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PREFACE

The Air Force has been increasingly concerned with logistics

support capability under very demanding and dynamic scenarios.

Unfortunately, many measures of performance used in evaluating

logistics support and methods of measurement have evolved during

relative nondynamic peacetime operations and conflicts in which

demand for logistics support was generally stable. These "steady

state" methods have been adapted to evaluating dynamic performance

by increasing demand for support to higher levels and assuming that

the dynamic scenarios are adequately approximated by peacetime steady

state demands at those higher levels. This assumption could lead to

the overestimation (and in some cases, underestimation) of wartime

spares requirements, potentially incorrect war reserve spares mixes

for squadrons, and, at the least, inaccurate capability assessment of

alternative logistics policies.

This report develops techniques of transient performance

measurement for alternative supply and maintenance strategies. A

companion document, Part II: Component and Subcomponent Spares

Allocation with Dynamic Models, will describe the use of these models

for determining spare stockage requirements.

Rand-sponsored research led to the dynamic modeling techniques

described in this report. The techniques were used by Carrillo,

Hillestad and Lippiatt in "Maintenance and Supply Performance

Explorations," found in Appendix E in [11]. and were further expanded

to support the analysis in the forthcoming publication "Assessing

the Capability of Planned Reserve Stocks and Spare Engines to Support

High Sortie Rates in a Central European Contingency." Because the

demands for the Central European conting(ncy are expected to be time-

varying, because squadrons are collocated with potentially shared

resources, and because the availability of stockage and maintenance

repair resources is time-varying, further expansion of the capability

to study transitory behavior of support resources was necessary.
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The models and techniques described in this report are rather

technical and a background in probability theory is necessary for a

full understanding of the necessary assumptions, development of

the models, and some implications of their use. The report should

be of greatest interest to those specialists involved in studies and

analysis of dynamic logistics support requirements, those involved in

determining wartime stockage (including spare engines) requirements,

and those wanting an in-depth understanding of the models used by

Rand in the analysis.

This work was done as part of the Project AIR FORCE project

"Strategies to Improve Sortie Production in a Dynamic Wartime

Environment."
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I. INTRODUCTION AND SUMMARY

Much of the past work regarding recoverable item stockage has

concentrated on the development of models and policies for systems in

steady state. The well known work of Feeney and Sherbrooke [3]

regarding an (s-l,s) inventory policy developed distribution functions

for items in service and measures of inventory performance based on

the limiting behavior of an infinite server queue expressed by Palm's

theorem [10]. Sherbrooke's METRIC: A Multi-Echelon Technique for

Recoverable Item Control [14] used the same assumptions regarding

an inventory system in steady state with constant average demand rate

and service rate. More recently the MOD-METRIC model of Muckstadt

[91 expanded the capability of METRIC by considering indentured

components but also assumed that recoverable item stockage was to be

provided for a system in steady state.

These models and variants have been widely applied to practical

problems of inventory management. For example, the Air Force uses

METRIC-like techniques for the management of millions of dollars of

recoverable spare parts. For many inventory systems including the

Air Force Supply System in peacetime the assumption of steady state

behavior is both convenient and adequate. However, there are important

situations in which the transient behavior is most important. A

dramatic example of this is the potential dynamic behavior exhibited

by demands and service in the deployment of an Air Force squadron at

the onset of a conflict. Demands for components may suddenly jump

very high relative to the previous peacetime activity of the squadron

and then decay gradually or abruptly due to the attrition of the

aircraft in the squadron. Meanwhile the initial service rate may

be near zero, as the already deployed unit awaits the airlift of the

specialized personnel and test equipment to repair broken components,

gradually increase to its full wartime service capability, and

suddenly drop to near zero again as a result of damage in an airbase

attack.
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Two problems regarding recoverable item inventory faced by a

decisionmaker for the nonstationary case are the same as those faced

in the steady state case, that is, to determine how much spare

stock to provide against stockouts and to determine what level of

performance can be achieved with a given level of investment in spare

stock. Clearly, the limiting behavior of the dynamic case is not of

interest when that limit is reached at times far beyond the period of

interest. Performance measured with models which only consider

limiting behavior will tend to be inaccurate and stockage provided

against limiting behavior may be either inadequate or excessive.

