AD=A09% 736 GOODYEAR AEROSPACE CORP AKRON OH F/6 9/2
CONTOUR DIGITIZING AND TAGGING SOFTHARE (CONTAGRID) 4 ()
APR 80 N J ADAMS: M ANDERSON: G BIECK AK10-77-C-0!25
UNCLASSIFIED sER-16152 ETL-OZZO

lww
mt,

ETL-0228
CONTOUR TAGGING

AND
GRIDDING SOFTWARE
(CONTAGRID)

ADAO091736

FINAL TECHNICAL REPORT

LB AT e AL WYy it
ety

ERWRRP KLVt

APRIL 1980

Approved for Public Release:

Distribution Unlimited

Prepared For

U. S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060

* ERREE AR
- . L:'I:tf]]'n-*
Ut gy oRter

:’: ¢ il b Fe2roduete
E%S Prepared By BoL € 10 black gnq
o« Goodyear Aerospace Corporation

t:x_JJ 1210 Massillon Road

i o Akron, Ohio 44315
[2
oA
=

A
8 { T~ - N
.2 i Cot
- 1 . :

1
H
i

Destroy this report when no longer needed. Do not return
to originator,

The findings in this report are not to be construed as an
official Department of Army position unless so designated
by other authorized documents.

The citation in this report of trade names of commercially
available products does not constitute official endorse-
ment or approval of the use of such products.

UNCLA: SIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Entered)

REPORT DOCUMENTATION PAGE BEF O S ORM

2. GOVYT ACCESSION NO.[3. RECI OG NUMBER

D-A011735¢0)) (oo z.

b e —— e OWR ED
ONTOUR gIGITIZING AND IAGGING SOFTNARE Final ¢g:g”~*’%7‘
GR —
L' w _____ . BER
- 21675 :
/‘ﬁ '—mw - 8. CONTRACT OR GRANT NUMBER(s) 1
10} w. 3. Adams?}M Andersonf;7 B1ecke1
R. /Messner L N AAK7,0 77-C- ¢2237
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PR OJECT TASK
AREA & WORK U I NUMBER!

Goodyear Aerospace Corporation.
1210 Massillon Road
Akron, Ohio 44315

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REP T E —
U. S. Army Engineer Topographic Laboratonies (//JApri+-4680 i
Fort Belvoir, Virginia 22060 13 NUMBEROFP;GES ﬁ

14, MONITORING AGENCY NAME & ADDRESS(/! ditterent from Controlling Office) 15. SECURITY C $S. (o is reportl)

Unclassified

15a, DECL ASSIFICATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Automated cartography, automatic gridding, automatic tagging

20. ABSTRACT /Continue on reverse side If necessary and identify by block number) The Contour D'] g] tizin g

and Tagging Software (CONTAGRID) program demonstrates that a paral-
lel/sequential processor combination can effectively perform auto-
mated elevation tagging and elevation gr1dd1ng operations. It
demonstrates that such a processor set is capable of automating th
entire Digital Terrain Elevation Data generation task from
‘processing the rasterized input map sheet overlay data to output-

ting the final digital product..

DD , 5", 1473 €0iTION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED /{é 00 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) / ’

e e e

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

UNCLASSIFIED

1
| SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
I
i

T S ———— - =

SUMMARY

i -z pelaoein B e

The primary objectives of the CONTAGRID program were to determine
whether automatic elevation tagging and elevation gridding

processes could be developed for and executed on a SIMD* processor.
To support these objectives, a pre-production hardware/software
system that in an end-to-end manner transforms raster scanned

sheet contour data into a Digital Terrain Elevation Data

(DTED) form has been developed. It is somewhat awkward to use.

It exhibits distinct hardware/software limitations. Yet, it clearly
points to the production potential that a SIMD machine has for reduc-
ing the hours required for man-intensive carto tasks.

The system utilizes a combined SIMD/sequential processor - ETL's

CDC 6400/STARAN computational facility - as its hardware resource.
The application software, which was developed using structured

design principles, comprises about 50,000 1lines of source code.

The amount of software required for the SIMD and sequential processor
is about the same. For both types of processors, the source software
was split about equally between executable and non-executable code.
Source code was written in FORTRAN and APPLE.**

The essential objectives of the CONTAGRID program have been achieved.
SIMD-oriented algorithms to accomplish automatic elevation tagging
and elevation gridding were developed, implemented, and incorporated
into the above system. Using real data, the elevation tagging soft-
ware has executed fast and reliably; its built-in consistency checks
have provided the automatic quality control actions needed to capture
errors introduced as the result of incorrect automatic edit or manual
operations.

The elevation gridding software provides the promise of higher quality
elevation matrix data because it 1) is able to utilize high resolution
information developed as the result of the raster scanning operation,
and 2) it utilizes more independent known elevation points to develop

*SIMD - Single Instruction, Multiple Data Stream processor.
**APPLE - STARAN Associative Processor Programming Language.

-iii-

e N

the elevation at a grid mesh point. Color raster CRT display
techniques evolved to check the efficiency of the algorithm, have
the more universal value of being able to quickly expose errors of
the output elevation matrix.

Based on the program results, execution times for the automatic
processes of elevation tagging and gridding are projected to be
under 10 minutes when using a production system based on a SIMD
with processing power Tike that used in the CONTAGRID program and an
I/0-oriented sequential processor like the SEL 32/75.

A major lesson, with far ranging implications, was learned during
the course of the program. Raster scanners significantly degrade
the quality of contour lines. The pre-production software system's
pre-tagging software set was designed on the premise that the raster
scanned contour data would conform to the DMA specifications for
contour line data. The premise proved false. It was not possible
to acquire such data forafull sheet (20" by 20"). Based on raster
scanning attempts conducted over a period of over 1/2 year using a
variety of DMA raster scanners, it was found that all scanners

tried caused relatively severe data degradation during the digitiza-
tion process; even though high quality source material was scanned,
out-of-spec data was observed to be the norm rather than the excep-
tion. (GAC now believes data degradation should be accepted as
"normal.")

The scanner problem 1imited system tests and evaluations. Of the
raster scanner data coliected, GAC was able to select only a nominal

4" by 4" region of SHIRAZ contour data that tended to conform to

DMA specifications; the pre-production system was tested using this
data. Of the three major sets of pre-production software, namely,

the pre-tagging, elevation tagging, and elevation gridding software
sets, sensitivity to the scanner degradation problem was found to

be confined to certain modules of the pre-tagging software set. GAC
has determined several means for making the pre-tagging software insen-
sitive to data degradation. Tests conducted during early 1980 have

-iv-

indicated that the GAC-preferred procedure for making the pre-tagging
software immune to the scanner problem is effective.

The pre-production system has proved invaluable for defining the
necessary ingredients of a high throughput production system that can
create DTED from raster digitized contour data. In particular,
hardware modifications suggested include: an on-line color raster
interactive edit station(s) that can compare different data types
(e.g., vector and raster), high bandwidth channel(s) between the

SIMD and sequential processor, much larger array memory for support-
ing the SIMD processing elements, and a smaller I/0 oriented 32-

bit sequential processor.

Software modifications suggested include: minimal modification of
the pre-tagging software set to make it reasonably immune to raster
scan problems, the transfer of the majority of sort, merge, and
reformatting tasks to the SIMD processor, the addition of cartog-
raphy oriented edit software (command and display) to support on-
time interactive editing, and the addition of warp, mosaic, and
panel software modules.

The CONTAGRID program has shown that the host of tasks that need to
be performed by a DTED process oriented cartographic system can be
accommodated by using a combined SIMD/sequential processor system.
The ability of such a system to reduce man-intensive carto activity
has been shown. Sufficient technical data is now (or can be made
available) to accurately predict the capability and cost of such a
system.

PREFACE

This final technical report records efforts and achievements
under the Contour Tagging and Gridding Software program,
This program was conducted by Goodyear Aerospace Corporation
(GAC), Akron, Ohio and submitted by GAC as GER-16752.

The program was conducted for the U. S. Army Engineer Topographic
Laboratories, Topographic Developments Laboratory, Mapping
Developments Division (ETD-TD-M) under contract DAAK70-77-C-0223.
Mr. R. A. Clark served as the Contracting Officer's Representa-
tive and provided valuable assistance in reaching the contractual
objectives. This effort was implemented by N. J. Adams, (project
engineer), G. A. Biecker, M. A. Anderson, R. W. Messner, J. King,
and J. Vocar with contributions provided by R. Faiss.

TABLE OF CONTENTS

SUMMARY -iii-
PERFACE e e -vi-
TABLE OF CONTENTS -vii-
LIST OF TABLES e e -ix-
LIST OF ILLUSTRATIONS e e e e e e e e -x-
LIST OF ILLUSTRATIONS - APPENDICES e e e e e e e e e -Xj-
Section Title age

Pag

1 INTRODUCTION . . e e e e e 1-1
1.1 Background « « « « « « . 1-1

1-2

1-2

1.2 Purpose .
1.3 Report Organization .

2 CONTAGRID PROGRAM SUMMARY AND CONCLUSIONS -
OVERVIEW e 2-1
3 RECOMMENDATIONS 3-1
4 SUMMARY AND CONCLUSIONS BY PROGRAM ELEMENTS. 4-1
4.1 PUrpose v e e e e e e e e e 4-1
4.2 Major Accomplishments . 4-1 i
4.3 CONTAGRID Program Methodology and Scope 4-2 !
4,4 DTED:' Generation Sequence and Program i
Focal Point 4-4 i
4.5 Software Development Priorities 4-7 :
4, Software Design, Development, and Test 4-7

4,7 Software Features/Characteristics
(Pre-Tagging) « « v « . . 4-11

4.8 Software Features/Characteristics
(Tagging) « « v v v v v v v o 4-14

4.9 Software Characteristics/Features
(Gridding). + < . v v v . . . 4-22

-vii-

~ s A e . . S .

TABLE OF CONTENTS (CONT'D)

Section Title Page
4 4.10 Technical Problem (Degradation-Immediate
(cont) Effect) v o v o v v e . 4-27
4.11 Technical Problem (Solution Options) 4-29
4,12 Technical Problem (Ripple Effect). 4-32
4.13 Manual Editing Aids. 4-36
4.14 Timing Summary and Projections 4-37
5 INVESTIGATION v v v v v v v .. 5-1
5.1 Approach 5-1
5.1.1 Testing System 5-1
5.1.2 Tasks ¢« v v v v v e h e e e e e 5-2
5.1.3 Test Approach . e e e e 5-4
6 DISCUSSION+ v v v v v v v v v v 6-1
6.1 General v e e e e e 6-1
6.2 Pre-Tagging . . « v v v v v v w e ow . 6-1
6.3 Tagging . . . « v v v v e e e . 6-5
6.4 Gridding 6-8
6.5 Editing . .. 6-10
6.5.1 Editing Source Data . 6-10
6.5.2 Editing to Repair Line Breaks, etc. 6-16
7 RESULTS 7-1
Appendix
A CONTAGRID TOP-LEVEL STRUCTURE CHARTS AND DATA A-1
FLOW DIAGRAMS . . . « v ¢ v v v v v v v v o
B PRE-TAGGING e e e e e e e e e e e e e e B-1
T. TAPEIN & & ¢ v v ¢ ¢ v v e e e e e e o B-1
2. GETVECS . & & v v ¢ ¢ v 4 o o o o o o o B-1
3. GETMVECS . . & ¢ v ¢ v s ¢ v v o o« o o @ B-3
4, GETEDS . . . & v v v v i v v e e e e e B-5
5. PLOTGEN o v v v ¢ v v ¢« v o o o W B-11
6. VALDVEC + ¢ v v v v v v v o o B-11
7. SQUEEZE . . v ¢ v v v v 4 v o v o o o v W B-11
o TAGGING . . & & v ¢ ¢ ¢ v ¢« ¢ o o o ¢« o o o c-1
1. TAGOPN v v v v v ¢ v ¢ v o o C-1
2. EDITAGS . . . & ¢ v v v ¢« v ¢ ¢ o o v o W c-4
3. TAGCLO . . v ¢ v v v vt e e e e e e e c-4

iindds

TABLE OF CONTENTS (CONT'D)

Appendix Page
D GRIDDING . . & & v v v e v v v o o o o o o D-1
1. RESAMPLE v v v v v v o « & D-1

2. DGRCON - - D']

3- SEGDGR Y . . 3 . Y . . °] - . . D'

4. NEAT - - - -
5. GETSRKP ¢« & ¢ v « o « o & D-2
6. MERGBAK+ ¢« v &« « « . -2
7. GRID . . ¢ & v v v v v v v 4 < . -3

E UTILITY ROUTINES © v ¢ v ¢« o« o o« & E-1

F FILE/RECORD LAYOUTS + o« ¢« v o« « « & F-1

LIST OF TABLES
Table Page
4-1 BREAKDOWN OF DESIGN, CODE, TEST MAN-HOURS, 4-9
4-11 INSTRUCTION COUNTS - CONTAGRID . . . 4-10
4-111 EXECUTION TIMES FOR PRE-PRODUCTION MODULES

COMPRISING END-TO-END CARTOGRAPHIC SYSTEM. 4-38
4-1V PRE-TAGGING AND TAGGING EXECUTION TIMES. 4-41
4-yv CONTOUR GRIDDING EXECUTION TIMES . 4-42

-jX-

6-12

6-13
6-14

LIST OF ILLUSTRATIONS

Title
Coarse Grid Resampling .
Contours of SHIRAZ Test Region
Elevation Matrix Data e e e
Photocopy of Source SHIRAZ Contour Data 1:1.
Pre-Tagging Data Flow Diagram

Relationship of Image Area to Tape Record,
Array Load, and Data Block . e e

Tagging Data Flow Diagram
Elevations D.M.A. T.C. RAPS
Elevations D.M.A. A.C. RAPS
Elevations and Clutter .
Line Coalescing.

Misclassification due to Inconsistencies in
Line Weights . .

Misclassification due to "Blooming".
Index Contours at 2:1 after Automatic Editing

Index Contour Join Vectors at 2:1 after
Automatic Editing. . e

Non-Index Contours at 2:1 after Automatic
Editing. e

Numerics at 2:) After Automatic Ed1t1ng

Non-Index Contours at 2:1 after Manual
Editing e e e e

Index Contours at 2:1 after Manual Editing .
Photocopy of Source SHIRAZ Contour Data 1:1.

Contour Plots Separated By Elevation Increment
Increment . e e e e . e

SHIRAZ Pseudo D.G.R. from Tapeout

6-3 .
6-6
6-11
6-12
6-14
6-15

6-17
6-17
6-18

6-19

6-20
6-21

6-22
6-23
7-2

7-3’4,5
7-6

et vt

LIST OF ILLUSTRATIONS - APPENDICES

Figure Title Page

A-1 Contour Tagging Top-Level Structure Chart A-2

A-2 Pre-Tagging and Tagging Data Flow Diagram A-3

A-3 Contour Gridding Top-Level Structure Chart . . . A-4

A-4 Contour Gridding Data Flow Diagram A-5

B-1 Tape in - Image Parameters.« . . B-2

B-2 Relationship of Image Area to Tape Record, Array {

Load, Data Block, and Iteration . . . - :

Numerics and Special Symbols
Vector set Reduction for Numeric Detection
Cut-Vector Grouping Procedure

Manual Edit Commands

Contour 1 Sheet Border Intersections

)
N O

Boundary Contour Closing . .
Top Left Corner of Sheet/Data for Tagg1ng .
Processing for One Grid Path

Raster Display Utility Routine
Raster Display Utility Routine Fortran 11st1ng
Array Vector Record Format

Array Vector Link Table

Master Vector Description .

Master Vector Link List .

