINTS HERE

FLY - X(1)**2 * X(2) - 675.
RETURN

2 CONTINUE
FLY - (X(1) * X(3))**2/1.E7 - .419
RETURN

1000 CONTINUE
FLY - (-.0201 * X(I)**4 * X(2) * X(3)**2)/I.E7
RETURN
END



195
Problem: C-7

REAL FUNCTION POST(X,K)
COMMON/PRINT/IBRKT, IPOW,IMS, JMSP, IIN, IOUT,IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" EASON & FENTON 2: MAX SIZE POST BOX"
FLAG = .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

I CONTINUE

C CONSTRAINTS HERE

C = X(1) + 2. * (X(2) + X(3))
POST = -C

IF(POST .LT. 0.) POST = C - 72.

RETURN
1000 CONTINUE

POST = - X(1) * X(2) * X(3) * .001

RETURN
END

Problem: C-8

REAL FUNCTION CHEM1(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS. JMSP, IIN, lOUT, IOTT
DIMENSION X(20)
DIMENSION Y(10),C(10)

LOGICAL FLAG
DATA FLAG/.FALSE./
DATA C/-6.089 , -17.164 , -34.054 , -5.914 , -24.721

1 , -14.986 , -24.1 , -10.708., -26.662 , -22.179/

IF(FLAG) GO TO 500
PRINT(IOUT,*)" CHEMICAL EQUILIBRIUM, HIMMELBLAU NO. 4"

FLAG - •TRUE.
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

DO 901 1 - 1,6
901 Y(I) - X(I)

Y(8) = X(7)
Y(7) - 1. - Y(4) - 2.*Y(5) - Y(6)
Y(10) 2. - Y(1) - 2. * Y(2) - 2. * Y(3) - Y(6)
Y(9) , (1. - Y(10) - Y,3) - Y(7) - Y(8))/2.
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3),K

I CONTINUE
C CONSTRAINTS HERE

CHEMI - -Y(7)
IF(CHEMI .LT. 0.) CHEMI - Y(7) - 1.
RETURN

2 CONTINUE



196

CHEMI = - Y(10)

IF(CHEMI .LT. 0.) CHEMI = Y(10) - 1.
RETURN

3 CONTINUE
CHEMI = -Y(9)
IF(CHEM1 .LT. 0.) CHEMI = Y(9) - .5
RETURN

1000 CONTINUE
SUM - 0.

DO 20 1 = 1,10

20 SLM - SUM + Y(I)
F = 0.
DO 30 1 - 1,10
IF(Y(I) .LT. 1.E-9) GO TO 30
F = F + Y(I) * (C(I) + ALOG(Y(I) / SUM))

30 CONTINUE
CHEMI - F
RETURN
END

Problem: C-9

REAL FUNCTION COLI(X,K)

COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, 1OUT, IOTT
DIMENSION X(20)
DIMENSION E(5) , C(5,5) , D(5) , A(10,5) , B(10)

LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
DATA E/-15. , -27. , -36. , -18. , -12./

DATA (C(I,J),J=1,5)/30. , -20., -10. , 32. , -10./

DATA (C(2,J),J=1,5)/-20., 39. ,-6. , -31., 32./
DATA (C(3,J),J=1,5)/-10., -6. , 10. ,-6. ,-10./

DATA (C(4,J),J=1,5)/32. , -31. ,-6. , 39. , -20./

DATA (C(5,J),J=1,5)/-10., 32. -10. ,-20. , 30./
DATA D/4. , 8. , 10. , 6. , 2.!
DATA (A(I,J),J=1,5)/-16. 2. 0. , 1. 0./

DATA (A(2,J),J=1,5)/ 0. -2. 0. , .4 2./

DATA (A(3,J),J=1,5)/-3.5 0. 2. , 0. 0./
DATA (A(4,J),J=1,5)/ 0. -2. 0. , -4. -1./
DATA (A(5,J),J=1,5)/ 0. -9. -2. , 1. -2.8/

DATA (A(6,J),J=1,5)/ 2. 0. -4. , 0. 0./

DATA (A(7,J),J=1,5)/-I. , -1. , -1. , -1. , -1.
DATA (A(8,J),J=1,5)/-I. , -2. , -3. , -2. , -1.
DATA (A(9,J),J=1,5)/I. , 2. , 3. , 4. , 5./
DATA (A(10,J),J-1,5)/I. , 1. , 1. , 1. , 1.
DATA B/-40. , -2. ,-.25, -4. , -4. , -1.

1 -40. , -60. , 5. , 1./
PRINT(IOUT,*)" COLVILLE I"
FLAG - .TRUE.



197

500 CONTINUE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
C CONSTRAINTS HERE

Cl = 0.
DO 110 J = 1,5
C1 = C1 + A(K,J)*X(J)

110 CONTINUE
COL1 = B(K) - C1
RETURN

1000 CONTINUE
F1 - 0.
F2 = 0.
F3 = 0.
DO 250 J = 1,5
F1 - Fl + E(J) * X(J)
F3 = F3 + D(J) * X(J)**3
DO 220 I = 1,5
F2 = F2 + C(I,J) * X(J) * X(I)

220 CONTINUE
250 CONTINUE

COL1 = Fl + F2 + F3
RETURN
END

Problem: C-10

REAL FUNCTION COL3(X,K)

COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN,IOUT,IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" COLVILLE 3"
FLAG - .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3),K

1 CONTINUE
C CONSTRAINTS HERE

C - 85.334407 + .0056858* X(2)*X(5) + .0006262* X(1)*X(4)
1- .0022053 * X(3)*X(5)
COL3 - -C
IF(COL3 .LT. 0.) COL3 - C-92.
RETURN

2 CONTINUE
C - 80.51249 + .0071317 * X(2) * X(5) + .0029955 * X(1) * X(2)
I + .0021813 * X(3)**2
COL3 - -(C - 90.)
IF(COL3 .LT. 0.) COL3 - C-l10.



198

RETURN
3 CONTINUE

C - 9.300961 + .0047026 * X(3) * X(5) + .0012547 * X(1) * X(3)
1 + .0019085 * X(3) * X(4)
COL3 - -(C-20.)
IF(COL3 .LT. 0.) COL3 - C-25.
RETURN

1000 CONTINUE
COL3 = 5.3578547 * X(3)**2 + .8356891 * X(1)*X(5)
1 + 37.293239 * X(1) - 40792.141
RETURN
END

Problem: C-lI

REAL FUNCTION COL5(XK)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, lOUT, IOTT

DIMENSION X(20)
DIMENSION W(6)
LOGICAL FLAG
DATA FLAG/.FALSE./

DATA W/4*1. , 2* 100./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" COLVILLE 5"
FLAG - .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4),K

I CONTINUE
C CONSTRAINTS HERE

CAPTI - (.0285* X(1) + 300.) / (.1425E-3 * X(1) + 1.)
T1 = 500. - CAPTI
T3 - FCALL(T1 , 350. , .915 , .936E-4 , X(3)
COL5 - -(T3 - 300.)
RETURN

2 CONTINUE
T2 - FCALL(200. , 300. , 1.5 , .333E-3 , X(2) )
T4 - FCALL(T2 , 350. , .8 , 1.25E-3 , X(4) )
COL5 - -(T4 - 300.)