Gaver, Lehorsky, and Perlas [5] have described certain service

systems with transitory demands. Miller [11] has described a real-

time management approach for the distribution of stockage among

locations affected by time varying demands. The primary purpose

of this Note (Part I) is to provide an integrated approach to inventory

performance measurement for a given stockage allocation for systems

with nonstationary demands and service rates. Part II will describe

certain stock allocation algorithms for the nonstationary case.

A secondary purpose of the Note is to suggest approaches to

certain aspects of recoverable item repair and supply which currently

cause significant deviation between practice and theory, even in the

case of stationary demands and service rates. In particular, we will

address the problems of cannibalization of primary recoverable items

by providing models for different degrees of cannibalization.

Cannibalization of components is common practice in many service

systems, particularly in cases where the equipment to be repaired is

highly modular and interchangeable with a minimum of effort. In

effect it provides an additional source of spare components when

stock is low or service times are long. For example, consider the

case of an aircraft not operational due to the shortage of one item.

While that aircraft is nonoperational it also provides a hedge against

other aircraft becoming nonoperational due to shortages of other items.

In the same fashion indentured items awaiting service provide a

secondary source of supply of subcomponents. The METRIC and MOD-METRIC

techniques do not consider the effect that cannibalization has on
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inventory system performance and therefore tend to overestimate

stockage for systems which permit cannibalization. We will describe

how cannibalization can be considered in evaluating performance.

We will also describe a group of performance measures which

attempt to predict the effect that inventory and service policy has on

organizational performance. Some of these measures have been developed

for the special case of aircraft support in which the organizational

goal is to provide enough operational aircraft to perform missions.

(However, it should be quite easy to adapt them to support of other

equipment.) Because the measures deal with end item performance

and demands they are scenario dependent. For example, stockout

of aircraft components may not be important if the aircraft are not

required to fly large numbers of flights since only a few operational

aircraft are needed to perform the activity. Thus, we will provide

a model with the potential to evaluate inventory policy in the

context of organizational goals.

Finally, in Appendix B we have indicated certain shortcomings

in our models and other currently used models which have not been

overcome as far as we know. We have also suggested the possible

effects of these shortcomings.

Certain parts of the models in this paper have been used for

evaluation of ship and shore support of the carrier aircraft in

the Defense Resource Management Study by Rice [11], for analysis

of centralized maintenance support of the A-10 aircraft in the

same study, and for analysis of recoverable item stockage requirements

for various levels of potential wartime flying demands of the F-4

aircraft.

The next section gives the derivation of a basic results

regarding the time dependency of recoverable items in a queue. This

See Appendix A for the methodology needed to include scenario

information in the model.
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is followed by a section describing a group of time dependent measures

of performance.
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II. THE BASIC RESULT - TIME DEPENDENCY OF NUMBER OF

COMPONENTS IN A QUEUE

In this section we will obtain the probability distribution of

the number of recoverable items in service when the demand rate for

service and the service rate are nonstationary and there is sufficient

reserve service capacity. This distribution will then be used in

calculating time varying performance measures during periods of

transitory demand and service. First, we review a related steady

state result.

The well known queuing theorem due to Palm (10], see also [15])

states that when demands arrive according to a Poisson process with rate

X and the service times have an arbitrary probability distribution

independent of the demand process with mean T then the steady state

probability of k units in service under the assumption of slack repair

capacity is given by a Poisson distribution with parameter XT, that is,

probability of k units in service = P = (T) e

Palm provides a similar result for the lost sales case in which demands

stop when there is stockout. Feeney and Sherbrooke (41 extend these

results for the case of the compound Poisson distribution. All of

these results are valid only in the limit and when both the demand

and service distribution are stationary. We will derive a similar

result for time varying service and demand process.

We begin our derivation for the nonstationary case with the

nonhomogeneous Poisson process. A demand process is said to be a

nonhomogeneous Poisson process with intensity function m(t), t > 0

if

j. The number of demands existing at time t = 0 is zero.

ii. The numbers of demands in disjoint time increments

are independent of each other.

