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SUMMARY

The primary objectives of the CONTAGRID program were to determine

whether automatic elevation tagging and elevation gridding

processes could be developed for and executed on a SIMD* processor.

To support these objectives, a pre-production hardware/software

system that in an end-to-end manner transforms raster scanned

sheet contour data into a Digital Terrain Elevation Data

(DTED) form has been developed. It is somewhat awkward to use.

It exhibits distinct hardware/software limitations. Yet, it clearly

points to the production potential that a SIMD machine has for reduc-

ing the hours required for man-intensive carto tasks.

The system utilizes a combined SIMD/sequential processor - ETL's

CDC 6400/STARAN computational facility - as its hardware resource.

The application software, which was developed using structured

design principles, comprises about 50,000 lines of source code.

The amount of software required for the SIMD and sequential processor

is about the same. For both types of processors, the source software

was split about equally between executable and non-executable code.

Source code was written in FORTRAN and APPLE.**

The essential objectives of the CONTAGRID program have been achieved.

SIMD-oriented algorithms to accomplish automatic elevation tagging

and elevation gridding were developed, implemented, and incorporated

into the above system. Using real data, the elevation tagging soft-

ware has executed fast and reliably; its built-in consistency checks

have provided the automatic quality control actions needed to capture

errors introduced as the result of incorrect automatic edit or manual

operations.

The elevation gridding software provides the promise of higher quality

elevation matrix data because it 1) is able to utilize high resolution

information developed as the result of the raster scanning operation,

and 2) it utilizes more independent known elevation points to develop

*SIMD- Single Instruction, Multiple Data Stream processor.

**APPLE - STARAN Associative Processor Programming Language.
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the elevation at a grid mesh point. Color raster CRT display

techniques evolved to check the efficiency of the algorithm, have

the more universal value of being able to quickly expose errors of

the output elevation matrix.

Based on the program results, execution times for the automatic

processes of elevation tagging and gridding are projected to be

under 10 minutes when using a production system based on a SIMD

with processing power like that used in the CONTAGRID program and an

I/O-oriented sequential processor like the SEL 32/75.

A major lesson, with far ranging implications, was learned during

the course of the program. Raster scanners significantly degrade

the quality of contour lines. The pre-production software system's

pre-tagging software set was designed on the premise that the raster

scanned contour data would conform to the DMA specifications for

contour line data. The premise proved false. It was not possible

to acquire such data forafull sheet (20" by 20"). Based on raster

scanning attempts conducted over a period of over 1/2 year using a

variety of DMA raster scanners, it was found that all scanners

tried caused relatively severe data degradation during the digitiza-

tion process; even though high quality source material was scanned,

out-of-spec data was observed to be the norm rather than the excep-

tion. (GAC now believes data degradation should be accepted as

"normal.")

The scanner problem limited system tests and evaluations. Of the

raster scanner data collected, GAC was able to select only a nominal

4" by 4" region of SHIRAZ contour data that tended to conform to

DMA specifications; the pre-production system was tested using this

data. Of the three major sets of pre-production software, namely,

the pre-tagging, elevation tagging, and elevation gridding software

sets, sensitivity to the scanner degradation problem was found to

be confined to certain modules of the pre-tagging software set. GAC

has determined several means for making the pre-tagging software insen-

sitive to data degradation. Tests conducted during early 1980 have
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indicated that the GAC-preferred procedure for making the pre-tagging

software immune to the scanner problem is effective.

The pre-production system has proved invaluable for defining the

necessary ingredients of a high throughput production system that can

create DTED from raster digitized contour data. In particular,

hardware modifications suggested include: an on-line color raster

interactive edit station(s) that can compare different data types

(e.g., vector and raster), high bandwidth channel(s) between the

SIMD and sequential processor, much larger array memory for support-

ing the SIMD processing elements, and a smaller I/O oriented 32-

bit sequential processor.

Software modifications suggested include: minimal modification of

the pre-tagging software set to make it reasonably immune to raster

scan problems, the transfer of the majority of sort, merge, and

reformatting tasks to the SIMD processor, the addition of cartog- I
raphy oriented edit software (command and display) to support on-

time interactive editing, and the addition of warp, mosaic, and

panel software modules.

The CONTAGRID program has shown that the host of tasks that need to

be performed by a DTED process oriented cartographic system can be

accommodated by using a combined SIMD/sequential processor system.

The ability of such a system to reduce man-intensive carto activity

has been shown. Sufficient technical data is now (or can be made

available) to accurately predict the capability and cost of such a

system.

I ........................-.....1
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PREFACE

This final technical report records efforts and achievements

under the Contour Tagging and Gridding Software program.

This program was conducted by Goodyear Aerospace Corporation

(GAC), Akron, Ohio and submitted by GAC as GER-16752.

The program was conducted for the U. S. Army Engineer Topographic

Laboratories, Topographic Developments Laboratory, Mapping

Developments Division (ETD-TD-M) under contract DAAK70-77-C-0223.

Mr. R. A. Clark served as the Contracting Officer's Representa-

tive and provided valuable assistance in reaching the contractual

objectives. This effort was implemented by N. J. Adams, (project

engineer), G. A. Biecker, M. A. Anderson, R. W. Messner, J. King,

and J. Vocar with contributions provided by R. Faiss.
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SECTION 1 - INTRODUCTION

1.1 BACKGROUND

Since 1974, Goodyear Aerospace Corporation (GAC) has been

actively involved, with ETL, in the investigation of STARAN*

type processors for Automatic Cartography related problems.

By 1976, GAC had demonstrated that STARAN could use raster

scanned pencil drawing inputs and produce clean line and areal sym-

bologies (it also was used to spot, scale, and orient point

symbologies). To accomplish the above tasks, STARAN raster-to-

vector software with auto-edit capabilities was developed; as

required for this procurement, the software was written to

tolerate lines with variable line width when converting raster

scanned sheet data to a vector data base form. To develop the

final graphics output product, software was written not only to

convert thin line vector data in data base form back to a raster

form but also to embellish it with line symbol attributes. Thus,

thin line vector coordinate data, along with a symbol type de-

scriptor, were found to be sufficient for automatically producing

such line symbologies as double casement roads, intermittent

streams, and railroads, as well as areal symbologies (e.g., swamp

regions) with or without included boundary lines and with required

fill patterns. For line symbologies, junctions that conformed to

cartographic esthetic standards were automatically generated.

During 1976 and 1977, software developed earlier to demonstrate

STARAN's cartographic processing power was made more flexible.

*Trademark, Goodyear Aerospace Corporation, Akron, Ohio 44315
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In particular, the software was altered to allow variable scan

resolutions, different sheet sizes, a greater range of line

widths, etc. Input/output formats were set up to be compatible

with either the DMA RAPS or ETL-IBM raster devices. This

software allowed STARAN to perform cartographic tasks in a

stand alone mode.

In 1978, the cartographic software cited above was set up to be

used at ETL in conjunction with the CDC 6400 computer. This set-

up accounted for the file structures, file sizes, and I/O needed

for the large-scale conversion of sheet graphics raster data to

a vector form and was used to make raster-to-vector format con-

version timing tests. The STARAN Raster Processing Software

(STRAPS) developed allowed map sheet region windowing, limited

scaling, and plotting of vector data (developed from the raster

form) on CALCOMP, CALMA/NOVA, and GERBER plotters. The STRAPS

execution time performance tests showed the extraordinary proces-

sing speed of STARAN; it demonstrated its reliability and effec-

tiveness.

1.2 PURPOSE

The purpose of this contract was to show that the vector data

generated from raster scanned contour map sheets could be

reliably associated with elevation data automatically, provided

that a limited number of contours that intersect sheet boundaries

have been assigned elevations manually. The program was further

to provide for the generation of gridded elevation data using the

elevation data of contours (in either the DMA standard input

format or STARAN format), R/S data in DMA standard input format,

and topographic point elevation data in DMA standard input format.

1.3 REPORT ORGANIZATION

Section II of this report provides the reader with a CONTAGRID

program summary. Detailed summaries and conclusions of the

various program elements are found in Section Il1; recommendations
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are found in Section IV. Section V of this report, INVESTIGATION,

describes the approach, the testing systems, and the general task

involved. Section VI, DISCUSSION, contains a description of the
Pre-tagging, tagging, gridding, and editing procedures. Section VII

describes the RESULTS.

Appendix A provides a high-level description, along with top-level

structure charts of the entire CONTAGRID program. Appendices
B, C, and D give detailed descriptions of the pre-tagging, tagging,

and gridding processes. Appendix E provides a brief description
of some utility routines. Appendix F provides the file/record

layouts of the various data sets developed during the processing

by the CONTAGRID software.
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SECTION 2 - CONTAGRID PROGRAM SUMMARY AND CONCLUSIONS - OVERVIEW

The CONTAGRID program had manifold purposes. Primary and secondary

objectives of the program were the development and implementation

of automated, SIMD-oriented elevation tagging and elevation gridding

algorithms. A major system objective of the program was the integra-

tion of new and previously developed software sets into a pre-

production system that could transform map sheet overlay data into

the Digital Terrain Elevation Data (DTED) form.

The DTED transformation process involves three phases, namely, pre-

tagging, elevation tagging, and elevation gridding. Prior to the

CONTAGRID program, ETL/GAC had shown that the SIMD processor was

highly effective for performing the major task of pre-tagging,

namely, automatic raster-to-vector data conversion. Related R&D

has shown that the SIMD can execute a wide spectrum of other tasks

required by an autonatic cartographic system (e.g., warping, format

conversions, etc.) Now the CONTAGRID program has shown that the

primary tasks of elevation tagging and elevation gridding are also

performed effectively using the SIMD processor. Moreover, it has

verified that the various tasks can be performed in a coherent end-

to-end manner.

The CONTAGRID pre-production system that has been developed has

limitations, It omits mosaicking, panelinq, and warpinq processes

in the end-to-end chain of processes required to produce a DTED

product from digitized contour and R/S overlay data. As a conse-

quence, CONTAGRID's data output has the format, but not the exact

form of that required for a production product. No fast on-line

interactive edit capability is provided. More operator action

is required to operate the system than could be tolerated in a

production environment. An end-to-end production system requires

the omitted processes, fast on-line interactive display/edit

capability, and a simplified flexible operator command input

capability.
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Moreover, it would need to provide job management capabilities,

such as command logging, checkpointing, and process status report-

ing.

The transition from an end-to-end pre-production system to an

end-to-end production system requires no formidable technical

problems to be solved. Because the pre-production system was

structured to accommodate transition, the primary transition

tasks will be related to configuring the system to account for

the myriad of details encountered in a production environment.

The CONTAGRID program has rounded out the R&D activity needed to

technically judge whether or not a properly balanced SIMD/sequential

processor combination does indeed provide the appropriate basis for

an automated end-to-end cartographic processing system that can

tolerate poor quality input data.

CONTAGRID testing has shown that raster scanners substantially

degrade data during the digitization process. Certain modules of

the pre-tagging software set require modification in order to make

them resistant to the scanner problem. The required modifications

have been identified and can be implemented readily.

The hardware of the pre-production set (the ETL CDC 6400/STARAN

processor set) exhibits deficiencies that would be undesirable

in a production cartographic system. The absence of an on-line

interactive color raster/vector edit station, the low bandwidth

between the sequential and SIMD processors, and the very small

SIMD memory were most noticed. The hardware inadequacies tended

to make software development difficult, resulted in inefficient edit-

ing, and bloated the processing time measurements. The CONTAGRID

tests point directly to the hardware changes required for an

efficient system. Using projections based on the pre-production

system test results, a production oriented auto carto system based

on a SIMD with beefed-up memory and an I/O oriented sequential

2-2



processor (e.g., a SEL 32/75) could perform the major automatic full

(20" by 20") SHIRAZ sheet DTED transformation tasks in the times

shown below:

" Pre-tagging (including Raster-to- - Less than 20 min.
Vector Conversion)

" Tagging - 2 min.

" Gridding - 5 min.

Critical lessons were learned during the course of the CONTAGRID

program. Necessarily, such lessons would directly affect the design

of a system tailored for the end-to-end cartographic process. In

particular, they relate to data conditioning, data editing, system

configuration, and system tasking. A few major lessons follow:

* Existing raster scanning devices tend to degrade the carto-

graphic information of the map sheet overlays. Both

systematic and non-systematic degradation occurs; further-

more, the degree of degradation is likely to change over

the face of the map sheet.

e Software must be designed to tolerate a substantial range of

degraded data, or manual editing requirements will rise at

an exponential rate.

* An interactive on-line editing capability is essential.

The time lags and reformat operations that accompany the

passage of data between an off-line editing station and the

the main cartographic processor cannot be tolerated.

Time lags reduce the efficiency of equipment utilization

and the efficiency of a human operator's activity.

* An edit station must have the ability to display funda-

mentally different data types concurrently (e.g., Vector

domain data must be able to be displayed and directly

compared to raster domain data in a common coordinate

system). Certain tasks are performed best in the raster

domain; others are performed best in the vector domain.
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0 It is more crucial that auto editing operations treat the

large number of microscopic faults (e.g., small line breaks,

clutter, pips) than the small number of macroscopic features

(e.g., numerics). It is primarily the count of independent

edit events that affects the human edit load.

* Functional operations must be modularized to support the

smooth flow of data between automatic and interactive tasks

in an operator-prescribed order. Software should be based

on a structured design philosophy.

* The form of file structures at any state of the data trans-

formation process must be designed to support rapid accessI

to randomly selected small regions of the map sheet (i.e.,

data must be "regionalized" throughout all the process tasks).

" Certain standard format conversions performed to get hard

copy proof-plots take exorbitant amounts of sequential

processor CPU time. These tasks should be performed only

for final quality control assessments and should be per-

formed in the SIMD processor.

* In general, the tasks of data format conversion, sort, and

merge should be performed by the SIMD processor so that the

sequential processor can be primarily reserved for inter-

active command processing, systems management, and 1/0 con-

trol functions.

* The simple act of specifying large CPU, memory, and channel

hardware resources for a system does not by itself assure

that it will be a cost effective cartographic system. It

is absolutely essential to balance the hardware resources

of the system against the kinds of tasks required by the

end-to-end transformation process.
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SECTION 3 - RECOMENDATIONS

* The CONTAGRID R&D study and prior carto-oriented studies

have provided sufficient technical information to project

that a joint SIMD/sequential processor set can provide an

effective basis for an end-to-end cartographic system that

would substantially reduce the man-hours required to produce

elevation matrices from map overlay data. Therefore, GAC

strongly recommends that DMA HTC expedite the introduction

of a DTED-oriented turnkey cartographic system (based on

such a processor set) into the DMA HTC production environ-

ment. Further R&D effort to prove the essential worth of

the SIMD processor is not required. DMA ought now decide

whether or not to capitalize on the laboratory proven

features of SIMD processors in a production environment.

If DMA concurs with GAC's assessment that such a system

would be desirable, the actions needed to realize such a

system should commence without delay.

* The production cartographic system delivered to HTC to transform

raster digitized contour data to the DTED from should be end-to

end in nature so that all sources of product cost can be

attacked in unison. Too often, systems that attack only sub-

sets of the production problem cause additional cost else-

where; an end-to-end system can make substantial cost savings

by combining operations as well as accounting for them. An

end-to-end system has greater resources and flexibility and

so can accommodate changes aimed at saving man-hours. More

over, such a system becomes relatively immune to changes in

production emphases.

A total system's approach is a must when configuring the end-

to-end system. Both long term and short term production

demands should be considered.
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* Assuming that DMA pursues the acquisition of a system, the

major goal of future DTED-oriented R&D activity should be

to drive the man-intensive activities of the DTED process

down to the 40 hour/sheet level by 1985; such activity

should begin immediately. The first major emphasis of such

an R&D program should be aimed at slashing the time now

required for performing R/S compilations. A three-pronged

attack should be employed. First, system software should

be added that simplifies the R/S compilation task of the

operator. This work should develop techniques that allow

coarse R/S drawings to be refined on a raster editing station

using such aids as toned overlays. Secondly, an investigation

of the utility of R/S lines generated automatically from

contours ought to be aimed at determining the man-hours

required for reshaping such lines. Thirdly, the applicability

of more sophisticated splining or convolution techniques to

the gridding problem should be investigated in the light of

the severe undersampling of elevation data on contour sheets.

R&D to develop a comprehensive software set for automating

the process of creating the DLMS feature data from existing

cartographic materials should begin after the DTED R&D plan

is established. In particular, it appears that the polygon

encoding capability of the DTED system described would be

exceptionally powerful. Even the automatic association of a

feature number to a polygon appears feasible. The carto-

graphic feature filtering capability of the SIMD has already

been demonstrated. Whatever R&D is conducted, it ought ;o

fit within the priority assignments of the master R&D plan

developed for achieving the desired software set. The DTED-

cartographic system discussed earlier should be designed to

accomodate such additional work.
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SECTION 4 - SUMMARY AND CONCLUSIONS BY PROGRAM ELEMENTS

4.1 PURPOSE

The present DMA process of converting map sheet overlay data into
digital terrain elevation data form - the Digital Terrain
Elevation Data (DTED) generation process - relies heavily

on the performance of man-intensive tasks. The cost and turn-
around time for the process reflects the heavy reliance on

manual operations.

The CONTAGRID program was designed as part of a continuing effort

to verify predictions that a Single Instruction, Multiple Data
Stream (SIMD) processor - STARAN - can be used effectively as the
kernel of an automatic cartographic system that executes the
process quickly, reliably and with substantial cost reduction.

Its primary objectives were to prove the processor's ability to

elevation tag and to elevation grid. Solutions to technical pro-
blems encountered during the course of the program have been
found; the essential program goals have been achieved.

4.2 MAJOR ACCOMPLISHMENTS

The accomplishments of the program were many and varied. They
include the following:

1) the first development of an end-to-end cartographic soft-
ware system based on a combined sequential processor/

SIMD processor hardware system,
2) the development of an automated tagging procedure that

includes highly effective self-check quality control

features,

3) the development of a SIMD processor-oriented gridding
procedure that has the latent capability for substantially

reducing R/S requirements,
4) the development of vector domain auto-edit software that

complements GAC's existing raster domain auto edit software,

4-1

[



5) the development of edit display and command software to

aid manual editing,

6) the evolvement of region oriented file structures to

support a "fast" interactive edit display capability,

7) the implicit testing of the scanning characteristics of

a variety of DMA raster scanners,

8) the establishment of timing information for the various

process tasks and the significance of this information,

9) the successful use of structured software design and

development procedures for the total CONTAGRID system

software (including that required for STARAN), and

10) the development of unique software debug product test

aids.

As a result of the program, measurable software and hardware

performance characteristics of the CONTAGRID program can be used

to accurately extrapolate the character of a production system

with a given throughput capability.

4.3 CONTAGRID PROGRAM METHODOLOGY AND SCOPE

To verify the ability of STARAN to be the basis of an automatic

cartographic system, the program required the development of a

pre-production end-to-end cartographic software system that

would perform the DTED generation process with minimal operator

intervention. The ETL CDC-6400/STARAN facility at Fort Belvoir,

Virginia was used for simulating the cartographic system

hardware. The pre-production system, which utilizes on the order

of 50,000 lines of source code (:25K executable source), now exists.