RETURN
3 CONTINUE

CAPTI - (.0285* X(1) + 300.) / (.1425E-3 * X(1) + 1.)
CAPT2 - FCAPH(200. , 300. , 1.5 , .333E-3 , X(2)

CAPTJI - .7*CAPT1 + .3 * CAPT2
CAPT6 - FCAPH(80. , CAPTJ1 , 0. , 3.E-4 , X(6) )
COL5 - CAPT6 - 250.

RETURN
4 CONTINUE

CAPTI - (.0285* X(1) + 300.) / (.1425E-3 * X(1) + 1.)
Ti - 500. - CAPTI



199

T2 - FCALL(200. , 300. , 1.5 , .333E-3 , X(2) )
CAPT4 - FCAPH(T2 , 350. , .8 , 1.25E-3 , X(4) )
CAPT3 - FCAPH(T1 , 350. , .915 , .936E-4 , X(3)

CAPTJ2 = .8 * CAPT3 + .2 * CAPT4
CAPT5 - FCAPH(80. , CAPTJ2 , 0. , 3.75E-4 , X(5) )
COL5 = CAPT5 - 280.
RETURN

1000 CONTINUE
F 0.
DO 40 I - 1,6
Z =0.
IF(X(I) .LT. 0.) GO TO 35
Y = X(I)/2000.

Z - FLOAT(IFIX(Y))
IF(Z .EQ. Y) GO TO 35
z = Z+1

35 CONTINUE
F - F + (2.7 * X(I) + 1300. * Z) *W(1)

40 CONTINUE
COL5 - F
RETURN
END

Problem: C-12

REAL FUNCTION COL8(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IN, lOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" COLVILLE 8 PROCESS OPT."
FLAG - .TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4,5,6,7),K

I CONTINUE
C CONSTRAINTS HERE

Y2 - 1.6 * X(1)
110 Y3 - 1.22 * Y2 - X(1)

Y6 - (X(2) + Y3) / X(1)
Y2CALC - X(1) * (112. + 13.167 * Y6 - .6667 * Y6**2) * .01
IF(ABS(Y2CALC - Y2) - .001) 130,130,120

120 Y2 - Y2CALC
GO TO 110

130 CONTINUE
COL8 - - Y2
IF(COL8 .LT. 0.) COL8 - Y2 - 5000.
RETURN

2 CONTINUE



200

COL8 - -Y3
IF(COL8 .LT. 0.) COL8 = Y3 - 2000.
RETURN

3 CONTINUE

Y4 - 93.
1100 Y5 - 86.35 + 1.098 * Y6 - .038 * Y6**2 + .325 * (Y4 - 89.)

Y8 - -133. + 3. * Y5
Y7 - 35.82 - .222 * Y8
Y4CALC - 98000. * X(3) / (Y2 * Y7 + X(3) * 1000.)
IF(ABS(Y4CALC - Y4) - .0001) 1300,1300,1200

1200 Y4 - Y4CALC
GO TO 1100

1300 CONTINUE
COL8 = 85. - Y4
IF(COL8 .LT. 0.) COL8 Y4 - 93.

RETURN
4 CONTINUE

COL8 - 90. - Y5
IF(COL8 .LT. 0.) COL8 - Y5 - 95.
RETURN

5 CONTINUE
COL8 - 3. - Y6
IF(COL8 .LT. 0.) COL8 - Y6 - 12.
RETURN

6 CONTINUE
COL8 - .01 - Y7
IF(COL8 .LT. 0.) COL8 - Y7 - 4.
RETURN

7 CONTINUE

COL8 - 145. - Y8
IF(COL8 .LT. 0.) COL8 - Y8 - 162.
RETURN

1000 CONTINUE

COL8 - -(.063 * Y2 * Y5 - 5.04 * X(1) - 3.36 * Y3 -

1 .035 * X(2) - 10. * X(3) )
RETURN
END

Problem: C-13

REAL FUNCTION FAM2(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS,JMSP, IIN, tOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" FAMILI BRIDGE DESIGN"
FLAG - ,TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000



201

GO TO (1,2,3,4,5,6,7),K
I CONTINUE

FAM2 - .0435 - X(2) / X(1)
RETURN

2 CONTINUE

FAM2 - .00667 - X(4) / X(3)
RETURN

C CONSTRAINTS HERE

3 CONTINUE
FAM2 - 555.678 * X(2) + 277.84 * X(3) - 2.5 *
1 X(1) * X(2)**3 - .5 * X(1) * X(2) * X(3)**2 -

2 X(1) * X(2)**2 * X(3) - .0833 * X(3)**3 * X(4)

RETURN
4 CONTINUE

FAM2 - 7615.6 - .0833 * X(3)**3 * X(4) - 2.5 * X(1) *
1 X(2)**3 - .5 * X(1) * X(2) * X(3)**2 -
2 X(1) * X(2)**2 * X(3)

RETURN
5 CONTINUE

FAM2 - 395.92 * X(2) + 197.96 * X(3) - .5 * X(1) *
1 X(2) * X(3)**2 - 2.5 * X(1) * X(2)**3 - X(1) *

2 X(2)**2 * X(3) - .0833 * X(3)**3 * X(4)
RETURN

6 CONTINUE

FAM2 - .0833 * X(5)**2 + .0000283 * X(1)**2 + .78 - X(5) -

1 .00948 * X(1)
RETURN

7 CONTINUE
FAM2 - .0222 * X(2) + .0111 * X(3) - 1.
RETURN

1000 CONTINUE
FAM2 - 2448. * X(1) * X(2) + 1224. * X(3) * X(4) +

1 7344. * X(5)
RETURN
END

Problem: C-14

REAL FUNCTION RAC(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" RAC TP 302, HIMMELBALU NO. 16"

FLAG - .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13),K
CONTINUE



202

C CONSTRAINTS HERE
RAC - X(3)**2 + X(4)**2 - 1.
RETURN

2 CONTINUE
RAC - X(9)**2 - I.
RETURN

3 CONTINUE
RAC - X(5)**2 + X(6)**2 - 1.
RETURN

4 CONTINUE
RAC - X(1)**2 + (X(2) - X(9))**2 - 1.
RETURN

5 CONTINUE
RAC - (X(l) - X(5))**2 + (X(2) - X(6))**2 - 1.
RETURN

6 CONTINUE
RAC - (X(1) - X(7))**2 + (X(2) - X(8))**2 - 1.
RETURN

7 CONTINUE
RAC - (X(3) - X(5))**2 + (X(4) - X(6))**2 - 1.
RETURN

8 CONTINUE
RAC - (X(3) - X(7))**2 + (K(4) - X(8))**2 - I.
RETURN

9 CONTINUE
RAC - X(7)**2 + (X(8) - X(9))**2 - I.
RETURN

10 CONTINUE
RAC - X(2) * X(3) - X(1) * X(4)
RETURN

11 CONTINUE
RAC - -X(3) * X(9)
RETURN

12 CONTINUE
RAC - X(5) * X(9)
RETURN

13 CONTINUE

RAC - X(6) * X(7) - X(5) * X(8)
RETURN

1000 CONTINUE
RAC - -.5 * (X(1)*X(4) - X(2)*X(3) + X(3)*X(9) - X(5)*X(9)
1 + X(5)*X(8) - X(6)*X(7))
RETURN
END

Problem: C-15

REAL FUNCTION RP(XK)
COMMON/PRINT/IBRKT, IPOW,IMS,JMSP, IIN, IOUT, IOTT
DIMENSION X(20)