Index, non-index, Join and Numeric Classification

M M MM M Mmoo o O o P e oo oW
'
s W NW NN NN~ — 0N

M MM M M T MmO OO OO0 oo oo oo
]
G B W N =N =W -0 W

List Formats F-5
F-6 Depression, cut, File Identification List . F-5 :
F-7 Contour Vector Header . F-6 ;
F-8 Associated Array Vector Lists F-6
F-9 Elevation List for Contour Vectors F-6
F-10 R/S Data Points and R/S Line Pointers F-7

-Xi-

LIST OF ILLUSTRATIONS - APPENDICES (Cont'd)

Figure Title Page
F-11 Spot Elevation and R/S Junction Mark Points
(Hash Marks) .. . e e e e e e e F-8

F-12 Neat Line Points F-9

F-13 Neat Line (Splines) F-10
F-14 Partitioned R/S Segments . . F-11
F-15 Partitioned R/S Junction (Hash) Mark Po1nts F-12
F-17 R/S Intersections .. F-14
F-18 Partitioned R/S Elevations , F-15
F-19 Sorted R/S Known Points F-16
F-20 Backscanned Known Points . . . F-17

SECTION 1 - INTRODUCTION

1.1 BACKGROUND

Since 1974, Goodyear Aerospace Corporation (GAC) has been
actively involved, with ETL, in the investigation of STARAN*
type processors for Automatic Cartography related problems.

By 1976, GAC had demonstrated that STARAN could use raster

scanned pencil drawing inputs and produce clean line and areal sym-
bologies (it also was used to spot, scale, and orient point
symbologies). To accomplish the above tasks, STARAN raster-to-
vector software with auto-edit capabilities was developed; as
required for this procurement, the software was written to
tolerate lines with variable line width when converting raster
scanned sheet data to a vector data base form. To develop the
final graphics output product, software was written not only to
convert thin l1ine vector data in data base form back to a raster
form but also to embellish it with 1ine symbol attributes. Thus,
thin line vector coordinate data, along with a symbol type de-
scriptor, were found to be sufficient for automatically producing
such line symbologies as double casement roads, intermittent
streams, and railroads, as well as areal symbologies (e.g., swamp
regions) with or without included boundary lines and with required
fill patterns. For line symbologies, junctions that conformed to
cartographic esthetic standards were automatically generated.

During 1976 and 1977, software developed earlier to demonstrate
STARAN's cartographic processing power was made more flexible.

*Trademark, Goodyear Aerospace Corporation, Akron, Ohio 44315

1-1

C e e b

In particular, the software was altered to allow variable scan
resolutions, different sheet sizes, a greater range of line
widths, etc. Input/output formats were set up to be compatible
with either the DMA RAPS or ETL-IBM raster devices. This
software allowed STARAN to perform cartographic tasks in a
stand alone mode.

In 1978, the cartographic software cited above was set up to be
used at ETL in conjunction with the CDC 6400 computer. This set-
up accounted for the file structures, file sizes, and 1/0 needed
for the large-scale conversion of sheet graphics raster data to

a vector form and was used to make raster-to-vector format con-
version timing tests. The STARAN Raster Processing Software
(STRAPS) developed allowed map sheet region windowing, limited
scaling, and plotting of vector data (developed from the raster
form) on CALCOMP, CALMA/NOVA, and GERBER plotters. The STRAPS
execution time performance tests showed the extraordinary proces-
sing speed of STARAN; it demonstrated its reliability and effec-
tiveness.

1.2 PURPOSE

The purpose of this contract was to show that the vector data
generated from raster scanned contour map sheets could be

reliably associated with elevation data automatically, provided
that a limited number of contours that intersect sheet boundaries
have been assigned elevations manually. The program was further

{ to provide for the generation of gridded elevation data using the
elevation data of contours (in either the DMA standard input
format or STARAN format), R/S data in DMA standard input format,
and topographic point elevation data in DMA standard input format.

j 1.3 REPORT ORGANIZATION

? Section Il of this report provides the reader with a CONTAGRID
program summary. Detailed summaries and conclusions of the
various program elements are found in Section III; recommendations

1-2

are found in Section IV, Section V of this report, INVESTIGATION,
describes the approach, the testing systems, and the general task
involved. Section VI, DISCUSSION, contains a description of the
Pre-tagging, tagging, gridding, and editing pProcedures. Section VII
describes the RESULTS.

Appendix A provides a high-level description, along with top-level
structure charts of the entire CONTAGRID program. Appendices

B, C, and D give detailed descriptions of the pre-tagging, tagging,
and gridding processes. Appendix E provides a brief description

of some utility routines. Appendix F provides the file/record
layouts of the various data sets developed during the processing

by the CONTAGRID software.

1-3

Dkt YRR o R AL

DA e

SECTION 2 - CONTAGRID PROGRAM SUMMARY AND CONCLUSIONS - OVERVIEW

The CONTAGRID program had manifold purposes. Primary and secondary
objectives of the program were the development and implementation

of automated, SIMD-oriented elevation tagging and elevation gridding
algorithms. A major system objective of the program was the integra-
tion of new and previously developed software sets into a pre-
production system that could transform map sheet overlay data into
the Digital Terrain Elevation Data (DTED) form.

The DTED transformation process involves three phases, namely, pre-
tagging, elevation tagging, and elevation gridding. Prior to the
CONTAGRID program, ETL/GAC had shown that the SIMD processor was
highly effective for performing the major task of pre-tagging,
namely, automatic raster-to-vector data conversion. Related R&D
has shown that the SIMD can execute a wide spectrum of other tasks
required by an autonratic cartographic system (e.g., warping, format
conversions, etc,) Now the CONTAGRID program has shown that the
primary tasks of elevation tagging and elevation gridding are also
performed effectively using the SIMD processor. Moreover, it has
verified that the various tasks can be performed in a coherent end-

to-end manner.,

The CONTAGRID pre-production system that has been developed has
limitations, It omits mosaicking, paneling, and warping processes
in the end-to-end chain of processes required to produce a DTED
product from digitized contour and R/S overlay data. As a conse-
quence, CONTAGRID's data output has the format, but not the exact
form of that required for a production product. No fast on-line
interactive edit capability is provided. More operator action
is required to operate the system than could be tolerated in a
production environment. An end-to-end production system requires
the omitted processes, fast on-line interactive display/edit
capability, and a simplified flexible operator command input
capability.

e e w e s

2-1

s e e e e e

e et e — ==

ey D Sipiabie a0l T W S e

Moreover, it would need to provide job management capabilities,
such as command logging, checkpointing, and process status report-
ing.

The transition from an end-to-end pre-production system to an
end-to-end production system requires no formidable technical
problems to be solved. Because the pre-production system was
structured to accommodate transition, the primary transition

tasks will be related to configuring the system to account for

the myriad of details encountered in a production environment.

The CONTAGRID program has rounded out the R&D activity needed to
technically judge whether or not a properly balanced SIMD/sequential
processor combination does indeed provide the appropriate basis for
an automated end-to-end cartographic processing system that can
tolerate poor quality input data.

CONTAGRID testing has shown that raster scanners substantially
degrade data during the digitization process. Certain modules of
the pre-tagging software set reguire modification in order to make
them resistant to the scanner problem. The required modifications
have been identified and can be implemented readily.

The hardware of the pre-production set (the ETL CDC 6400/STARAN
processor set) exhibits deficiencies that would be undesirable

in a production cartographic system. The absence of an on-line
interactive color raster/vector edit station, the low bandwidth
between the sequential and SIMD processors, and the very small
SIMD memory weremost noticed. The hardware inadequacies tended

to make software development difficult, resulted in inefficient edit-
ing, and bloated the processing time measurements. The CONTAGRID
tests point directly to the hardware changes required for an
efficient system. Using projections based on the pre-production
system test results, a production oriented auto carto system based
on a SIMD with beefed-up memory and an I/O oriented segquential

[O p

processor (e.g., a SEL 32/75) could perform the major automatic full
(20" by 20") SHIRAZ sheet DTED transformation tasks in the times
shown below:

® Pre-tagging (including Raster-to- - Less than 20 min.
Vector Conversion)

e Tagging - 2 min,

® Gridding - 5 min,

Critical lessons were learned during the course of the CONTAGRID
program. Necessarily, such lessons would directly affect the design
of a system tailored for the end-to-end cartographic process. 1In
particular, they relate to data conditioning, data editing, system
configuration, and system tasking. A few major lessons follow:

® Existing raster scanning devices tend to degrade the carto-
graphic information of the map sheet overlays. Both
systematic and non-systematic degradation occurs; further-
more, the degree of degradation is likely to change over
the face of the map sheet.

® Software must be designed to tolerate a substantial range of
degraded data, or manual editing requirements will rise at
an exponential rate.

e An interactive on-line editing capability is essential.
The time lags and reformat operations that accompany the
passage of data between an off-line editing station and the
the main cartographic processor cannot be tolerated.
Time lags reduce the efficiency of equipment utilization
and the efficiency of a human operator's activity.

® An edit station must have the ability to display funda-
mentally different data types concurrently (e.g., Vector
domain data must be able to be displayed and directly
compared to raster domain data in a common coordinate

system). Certain tasks are performed best in the raster
domain; others are performed best in the vector domain.

2-3

S e e em—c— o —

It is more crucial that auto editing operations treat the
large number of microscopic faults (e.g., small line breaks.,
clutter, pips) than the small number of macroscopic features
(e.g., numerics). It is primarily the count of independent
edit events that affects the human edit load.

Functional operations must be modularized to support the
smooth flow of data between automatic and interactive tasks
in an operator-prescribed order. Software should be based
on a structured design philosophy.

The form of file structures at any state of the data trans-
formation process must be designed to support rapid access :

to randomly selected small regions of the map sheet (i.e.,
data must be "regionalized" throughout all the process tasks).

Certain standard format conversions performed to get hard
copy proof-plots take exorbitant amounts of sequential
processor CPU time. These tasks should be performed only
for £inal quality control assessments and should be per-
formed in the SIMD processor.

In general, the tasks of data format conversion, sort, and
merge should be performed by the SIMD processor so that the
sequential processor can be primarily reserved for inter-
active command processing, systems management, and I/0 con-
trol functions.

The simple act of specifying large CPU, memory, and channel
hardware resources for a system does not by itself assure
that it will be a cost effective cartographic system. It
is absolutely essential to balance the hardware resources
of the system against the kinds of tasks required by the
end~to-end transformation process.

N

SECTION 3 - RECOMMENDATIONS

The CONTAGRID R&D study and prior carto-oriented studies
have provided sufficient technical information to project
that a joint SIMD/sequential processor set can provide an
effective basis for an end-to-end cartographic system that
would substantially reduce the man-hours required to produce
elevation matrices from map overlay data. Therefore, GAC
strongly recommends that DMA HTC expedite the introduction
of a DTED-oriented turnkey cartographic system (based on
such a processor set) into the DMA HTC production environ-
ment. Further R&D effort to prove the essential worth of
the SIMD processor is not required. DMA ought now decide
whether or not to capitalize on the laboratory proven
features of SIMD processors in a production environment.
If DMA concurs with GAC's assessment that such a system
would be desirable, the actions needed to realize such a
system should commence without delay.

The production cartographic system delivered to HTC to transform
raster digitized contour data to the DTED from should be end-to

end in nature so that all sources of product cost can be
attacked in unison. Too often, systems that attack only sub-
sets of the production problem cause additional cost else-
where; an end-to-end system can make substantial cost savings
by combining operations as well as accounting for them. An
end-to-end system has greater resources and flexibility and
so can accommodate changes aimed at saving man-hours. More
over, such a system becomes relatively immune to changes in
production emphases.

A total system's approach is a must when configuring the end-
to-end system. Both long term and short term production
demands should be considered.

3-1

e . ¢ A X T |

Assuming that DMA pursues the acquisition of a system, the
major goal of future DTED-oriented R&D activity should be

to drive the man~intensive activities of the DTED process
down to the 40 hour/sheet level by 1985; such activity
should begin immediately. The first major emphasis of such
an R&D program should be aimed at slashing the time now
required for performing R/S compilations. A three-pronged
attack should be employed. First, system software should

be added that simplifies the R/S compilation task of the
operator. This work should develop techniques that allow
coarse R/S drawings to be refined on a raster editing station
using such aids as toned overlays. Secondly, an investigation
of the utility of R/S lines generated automatically from
contours ought to be aimed at determining the man-hours
required for reshaping such lines. Thirdly, the applicability
of more sophisticated splining or convolution techniques to
the gridding problem should be investigated in the light of

the severe undersampling of elevation data on contour sheets.

R& to develop a comprehensive software set for automating
the process of creating the DLMS feature data from existing
cartographic materials should begin after the DTED R&D plan
is established. 1In particular, it appears that the polygon
encoding capability of the DTED system described would be
exceptionally powerful. Even the automatic association of a
feature number to a polygon appears feasible. The carto-
graphic feature filtering capability of the SIMD has already
been demonstrated. Whatever R&D is conducted, it ought o
fit within the priority assignments of the master R&D plan
developed for achieving the desired software set. The DTED-
cartographic system discussed earlier should be designed to
accommodate such additional work.

3-2

SECTION 4 - SUMMARY AND CONCLUSIONS BY PROGRAM ELEMENTS

4.1 PURPOSE

The present DMA process of converting map sheet overlay data into
digital terrain elevation data form - the Digital Terrain
Elevation Data (DTED) generation process - relies heavily

on the performance of man-intensive tasks. The cost and turn-
around time for the process reflects the heavy reliance on

manual operations.

The CONTAGRID program was designed as part of a continuing effort
to verify predictions that a Single Instruction, Multiple Data
Stream (SIMD) processor - STARAN - can be used effectively as the
kernel of an automatic cartographic system that executes the
process quickly, reliably and with substantial cost reduction.
Its primary objectives were to prove the processor's ability to
elevation tag and to elevation grid. Solutions to technical pro-
blems encountered during the course of the program have been
found; the essential program goals have been achieved.

4.2 MAJOR ACCOMPLISHMENTS

The accomplishments of the program were many and varied. They
include the following:

1) the first development of an end-to-end cartographic soft-
ware system based on a combined sequential processor/
SIMD processor hardware system,

2) the development of an automated tagging procedure that
includes highly effective self-check quality control
features,

3) the development of a SIMD processor-oriented gridding

procedure that has the latent capability for substantially

reducing R/S requirements,
4) the development of vector domain auto-edit software that

complements GAC's existing raster domain auto edit software,

4-1

S s .

5) the development of edit display and command software to
aid manual editing,
6) the evolvement of region oriented file structures to
support a ''fast'" interactive edit display capability,
7) the implicit testing of the scanning characteristics of
a variety of DMA raster scanners,
8) the establishment of timing information for the various
process tasks and the significance of this information,
9) the successful use of structured software design and
development procedures for the total CONTAGRID system
software (including that required for STARAN), and
10) the development of unique software debug product test
aids.
As a result of the program, measurable software and hardware
performance characteristics of the CONTAGRID program can be used
to accurately extrapolate the character of a production system
with a given throughput capability.

4.3 CONTAGRID PROGRAM METHODOLOGY AND SCOPE

To verify the ability cf STARAN to be the basis of an automatic
cartographic system, the program required the development of a
pre-production end-to-end cartographic software system that

would perform the DTED generation process with minimal operator
intervention. The ETL CDC-6400/STARAN facility at Fort Belvoir,
Virginia was used for simulating the cartographic system

hardware. The pre-production system, which utilizes on the order

of 50,000 lines of source code (&225K executable scurce), now exists.