The value of the pre-production system lies in its ability to

yield measurable software and hardware performance characteristics

needed to extrapolate the character of a production system with a

given throughput capacity. Because software modules of the system

are used in a chained manner, the real accumulated impact on data
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far along the processing chain caused by a seemingly innocent
action of a module early in the chain becomes immediately apparent-
the system across-module problems (as opposed to intra-module

problems) are exposed. By requiring a pre-production system, the
problems associated with realistically transmitting large data
sets, from one software task module set to the next, had to be
addressed. -

The pre-production software has in fact, provided the type of
information that allows the extrapolation of:

1) algorithm requirements,

2) software function and performance requirements,
3) hardware requirements, and

4) gross human factors requirements

for a production CONTAGRID system.

The major categories of man-intensive activities involved in the
DTED generation process that influenced the design of the pre-

production softwa~re are:
1) compilatior.,

2) analog (sheet form) to digital data conversions,
3) parameter association activity,

4) editing, and
5) quality control.

Because the system software was structured with the progressive
automation of man-intensive activities in mind, it can increment-
ally accommodate the incorporation of modules that eliminate or
modify man-intensive tasks.

To develop the pre-production system, it was necessary to address
not only the structure of application modules, but also, the data
sources/destinations, the character of data blocks, and the format
of data sent to and received from the modules -the logistics of
module servicing were established. Mechanisms for saving/deleting
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input/output data files, as well as the file structures themselves,

have been developed so as to allow the flexibility of execution

of modules after input data modifications.

An integrated set of mechanisms for displaying and editing data
have been established. The software handles the hidden problems

of editing, namely, how edited data are merged into the file

structures of non-edited data, how data are deleted, how data

types are identified, and how data format differences are handled

internally or on input and output when the data sets are very

large (10+ megabyte range).

All operations of the pre-production system are logged and

reported; thus, the basis for operations management and control

is provided.

4.4 DTED GENERATION SEQUENCE AND PROGRAM FOCAL POINT

The pre-production software system accomplished the DTED process

in three phases, namely:

1) data preparation (pre-tagging),

2) data tagging, and

3) data gridding.

Prior to the CONTAGRID program, GAC had shown that STARAN could

perform the primary task needed to accomplish the major activity

of phase 1), namely, raster-to-vector conversion, at a rate in

excess of 10 times faster than any other approach, even without

optimized software. Other tasks required by phase 1 (line separa-

tion by weight, raster-domain auto-editing, etc.) had also been
demonstrated so the task of producing phase 1 software at program

onset was considered a low cost, low risk task.

The STARAN software for performing phase 2 tagging (the operation

that associates elevations to contour vectors) or phase 3 gridding

did not exist. Yet, DMA-designed UNIVAC gridding software did
exist, and so the development of a gridding algorithm and subsequent
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software for STARAN was considered a low risk item; the develop-

ment of gridding procedures became a secondary goal of the
CONTAGRID program.

Automatic tagging procedures did not exist prior to the CONTAGRID

contract (although initial GAC studies indicated that tagging

could be accomplished with STARAN). As a result, the complete

development and implementation of an automatic tagging algorithm

became the focus of attention and the primary goal of the CONTAGRID

program.

Goodyear Aerospace has successfully accomplished both the primary

and secondary goals of the CONTAGRID program, namely, the devel-

opment and implementation of automatic STARAN-oriented TAGGING and

GRIDDING procedures.

Both procedures provide vital features not included in the original

set of program requirements. In particular, the STARAN tagging

procedure embeds a powerful automatic tagging self-verification

strategy that pin-points problems automatically - it provides auto-

matic tagging quality control. The STARAN gridding algorithm incor-

porates more independent points of known elevation in a larger sample

space in order to establish the elevation at the matrix mesh points;

thus, better elevation matrix quality than can be achieved with DMA's

planar interpolation algorithm is expected.* More importantly, the

structure of the data in STARAN allows the algorithm to be modified

in such a way that the need for R/S data (and associated manual compila-

tion effort) can be expected to be reduced substantially without de-

grading quality. Finally, unique display procedures for rapidly

exposing elevation matrix deficiences have been defined and imple-

mented; samples of the displays are found in the report.

The most severe technical problem encountered during the program

showed up where it was least expected - in phase 1 (pre-tagging)

DMA and ETL are presently evaluating GAC's gridding algorithm

performance.
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processing. Ultimately, the root cause of the problem, the in-
ability of DMA AC or TC RAPS, Hamilton/Standard, or SCI-TEX raster

scanners to maintain line weight tolerance specifications for
index and non-index contours, was identified. Goodyear Aerospace
now believes the problem to be fundamental to bi-level raster

scanners. Thus, GAG believes the increase in the variance of
line weights over that found in the sheet material should be

considered normal and treated accordingly.

Tests, to date, imply that the pre-tagging software would perform

its functions as required if it were "fed" with input raster data
that contained contours whose line weights met DMA specifications.

However, as described above, it appears unrealistic to expect that
such data will ever be available. Since late in 1979, attempts to

get data that conforms to specifications have failed. With out-of-
spec input data, pre-tagging's present line separation module breaks

up contours while sorting them into index and non-index files. While
the module could be modified to accommodate out-of-spec data,
GAG believes a modification of the pre-tagging procedure that
eliminates the need for the line separation function is preferred.

(The modification procedure is discussed later in this section.)

Tests to determine the effectiveness of GAG's vector domain

feature detection software have become a casualty of the raster

scanner problem. The effectiveness of this software necessarily

is tied to the level of degradation of the data base; when the

pre-tagging modifications are made, the tests can be made.

one benefit of the raster scanner problem is that it quickly
exposed the inadequacy of using a plotter as an editing
display device. The time lags associated with generating the

whole series of displays needed for effective editing

is intolerably great. Despite the theoretical availability of a
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whole series of plot (display) options provided by CONTAGRID's

edit aids software, the exorbitant amount of time needed to gen-

erate the plot options ensured that few options could be used.

It is strongly felt by GAC that an on-line, low lag-time, inter-

active display that can overlay a rich variety of data types is
necessary for conducting efficient editing operations. A color,

raster CRT display meets the majority of these requirements.

While it took considerable time to verify the root cause of the
phase 1 problem, its ultimate impact on CONTAGRID cartographic

processing software will be small. A number of alternative

procedures exist that either accommodate the problem or by-pass it.

4.5 Software Development Priorities

The design of the CONTAGRID cartographic system was governed by

a simple rule: conserve resources for the primary task, tagging,

and (to a lesser extent) for gridding. In practice, the rule

simply meant that existing software, CDC or STARAN, was used

whenever possible. Tasks were performed on the CDC (and so

FORTRAN was used) whenever such tasks did not directly relate to

the execution of processing expensive pre-tagging, tagging or

gridding tasks. The STARAN code generation was generally restric-

ted to key tasks. The efficiency of a software module was

generally ignored except when it related to the task of tagging

and to a lesser extent, gridding. It will be seen, when discussing

the execution times, that a number of tasks (e.g., sort/merge

and format conversion oriented tasks) performed on the CDC-6400 should

be transferred to the STARAN in order to decrease program running time.

4.6 Software Design, Development, and Test

A formalized structured design effort was employed to design the

CONTAGRID software system. The top-down design was accomplished

using a team approach. Members of the team were about equally
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divided between those familar with STARAN and those familiar

with the CDC-6400. The top-level structure chart for the software

system is shown in Figures A-I and A-3. Note that in Figure A-i,

from left to right, the Ist (7) structures refer to pre-tagging

and the next (5) refer to tagging. All nine structures of Figure

A-3 refer to gridding. Table 4-1 summarizes the magnitude and
distribution of the software effort. The fact that nearly half

of all software generated is FORTRAN reflects GAC's effort to
conserve man-hour resources for tagging, gridding activity. (See

Table 4-11).

Goodyear Aerospace's overall assessment of the team centered
structured design approach is that it is effective. Yet, it

should be cautioned that in following the top-down approach, one

must consider the operations of the lowest level modules and

account for the hardware constraints of a system. After performing

a top-level design, it is necessary to assess the impositions of

the design on all time critical modules.

The use of GAC's STARAN and the CDC CYBERNET aided the software
debug operations at the module level. But, no complete simulator

of the joint ETL CDC-6400/STARAN facility existed at GAC so most

software integration and system testing had to be performed on-site

at ETL without the benefit of a preview at GAC. The need to do

system integration and testing on-site degraded the efficiency of

performing this activity. The basis for the decreased efficiency

relates to schedule clashes that occurred when the ETL facility

was tied up for performing high priority tasks, to reduced access

to the facility for security reasons, and to the awkwardness of

using a batch oriented CDC software system for system debug.

Goodyear Aerospace substantially underestimated the difficulty of

working in this type of environment.
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TABLE 4-1. BREAKDOWN OF DESIGN, CODE, TEST MAN-HOURS

PERCENTAGE

FUNCTION TOTAL (HOURS) OF TOTAL

SYSTEM ANALYSIS & DESIGN 2,271 15

SOFTWARE DESIGN4 1,475 9.75

SOFTWARE CODE & DEBUG 6,588 43.5

TEST 1,520 10

INTEGRATION 1,680 11.1

DOCUMENTATION 842 5.6

FACILITY CHARGES, 172 1.1
KEYPUNCH, ETC.

LEASE 8 0.05

TRAVEL 584 3.85

15,140 99.95
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TABLE 4-11. INSTRUCTION COUNTS - CONTAGRID

MODULE STARAN SOURCE CDC SOURCE

PRE-TAG (Executable)
TAPEIN - 345
GETVEC 925 400
GETMVECP - 1,020
GETEDS 2,610 370
PLOTGEN - 690
VLDVEC 205 1,600
VPLOTGEN - 620
SfrUEEZE - 1,0503 .7 4 0 _ _ _ _

TAGGING (Executable)

OPNTAG 840 440
EDITAGS - 195
CLOTAG 2725 420
TAGPLOT - 380
TAPEOUT -_240

3)565 1,680
GRIDDING (Executable)
PARAM - 25
SPLITJ - 25
RESAMPI 1,542 400
RESAIT2 - 900
SEGDGR - 364
NEAT - 300
PARTSR - 594
FINDINT 585 350
BILDSRP - 575
MERGBAIC - 355
GRID 1,320 225

MISCELLANEOUS (Exec.)

I/O (Gridding) Sim. 395 395
Gridding display 600 600
Utility routines 500 500

1,495

COMMENTS(All modules) =,S 12,'500

SUBTOTALS 24,747 24,388

TOTAL 49,135
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Quite late in the CONTAGRID program, to overcome the difficulties

described, GAC introduced a partial simulator of the ETL system

into its Akron facility. This simulator significantly simplified

the installation of Gridding software at ETL.

4.7 Software Features/Characteristics (Pre-Tagging)

The function of the pre-tagging software is to convert raster

domain contour descriptions to the appropriate vector domain

form, to "clean" the data, and to assure the integrity of the

contour vector data base that is used for tagging. The software

features:

1) automatic separation of index and non-index contours,

2) raster-to-vector conversion,

3) raster domain auto-edit operations,

4) automatic vector domain contour break detection,
localization and labeling,

5) automatic vector domain feature classification,
6) automatic vector domain auto-editing,

7) edit display options, and

8) edit command options.

Because of the raster scanner problem, there is little likeli-

hood that the line separation software that yields the first

feature listed above will be used for separating index from non-

index contours in a production system. While it could be used in

modified form for such a purpose, it will probably be reserved

for future feature classification algorithms.

The pre-tagging raster-to-vector domain conversion software

retains the same raster domain auto edit features as are found

in earlier STARAN software. In particular, auto-edit features to

remove clutter, to close small breaks, to thin a variable width

line to a centerline, and to remove short stubs emanating from a

line,exist as part of the present software set. The raster-to-
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vector software still develops vector data on a regional basis

(nominally, in rectangular patches of 160 x 184 pixels), still

converts data from raster-to-vector quickly (although not optimally),

and stores data in the condensed starburst form. New vector edit

software to support pre-tagging and tagging has been developed

for the CONTAGRID software system. Auto-edit and manual edit

components of the software are complementary.

The auto-edit software that is of most theoretical interest is
that which automatically classifies numeric, depression, cut, and

fill symbologies. After classification, the software is designed

to perform the appropriate auto-edit action.

Because of the raster scanner data problems, it has not been possible

to evaluate the effectiveness of this classification and fix soft-

ware with unfragmented data. Most tests to date have been performed

using fragmented data that includes elevation numbers. Even with

dirty data, numerics have been detected, localized, labelled,

classified, and deleted. Yet, efficiency of the numeric classification

software suffers from the dirty data environment. Of numeric

vectors existing in data regions tested (36), a shade over 60% were
correctly categorized. The remaining numeric vectors that were not

categorized were all short and thus failed minimum length numeric

vector consistancy checks. The short vectors resulted directly

from the fragmentation of the numeric symbols. If GAG's solution

to data fragmentation were implemented (see Section 4-11), the

probability is that virtually all the short numeric vectors would

vanish; the proper categorization of true numeric vectors would then

approach 90 to 95 percent.

A more severe problem occurs when non-numeric vectors are falsely

categorized as numeric vectors. Relative to the total number of

true numeric vectors of the test data, about 15%~ of non-numeric

vectors were categorized as numeric vectors. The falsely classi-

fied vectors were derived from tightly curved, snake-like contours

that were chopped into adjacent segments by the map region boundary.
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The segments formed a vector set that met the conditions of an
elevation number and thus were improperly categorized as numeric

vectors.

Since the false categorization problem has been caused by the cutting
action of the data region boundaries, the problem solution could be
as simple as to exclude vectors within a guard strip of region
boundaries from the numeric classification test. While this would
result in non-categorizations of true numerics in the guard region,
the percentage of numerics in the guard region compared to those in
the total region would be small. Solutions that apply more rigious
tests to distinguish numeric quality certainly could be applied if
they are in order.

Vector domain automatic join software that complements similar
raster domain software is needed to reduce the need for manual
intervention to heal contour line breaks., Using the available
test data, the vector domain automatic line "fixing" software
correctly developed about 80%~ of all (14) line join vectors required.
The remaining 20%~ of short joins were not created because end point
criteria were not met. Only 60% of all (5) long line joins were
accomplished correctly. The remaining 40% of long line joins were
built between contour ends and numeric vector fragments that

weren't automatically deleted. Also, relative to the total number
of correct line joins required, about 10% of unneeded line joins
occurred between numeric fragments and other numeric fragments.
By eliminating number fragments prior to the line join operation,
the long line join operation would become much more efficient.

It should be noted that for a full sheet, about 350 short line
breaks would be expected for a 20"x20" region of the type data
tested. Using the present line break "fix" software, about 70
would require manual joins. It would appear that manual interactive
edit requirements would not be excessive. Nevertheless, GAC
believes that the line Join algorithm should be modified to raise
its effectiveness for at least short line breaks to better than 95%.
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Minor modifications to the line join algorithm would be required to
attain this level of effectiveness for short line breaks.

For long line breaks, more extensive modifications are required;
slope data near line break end points would need to be used; it

can be directly derived from the vector data. If an interactive,

on-line editing station is employed in a production system, the
ability of such software to reduce manual activity is much

diminished. Whether the long line break "fix" software modifications

should be incorporated into a production software set would largely

depend on the nature of available hardware interactive edit station

resources of the system.

Tests to determine how well the classification and fix software
performs when treating other than numeric symbologies have been

even more limited. (Yet, recent feature detection tests performed

by GAC apart from the CONTAGRID program have shown that when the

preferred GAC "fix" for the line scanner problem (see Section 4-11)

is utilized, unfragmented data results and the vectors of even

more complex symbologies than those of the CONTAGRID program (e.g.,

railroads) have been identified at a level of effectiveness in

excess of 90%'.) The potential value of the software remains high,

but algorithm effectiveness tests with clean data are yet required.

The display capability provided to support interactive manual editing

includes the capabilities listed next. (Significant restrictions are

bracketed.)

1) Ability to extract and plot (display) a variety of vector

types including:

a) original index line vectors,

b) sections of index line vectors generated by the editor

(To get the plot specified without modifying the present

software, it is necessary to manually intervene while

making a proof plot of index vectors after the edit

operation. In the list of index vectors, edit (or

join) vectors appear first and so will be plotted first.

After they have been plotted, the plotting pen returns
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to the origin prior to plotting the original non-

edited vectors. At this time, the plotter must be

turned off manually. The simple conversion to an

automatic shutdown procedure is implicit in the

order of the data.],

c) original non-index line vectors,

d) sections of non-index line vectors generated by

the editor

[ib) type restriction applies. If "non-index"

replaces "index" in the lb) restriction, the correct

ld) restriction results.],

e) numeric features, and

f) depression, "cut," and "fill features.

[Presently, the various symbologies are lumped into a

single plot. Yet vectors of the various symbologies

are ordered by symbology and so could be separated

during plotting in the lb) manner described above.

In the same manner, the ability to automatically

generate the vectors of a given symbology can be

implemented readily.]

2) Ability to plot combinations of vector types.

[Combinations of vector types are obtained by over-

plotting the data of different files.]

3) Vector identity labels may be plotted in association with

the data or the labels can be suppressed.

[The ability to suppress labels on magnified plots was

not supplied simply because it was felt that the need

for labels was implied by the call for a magnified plot.

Modifications to allow label suppression could be

provided readily.]
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4) Color may be used to distinguish data types plotted in

combination.

[The ability to use color to distinguish data types is

accomplished by changing color pens at the conclusion

of each data file.]

5) Magnification of plot is allowed.j

[Magnification was deliberately set to 3:1 for the

plotter used at ETL; the degree of magnification seemed

the best compromise between the detail required for editing

and the time required to generate the plot. Variable

magnification could be provided.]

6) Sub-regions of the original sheet can be selected for

plotting.

[Data in any one of 9 pre-defined sub-regions of a map

region can be plotted. The ability to plot arbitrarily

sized and centered regions would be desirable for a

production system; software modifications to allow such

an arbitrary display (in other than array load increments)

would be straightforward but would require substantial

new software.]

7) After tagging conmmences, contours that represent ragged

index contours can be displayed using a specified color

while each of the non-index tagged contours 1,2,3,

steps higher than the tagged index contours can be

assigned different colors. Non-tagged contours can be

plotted with yet another color.

[The ability to use color to distinguish elevation bands

is accomplished by changing color pens at the conclusion

of the plot of each data file.]
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Man,. edit capabilities inherent in the file structures were not imple-

mented simply because it became apparent that such capabilities

could not be usefully employed using a plotter. Plot generation

time was a deterrent to plotting data in other than standard formats.

The deterrent can be eliminated with an on-line interactive display

system, and so access to the capabilities would then be meaningful

and could be tapped.

To aid in the interpretation of the displays, various types of

lists can be or are provided. They include:

1) a list of user parameters*,

2) feature vector lists that consist of master vector ID's

with index/non-index designators, and

3) lists of vectors that require editing; plot vector ID's

with associated end-points (x,y)'s compose the list.

Edit command capability includes that for:

1) creating vectors between end points,

2) deleting vectors,

3) re-ordering the vectors of a "cut" or "fill" list, and

4) swapping (reclassifying) the vectors of the features.

Punched cards provide the mechanism by which an operator enters

commands to the CDC. An implicit feature of the system is that

the file structures for display/command activity can readily be

used to support a "fast" display/command hardware set.

*A complete list of user and system parameters can be generated at

various points along the processing path by using CDC utility

subroutines.