I.l
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iii. The probability of more than one demand in an increment

becomes infinitesimally small as the increment gets small.

(A compound Poisson process relaxes this assumption.)

iv. The probability of one demand in any increment is given

by the intensity function m(t) times the length of the

increment as the increment gets small.

Then, if we let

N(t) = Number of demands by time, t

y(t) = m(s)ds

0

it can be shown (see Ross [13], for example) that

Probability of k demands in the interval t, t + s is

P[N(t + s) - N(t) = kI - e- (Y(t+
s) -Y(t)) [y(t + s) - Yt)Ik

k!

for k > 0

y(t) is called the mean value function of the process.

The following result is stated in an exercise in [12].

Theorem: Given N(t) = k, the unordered set of arrival times in a

nonhomogeneous Poisson process with mean value function y(t) have the

same distribution as k independent and identically distributed random

variables having distribution function

SY (x x < t
Y(t)

G(x) t
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Theorem. (Nonhomogeneous Poisson Queue)

Let X(t) denote the number of customers in the system at time t

when arrivals occur according to a nonhomogeneous Poisson process

with intensity function m(t) and mean value function

y~t)
1 .. , t) m ( s ) d s .

0

Let the nonstationary service distribution be F(s,t) (the probability

that a service started at time s will be completed by time t). Then,

with the additional assumptions that the repair process is independent

of the arrival process and slack repair capacity, X(t) has a Poisson

distribution with mean

Ps,tOdy(s) =t F(s,t)m(s)ds

0 o

where

F(s,t) = 1 - F(s,t).

Proof:

Conditioning on N(t) we obtain the probability that X(t) =J,

-Y(t) k
P(X(t) = P(X(t) = JIN(t) = k) e-k!tY(t)k

k=O

A version of this theorem as well as a sketch of a proof
(different from the one given here) was first seen by the authors
in some unpublished notes by Gordon Crawford. Also, see Crawford [21
and Gaver (6].
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If there have been k arrivals by time t, then the probability

that an arbitrary one of these customers will still be present at t

is given by

p =j iF(s,t)d(y~s))

0

This is obtained by conditioning on the time of arrival of an arbitrary

customer and then unconditioning using the distribution G(x) given

earlier.

Now,

j =0, 1, .. ,k

P(XOt = iIN(t))= k = (~il~-

Unconditioning on N(t), we get

P(XOt D = E (t k)\ i (1 ) k- eY(t) Y(t) k

k=j

J! (k-j)!

k=j

= e-Y(t) (P-Y(t)) i e (l-p)Y(t)
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The proof is then complete since

[ft Y~t1

t o F(s,t)m(s)ds.
0

In the work that follows we define

X(t) F(s,t)m(s)ds.

0

The importance of the result lies in the fact that nonstationary

demands, described by the parameter m(t), and nonstationary service

time, given by F(s,t), are both represented in the model.

If demands in the Poisson process have a probability f of being

registered independent of the process, the number X of registered

demands in service is given by

If.)_(t)_k e-[fX(t)]
P(X(t) = k) = [e

In fact, f can also be nonstationary so that f = f(t) and we compute

°rt -

X(t) - F(s,t)f(s)m(s)ds

and then use

k -)(t)
P(X(t) = k) - k(t) e



Furthermore, if we let X(t) and Y(t) be the number of customer.-, In

service in two independent processes it can be shown that the total

number in service is given by the Poisson distribution,

[xt+yt]k e-[ X )+X Y (01

P(X(t) + Y(t) = k) = k! [

We will use the following example to give some perspective on these

results.