The value of the pre-production system lies in its ability to
yield measurable software and hardware performance characteristics
needed to extrapolate the character of a production system with a
given throughput capacity. Because software modules of the system
are used in a chained manner, the real accumulated impact on data

4-2

far along the processing chain caused by a seemingly innocent
action of a module early in the chain becomes immediately apparent -
the system across-module problems (as opposed to intra-module
problems) are exposed. By requiring a pre-production system, the
problems associated with realistically transmitting large data

sets, from one software task module set to the next, had to be

addressed.]

The pre-production software has in fact, provided the type of
information that allows the extrapolation of:

1) algorithm requirements,

2) software function and performance requirements,

3) hardware requirements, and
4) gross human factors requirements
for a production CONTAGRID system.

The major categories of man-intensive activities involved in the
DTED generation process that influenced the design of the pre-

production softwore are:
1) compilatiormn,
2) analog (sheet form) to digital data conversions,
3) parameter association activity,
4) editing, and
5) gquality control.

Because the system software was structured with the progressive

automation of man-intensive activities in mind, it can increment-
ally accommodate the incorporation of modules that eliminate or
modify man-intensive tasks.

To develop the pre-production system, it was necessary to address
not only the structure of application modules, but also, the data
sources/destinations, the character of data blocks, and the format
of data sent to and received from the modules - the logistics of
module servicing were established. Mechanisms for saving/deleting

4-3

input/output data files, as well as the file structures themselves,
have been developed so as to allow the flexibility of execution
of modules after input data modifications.

An integrated set of mechanisms for displaying and editing data
have been established. The software handles the hidden problems
of editing, namely, how edited data are merged into the file
structures of non-edited data, how data are deleted, how data
types are identified, and how data format differences are handled
internally or on input and output when the data sets are very
large (10+ megabyte range).

All operations of the pre-production system are logged and
reported; thus, the basis for operations management and control
is provided.

4.4 DTED GENERATION SEQUENCE AND PROGRAM FOCAL POINT

The pre-production software system accomplished the DTED process
in three phases, namely:

1) data preparation (pre-tagging),

2) data tagging, and

3) data gridding.
Prior to the CONTAGRID program, GAC had shown that STARAN could
perform the primary task needed to accomplish the major activity
of phase 1), namely, raster-to-vector conversion, at a rate in
excess of 10 times faster than any other approach, even without
optimized software. Other tasks required by phase 1 (line separa-
tion by weight, raster-domain auto-editing, etc.) had also been
demonstrated so the task of producing phase 1 software at program
onset was considered a low cost, low risk task.

The STARAN software for performing phase 2 tagging (the operation
that associates elevations to contour vectors) or phase 3 gridding
did not exist. Yet, DMA-designed UNIVAC gridding software did
exist, and so the development of a gridding algorithm and subsequent

software for STARAN was considered a low risk item; the develop-
ment of gridding procedures became a secondary goal of the
CONTAGRID program.

Automatic tagging procedures did not exist prior to the CONTAGRID
contract (although initial GAC studies indicated that tagging

could be accomplished with STARAN). As a result, the complete
development and implementation of an automatic tagging algorithm
became the focus of attention and the primary goal of the CONTAGRID

program.
Goodyear Aerospace has successfully accomplished both the primary

and secondary goals of the CONTAGRID program, namely, the devel-
opment and implementation of automatic STARAN-oriented TAGGING and

GRIDDING procedures.

Both procedures provide vital features not included in the original
set of program requirements. In particular, the STARAN tagging
procedure embeds a powerful automatic tagging self-verification
strategy that pin-points problems automatically - it provides auto-
matic tagging quality control, The STARAN gridding algorithm incor-
porates more independent points of known elevation in a larger sample
space in order to establish the elevation at the matrix mesh points;
thus, better elevation matrix quality than can be achieved with DMA's
planar interpolation algorithm is expected.* More importantly, the
structure of the data in STARAN allows the algorithm to be modified
in such a way that the need for R/S data (and associated manual compila-
tion effort) can be expected to be reduced substantially without de-
grading quality. Finally, unique display procedures for rapidly
exposing elevation matrix deficiences have been defined and imple-
mented; samples of the displays are found in the report.

The most severe technical problem encountered during the program
showed up where it was least expected - in phase 1 (pre-tagging)

E3
DMA and ETL are presently evaluating GAC's gridding algorithm 1
performance.

4-5

- e

processing. Ultimately, the root cause of the problem, the in-
ability of DMA AC or TC RAPS, Hamilton/Standard, or SCI-TEX raster
scanners to maintain line weight tolerance specifications for

index and non-index contours, was identified. Goodyear Aerospace
now believes the problem to be fundamental to bi-level raster
scanners. Thus, GAC believes the increase in the variance of
line weights over that found in the sheet material should be
considered normal and treated accordingly.

Tests, to date, imply that the pre-tagging software would perform
its functions as required if it were ''fed' with input raster data
that contained contours whose line weights met DMA specifications.
However, as described above, it appears unrealistic to expect that
such data will ever be available. Since late in 1979, attempts to
get data that conforms to specifications have failed. With out-of-
spec input data, pre-tagging's present line separation module breaks
up contours while sorting them into index and non-index files. While
the module could be modified to accommodate out-of-spec data,

GAC believes a modification of the pre-tagging procedure that
eliminates the need for the line separation function is preferred.
(The modification procedure is discussed later in this section.)

Tests to determine the effectiveness of GAC's vector domain
feature detection software have become a casualty of the raster
scanner problem. The effectiveness of this software necessarily
is tied to the level of degradation of the data base; when the
pre-tagging modifications are made, the tests can be made.

One benefit of the raster scanner problem is that it quickly
exposed the inadequacy of using a plotter as an editing

display device. The time lags associated with generating the
whole series of displays needed for effective editing

is intolerably great. Despite the theoretical availability of a

4-6

whole series of plot (display) options provided by CONTAGRID's
edit aids software, the exortitant amount of time needed to gen-
erate the plot options ensured that few options could be used.

It is strongly felt by GAC that an on-line, low lag-time, inter-
active display that can overlay a rich variety of data types is

necessary for conducting efficient editing operations. A color,
raster CRT display meets the majority of these requirements.

While it took considerable time to verify the root cause of the
phase 1 problem, its ultimate impact on CONTAGRID cartographic
processing software will be small. A number of alternative
procedures exist that either accommodate the problem or by-pass it.

4.5 Software Development Priorities

The design of the CONTAGRID cartographic system was governed by

a simple rule: conserve resources for the primary task, tagging,
and (to a lesser extent) for gridding. In practice, the rule
simply meant that existing software, CDC or STARAN, was used
whenever possible. Tasks were performed on the CDC (and so
FORTRAN was used) whenever such tasks did not directly relate to
the execution of processing expensive pre-tagging, tagging or
gridding tasks. The STARAN code generation was generally restric-
ted to key tasks. The efficiency of a software module was
generally ignored except when it related to the task of tagging
and to a lesser extent, gridding. It will be seen, when discussing
the execution times, that a number of tasks (e.g., sort/merge

and format conversion oriented tasks) performed on the CDC-6400 should
be transferred to the STARAN in order to decrease program running time.

4.6 Software Design, Development, and Test

A formalized structured design effort was employed to design the
CONTAGRID software system. The top-down design was accomplished
using a team approach. Members of the team were about equally

4-7

divided between those familar with STARAN and those familiar

with the CDC-6400. The top-level structure chart for the software
system is shown in Figures A-1 and A-3. Note that in Figure A-1,
from left to right, the 1lst (7) structures refer to pre-tagging
and the next (5) refer to tagging. All nine structures of Figure
A-3 refer to gridding. Table 4-1I summarizes the magnitude and
distribution of the software effort. The fact that nearly half

of all software generated is FORTRAN reflects GAC's effort to
conserve man-hour resources for tagging, gridding activity. (See
Table 4-II).

Goodyear Aerospace's overall assessment of the team centered
structured design approach is that it is effective. Yet, it

should be cautioned that in following the top-down approach, one
must consider the operations of the lowest level modules and
account for the hardware constraints of a system. After performing
a top-level design, it is necessary to assess the impositions of
the design on all time critical modules.

The use of GAC's STARAN and the CDC CYBERNET aided the software
debug operations at the module level. But, no complete simulator
of the joint ETL CDC-6400/STARAN facility existed at GAC so most
software integration and system testing had to be performed on-site
at ETL without the benefit of a preview at GAC. The need to do
system integration and testing on-site degraded the efficiency of
performing this activity. The basis for the decreased efficiency
relates to schedule clashes that occurred when the ETL facility
was tied up for performing high priority tasks, to reduced access
to the facility for security reasons, and to the awkwardness of
using a batch oriented CDC software system for system debug.
Goodyear Aerospace substantially underestimated the difficulty of
working in this type of environment.

TABLE 4-I. BREAKDOWN OF DESIGN, CODE, TEST MAN-HOURS

PERCENTAGE
FUNCTION TOTAL (HOURS) OF TOTAL

SYSTEM ANALYSIS & DESIGN| 2,271 15
SOFTWARE DESIGN 1,475 9.75
SOFTWARE CODE & DEBUG 6,588 43.5
TEST 1,520 10
INTEGRATION 1,680 11.1
DOCUMENTATION 842 5.6
FACILITY CHARGES,
KEYPUNCH, ETC. 172 1.1
LEASE 8 0.05
TRAVEL 584 3.85

15,140 99.95

TABLE 4~II. INSTRUCTION COUNTS ~ CONTAGRID

MODULE STARAN SOURCE CDC SOURCE
PRE-TAG (Executable)
TAPEIN - 345
GETVECS 925 400
GETMVEC? - 1,020
GETEDS 2,610 370
PLOTGEN - 690
VLDVEC 205 1,600
VPLOTGEN - 620
SNUEEZE - 1,050
3,740 6,095
TAGGING (Executable) ,
OPNTAG 840 440 f
EDITAGS - 195 !
CLOTAG 2725 420 ’
TAGPLOT - 380
TAPEOUT T o3 0
_—r [l i,
GRIDDING (Executable)
PARAM - 25
SPLITJ - 25 i
RESAMP1 1,542 400
RESAMP2 ~ 900
SEGDGR ~ 364
NEAT - 300
PARTSR - 394
FINDINT 585 350
BILDSRP - 575
MERGBAIC - 355
GRID 1,320 225
MISCELLANEOUS (Exec.)
I/0 (Gridding) Sim. 395 395
! Gridding display 600 600
Utility routines 500 500
L] i ; 5
COMMENTS (A1l modules) =T172,500 =I§,500
SUBTOTALS 24,747 24,388
TOTAL 49,135

4-10

Quite late in the CONTAGRID program, to overcome the difficulties
described, GAC introduced a partial simulator of the ETL system

into its Akron facility. This simulator significantly simplified
the installation of Gridding software at ETL.

4.7 Software Features/Characteristics (Pre-Tagging)

The function of the pre-tagging software is to convert raster
domain contour descriptions to the appropriate vector domain
form, to "clean" the data, and to assure the integrity of the
contour vector data base that is used for tagging. The software
features:

1) automatic separation of index and non-index contours,

2) raster-to-vector conversion,

3) raster domain auto-edit operations,

4) automatic vector domain contour break detection,

localization and labeling,

5) automatic vector domain feature classification,

6) automatic vector domain auto-editing,

7) edit display options, and

8) edit command options,

Because of the raster scanner problem, there is little likeli-
hood that the line separation software that yields the first
feature listed above will be used for separating index from non-
index contours in a production system. While it could be used in
modified form for such a purpose, it will probably be reserved
for future feature classification algorithms.

The pre-tagging raster-to-vector domain conversion software
retains the same raster domain auto edit features as are found

in earlier STARAN software. In particular, auto-edit features to
remove clutter, to close small breaks, to thin a variable width
line to a centerline, and to remove short stubs emanating from a
line,exist as part of the present software set. The raster-to-

4-11

vector software still develops vector data on a regional basis
(nominally, in rectangular patches of 160 x 184 pixels), still
converts data from raster-to-vector quickly (although not optimally),
and stores data in the condensed starburst form. New vector edit
software to support pre-tagging and tagging has been developed

for the CONTAGRID software system. Auto-edit and manual edit
components of the software are complementary.

The auto-edit software that is of most theoretical interest is
that which automatically classifies numeric, depression, cut, and
fill symbologies. After classification, the software is designed
to perform the appropriate auto-edit action.

Because of the raster scanner data problems, it has not been possible
to evaluate the effectiveness of this classification and fix soft-

ware with unfragmented data. Most tests to date have been performed
using fragmented data that includes elevation numbers. Even with

dirty data, numerics have been detected, localized, labelled,
classified, and deleted. Yet, efficiency of the numeric classification

software suffers from the dirty data environment. Of numeric
vectors existing in data regions tested (36), a shade over 607 were
correctly categorized. The remaining numeric vectors that were not
categorized were all short and thus failed minimum length numeric
vector consistancy checks. The short vectors resulted directly

from the fragmentation of the numeric symbols. If GAC's solution

to data fragmentation were implemented (see Section 4-11), the
probability is that virtually all the short numeric vectors would
vanish; the proper categorization of true numeric vectors would then
approach 90 to 95 percent.

A more severe problem occurs when non-numeric vectors are falsely
categorized as numeric vectors. Relative to the total number of
true numeric vectors of the test data, about 15% of non-numeric
vectors were categorized as numeric vectors. The falsely classi-
fied vectors were derived from tightly curved, snake-like contours
that were chopped into adjacent segments by the map region boundary.

The segments formed a vector set that met the conditions of an
elevation number and thus were improperly categorized as numeric

vectors.

Since the false categorization problem has been caused by the cutting
action of the data region boundaries, the problem solution could be
as simple as to exclude vectors within a guard strip of region
boundaries from the numeric classification test. While this would
result in non-categorizations of true numerics in the guard region,
the percentage of numerics in the guard region compared to those in
the total region would be small, Solutions that apply more rigious
tests to distinguish numeric quality certainly could be applied if

they are in order.

Vector domain automatic join software that complements gimilar
raster domain software is needed to reduce the need for manual
intervention to heal contour line breaks. Using the available

test data, the vector domain automatic line "fixing" software
correctly developed about 80% of all (1l4) line join vectors required.
The remaining 20% of short joins were not created because end point
criteria were not met. Only 60% of all (5) long line joins were
accomplished correctly. The remaining 40% of long line joins were
built between contour ends and numeric vector fragments that
weren't automatically deleted. Also, relative to the total number
of correct line joins required, about 10% of unneeded line joins
occurred between numeric fragments and other numeric fragments.

By eliminating number fragments prior to the line join operation,
the long line join operation would become much more efficient.

It should be noted that for a full sheet, about 350 short line
breaks would be expected for a 20'"x20" region of the type data
tested. Using the present line break "fix" software, about 70
would require manual joins. It would appear that manual interactive
edit requirements would not be excessive. Nevertheless, GAC
believes that the line join algorithm should be modified to raise
its effectiveness for at least short line breaks to better than 95%.

4-13

Minor modifications to the line join algorithm would be required to
attain this level of effectiveness for short line breaks.

For long line breaks, more extensive modifications are required;
slope data near line break end points would need to be used; it

can be directly derived from the vector data. If an interactive,
on-line editing station is employed in a production system, the
ability of such software to reduce manual activity is much
diminished. Whether the long line break "fix' software modifications
should be incorporated into a production software set would largely
depend on the nature of available hardware interactive edit station
resources of the system.

Tests to determine how well the classification and fix software
performs when treating other than numeric symbologies have been
even more limited. (Yet, recent feature detection tests performed
by GAC apart from the CONTAGRID program have shown that when the
preferred GAC "fix" for the line scanner problem (see Section 4-11)
is utilized, unfragmented data results and the vectors of even
more complex symbologies than those of the CONTAGRID program (e.g.,
railroads) have been identified at a level of effectiveness in
excess of 90%.) The potential value of the software remains high,
but algorithm effectiveness tests with clean data are yet required.