4-17



4.8 Software Features/Characteristics (Tagging)

After the integrity of the contour vectors is established, tagging

commences.

The GAC tagging procedure provides the following features:

hi-speed tagging,

convenient manual priming and editing

potential for substantially reducing manual intervention

requirements, and

rigorous self-verification procedures for automatic

quality control.

Goodyear Aerospace's tagging algorithm is based on a simple prin-

ciple. If a line - a "cutting" line - is drawn through a set of

closed contours*, all contours that intersect the line can be tagged

uniquely provided that at least one contour that passes through

the line is already tagged.

The tagging algorithm accomplishes tagging in two phases. In the

first phase, contours that intersect the map sheet neat lines -

boundary contours - are tagged semi-automatically. Manual support

is required in the first phase in order to "prime" the operation

(provide certain tagged boundary contours for references) and to

tag contours that are inherently untaggable (if adjacent panel

information is not used). At the conclusion of phase 1, all

boundary contours are tagged and all such contours are artifically

closed outside of the periphery of the neat lines. In the second

phase of tagging, contours internal to the sheet - closed contours -

are tagged fully automatically by using a regularly spaced set of

lines that force intersections with the internal contours. At

the conclusion of the second phase of tagging, both boundary and

closed contours have been tagged. The present pre-production

W Boundary contours of a region are artifically but automatically

closed prior to the closed contour phase of the tagging process. At

this time all contours are endowed with the equivalent of a correctly

marked depression flag.
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software does not tag very small contours that are missed by the

cutting lines. Such contours can be tagged using spur paths off
the main cutting line that extend to the starting point of the

vectors. Software development to implement such paths was not
completed during the course of the program.

The complexity of the software to tag the very small contours is
greatly increased due to the multi-file set-up currently available.
The direction of future effort in this area depends largely on
whether or not ETL and DMA concur with GAG's solution to the
raster scanner problem.

By splitting the tagging operation into two phases, GAG's algorithm

can capitalize on both an operator's familiarity with present DMA
neat line editing procedures and the data gathered prior to the

start of the tagging process. In the first phase of tagging, the
"1priming" phase, man-intensive activity is directed to what goes

on along the North, South, East, and West neat lines - the sheet

boundary line. Since an operator's eyes can re-train most readily

to items along distinct straight edges (after diverting them to

see information associated with neighboring locations), the map

boundary line is an optimal line along which elevation priming

information can be acquired manually. In the present job flow,
boundary lines are already required to be treated substantially

(to support imosaicking/pane ling tasks, etc.) and so, when adding

tagging to the job flow, "priming" and mosaicking tasks

could be co-serviced*. Finally, at the moment the tagging of contours

along the boundary is complete and correct, all subsequent tagging

operations associated with tagging contours internal to the sheet
become entirely deterministic, regardless of how convoluted and/or

meandering a contour line may be. Thus, by providing CONTAGRID

software with edit capability that can be utilized before the start

of closed contour tagging, the problem of tagging ambiguity is

confined to a boundary line type problem.

*In a prodution environment, these processes could be serviced
automatically along neat lines that are adjacent to or overlap
sheet regions that have been processed previously.
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The automatic tagging software developed by GAG provides the
particularly attractive feature of automatic self-verification.

The verification mechanism employs a 2-step strategy that: 1)
checks to determine that elevations along the neat line borders of
the map are mutually consistent, and 2) afterward checks to deter-

mine that elevation assignments of contours internal to the bound-

aries are consistent.

By applying the automatic consistency checks in two steps, one can
first assure that all contours that cross the neat lines are
properly tagged before proceeding to perform the CPU expensive
second phase tagging operations; therefore, CPU time required for
re-work is minimized.

The self-verification tests have proven to be exceptionally power-
ful at catching errors that are inadvertently introduced either at
the time that the boundary elevation list is assembled or at the
time that vector editing operations are performed. (This was
dramatically illustrated during GAG's initial effort to tag the
SHIRAZ test region. Four successive trials were required before the
verification software allowed the elevation list for boundary
contours to be used for tagging contour intervals to the sheet
boundary. After each trial, the detected error was manually correct-
ed and the elevation list numbers were manually reviewed and con-
sidered correct. Three times the checker demonstrated the short-
comings of manual quality control).

Note that when an error is caught, it is identified. To fix the
problem, the operator back-tracks to the previous edit phase and
corrects the problem more quickly because of the clues provided by
the consistency checks. In general, capability to back-track*

*~The fact that back-tracking is cumbersome when working with thePresent pre-production software should not mask the essential factthat the file structures support such action. In a productionsystem, back-tracking would be under the control of the commandinterpretation software that supports the on-line interactive editstation. Commands would necessarily have to be simple and concisein character so that editor efforts would be directed to carto-graphic operations rather than computer manipulation.

*See Footnote on page 4-3 3.
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small increments in the job stream to make fixes significantly
simplified GAG's debug efforts; incremental edit capability would
similarly conserve CPU and human resources in a production environ-

ment provided that on-line interactive edit hardware were used.

The tagging so~tware was initially exercised with arti Fical data
that would correspond to that of full-sized medium-density sheets
in the late spring of 1979. Since then, real data, namely the
SHIRAZ Test Region* data, has been used to exercise the tagging
software. To "prime" the process, an ordered elevation list for
index boundary contours was developed along the neat lines. All
non-index boundary contours that were not "cups" were automatically
tagged. The boundary contour cups were manually tagged. Subsequently,
the closed contour tagging operation located all but the very small
closed contours that missed the cutting lines. These very small
contours were manually tagged. (In a production system, the very
small contours would be tagged automatically.)

It should be noted that the nominal 4"x4" SHIRAZ test region
exhibits a distorted proportion of boundary contours to closed
contours. In particular, the distribution of contours follows:

Index boundary contours 15
Non-index cup boundary contours 26
Non-index, non-cup boundary contours 33
Closed large contours 15
Closed very small contours 6

Total 96

'See Footnote on page 4-33.
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The atypical distribution of contour types shown for the small

test region was somewhat unexpected. In retrospect, at least
the high ratio of boundary-to-closed contours could have

been predicted. When the boundary of a region becomes small
relative to the mean spacing between contours, and/or the mean
spacing between spot elevations, the ratio of boundary to closed
contours necessarily gets large.

No flaws in the tagging algorithm or software have been discovered.
Goodyear Aerospace does not expect any software problems with

tagging modules because the tagging strategy depends on simple
logical rules. Nevertheless, to get performance statistics for
a variety of sheet types, it would be desirable to exercise the
tagging software with a large and diverse set of input data.

The tagging software not only eliminates the primary requirement
for highly man-intensive manual tagging, it also simplifies the
demanding secondary problem of manually verifying the correctness

of the tagging process.

4.9 Software Characteristics/Features (Gridding)

The gridding algorithm developed by GAG is an off-shoot of DMA's
Planar Interpolation technique. It can be efficiently implemented

using a parallel processor.

At present, with the implemented algorithm, gains in elevation accu-
racy should be achieved because more independent pointcs of known
elevation in the proximity of a matrix point are used to compute
the elevation of the point. (More importantly, the GAG routine can
be modified to account for all points in all directions in the
proximity of a matrix point. Thus, because estimates of first and
higher derivatives of elevation gradients could be made, the poten-
tial exists for substantially reducing R/S compilation requirements.)
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Goodyear Aerospace's treatment of gridding input data derived from

high resolution (I mil) raster data is particularly note worthy.

In reducing the resolution to that required for the output eleva-

tion matrix grid, GAC retains high resolution information that

indicates where a contour line crosses the edge of each coarse

elevation matrix element (10 mil). As a result, where slopes are

steep, the ability to accurately define elevation at a mesh point

is still maintained. This ability is simply not available when

coarse resolution contour measuring devices are used (e.g., the

DGR). (See Figure 4-1.)

The GAC gridding algorithm has successfully generated the elevation

matrix for the 3.78" by 4.35" SHIRAZ Test Region. The

outlined section of Figure 4-2 displays a 1:1 copy of the contour

sheet data for this region. Figure 4-3 shows a COMTAL display of

the output elevation matrix data for the region that was developed

using data from two different A/D*converters. The DMA HTC RAPS

provided 25 micron resolution raster scanned sheet contour data.

A DMA HTC DGR provided 10 mil resolution R/S, hash, spot elevation,

and neat line spline data. Both the RAPS and DGR input data are

merged and shown as a red line overlay in Figure 4-3. The success-

ful merging of the unequally scaled data from the 2 distinct equip-

ment types, the DGR and RAPS, is demonstrated by the apparently

correct overlay of contours and R/S lines. Also, R/S lines, on

the average, can be seen to bisect contour loops and intersect

contours orthogonally. The fact that color shades or color bound-

aries generally lie along the contours verifies the general correct-

ness of the gridding procedure.

Color or color/shade assignments to elevations were deliberately

chosen to lie at multiples of the contour step. (In the figure,

2 contiguous color shades = 1 contour interval = 200 ft.). The

intermediate color shade boundaries, which represent interpolated

contours, do generally conform to the locations where they would

be expected.

*A/D = analog-to-digital.

4-23



fine resolution 10 mil coarse gridding
rasterized contour resolution element
with elevation=2400 ft. (Heavy border)

y
25 micron fine raster

.. .- scanning resolution element
__ (Light border)

- 1 t

NOTE:

The elevation/location data
retained for coarse grid
element 1=307, J=408 is

0 1 2 x 1) the elevation (2400 ft.)
2) the location of the contour

point along x or y nearest
1=307 the lower left (1,J)
J=408 corner. Two parameters

(X=3, XFLAG=l) are required
to locate the point. The
flag distinguishes between
an x or y axis measurement.

Figure 4-1. Coarse Grid Re-Sampling
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Figure 4-2. Contours of SHIRAZ Test Region
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In the matrix regions where color shade changes do not correspond

to contours, more detailed examination of the data is required to

determine whether or not a data or algorithm problem exists. To

date, digital dumps of data in such regions have shown that very

small deviations from the contour step sampling interval (less than

2 percent) or outright edit errors have caused the shade demarcation

line drifts away from the contour lines. When the drift is caused

by a small change that is cartographically significant, it indicates

the need for supplemental contour, R/S data, or other data. Note

that the color display provides highly effective cues for 1) assess-

ing the overall correctness of the gridding operation, and for 2)

spotting local regions that require more detailed inspections.

Goodyear Aerospace is currently awaiting results of ETL/DMA

evaluations of the gridding results. Because the GAC gridding pro-

cedure is structured, modifications required to optimize or alter

the procedure can be introduced and tested quickly.*

4.10 TECHNICAL PROBLEM (DEGRADATION M.ECHANISM-IMMEDIATE EFFECT)

The impact of out-of-spec line weight variance on pre-tagging

tasks is reviewed below. The pre-tagging activity is subdivided

into three major operations, namely, line separation, Easter-to-

vector conversion, and data "cleaning." The first operation, line

separation, performs an automatic raster data filtering operation

that is designed to differentiate non-index from index contour lines.

The end purpose of the present filter software is to make it simple

to manually "prime" the automatic contour elevation tagging opera-

tion without the need for any map sheet edge coordinate data dnd

*After ETL/DMA evaluations are completed, modifications should be
made to correct deficiencies. Two deficiencies have already been
noticed. First, neatline/ridge stream line intersections aren't
treated like contour/ridge stream line intersections. Secondly,
one of two elevation gradient estimates made to find the elevation
at a grid point is occasionally made using points that straddle a
contour line. As a result, a slightly lower (or higher) grid point
elevation assignment than is possible for a region is made. Fixes
for both problems exist and are straightforward.
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without the aid of any support equipment other than a plotter. An

operator is only required to compile a list of elevations corres-

ponding to and in the order of the intersections of index contour
lines with the map sheet borders (neat lines). After compilation,
the list is input into the digital processing stream via punched

cards.

The present algorithm differentiates index from non-index contours

by contour line weight. It assumes that line weights conform to

DMA specifications. Any line section that is 8 mils in width or

less is classified as "non-index"; any section greater than 8 mils
in width is classified as "index". Files for "index" and "non-
index" lines are created. Later, after tagging's elevation

priming operation, the (x,y)'s of index contour lines that terminate
on the neat lines are automatically ordered and associated with

the manually developed elevation lists for index lines.

The success of the separation operation rests on the assumption

that the 2.4 mil difference between minimum width index lines

(10 mils, +10 percent) and maximum width non-index lines (6 mils,

+10 percent) does not vanish. The assumption was tested and

verified for small test regions using the ETL IBM scanner in a

laboratory environment. Yet, in testing the GONTAGRID software,

it was discovered that various DMA raster scanners produced line

weights that modulate well out of the allowed range for line weights.

Thus, for innumerable regions of a map sheet, the (non-index)

index lines exhibit line weights with the specification for (index)

non-index lines. The line separation filter software, acting on

the basis of line weight data, chops up a particular type contour

of a given type accordingly. The various pieces are filed into

their appropriate files. That, in turn, creates innumerable vec-

tors of a given type that terminate internal to the sheet. Whether
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or not the automatic editing features of the raster domain soft-
ware relink the intermittent contour segments of a given file,
enormous edit loads are created because edit identity numbers on
output plots (used for manual editing or auto-edit verifications)
are not only prolific, but tend to overlay each other.

4.11 TECHNICAL PROBLEM (SOLUTION OPTIONS)

It is not known whether the ETL IBM scanner would create the kinds
of problems experienced with DMA scanners in a production environ-
ment. Because the IBM scanner was out of commission during the
course of the CONTAGRID project, no tests were able to be conducted
to clarify this issue. In any case, it is necessary to deal with
the realities of existing DMA scanners. Goodyear Aerospace con-
sidered the following options:

1) by-pass the line separation process and enter the tagging

task with no distinction between index and non-index
contour vectors,

2) alter the line separation algorithm so that the index/non-
index label is attached to a contour on a statistical basis

rather than on an exact measure basis, or

3) require new DMA standards for non-index and index contour
line weights that make line separation possible.

Option 3 is clearly unrealistic. Re-compilation of the contour data
of existing contour sheets would require an exorbitant amount of
manpower; less dollar and time costly alternatives exi-st.
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Option 2 appears attractive except that it was noted that at least

for the RAPS, average line weights for index lines varied as much

as 2 or 3 mils over the sheet. The software needed to support both

the adaptive measure of average line weight and that measure required

to make the statistical decision of index or non-index is moderately

complex and tends to be processing expensive even for STARAN.

MIoreover, since manuscripts do often contain ink or pencil drawn

corrections of contour breaks (e.g., when map data have been

mosaicked),it is quite likely that contours would often be put into

the "I-don't-know" category, a category that would still require

manual editing.

At the present time, GAC considers option 1 the most desirable.
At first it appears that it is less attractive because it requires

the existence of a digitizing table or an interactive raster edit

station within the cartographic system. But, an interactive dis-

play station is already needed for a variety of editing and quality

control tasks; the priming operation would simply make use of a

hardware resource that already existed in the system. With such

hardware, cues not available with the present plotter procedure

could be employed to accelerate the manual priming process; the

operator can be given virtually instant access to specific informa-

tion needed to support each step of the priming process.

The operational benefits of an option 1 procedure follow:

1. Because index line data are not separated from non-index

line date, the raster-to-vector conversion process needs

to be carried out only once for a contour map sheet.

The time to convert from raster-to-vector is essentially

halved.
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2. When no data separation is performed, no line break

errors are introduced into the data. Thus, auto-edit

procedures that are only 80% effective can still reduce

the requirement for manual editing by a factor approach-

ing 5:1 . (In contrast, if line separation procedures

introduced 20 fold as many errors as existed on the

original sheet and auto-editing were only 80% effective,

the net editing load imposed on an operator would be

about four times that faced on the original sheet. In such

a case, automation would increase the editing burden

rather than decrease it.').

3. Alternate methods of priming the elevation tagging

operation can be accommodated. As an example, as an

alternative to GAG's elevation "priming" list, L. Beabout

of DIMA HTC has suggested that the elevation priming list

should consist of an ordered list of the locations of

relative high and low points along the neat lines. A

procedure using such a list has been examined to determine

how well it can be fitted into GAG's tagging software set;

it will mesh cleanly into the present software structure.

4. Vector data from the AGDS could be accommodated by the

procedure.

While the CONTAGRID program itself could ill afford the time and

manpower required to track down the source of the pre-tagging soft-

ware's problems, GAG's preliminary findings that "healthy" raster

scanners introduce substantial line weight variances should benefit

future programs. A disciplined study to characterize the data

degradation that is caused by raster scanners under different opera-

ting conditions is necessary. Scanner characteristics can have

a dramatic impact on software character and cost.
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4.12 TECHNICAL PROBLEM (RIPPLE EFFECT)

With existing pre-tagging software, after the line separation task

is completed, a STARAN raster-to-vector conversion process converts

1) the raster data that is classified as index contour line data

into a file of index vectors and 2) the raster data that is classi-

fied as non-index contour line data into a file of non-index vec-

tors. The conversion process works effectively but has not been

optimized. The raster-to-vector conversion software is highly

tolerant of line weight variations, and so, further data degrada-

tion is curtailed by the module. Nevertheless, the module relays

che degraded data and thereby sets the stage for severe problems

in the pre-tagging "cleaning" operations that follow.

The CONTAGRID pre-tagging "cleaning" software has one overriding

purpose, namiely, to massage the vector data base until the funda-

mental rule for tagging - THOU SHALT HAVE NO CONTOUR BREAK

ANYWHERE INTERNAL TO THE NEAT LINE BOUNDARIES - holds true. Two

categories of "cleaning" software exist:

1) software that is used to establish information needed

to characterize the cartographic elements (vectors), and

2) software that supports or causes the automatic or manual

modifications of the vector data base.

The first category of software detects, locates, labels, and

classifies the vector data that require edit action. The second

category of software deletes or adds vectors to the data base, it

is involved in the "fixing" (or editing) process.

In all cases, the first category of software correctly performed

the detection, location, and labeling function for all vectors of
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the SHIRAZ Test Region* that required editing. [It is crucial to
note that only these functions need be automated for the efficient
utilization of an interactive edit station. When they are performed

correctly, the human editor can be sequentially and systematically
confronted with the edit tasks,' the local region of the edit tasks
can be automatically displayed, and the edit actions can be assoc-

iated with vectors by label (or, implicitly, by location). (Of

course, the software system could be set up to supply a running
sum of tasks yet to be completed so the editor knows when editing

is complete; operations management aids could also be supplied).]

The last type of first category "cleaning" software, feature classi-
fication software, classifies vectors and provides the basis for further
simplifying the editing task. As was noted earlier, this software
proved vulnerable to the degrading effects of line fragmentation. This

software looks for features, i.e., for a particular set of across-

vector associations. It measures the associations of a vector with

its neighbors and determines whether the set of associations corres-

ponds to those that define a particular feature. When vectors are

derived from fragmented (or merged) input data, the relational

associations of the vectors (as well as the basic vectors) that
correspond to a feature are distorted according to

*SHIRAZ Test Region

Initially, the data of the nominal 20" by 20" SHIRAZ contour
sheet was to be used as the test data set for evaluating the
CONTAGRID algorithms and software system, When it was discovered
that the badly degraded output of the pre-tagging software's line
separation module was caused by fundamental limitations of the DMA
raster scanner (and no digitized data that met DMA specifications
could be made available), it was decided to proceed with the eval-
uation of the CONTAGRID software with a subset of the digitized
SHIRAZ sheet data that camne close to meeting the specifications.
It was found that the nominal 4" by 4" region of the top left
corner of the SHIRAZ sheet met the relaxed requirements; it could
be treated with the existing pre- tagging software without severe
contour fragmentation problems. As a result, this region, the
SHIRAZ test region, has become the primary data source for the
end-to-end evaluation of the CONTAGRID algorithms and software system.
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the extent of data degradation. If the software sets rigid con-

ditions for classification (in order to avoid wrongly classifying
features), it is likely to be ineffective when treating degraded
data. Goodyear Aerospace's present software applies weakened
association conditions to establish features and thus can cate-

gorize some of the features in a "dirty" data environment. Yet,
it does so at the expense of making some improper classifications.