AN AIRCRAFT ENGINE EXAMPLE

Assume that aircraft engines at an airbase demand service at an

average rate m(t) where

rt)= ml  t < T

mt
m 2  t> T

and that T reflects a change in the base flying program causing a

change in the rate of demand of service. Assume that an arbitrary

service demand has a probability f of being satisfied at the base and

must be satisfied at a remote location with probability 1-f. Assume

further that the service time distribution functions for base and

remote locations are exponential with average rates U B and p R' Finally,

assume that engines demanding service at the remote location cannot

leave the base for the first T (assume T < T) days of the period we

are considering. Then we have, for base service

- B (t-s)
FB(st) = e



and for remote service

1 s t<T

-IIR(t-T)

FR(s,t) = e ' < T < t

-)R (t-s)
e T<_s<t

The average number of engines in the base repair process is then

given by

x B(t) FB(s,t)m(s)ds

/t -P B(t-s) m I  -IB t

xB(t) e mfdS f •- (-e ) for t < T

0

xB(t) = e B mfds + e- mfds for t > T
B e1 e t5) 2_

oT

m I  - B ) e - B t )
m1 lJB T IB (tI)

f - (l-e e
B

m 2  -1B(-)+ f • (l-e - ~ -  for t >T

BB

and the average number of engines in repair at the remote location or

awaiting repair at the remote location is

x R(t) f FR(s,t)m(s)ds

0
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!t
AR(t) 1 mI(1-f)ds (1-f)mIt for t < T

0fT (tT)t (ts

AR(t) =J e ml(1-f)ds + e lR m(1-f)ds

o T

R (t-T) mi -IR (t-T)

(-f)mraT e + (1-f) - (l-e R for T < t< T
1R

xR(t) =je n1 (1-f)ds + e m (1-f)ds

o T

t e (t-s) m2 (1-f)ds

T

, -iiR(t-T)

= (l-f)mIT 
e R

mIn1  V (r-T) -IR(t-T)

+ (1-f) m. (1-e ) e

+ (1-f) 2 (1-e-PR ( t - T ) )  for T < t
P1R

The average total engines in service is then given by

XT(t) = B (t) + x R(t)
B R

and the distribution of engines in or awaiting service as a function

of time is

-Tr) T(t)

P(XB (t) + XR(t) = k) -- k=

'k
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Figure 1 shows the mean number being serviced as a function of time.

Note that as t gets larger this result converges to the steady state

result predicted by Palm's theorem,

XT() = f m + (1-f) m 2B R

Note also that the dynamic result gives considerably more information

regarding the distribution of engines in service during the period of

transient behavior. It can be used, for example, to determine the

sensitivity to base and remote repair rates, the effect of transition

to a different flying rate (with subsequently different demand rate)

and the effect of various delays in shipping engines off base.

Furthermore, it can be used to determine the time dependency of the

probability of stockout based on a time varying supply of spare

engines.

In this example we assumed that there were no engines requiring
,

service initially. However, by superposition it is possible to show

that if there was an average of r0  engines requiring service

initially, the mean number in service at time t is

X(t) = F(s,t)m(s)ds + F(O,t)r 0

0

provided that service times have an exponential distribution.

Appendix A gives a number of closed form solutions for X(t)

given various assumptions about F(s,t) and m(s).

Consider two separate repair processes, one which operates prior
to t - 0, and another which operates after t - 0. The second term
in the equation above represents the servicing of all demands which
have occurred and not been serviced by time t - 0.
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Once an expression or value of X(t) is determined it is possible

to compute other measures of performance such as the probability of

stockout given a spare stock level, S(t), at time t. The next section

derives a number of performance measures for the nonstationary

inventory system.

LI

.1:
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III. TIME DEPENDENT MEASURES OF PERFORMANCE

In this section we describe a number of performance measures of
,

a nonstationary inventory system , some of which are the well known

measures such as average backorders, while others are more specifi-

cally related to system supporting activity of vehicles such as

aircraft. Let Xi(t) represent the mean number of a single recoverable
item, i, undergoing service as given in the previous section and let

Si(t) be the amount of spare stock provided for that item at time t.

(We assume here that Si(t) is a deterministic quantity.) Then

several inventory system measures are:

a) Probability of stockout at time t, POi(t)

This is the probability that demands exceed supply

and is given by

-e i(t)

POi(t) = 
t) e k!

k=Si (t)+1
Si(t) -it

= - S ti(t)
k e W

k=O

b) Fill rate at time t, FRi(t)

This is the probability that a demand that has occurred

can be filled

S (t)-1

FR(t) = A it)k e k!

k=O

See [1] for steady state supply performance measures.
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c) Average backorders at time t, EBi(t)

This gives the average level of shortages of item i

at time t

k -xi t)