203

LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" RAGSDELL AND PHILLIPS, OPT WELD STRUCT"

CAPF - 6000.
CAPL = 14.
CAPE - 30.E6
CAPG - 12.E6

FLAG - .TRUE.
C ONE TIME CALCULATIONS HERE

500 CONTINUE
X3 - X(1)
X4 = X(2)
Xl - X(3)
X2 = X(4)
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4,5),K

I CONTINUE
C CONSTRAINTS HERE

SIGMA - (6. * CAPF * CAPL) / (X4 * X3 * X3)
RP - SIGMA- 30000.
RETURN

2 CONTINUE
CAPI - (X3 * X4 **3) / 12.

ALPHA - (CAPG * X3 * X4**3 ) / 3.
PC - (4.013 * SQRT(CAPE*CAPI*ALPHA))/(CAPL*CAPL)
PC - PC*(1. - X3/(2.*CAPL) * SQRT(CAPE*CAPI/ALPHA))

RP - CAPF - PC

RETURN
3 CONTINUE

RP - Xl - X4

RETURN
4 CONTINUE

DEL - (4. * CAPF * CAPL**3)/(CAPE*X3**3 * X4)
RP - DEL - .25
RETURN

5 CONTINUE

CAPM - CAPF * ( CAPL + X2 / 2.
CAPR - SQRT ( ( X2 * X2 ) / 4. + ( C X3 + Xl ) / 2. )**2 )
CAPJ - 2.*(.707*XI*X2*((X2*X2/12.) + ((X3 + X1)/2.) **2))
TAUP - CAPF / (SQRT(2.) * Xl * X2 )
TAUPP - CAPM * CAPR / CAPJ
TAU - SQRT(TAUP*TAUP+2. * TAUP*TAUPP*(X2/ (2. *CAPR) )+TAUPP*TAUPP)

RP - TAU - 13600.31
RETURN

1000 CONTINUE
RP - 1.10471 * XI*X1*X2 + .6735*X3*X4 + .04811 * X2*X3*X4

RETURN
END



204

Problem: C-16

REAL FUNCTION STEEL(X,K)

COMMON/PRINT/IBRKT, IPOW,IMS,JMSP,IIN,IOUT, IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" US STEEL, HIMMELBLAU NO. 22"

FLAG - .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4),K

1 CONTINUE
C CONSTRAINTS HERE

STEEL - 32.97 - 17.1 * X(1) - 38.2 * X(2) - 204.2 * X(3) -

1 212.3 * X(4) - 623.4 * X(5) - 1495.5 * X(6) +
2 169. * X(1) * X(3) + 3580. * X(3) * X(5) +3810. * X(4) *

3 X(5) + 18500. * X(4) * X(6) + 24300.* X(5) * X(6)
RETURN

2 CONTINUE

STEEL - 25.12 - 17.9 * X(1) - 36.8 * X(2) - 113.9 * X(3) -

1 169.7 * X(4) - 337.8 * X(5) - 1385.2 * X(6) + 139. * X(1) *
2 X(3) + 2450. * X(4) * X(5) + 16600.* X(4) * X(6) +
3 17200. * X(5) * X(6)
RETURN

3 CONTINUE
STEEL - -124.08 + 273.* X(2) + 70. * X(4) + 819.* X(5) -

1 26000.* X(4) * X(5)
RETURN

4 CONTINUE

STEEL - -173.02 - 159.9 * X(1) + 311. * X(2) - 587.* X(4) -
1 391.* X(5) - 2198.* X(6) + 14000.* X(1) * X(6)
RETURN

1000 CONTINUE
STEEL - 4.3 * X(1) + 31.8 * X(2) + 63.3 * X(3) + 15.8 * X(4) +

1 68.5 * X(5) + 4.7 * X(6)
RETURN
END

Problem: C-17

REAL FUNCTION CH3(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, lOUT, IOTT

DIMENSION X(20)

DIMENSION A(77)
LOGICAL FLAG
DATA A/ .2 , .31 , .4 , .44 , .6 , .62 , .79 , .8 , .88 , .93
1 1. 1.2 , 1.24 , 1.32 , 1.4 , 1.55 , 1.58 , 1.6 , 1.76

2 1.8 , 1.86 , 2. , 2.17 , 2.2 , 2.37 , 2.4 , 2.48 , 2.6



205

3 2.64 , 2.79 , 2.8, 3. , 3.08 , 3.1 , 3.16 , 3.41
4 3.52 , 3.6 , 3.72 , 3.95 , 3.96 , 4. , 4.03 , 4.2
5 4.34 ,4.4 ,4.65 ,4.74 ,4.8 ,4.84 ,5., 5.28,
6 5.4 , 5.53 , 5.72 , 6. , 6.16 , 6.32 , 6.6 , 7. , 7.11
7 7.2 , 7.8 , 7.9 , 8. , 8.4 , 8.69 , 9. , 9.48 , 10.27

8 11. , 11.06 , 11.85 , 12. , 13. , 14. , 15. I
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" CH3 REINFORCED CONCRETE BEAM"
FLAG - .TRUE.

500 CONTINUE

X1 - A(IFIX(X(1) + .1))
X2 - X(2) / 2.
IF(K .EQ. 0) GO TO 1000

1 CONTINUE
C CONSTRAINTS HERE

CH3 - -(XI - .2458 * X1**2 I X2 - 6.)
RETURN

1000 CONTINUE
CH3 - 29.4 * X + 18. * X2
RETURN
END

Problem: C-18

REAL FUNCTION CH3B(X,K)
COMMON/PRINT/IBRKT,IPOW,LMS,JMSP, IIN,IOUT,IOTT
DIMENSION X(20)
DIMENSION A(77)
LOGICAL FLAG
DATA A/ .2 , .31 , .4 , .44 , .6 , .62 , .79 , .8 , .88 , .93

1 1. , 1.2 , 1.24 , 1.32 , 1.4 , 1.55 , 1.58 , 1.6 , 1.76

2 1.8 , 1.86 , 2. , 2.17 , 2.2 , 2.37 , 2.4 , 2.48 , 2.6
3 2.64 , 2.79 , 2.8 , 3. , 3.08 , 3.1 , 3.16 , 3.41
4 3.52 , 3.6 , 3.72 , 3.95 , 3.96 , 4. , 4.03 , 4.2
5 4.34 , 4.4 , 4.65 , 4.74 , 4.8 , 4.84 , 5. , 5.28
6 5.4 , 5.53 , 5.72 , 6. , 6.16 , 6.32 , 6.6 , 7. , 7.11
7 7.2 , 7.8 , 7.9 , 8. , 8.4 , 8.69 , 9. , 9.48 , 10.27

8 11. , 11.06 , 11.85 , 12. , 13. , 14. , 15. /
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT(IOUT,*)" CH3B REINFORCED CONCRETE BEAM"
FLAG - .TRUE.