The CONTACRID "cleaning" software that performs classification
marks vectors according to whether they belong to one of the follow-
ing features: numerics, depression contours, cuts, or fills, and
then the second category of "cleaning" software modifies the vector
data base in a particular sequence: vectors associated with fea-
tures are treated first and then all other vectors that are open

are treated. Specifically:

1) tic mark vectors of depression~s, cuts, and fills are

deleted,

2) residual depression vectors are marked,

3) cut, fill vectors are assigned a hierarchical structure,
4) vectors identified as numerics are deleted, and
5) vectors needed to join broken contours are added to the

data base.

Quite clearly, the effectiveness of the feature classification
operation will directly affect how well the auto-edit modules of

the "cleaning" software performs. Because only "dirty" vector data
(fragmented vector data) has been used to measure the effectiveness
of the feature detection/correction software to date, the degree
of effectiveness improvement with "clean" vector data (that is
expected with modified pre-tagging software) is not yet known, but
is expected to be substantial. The basis for this projection
relates to the mechanisms for mushrooming degradation which have

been observed to hold for the present software. In particular,
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1) the feature filtering algorithms presume relatively "clean"

features; the vectors of a distorted feature have exhibited

a lower probability of being correctly classified when the

data base is "dirty, ",
2) the auto-edit action demanded for a vector relies on its

classification; improper classifications have been observed

to cause improper edit actions, and

3) the total number of candidates for classification (and

editing) and the number of false features, artifacts, have

been observed to increase many fold in a "dirty" data base;

in such cases the opportunities for improper vector class-

ification have increased dramatically.

Consider how the auto-editing portions of the "cleaning" modules

treated the SHIRAZ test region. The region contains 5 contour

elevation numbers. After executing CONTAGRID's line separation

and raster-to-vector conversion routines, the digits of the numbers

are described as sets of many short vectors that are much different

in character from those that would be obtained from clean, unfrag-

mented raster data. This "dirty" data was subjected to CONTAGRID's

automatic data "cleaning" modules.

Only about 60 percent of the vectors associated with elevation

numbers were classified as having a numeric attribute; these were

automatically edited (i.e., deleted). The remaining 40 percent of

digit fragment vectors were improperly classified and were not

automatically deleted. As a result, the automatic contour line

join routine, which connects contour ends where numerics are removed,

encountered conditions that precluded line join vectors from being

generated in 2 out of the 5 cases where numbers were to be deleted.

In general, automatic line join failure resulted either because of

a failure to delete number fragments or a situation existed that

could induce a false join and so an automatic join was not attempted.

If automatic line joining had been executed after an editor had

concluded removing unwanted number feature fragments on an interactive

display, a higher effectiveness level in a relatively "dirty" data

environment would have been likely even without the benefit of any

algorithm enhancements.
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Based on the results obtained with "dirty" data, in a clean data

environment, automatic feature classification/auto-edit software

can be expected to simplify an editor's role.

4.13 MANUAL EDITING AIDS

The pre-tagging "cleaning" software of CONTAGRID provides a sub-

stantial set of editing aids for "interactive" manual editing.

Data file structures are set up to support such editing. Unfor-
tunately, for the CONTAGRID program, the only display resource for
editing with assured availability was a CALCOMP plotter.

As a result, for all editing operations, a plot is required. The

editor defines edit actions based on the plot and the labels drawn

on the plot. The display resource is entirely inadequate as the

primary display for production oriented interactive editing for the

following reasons.

1. It is not on-line; time lags required to produce hard-copy

graphs needed for editing are unacceptably large.
2. The display can't be changed rapidly; until a plot is

complete, it is not known what additional supplementary

data or combinations of data types should be displayed (or

not displayed) on the plots.

3. No quick selective display (suppression) of annotation was

possible; edit labels at locations where edit demands are

greatest tend to overlay and become unreadable. Alter-

native plotter procedures that reduced the overlay problem

removed labels from the locale where editing was required

and so forced much eye movement. The high demand for eye

movement resulted in editing inefficiency.

4. A cotmmon coordinate system for instantly registering two
versions of the global data was not available. No

mechanism exists for comparing raw sheet data to the vector
data in a common coordinate system and/or on a microscopic

basis. Quality control judgements cannot be made effectively.
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Goodyear Aerospace believes that for a production CONTAGRID system,

an on-line interactive CRT edit station is essential. With such

a station, the editor has the ability to freely intersperse many

manual and automatic tasks without having to continually put up
with the time lags related to transferring data to/from off-line

display devices. For a variety of tasks, editing is facilitated

by displaying raster data, vector data, combined raster/vector data,

or other data in combination. It appears that only a raster CRT

color display system that is supported by a multiplane memory has

the versatility to support the variety of capabilities demanded by

a CONTAGRID editing display; GAG believes that an on-line inter-

active edit station should contain a high resolution color raster

display unit.

4. 14 TIMING SUMMARY AND PROJECTIONS

This section discusses the significance of timing measurements made

while exercising the CONTAGRID pre-production hardware/software

system with real input data. It begins with a summary of the
performance of the pre-production system and a projection of the
performance of a production system. The development of the pre-

production system's execution time summary table (see Table 4-I11)

is then discussed. How the pre-production system's task timing
results are used to project the execution time performance of a
production-oriented SIMD/sequential processor-based automated
cartographic system that eliminates the hardware/software inadequa-

cies exposed by the pre-production system is then discussed. The
section concludes with a brief discussion of the impact of the

program on reducing man-intensive DTED tasks.

The primary tasks of the CONTAGRID process, automatic elevation

tagging and elevation gridding, are shown to be able to be executed
in about 1 hour using the relatively inefficient components of the
pre-production system. The inefficiency is most evident in the
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timing results of the pre-tagging tasks; on the order of 5 hours

is required for their execution. The excessive execution time for

this phase can be primarily attributed to the sequential processor's

poor reformat capability (see Item 7, Table 4-111) and, in

combination, to inadequate SIMD processor storage capacity and to

a low SIMD to sequential processor channel data bandwidth (see

Item 3, Table 4-111). With a correction of the hardware/software

limitations of the pre-production system and the use of an on-line

interactive display rather than plots to support editing, GAC

extrapolates an almost 20 fold improvement in the execution time

required for executing the automatic pre-tagging phase tasks.

(This projection is supported by experimental results acquired using

STRAPS software that was developed outside of the CONTAGRID program.)

The correction of pre-production system deficiencies extrapolates

to a smaller 4-fold performance gain for the elevation tagging and

elevation gridding tasks of the CONTAGRID process. Gains would

largely result from assigning sort/merge and reformat tasks that

are now performed by the sequential processor to the SIMD processor;

by eliminating the data channel bottleneck between processors, task

re-assignment gains would not be erased by data moves.

In total, based on the measures of execution time for the various

CONTAGRID processes, GAC projects that an automated end-to-end

production cartographic processing system based on a joint SIMD/

sequential processor set could perform the automatic segments of

the pre-tagging, tagging, and gridding tasks in about 1/2 hour.

The production-oriented system would require a SIMD with signifi-

cantly more memory space (e.g., a GAC STARAN-E), a smaller but more

I/0 efficient sequential processor (e.g., a SEL 32/75 mini), and

on-line, interactive multidata form edit/quality control hardware set.

Execution time measurements were made using the SHIRAZ map sheet

data and sub-regions of such data. Most often, the SHIRAZ Test

Region was used. (Tables 4-IV and 4-V list subregion timing results.)

4-40



LUS

LLLU

LU~~9 LUb-C) -

- A LUC- I ) -i =

La XLn - L

LU= C'J CZ
oD L n c l
- L . Wc

C-L J - L 0

LUU 3c CV 0 0 00) 0 0L % % t
C-)

CD CV CD~ Cl Le) C) %D (D -4 o' 3
In Ln c o CD s-D Cl Cl %0 %D. %a r%

Me "W CJ V4

L1 -

in 0 L LUJ V-9 0) %D W) C)
Lj V) . CV) In 0 CMJ ow9 0) co V) an 0 of

-cc L) - I .
03A LUJ ko 0o %n s CM1 CV) 4w 0w 00 14 40

(3C >. C~jU V
s)in I

C) (

I- 0& - lL.LJ= C

L6 I0L D<V Dwc

CD ix V).- ),L ) .
LU 4nIJ 9 L mC icof-i c C L

atJ 1-- 0V a I.c () L nni C L

-c -I . 1 -ww L D>

- 0c l C) )C l Luj t n L

C3 CD in j I- LL 0 U A A )- V) .- )

...J LU CD 0n > L La C LU J L i) -c ) C3 C 0 L 0 - L

4A u LUJ ul CD 0 0. tnC-

Lai LU) s L Lbi -4 CL U- 01 0. CD)L
La Z.J m > i)U 0 uZ 00 LU C- -cc..

-i LAj LU La. w~- ~ 0- ~ 0 c
M- 0. 1-- Osi CLU ll.) C- L - L
C. LAJ 4C -L Z L IA (-

Z Li D cm CUU ) L Ln V) Lai 0A .. J a L
C-)~ ~ ~~A 9-L D e IV) o .Ji C)II -i

U) ~ i)~ a s--J ~O ~ 0 C-4 -41



L41LAJV)uj a

OLaJ =LLaiJ W
= ) V) C, ZL L& _j ~

- 4c.N ~.

,4 40) ci Ona C-

OGo ( C..

Cd)CD

w w.. I..) CD) w)r ~U
Q cc. = *wL M a

cn .4 -c -

oa &nU Go___c__.LnI=

-4 Ln c 4c

LaD. Cow

(J) V)~ LUw
L" C uf tn 0% 0i 03 Cl 0% Oa En .

Z -C.) I-U

w 0 3-

ca -- 2- )K_ :

oD +
I- L)~. o a-.

- ULU 0Z 4= D C

QU ul41 - U1 =- V.) w
?-- 0 tn. La w LnZ LJ V)

n cn 0 D 4D. 000 O" - C5
0 I-- . = t LaiC m. t = . '-4 0n GI

0 - =B- =-l- om I - 0 cm km
t- CD. * .- L" =CE " Z =. :m 0

W- x CZ .JOL =)L 0C U)= Z M

L" La- U)41 ,U =).D LU LU w WJ .
cn BIn-Z LUco I 9= 0. In U. I CD COU 0. X:V 0.C

a-.) (fi c0c.U .- ~ .'~ .Z~
LU a.)- . ~00a-lA 0- LU0 0o U -vii l0 cm .. a- a-z0 U