EB(t) = [k - Si(t) t1

k=S i(t)+l 
k

S.(t) k-Ai(t)

Sk(t) e
x i.M)- Sit) + (Si(t) - k) 1 k

k=O

d) Variance in backorders at time t

2 Ai.tk - i(t)

VBi(t) = [k - Si(t)]2 I ()e - 1

k=Si(t)+1

= Xi(t) + i(t) - Si(0)]2

1 
e isi(t) k -i~t

- (k- Si(t) 2 EBi(t)

k=O

e) Average number of systems NMCS (Not Mission Capable for

Supply reasons) without cannibalization, EN(t)

This measure gives the average combined effect of recoverable

item shortages on the major system (such as aircraft) those

items support. Here we assume that NA(t) represents the

number of such major systems which are supported at time t.

We further assume that there are N types of recoverable

items required on each system and that the shortages of

any one of these items will make the system nonoperational.

In the noncannibalization case we assume that shortages of

components cannot be consolidated among the systems.
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The probability that an arbitrary system has a shortage of

item i when there are k shortages of i is

k
NA (t)

and therefore, the probability that an arbitrary system has

a shortage of item i is

EB. (t)

NA(t)

The probability that a system is down due to shortages of

some item is

NA(t)

and, finally, the expected number of systems not operational

at time t is

EN(t) = NA(t) i -1 J ( Ait)''I. __ NAWt/

This derivation required the assumption that only one

component of given type was on each system. If this is not

the case let Qi be the quantity of item i per system. If

no consolidation of shortages occurs then
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I. QiNAt -

/i Y PB i(y)
EN(t) 1 NA(t)

Qiti 
-

where PB. (y) is the probability that item i has y shortages

at time t

Si(t) -Xi(t) k
Se X.(t)

2: e k! Y = 0

PBi(y) k=O

-xi(t) Si (t)+ye 1 i (t)
y> 0

(S i(t)+y)!

f) NORS with complete cannibalization

Here we assume that shortages of all components are

consolidated to make the smallest number of nonoperational

systems. Let Pi(j) be the probability that shortages
thof the i item are less than or equal to j. Then

S i(t)+J k - ( t )

ii(t) epi(j) =k!

k=0

Let P(J) be the probability that the number of nonoperational

(NORS) systems is less than or equal to J. Then

N

P(J) = N pi(j)

i=l

Ir •
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If there is more than one item of a type on each system

we again employ Qi as the number of item i per system and

obtain

N

PQ)= H Pi (Qi*)"

i=l

The average number of NORS systems with full cannibalization

is then

NA(t)-l

EN (t) = [I-P(j)].

j=0

The NORS distribution function with full cannibalization

is

PN.(t) = P(j) - P(j - 1)

which then can be used to give the variance in the number

of NORS systems.

VN(t) = [ 2PN (t] - EN2 (t)

J=l

g) NORS with partial cannibalization

Here we assume that some items are relatively easy to

cannibalize and that some are so difficult to remove or install

that it is not desirable to cannibalize them. Let

Ic =llitem i is cannibalizable4

In
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We first compute the probability of exactly k NORS systems
due to items in the set Ic . This is just the PN. (t) derived

C J

earlier using P(j) and where P(J) is computed only using the

i in Ic . We will denote this probability PN.(t). The
C 21

probability that an arbitrary system is operational considering

only shortages of cannibalizable items is then

NA (t)
PNc(t) ENc(t)Fa NA(t) j NAt)

j =1

The probability that an arbitrary system is operational after

shortages of noncannibalizable components only is

(1 NA(t)
iel

n

assuming Qi, the quantity of item i per system, is one for each

part, i, in the set I . The probability that an arbitrary systemn
is not operational, assuming independence of demands and that the

cannibalization of the items in I takes place with no

information of the failed items belonging to In, is

F ENC~)( EBi (t)
NA(t) H NA(t)

~n

and the expected number of nonoperational systems given

partial cannibalization and given NA(t) total systems is

EN c [ EBit)1
ENP(t) =NA(t) 11 [ - NA-I 1 l N~ ) I

" I iCI
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ENP(t) is an overestimation of the expected NORS if the

information describing which noncannibalizable items had failed

is used (since, in this case, the strategy would be to move

"holes" due to cannibalizable items to those aircraft with holes

due to noncannibalizable items. We did not do this in our

derivation).