The display capability provided to support interactive manual editing
includes the capabilities listed next. (Significant restrictions are
bracketed.)

1) Ability to extract and plot (display) a variety of vector

types including:

a) original index line vectors,

b) sections of index line vectors generated by the editor
[To get the plot specified without modifying the present
software, it is necessary to manually intervene while
making a proof plot of index vectors after the edit
operation. In the list of index vectors, edit (or
join) vectors appear first and so will be plotted first.
After they have been plotted, the plotting pen returns

4-14

to the origin prior to plotting the original non-
edited vectors. At this time, the plotter must be
turned off manually. The simple conversion to an
automatic shutdown procedure is implicit in the
order of the data.],

c) original non-index line vectors,

d) sections of non-index line vectors generated by
the editor
[1b) type restriction applies. If "non-index"
replaces '"index" in the 1lb) restriction, the correct
1d) restriction results.],

e) numeric features, and

"

f) depression, "cut,'" and "fill features.

[Presently, the various symbologies are lumped into a
single plot. Yet vectors of the various symbologies
are ordered by symbology and so could be separated
during plotting in the 1b) manner described above.

In the same manner, the ability to automatically
generate the vectors of a given symbology can be

implemented readily.]

2) Ability to plot combinations of wvector types.
[Combinations of vector types are obtained by over-
plotting the data of different files.]

3) Vector identity labels may be plotted in association with
the data or the labels can be suppressed.
[The ability to suppress labels on magnified plots was
not supplied simply because it was felt that the need
for labels was implied by the call for a magnified plot.
Modifications to allow label suppression could be
provided readily.]

4-15

4)

5)

6)

7)

Color may be used to distinguish data types plotted in
combination,

[The ability to use color to distinguish data types is
accomplished by changing color pens at the conclusion
of each data file.]

Magnification of plot is allowed.

[Magnification was deliberately set to 3:1 for the

plotter used at ETL; the degree of magnification seemed
the best compromise between the detail required for editing
and the time required to generate the plot. Variable
magnification could be provided.]

Sub-regions of the original sheet can be selected for
plotting.

[Data in any one of 9 pre-defined sub-regions of a map
region can be plotted. The ability to plot arbitrarily
sized and centered regions would be desirable for a
production system; software modifications to allow such
an arbitrary display (in other than array load increments)
would be straightforward but would require substantial
new software.]

After tagging commences, contours that represent ragged
index contours can be displayed using a specified color
while each of the non-index tagged contours 1,2,3,

steps higher than the tagged index contours can be
assigned different colors. Non-tagged contours can be
plotted with yet another color.

[The ability to use color to distinguish elevation bands
is accomplished by changing color pens at the conclusion
of the plot of each data file.]

4-16

8 n At e o g oy e e s . e v e mtm e ta ok

Man—- edit capabilities inherent in the file structures were not imple-
mented simply because it became apparent that such capabilities

could not be usefully employed using a plotter. Plot generation

time was a deterrent to plotting data in other than standard formats.
The deterrent can be eliminated with an on-line interactive display
system, and so access to the capabilities would then be meaningful

and could be tapped.

To aid in the interpretation of the displays, various types of
lists can be or are provided. They include:
1) a list of user parameters?®,
2) feature vector lists that consist of master vector ID's
with index/non-index designators, and
3) 1lists of vectors that require editing; plot vector ID's
with associated end-points (x,y)'s compose the list.

Edit command capability includes that for:
1) creating vectors between end points,
2) deleting vectors,
3) re-ordering the vectors of a "cut" or "fill" list, and
4) swapping (reclassifying) the vectors of the features.

Punched cards provide the mechanism by which an operator enters
commands to the CDC. An implicit feature of the system is that
the file structures for display/command activity can readily be
used to support a ''fast' display/command hardware set.

*A complete list of user and system parameters can be generated at
various points along the processing path by using CDC utility

subroutines.

4.8 Software Features/Characteristics (Tagging)

After the integrity of the contour vectors is established, tagging 1
commences.

The GAC tagging procedure provides the following features:
hi-speed tagging,
convenient manual priming and editing
potential for substantially reducing manual intervention
requirements, and
rigorous self-verification procedures for automatic
quality control.

Goodyear Aerospace's tagging algorithm is based on a simple prin-
ciple. 1If a line - a "cutting' line - is drawn through a set of
closed contours*, all contours that intersect the line can be tagged
uniquely provided that at least one contour that passes through

the line is already tagged.

The tagging algorithm accomplishes tagging in two phases. In the
first phase, contours that intersect the map sheet neat lines -
boundary contours - are tagged semi-automatically. Manual support
is required in the first phase in order to 'prime'" the operation 1
(provide certain tagged boundary contours for references) and to

tag contours that are inherently untaggable (if adjacent panel
information is not used). At the conclusion of phase 1, all
boundary contours are tagged and all such contours are artifically
closed outside of the periphery of the neat lines. In the second
phase of tagging, contours internal to the sheet - closed contours -
are tagged fully automatically by using a regularly spaced set of
lines that force intersections with the internal contours. At

the conclusion of the second phase of tagging, both boundary and
closed contours have been tagged. The present pre-production

*Boundary contours of a reglon are artifically but automatically
closed prior to the closed contour phase of the tagging process. At
this time all contours are endowed with the equivalent of a correctly

marked depression flag.

software does not tag very small contours that are missed by the
cutting lines. Such contours can be tagged using spur paths off
the main cutting line that extend to the starting point of the
vectors. Software development to implement such paths was not
completed during the course of the program.

The complexity of the software to tag the very small contours is
greatly increased due to the multi-file set-up currently available.
The direction of future effort in this area depends largely on

whether or not ETL and DMA concur with GAC's solution to the
raster scanner problem.

By splitting the tagging operation into two phases, GAC's algorithm
can capitalize on both an operator's familiarity with present DMA
neat line editing procedures and the data gathered prior to the
start of the tagging process. In the first phase of tagging, the
"priming' phase, man-intensive activity is directed to what goes

on along the North, South, East, and West neat lines - the sheet
boundary line. Since an operator's eyes can re-train most readily
to items along distinct straight edges (after diverting them to

see information associated with neighboring locations), the map
boundary line is an optimal line along which elevation priming
information can be acquired manually. In the present job flow,
boundary lines are already required to be treated substantially

(to support mosaicking/paneling tasks, etc.) and so, when adding
tagging to the job flow, "priming" and mosaicking tasks

could be co-serviced™ Finally, at the moment the tagging of contours
along the boundary is complete and correct, all subsequent tagging
operations associated with tagging contours internal to the sheet
become entirely deterministic, regardless of how convoluted and/or
meandering a contour line may be. Thus, by providing CONTAGRID
software with edit capability that can be utilized before the start
of closed contour tagging, the problem of tagging ambiguity is
confined to a boundary line type problem.

¥In a production environment, these processes could be serviced
automatically along neat lines that are adjacent to or overlap
sheet regions that have been processed previously.

4-19

“X‘

L A v 0 4

The automatic tagging software develcped by GAC provides the
particularly attractive feature of automatic self-verification.
The verification mechanism employs a 2-step strategy that: 1)
checks to determine that elevations along the neat line borders of
the map are mutually consistent, and 2) afterward checks to deter-
mine that elevation assignments of contours internal to the bound-

aries are consistent.

By applying the automatic consistency checks in two steps, one can
first assure that all contours that cross the neat lines are
properly tagged before proceeding to perform the CPU expensive
second phase tagging operations; therefore, CPU time required for

re-work is minimized.

The self-verification tests have nroven to be exceptionally power-
ful at catching errors that are inadvertently introduced either at
the time that the boundary elevation list is assembled or at the
time that vector editing operations are performed. (This was
dramatically illustrated during GAC's initial effort to tag the
SHIRAZ test region. Four successive trials were required before the
verification software allowed the elevation list for boundary
contours to be used for tagging contour intervals to the sheet
boundary. After each trial, the detected error was manually correct-
ed and the elevation list numbers were manually reviewed and con-
sidered correct. Three times the checker demonstrated the short-
comings of manual quality control).

Note that when an error is caught, it is identified. To fix the
problem, the operator back-tracks to the previous edit phase and
corrects the problem more quickly because of the clues provided by
the consistency checks. 1In general, capability to back-track*

*The fact that back-tracking is cumbersome when working with the
present pre-production software should not mask the essential fact
that the file structures support such action. In a production
system, back-tracking would be under the control of the command
interpretation software that supports the on-line interactive edit
station. Commands would necessarily have to be simple and concise
in character so that editor efforts would be directed to carto-
graphic operations rather than computer manipulation.

*See Footnote on page 4-33,

small increments in the job stream to make fixes significantly
simplified GAC's debug efforts; incremental edit capability would
similarly conserve CPU and human resources in a production environ-
ment provided that on-line interactive edit hardware were used.

The tagging so“tware was initially exercised with artifical data

that would correspond to that of full-sized medium-density sheets

in the late spring of 1979. Since then, real data, namely the
SHIRAZ Test Region* data, has been used to exercise the tagging

software. To 'prime'" the process, an ordered elevation list for

index boundary contours was developed along the

neat lines.

All

non-index boundary contours that were not '"cups'" were automatically

tagged. The boundary contour cups were manually tagged.

the closed contour tagging operation located all but the very small

closed contours that missed the cutting lines.

These very small

contours were manually tagged. (In a production system, the very

small contours would be tagged automatically.)

It should be noted that the nominal 4'x4" SHIRAZ test region

exhibits a distorted proportion of boundary contours to closed

contours. In particular, the distribution of contours follows:

Index boundary contours 15
Non-index cup boundary contours 26
Non-index, non-cup boundary contours 33
Closed large contours 15
Closed very small contours 6

Total 96

*See Footnote on page 4-33.

Subsequently,

h i

The atypical distribution of contour types shown for the small
test region was somewhat unexpected. 1In retrospect, at least

the high ratio of boundary-to-closed contours could have

been predicted. When the boundary of a region becomes small
relative to the mean spacing between contours, and/or the mean
spacing between spot elevations, the ratio of boundary to closed
contours necessarily gets large.

No flaws in the tagging algorithm or software have been discovered.
Goodyear Aerospace does not expect any software problems with
tagging modules because the tagging strategy depends on simple
logical rules. Nevertheless, to get performance statistics for

a variety of sheet types, it would be desirable to exercise the
tagging software with a large and diverse set of input data.

The tagging software not only eliminates the primary requirement
for highly man-intensive manual tagging, it also simplifies the
demanding secondary problem of manually verifying the correctness
of the tagging process.

4.9 Software Characteristics/Features (Gridding)

The gridding algorithm developed by GAC is an off-shoot of DMA's
Planar Interpolation technique. It can be efficiently implemented
using a parallel processor.

At present, with the implemented algorithm, gains in elevation accu-
racy should be achieved because more independent points of known
elevation in the proximity of a matrix point are used to compute

the elevation of the point. (More importantly, the GAC routine can
be modified to account for all points in all directions in the
proximity of a matrix point. Thus, because estimates of first and
higher derivatives of elevation gradients could be made, the poten-
tial exists for substantially reducing R/S compilation requirements.)

4-22

{
3
i
PR T . W A, sy — M ;
— mad e e

Goodyear Aerospace's treatment of gridding input data derived from
high resolution (1 mil) raster data is particularly note worthy.
In reducing the resolution to that required for the output eleva-
tion matrix grid, GAC retains high resolution information that
indicates where a contour line crosses the edge of each coarse
elevation matrix element (10 mil). As a result, where slopes are
steep, the ability to accurately define elevation at a mesh point
is still maintained. This ability is simply not available when

e

coarse resolution contour measuring devices are used (e.g., the
DGR). (See Figure 4-1.)

The GAC gridding algorithm has successfully generated the elevation
matrix for the 3.78" by 4.35" SHIRAZ Test Region. The

outlined section of Figure 4-2 displays a 1l:1 copy of the contour
sheet data for this region. Figure 4-3 shows a COMTAL display of
the output elevation matrix data for the region that was developed
using data from two different A/D* converters. The DMA HTC RAPS
provided 25 micron resolution raster scanned sheet contour data.

A DMA HTC DGR provided 10 mil resolution R/S, hash, spot elevation,
and neat line spline data. Both the RAPS and DGR input data are
merged and shown as a red line overlay in Figure 4-3. The success-
ful merging of the unequally scaled data from the 2 distinct equip-
ment types, the DGR and RAPS, is demonstrated by the apparently
correct overlay of contours and R/S lines. Also, R/S lines, on

the average, can be seen to bisect contour loops and intersect
contours orthogonally. The fact that color shades or color bound-
aries generally lie along the contours verifies the general correct-
ness of the gridding procedure.

Color or color/shade assignments to elevations were deliberately
chosen to lie at multiples of the contour step. (In the figure,

2 contiguous color shades = 1 contour interval = 200 ft.). The
intermediate color shade boundaries, which represent interpolated
contours, do generally conform to the locations where they would

be expected.

*A/D = analog-to-digital.

4-23

fine resolution

rasterized contour
with elevation=2400

ft.

S N S

Figure 4-1.

10 mil coarse gridding
resolution element
(Heavy border)

25 micron fine raster
scanning resolution element
_— (Light border)

NOTE :

The elevation/location data
retained for coarse grid
element I=307, J=408 is

1) the elevation (2400 ft.)
2) the location of the contour

point along x or y nearest
the lower left (I1,J)
corner. Two parameters
(X=3, XFLAG=1) are required
to locate the point. The
flag distinguishes between
an X or y axis measurement.

Coarse Grid Re-Sampling

THIS PAGE LEFT
INTENTIONALLY BLANK

Sul T
\\J\ e

Figure 4-2. Contours of SHIRAZ Test Region

4-25

Eievation
6400 -

e v

Figqure 4-3. Elevatior Matrix Data

4-26

D ——————————— .

In the matrix regions where color shade changes do not correspond

to contours, more detailed examination of the data is required to
determine whether or not a data or algorithm problem exists. To
date, digital dumps of data in such regions have shown that very
small deviations from the contour step sampling interval (less than
2 percent) or outright edit errors have caused the shade demarcation
line drifts away from the contour lines. When the drift is caused
by a small change that is cartographically significant, it indicates
the need for supplemental contour, R/S data, or other data. Note
that the color display provides highly effective cues for 1) assess-
ing the overall correctness of the gridding operation, and for 2)
spotting local regions that require more detailed inspections.

Goodyear Aerospace is currently awaiting results of ETL/DMA
evaluations of the gridding results. Because the GAC gridding pro-
cedure is structured, modifications required to optimize or alter
the procedure can be introduced and tested quickly.*.

4.10 TECHNICAL PROBLEM (DEGRADATION MECHANISM-IMMEDIATE EFFECT)

The impact of out-of-spec line weight variance on pre-tagging

tasks is reviewed below. The pre-tagging activity is subdivided
into three major operations, namely, line separation, raster-to-
vector conversion, and data ''cleaning.'" The first operation, line
separation, performs an automatic raster data filtering operation
that is designed to differentiate non-index from index contour lines.
The end purpose of the present filter software is to make it simple
to manually ''prime' the automatic contour elevation tagging opera-
tion without the need for any map sheet edge coordinate data 4nd

*After ETL/DMA evaluations are completed, modifications should be
made to correct deficiencies. Two deficiencies have already been
noticed. First, neatline/ridge stream line intersections aren't
treated like contour/ridge stream line intersections. Secondly,
one of two elevation gradient estimates made to find the elevation
at a grid point is occasionally made using points that straddle a
contour line. As a result, a slightly lower (or higher) grid point
elevation assignment than is possible for a region is made. Fixes
for both problems exist and are straightforward.