500 CONTINUE
X1 - A(IFIX(X(1) + .1))
X2 - X(2) / 2.
IF(K .EQ. 0) GO TO 1000

I CONTINUE
C CONSTRAINTS HERE

CH3B - -(Xl - .2458 * Xl**2 / X2 - 6.)



206

RETURN
1000 CONTINUE

CH3B = 44.4 * Xl + 18. * X2
RETURN
END

Problem: C-19

REAL FUNCTION GM1(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN, lOUT, IOTT
DIMENSION X(20)
DIMENSION DH(4)
LOGICAL FLAG
DATA FLAG/.FALSE./
DATA DH/15. , 25. , 40. , 60./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" HATCH COVER"
FLAG - ,TRUE.

500 CONTINUE
TF - X(1)/10.
H - DH(IFIX(X(2) + .1))
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4),K

I CONTINUE
GMI - 1800./H - 450.
RETURN

2 CONTINUE
GM1 - 4500./ (TF * H) - 700.
RETURN

3 CONTINUE
GMI - 4500./(TF * H) - 700. * TF**2
RETURN

4 CONTINUE
GM1 - 5.62 / (7. *TF *H **2 ) - .0025
RETURN

1000 CONTINUE
GMI - H + 120. * TF
RETURN
END

Problem: C-20

REAL FUNCTION STEAM(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, lOUT, IOTT
DIMENSION X(20)
DIMENSION DT(6) , WT(6) , GMUT(23)
LOGICAL FLAG
DATA FLAG/.FALSE./



207

IF(FLAG) GO TO 500
DATA GMUT/3.73 , 3.17 , 2.71 , 2.36 , 2.08 , 1.85 , 1.66

1 1.49 , 1.36 , 1.24 , 1.14 , 1.04 , .97 , .9 , .84

2 .786 , .738 , .695 , .654 , .618 , .585 , .555 , .528/
DATA DT/.625 , .75 , I. , 1.25 , 1.5 , 2./
DATA WT/ .134 , .109 , .083 , .065 , .049 , .035/
PRINT(IOUT,*)" STEAM CONDENSER"
SPA - 2.
SP = SPA - 14.7
TSAT - 126.08
IHFG = 1022.2
TWI - 70.
M = 5380

PI = 3.14159
RSK = 160.

RF - .001
HO = 2290.
FLAG = .TRUE.

500 CONTINUE
D - DT(IFIX(X(1) + .1))
W - WT(IFIX(X(2) + .1))
L - X(3)*4.
N - X(4)
SN X(5)
SW = X(6)
SW = X(6)
RI - (D/2. - W) / 12.
SWP = SW * 62.4 * 60. / 7.48
DELT = (HFG * M) /SWP
RO - D/24.
IF(K .EQ. 0) GO TO 1000
GO TO (1,2,3,4,5),K

1 CONTINUE

C CONSTRAINTS HERE
STEAM = 2.*W - D
RETURN

2 CONTINUE

TWO - TWI + DELT
STEAM = TWO - TSAT
RETURN

3 CONTINUE
V - SW / (7.481 * 60. * PI * RI**2 * SN)

TBAR - TWI + DELT/2.
K1 = (TBAR/10.) - 3

K2 - KI + I
R - TBAR/10. - (3. + FLOAT(K1))

GMU - GMUT(K1) + R * (GMUT(K2)- GMUT(KI))
RE - 300. * 62.4 * 2. * RI * V / GMU
STEAM - 3000. - RE
RETURN

4 CONTINUE
V - SW / (7.481 * 60. * PI * RI**2 * SN)



208

TBAR = TWI + DELT/2.
KI - (TBAR/10.) - 3
K2 KI + I
R - TBAR/10. - (3. + FLOAT(K1))
GMU = GMUT(KI) + R * (GMUT(K2)- GMUT(KI))
RE - 300. * 62.4 * 2. * RI * V / GMU
TWO - TWI + DELT
TBAR - TWI + DELT/2.
DELTMX - TSAT - TWI
DELT14N - TSAT - TWO
IF(DELTMN .LE. 1.) DELTMN - I.
THKIN - (DELTMX - DELTMN)/ALOG(DELTMX/DELTMN)

AO - PI * D * L * SN * N / 12.
HI - (150. * (1. + .011*TBAR) * V**.8)/(24. * RI)**.2
U - 1./((RO/RI)*I./HI + RF) + ((RO/RSK) * ALOG(RO/RI))

1 + I./Ho
QO - U * AO * THMIN

STEAM (HFG * M) - QO
RETURN

5 CONTINUE
TBAR - TWI + DELT/2.
K1 - (TBAR/10.) - 3
K2 - KI + 1
R - TBAR/10. - (3. + FLOAT(KI))
GMU - GMUT(Kl) + R * (GMUT(K2)- GMUT(Kl))
RE - 300. * 62.4 * 2. * RI * V / GMU
V SW / (7.481 * 60. * PI * RI**2 * SN)
SF - .0014 + .125 / RE**.32
DELP - (SF * V**2 * L) / (32.2 * RI)
DELPE = V**2 / 64.4
DELPC - V**2 / 128.8
H -(DELP + DELPE + DELPC) * N
F - 62.4 * H / 144. - SP
WM- (F*D) I (8000. + .8*F)
STEAM - WM - W
RETURN

1000 CONTINUE
DS - SQRT(3. * D**2 * SN * N / 144.)
TS - (ABS(SP) * DS) / 32.E3 + .0104
TE - (ABS(SP) * DS) / 64.E3 + .0104
WS - (PI*DS * L * TS + PI * DS**2 * TE) * 489.
CS - 1.1 * WS
CT - 1.5 * L * PI * SN * N * (D**2 - (D - 2*W)**2) * .322 / 4.
HP - .19 + .00045 * SW * H
CPM - 820. * HP **.467
STEAM - CS + CT + CPM
RETURN
END



209
Problem: C-21

REAL FUNCTION CHI(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, 1OUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*) "CHI, TIMBER FRAME"
FLAG - .TRUE.

500 CONTINUE

IF(K .EQ. 0) GO TO 1000
X12 - X(1) **2
X22 = X(2) **2
X23 = X22 * X(2)
X13 = X12 * X(1)

XXX = X23 / X13
F1 = 5832. / (12. + 5.33 * XXX)

i'2 = 4.5 / ((8. + 3.56 * XXX) * X(2))
GO TO (1,2,3),K

1 CONTINUE
C CONSTRAINTS HERE

CHI = -( 1.8 - 2.25/X(1) - FI/XI2)
RETURN

2 CONTINUE
CHI - -(1.8 - F2 - FI.X22)

RETURN
3 CONTINUE

CHI = -(1.8 - F2 - (729. - FI)/X22)
RETURN

1000 CONTINUE

CHI - 1152. * X(1) + 864. * X(2)
RETURN
END



210

Problem: U-I

REAL FUNCTION AGI(X,K)
COMMON/PRINT/ IBRKT, IPOW, IMS, JMSP, I IN, IOUT, IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT(IOUT,*)"AG 1, KUESTER & MIZE"

FLAG - .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

AGI = -(3803.84 + 138 * X(1) + 239.92 * X(2) - 123.08 * X(I)**2 -

1 203.64 * X(2)**2 - 182.25 * X(1) * X(2)

RETURN
END

Problem: U-2

REAL FUNCTION AG2(X,K)

COMMON/PRINT/IBRKT,IPOW,IMS, JMSP, IIN, TOUT, IOTT
DLMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)"AG 2, HIMMELBLAU 28"

FLAG - .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
I CONTINUE
1000 CONTINUE

AG2 - (X(1)**2 + X(2) - 11.)**2 + (X(1) + K(2)**2 -7.)**2
RETURN
END

Problem: U-3

REAL FUNCTION AG3(X,K)

COMMON/PRINT/IBRKT, IPOW, LMS, JMSP, IIN, TOUT, IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE. /
IF(FLAG) GO TO 500
PRINT(TOUT,*)" AG3, AG2 SCALED"
FLAG - .TRUE.