In the NORS expressions found in sections e, f, and g, the

reader may observe that backorders and shortages probabilities

have been computed as though demands were independent of the

number of systems nonoperational. In most systems the demand

rate lowers as the number of systems nonoperational increases

due to lower activity of the systems. Unfortunately, the

independent increment assumption of the Poisson process is then

violated. Usually, with spare stock provided for the appropriate

level of activity, the percentage of systems nonoperational is

low so that there is a very low probability that failures exceed

spare stock plus the number of systems. For cases in which NORS

percentages get high, it is possible to use the lost sales

distribution with the demand turned away when the number of demands

exceeds spare stock plus the number of systems.

h) Probability of meeting system demands and number of system

demands met

This group of performance measures is for the situation in

which it is desirable to have enough systems operational to

perform a certain demanded level of activity. In the case of

aircraft systems this might be the number of operational airframes

which permits a desired level of flying activity. Let B(t) be

the maximum number of allowable NORS systems which still permits

the system demands to be met and let D(t) be the level of system

demands at time t. Let r(t) be the amount of system demand which

can be satisfied by a single system at time t. In the aircraft

case D(t) would be the total desired sorties per unit time while

r(t) would be the maximum number of sorties per unit time

achievable by a single aircraft.



-23-

Note that

B(t) =NA(t)-

where [x] is the ceiling of x, that is the smallest integer

y so that y > x, and D(t) < r(t). NA(t) is assumed.

i. The probability of meeting system demands is then

PD(t) = P(B(t))

That is, the probability that system demands are

met is just the probability that the number of

nonoperational systems is less than or equal to

B(t).

ii. The expected number of demands met given k

nonoperational system is

= $ D(t) if k < B(t)

r(t)(NA(t)- k) if k > B(t)

Uncond it ioning

NA(t)

ES(t) = D(t)P(B(t)) + r(t)(NA(t) - k)PNk(t)

k=B(t)+l

where P(j) and PNk(t) were described earlier.

iii. The distribution of the number of demands met

is given by

P(B(t)) if k - D(t)

PSk(t) PN i(t) if k - r(t)(NA(t) -J);

J - B(t) + 1, ... , NA(t)

otherwise
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iv. The variance in demands met is given by

NA(t)

VS(t) =i D 2(t) P(B(t)) + E r2(t) (NA(t) - k) 2 PNk(t) - ES 2(t)

k=B(t)+l

Note that the latter group of measures bring into play,

in a deterministic sense, additional time varying parameters

such as the number of systems, NA(t), the demands on all systems,

D(t), and the portion of demand a single system can satisfy,

r(t). In the deployment of an aircraft squadron, NA(t) might

represent a time phased deployment of the aircraft as well

as attrition due to losses in a conflict. The demand D(t)

would be the time dependent demand for sorties as an engagement

proceeds and r(t) would be time varying because of a short-

term capability to provide surges of flying activity.
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APPENDIX A

NONSTATIONARY SERVICE DISTRIBUTIONS

In this section, we will present various non-stationary service

distributions which are of interest in evaluating the sensitivity

of a recoverable item inventory system where the demands for items

arrive according to a nonhomogeneous Poisson process, implying

changing rates of demand for service. Under the assumption of

sufficient slack service capacity and the independence of the demand

and service processes, it was shown, in the main sections of this

report, that for such systems the number of items in service at time

t is given by the integral

(t) F(s, t)m(s)ds

0

where F(s,t) is the probability that a service started at time s

will not be completed before time t and m(s) is the intensity function

of the Poisson process.

The service distributions to be studied have one main property

in common: the service is either nonexistent for all or some period

of time or a service process is available with service times that

have an exponential distribution with rate V. This property will

allow us to write X(t) in terms of two functions:

t

Y(t) I m(s)ds,

the mean value function at time t of the nonhomogeneous Poisson

process, and

f ( e" (t-S)m(s)ds

f,0
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which is discussed next.