4-27

without the aid of any support equipment other than a plotter. An
operator is only required to compile a list of elevations corres-
ponding to and in the order of the intersections of index contour
lines with the map sheet borders (neat lines). After compilation, ;
the list is input into the digital processing stream via punched
cards.

The present algorithm differentiates index from non-index contours
by contour line weight. It assumes that line weights conform to

DMA specifications. Any line section that is 8 mils in width or
less is classified as ''non-index'"; any section greater than 8 mils i
in width is classified as "index'. Files for "index'" and 'non-
index" lines are created. Later, after tagging's elevation

priming operation, the (x,y)'s of index contour lines that terminate

on the neat lines are automatically ordered and associated with
the manually developed elevation lists for index lines.

The success of the separation operation rests on the assumption
that the 2.4 mil difference between minimum width index lines

(10 mils, +10 percent) and maximum width non-index lines (6 mils,
+10 percent) does not vanish. The assumption was tested and
verified for small test regions using the ETL IBM scanner in a
laboratory environment. Yet, in testing the CONTAGRID software,

it was discovered that various DMA raster scanners produced line
weights that modulate well out of the allowed range for line weights.
Thus, for innumerable regions of a map sheet, the (non-index)

index lines exhibit line weights with the specification for (index)
non-index lines. The line separation filter software, acting on
the basis of line weight data, chops up a particular type contour
of a given type accordingly. The various pieces are filed into
their appropriate files. That, in turn, creates innumerable vec-
tors of a given type that terminate internal to the sheet. Whether

4-28

or not the automatic editing features of the raster domain soft-
ware relink the intermittent contour segments of a given file,
enormous edit loads are created because edit identity numbers on
output plots (used for manual editing or auto-edit verifications)
are not only prolific, but tend to overlay each other.

4.11 TECHNICAL PROBLEM (SOLUTION OPTIONS) j

It is not known whether the ETL IBM scanner would create the kinds
of problems experienced with DMA scanners in a production environ-
ment. Because the IBM scanner was out of commission during the
course of the CONTAGRID project, no tests were able to be conducted
to clarify this issue. In any case, it is necessary to deal with
the realities of existing DMA scanners. Goodyear Aerospace con-
sidered the following options:

1) by-pass the line separation process and enter the tagging
task with no distinction between index and non-index
contour vectors,

2) alter the line separation algorithm so that the index/non-
index label is attached to a contour on a statistical basis

rather than on an exact measure basis, or

3) require new DMA standards for non-index and index contour
line weights that make line separation possible.

Option 3 is clearly unrealistic. Re-compilation of the contour data
of existing contour sheets would require an exorbitant amount of
manpower; less dollar and time costly alternatives exist.

4-29

Option 2 appears attractive except that it was noted that at least
for the RAPS, average line weights for index lines varied as much
as 2 or 3 mils over the sheet. The software needed to support both

the adaptive measure of average line weight and that measure required

to make the statistical decision of index or non-index is moderately
complex and tends to be processing expensive even for STARAN.
loreover, since manuscripts do often contain ink or pencil drawn
corrections of contour breaks (e.g., when map data have been
mosaicked), it is quite likely that contours would often be put into
the ""I-don't-know'" category, a category that would still require
manual editing.

At the present time, GAC considers option 1 the most desirable.

At first it appears that it is less attractive because it requires
the existence of a digitizing table or an interactive raster edit
station within the cartographic system. But, an interactive dis-
play station is already needed for a variety of editing and quality
control tasks; the priming operation would simply make use of a
hardware resource that already existed in the system. With such
hardware, cues not available with the present plotter procedure
could be employed to accelerate the manual priming process; the
operator can be given virtually instant access to specific informa-
tion needed to support each step of the priming process.

The operational benefits of an option 1 procedure follow:

1. Because index line data are not separated from non-index
line date, the raster-to-vector conversion process needs
to be carried out only once for a contour map sheet.

The time to convert from raster-to-vector is essentially
halved,

4-30

C et 7 g

2. When no data separation is performed, no line break
errors are introduced into the data. Thus, auto-edit
procedures that are only 807 effective can still reduce
the requirement for manual editing by a factor approach-
ing 5:1. (In contrast, if line separation procedures
introduced 20 fold as many errors as existed on the
original sheet and auto-editing were only 807 effective,
the net editing load imposed on an operator would be
about four times that faced on the original sheet. 1In such
a case, automation would increase the editing burden
rather than decrease it!).

3. Alternate methods of priming the elevation tagging
operation can be accommodated. As en example, as an
alternative to GAC's elevation "priming' list, L. Beabout
of DMA HTC has suggested that the elevation priming list
should consist of an ordered list of the locations of
relative high and low points along the neat lines. A
procedure using such a list has been examined to determine
how well it can be fitted into GAC's tagging software set;
it will mesh cleanly into the present software structure.

4. Vector data from the AGDS could be accommodated by the
procedure.

While the CONTAGRID program itself could ill afford the time and
manpower required to track down the source of the pre-tagging soft-
ware's problems, GAC's preliminary findings that "healthy' raster

scanners introduce substantial line weight variances should benefit
future programs. A disciplined study to characterize the data
degradation that is caused by raster scanners under different opera-
ting conditions is necessary. Scanner characteristics can have

a dramatic impact on software character and cost.

4-31

4.12 TECHNICAL PROBLEM (RIPPLE EFFECT)

With existing pre-tagging software, after the line separation task
is completed, a STARAN raster-to-vector conversion process converts
1) the raster data that is classified as index contour line data
into a file of index vectors and 2) the raster data that is classi-
fied as non-index contour line data into a file of non-index vec-
tors. The conversion process works effectively but has not been
optimized. The raster-to-vector conversion software is highly
tolerant of line weight variations, and so, further data degrada-
tion is curtailed by the module. Nevertheless, the module relays
the degraded data and thereby sets the stage for severe problems

in the pre-tagging 'cleaning' operations that follow.

The CONTAGRID pre-tagging ''cleaning' software has one overriding
purpose, namely, to massage the vector data base until the funda-
mental rule for tagging - THOU SHALT HAVE NO CONTOUR BREAK
ANYWHERE INTERNAL TO THE NEAT LINE BOUNDARIES - holds true. Two
categories of ''cleaning'" software exist:
1) software that is used to establish information needed
to characterize the cartographic elements (vectors), and
2) software that supports or causes the automatic or manual
modifications of the vector data base.

The first category of software detects, locates, labels, and
classifies the vector data that require edit action. The second
category of software deletes or adds vectors to the data base, it
is involved in the "fixing" (or editing) process.

In all cases, the first category of software correctly performed
the detection, location, and labeling function for all vectors of

T

the SHIRAZ Test Region* that required editing. [It is crucial to
note that only these functions need be automated for the efficient
utilization of an interactive edit station. When they are performed
correctly, the human editor can be sequentially and systematically
confronted with the edit tasks, the local region of the edit tasks
can be automatically displayed, and the edit actions can be assoc-
iated with vectors by label (or, implicitly, by location). (Of
course, the software system could be set up to supply a running

sum of tasks yet to be completed so the editor knows when editing

is complete; operations management aids could also be supplied).]

The last type of first category ''cleaning' software, feature classi-

fication software, classifies vectors and provides the basis for further
simplifying the editing task. As was noted earlier, this software
proved vulnerable to the degrading effects of line fragmentation. This
software looks for features, i.e., for a particular set of across-
vector associations. It measures the associations of a vector with

its neighbors and determines whether the set of associations corres-
ponds to those that define a particular feature. When vectors are
derived from fragmented (or merged) input data, the relational
associations of the vectors (as well as the basic vectors) that
correspond to a feature are distorted according to

*SHIRAZ Test Region

Initially, the data of the nominal 20" by 20" SHIRAZ contour
sheet was to be used as the test data set for evaluating the
CONTAGRID algorithms and software system. When it was discovered
that the badly degraded output of the pre-tagging software's line
separation module was caused by fundamental limitations of the DMA
raster scanner (and no digitized data that met DMA specifications
could be made available), it was decided to proceed with the eval-
uation of the CONTAGRID software with a subset of the digitized
SHIRAZ sheet data that came close to meeting the specifications.
It was found that the nominal 4" by 4" region of the top left
corner of the SHIRAZ sheet met the relaxed requirements; it could
be treated with the existing pre-tagging software without severe
contour fragmentation problems. As a result, this region, the
SHIRAZ test region, has become the primary data source for the
end-to-end evaluation of the CONTAGRID algorithms and software system.

4-33

MO P Gy A M e

the extent of data degradation. If the software sets rigid con-
ditions for classification (in order to avoid wrongly classifying
features), it is likely to be ineffective when treating degraded

data. Goodyear Aerospace's present software applies weakened
association conditions to establish features and thus can cate-
gorize some of the features in a "dirty" data environment. Yet,
it does so at the expense of making some improper classifications.

The CONTAGRID 'cleaning" software that performs classification
marks vectors according to whether they belong to one of the follow-
ing features: numerics, depression contours, cuts, or fills, and
then the second category of '"cleaning" software modifies the vector
data base in a particular sequence: vectors associated with fea-
tures are treated first and then all other vectors that are open
are treated. Specifically:
1) tic mark vectors of depressions, cuts, and fills are
deleted,
2) residual depression vectors are marked,
3) cut, fill vectors are assigned a hierarchical structure,
4) vectors identified as numerics are deleted, and
5) wvectors needed to join broken contours are added to the
data base.

Nuite clearly, the effectiveness of the feature classification
operation will directly affect how well the auto-edit modules of
the '"cleaning'" software performs. Because only 'dirty'" vector data
(fragmented vector data) has been used to measure the effectiveness
of the feature detection/correction software to date, the degree

of effectiveness improvement with ''clean' vector data (that is
expected with modified pre-tagging software) is not yet known, but
is expected to be substantial. The basis for this projection
relates to the mechanisms for mushrooming degradation which have
been observed to hold for the present software. In particular,

4-34

1) the feature filtering algorithms presume relatively '"clean"
features; the vectors of a distorted feature have exhibited
a lower probability of being correctly classified when the
data base is "dirty,",

2) the auto-edit action demanded for a vector relies on its
classification; improper classifications have been observed
to cause improper edit actions, and

3) the total number of candidates for classification (and
editing) and the number of false features, artifacts, have

data base;

been observed to increase many fold in a "dirty
in such cases the opportunities for improper vector class-
ification have increased dramatically.

Consider how the auto-editing portions of the 'cleaning' modules
treated the SHIRAZ test region. The region contains 5 contour
elevation numbers. After executing CONTAGRID's line separation

and raster-to-vector conversion routines, the digits of the numbers
are described as sets of many short vectors that are much different
in character from those that would be obtained from clean, unfrag-
mented raster data. This '"dirty" data was subjected to CONTAGRID's
automatic data '"cleaning' modules.

Only about 60 percent of the vectors associated with elevation
numbers were classified as having a numeric attribute; these were
automatically edited (i.e., deleted). The remaining 40 percent of
digit fragment vectors were improperly classified and were not
automatically deleted. As a result, the automatic contour line

join routine, which connects contour ends where numerics are removed,
encountered conditions that precluded line join vectors from being
generated in 2 out of the 5 cases where numbers were to be deleted.
In general, automatic line join failure resulted either because of

a failure to delete number fragments or a situation existed that
could induce a false join and so an automatic join was not attempted.
If automatic line joining had been executed after an editor had
concluded removing unwanted number feature fragments on an interactive
display, a higher effectiveness level in a relatively 'dirty" data
environment would have been likely even without the benefit of any
algorithm enhancements.

4-35

Based on the results obtained with '"dirty'" data, in a clean data
environment, automatic feature classification/auto-edit software
can be expected to simplify an editor's role.

4.13 MANUAL EDITING AIDS

The pre-~tagging ''cleaning' software of CONTAGRID provides a sub-
stantial set of editing aids for 'interactive'" manual editing.
Data file structures are set up to support such editing. Unfor-
tunately, for the CONTAGRID program, the only display resource for
editing with assured availability was a CALCOMP plotter.

; As a result, for all editing operations, a plot is required. The
editor defines edit actions based on the plot and the labels drawn
on the plot. The display resource is entirely inadequate as the
primary display for production oriented interactive editing for the
following reasonms.

1. It is not on-line; time lags required to produce hard-copy
graphs needed for editing are unacceptably large.

2. The display can't be changed rapidly; until a plot is
complete, it is not known what additional supplementary
data or combinations of data types should be displayed (or
not displayed) on the plots.

3. No quick selective display (suppression) of annotation was
possible; edit labels at locations where edit demands are
greatest tend to overlay and become unreadable. Alter-
native plotter procedures that reduced the overlay problem
removed labels from the locale where editing was required
and so forced much eye movement. The high demand for eye
movement resulted in editing inefficiency. i |

4. A common coordinate system for instantly registering two
versions of the global data was not available. No
mechanism exists for comparing raw sheet data to the vector
data in a common coordinate system and/or on a microscopic
basis. Quality control judgements cannot be made effectively.

i e T "'—_—"'5-!:“‘

Goodyear Aerospace believes that for a production CONTAGRID system,
an on-line interactive CRT edit station is essential. With such

a station, the editor has the ability to freely intersperse many
manual and automatic tasks without having to continually put up
with the time lags related to transferring data to/from off-line
display devices. For a variety of tasks, editing is facilitated
by displaying raster data, vector data, combined raster/vector data,
or other data in combination. It appears that only a raster CRT
color display system that is supported by a multiplane memory has
the versatility to support the variety of capabilities demanded by
a CONTAGRID editing display; GAC believes that an on-line inter-
active edit station should contain a high resolution color raster
display unit.

4.14 TIMING SUMMARY AND PROJECTIONS

This section discusses the significance of timing measurements made
while exercising the CONTAGRID pre-production hardware/software
system with real input data. It begins with a summary of the
performance of the pre-production system and a projection of the
performance of a production system. The development of the pre-
production system's execution time summary table (see Table 4-III)
is then discussed. How the pre-production system's task timing
results are used to project the execution time performance of a

production-oriented SIMD/sequential processor-based automated
cartographic system that eliminates the hardware/software inadequa-
cies exposed by the pre-production system is then discussed. The
section concludes with a brief discussion of the impact of the
program on reducing man-intensive DTED tasks.