500 CONTINUE



211

IF(K .EQ. 0) GO TO 1000
I CONTINUE
1000 CONTINUE

AG3 = (9. * X(1)**2 + 2. * X(2) - 11.)**2 +

1 (3. * X(1) + 4. * X(2)**2 - 7.)**2
RETURN
END

Problem: U-4

REAL FUNCTION AG4(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500

PRINT(IOUT,*)"AG 4, HIMMELBLAU 19, ROSENBROCKS"

FLAG = .TRUE.
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

AG4 - 100. * (X(2) - X(1)**2)**2 + (1. - X(1))**2

RETURN
END

Problem: U-5

REAL FUNCTION AG5(X,K)

COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, TOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" GLANKWAHMDEE NO. 5, HIMMELBLAU NO. 31"
FLAG - •TRUE.

500 CONTINUE
IF(K .EQ. 0) GO TO 1000

I CONTINUE
1000 CONTINUE

F1 - (X(1) - 2.)**2 + (X(2) - 1.)*'2

GI - X(L)**2/(-4.) - X(2)**2 + 1.
IF(ABS(GI) .LT. I.E-6) GI - SIGN(I.E-6,G1)

HI - X(1) - 2. * X(2) + 1.
AG5 = F1 + .04/GI + Hl**2/.2
RETURN
END



212

Problem: U-6

REAL FUNCTION AG6(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP,IIN,IOUT,IOTT
DIMENSION X(20)

LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)"AG # 6, HIMMELBLAU #26"
FLAG - TRUE.

500 CONTINUE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

AG6=(X(1) + 10.*X(2))**2 + 5.*(X(3) - X(4))*'2
AG6 - AG6 + (X(2) - 2.*X(3))**4 + 10.*(X(1) - X(4))*'4

RETURN
END

Problem: U-7

REAL FUNCTION AG7(X,K)
COMMON/PRINT/IBRKr, IPOW, IMS, JMSP, IIN, lOUT, IOTT

DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./

IF(FLAG) GO TO 500
PRINT(IOUT,*)" AG 7"

FLAG = .TRUE.
C ONE TIME CALCULATIONS HERE
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

AG7 - 100. * (X(2) - X(I)**2)**2 + (I. - X(1))**2 +

1 90. * (X(4) - X(3)**2)**2 + (1. - X(3))**2 +

2 10.1 * ((X(2) - 1.)**2 + (X(4) - 1.)**2) +
3 19.8 * (X(2) - 1.) * (X(4) - 1.)
RETURN
END

Problem: U-8

REAL FUNCTION AGB(X,K)

COMMON/PRINT/IBRKT, IPOW,IMS,JMSP,IIN, lOUT, IOTT



213

DIMENSION X(20)
DIMENSION C(5),D(5,5),W(5)
LOGICAL FLAG
DATA FLAG/.FALSE./
DATA C/-15. , -27. , -36. ,-18. ,-12./

DATA (D(1,I),I=1,5)/35. , -20. ,-10. , 32. , -10./
DATA (D(2,I),I-1,5)/-20. , 40. , -6. * -31. , 32./
DATA (D(3,I),I-1,5)/-10. ,-6. , 11. ,-6. ,-10./

DATA (D(4,I),I=1,5)/32. , -31. , -6. , 38. , -20./
DATA(D(5",I),I-1,5)/-10. , 32. , -10. , -20. , 31./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" GLANKWAHMDEE NO. 8"
FLAG - TRUE.

C ONE TIME CALCULATIONS HERE
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

DO 10 1 - 1,5
W(I) - 0.
DO 5 J - 1,5
W(I) - W(I) + D(I,J) * X(J)

5 CONTINUE
10 CONTINUE

F -0.
DO 20 I - 1,5
F F + (C(I) + W(I)) * X(I)

20 CONTINUE
AG8 - F
RETURN
END

Problem: U-9

REAL FUNCTION AMMO(XK)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" STOECKER: AMMONIA STORAGE TANK"
FLAG - -TRUE.

C ONE TIME CALCULATIONS HERE
500 CONTINUE
C EVERYTIME CALCULATIONS HERE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

AMMO - 400. * X(1)**.9 + 1000. +



214

1 22. * (EXP((-3950. / (X(2)+460.)) + 11.86)-14.7) **1.2
1 + 144. * (80. - X(2)) / X(1)
RETURN
END

Problem: U-10

REAL FUNCTION DUCT1(X,K)

COMMON/PRINT/IBRKT,IPOW,IMS,JMSP, IIN, IOUT,IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" DUCT LAYOUT 1"
FLAG = .TRUE.

C ONE TIME CALCULATIONS HERE

R12 = 30.
R23 - 20.
R36 - 65.
R34 - 25.
R27 - 20.
R78 - 20.
R710 = 35.
RO = 2.
F - .017
ETA - .8
Q12 - 6500.
Q23 - 3000.

Q27 - 3500.
Q36 - 2000.
Q34 - 1000.
Q78 - 2000.
Q710 - 1500.

500 CONTINUE

C EVERYTIME CALCULATIONS HERE
X12 - X(1) I 12.
X23 - X(2) / 12.
X27 - X(3) / 12.
IF(K .EQ. 0) GO TO 1000

I CONTINUE
1000 CONTINUE

DUCTI - I.E9
C UPSTREAM PRESSURE AT 2

RD12- RDUCT(RO,F,R12,XI2)
PU2 - .85 - RDI2*(Q12/4000.)**2

C BRANCH AND DOWNSTREAM PRESSURES AT 2
BLAM2 - BLAM(Q23,Q12,X23,XI2)
RB2 - RUTOBI(RO,BLAM2,Q23,Q2,X23,Xl2)
PB2 - PU2 - RB2*(Q23/4000.)**2
RD2- RUTOD(ETA,RO,Q27,QI2,X27,X2)