A) Basic Case:

Al. Uninterrupted service process with exponential service

times, i.e., F(s,t) = 1 - e 11(t-s) for 0 < s < t.

A2. Constant demand rate m, that is

res =I0 s < 0

m s>O

Clearly, in this case

y(t) f m(s)ds = m t.
o

The number of items in service is a Poisson random

variable with mean

t

A(t) e -(t-S)m(s)ds = D (t)

For the assumed m(t), we get

Note that for large t, when the system has been operating

for a long time, we have. that the number of Items in

service approximates , the steady state result.

B) A More General Demand Rate for Service:

Bl. Same as Al.
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B2. Piecewise constant m(t), i.e.,

r 0 s < 0

Mn(S)

mi i-i < t < i, for ill, ... , t, t assumed integral

so that the mean value function

t t
y(t) m(s)ds =E mi  for integral t > O.

0 i=l

Here, the mean number in service, A(t), becomes

A(t) = 2 (t)

for t = 2, we have

111(2) -- o e-jj(2-s) mIdS +/ 2 e-11(2-S) m2 ds

m 1 m2_ (1-e- )e - + -le -

(l-e - ) (m e-1 +
e m 2)

For integral t > I

t
l-e - M Ij m - (t-')(t) = %U(t) =, 1-VIw mie-It 1

i-i
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C) Service Process Unavailable for Some Initial Time Period:

Cl. No service available on [0, T), i.e., up to time T;
1

thereafter, have exponential service times with mean -

C2. General intensity function m(s) for 0 < s < t.

In this case,

y (t) for t < T

X(t)=

y(T)e - (tT) + P (t) - e0(t - ). (T) for t > T

D) Subsequent Loss of Repair Process:

Dl. Exponential service time (rate v) on [0, T], i.e., before

time T, after which the system completely loses its

service capability.

D2. Same as C2.

Here

l~t) -- Wcu t  for t < Tr

AX(t) =

(T) + y(t) - Y(r) for t > r

E) Service Times with a Fixed Time Component:

El. Service times made up of a fixed component d plus an
i

exponential random component with mean -.

E2. Same as C2.

The result is

x~)=IY(t) t < d

AM ~4D (t-d) + y(t) - y(t-d) d < t

F) Service Times with Fixed Component Plue Loss of Service:

Fl. Same as El except that after time T the system permanently

loses its service capability.



-29-

F2. Same as E2.

Get

Y(t) 
t < d

X(t) = P (t-d) + y(t) - y(t-d) d < t < _

_1 1 (max(O, r-d)) + y(t) - y(max(0, x-d)) T< t; t > d

G) Discrete Change in Service Rate:

GI. Assume exponential service times with rate v, on [0, tI],

i.e., prior to time ti, after which the rate permanently

changes to P

G2. Same as C2.

We obtain

i (t) t t 1

-P(t = _2 (tt 1) _ -P2 (tt 1

Pi 1(t) -1 (t2

H) Two Discrete Changes in Service Rate

HI. Assume exponential service times with rates P I1 2 11 39

in the respective time intervals [0, t 1
] , (tl' t 2 ]' t2' (9

where 0 < ti < t2 "

H2. Same as C2.

The result is

e ( i1 ) + 0 (t)-e t t'i)112 12 1

X(t M I < t < t2
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-P2 (t2 -t 1 ) -13 (t-t 2 ) -tSe e (PlI(tl1)

+ P3 t-t 2 -12 (t2 -t1 ) t2 < t

-P3 (t-t 2 ) 2
S (t)-e (t 2 )

I) Two Discrete Changes in Service Rate and Service Times with

Fixed Component

Ii. Same as HI but in addition, there is a delay of d units

of times prior to an item starting its service.