The primary tasks of the CONTAGRID process, automatic elevation
tagging and elevation gridding, are shown to be able to be executed
in about 1 hour using the relatively inefficient components of the
pre-production system. The inefficiency is most evident in the

4-37

8¢-v

“SIH ¢ REANIL
8urd8er-aayg

(moT2q ssa9d0ad 1933e ‘0STY)
- - S I - S9V1IQd {-so113 o3uyl s8el [enueuw xa3ujg “ o1
sanojuod Aiepunoq Seq
PUEB SpPUd Inojuod Aaepunoq
0s 01 00T 8 OVINdO | NdOLVLS 03 sonyea ,sWIld, 93IB[3110) 3uy3se] 6
0L%‘9 |0ST T | S8Y“LT | SLEY TVLOL
*S10309A 3IpPD pue
S103109A 193seuw Teurdrio
- - GZ9 CZT - 4ZIINOS wox3j SI0JI9A INOJUOD PTIng “ " 8
‘ejep 103199A dn-pauedTd
- - GZ1°9 GLs'¢ - N39101d Jo 3j07d jooad sjeiaus) u " L
*3TTJ PuB SIOJDDA PIIIIUS
JewIo] ©S10309A]TPD IIEAID
‘wayl IIpe 03Ine pue
s2In31eaj 10 S10309A L3Tney
09 00T GLT 154 YOWILAA SAALID ‘A3TSserd ‘ajevor €39939(" M S
*S3SIT UOIIET9II0D pEOT Aeile
- - Gie o%T - SOEAWLID 3utsn si0309A 193sew prTIng " “]
239 ‘10309A-03-193SBI JIDAUOD
futyy ¢3Tp9-ojne {soull XopuJ
00%‘9 |[0T0‘C | 009°8 SST DdAdES | SOFALAD -uou woijy xapul sjeiedss " " £
spaooax DY 30 SOT3
-sT3e31s 398 feiep Lieyrroue
- - 001 0£1 - NIHdVL andur ¢seT1j usAa/ppo o8I} A
- - GES‘T S91 - Xd00dvl osTp 03 (s)ade3 D7y Adop | Burdler-2a4 1
0/1 ndd 0/1 ndo NVIVLS 2ao NOILOV JSVHd WALl
(S23S) NVYVLS (sdds) 2ad SATNAOW YOLVKH
(3Z1S ,,0T A9 ,,07) ONIWIL NOIIVYAdO
(LAFHS ZVITHS)
WALSAS JTHAVYOOLEVD ANA-OL-(ANI INISTYIWO0D
STINAOW NOTILONAMII=T¥d Y04 SHWLL NOTILNDAXA - TIT-% J79V1

4-38

- e NI IR A

-

‘IH /1 =5
awrl 3ulppriy

“IH Z/T ==
amyy Bur8fey

4-39

ove STC A M K41 TVLOL

08 0ST SCT {097 ovoava aryo XTi13BW UOTIEBADTD d3eTndog “ 0z
‘Blep jeWIOIad fuoll

- - 06Z |00% - AVEOITN -BADTO uMowy JO SOTTJ 9318y “ 61
TauTT

- - see |oTE - d4sa11g S/d 3uoTe suorlead[d 231ndwo) “ 81
*UOTIBAIT® umouy jo sjutrod

081 0t ST¢ 06 NIGNId | INIANIA Yl M SUOTIDISIIIUT §/¥ PUTA “ L1

- - 687 [STIT - 4S19vd elEp S/Y¥ ¥OQ ,,dZY[RUOTIAY,, " 9T
*QUI] 3JESU

- - L ¢1 - LVAN 8uoTe suor3lealT® 83ndwo) . ST
sad£1 3713 ¥

- - <6 S8 - ¥0ao3ds o3ut BlEP ¥IQ 93321893 " 91
*swajsAs o3euUTpaOcY 33ueys

08 SY 09T { 0L dWVSTY | ATdWVSTI pue elep Inojuod o7dwuessy Burpprid £T

JT 0L 099 | 2¢8 TVIOL
*S10]939A ANOjuod
= - 00% { 008 - 1003dvl 3o adel 23TT-94o5d 3Indang " 1
*s8e3] Teuaadjur LJTIaA pue
sanojuod Teuiajur Jejzf3uildle;

SS 09 oct | 21 9vV1010 | OT101VLS anojuod Kiepunoq £ITIaA oIny 3urs8ser 1T
0/1 ndo 0/1 ndo NVIVLS OIH) NOILOV dSVHd R3ILI
(S0dS) NVHVIS (s03s) 2D SATNAOW HOLVK

(4Z1S 0T A€ ,,07) ONIWIL NOILVYHdO

(penuyjuo)) - III-y ITAVL

B A —

1

timing results of the pre-tagging tasks; on the order of 5 hours

is required for their execution. The excessive execution time for
this phase can be primarily attributed to the sequential processor's
poor reformat capability (see Item 7, Table 4-III) and, in
combination, to inadequate SIMD processor storage capacity and to

a low SIMD to sequential processor channel data bandwidth (see

Item 3, Table 4-1I1I). With a correction of the hardware/software
limitations of the pre-production system and the use of an on-line
interactive display rather than plots to support editing, GAC
extrapolates an almost 20 fold improvement in the execution time
required for executing the automatic pre-tagging phase tasks.

(This projection is supported by experimental results acquired using
STRAPS software that was developed outside of the CONTAGRID program.)

The correction of pre-production system deficiencies extrapolates
to a smaller 4-fold performance gain for the elevation tagging and
elevation gridding tasks of the CONTAGRID process. Gains would
largely result from assigning sort/merge and reformat tasks that
are now performed by the sequential processor to the SIMD processor;
by eliminating the data channel bottleneck between processors, task
re-assignment gains would not be erased by data moves.

In total, based on the measures of execution time for the various
CONTAGRID processes, GAC projects that an automated end-to-end
production cartographic processing system based on a joint SIMD/
sequential processor set could perform the automatic segments of

the pre-tagging, tagging, and gridding tasks in about 1/2 hour.

The production-oriented system would require a SIMD with signifi-
cantly more memory space (e.g., a GAC STARAN-E), a smaller but more
1/0 efficient sequential processor (e.g., a SEL 32/75 mini), and
on-line, interactive multidata form edit/quality control hardware set.

Execution time measurements were made using the SHIRAZ map sheet
data and sub-regions of such data. Most often, the SHIRAZ Test
Region was used. (Tables 4-IV and 4-V list subregion timing results.)

4-40

. . NOTLVA313 A8 S¥0LI3A
0L°€ETT 6°0L X *) 0399Y¥1 S101d S9vliod

i “ i 3dV1 Q3LIVHY04
92°61 L°TE X Jos Q3LLYRYO0S) ngagyy
09°1 98°0 , X SHOLI3A Q3S01) SL1G3 S9VLIQ3
. . SHOLIIA
9376 €S’y X X ¥NOLNOD 4350712 soyy O 1ILVLS
09°1 18°0 X SYOL23A N340 S11Q3 SOVL1IQ3
. . . SY0123A ¥NOLNOID
5279 ¥$°0 X X (AYYANNOE) N340 Sgyy NdOLVLS
SHOLIIA
. . YILSYW WOY4 SHOLIIA
00752 56 ¥ ¥ | . Tunoin0d salyyanig 373dds |
i
Q31S3nb3y S101d . . vivaQ a3iLla3 <
HLIM A¥YA 171M S3wpy | 007S%2 rert X 40 S107d S3wyyangy N30T
. i dNNV312 9NILIO3
£6°T2 92°2 X X diNva INILIG3 33nava
. ST08HAS
. an- W123dS SINI4IQ 8 $A3L39
00°¢T 00°T X X A WOLAY SHOLI3IA S1103
08° L1 15°§ X SHOLIIA ¥ILSYW SATING SIIAWLIY
1330S (.9%02)804 071 ; : i
NyavLs /0y sa0nTouL | 00 2Ts 1€°81 X X ¥OL2IA-4ILSYY SLUIANOD $IIALIY
133HS Q1M . . ASIC NO 13
W X 4330 .02 ¥04 | 0£°02 1°92 X 3714 378 VKO ooduho NIZavl
(5335) | (S03S)IWIL | 000T-5 | 00v9
0/1 ‘023x3 d2 1 NvyyLs 2402

SINIWWOI $3714Av¥0-202 aiziilin NOIL1dI¥IS3q 3INAONW
— HOY¥J SONIWIL - SINJHIOVH

SIWIL NOILNJ3X3 9ONIOOYL ANY ONI9IVI-I¥d °“AI-% 318vi

SIWIL NOILND3X3 + O/I 302 NI Q3GNTINI 3IWIL NVYV.IS«

56 *86 '99°69 WL0L
« $323S 01 i
IWIL NYUVLS - 133HS |
1IN ¥ 404 0/1 NI !
ISYIYINI T:G °X0dddv | Ob°0¢f §2°01 X X INIQOIYD SW¥04Y¥3d a1yo :
9N1001Y9 _
INIL 40 %58 Lnoav | 89°6 62°52 X 0L LNdNI Y04 SNV¥IS | NVE9Y3IN m
¥04 SINNOJIY 3I9YIW -XJ¥8 ONY S3114 SI9YIW ,
N, INT
ST ¢l 9€°21 X AVINIT INISN SINIOd [dusatisg
.31901Y NYYVIS saiinsg
» S33S NOILVAII3I NMONY 40
§9°0 INIL NV¥VLS | /§°21 A3 X X SINIOd HLIM SINIT ¥/S | INIONIA

40 SNOILJ3ISYILNI SANI4

. ONISS320dd NYUVLS
82°11 0S5°¢ X 404 SdN0Y¥9-9nS OLNI yS1uvd
SINIT ¥/S SNOILILYVd

4-42

NOILYTOdY3ILNI Y¥VINIT-189
LE"1 0E°2 X ONISN SINIOd 3INIT LV3N 1VIN
WOdd SINIT LY3IN SA1Ing

SINIOd 3NIT
LV3IN GNY ‘SNOILDNNC ¥/S

8L°€ Ge°¢ X |*S.A373 10dS ‘SINIOd ¥/S ¥9093S
OINI Y1VG ¥9Q S3ILY93¥91S
#SJ3S 9 €=3WIL NVUVLS . .
133HS 1In4 ¥04 0/1 NI 2661 61°¢ X X a149 11IW-01
ISY3IYINI 1:01 ¥V Lnogy 01 Y1va ¥0123A S3Ina3y | 31dWYSIY
($23S) [(sS33s)3IwiL | ooo1-S | o0v9)
0/L ‘023x3 d2 | Nvavis] 2a2
SINIWWO) S3714AY0-20) Q3Z111L0 NOILdI¥IS3Q 31NQ0NW
WO¥4 SONIWIL SINIHIVW

SIWIL NOILIND3X3 ONIQAIY¥YY ¥NOINOD “A-% 378y1

To establish full sheet timing results, the results for sub-regions
were linearly extrapolated to the full sheet size (20" by 20").

The linear extrapolations tend to be conservative since the SHIRAZ
test region contained more line information/square inch than the
sheet's average line information/sq. in. All the principal path
CONTAGRID processes are included in the timing measurements.

The raster data was sampled at a 25 micron (= 001") interval; this
resolution was retained up to and through the tagging operation.
At the conclusion of tagging (including final editing), resampling
was performed at a 10 mil resolution level in order to produce a
contour vector tape like that produced by the DGR. Also, within
the gridding process and just prior to merging DGR data with that
from the raster scanner, the tagged contour vector data was re-
sampled at the resolution of the DGR (but as was noted earlier, fine
resolution information about the fractional point of line inter-
section with the coarse matrix resolution element is retained
during resampling). All automatic gridding operations after
resampling are performed using data having 10 mil resolution.

A production system design should address the impact of resolution

on processing time. When the DGR is used to digitize the SHIRAZ

test region, it comprises 164,440 resolvable pixels. When digitizing
the same region with the RAPS, it comprises=l100 times as many re-
solvable pixels (16,957,440). Processing execution time is nearly pro-
portional to the number of pixels, and so processing time increases
as the square of the linear resolution. By decreasing the resolu-
tion as soon as possible along the processing chain that leads to

the elevation matrix, the processing time can be reduced. (GAC's

1/2 hr projection for executing the automatic pre-tagging, tagging,
and gridding tasks assumes no such time savings are made).

4-43

feAr: i s -

e

To time the various processes, the CDC task monitor was used. It ;
supplies the CDC 6400 CPU and CDC 6400 I/O times for each job]
submitted to the CDC in printed form on each batch job summary.

The corresponding STARAN tasks are timed using STARAN's 100 nanosec
resolution timer. Timing results are obtained in the form of key-
board printouts.

Most often, for the CONTAGRID modules, the CDC 6400 I/0 and CPU times
overlap. The CDC I/0 time includes not only the time that data trans-
fers take place between the CDC peripherals (primarily discs and tape)
and CDC memory but, also, the time that the I/0 channel between CDC
memory and STARAN is enabled. (A number of CDC system task times

are also bundled into the I/0 time.) As a result, STARAN CPU time

and STARAN I1/0 time (to the CDC 6400 or to the STARAN-associated RKO5
disc) falls within the CDC 6400 I/O time period.

As programmed, STARAN I/0 time to the RKO5 disc is not concurrent with
STARAN CPU time. On the other hand, when I/O to the CDC takes place,
some overlap of STARAN CPU and I/0 time can occur.

Table (4-II1) summarizes the timing results for the CONTAGRID tasks
when digitized SHIRAZ sheet data is used as input. The CONTAGRID

tasks are listed in the order that they are executed. A cursory
examination of the Table (4-III) suggests that the CDC 6400 operations,
both CPU and I1/0, dominate the approximately 6 hours of ETL CDC
6400/STARAN system use needed to transform the SHIRAZ digitized

map sheet overlay data to the digital terrain elevation matrix

data form. Moreover, the pre-tagging phase of the transformation
procedure demands the bulk of system usage time (=5 hours). GAC
considers the 5 hours of system use time for pre-tagging unaccept-
ably large for a production system. The large system use time 3
results because of (1) an imbalance of system hardware resources

in the ETL system and because of (2) the heavy reliance on the CDC

processor for performing the non-critical CONTAGRID tasks. How
the various items of the CONTAGRID pre-tagging operation would be
handled in a production system is considered next.

4-44

R TSR B

Items 1 and 2 -

A CDC 6400 system software package is used to move RAPS RLC raster
data from tape to disc. No data format conversions are required
and so virtually no CPU time should be required and yet 165 seconds
is required. Why? Approximately 20K records (i.e., one per scan
line) of about 500 bytes/record are moved. The CDC is apparently
charging about 4 millisecond to set up each 'read" and "write'" of
a record. It may be noted that this time is in the ballpark of

the time a PDP-11 mini takes to set up a read or write ''TRAN"

(1.4 millisecond).

Since every record read from CDC tape is written to CDC disc, a
total of about 20 megabytes of data are moved between CDC memory
and the tape or disc peripherals. This implies an average data
move rate of only about 12.5K bytes/second. Since the inherent
move rate of the disc and tape is much greater than 12.5K bytes/
second (approximately 800K bytes/second and 100K bytes/second,
respectively),it is apparent that disc and tape latency is badly

degrading the inherent move capabilities of the tape and disc i
peripherals. It should be noted that the cure to the long I/O
and CPU times is to include more records/scan into any given
second. (A faster peripheral is not the cure.) The ETL IBM and

SCI-TEX raster scanners tend to do this; the AGDS and RAPS records !
tend to be short. It should be noted that the SCI-TEX and AGDS
require about twice as many bytes/scan as the RAPS when sheets
having over 3000" of line/ (20" by 20") sheet are scanned. It
would be desirable to use SCI-TEXrecord sizes with RAPS type RLC
when scanning black/white graphic source material. If this were
done, using any number of available minicomputers, Item (1) CPU
and I/0 times of 8 and 80 seconds, respectively, could be expected.
The above times would hold whether the source data comes from tape
or directly from the raster scanner. In the latter case, wall

clock time would increase.

4-45 '

In a production system, the bulk of the Item 2 task (that of
merging files) need not be performed apart from the Item 1 task.
Only about 2 seconds of I/0 time need be allocated for it. For
CONTAGRID, the number of bytes/scan was determined for each scan
in order to establish maximum CDC to STARAN block transfer sizes.
Such a measure is not required for a production system, but a
statistics gathering capability would likely be provided for other
reasons. For the same type of CPU activity as was required for
CONTAGRID, a production system should allot 5 seconds. Thus, the
combined Item 1 and Item 2 production system usage time would be:

13 seconds

]

HOST CPU time
HOST I/0 time
STARAN CPU time
STARAN I/0 time

82 seconds
0
0 .

#

ft

]

Item 3 -

Item 3 processing accounts for the largest component of the time
needed to produce the elevation matrix data. The bulk of the

Item 3 time can be directly traced to I/0 that takes place between
STARAN bulk core memory and the RK05 disc that is associated with
STARAN's embedded PDP-11 (6400 seconds). Most of the remaining
time can be traced to STARAN processing time. As will be shown
below, virtually all the I/O time could be eliminated in the
production system; the STARAN processing time could be reduced to
about 1/4 of that now shown.