LLaJ ui La-.- dc- ~ 'sJ 0 Lai) LU t^ L

~~~-4~c L3) .- V) L . U O ~ . v D 0

4-42_ -



To establish full sheet timing results, the results for sub-regions

were linearly extrapolated to the full sheet size (20" by 20").

The linear extrapolations tend to be conservative since the SHIRAZ

test region contained more line information/square inch than the

sheet's average line information/sq. in. All the principal path

CONTAGRID processes are included in the timing measurements.

The raster data was sampled at a 25 micron (-001") interval; this

resolution was retained up to and through the tagging operation.

At the conclusion of tagging (including final editing), resampling

was performed at a 10 mil resolution level in order to produce a

contour vector tape like that produced by the DGR. Also, within

the gridding process and just prior to merging DGR data with that

from the raster scanner, the tagged contour vector data was re-

sampled at the resolution of the DGR (but as was noted earlier, fine

resolution information about the fractional point of line inter-

section with the coarse matrix resolution element is retained

during resampling). All automatic gridding operations after

resampling are performed using data having 10 mil resolution.

A production system design should address the impact of resolution

on processing time. When the DGR is used to digitize the SHIRAZ

test region, it comprises 164,440 resolvable pixels. When digitizing

the same region with the RAPS, it comprises100 times as many re-

solvable pixels (16,957,440). Processing execution time is nearly pro-

portional to the number of pixels, and so processing time increases

as the square of the linear resolution. By decreasing the resolu-

tion as soon as possible along the processing chain that leads to

the elevation matrix, the processing time can be reduced. (GAC's

1/2 hr projection for executing the automatic pre-tagging, tagging,

and gridding tasks assumes no such time savings are made).
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To time the various processes, the CDC task monitor was used. It

supplies the CDC 6400 CPU and CDC 6400 I/0 times for each job

submitted to the CDC in printed form on each batch job summary.

The corresponding STARAN tasks are timed using STARAN's 100 nanosec

resolution timer. Timing results are obtained in the form of key-

board printouts.

Most often, for the CONTAGRID modules, the CDC 6400 I/0 and CPU times

overlap. The CDC I/0 time includes not only the time that data trans-

fers take place between the CDC peripherals (primarily discs and tape)

and CDC memory but, also, the time that the I/0 channel between CDC

memory and STARAN is enabled. (A number of CDC system task times

are also bundled into the I/0 time.) As a result, STARAN CPU time

and STARAN 1/0 time (to the CDC 6400 or to the STARAN-associated RK05

disc) falls within the CDC 6400 I/0 time period.

As programmed, STARAN I/0 time to the RK05 disc is not concurrent with

STARAN CPU time, On the other hand, when I/0 to the CDC takes place,

some overlap of STARAN CPU and I/0 time can occur.

Table (4-II1) summarizes the timing results for the CONTAGRID tasks

when digitized SHIRAZ sheet data is used as input. The CONTAGRID

tasks are listed in the order that they are executed. A cursory

examination of the Table (4-111) suggests that the CDC 6400 operations,

both CPU and I/0, dominate the approximately 6 hours of ETL CDC

6400/STARAN system use needed to transform the SHIRAZ digitized

map sheet overlay data to the digital terrain elevation matrix

data form. Moreover, the pre-tagging phase of the transformation

procedure demands the bulk of system usage time (:5 hours). GAC

considers the 5 hours of system use time for pre-tagging unaccept-

ably large for a production system. The large system use time

results because of (1) an imbalance of system hardware resources

in the ETL system and because of (2) the heavy reliance on the CDC

processor for performing the non-critical CONTAGRID tasks. How

the various items of the CONTAGRID pre-tagging operation would be

handled in a production system is considered next.
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Items 1 and 2 -

A CDC 6400 system software package is used to move RAPS RLC raster

data from tape to disc. No data format conversions are required

and so virtually no CPU time should be required and yet 165 seconds

is required. Why? Approximately 20K records (i.e., one per scan
line) of about 500 bytes/record are moved. The CDC is apparently

charging about 4 millisecond to set up each "read" and "write" of

a record. It may be noted that this time is in the ballpark of

the time a PDP-11 mini takes to set up a read or write "TRAN"

(1.4 millisecond).

Since every record read from CDC tape is written to CDC disc, a

total of about 20 megabytes of data are moved between CDC memory

and the tape or disc peripherals. This implies an average data

move rate of only about 12.5K bytes/second. Since the inherent

move rate of the disc and tape is much greater than 12.5K bytes/

second (approximately 800K bytes/second and 100K bytes/second,

respectively),it is apparent that disc and tape latency is badly

degrading the inherent move capabilities of the tape and disc

peripherals. It should be noted that the cure to the long I/0

and CPU times is to include more records/scan into any given

second. (Afaster peripheral is not the cure.) The ETL IBM and

SCI-TEXraster scanners tend to do this; the AGDS and RAPS records

tend to be short. It should be noted that the SCI-TEXand AGDS

require about twice as many bytes/scan as the RAPS when sheets

having over 3000" of line/(20" by 20") sheet are scanned. It

would be desirable to use SCI-TEXrecord sizes with RAPS type RLC

when scanning black/white graphic source material. If this were

done, using any number of available minicomputers, Item (1) CPU

and I/0 times of 8 and 80 seconds, respectively, could be expected.

The above times would hold whether the source data comes from tape

or directly from the raster scanner. In the latter case, wall

clock time would increase.
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In a production system, the bulk of the Item 2 task (that of

merging files) need not be performed apart from the Item I task.

Only about 2 seconds of I/0 time need be allocated for it. For
CONTAGRID, the number of bytes/scan was determined for each scan

in order to establish maximum CDC to STARAN block transfer sizes.

Such a measure is not required for a production system, but a
statistics gathering capability would likely be provided for other

reasons. For the same type of CPU activity as was required for

CONTAGRID, a production system should allot 5 seconds. Thus, the

combined Item I and Item 2 production system usage time would be:

HOST CPU time = 13 seconds

HOST I/0 time - 82 seconds

STARAN CPU time = 0

STARAN I/0 time - 0

Item 3 -

Item 3 processing accounts for the largest component of the time
needed to produce the elevation matrix data. The bulk of the

Item 3 time can be directly traced to I/O that takes place between

STARAN bulk core memory and the RK05 disc that is associated with

STARAN's embedded PDP-11 (6400 seconds). Most of the remaining
time can be traced to STARAN processing time. As will be shown

below, virtually all the I/0 time could be eliminated in the

production system; the STARAN processing time could be reduced to

about 1/4 of that now shown.

The Item 3) operation involves the following processes:

a) Conversion of RLC raster to binary raster

b) "Regionalization" of the binary raster data

c) Separation of index and non-index line raster data

d) Thinning of lines to a one cell center line

e) Removal of line stubs and other auto-edit activity

f) Conversion of centerline data from raster-to-vector

g) Support processing
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The process a) above accounts for nearly 1/2 of the Item 3) STARAN

processing time, i.e., it requires about 1000 seconds. The

process converts about 10 megabytes of RAPS RLC raster into about

400 million one bit pixels. A very simple algorithm was used to

make the RLC to binary raster conversion; it did not exploit

STARAN's parallel processing capability. Newer algorithms that do

exploit the parallel capabilities of the STARAN demonstrate that a

production system could accomplish the process in less than 10

seconds. (The GAC routine that converts AGDS formatted RLC to RAPS

form RLC uses parallel processing techniques like those required

by the production system). About 110 seconds of time are required

for the STARAN to CDC I/0. As will be shown below, this I/0 can

be reduced to well below 10 seconds.

The initial form of the binary data is in the form of scan lines

consisting of about 20K pixels. Process b) "regionalizes" this

data. It develops patches of data by collecting individual scans

until a 160 scan wide strip of data is developed; then the

strips are equivalently cut into rectangular chips that are 184

pixels long. The patches of data that result, called "array
loads,"are nearly square (i.e., they are 160 scan lines wide by

184 pixels deep). Unfortunately, the older STARAN B arrays are

not able to contain enough data to allow the "regionalizing"

operation to take place internal to the arrays; thus, time

expensive move operations are required. (The problem of small

array storage space was recognized before the start of the CONTAGRID

program and was one of the major reasons for the development of

the STARAN E machine. Each array of the newer machine contains 36

times the array memory of the older ETL STARAN). The RK05 disc

associated with the STARAN processor was used as the array memory

extender for the Item 3 processes. Of course, when the disc is

used as array memory, the effective memory to STARAN array

Processing Unit bandwidth is only about 15 kilo bytes/second

compared to the actual array memory-to-STARAN array processing
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unit bandwidth of about 750 Megabytes/second. Clearly, operations

occur orders of magnitude more slowly. Rather than including the

time during which the RK05 disc is used as an array extender as

part of the STARAN CPU time, it was categorized as STARAN 1/0 time.

It accounts for all but about 150 seconds of STARAN-to-CDC I/0 time.

With the newer STARAN, the 6250 seconds of I/0 time used in emula-
ting arrays with the RK05 disc would vanish; sufficient array

space exists. Thus, the I/0 time required for Item 3 would drop

to about 150 seconds. In this remaining 150 seconds, only on the

order of 18 Megabytes of data is transferred between STARAN and

the CDC 6400. This implies an average transfer rate between the

processors of about 120K bytes/second. Since the CDC-to-STARAN

channel can sustain data transfers at a maximum rate of 250K

bytes/second, it is clear that the drop in transfer efficiency

relates to the time needed to set up data transfers between CDC

and STARAN. By transmitting 32 scans at a time to the STARAN

rather than just 1 at a time, the average transfer rate would begin

to approach the 250K bytes/second limit of the channel. The total

I/0 time for Item 3 would then drop to about 75 seconds. In a

production system, a much wider bandwidth between the sequential

processor and SIMD processor would be employed. Using a SEL mini

and the newer.STARAN E, a 26 megabyte/second channel could be

implemented using standard hardware. In such case, host-to-SIMD I/0

time would be determined by transfer set-up time. If blocks of

data were 20K bytes large (as were employed by STARAN for the

Large Area Crop Inventory Experiment (LACIE)) and SEL mini standard

I/0 driver 800 microsecond set up times are used, the total host-

to-SIMD I/0 time for Item (3) would drop to less than 10 seconds.

A similar amount of set up time would be required by the produc-

tion system to move data between memory and disc mass storage.

Actual I/0 time between disc and host memory, assuming a 1.2

Megabyte/second disc drive with average disc head latency of

40 milliseconds, would be about 60 seconds.
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Item (3) processes c) through g) demand about 1,040 seconds. In
particular, process c) presently demands about 165 seconds. Pre-
suming that no line separation operation is carried out by the
production system, this processing time vanishes.

Process d), center line thinning, is performed independently for
both index raster data and for non-index raster data and accounts
for about 395 seconds of the present STARAN CPU time. By elimina-
ting the requirement for a separate file structure for index and
non-index data, the process needs to be executed only once. The
processing time would not quite be halved because more steps are
required to thin thicker lines than thinner lines. Nevertheless,
the processing time would be reduced to about 250 seconds.

Process e), line stub removal or clipping, requires about 185 seconds.
The elimination of the two file data structure will nnt directly
affect this operation, because the time of execution is directly
relate~d to the total number of open-ended lines found after the
center line thinning operation. Indirectly, the elimination of
two file data structures will reduce the time required for this
operation. By omitting the line separation process, fragmentation
of the data will be reduced substantially so far fewer open-ended
lines will exist in the data base. Conservatively, assume the
reduction to be about 25%. Then, the time required for this process
in a production system would hover near 145 seconds.

Process f), the raster-to-vector process, requires about 115 seconds.
Once again, the elimination of line separation will have only an
indirect influence on this time. Because fewer line segments would
be created, fewer vector headers would need to be created. As a
result, a production system could expect this process to be per-

formed in about 100 seconds.
Process g), support processing, combines many of the processes used
in conjunction with those listed above. It includes such processes
as line junction encoding, across patch ("array load") vector
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correlation list generation, auto-editing operations, etc. In
total, the operations account for about 180 seconds of the process-
ing time. The removal of the line separation operation will
reduce the time for support processing only in an indirect manner;
a production system could expect the processing time for this opera-
tion to be reduced to about 165 seconds. In summary, for a produc-
tion system, Item (3) operation time would be:

STARAN CPU time =670 seconds
STARAN 1/O time = 10 seconds
HOST CPU time 10 seconds
HOST 1/O time = 60 seconds

Item 4 -

The Item 4) process chains the ends of vectors of the different
patches, i.e., "array" (load) vectors, together until an open-end
is found or the chain closes on itself. All array vectors of
a given chain are assigned a master vector ID. On the order of
100,000 "array" vectors could be expected for a map like the
SHIRAZ sheet; the average "array" vector size is about 80 mils.
The chaining operation generally produces less than 1, 000 master
vectors (unless severe data fragmentation occurs:); the average
master vector length would be on the order of 5-10 inches long.
array vector headers consist of about 24 bytes so less than 3
megabytes of essential data is involved in this process.

This operation would be performed within STARAN as part of the
Item 3 operation in a production system that used the large array
memory of the new STARAN E. it would be able to be accomplished
with less than 5 seconds of STARAN CPU time and with no 1/O penalty.
Quite simply, the master vector ID would simply be assigned to its
slot in the array vector headers, as the headers are generated by the
Item 3 process.
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* Since the ETL STARAN B has so little array memory space, for the
pre-production CONTAGRID system, it was necessary to move data to
the CDC prior to performing this operation. Once there, ttie data

was stored on CDC disc (Item 3 output I/O). At design time, it
was felt that since the process did not involve much data, it
should be performed by the CDC. The relatively large CDC CPU

time experienced was not expected. Earlier discussion indicated
that considerable CDC CPU time is associated with setting up
I/O transfers. About 1/2 of the 140 seconds of CDC CPU time

can be attributed to set up; nevertheless, it is estimated that
up to 70 seconds of CDC CPU time was used to perform the process.
In summnary, for a production system, the Item (4) system usage

would be:

STARAN CPU time = 5 seconds
STARAN I/O time = (consolidated with Item 3 I/O)
HOST CPU time =(consolidated with Item 3 time)
HOST I/O time =(consolidated with Item 3 time)
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Item 5 -

The Item (5) CDC I/0 is accounted for by program loading, file

purging, cataloging tasks as well as the CDC-to-STARAN attachment

time. True host-to-STARAN I/O in a production system would require

less than 2 seconds; disc-to-host I/O would require about 40 seconds.

In a production system, host CPU time would be unchanged since the

host acts primarily as an I/0 handler for this operation. The

STARAN CPU time would drop to about 1/5 of that shown because it

would be executed out of high speed page memory rather than bulk

core. On the other hand, GAC intends to boost the efficiency of

its vector auto-edit software. About 3 times as much processing

power is believed required. Thus, for a production system, the

Item (5) system usage would be:

STARAN CPU time = 60 seconds

STARAN I/0 time = 2 seconds

HOST CPU time = 25 seconds

HOST I/0 time = 40 seconds.

Item 6 -

The Item (6) CDC I/0, unlike Item (5) CDC I/0 is dominated by CDC

system processes, namely, by program loading, program overlaying,

file purging, and file cataloging. STARAN-to-CDC attachment time

represents only a small fraction of the CDC I/0 time. With a

production system, host I/0 time would be reduced to about 20

seconds. STARAN I/0 time would be less than 2 seconds.

The STARAN processing is presently being performed out of STARAN

slow memory (1.1 sec) rather than the fast memory (.125 second);

and, again, a real gain of 5:1 in processing speed would be obtained

in a production system. It should be noted that a production system

would not require so much editing (because the line separation
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procedure would be omitted), and so, 6 second processing could be

realized even without changing the algorithm for creating the

edit vector increments. Host usage in a production system would

be about 2/3 of that of the CDC. Summarizing, Item (6) operations

with a production system would be:

STARAN CPU time = 6 seconds

STARAN I/0 time = 2 seconds

HOST CPU time = 60 seconds

HOST I/O time = 20 seconds

Item 7 -

Item (7) processing causes an enormously large system load. No

STARAN activity is involved at present. The processing simply

involves preparing vector data for the CALCOMP plotter. Re-

programming could reduce both the CPU time by a factor of 4:1

and I/0 time by a factor of about 6:1; to substantially reduce

the formatting time, STARAN would have to be used. This would
imply ignoring the CALCOMP subroutines used for generating the

vector plots. The CALCOMP code would be developed directly in

STARAN. If a production system were set up to use STARAN for

generating CALCOMP formatted data, the resource usage would be:

STARAN CPU = 80 seconds

STARAN I/0 - 2 seconds

HOST CPU time = 20 seconds

HOST I/0 time = 60 seconds

Item 8 -

Item (8) requires the same kinds of operations as are required by

Item (4). If the processing were performed in the STARAN in a

production system, the usage times would be:

STARAN CPU time = 5 seconds
STARAN I/O time = 2 seconds

HOST CPU time = 10 seconds

HOST I/O time = 60 seconds
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With a production system, the total system usage time for all pre-

tagging processes would be:

STARAN CPU time 830 seconds

STARAN I/0 time = 10 seconds

HOST CPU time 140 seconds

HOST I/0 time = 275 seconds

The tagging phase data requires little explanation with one

exception. The TAPEOUT routine requires substantial CDC CPU and

I/0 time. In a production environment the TAPEOUT routine would

not be used except to off-load the production processor. Thus,

there is little point in developing STARAN software that would

reduce the task time down to the 20 second CPU time/60 second I/0

time range. If for some reason it were necessary to develop a

fast TAPEOUT module, it could be installed at a later date.

When doing tagging operations, a production system usage would be:

STARAN CPU time = 70 seconds

STARAN I/0 time = 30 seconds

HOST CPU time = 20 seconds

HOST I/0 time = 120 seconds.

The processing expensive operations of gridding are already being

performed in STARAN. By moving.sorting/merging operations into

STARAN (Items (14),(16),(19)), system CPU time for these processes

can be reduced to about 30 seconds. Such operations were not

moved into STARAN for the CONTAGRID program because they are I/O

intensive; the slow I/0 path between CDC and STARAN would have

negated much of the CPU time gain of using STARAN.

Item (18) processing which involves the interpolation of elevations

along R/S lines, could be performed in STARAN in about 30 seconds.

A gain in processing time of about 40 to 1 over the CDC processing

time could be considered an average gain. Because R/S line segments

between points of known elevation are not uniform in length a simple

*Excludes the TAPEOUT operation
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layout of the R/S interpolation problem in STARAN results in a

reduction of STARAN efficiency. The 30 second projection for

Item (8) presumes a simple STARAN problem layout and so projects

only a 10:1 gain over the CDC CPU time.

The ltem (15) task is not CPU expensive and so could remain a host

task. If it were moved to STARAN, the neat line linear interpola-

tion operation would require less than one second of STARAN time.

All I/0 associated with gridding involves the movement of about

60 Megabytes of data between disc and memory. By using large

records, a production system could reduce the number of setups

for data transfer to about 8,000. Assuming a SEL set up time of

800 Aseconds, total I/0 set up time for disc-to-memory transfers

would require about 6.4 seconds. Actual I/0 would requira about

50 seconds and disc latency would demand about 320 seconds assuming

ranlom file access. When files are contiguous as can be assured,

latency time can be halved. Thus, disc-to-host memory I/0 should

not exceed about 250 seconds.

The set up time to move data to STARAN from host memory would be about

the same as that required for set up in moving data from host-to-disc.

Therefore, production system usage would be:

STARAN CPU time = 275 seconds

STARAN I/0 time = 8 seconds

HOST CPU time = 30 seconds
HOST I/0 time = 250 seconds

In su nary, for all phases of processing, a production system

would use:
STARAN CPU time = 1175 seconds

STARAN I/0 time = 50 seconds

HOST CPU time = 190 seconds

HOST I/0 time = 650 seconds
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Of course, a production system would be required to perform other

than the CONTAGRID tasks to accommodate the DTED process. In

particular, it would be required to perform mosaicking, warping,

and paneling processes as well as editing support processes. None

of the above processes puts much of a CPU load on STARAN. The I/0

load on the system would increase as the result of the mosaicking

and paneling tasks, but the I/0 load would be much less than that

imposed by gridding. Of course, the editing load could be deter-

mined by the number of interactive edit stations associated with

such a system. It is necessary to balance the number of hardware

I/0 controllers to the response time requirements of the edit

stations. By conserving the host machine resources, it becomes

possible to perform the myraid short sequential tasks required in

an interactive editing environment with minimal time lag.

The man-intensive tasks associated with the DTED process lie in:

1) Pre-compilation,

2) Tagging,

3) Post gridding editing..

By performing mosaicking and paneling in the electronic digital

domain, substantial man-hours/sheet should be saved in performing

these operations. By using adjacent sheet digital information in

most neat line data generation operations, the neat line data

development task should also be reduced. Manual R/S data genera-

tion would still be required, but the amount of detail required

could likely be reduced. Secondary R/S data could be entered

directly at edit stations. Based on the CONTAGRID program results,

GAC believes the time required to do Tagging can be accomplished

using less than 8 man-hours. (Part of the Tagging priming operation

would have been accomplished during automatic mosaicking). Further-

more, because of the automatic Q/C associated with the operation,

rework will be able to be reduced.
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Finally, in the post gridding editing operation, GAC's approach

to displaying elevation matrix data should substantially reduce

the time to perform final quality control and edit operations.

By being able to view gridded data as an intensity display, direct

corrections of the data can be made possible. Where more detail

needs to be seen, fast arbitrary magnification can be provided.

Apparently, a production-oriented, CONTAGRID-like cartographic

system could reduce the man hours required for all three phases

of the DTED process.
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SECTION 5 INVESTIGATION

5.1 APPROACH

The approach is divided into three parts:

I) The testing system,

2) Tasks involved, and

3) Test approach.

5.1.1 Testing System

The three main systems used for this work were:

a) the DMA/ETL Digital Image Analysis Laboratory (DIAL),

b) the GAC STARAN Evaluation & Training Facility (SETF),

Akron, Ohio, and

c) the CDC Cybernet Service (terminal link to Cleveland).

The CONTAGRID software was installed on the DIAL facility. The

main parts of the above equipment used were:

1) The CDC 6415-8 processor including the 98K core storage,

seven and nine-track magnetic tapes, large capacity

disks along with the command channel interface link to

the STARAN (4-arrays) and the PDP-11/20 supported by

two RK05 disks.

2) An off-line CALCOMP plotter with tape drives used for

verification of the results of the editing, and tag-

ging software.

3) The GAC SETF, at Akron, Ohio, which was utilized for

initial checkout of the STARAN processing. Later, all

the gridding software was initially checked out on this

equipment. A number of the I/O commands available on

the DIAL system were simulated at GAC to allow more

rigorous testing to be performed.
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4) The COMTAL (512x512) Image and Graphics Display Equip-

ment, which is part of the SETF equipment was also an

aid (along with additional software) in allowing the

display of the gridded results of the SHIRAZ Test Region.

5) The CDC Cybernet Service, which was valuable for initial

checkout of many of the CDC Fortran routines which

comprise part of the CONTAGRID software package.

5.1.2 Tasks

In order to accomplish those tasks necessary to tag contours and

subsequently generate a grid of elevations, Goodyear Aerospace

performed the following assignments.

Generated CDC I/O software to read and merge Run-Length-

Coded (RLC) data produced by the DMA Raster Scanner/Plotters

and store the data file subsequently on a CDC disk.

Developed CDC-Fortran software to send the RLC data to

STARAN and receive and store the resulting array vector data.

Modified the existing STARAN software to include extra

vector header information for editing and tagging and

separate the contour data into index and non-index files.

Generated new STARAN software to perform junction coding

to allow the detection and classification of numerics and

special symbols.

Generated CDC-Fortran routines to build the master

vector information from the array vectors.

Generated CDC-Fortran software to support the generation

by STARAN of numeric and special symbol vector identification

lists and new 'join vectors' subsequently produced by the

automatic editing routines.

Generated the corresponding STARAN software.

Generated CALCOMP plotting software to display proof

ts of the edited data along with separate plots of the

,merC and special symbol vectors.
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Generated CDC software to manually edit the various

existing vector data sets from card input.

• Generated STARAN software to build new master vectors

and array vectors from lists sent from the CDC.

Generated CDC-Fortran routines to build contour vectors

from the previously edited vector data sets.

Generated CDC and STARAN software to automatically tag

sheet boundary intersecting contours with elevations from

a subset of manually assigned index elevation tagged contours.

Generated software to edit the boundary contour ele-

vation data sets from cards. This software included the

deletion of incorrectly tagged contours and the insertion

of corrected elevations for these same contours along with

the insertion of elevations for untagged contours.

Generation of CDC software to manage the I/O of data to

STARAN for the tagging of closed contours, i.e., those not
intersecting the sheet boundaries.

Generation of STARAN software to tag the closed contours.

Generation of CDC software to plot by elevation incre-

ment the tagged contour vectors, and the subsequent genera-

tion of a DGR formatted data tape suitable for gridding

using existing DMA software.

Generated CDC and STARAN software to reduce/resample 25
micron vector data to the required lO-mil grid.

• Developed software to accept DGR formatted vector data

as input.

Generated CDC software to segment DGR input data into

separate files; i.e., ridge/stream (R/S) points, spot

elevations, neatline points, etc.

Included software to build neatlines from neatline points.

Generated CDC programs to partition R/S line data for

STARAN processing.
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Developed CDC/STARAN software to find the intersections

of R/S lines with points of known elevation.

Developed CDC software to build R/S points using linear

interpolation.

Built file merging and backscanning software for devel-

oping the input to gridding.

Generated CDC/STARAN software to perform gridding using

interpolation.

A number of other software items were also generated during this

contract to run at GAC, Akron, namely:

STARAN software to display a gridded subsection of a

test sheet on the COMTAL display using different color-coded

elevations (See SUMMARY and CONCLUSIONS - Figure 4-3).

Fortran software to run on the SETF equipment to display

a hard copy output of sections of raster scanned source

material. This software has the ability to 'window' a

specific section of a sheet and magnify that section (if

required) and allow a user to determine the 'quality' of

the raster data (see Figures 6-4, 6-5, 6-6, 6-7).

5.1.3 Test approach

The approach to testing the CONTAGRID software was to use

digitized line data generated from a transparency of the SHIRAZ

region of Iran and scanned at 1-mil resolution by the DMA Raster

Scanner Plotter (RAPS) at the DMA Hydrographic/Topographic Center.

In particular: GAC:

Used a sub (4"x4") section of the SHIRAZ sheet to check-

out the majority of the CONTAGRID software (see Figure 5-1)

Examined other scanned data produced by:

a) The Hamilton-Standard scanner, and

b) The DMA AC RAPS.
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Figure 5-1. Photocopy of Source Shiraz Contour Data 1:1
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Utilized neatline, point elevations and Ridge/Stream

data generated by DMA in the gridding process.

Goodyear Aerospace generated the following items during the

contract:

CALCOMP plots of the contour vector information in

vector form and separated into index and non-index

files after both automatic and manual editing.

Plots of the numeric and special symbols.
Plots of the tagged contours by elevation increment.

A DGR formatted data tape of the tagged contour data

(subsequently plotted at DMA).

A tape of gridded data in the DMA Standard form for Digital

Terrain Elevation Data.

A color COMTAL display (and photographs) of the gridded

data set including Ridge/Stream data, etc. The infor-

mation was color coded by predefined elevation bands.
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SECTION 6- DISCUSSION

6.1 GENERAL

A discussion of the CONTAGRID software is given in this section.

The discussion is divided into four sections: pre-tagging,

tagging, gridding, and editing. Each section gives the basic
techniques involved, together with related information that may

help to clarify to the reader the fundamental concepts behind each

process. More detailed information on the software developed for

these procedures is documented in the Appendices A through D.

6.2 PRE-TAGGING

Pre-tagging involves the processing of the raster-scanned data

to (and including) the generation of the untagged contour vectors

as shown in Figure 6-1.

The raster-to-vector conversion is performed in a specific

manner in relationship to the raster-scanned sheet. It is Im-

portant to understand this as the I/O contributes significantly

to the overall processing time.

Figure 6-2 helps to define, with respect to the image area, a

scan line, array load, iteration, and data block. An array load

refers to the amount of data processed by one STARAN array and

is 224 cells wide and 248 cells long, as shown in Figure 6-2(B).

The RLC data is sent to STARAN until 224 lines have been collected.

These are then converted to a 'binary image' of the data block

and segmented into separate iterations and stored on the second

RK05 disk (Drive 1). This data is then recalled one iteration

at a time and processed in the following manner.

Load the arrays.

Separate index lines from non-index lines (by width).
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(A)TAPE RECORD (B)ARRAY LOAD (C)DATA BLOCK
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Figure 6-2. Relationship of Image Area to Tape Record, Array
Load, and Data Block
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* Clean-up data.

* Thin data.

* Code all junction points of 3 or more lines.

* Convert data to array vector form (along with array

vector linkage information).

This procedure is performed for all iterations and the vector

data is sent to the CDC which later builds the master vectors.
The data is processed twice per data block, once to isolate index

lines, and once to isolate the non-index lines.

The above steps are repeated for as many data blocks as are
required to produce vectors for the complete sheet.

Master vector files are built from the array vectors and the
corresponding linkage information. A master vector is a connect-

ed set of array vectors whose ends begin/terminate at sheet

boundaries, junctions or at open end points.

The next procedure attempts to automatically join up any 'line

breaks' existing within the sheet boundaries. Numeric symbols

are determined and marked for subsequent deletion. Files of

vectors are created which comprise special symbols such as

depressions, fills, and cuts.

Plots of all of these files are generated on the CALCOMP for

verification and manual editing when required. Each master

vector is assigned a unique identification number called a
'correlation number' (Plot ID) which can be printed on the proof plots

at one end of the vector. The index and non-index master vector
numbers are not unique and use of their master vector numbers

(instead of Plot ID's) on plots which composed both these files could

lead to misinterpretation. All editing is performed by deleting

changing, and adding to these correlation lists. Several cycles
through manual editing may be required to completely edit the sheetr--

Plots may be generated after each cycle.

Finally, the edited master vectors are connected to the master

vectors using the previously edited joins. This process is
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called the 'SQUEEZE' routine. The results are contour vectors
which are then listed along with any incomplete contour vectors;
i.e., those whose ends do not start or end on a sheet boundary or
are not closed on themselves within these same confines. These
'dangling' contours were missed during manual editing and are
corrected by iterating through the manual edit and the 'SQUEEZE'
procedure until a clean contour vector data set is established.

6.3 TAGGING

Tagging involves the association of elevations to the contour
vectors and the subsequent generation of data in a form suitable
as input to the gridding process. Figure 6-3 shows the data flow
through tagging. The tagging process is divided into two sec-
tions. First, all sheet boundary intersecting contours are tagged
and edited, then the internal (closed) contours are tagged and
edited.

The open tagging process is performed by STARAN and utilizes an
ordered elevation list of the manually tagged index boundary
contours. The index-contours were originally selected because:

1) They are thicker than the non-index contours, and are

most easily identified after line separation as a
separate plot,

2) They are fewer in number than the non-indexed contours,
thus reducing the amount of data requiring manual

tagging, and
3) Their elevations are equally spaced, enabling the cal-

culation of the non-index contours elevations to be

simplified.

The STARAN performs the following tasks during open tagging.
Receives the ordered index elevation list (by boundary

left, bottom, right, top).

Generates the ordered sheet boundary list of contours for
the specific boundary.
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. Correlates the two lists and identifies any mismatch in

the number of index boundary matchings.

Excludes any 'untaggable' contours due to insufficient

data (these are later tagged during editing).

Tags the remaining boundary contours and sends the

elevation list to CDC.

The elevation list is printed and any untagged boundary contours

are tagged manually. The elevation list, along with the contour

vector and array vector information is used by STARAN for the
closed contour tagging process.

The closed contour tagging procedure is performed by STARAN and

incorporates the following steps:
1) Receives elevation list and vector information from CDC,

2) generates a counter-clockwise sheet boundary flag file

to identify if the slope is rising or falling as each

boundary contour intersection is found,

3) Generates ordered North-to-South array boundary lists

of contour crossings corresponding to the edge of each

Data block,

4) Tags all closed contours crossing the N-S line,

5) Cross-checks the tagged contours against previous N-S

lines and flags any inconsistency, repeats steps 3),

4), and 5) for all the data blocks on the sheet, and

6) Sends the updated elevation list to CDC.

Final editing is performed (if required) to complete the 'tagging.

The tagged contours are plotted by elevation increment; i.e.,

one plot for the index contours and one plot for each of the

non-index elevation increments between two different index con-

tours. Also, a DGR formatted data tape is generated for use by

either the new parallel gridding process developed on STARAN or

by the existing DMA gridding scheme.
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6.4 GRIDDING

This item discusses the basic gridding procedure. The indi-

vidual steps are identified in Figure A-4 of Appendix A.

The first step is the generation of the contour point of known

levation. These points can be obtained from one of two sources,

either:

a) from the DGR input tape (if it contains vector data), or

b) from the output of the tagging portion of CONTAGRID.

In case b) this requires the use of a 'resampling process' to

convert/reduce the 1, 2, or 4 "mil" resolution data to the 10-mil

grid spacing. This process is performed in parallel by STARAN.

The next step reads the DGR tape which contains the supplementary

image data, and segregates the data into four types: stream/

ridge (R/S) lines, spot elevation, R/S junctions, and neat line

points.

The next task uses the neat line information and contour vector

(check boundary) information to build the four neat lines. The

process used is a linear interpolation. The next process is

to use the R/S points, the contour known-elevation points, and

the R/S junction points to produce the R/S intersections. This

process again utilizes the STARAN processor. The process then

continues by interpolating along the R/S lines to produce R/S

points of known elevations.

Following this all points of known elevation; i.e., R/S points,

spot elevations, and neat line elevations are merged and con-

verted into a 'backscan ordered' file. This file is used as

input to the gridding process along with the left edge neat

line elevation points. At this time, STARAN's primary purpose

is to perform the 'Dual-axis Parallel Gridding Algorithm' (DAPGAC).

Now, it becomes necessary to describe the justification for the

*"mil" = 25 microns.
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implementation of a 'new' algorithm. In March 1979, it became
apparent that the primary potential benefit of implementing DMA's

Planar Interpolation Gridding algorithm on STARAN - the rpady

validation of STARAN gridding results by the direct comparison

to comparable results achieved with DMA's UNIVAC - could not be

realized. Prior to this conclusion, GAC had already reported

that structuring the inherently sequential algorithm in such a

way as to keep the processing elements of a parallel processor

busy, caused output grid data to be developed along 630 diagonals.

To "un-skew" the output developed using the STARAN version of

DMA's Planar Interpolation gridding, heavy I/O demands would be

placed on the CDC6400/STARAN computing facility.

Also, at the same time, a number of DMA personnel expressed the

opinion that in addition to the fact that the Planar Interpola-

tion Gridding algorithm didn't match the parallel processor

architecture, the algorithm had deficiencies that needed atten-

tion. Later, it was mutually agreed by ETL, DMA, and GAC rep-

resentatives that effort to implement the Planar Interpolation

Gridding algorithm would be halted and that GAC should suggest

a gridding approach suitable for parallel processing. Subse-

quently, atDMAHTC, GAC described the Dual-Axis Parallel Gridding

Algorithm for CONTAGRID (DAPGAC) and recommended that it be

implemented under the CONTAGRID program. It was agreed that

GAC should proceed with the DAPGAC. The nature of the algorithm

and its comparison to the Planar Interpolation Gridding algor-

ithm is summarized in Appendix D.

The output of the gridding process is formatted in accordance

with the DMA terrain elevation data file requirements.
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6.5 EDITING

This item discusses many of the 'edit' functions performed at

different stages of CONTAGRID processing.

The editing processes can be broken down into the following

categories:

* Editing to clean up the raster source data,

* Editing to reassign misclassified numeric, depression

and special symbol lists, and

* Edi ting to correct or assign contour vector elevation

tags .
It is the first two of these categories that will be discussed

here.

6.5.1 Editing Source Data

The raster data that is scanned and used as the source input to

CONTAGRID may be error ridden for several reasons:

* The original film may contain dirt specks that get

rasteri zed,

The line data may have been poorly drawn, i.e., out-

side the tolerances of parts of the software,

* Although the original film may be within these toler-

ances, the scanning process itself could generate

errors such as:

* The operator using an incorrect 'threshold' setting,
or

* 'Line blooming' across or down the sheet due to

expansion of the scanner drum itself during

operation, etc.

Figures 6-4 and 6-5 show plots made of two different machines
raster scanned version of the same source material at 1 micron
resolution. Each asterisk ()indicates a single resolution
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unit. The heavy lines approximate center lines produced after

line thinning and the automatic clean-up routines used within

the STARAN processing at the beginning of CONTAGRID.

The ability of the automatic editing software to identify these

numerics is greatly reduced due to the more complex form of this

data (see Appendix B for more information on numeric detection,

etc.).

Figure 6-6 shows another situation, this time the source film

had 'dirty' spots which caused many of these problems. A large

number of the small regions are 'cleaned.up' using the CLIP/

Cluster Elimination routines developed for prior raster processing

software.

Figure 6-7 indicates the case of 'line coalescing'. Notice how

the merging of the two lines has occurred in the scan direction.

Again, the solid line conforms closely to the resulting data

after line thinning. Each of the short vectors joining the two

lines has to be deleted from the resulting vector files by

manual editing (see Appendix B). Also, because each vector

contains a large amount of header information, it means that

these redundant vectors are increasing the intermediate vector

file size which consequently increases any 1/0 or search times

on this file.

Two other situations that produce a disproportionate amount of

editing are:

The use of input data whose line weights do not stay

within the specified tolerances due to poor compilation,

and
The use of input data whose line weights do not stay

within the specified tolerances due to 'blooming' of

the scanned data.
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Figures 6-8 and 6-9 show what happens to these data sets after

line separation and thinning. The misclassification causes

immense problems for editing.

6.5.2 Editing to repair Line Breaks, etc.