215

PD2 -PU2 - RD2*(Q2714000.)**29
C UPSTREAM PRESSURE AT 3

RD23- RDUCT(RO,F,R23,X23)
PU3 - PB2 - RD23*(Q23/4000.)**2

C UPSTREAM PRESSURE AT 7
RLD27- RDUCT(RO,F,R27,X27)
PU7 - PD2 - RD27*(Q27/4000.)**2

C DETERMINE SMALLEST ACCEPTABLE SIZES FOR REMAINING FITTINGS
C OUTLET 6

DO 1010 ID - 6,24
X36 - FLOAT(ID) / 12.
RD3 - RUrOD(ETA,RO,Q36,Q23,X36,X23)
PD3 - P03 - RD3*(Q3614000.)**2
EL - 12. 19*X36 + R36
RD36- RDUCT(RO,F,EL,X36)
P6 - PD3 - RD36*(Q36/4000.)**2
IF(P6 .GE. .1) GO TO 1020

1010 CONTINUE
C INSUFFICIENT DUCT SIZE

DUCTi - DUCTI- P6
1020 DO 1030 ID - 6,24

X34 - FLOAT(ID) / 12.
BLAM3 - BLAM(Q34,Q23,X34,X23)
RB3 - RUTOB1(RO,BLAM3,Q34,Q23,X34,X23)
PB3 -PU3 - RB3*(Q34/4000.)**2
RD34- RDUCT(RO,F,R34,X34)
P4 - PB3 - RD34*(Q34/4000.)**2
IFCP4 .GE. .1) GO TO 1040

1030 CONTINUE
DUCTI = DUCTI- P4

1040 DO 1050 ID1 - 6,24
X(78 - FLOAT(ID) / 12.
RD7 - RUTOD(ETA,RO,Q78,Q27,X78,X27)
PD7 - PU7 - RD7*(Q78/4000.)**2
RD78-. RDUCT(RO,F,R78,X78)
P8 - PD7 - RD78*(Q7814000.)**2
IF(P8 .GE. .1) GO TO 1060

1050 CONTINUE
DUCTI - DUCTI- P8

1060 DO 1070 ID - 6,24
X710 - FLOAT(ID) / 12.
BLAH7 - BLAM(Q710,Q27,X710,X27)
RB7 - RtTOBl(RO,BLAM7,Q71O,Q27,X710,X27)
PB7 a PU7 -RB7*(Q710/4000.)**2

EL - 12.19 *X710 + R710
RD71O. RDUCT(RO,F,EL,X710)
PLO a PB7 - RD71O*(Q710/4000.)**2
IF(P1O .GE. .1) GO TO 1080

1070 CONTINUE
DUCTI - DUCTi- PLO

1080 CONTINUE
X(4) - X36 *12.



216

X(5) = X34 * 12.
X(6) - X78 * 12.
X(7) - X710 * 12.

IF(DUCT1 .NE. [.E9) RETURN
DUCT1 - COST(X12,Rl2) + COST(X23,R23) + COST(X36,R36) +
1 COST(X34,R34) + COST(X27,R27) + COST(X78,R78) +
2 COST(X710,R710)
RETURN
END

REAL FUNCTION COST(X,L)

REAL L
DATA PI/3.14159/
F - 1.2 * .906
IF(X .GT. 1.125) F - 1.2 * 1.156
IF(X .GT. 1.875) F - 1.2 * 1.406

IF(X .GT. 3.04) F - 1.2 * 1.656
IF(X .GT. 4.21) F - 1.2 * 2.156
IF(X .GT. 5.04) F - 1.2 * 2.656
F - F * 1.35
COST - PI * X * L * F

RETURN
END

REAL FUNCTION BLAM(QB,QU,DB,DU)
BLAM - .51*(VEL(QB,DB)/VEL(QU,DU))**2 + 1.
RETURN
END

REAL FUNCTION VEL(Q,D)
VEL - Q/AF(D)
RETURN
END

FUNCTION RDUCT(RO,F,L,D)
C
C RESISTANCE FOR STRAIGHT DUCT ELEMENT
C RO-AIR DENSITY, KG/M**3

C F-FRICTION FACTOR

C L-LENGTH OF DUCT,M
C DIAMETER OF DUCT,M
C

C
C THIS AND THE FOLLOWING FUNCTIONS CALCULATE THE RESISTANCE
C TERM FOR DUCT ELEMENTS WHICH CORRESPONDS TO THE EQUATION:
C
C P1-P2- R*Q**2
C
C WHERE PI AND P2 ARE THE STATIC PRESSURES AT I AND 2,
C AND Q IS THE VOLUME FLOW RATE.
C



217

C THE FUNCTIONS ARE SET UP FOR THE SI UNIT SYSTEM
C WITH Q IN M**3/S D IN M, P IN PASCALS,AND RO IN KG/M**3
C
C
C TO USE IN THE ENGLISH SYSTEM, CALL THE FUNCTIONS
C WITH (Q/4000) HAVING Q IN CUBIC FT PER MIN, RO-RO/RO(STD)
C WHERE RO(STD) IS THE DENSITY AT 60 F (.075 LBM/CU FT),
C P IN INCHES OF WATER COLUMN, AND D IN FEET

C
C

REAL L
A-AF (D)
RDUCT-RO*F*L/ (2. *D*A**2)
RETURN
END

FUNCTION RUTOBi(RO,CU,QB,QU,DB,DU)

C
C UPSTREAM TO BRANCH RESISTANCE USING LOSS COEFFICIENT BASED ON
C UPSTREAM VELOCITY

C RO-AIR DENSITY KG/M**3
C CU-LOSS COEFFICIENT
C QB & QU VOLUME FLOW IN BRANCH AND UPSTREAM, M**3/S
C DB &DU BRANCH AND UPSTREAM DIAMETERS, M
C

AB-.AF(DB)
AU-AF (DU)
VBOVU-QB*AU/(QU*AB)
VBOVUS=(VBOVU) **2
RUTOB 1-RO/(2. *AB**2) * (VBOVUS-1 .-+CU) /VBOVUS
RETURN
END

FUNCTION RUTOD(ETA,RO,QD,QU,DD,DU)
C
C UPSTREAM TO DOWNSTREAM RESISTANCE WITH REGAIN EFFICIENCY
C OF ETA.
C RO-AIR DENSITY KG/M**3
C QU &QD UPSTREAM AND DOWNSTREAM VOLUME FLOW RATES, M**3/S
C DU & DD UPSTREAM AND DOWNSTREAM DIAMETERS, M
c

AD-AF(DD)
AU-AF(DU)
VUOVD-QU*AD/(QD*AU)

RUTOD=ETA*RO/ (2.*AD**2)*(1.-(VUOVD)**2)
RETURN
END

FUNCTION AF(D)
C
C AREA CALCULATION FOR CURCULAR DUCT OF DIAMETER D



218

C
PI-3. 14159
AF-PI*D**2/4.
RETURN
END

Problem: U-Il

REAL FUNCTION DUCT4(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, tOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" DUCT LAYOUT 4"
FLAG - •TRUE.

C ONE TIME CALCULATIONS HERE
R12 - 30.
R23 - 20.
R36 - 65.
R34 - 25.
R27 - 20.
R78 - 20.
R710 - 35.
RO - 2.
F - .017
ETA = .8
Q12 - 6500.

Q23 = 3000.
Q27 - 3500.
Q36 = 2000.
Q34 - 1000.
Q78 - 2000.
Q710 - 1500.