The Item 3) operation involves the following processes:

a) Conversion of RLC raster to binary raster

b) '"Regionalization'" of the binary raster data

c) Separation of index and non-index line raster data
d) Thinning of lines to a one cell center line

e) Removal of line stubs and other auto-edit activity
f) Conversion of centerline data from raster-to-vector
g) Support processing

4-46

The process a) above accounts for nearly 1/2 of the Item 3) STARAN
pProcessing time, i.e., it requires about 1000 seconds. The
process converts about 10 megabytes of RAPS RLC raster into about

400 million one bit pixels. A very simple algorithm was used to
make the RLC to binary raster conversion; it did not exploit
STARAN's parallel processing capability. Newer algorithms that do
exploit the parallel capabilities of the STARAN demonstrate that a
production system could accomplish the process in less than 10
seconds. (The GAC routine that converts AGDS formatted RLC to RAPS
form RLC uses parallel processing techniques like those required
by the production system). About 110 seconds of time are required
for the STARAN to CDC I/0. As will be shown below, this I/O can

be reduced to well below 10 seconds.

The initial form of the binary data is in the form of scan lines
consisting of about 20K pixels. Process b) ''regionalizes' this
data. It develops patches of data by collecting individual scans
until a 160 scan wide strip of data is developed; then the

strips are equivalently cut into rectangular chips that are 184
pixels long. The patches of data that result, called "array

loads,'" are nearly square (i.e., they are 160 scan lines wide by

184 pixels deep). Unfortunately, the older STARAN B arrays are

not able to contain enough data to allow the ''regionalizing"
operation to take place internal to the arrays; thus, time

expensive move operations are required. (The problem of small

array storage space was recognized before the start of the CONTAGRID
program and was one of the major reasons for the development of

the STARAN E machine. Each array of the newer machine contains 36
times the array memory of the older ETL STARAN). The RKO5 disc 3
associated with the STARAN processor was used as the array memory
extender for the Item 3 processes. O0f course, when the disc is
used as array memory, the effective memory to STARAN array
Processing Unit bandwidth is only about 15 kilo bytes/second

compared to the actual array memory-to-STARAN array processing

unit bandwidth of about 750 Megabytes/second. Clearly, operations
occur orders of magnitude more slowly. Rather than including the
time during which the RKO5 disc is used as an array extender as
part of the STARAN CPU time, it was categorized as STARAN 1I/0 time.
It accounts for all but about 150 seconds of STARAN~to-CDC I/0 time.

With the newer STARAN, the 6250 seconds of I/0 time used in emula-
ting arrays with the RKO5 disc would vanish; sufficient array

space exists. Thus, the I/0 time required for Item 3 would drop

to about 150 seconds. In this remaining 150 seconds, only on the
order of 18 Megabytes of data is transferred between STARAN and
the CDC 6400, This implies an average transfer rate between the
processors of about 120K bytes/second, Since the CDC-to-STARAN
channel can sustain data transfers at a maximum rate of 250K
bytes/second, it is clear that the drop in transfer efficiency
relates to the time needed to set up data transfers between CDC
and STARAN. By transmitting 32 scans at a time to the STARAN
rather than just 1 at a time, the average transfer rate would begin
to approach the 250K bytes/second limit of the channel. The total
I/0 time for Item 3 would then drop to about 75 seconds. In a
production system, a much wider bandwidth between the sequential
processor and SIMD processor would be employed. Using a SEL mini
and the newer. . STARAN E, a 26 megabyte/second channel could be
implemented using standard hardware. In such case, host-to-SIMD I/O
time would be determined by transfer set-up time. If blocks of
data were 20K bytes large (as were employed by STARAN for the

Large Area Crop Inventory Experiment (LACIE)) and SEL mini standard
I/0 driver 800 microsecond set up times are used, the total host-
to-SIMD I/0 time for Item (3) would drop to less than 10 seconds.

A similar amount of set up time would be required by the produc-
tion system to move data between memory and disc mass storage.
Actual I/0 time between disc and host memory, assuming a 1.2
Megabyte/second disc drive with average disc head latency of !
40 milliseconds, would be about 60 seconds.

Item (3) processes c¢) through g) demand about 1,040 seconds. 1In
particular, process c) presently demands about 165 seconds. Pre-
suming that no line separation operation is carried out by the
production system, this processing time vanishes.

Process d), center line thinning, is performed independently for
both index raster data and for non-index raster data and accounts
for about 395 seconds of the present STARAN CPU time. By elimina-
ting the requirement for a separate file structure for index and
non-index data, the process needs to be executed only once. The
processing time would not quite be halved because more steps are
required to thin thicker lines than thinner lines. Nevertheless,
the processing time would be reduced to about 250 seconds.

Process e), line stub removal or clipping, requires about 185 seconds.
The elimination of the two file data structure will nnt directly
affect this operation, because the time of execution is directly
related to the total number of open-ended lines found after the
center line thinning operation. Indirectly, the elimination of

two file data structures will reduce the time required for this
operation. By omitting the line separation process, fragmentation
of the data will be reduced substantially so far fewer open-ended
lines will exist in the data base. Conservatively, assume the
reduction to be about 25%. Then, the time required for this process
in a production system would hover near 145 seconds.

Process f), the raster-to-vector process, requires about 115 seconds.
Once again, the elimination of line separation will have only an
indirect influence on this time. Because fewer line segments would
be created, fewer vector headers would need to be created. As a
result, a production system could expect this process to be per-
formed in about 100 seconds.

Process g), support processing, combines many of the processes used

in conjunction with those listed above. It includes such processes
as line junction encoding, across patch ("array load") vector

4-49

VN LTI g PrRTAT

correlation list genefation, auto-editing operations, etc. In
total, the operations account for about 180 seconds of the process-
ing time. The removal of the line separation operation will

reduce the time for support processing only in an indirect manner;

a production system could expect the processing time for this opera-
tion to be reduced to about 165 seconds. 1In summary, for a produc-
tion system, Item (3) operation time would be:

STARAN CPU time
STARAN I/0 time
HOST CPU time
HOST 1/0 time

670 seconds

[

10 seconds

10 seconds
60 seconds .

Item 4 -

The Item 4) process chains the ends of vectors of the different
patches, i.e., "array" (load) vectors, together until an open-end
is found or the chain closes on itself. All array vectors of

a given chain are assigned a master vector ID. On the order of

100,000 "array' vectors could be expected for a map like the
SHIRAZ sheet; the average ''array' vector size is about 80 mils.
The chaining operation generally produces less than 1,000 master
vectors (unless severe data fragmentation occurs.); the average
master vector length would be on the order of 5-10 inches long.
array vector headers consist of about 24 bytes so less than 3
megabytes of essential data is involved in this process.

This operation would be performed within STARAN as part of the

Item 3 operation in a production system that used the large array
memory of the new STARAN E. It would be able to be accomplished
with less than 5 seconds of STARAN CPU time and with no I/0 penalty.
Quite simply, the master vector ID would simply be assigned to its
slot in the array vector headers, as the headers are generated by the
Item 3 process.

4-50

Since the ETL STARAN B has so little array memory space, for the
pre-production CONTAGRID system, it was necessary to move data to
the CDC prior to performing this operation. Once there, the data
was stored on CDC disc (Item 3 output I/0). At design time, it
was felt that since the process did not involve much data, it
should be performed by the CDC. The relatively large CDC CPU
time experienced was not expected. Earlier discussion indicated
that considerable CDC CPU time is associated with setting up

I/0 transfers. About 1/2 of the 140 seconds of CDC CPU time

can be attributed to set up; nevertheless, it is estimated that
up to 70 seconds of CDC CPU time was used to perform the process.
In summary, for a production system, the Item (4) system usage
would be:

STARAN CPU time = 5 seconds

STARAN I/0 time = (consolidated with Item 3 I/0)
HOST CPU time
HOST 1/0 time

(consolidated with Item 3 time)
(consolidated with Item 3 time) .

4-51

Item 5 -

The Item (5) CDC I/0 is accounted for by program loading, file
purging, cataloging tasks as well as the CDC-to-STARAN attachment

time. True host-to-STARAN I/0 in a production system would require

less than 2 seconds; disc-to-host I/0 would require about 40 seconds.
In a production system, host CPU time would be unchanged since the
host acts primarily as an I/O0 handler for this operation. The
STARAN CPU time would drop to about 1/5 of that shown because it
would be executed out of high speed page memory rather than bulk
core. On the other hand, GAC intends to boost the efficiency of

its vector auto-edit software. About 3 times as much processing

power is believed required. Thus, for a production system, the
Item (5) system usage would be:

60 seconds
seconds

STARAN CPU time
STARAN 1/0 time
HOST CPU time
HOST 1I/0 time

]
N

25 seconds

40 seconds .
f Item 6 -

The Item (6) CDC I/0, unlike Item (5) CDC I/0 is dominated by CDC
system processes, namely, by program loading, program overlaying,
file purging, and file cataloging. STARAN-to-CDC attachment time

represents only a small fraction of the CDC I/0 time. With a
production system, host I/0 time would be reduced to about 20
seconds. STARAN 1/0 time would be less than 2 seconds.

The STARAN processing is presently being performed out of STARAN
slow memory (1.1 sec) rather than the fast memory (.125 second);
and, again, a real gain of 5:1 in processing speed would be obtained
in a production system. It should be noted that a production system
would not require so much editing (because the line separation

4-52

e Bt m e e e

procedure would be omitted), and so, 6 second processing could be
realized even without changing the algorithm for creating the

edit vector increments. Host usage in a production system would
be about 2/3 of that of the CDC. Summarizing, Item (6) operations
with a production system would be:

i
[«)}

STARAN CPU time
STARAN I/0 time seconds
HOST CPU time = 60 seconds
HOST I/0 time

seconds

It
N

20 seconds .
Item 7 -

Item (7) processing causes an enormously large system load. No
STARAN activity is involved at present. The processing simply
involves preparing vector data for the CALCOMP plotter. Re-
programming could reduce both the CPU time by a factor of 4:1
and I/0 time by a factor of about 6:1; to substantially reduce
the formatting time, STARAN would have to be used. This would
imply ignoring the CALCOMP subroutines used for generating the
vector plots. The CALCOMP code would be developed directly in
STARAN. If a production system were set up to use STARAN for

generating CALCOMP formatted data, the resource usage would be:

STARAN CPU = 80 seconds
STARAN I/0
HOST CPU time 20 seconds

HOST 1/0 time = 60 seconds .

2 seconds

Item 8 -

Item (8) requires the same kinds of operations as are required by
Item (4). 1If the processing were performed in the STARAN in a
production system, the usage times would be:

STARAN CPU time
STARAN 1/0 time 2 seconds
HOST CPU time = 10 seconds
HOST I/0 time = 60 seconds .

5 seconds

L it ST TG VSIS

With a production system, the total system usage time for all pre-
tagging processes would be:

STARAN CPU time
STARAN I/0 time
HOST CPU time 140 seconds

HOST I/0 time = 275 seconds .

830 seconds

10 seconds

]

The tagging phase data requires little explanation with one
exception. The TAPEOUT routine requires substantial CDC CPU and
I/0 time. 1In a production environment the TAPEOUT routine would
not be used except to off-load the production processor. Thus,
there is little point in developing STARAN software that would
reduce the task time down to the 20 second CPU time/60 second I/0
time range. If for some reason it were necessary to develop a
fast TAPEOUT module, it could be installed at a later date.

When doing tagging operations, a production system usage would be:

STARAN CPU time = 70 seconds
STARAN I/O time = 30 seconds
HOST CPU time = 20 seconds
HOST I/0 time = 120 seconds .

The processing expensive operations of gridding are already being
performed in STARAN. By moving sorting/merging operations into
STARAN (Items (14), (16),(19)), system CPU time for these processes
can be reduced to about 30 seconds. Such operations were not
moved into STARAN for the CONTAGRID program because they are I/O
intensive; the slow I/0 path between CDC and STARAN would have
negated much of the CPU time gain of using STARAN.

Item (18) processing which involves the interpolation of elevations
along R/S lines, could be performed in STARAN in about 30 seconds.

A gainin processing time of about 40 to 1 over the CDC processing
time could be considered an average gain. Because R/S line segments
between points of known elevation are not uniform in length a simple

*Excludes the TAPEOUT operation

4-54

layout of the R/S interpolation problem in STARAN results in a
reduction of STARAN efficiency. The 30 second projection for
Item (8) presumes a simple STARAN problem layout and so projects

only a 10:1 gain over the CDC CPU time.

The Item (15) task is not CPU expensive and so could remain a host
task. If it were moved to STARAN, the neat line linear interpola-
tion operation would require less than one second of STARAN time.

All I/0 associated with gridding involves the movement of about
By using large

60 Megabytes of data between disc and memory.

records, a production system could reduce the number of setups
Assuming a SEL set up time of

for data transfer to about 8,000.

800 wuseconds, total I/0 set up time for disc-to-memory transfers

would require about 6.4 seconds.

Actual I/0 would require avout

50 seconds and disc latency would demand about 320 seconds assuming

random file access. When files are contiguous as can be assured,
latency time can be halved. Thus, disc-to-host memory I/O should

not exceed about 250 seconds.

The set up time to move data to STARAN from host memory would be about

the same as that required for set up in moving data from host-to-disc.
Therefore, production system usage would be:

STARAN CPU time =
STARAN I/0 time

HOST CPU time
HOST I/0 time

In summary, for all phases of Processing, a production system

would use:

STARAN CPU time
STARAN I/0 time
HOST CPU time
HOST 1/0 time

4-55

275
8

30
250

1175

50
190

650

seconds
seconds
seconds

seconds

seconds

seconds
seconds

seconds

— - T T wemEny fmeeEsm= A s owme—/m o s

Of course, a production system would be required to perform other
than the CONTAGRID tasks to accommodate the DTED process. 1In
particular, it would be required to perform mosaicking, warping,
and paneling processes as well as editing support processes. None
of the above processes puts much of a CPU load on STARAN. The I/O
load on the system would increase as the result of the mosaicking
and paneling tasks, but the I/0 load would be much less than that
imposed by gridding. Of course, the editing load could be deter-
mined by the number of interactive edit stations associated with
such a system. It is necessary to balance the number of hardware
I/0 controllers to the response time requirements of the edit
stations. By conserving the host machine resources, it becomes
possible to perform the myraid short sequential tasks required in
an interactive editing environment with minimal time lag.

The man-intensive tasks associated with the DTED process lie in:
1) Pre-compilation,
2) Tagging,
3) Post gridding editing. .

By performing mosaicking and paneling in the electronic digital
domain, substantial man-hours/sheet should be saved in performing
these operations. By using adjacent sheet digital information in
most neat line data generation operations, the neat line data
development task should also be reduced. Manual R/S data genera-
tion would still be required, but the amount of detail required
could likely be reduced. Secondary R/S data could be entered
directly at edit stations. Based on the CONTAGRID program results,
GAC believes the time required to do Tagging can be accomplished
using less than 8 man-hours. (Part of the Tagging priming operation
would have been accomplished during automatic mosaicking). Further-
more, because of the automatic Q/C associated with the operation,
rework will be able to be reduced.

4-56

Finally, in the post gridding editing operation, GAC's approach
= to displaying elevation matrix data should substantially reduce
the time to perform final quality control and edit operations.

By being able to view gridded data as an intensity display, direct]
corrections of the data can be made possible. Where more detail 1
needs to be seen, fast arbitrary magnification can be provided. 1

Apparently, a production-oriented, CONTAGRID-like cartographic
system could reduce the man hours required for all three phases
of the DTED process.

SECTION 5 ~ INVESTIGATION

5.1 APPROACH

The approach is divided into three parts:
1) The testing system,
2) Tasks involved, and
3) Test approach.