Figures 6-10 and 6-11 show the top-left corner of the SHIRAZ data

sheet (shown in Figure 5-1), after line separation, vectoriza-

tion, automatic editing, and plotting. Each vector has been

assigned an identification number which allows it to be edited.

Figure 6-12 shows the automatically generated join vectors for

the index vectors.

Figures 6-14 and 6-15 show the same two vector sets after manual

editing of the problems indicated on the first two plots.
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A. INPUT B. INDEX SEPARATED/ C. NON-INDEX SEPARATED/
THINNED THINNED

Figure 6-8. Misclassification due to Inconsistencies in Line Weights

A. INPUT B. INDEX SEPARATED/ C. NON-INDEX SEPARATED/
THINNED THINNED

Figure 6-9. Misclassification due to 'Blooming'
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Figure 6-10. Index Contours at 2:1 after Automatic Editing
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Figure 6-11. Index Contour Join Vectors after Automatic Editing
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Figure 6-12. Non-Index Contours at 2:1 after Automatic Editing
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Figure 6-13. Numerics at 2:1 after Automatic Editing
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Figure 6-14. Non-IndexiC ntours at 2:1 after

Manual Edits ng
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Figure 6-15. Index Contours at 2:1 after Manual Editing
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SECTION VII - RESULTS

In general terms, the results of the contractual work are

described below.

There exists a CONTAGRID software package which shows the valid-

ity of an automated approach to the tagging and gridding of

raster scanned contour data.

The above software was structured to allow processing of all usual data

resolutions and densities, and accomodate sheets up to 19"x22"

data areas. The software was built using a 'structured' approach

which allows the user to investigate the performance of indi-

vidual sections of the process. Specifically, this allows the

user to improve individual performance in certain areas and change

specific functions from presently manually-oriented approaches

to more automatic or interactive methods as new hardware or soft-

ware techniques become available.

Hard copy outputs have been generated at all the major steps in

the process as shown in Figures 7-1, 7-2, and 7-3.

Magnetic tape data was also generated after both tagging and

gridding to allow the user to test the data against other 'tried'

software.

At various points in the processing self-checking procedures have

been incorporated to allow early detection of problems. This

allows the user immediate insight into the problem and the capa-

bility to overcome the error by repeating the prior process
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Figure 7-1. Photocopy of Source Shiraz Contour Data 1:1
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Figure 7-3. SHIRAZ Pseudo D.G.R. from Tapeout
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(with the required fix) without restarting the whole package.

Although this procedure is not always simple it does reduce the

need to restart the process at the beginning.

To aid the user, documentation has been generated to identify

all of the steps of the CONTAGRID procedure. Specifically, the

job-control cards, the input/output of each process, along with

valuable error identification messages have been provided (see

User's Guides Parts I and II).

The COMTAL image display software has been developed at Goodyear

to allow display and inspection of the results of gridding.

This software accepts data in the "DMA standard for Digital

Terrain Elevation Data" format. Figure 4-3 shows a color photograph

of the 4"x4 test region.

Several support/utility routines were also generated which allowI

evaluation of a number of different ras ter- scanned data sets (see

Appendix E).

Besides the above results, a number of other important issues

have been investigated. Specifically, the need for on-line

raster editing, and the possibility of excluding the need for

line separation altogether.
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APPENDIX A - CONTAGRID TOP-LEVEL STRUCTURE CHARTS &

DATA FLOW DIAGRAMS

This appendix contains the top-level structure charts/data flow

diagrams for the CONTAGRID software. These charts are comprised

of two sections:

* Contour pre-tagging & tagging (Figures A-i and A-2)and,

Contour gridding (Figures A-3, & A-4)

Appendices B, C, & D describe the pre-tagging, tagging and grid-

ding programs in more detail. Appendix E describes the utility

routines developed during this contract.

Appendix F contains file/record layouts of the different data sets

generated throughout the CONTAGRID software.
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APPENDIX B - PRE-TAGGING

This appendix describes the most important parts of the pre-

tagging software.

1. TAPEIN

This program consists of two programs.

IMAGE TAPE-DISK: This routine copies the tape to

disk (in the case of RAPS format, even & odd records

are copied separately).

TAPEIN: This routine merges the odd-even RLC

files (if RAPS data) and generates a parameter file

of approximately 120 words from the card input para-

meters shown in Figure B-1. Many of these parameters

define RK05 disk sector addresses and STARAN buffer

addresses which are used by the routines which convert

the RLC data to it's binary equivalent (see GETVECS).

2. GETVECS

This routine uses STARAN to convert the raster data to vector

data. Prior to this conversion, the RLC data is converted to

it's binary equivalent one data block at a time. This data is

segmented into iterations (called 'chunks' by the STARAN raster

processing software) &nd off-loaded to the second RK05 disk.

Each iteration is loaded into the arrays and the conversion

process takes place. Figure B-2 identifies the relationship

between a tape record, data block, array load, and iteration.

The following processes are performed on each iteration:

The binary data is loaded into the arrays.

Line separation is performed to extract either the
index, or non-index lines.

The data is 'thinned'.
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o INPUT DATA TYPE 1=ETL, 2=DMA

o RESOLUTION 1, 2, OR 4

0 TOTAL # RECORDS

o SHEET LENGTH (INCHES)

O SHEET WIDTH (INCHES)

O NUMBER OF ARRAYS (STARAN)

O INDEX LINE WEIGHT (MILS)

O NON-INDEX LINE WEIGHT (MILS)

O INDEX INTERVAL (FEET/METERS)

O NON-INDEX INTERVAL (FEET/METERS)

O MAX ELEVATION (FEET/METERS)

O MIN ELEVATION (FEET/METERS)

O MAX NO. OF CHARACTERS IN ELEVATION NUMBER

O MIN NO, OF CHARACTERS IN ELEVATION NUMBER

O NO. OF RECORDS TO SKIP (WINDOWING)

Figure B-1. Tapein - Image Parameters

B-2



2. GETVECS continued

The data is then cleaned up, i.e., small specks

are removed and line pips are deleted.

Junction coding is performed.

The data is vectorized and sent to the CDC.

All of the above steps (except for junction coding) are described

in detail in Section 3 of ETL-0132 'ASSOCIATIVE ARRAY PROCESS-

ING OF RASTER SCANNED DATA FOR AUTOMATED CARTOGRAPHY II. The

array vector format has been updated to include the junction

number (if one exists) and the type of the vector ends (see

APPENDIX F, Figure F-1). The array vector linkage table is

shown in Figure F-2. Junction coding locates junctions of

three or more array vectors and assigns a unique junction

number to each of the individual headers. If any junctions

are found to exist on array boundaries the junction identifi-

cation number is assigned to the first array vector found

which is associated with this junction. If the other array

vectors whose ends are common exist in a neighboring array

or data block, the junction number is saved and then retrieved

at the appropriate time.

3. GETMVECS

This program builds the master vector headers and the list of

array vectors associated with each (see Appendix F Figures F-3,

and F-4).

The basic sequence of steps is.

1) Read in index link table segment from disk

2) Create sub-master vectors for all segment entries

3) Repeat steps 1. & 2. until all master vectors have

been created (from the sub-master vectors) and output

to disk - 'dummy' headers and master vector linkages

are stored separately.
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3. GETMVECS - continued

4) The real master vector headers are created from

the dummy headers by filling in the information
from the array vector tables.

5) Steps 1-4 are repeated for the non-index lines.

At the time that the master vector headers are being developed

those vectors whose ends are computed to be within a pre-

defined framework around the edges of the sheet have their

sheet boundary flags set.

4. GETEDS

This program detects and lists the numeric and special symbol

vectors, as shown in Figures F-5 and F-6, attempts automatic

editing using STARAN. The basic procedur3 is as follows:

Detect symbologies i.e.;

Locate numerics, list the associated vectors for

deletion.

Locate depressions, remove the tic marks and link

the master vectors at the junction (node) points.

Identify cuts and generate the lists of ordered

vectors which define each of the contour sections.

Identify the fills and remove the tics.

If no ambiguity arises, join the end points of vectors

whose ends are deemed to be part of the same contour

vector.

Establish edit lists for both auto-edited symbologies and

non-edited symbologies.

Develop plots for editing symbologies.

Utilize symbology I.D.'s to manually complete editing

activity.
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4. GETEDS - continued

Figure B-3 shows the various symbols. Following is a more

specific description of the procedures for identifying

these symbols.

Procedure for Identifying Numerics:

*Collect master vectors that have lengths like numeric

vectors and are not node/node vectors.

*Use each collected vector as reference and find all

other collected vectors in the proximity of the reference.

*Determine whether a reference group has a sufficient

number of master vectors to meet the characteristics of

an elevation number (group of numerics). If the group

qualifies as an elevation number, the master vectors of

the group are entered into a numeric vector list.

*When the group has excessive master vectors, a node merge

routine is used to combine master vectors into numerics.

If the numeric count can be brought within a range for the

vector group to be categorized as an elevation number, the

master vectors of the group are entered into the numeric

vector list (as shown in Figure B-4).

All master vectors listed as numerics are subject to

d ele t ion .

Procedure for Classifying 'Depressions', 'Cuts', and 'Fills'

Identify tics: collect master vectors that are sufficiently

short and that have both an open end and a

node end.

*Collect groups of vectors that are adjacent via nodes.

(A node/node master vector is used as a group starter).

Groups with no tics are classified as "cuts".

Groups with tics and that have node/node vectors of about

equal length are classified as depressions.

*Remnant groups are classified as "fills. " B-6
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VECTOR VI

V 3

COMMON NODE/JUNCTION POINT

VECTORS V1 , V2, V3 & V4 REDUCE TO ONE VECTOR V1

Figure B-4. Vector set Reduction for Numeric Detection
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Procedure for Treating "CUTS" (see Figure B-5)

For a cut group find a node pair A1 , A_1 connected by two

different arcs, a1 , _I; b1 ,- where the length of bl,.i

and the length of al,_i concatenate ai,_ 1 and bi,1_ to

form 1st closed contour.

Find 2 nodes nearest the pair of starting nodes (A2 ,A_2 )

and find the arc common to these 2 nodes (b a,2)

Concatenate a2,1 ; a,,_,; a_1 ,_2 . and b2 ,_2 to form the 2nd

contour.

Find 2 nodes nearest the nodes A2 ,A_2 and not AI,A1l (Namely,

A3 ,A_3 ); Find the arc common to these 2 nodes (b_3, 3 ).

. Concatenate a3 ,2 ; a2,1 ; a1 ,_1 ; a 1 , 2 ; a_2,_3 ; b.,3 3 etc.

Continue until search for groups fails.

Generate edit list and identify elements.

Procedure for Line Join (Index or Non-Index)

Collect start/end point values of open-ended index and

non-index lines.

Group start/end points within window.

Pair ends within window.

Generate array vector, master vectors and linkage infor-

mation using STARAN.

Send lists to CDC.

. Update existing lists with new information.

GETEDS also generates a list of unidentifable vectors together

with a list of unpaired end parts to be used by the manual edit

procedure VALDVEC. (See Tagging User's Guide.)
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5. PLOTGEN

This program builds a plot tape (for CALCOMP) with the

following plots from the correlation lists generated by

GETEDS.

Vectors of index weight

Contour vector segments

Joins

Vectors of non-index weight
• Contour vector segments

Joins
Numerics

Special Symbols

• Depressions

Deep cuts

Fill/cuts

6. VALDVEC

This program uses the manual edit commands, shown in Figure

B-6, to 'clean-up' the various vector files. If joining is

required STARAN is used in a similar manner to GETEDS to

generate the new master vectors and associated array vectors.

Plots are generated of the resulting edited files for perusal

by the user. Several iterations through VALDVEC may be re-

quired before the various data-sets are completely edited.

7. SQUEEZE

This program builds the contour vector headers and associated

array vector lists (see Appendix F - Figure F-7, F-8) from

the master vectors (join and non-joins). Each contour vector

consists of one or more master vectors and exists between two

points on the sheet boundary or as a closed loop within these
same bounds. If one of these two conditions does not exist

then a message is generated for the specific contour vector

which identifies it as a'dangling' vector. Such a message
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7. SQUEEZE - continued

is generated for the specific contour vector which identifies

it as a 'dangling' vector. Such a message requires that the
user re-edit the specific contour vector to fix (join) the

'dangling' end to another vector. The squeeze process may

then be repeated.

e CHANGE FROM TYPE TO TYPE FROM #

* DELETE TYPE #1 #, #1 #1 #,

e JOYN TYPE #, #

* REORDER TYPE #, #1 #1

TYPE = INDEX, NON, DEPRESSION, CUT, FILL, # NUMBER

Figure B-6. Manual Edit Commands
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APPENDIX C -TAGGING

This appendix documents those programs that perform the actual

tagging of the contour vectors, namely:

*Open tagging (TAGOPN),

*Editing of the tagged vectors (EDITAGS), and

*Closed tagging (CLOTAG).

1. TAGOPN

This program attempts the tagging of all contour vectors whose

ends are identified as existing at the sheet boundaries and

are not manually tagged as input to this process (open index

contours).

This program performs the open tagging utilizing the manually

identified, ordered set of sheet boundary contour vectors and

input (by cards) in one of the four sheet boundary data sets.

STARAN is used to perform the tagging. Following is the set of

steps required to perform the tagging. Figure C-1 shows an

example of a portion of a map sheet with border intersections.

First, the open index contours are tagged:

Requirements/Assumptions

*All index contours exist in a file for such contours.

*The data set for an index contour includes an ID and

start/end point coordinates.

Procedure

*Proceed in a counterclockwise direction around sheet

border and enter an elevation number into their ele-

vation list for each index contour/sheet border inter-

section encountered (manual).

*Enter elevation list into the processing system (manual)

via cards.
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Using the file of index contours and the end/start

point coordinate data for the contours, determine

the index contours that intersect the sheet border

(STARAN).

Sort intersections into west, south, east, and north

boundary intersection sets (STARAN).

*Order four contour intersection lists that contain
contour ID and intersection coordinate data, as follows

(STARAN):

West: Ascending Y

South: Ascending X

East: Descending Y
North: Descending X

*Concatenate the west, south, east, and north contour
intersection lists and associate with the elevation list

by order. Report association failure if it occurs (STARAN).

After the steps above have been accomplished satisfactorily, the
non-index contour tagging process is begun:

Regqui rem ents
*Files for both open indexed and open non-indexed contours exist.
All open index contours have been elevation tagged.

Definitions

*Between two adjacent index contour/sheet border inter-

sections, the elevation change is up or down one "big

step" or zero; between two adjacent non-index contour/

sheet border intersections, the elevation change is up

or down one "little step" or zero.

*N "little steps" =1"big step".
*Between two adjacent index intersections, the index interval,

a non-index contour may intersect zero, one, or two times

only. (An open non-index contour that intersects the neat
line within the index interval twice is defined to be a cup.)
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Procedure

Establish a merged list of index and non-index sheet

border intersections (STARAN); (list intersections in

the order that they appear in going counterclockwise

around the sheet boundary. Make the top west inter-

section the first list entry). Send list to CDC (required

for closed tagging).

"Remove" all cups from the intersection list (STARAN).

Identify all index intervals for which all the following

conditions are true (STARAN):

N-i non-index intersections exist in the interval.

No intersections are depression flagged.

One "big step" change occurs across the interval.

Establish elevations for non-index intersections of all

qualifying index intervals (STARAN).

Put all "cups" back into the intersection list (STARAN).

Elevation tag non-index intersections adjacent to index

intersections according to slope at index intersection

(STARAN).

List elevation file (tagged & untagged) (see Figure F-9).

2. EDITAGS

This program changes/inserts elevations for specific contour

vectors from cards. It then updates the corresponding files and

prints out the new elevation list. STARAN is not required for

this processing.

3. TAGCLO

This program uses STARAN to tag the closed contours.

Requirement

All boundary contours have been elevation tagged.

No contours are broken internal to the sheet.

All closed contours have a depression flag.
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Assumptions

A North-South line drawn across the sheet will inter-

sect (in general) both elevation tagged and non-tagged

contours. If the elevation at one intersection is known,

the elevations of all other intersections can be found.

Upon elevation tagging the intersections of a N/S line,

fewer contours of a sheet remain non-tagged; by utilizing

sufficient N/S lines and tagging ever more contours, all

contours will ultimately be elevation tagged.

A contour tagged along one N/S line is likely to be tagged

along other N/S lines. Redundant tagging is desirable for

it provides means for automatically checking the validity

of the tagging procedure.

Tagging basis

Two flags are required to define the southward pointing eleva-

tion slope at the point of intersection of an untagged (closed)

contour and the North-to-South cutting lines. The first flag,

the depression flag (DF), is associated with the contour.

When DF=l it indicates the contour is a depression contour;

when 0, it isn't. At entry to the tagging process, the condi-

tion of the flag is known for all closed contours.

The second flag is associated with each intersection of the

N/S cutting line and a given contour. It must be computed for

each new N/S line. Beginning at the northern end of a cutting

line, the intersections of a given contour are counted. The

crossing flag (CF) simply indicates whether or not an inter-

section is even or odd. CF=l indicates an odd intersection.

When both DF and CF are known, it is implicitly known that

the southward pointing elevation slope at an untagged inter-

section is rising or falling. If the slope flag

(SF)=l, it indicates that the southward pointing slope is

rising; when SF=O it is falling. Note that SF is the
"exclusive or" of DF, CF. By comparing the SF flags of 2 neigh-

ing intersections, A and B, where A is north of B, the
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magnitude of the elevation step from A to B is given by the

complement of the "exclusive or" of SFA , SFB. Its 2's complement

sign is given by the "and" of SFA, SFB,. By adding up

all elevation steps, the relative elevation of all steps can

be found. By adding a bias to the relative elevations so as

to cause the correct elevation at a point of known elevation,

all intersections are assigned unbiased elevations. The

newly found elevations of contours are checked with those

found previously in order to pin-point inconsistencies.

Treatment of boundary contours

The previous discussion neglects to indicate how the boundary

contours are able to be treated liked closed contours. Since

the closed contour tagging process demands that all contours be

closed, it requires the closure of all boundary contours. Thus,

for boundary contours, the two contour/map boundary intersection

points are connected with a line external to the map region.

The intersection point of a contour nearest the top west

corner of the sheet, as measured in a clockwise sense, is

connected to the second intersection point by drawing the

external line counter clockwise until it touches the second

intersection point. (See Figure C-2.) Because the eleva-

tions of boundary contours are known at the neat lines, the
"effective" depression flag of each artifically closed

boundary contour is able to be established.

The cutting line process presumes that the starting point of

the N/3 line begins outside of the region of closed contours.

In practice, the most noteworthy terminus of the N/S line

always lies on the North neat line. Thus, the terminus point

may well lie inside some of the artifically closed boundary

contours. As a result, the CF flag must account for the fact

that the crossing count is low by 1 for such boundary contours.

When treating real data, provision must be made to account for

a whole variety of anomalies (e.g., supplementary contours,
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changed contour increments, vectors used redundantly (as in

the case of cuts and fills)). The tagging software structure

allows for the inclusion of the vector flags and parameters

into the vector headers so that such anomalies can be

accommodated.

The exact geometry of the N/S cutting l.ine is arbitrary. At

present, the N/S lines follow the paths shown in Figure C-3.

By using the lines as shown, only very small contours that

fit within the grid can escape being tagged (z .160" byz.184).

By including spur paths to all small contours, all closed

contours can be tagged.

MAP NEATLINES

~~ %