12. Same as C2.

y(t) t < d

Si (t-d) + y(t) - y(t-d) d < t <__i

-e2 (t-t l(max(O, t1-d))

+ (P (t-d) - e-12tt1 4, (max(0, f d) or t< t< t t > d
-02 (t- 2

(t) ffi + y(t) - y(t-d)

-P2 (t 2-tl1) -P3 (t-t 2)

e e 0' (max(O, tl-d))
I

-P3 (t-t 2)f -I2 (t2-tl)
+ e (max(O, t2-d)) - e 4, (max(O, t-d))Ik12  2-' 2 1

-U3 (t-t 2 )
+ (P3(t-d) - e 13 (max(O, t2-d)) + y(t) - y(t-d)

for t2 < t; t > d
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As it becomes clear, further assumptions would imply more

complicated expressions which may lead to numeric integration. However,

the various service distributions presented allow a quite general

sensitivity testing of an inventory system.
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APPENDIX B

SOME UNRESOLVED PROBLEMS

The development of models and techniques for transitory behavior

in the body of this Note required certain assumptions that

are sometimes violated to the extent that the models are no longer

good approximations of the situation modeled. The most important

assumptions are:

1. Sufficient slack service capacity

2. Independence of the service and demand process

3. Poisson arrivals

The first assumption implies that each recoverable item demanding

service immediately receives service with average service time based

on the function F(s,t). In general, the service time is dependent

on the number of servers, the scheduling of repair, and the number of

components already placing demands on servers. With respect to

aircraft recoverable components the number of servers may be limited

by the availability of specialized test equipment or specialized

personnel. Furthermore, the test equipment and personnel are generally

used to service several or many different kinds of recoverable items.

Queuing results for finite numbers of servers are available but have

the drawback that they do not account for the cross training and

sharing of servers for different types of repair. Furthermore, they

do not lead to the Poisson result described in this Note

and consequently do not allow the separation and combination of

different repair processes or "pipeline."

The "steady state" stockage calculations in use by the Air Force

today use an average resupply time as the average service time. This

average resupply time includes waiting time in service queues and is

a historical average of the length of time elapsed between when it

is checked in for repair and checked out of repair. An infinite server

model using this time as the average service time is then used for
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recoverable item stockage. This approximation is reasonable as long

as the system remains strictly in steady state or when there is

enough slack capacity to maintain the same resupply time regardless

of demands on the system. An advantage of this approach is the

ability to decouple maintenance policies such as service scheduling,

number of specialists, and amount of test equipment, from the stockage

policies involving the amount of spare stock provided. At the same

time, it is difficult to identify the end benefits of certain mainte-

nance policies when such loose coupling to inventory calculations

exists. (Clearly, there must be a tradeoff in amount of spare stock

provided and the service capability provided.)

The second assumption is generally violated because the scheduling

and priority for service are typically based on the current set of

inventory shortages (or at least those shortages affecting system

performance). Furthermore, when system demands for service are

affected by the past history of demands (such as when so many aircraft

are nonoperational that flying demands are reduced and there is a

consequent reduction in demands for service) then the third assumption

regarding Poisson demands is also violated. The latter assumption

may also be violated when demands occur with a higher variance to

mean ratio than expressed by the Poisson process. The violation

of the latter two assumptions generally means that the models lead to

conservative predictions of behavior in that they assume more demands

than might occur and they assume longer service times than might be

achieved given efficient scheduling and expediting of certain types

of service. In stockage calculations, this will lead to a higher

demand for spare stock and in performance measurement with a given

level of stock the models will consequently estimate performance

lower than might actually be achieved.

We have examined an alternative modeling approach which involves

direct integration of the differential equations describing the

dynamic queue while assuming only the Markov property that the next

state is determine by only the transition probability from the current

state. The advantage of this approach is that the dynamic behavior

of queues as they respond to server limitation, service rate changes
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as a function of both state (number in the queue) and time, and demand

changes as a function of state and demand can be considered. This

method is also appealing relative to Monte Carlo type simulations

in that only one integration is required to obtain the complete

time dependent probability distribution of number of items in a queue

with this approach while the Monte Carlo simulation may require a

large number of trials to obtain the distribution with a sufficient

degree of confidence. Although the results of this approach appear

promising there are certain drawbacks still to be overcome. First,

all "pipeline" or different service processes must be included in

the set of state equations because of the loss of the Poisson properties

and, secondly, the states of all components sharing the same set of

servers must be considered at one time. This can lead to a potentially

large number of state equations to be solved because of geometric

growth. We are currently examining methods of reducing the number

of equations which must be considered at one time.
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