500 CONTINUE
C EVERYTIME CALCULATIONS HERE

X12 - X(1) / 12.
X23 - X(2) / 12.
X27 - X(3) / 12.
IF(K .EQ. 0) GO TO 1000

I CONTINUE
1000 CONTINUE

DUCT4 - 1.E9
C UPSTREAM PRESSURE AT 2

RD12w RDUCT(RO,F,R12,X12)
PU2 - .258 - RDLZ*(QI2/4000.)**2

C BRANCH AND DOWNSTREAM PRESSURES AT 2
BLAM2 - BLAM(Q23,QI2,X23,XI2)
RB2 - RUTOB1(RO,BLAM2,Q23,QI2,X23,Xl2)
PB2 - PU2 - RB2*(Q23/4000.)**2



219

RD2- RUTOD(ETA,RO,Q27,Q12,X27,Xl2)
PD2 - PU2 - RD2*(Q2714000.)**2

c UPSTREAM PRESSURE AT 3
RD23- RDUCT(RO,F,R23,X23)
PU3 - PB2 - RD23*(Q23/4000.)**2.

C UPSTREAM PRESSURE AT 7
RD27- RDUCT(RO,F,R27,X27)
PU7 - PD2 - RD27*(Q27/4000.)**2

C DETERMINE SMALLEST ACCEPTABLE SIZES FOR REMAINING FITTINGS
C OUTLET 6

DO 1010 ID - 6,35
X36 - FLOAT(ID) / 12.
RD3 - RU'OD(ETA,RO,Q36,Q23,X36,X23)
PD3 - PU3 - RD3*(Q36/4000.)**2
EL - 12.19*X36 + R36
RD36- RDUCT(RO,F,EL,X36)
P6 - PD3 - RD36*(Q3614000.)**2
IF(P6 .GE. .1) GO TO 1020

1010 CONTINUE
C INSUFFICIENT DUCT SIZE

DUCT4 - DUCT4- P6
1020 DO 1030 ID - 6,35

X34 - FLOAT(ID) / 12.
BLAM3 - BLAM(Q34,Q23,X34,X23)
RB3 - RUTOBI(RO,BLAM3,Q34,Q23,X34,X23)
PB3 - PU3 - RB3*(Q34/4000.)**2
RD34- RDUCT(RO,F,R34,X34)
P4 - PB3 - RD34*(Q3414000.)**2
IF(P4 .GE. .1) GO TO 1040

1030 CONTINUE
DUCT4 - DUCT4- P4

1040 DO 1050 ID - 6,35
X78 - FLOAT(ID) / 12.
RD7 - RUTOD(ETA,RO,Q78,Q27,X78,X27)
PD7 - PU7 - RD7*(Q7814000.)**2
RD78- RDUCT(RO,F,R78,X78)
P8 - PD7 - RD78*(Q78/4000.)**2
IF(P8 .GE. .1) GO TO 1060

1050 CONTINUE
DUCT4 - DUCT4- P8

1060 DO 1070 ID - 6,35
X710 - FLOAT(ID) / 12.
BLAM7 - BLAM(Q710,Q27,X710,X27)
RB? - RUTOB1(RO,BLAM7,Q710,Q27,X710,X27)
PB7 - PU7 -RB7*(Q710/4000.)**2

EL - 12.19 *X710 + R710
RD71O- RDUCT(RO,F,EL,X710)
PIO - PB7 - RD710*(Q710/4000.)**2
IF(PIO .GE. .1) GO TO 1080

1070 CONTINUE
DUCT4 - DUCT4- P10

1080 CONTINUE



220

X(4) - X36 * 12.

X(5) - X34 * 12.
X(6) - X78 * 12.
X(7) - X710 * 12.
IF(DUCT4 .NE. 1.E9) RETURN
DUCT4 - COST(X12,R12) + COST(X23,R23) + COST(X36,R36) +
1 COST(X34,R34) + COST(X27,R27) + COST(X78,R78) +
2 COST(X710,R710)
RETURN
END

See problem U-10 for subroutines RDUCT, RUTOBI, RUTOD,
AF, COST, BLAM, and VEL.

Problem: U-12

REAL FUNCTION DUCT9(XK)
COMMON/PRINT/IBRKT, IPOW, IMS,JMSP, IIN, IOU'., IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" DUCT LAYOUT 9 .264 IN. H20 TOTAL FAN PRESSURE"
FLAG -. TRUE.

C ONE TIME CALCULATIONS HERE
RO- 2.
F .017
ETA - .8
R12 - 20.
R23 - 10.
R28 - 15.
R36 - 10.

R35 - 30.
Q12 - 2500.
Q23 - 1750.
Q28 - 750.
Q36 - 750.
Q35 - 1000.

500 CONTINUE
C EVERYTIME CALCULATIONS HERE

X12 - X(1) / 12.
X23 - X(2) / 12.
IF(K .EQ. 0) GO TO 1000

1 CONTINUE
1000 CONTINUE

DUCT9 - I.E9
RDI2 - RDUCT(RO,F,R12,XI2)
PU2 - .264 - RDI2 * (Q12 / 4000.) **2
RD2 - RUTOD(ETA,RO,Q23,Q12,X23,Xl2)
PD2 - PU2 - RD2 * (Q23 / 4000.) **2
RD23 - RDUCT(RO,F,R23,X23)



221

PU3 - PD2 - RD23 * (Q23 / 4000.) **2
DO 1010 ID = 6,35
X28 - FLOAT(ID) / 12.
BLAM2 - BLAM(Q28,Q12,X28,XI2)
RB2 - RUTOB1(RO,BLAM2,Q28,QI2,X28,XI2)
PB2 - PU2 - RB2 * (Q28 / 4000.) **2

EL - 12.19 * X28 + R28
RD28 - RDUCT(RO,F,EL,X28)

P8 - PB2 - RD28 * (Q28 / 4000.) **2
IF(P8 .GE. .12) GO TO 1020

1010 CONTINUE
DUCT9 - DUCT9 - P8

1020 DO 1030 ID - 6,35
X36 - FLOAT(ID) / 12.
BLAM3 - BLAM(Q36,Q23,X36,X23)
RB3 - RUTOBI(RO,BLAM3,Q36,Q23,X36,X23)
PB3 - PU3 - RB3 * (Q36 / 4000.) **2
RD36 - RDUCT(RO,F,R36,X36)

P6 - PB3 - RD36 * (Q36 / 4000.) **2
IF(P6 .GE. .12) GO TO 1040

1030 CONTINUE

DUCT9 - DUCT9 - P6
1040 DO 1050 ID - 6,35

X35 - FLOAT(ID) / 12.
RD3 - RUTOD(ETA,RO,Q35,Q23,X35,X23)

PD3 - PU3 - RD3 * (Q35 / 4000.) **2
EL - 12.19 * X35 + R35
RD35 - RDUCT(RO,F,EL,X35)
P5 - PD3 - RD35 * (Q35 / 4000.) *^2
IF(P5 .GE. .12) GO TO 1060

1050 CONTINUE

DUCT9 - DUCT9 - P5
1060 CONTINUE

X(3) - X28 * 12.
X(4) - X36 * 12.