CLOSERS ~

%o oo oA V
I l

I I I

I,

, -- _- - ._,..

Figure C-2. Boundary Contour Closing
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DATA BLOCK

SHEET BORDER (NORTH)

CLOSED CONTOUR
VECTORS

I-C--

~N/S LINE 2

Figure C-3. Top Left Corner of Sheet/Data for Tagging
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APPENDIX D - GRIDDING

This appendix describes the gridding processes.

1. RESAMPLE

This program uses STARAN to generate/convert the contour vector

data set produced from the contour tagging process into the DGR

grid coordinates.

The CDC software sends parameter information to the STARAN pro-

grams along with the array vector data on a data block basis.

The array vector data is the merged data from the four files,

namely: 1) the index, 2) non-index, 3) join-index, and 4) join

non-index files.

The STARAN software converts the above data to the required

10-mil grid and sends the data (in buffer loads) to the CDC which

builds resampled blocks of this information and saves them on

the disk.

2. DGRCON

If the input vector dataset to the gridding process is not the

contour tagging output, then this program is used to build the

file of contour information from the DGR formatted input tape.

This process consists of two routines: 1) SEGCON and 2) BILDCON.

The SEGCON segregates the contour data from the other DGR data

and saves this file. The BILDCON sorts this file and separates

the information into grid scan line (GSL) format.

3. SEGDGR

This program reads the DGR formatted magnetic tape which contains

the supplementary image data and segregates the data into four

types:

Ridge/stream (R/S)lines (Figure F-la)
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Spot elevations (Figure F-1i)

R/Sjunction marks, and (Figure F-Il)

Neatline points (Figure F-12)

The STARAN is not used for this processing.

4. NEAT

This program uses the open boundary contour vector information,

and the neatline points from the previous program to generate

the four neatlines bounding the image to be gridded (see Figure

F-13). STARAN is not used for this processing. The process

is performed using a linear interpolation between successive given

points for each of the four lines.

Corner point values are computed by a linear interpolation around

the corners.

5. GETSRKP

This program makes use of the ridge/stream (R/S) points, the

contour known elevation points, and the RS junction points to

find the R/S intersections. It then interpolates along R/S lines

to get all R/S points of known elevation. It is divided into

three routines: 1) PARTSR, 2) FINDINT, and 3) BILDSRP. The

PARTSR performs the partitioning of the R/Slines and junction

marks along the scan block boundaries (see Figures F-14 & F-15).

The FINDINT uses the STARAN to find the R/S intersections points

(see Figure F-16). The BILDSRP interpolates between the R/S

intersections to produce R/S points of known elevations. The

points are then sorted (see Figures F-17 & F-18).

6. MERGBAK

This program merges all the points of known elevation into one

file and converts it to a 'backscanned file' (in reverse scan

block order) in preparation for gridding (see Figure F-19).
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7. GRID

This program uses STARAN to grid and build an output file
from the neatline and backscanned data.

The gridding process utilizes a dual-axis algorithm imple-
mented in a parallel fashion on STARAN.

The DAPGAC develops elevation points at the mesh points of
a grid in a manner somewhat similar to the manner of the DMA
Planar Interpolation Gridding algorithm. Elevations for
columns of grid points are developed one column at a time
beginning at the left-most column and proceeding to the right-
most column. Unlike the Planar Interpolation Gridding algorithm,
which needs to develop the elevations of the grid points of a
column of such points one point at a time, the new algorithm
develops the elevations at all the grid points of a column

independently.

Ideally, to determine the elevation at a grid point, the known
independent points nearest to the points of interest should be used.
Hopefully, the points are well distributed. In practice, much
less information is used as will be seen in the discussion tnat
follows.

Assuming a cartesian coordinate system with the origin at the
grid mesh point to be interpolated, the Planar Interpolation
Gridding algorithm uses processed output data to get the
influence of input points of quadrants 1,2,3 and uses input
data only from quadrant 0 (exclusive of y axis points). The
computation involves one input point (the closest point) and
two processed points. Over the line defined by the input point

and the desired mesh point, a linear interpolation is performed
to determine the elevation at the mesh point. (The 2 processed
output points are used to determine the elevation (via linear
interpolation) at the intersection of the aforementioned line
and the line between the two processed points. This elevation
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data and intersection data allows the linear interpolation

to proceed.) The Planar Interpolation Gridding algorithm

provides a one axis interpolation procedure.

The DAPGAC uses processed output data to get the influence

of points in quadrants 1, 2 (the left half plane minus the

y axis points) and uses input points from quadrants 0, 3

(the right half plane including y axis points). (See Figure

1.) Three input points, rather than one, are used to deter-

mine the elevation at a grid point, namely:

1) the input point nearest to the North,

2) the input point nearest to the South, and

3) the input closest point (or the point nearest

to the East if the closest point is to the North

or South).

The first two points lie on a N/S line (the y-axis) through

the grid point for which the elevation is required. A linear

interpolation develops the 1st N/S axis estimate for the grid

point elevation, the vertical estimate hv, according to the
rule:

h = dN hS + d S hN
dN + S

where

1) dN, ds are, respectively, the distances to the

North, South points, and

2) hN, hS are, respectively, the elevations of the

North, South points.

The 3rd point, the "closest" input point in the right half plane,

and the processed points of the left half plane are used to make

a second axis estimate of the elevation at the grid point. A line

running through the 3rd point and the grid point establishes the

2nd axis for interpolation and determines the prccessed points
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,--closest input point

I to North

QUAD dNQUAD

2nd axis closest input
intersectionCpon
point

QUAD QUAD
23

line of last set of J closest input point
processed grid poins, oSot

uit

processed input raw input
point region point region

Figure D-1. Processing for One Grid Path
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needed by the 2nd axis interpolation routine. In particular,

the two processed output points required are those that lie

along the vertical line at x=-l (and, thus, belong to the most

recently developed column of processes points) and are nearest

to the intersection of the 2nd axis and this vertical line.

The processed points are used to find the elevation at the

intersection point via linear interpolation. When this ele-

vation is established the 2nd axis elevation estimate for the

grid point, the closest point estimate, hC, is computed using

the rule:

hC  dI hC + dc hI
dI + dC

where

1) di,dC are the distances to the intersection point

and "closest" point, respectively, and

2) hI'hc are the elevations of the intersection point

and "closest" point, respectively.

To get the best elevation estimate for the grid point, hB, the

two elevation estimates, hV and hN are combined according to

the nearness of points leading to the respective estimates

according to the rule:( ') hC +( )
= ( where

(i) + ( i )
dv is the smaller of dN or ds and

dN is the smaller of dI or dC .

Because the DAPGAC uses more input points to make grid point

elevation estimates, it should provide better elevation data

than can be provided by the Planar Interpolation Gridding

algorithm.

D-6



APPENDIX E - UTILITY ROUTINES

Figure E-1 shows an example of the input and output of the

utility routine which enables the viewing of a section of a

Run Length Coded data tape in DMA RAPS format. This routine

enables the user to specify:

1) The characters which define the contour line (in this

example,*)

2) The area (n x n pixels) which are defined by each

character,

3) The threshold; i.e., the minium number of 'ON' pixels

in the n x n area to switch-on the predefined character,

and
4) The starting x,y points of the plot relative to the

or ig in .

The routine was used to determine the orientation/origin of the

input and the quality of the scanned material.

Figure E-2 shows the corresponding FORTRAN listing for this

routi ne.
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'PLOT.
SVL2C: IXEt? FI~.F I CV 2 AYD.' IA~E fIVE.

5, S

i-c: 's ':' AX? SP~VT CTAPAC'T 2S PLC" WV VT:

+> *2 -

.7. -
* 4.'.

7y: T~WIVAL Ii ~z2:(3I:A2s) ~xr1~ I~\flhT FILE SIZF( tA.: 'I'')

E:.TL.~ STAR: UY * MTh S AW 'IDT2 PELTA Y., ALL I'~i IMCrES ''ITT ?F.GI7ALS
?.5,S .,AS
TWU DELTA K VILL GIVE YOU 1.1 PAGES.

EXThR TITRESIOLD IF rIs SET UP IS Or.

* tEC~)rJS 5VE :2% 114% PIXEL 5000 FOR 65OPIXFLS.
C- -TCP--< C

** ** * * *?**:~ *:** *,~ *
** * ** ** 4*4* ** .. ,. **

* ** * * 4*44 4*4 ** **
** ** * ** 444* 44* ** **
** ** ** * *4*4 ** ** *4*
** * ** ** *44* ** ** **
* ** * ** 4*4* ** *44

** ** ** ** 4*4 4*4 4*4
* ** ** ** 4*4 4** 44*

** ** * 44* ** ** **
** ** * ** ** ** **
* ** * ** ** * **

4* * * ** ** ** **
* * * * ** ** **

** ** ** ** *4* ** 4*
* ** * * ** ** **

** * ** * * **
4* * ** ** ** ** **
* ** ** ** *4* ** **

** ** * ** ** **
** 4*4 ** 44 * **
* *4*4 ** ** ** *
** 4*44 * ** ** **
** ** * ** ** **

* ** ** ** ** *4*
** * ** ** ** *4'

*4 ** ** 4* ** 4*
** * * ** **

** ** * *4 **
* 4** * * *** **
* ** * * 4*" ** *4*

* * * *4* *4*****n
* ** ** * 4*4 44*4*44*4*
4* ** ** ** 4*4 44*

** ** ** ** 4* *4*4*4*
** ** * ** *4* 4*4*44*44*

** * * ** *4* *4*4*4*4
4* ** * * *4*44*4*4*4*

** * * * 4*4*4*4*
** *4 *4 **

4* *4 4* * *
* *4 *4 * ** *44*4
*4* * * 4* * 4*4 *
4*4* *4 * * 44 4*4 4*

4*4 * *4 4* * *4* *4
*4* *4 4* *4 *4* 4*

4*4 *4 , 4* *4 *4*4* *4
44* *4 *4* *4 *4

*4 *4 *4*4 *4 4*4 4*
4*4 4* 44*4 *4 *4*4* *4

*4* *4 *4 *4 4* * *4
*44 4* 4* 4* 4*4 4 *

*4 *4* *4 4*44*44*4* *4 *
*4* *4* 44 4*4* 4* 4*

*4* *4* *4 44 4*
4*4 *4*44*4* *4 * 4*

*4* 4*4*4*4*4 *4 * 4
'.4* *4*4 *4 *4 *4* *4 *
*4* *4*4* 4* 4* 4*44* * 4*

*4* 4*4*4 4* *4 *4* *4 *4 4*
*4 *4*4 *4 *44 *4*4 4 *4 *

4* 44*4*4 * ***,~*** * 4 4*

:: ~ *

*4 *4 4*
4*4***4**4**4****** *4

***4**4*4*444**44 *4
*4* 4* 4*

4*4* 4* 4 *
44* *4 44 *

*4* 4* *4 *
4*4 *4 * **4 * 4*4* *4 4* *4

4* *4* 44 *4

Figure E-1. Raster Display Utility Routine
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C QPLOT.

MTEGEL BUIL'(1C'c'1),LILLi(4I),Ct-ARS(8),9PL(40O),COL(4lO)

REAL kX,e.Y,[.DZLX,VPAGLS
D~ATA IN/2/,ACCT/0/,PASS/O/,EYED/2/,II'.ECT/2/,D-C/7,SA'V1:/2/
DIATA Cl:ARS/'Q' ,'+', 'x' , *',F0'*,0

DATA IMi77/'1JI77's' ',:E;'NEW '
C

C0!iiON /ERRORS/ ElUCOD, SUICOT) ,DC BA

C
CALL EE RSET(Er.RCD, lOS, 10S,DC1BA,SUnCOD)
GO TU 11

10 CALL EXITR
11 SL'BCOD=0

ERRCLID-O
C
C GET INPUT PARANETERS
C

20 CONTINUE
PRINT 90

9C FOF2'A"(' SELECT INPLT FILE I OR 2 ANT) SQU'ARE SIZE-')
INP1T I,S(R
A1ME(1-1M177(I) ; 1NAIE(2)-L'i77(2)

PRIN~T 91,C1:A0RS
91 FORNAT(' SELECT VARE AND SPACE C-iAkAC-7ERS FMcI TUE1SE:',I

+ 1,A1/'12345675 ENTER digit,di~it')
INPLT I,'J
MARK - CHARS(I) ; SPACE - Cl*HAFS(J)
PRI14T 92

92 FoIrtAT(' ENTER TERIJNAL WIDTH(CHARS) AND IMACE FILL '

+ 'SIZE(MX !.EY)
INPLT WKMAX
W10 - SQR*1I

25 PRINT 93
93 0OMAT(' ENTER START X,Y, AND SWATH WIDTH DELTA

+ 'X, ALL IN; INCHES WITH DECIMIALS')
INPL7T RX,RY,PDELX
REC - 1000.*(RX+.0005)
IF(REC.GT.KIIAX)REC - KP4AX
FIX - 1000.*(RY+.0005)
DELK - 1OOO.*(RDELX-.0oO5)
DELX - (DELX/ScQR)*SQR+SQR-1
LASTARC - REC + DELX
IF(LASTRC.GTKIOLIAX)LASTRC - KIAX
RPACES - (LASTI'C-REC)/(121.*SQR)
PRINT 94,RPAGES

Figure E-2. Raster Display Utility Routine Fortran Listing

(sheet 1 of 3)
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94 FOR11AT(V THAT DELTA X WJILL GIVE YOU ',F5.1," PAGES.',/
+ 'ENT~ER THRESHOLD IF THIS SET UP IS OK./)

INPL'T THRESH
IF(TPRESK.LT.O)GO TO 3000
IF(TMRESH.EQ.O)CO TO 20
PINT 95,REC,LASTRC,PIX,W10

95 Fur.:iAT(' RECORDS ',15,' ThRU. *,15,', PIXEL-,15,- FOR '

+ I5,'PIXELS.',//,I
+ 10X.'c-TOP--<c',//M

r

c (,F-**, 1IXPCT FILC
C

CALL OPEN F( 1, %A:-E,IN , ACCT, rASS, KEYED, rIR 7CT,rC, Q, 4, 0)
IF(EP~tCOD.'.F.a)GO To 8C10

C
C FEPEAt: FOR EACP LIN:E IN RAE.GL
C -- RUDf TUE RECUFD & UNP)ACK IT
C

LCOUI:T - 0
DO 2000 KEY= RLC , LASIMC
CALL GETB(1,BUF,400,KEY,4)
IF(ERRCOD.N'.0)C' TO 8020
SIZE - IOR(IAN;D(4ZOIFE,ISL(mJF(1),-7)),

+ lAND(4ZFEOO,ISL(BUr(1),9)))
iF(SIZE.GT.390)GO TO 8030

LM- 0
DO 110 I-1,SIZE
CALL GET.iYTE(i5UF,1+3,BYTE)
RL(IM IA.ND(2Z7F,BYTE)
COL(IM IAND(280, BYTE)

110 LEN - LEN~ + RL(I
C (MIGHtT CI:ECK FOR LEN TOO SHORT!)

COL(SIZE+1)-O
RL(SIZF+1 )-PIX+Ui-LEN+1

C
C --IF PIX NOT 0, SKIP OVER FIRST PIX PIXELS
C
130 IGO - 1 ; COUNT - 0

IF(PIX.EQ.O)GO0 TO 150
131 COUNT - COUNT + RL(IGO)

IF(CUmIT.LE.PIX)IGO - IGO + I GO TO 131
RL(IGO) - COUNT - PIX

C
C -- DECODE ~11 PIXELS
C

150 IF(LCOUNT.NE.0)GO TO 152
DO 151 1-1,Wi

151 LII4E(I a 0
152 1-1

Figure E-2. Raster Display Utility Routine Fortran Listing
(sheet 2 of 3)
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160 COUN'T - RL(IGO) ; DOT - COL(IGO)
ICO - IGO + I
IF(DOT.E0.0)I - I + COUNT ; COUT-O ; GO TO 169

165 IF(COUNT.LE.O)GO TO 160
110 - (I-1)/SQR + 1
LINE(IfO) - LINE(I10) + I
I-1+1 ; COUNT - COUNT-i

169 IF(I.LE.WIO)GO TO 165
C
C --OUTPUT LINE TO TER!INAL
C

170 LCOUNT - LCOUIhT+1
IF(LCOUNT.LT.SQR)GO TO 2000
LCOUNT - 0
DO 171 ImlW
IF(LINE(I) .LT.T)IRESII)LINE(I)-O
IF(LINE(l) .NE. 0)L1ihE(I)-ARK
IF(LI'NE(I) .EQ.O)LINE(I)-SPACE

171 CO'TI:,.E
PRIN;T 96, (LINE( I), I-I ,W,)

96 FORIIAT(IX,14CAI)
C

C 1:D-DO
r

2, , C0::-. N ,;L

C CLOSE FILE A,L L'I7
C

CALL CLOSEFl(1,SAVE)
IF(ERRCOP.NE.O)CO TO 8040
CO To 25

3000 CALL EXIT
C
C EUROR 1iSSAGES
C

8010 S-8010 ; GO TO 8900
8020 S-8020 ; CO TO 8900
8030 PRI:;T 8039,SIZE,bUV(I),KEY
8039 FOR:IAT(' SIZE - -,16,Z9,' Oi RECORD KEY -,16)

CO TO 9000
8040 S - 8040 ; GO TO 8900
E900 PRINT 8999,ERRCOD,SUtCOD,S
8999 FORCAT(" ERROR CODES ",2Z9,' FROII STATEMENT ',16)
9000 CALL EXIT

ENM

! D :tt(
I FILES DELETED, 4 GRANULES

Figure E-2. Raster Display Utility Routine Fortran Listing

(sheet 3 of 3)
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APPENDIX F - FILE/RECORD LAYOUTS

This appendix documents the file/record layouts generated by

the CONTAGRID software package.
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WORD0 1 ST. ADDR. I1ST A. V. END ADIDR 1 ST A. V.{ 2 ST. ADOR. 2ND A. V. END ADDR 2 ND A. V.
ST. ADOR. 3RD A. V. END ADDR 3 RD A. V. ARRAY
ST. ADDR. 4TH A.V. END ADOR 4TH A.V. VECTORS

tis t (A. V.

512 NO.____________ __________ IN__RECORD__

DATA BLOCK 1.D. ARRAY LOAD I. D. ARRAY
*NO. A.V.'S IN ARRAY LOAD IHEADER

*DATA BLOCK 1.0. ARRAY LOAD 1.0.

START JUNCTION I. 0. END___JUNCTION________

_____ LENGTHA.______1._D ARRAY

ARRAY LOAD ARRAY LOAD VECTOR
*ST. PT. (COL, ROW) E. PT. (COL, ROW)

LTBRAJISE ILITBIRIASJJE
DATA -- a,'- -I I -*

1sTARTPO/NT TYPE END POINT TYPE

: j E -E. PT
END MARKER J - JUNC. PT

I~ -uS BDRY

A -ARTIF

Figure F-i. Array Vector Record Format
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FROM TO

ARRAY VECTOR I.D. TIT ARRAY VECTOR I. D. LENGTH OF
ARRAY VECTORSARRAY !

VECTOR
1 D. 2

3

(FLAG BITS FOR SYSTEM USAGE)

Figure F-2. Array Vector Link Table

NUMBER OF ARRAY VECTORS, I MASTER VECTOR I.D. 0I LENGTH OF MASTER VECTOR _

WORDS START X END X 2
1 HDR START Y END Y 3IASJIJE {ASIJE

START JUNCTION I.D. END JUNCTION I.D. 5

Itt6
I 

I INDEX .d

REPEAT START TYPE 0 . NONINDEX END TYPE

I • CLOSED

0 - OPENEND POINT - 1 (OPEN END)

0 (NOT OPEN ENDED)

JUNCTION POINT • I (NODE AT END)
O (NO NODE)

SHEET BOUNDARY - I (ON SHEET BORDER
O (NOT ON BORDER)

ARTIFICAL - I (GENERATED VECTOR)
0 (ORIGINAL VECTOR)

Figure F-3. Master Vector Description
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ARRAY VECTOR 1.0.j

L-INDEX 1

$JOIN

NOT JOIN *0

REVERSE a 1

1NOT REVERSE - 0

Figure F-4. Master Vector Link List

CLASSIFICATION 1 SIZE OF LIST
I. D. _ _ _ _ _ _ _ _

2 MASTER VECTOR 1. D.

3. MASTER VECTOR I. D.

Figure F-5. Index. NON-INDEX. Join and Numeric
Classification List Format

F-4

. .. .. . .. . .. ......... .......



SIZE OF LIST

SYMBOL I. D. NUMBER OF MASTER
VECTOR'S FOR SYMBOL

MASTER VECTOR I. D. MASTER VECTOR I. D.

SYMBOL 1. D. NUlMBER OF MASTER
VECTOR'S FOR SYMBOL

MASTER VECTOR I. D. MASTER VECTOR I.D.

Figure F-6. Depression, CUT, FILL Identification List

NO. OF ARRAY VECTORS CONTOUR VECTOR I. D.
START X END X
START Y END Y

IL INDEX a I
NONINDEX-0

I CLOSED 0OPEN a I

DEPRESSION - I

SFILL OR CUT .I
NOT FILL OR CUT -0

Figure F-7. Contour Vector Header
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TARRAY VECTOR I. D.

L..INDEX -1
JOIN

1NOT JOIN *0IREVERSE 1

NOT REVERSE 0

Figure F-8. Associated Array Vector List

I - TAGGED
0 - NOT TAGGED

I HE IGHT

CONTOUR ________

Figure F-9. Elevation List for Contour Vectors
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K-1 6 . 16 .

1 X Y P1  12 X2  Y2' 2
2 X

3 ------ Y - -
4 v/

4
5 Y5
6 P

PN+I

0

128 WDS/RECORD BUFFERED

1024 WDS/RECORD BUFFERED

R/S X-Y DATA IS ORDERED AS IT CAME OFF THE DGR TAPE. THE LINE
POINTERS (ONE POINTER PER R/S LINE) POINT TO THE FIRST POINT IN
THAT LINE. THE LAST (N th ) POINTER IS FOLLOWED BY THE N+lth
POINTER TO DETERMINE THE LAST LINE'S LENGTH. A ZERO ENTRY
FOLLOWS TO END THE LIST.

Figure F-1O. R/S Data Points and R/S Line Pointers
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16 4- 16
i xI  Yl

2 id z
3 x 2  Y2

4 id2  z_ 2

1024 -I

buffered

1024 words per record

Points are ordered as it comes off the DGR tape.
Last record is filled with -1 values.

Figure F-1I. Spot Elevation & R/S Junction Mark Points (Hash Marks)
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- -16

1 x1  Yl,_,,,

2 z

3 x 2  Y 2

4 z2

-i

1024

buffered

1024 words per record

x,y data is ordered as it comes off the DGR tape.
Last record is filled with -1 values.

First 4 words of first record only:

1 X I Yl corner 1

2 x 2 y2 corner 2

3 x3 Y3 corner 3

4 x4 T Y4_ corner 4

Figure F-12. Neat Line Points
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2 z 2

3 z3l

buffered

Four (4) records, one each for LEFT, TOP, BOTTOM, and

RIGHT neat lines, in that sequence.

Record sizes: each record has one word for each point

along the neat line. The top and bottom lines have a

word (with a z-value) for each x-value; the left and right

lines have a word for each y-value. The four corners each

appear in two different records.

The z-values are in sequence along the neat lines. The top

and bottom lines are ordered left to right, and the left

and right lines, from top to bottom.

Figure F-13. Neat Lines (Splines)
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II

- 16. L 16

- line # point_# J

3.index of start point line # refers to index
# of points NI  into R/S line pointers

5 X1  Yl point # is point number
within R/Sline (first

6 X 2  Y2 point in each line is

point 
#1)

N1 YN1

-index of start 
point

#of points N 2

XI Y

X 2 Y2 key 4100

1 size of record key 1

XN2  YN2 2 size of record key 2

j 4096 size of record key 4096

K-max) 4055 size=O if record
doesn't exist

Random access: key = (scan block #-1)*16+(1:16)
(first record if first scan block is 1)

record size record: key=4100, size 4096, initialized to 0 and
updated with word count size (index=key)

line segments are all within a scan block (16 GSL, first starts
with first GSL right of left neat line.)

only complete segments in record; unused words will be at end
of record.

Figure F-14. Partitioned R/S Segments
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1-16 16

2 x i  loc 1=31

3 X2  loc 2

17 X16 loc 16

18 0 loc 17

NOT USED

31 y z

y z  (y,z)pairs: for x1

y z
loc 2 y z

S I (y,z)oairs: for x 2y z 4

loc 16 Y z I}z(yz)pairs: for x16

y z
loc 17

NOT USED

buffered

4095 words per record

xi through x16 are x-values of GSL's in this scan block

(y,z) pairs and corresponding id's are sorted by ascending

y-value within each x-value group

id's are scan line numbers (from DGR tape) of the points.

y is 0.12.4

Figure F-15. Partitioned R/S Junction (Hash) Mark Points
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x Yl

2 /////// Zl

3 x 2  Y 2

T • Id
Xn Yn

1024 / Zn

buffered

Records 1024 words. Last record may be shorter.
sorted x-major ascending, y-minor descending.

Figure F-16. Sorted Spot Elevation Points
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R/S INTERSECTIONS - also used for sorting junction (hash)

marks and R/S known points

size list (key=101)-
----6 -"4 - 16 --- _ _ __ _

1 line #1 point #1 1 1 record 1 word countrepeated for
2 - Zl each point 2

3 line #2 point #2 3
_ z2

line #3 point #3
_3 100 record 100 word count

101 last line # in record 80

120 last line # in record 100

Random access

keys 1-80: Up to 1024 words (512 pts) each.
Points are sorted within four-record groups
(1-4,5-8, etc.)

keys 81-100: Up to 4096 words (2048 points) each.
-All points in records 1-80 are sort-merged together
in records 81-100. (No special fill values are
expected.)

size list (wds 1-100 in key 101) in common INTSIZE
First 100 words contain word counts of corresponding
records. Unused records must have word count = 0!

Words 101-120 each contain line # (in l.s.16 bits)
of last valid point in each of records 81-100.
Other bits should be 0. Word 101 corresponds to
record 81; 102 to 82; etc.

Fiaure F-17. R/S Intersections
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2

3 index of start point- line # [point #
4 # of points N1
5 z I  see PARTITIONED R/S

SEGMENTS
6 z2

zN1

index of start point

# of points N2
zi

z2

ZN 2

(max) 4095

buffered

Record size is 4095.

Data parallels PARTITIONED R/S SEGMENTS file, i.e., corres-
ponding words of corresponding records (with PARTITIONED R/S
SEGMENTS records taken in key-value sequence) supply z-values
for the (x,y) pairs.

z-values of -65536 are to be taken as invalid and the whole
point is to be discarded.

There are no "spacer" records to parallel zero-length records in.

Fioure F-18. Partitioned R/S Elevations
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- 16 16

1 x1yl
2 ////// zl
3 x2 Y2

xn Yn
4096 I///// zn

buffered

Record 4096 words. Last record may be shorter.

Sorted x-major, ascending; y-minor, descending.

No duplicates in (x,y). Duplicates removed by 'RGSRK

Figure F-19. Sorted R/S Known Points

4!
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I--- 16j- 16-f key = 4100

1 X Z 1 size of record (keyl)

2 x z 2 size of record (key-2)
3 size of record (key-3)

X z 1

40951 size of record (key=4095)

random access

key = GSL-x-value - min-x (left-neat-line-x)

(i.e., GSL-x-value = min-x + key

keys range from 1 (for first backscanned GSL on

left-not left'neat line) through max-x (right neat line)

record (key=4100) contain sizes of other records.

Figure F-20. Backscanned Known Points
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