X(5) - X35 * 12.
IF(DUCT9 .NE. I.E9) RETURN
DUCT9 - COST(X12,RI2) + COST(X23,R23) + COST(X28,R28) +
1 COST(X36, R36) + COST(X35, R35)
RETURN
END

See problem U-10 for subroutines RDUCT, RUTOBI, RUTOD,
AF, COST, BLAM, and VEL.

Problem: U-13

REAL FUNCTION GEAR1(X,K)
COMON/PRINT/IBRKT,IPOW,IMS,JMSP,IIN,IOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG



222

DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" EASON AND FENTON: MIN. INERTIA GEAR TRAIN"
FLAG = •TRUE.

C ONE TIME CALCULATIONS HERE
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
I CONTINUE
1000 CONTINUE

GEARI - .1* (12.+X(I)**2 + (I. + X(2)**2)/X(1)**2 + (X(1)**2
1 *X(2)**2 + 100.) / (X(1) * X(2))*'4
RETURN
END

Problem: U-14

REAL FUNCTION WATER(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP,IIN,IOUT,IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./
IF(FLAG) GO TO 500
PRINT(IOUT,*)" ROSENBROCK AND STOREY HEAVY WATER PLANT"
FLAG - .TRUE.

C ONE TIME CALCULATIONS HERE
500 CONTINUE

IF(K .EQ. 0) GO TO 1000
I CONTINUE

1000 CONTINUE
RN - X(1)
R - X(2)
T - X(3)
ALP - EXP(508./T - .382)
BET - R / 1400.
PHI - ((ALP - 1.)/ALP)*(ALP*BET)**(RN+I.) + BET - 1.
F - (PHI*(l.-BET))/(.6*(1.-BET)*(ALP*BET - 1.) + .4*PHI)
H - 2. + 3. *EXP(16.875 - T/14.4)
WATER - (300. * R + 4000. * RN * H + 80000.) / (18.3*(F-I.))
RETURN
END

Problem: U-15

REAL FUNCTION POW2(X,K)
COMMON/PRINT/IBRKT, IPOW,IMS,JMSP, IIN, lOUT, IOTT
DIMENSION X(20)
LOGICAL FLAG
DATA FLAG/.FALSE./



223

IF(FLAG) GO TO 500
PRINT(IOUT,*)" FLETCHER AND POWELL, HIMMELBLAU NO. 34"
FLAG -. TRUE.

C ONE TIME CALCULATIONS HERE
PI - 3.141592654

500 CONTINUE
C EVERYTIME CALCULATIONS HERE

IF(K .EQ. 0) GO TO 1000
1 CONTINUE
1000 CONTINUE

IF(ABS(X(2)) .GT. I.E-6) GO TO 10
TH - 0.

GO TO 90
10 IF(ABS(X(1)) .GT. I.E-6) GO TO 20

TH = .25

GO TO 90
20 TH ATAN(X(2)/X(1))/(2.*PI)

90 CONTINUE
IF(X(1) .LT. 0) TH = TH + .5
POW2 = 100. * ((X(3) - 10. * TH)**2 + (SQRT(X(1)**2 +

I X(2)**2) - 1.)**2) + X(3)**2

RETURN
END

Problem: U-16

REAL FUNCTION OBJT3(X,K)
COMMON/PRINT/IBRKT, IPOW,IMS,JMSP, IIN,IOUT,IOTT

DIMENSION X(20)
DIMENSION A(6,6)
LOGICAL FLAG
DATA (A(1,I),I-1,6)/3*1. ,30./

DATA (A(2,I),I-1,6)/3*1. , 3*0./
DATA (A(3,I),I-1,6)/3*1. ,30./

DATA (A(4,I),I-1,6)/3*O. , 3*1./
DATA (A(5,I),I-1,6)/3*0. , 3*1./
DATA (A(6,I),I-1,6)/3*0. , 3*1./

IF (FLAG) GO TO 500
PRINT(IOUT,*)" SEPERABLE TEST FUNCTION"
FLAG - .TRUE.

500 CONTINUE
F - 0.
DO 55 1 - 1,6

DO 55 J - 1,6
F - F + A(I,J) * X(I) * X(J)

55 CONTINUE
OBJT3 - F
RETURN
END



224

Problem: U-17

REAL FUNCTION OBJT4(X,K)
COMMON/PRINT/IBRKT, IPOW, IMS, JMSP, IIN, IOUT, IOTT
DIMENSION X(20)
DIMENSION A(6,6)
LOGICAL FLAG
DATA (A(I,I),I-1,6)/3*1. , 3*.O1/
DATA (A(2,I),I=1,6)/3*1. , 3*.O1/
DATA (A(3,I),I=1,6)/3*1. , 3*.O1/
DATA (A(4,I),I=1,6)/3*.OI ,3"./

DATA (A(5,I),I=1,6)/3*.O1 , 3*1./
DATA (A(6,I),I=1,6)/3*.O1 , 3*1./
IF (FLAG) GO TO 500
PRINT(IOUT,*)" SEPERABLE TEST FUNCTION"

FLAG = .TRUE.
500 CONTINUE

F = 0.

DO 55 1 = 1,6

DO 55 J = 1,6

F = F + A(I,J) * X(I) * X(J)
55 CONTINUE

OBJT4 - F
RETURN
END

Problem: U-18

REAL FUNCTION OBJT5(X,K)
COMMON/PRINT/IBRKT,IPOW,IMS,JMSP,IIN,IOUT,IOTT
DIMENSION X(20)
DIMENSION A(6,6)
LOGICAL FLAG
DATA (A(1,I),I-1,6)/3*. ,3.1/

DATA (A(2,I),I-1,6)/3*1. ,3*./

DATA (A(3,I),I-1,6)/3*1. ,3.1/
DATA (A(4,I),l-1,6)/3*.1 , 3*1./
DATA (A(5,I),I-1,6)/3*.I ,3"./
DATA (A(6,I),I-1,6)/3*.I ,3"./
IF (FLAG) GO TO 500
PRINT(IOUT,*)" SEPERABLE TEST FUNCTION"

FLAG = .TRUE.
500 CONTINUE

F -0.

DO 55 1 - 1,6

DO 55 J - 1,6

F = F + A(I,J) * X(I) * X(J)

55 CONTINUE



225

RETURN
END



226

VITA

Daniel B. Fox was born on December 10, 1946 in Hinsdale,

Illinois. He received his B.S. degree in Engineering

Physics from the University of Illinois in January 1969. As

a second lieutenant in the U.S. Air Force he completed a

M.S. degree in Industrial Engineering - Operations Research

at Oklahoma State University in the summer of 1970. While

at O.S.U. he became a member of Alpha Pi Mu, the industrial

engineering honorary fraternity. From 1970 to the spring of

1974 he worked as an operations research analyst on the

director's staff of the National Se urity Agency. Captain

Fox then attended Squadron Officers School at Maxwell Air

Force Base, Alabama. In July 1974 he began work as a test

engineer on a LORAN and inertial navigation and weapon

delivery system for the Air Force at Eglin Air Force Base,

Florida. In the summer of 1977 he entered the Ph.D. program

in Operations Research in the Department of Mechanical and

Industrial Engineering at the University of Illinois,

Champaign-Urbana. He is currently employed as an assistant

professor in the Operational Sciences Department of the

School of Engineering at the Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio.