5.1.1 Testing System

The three main systems used for this work were;

a) the DMA/ETL Digital Image Analysis Laboratory (DIAL),

b) the GAC STARAN Evaluation & Training Facility (SETF),
Akron, Ohio, and

c) the CDC Cybernet Service (terminal link to Cleveland).

The CONTAGRID software was installed on the DIAL facility. The
main parts of the above equipment used were:

1) The CDC 6415-8 processor including the 98K core storage,
seven and nine-track magnetic tapes, large capacity
disks along with the command channel interface link to
the STARAN (4-arrays) and the PDP-11/20 supported by
two RKO5 disks.

2) An off-line CALCOMP plotter with tape drives used for
verification of the results of the editing, and tag-

ging software.

3) The GAC SETF, at Akron, Ohio, which was utilized for
initial checkout of the STARAN processing. Later, all
the gridding software was initially checked out on this
equipment. A number of the I/0 commands available on
the DIAL system were simulated at GAC to allow more
rigorous testing to be performed.

4) The COMTAL (512x512) Image and Graphics Display Equip-
ment, which is part of the SETF equipment was also an
aid (along with additional software) in allowing the
display of the gridded results of the SHIRAZ Test Region.

5) The CDC Cybernet Service, which was valuable for initial
checkout of many of the CDC Fortran routines which
comprise part of the CONTAGRID software package.

5.1.2 Tasks

In order to accomplish those tasks necessary to tag contours and
subsequently generate a grid of elevations, Goodyear Aerospace
performed the following assignments.

Generated CDC I/0 software to read and merge Run-Length-
Coded (RLC) data produced by the DMA Raster Scanner/Plotters
and store the data file subsequently on a CDC disk.

Developed CDC-Fortran software to send the RLC data to
STARAN and receive and store the resulting array vector data.

Modified the existing STARAN software to include extra
vector header information for editing and tagging and
separate the contour data into index and non-index files.

Generated new STARAN software to perform junction coding
to allow the detection and classification of numerics and
special symbols.

Generated CDC-Fortrar routines to build the master
vector information from the array vectors.

Generated CDC-Fortran software to support the generation
by STARAN of numeric and special symbol vector identification
Tists and new 'join vectors' subsequently produced by the
automatic editing routines.

Generated the corresponding STARAN software.

Generated CALCOMP plotting software to display proof

"~*s of the edited data along with separate plots of the
- ,mer1¢c and special symbol vectors.

5-2

Generated CDC software to manually edit the various
existing vector data sets from card input.

Generated STARAN software to build new master vectors
and array vectors from lists sent from the CDC.

Generated CDC-Fortran routines to build contour vectors
from the previously edited vector data sets.

Generated CDC and STARAN software to automatically tag
sheet boundary intersecting contours with elevations from
a subset of manually assigned index elevation tagged contours.

Generated software to edit the boundary contour ele-
vation data sets from cards. This software included the
deletion of incorrectly tagged contours and the insertion
of corrected elevations for these same contours along with
the insertion of elevations for untagged contours.

Generation of CDC software to manage the I/0 of data to
STARAN for the tagging of closed contours, i.e., those not
intersecting the sheet boundaries.

Generation of STARAN software to tag the closed contours.

Generation of CDC software to plot by elevation incre-
ment the tagged contour vectors, and the subsequent genera-
tion of a DGR formatted data tape suitable for gridding
using existing DMA software.

Generated CDC and STARAN software to reduce/resample 25
micron vector data to the required 10-mil grid.

Developed software to accept DGR formatted vector data
as input.

Generated CDC software to segment DGR input data into
separate files; i.e., ridge/stream (R/S) points, spot
elevations, neatline points, etc.

Included software to bujld neatlines from neatline points.

Generated CDC programs to partition R/S line data for
STARAN processing.

5-3

LA AN e T,

Developed CDC/STARAN software to find the intersections
of R/S lines with points of known elevation.

Developed CDC software to build R/S points using linear
interpolation.

Built file merging and backscanning software for devel-
oping the input to gridding.

Generated CDC/STARAN software to perform gridding using
interpolation.

A number of other software items were also generated during this
contract to run at GAC, Akron, namely:

STARAN software to display a gridded subsection of a
test sheet on the COMTAL display using different color-coded
elevations (See SUMMARY and CONCLUSIONS - Figure 4-3).

Fortran software to run on the SETF equipment to display
a hard copy output of sections of raster scanned source

material. This software has the ability to 'window' a
specific section of a sheet and magnify that section (if
required) and allow a user to determine the 'quality' of
the raster data (see Figures 6-4, 6-5, 6-6, 6-7).

5.1.3 Test approach

= The approach to testing the CONTAGRID software was to use

‘ digitized line data generated from a transparency of the SHIRAZ

| region of Iran and scanned at 1-mil resolution by the DMA Raster
8 Scanner Plotter (RAPS) at the DMA Hydrographic/Topographic Center.

In particular: GAC:
Used a sub (4"x4") section of the SHIRAZ sheet to check-
out the majority of the CONTAGRID software (see Figure 5-1)
Examined other scanned data produced by:
a) The Hamilton-Standard scanner, and
b) The DMA AC RAPS.

=

Contour Data 1:1

e Shiraz

Figure 5-1. Photocopy of Sourc

5

5-

(aaar.

Utilized neatline, point elevations and Ridge/Stream
data generated by DMA in the gridding process.

Goodyear Aerospace generated the following items during the

contract:

CALCOMP plots of the contour vector information in
vector form and separated into index and non-index

files
Plots
Plots
A DGR

after both automatic and manual editing.

of the numeric and special symbols.

of the 'tagged contours by elevation increment.
formatted data tape of the tagged contour data

(subsequently plotted at DMA).

A tape of gridded data in the DMA Standard form for Digital
Terrain Elevation Data.

A color COMTAL display (and photographs) of the gridded
data set including Ridge/Stream data, etc. The infor-
mation was color coded by predefined elevation bands.

SECTION 6 - DISCUSSION

6.1 GENERAL

A discussion of the CONTAGRID software is given in this section.
The discussion is divided into four sections: pre-tagging,
tagging, gridding, and editing. Each section gives the basic
techniques involved, together with related information that may
help to clarify to the reader the fundamental concepts behind each
process. More detailed information on the software developed for
these procedures is documented in the Appendices A through D.

6.2 PRE-TAGGING

Pre-tagging involves the processing of the raster-scanned data

to (and including) the generation of the untagged contour vectors
as shown in Figure 6-1,

The raster-to-vector conversion is performed in a specific
manner in relationship to the raster-scanned sheet. It is im-
portant to understand this as the I/0 contributes significantly
to the overall processing time.

Figure 6-2 helps to define, with respect to the image area, a
scan line, array load, iteration, and data biock. An array load
refers to the amount of data processed by one STARAN array and
is 224 cells wide and 248 cells long, as shown in Figure 6-2(B).

The RLC data is sent to STARAN until 224 Yines have been collected.

These are then converted to a 'binary image' of the data block
and segmented into separate iterations and stored on the second
RKO5 disk (Drive 1). This data is then recalled one iteration
at a time and processed in the following manner.

Load the arrays.

Separate index lines from non-index 1ines (by width).

Mmoo i ot b AR i W

b

weaberq mo| 4 ejeq burbbel-aud *1-9 d4nbiL4

INIDJOVL
SYO0L23A °D

SY0L1J3A

AJdISSYII 3114
k]
1103 oLnv

SAWD N
1103 N
DN
P2\
&
2
a
Sy31INVAVd
Nv310 oinv\ x3gni- XJANI
g NI-N/ NON/X3aNT
1002 *3NNC XIANT \ 40LV¥Yd3sS AUYNIE
. ¥31SVY

T

(A)TAPE RECORD (B)ARRAY LOAD (C)DATA BLOCK

| , SCAN LINE 224 SCAN LINES 224 SCAN LINES
| 248
CELLS
f
IMAGE IMAGE IMAGE
AREA AREA AREA

Figure 6-2. Relationship of Image Area to Tape Record, Array
Load, and Data Block

6-3

Clean-up data.

Thin data.

Code all junction points of 3 or more lines.

Convert data to array vector form (along with array

vector linkage information).
This procedure is performed for all jterations and the vector
data is sent to the CDC which later builds the master vectors.
The data is processed twice per data block, once to isolate index
lines, and once to isolate the non-index Tlines.

The above steps are repeated for as many data blocks as are
required to produce vectors for the complete sheet.

Master vector files are built from the array vectors and the
corresponding linkage informatijon. A master vector is a connect-
ed set of array vectors whose ends begin/terminate at sheet
boundaries, junctions or at open end points.

The next procedure attempts to automatically join up any 'line
breaks' existing within the sheet boundaries. Numeric symbols
are determined and marked for subsequent deletion. Files of
vectors are created which comprise special symbols such as
depressions, fills, and cuts.

Plots of all of these files are generated on the CALCOMP for
verification and manual editing when required. Each master

vector is assigned a unique identification number called a
‘correlation number' (Plot ID) which can be printed on the proof plots
at one end of the vector. The index and non-index master vector
numbers are not unique and use of their master vector numbers

(instead of Plot ID's) on plots which composed both these files could
lead to misinterpretation. A1l editing is performed by deleting
changing, and adding to these correlation lists. Several cycles
through manual editing may be required to completely edit the sheets--
Plots may be generated after each cycle.

Finally, the edited master vectors are connected to the master
vectors using the previously edited joins. This process is

6-4

D s O S N

AR i i

called the 'SQUEEZE' routine. The results are contour vectors
which are then 1isted along with any incomplete contour vectors;
i.e., those whose ends do not start or end on a sheet boundary or
are not closed on themselves within these same confines. These
‘dangling' contours were missed during manual editing and are
corrected by iterating through the manual edit and the ‘SQUEEZE'
procedure until a clean contour vector data set is established.

6.3 TAGGING

Tagging involves the association of elevations to the contour
vectors and the subsequent generation of data in a form suitable
as input to the gridding process. Figure 6-3 shows the data flow
through tagging. The tagging process is divided into two sec-
tions. First, all sheet boundary intersecting contours are tagged
and edited, then the internal (closed) contours are tagged and
edited.

The open tagging process is performed by STARAN and utilizes an
ordered elevation 1ist of the manually tagged index boundary
contours. The index-contours were originally selected because:

1) They are thicker than the non-index contours, and are
most easily identified after 1ine separation as a
separate plot,

2) They are fewer in number than the non-indexed contours,
thus reducing the amount of data requiring manual
tagging, and

3) Their elevations are equally spaced, enabling the cal-
culation of the non-index contours elevations to be
simplified.

The STARAN performs the following tasks during open tagging.
Receives the ordered index elevation 1ist (by boundary
left, bottom, right, top).

Generates the ordered sheet boundary 1ist of contours for
the specific boundary.

weuberq mop4 ejeq buibbe]

E L]
INIQQIyy
&
Y,
G
&
%Q
v,
0,
o
mxo\
101d
3004d
N39 SovL
aoos
“wgwA
S, 4
J

LSIT NOILVA3TG
a39%9v1L

SLSIT *A¥gg
® NOILlYA313

S+93A Avyyy
1234 ¥no1Ngy

"€-9 aJ4nbl4

SOWJ 11a1

S«J3A " Ad¥QY
@399yl

SNOILYA33
*A¥08 X3ANI

S4+J3A

*J

6-6

Correlates the two lists and identifies any mismatch in
the number of index boundary matchings,
Excludes any 'untaggable' contours due to insufficient
data (these are later tagged during editing).
Tags the remaining boundary contours and sends the
elevation list to CDC.
The elevation 1ist is printed and any untagged boundary contours
are tagged manually. The elevation list, along with the contour
vector and array vector information is used by STARAN for the
closed contour tagging process.

The closed contour tagging procedure is performed by STARAN and

incorporates the following steps:
1) Receives elevation list and vector information from CDC,

2) generates a counter-clockwise sheet boundary flag file
to identify if the slope is rising or falling as each
boundary contour intersection is found,

3) Generates ordered North-to-South array boundary lists
of contour crossings corresponding to the edge of each
Data block,

4) Tags all closed contours crossing the N-S line,

, 5) <Cross-checks the tagged contours against previous N-$S

3 lines and flags any inconsistency, repeats steps 3),

4), and 5) for all the data blocks on the sheet, and
6) Sends the updated elevation list to CDC.
Final editing is performed (if required) to complete the tagging.

The tagged contours are plotted by elevation increment; i.e.,
one plot for the index contours and one plot for each of the
non-index elevation increments between two different index con-
tours. Also, a DGR formatted data tape is generated for use by]
either the new parallel gridding process developed on STARAN or
by the existing DMA gridding scheme.

T Ty ey

6.4 GRIDDING

This item discusses the basic gridding procedure. The indi-
vidual steps are identified in Figqure A-4 of Appendix A.

The first step is the generation of the contour point of known
clevation. These points can be obtained from one of two sources,
either:
a) from the DGR input tape (if it contains vector data), or
b) from the output of the tagging portion of CONTAGRID.
In case b) this requires the use of a 'resampling process' to
convert/reduce the 1, 2, or 4 "mil" resolution data to the 10-mil
grid spacing. This process is performed in parallel by STARAN.

The next step reads the DGR tape which contains the supplementary
image data, and segregates the data into four types: stream/
ridge (R/S) lines, spot elevation, R/S junctions, and neat line
points.

The next task uses the neat line information and contour vector
(check boundary) information to build the four neat lines. The
process used is a linear interpolation. The next process is

to use the R/S points, the contour known-elevation points, and
the R/S junction points to produce the R/S intersections. This
process again utilizes the STARAN processor. The process then
continues by interpolating along the R/S lines to produce R/S
points of known elevations.

Following this all points of known elevation; i.e., R/S points,
spot elevations, and neat line elevations are merged and con-
verted into a ‘backscan ordered' file. This file is used as
input to the gridding process along with the left edge neat
line elevation points. At this time, STARAN's primary purpose

is to perform the 'Dual-axis Parallel Gridding Algorithm' (DAPGAC).

Now, it becomes necessary to describe the justification for the

*mil" = 25 microns.

6-8

implementation of a 'new' algorithm. In March 1979, it became
apparent that the primary potential benefit of implementing DMA's
Planar Interpolation Gridding algorithm on STARAN - the ready
validation of STARAN gridding results by the direct comparison

to comparable results achieved with DMA's UNIVAC - could not be
realized. Prior to this conclusijon, GAC had already reported
that structuring the inherently sequential algorithm in such a
way as to keep the processing elements of a parallel processor
busy, caused output grid data to be developed along 63° diagonals.
To "un-skew" the output developed using the STARAN version of
DMA's Planar Interpolation gridding, heavy 1/0 demands would be
placed on the CDC6400/STARAN computing facility.

Also, at the same time, a number of DMA personnel expressed the
opinion that in addition to the fact that the Planar Interpola-
tion Gridding algorithm didn't match the parallel processor
architecture, the algorithm had deficiencies that needed atten-
tion. Later, it was mutually agreed by ETL, DMA, and GAC rep-
resentatives that effort to implement the Planar Interpolation
Gridding algorithm would be halted and that GAC should suggest

a gridding approach suitable for parallel processing. Subse-
quently, at DMAHTC, GAC described the Dual-Axis Parallel Gridding
Algorithm for CONTAGRID (DAPGAC) and recommended that it be
implemented under the CONTAGRID program. It was agreed that

GAC should proceed with the DAPGAC. The nature of the algorithm
and its comparison to the Planar Interpolation Gridding algor-
ithm is summarized in Appendix D.

The output of the gridding process is formatted in accordance
with the DMA terrain elevation data file requirements.

4
i
AD=A091 736

UNCLASSIFIED

GOODYEAR AEROSPACE CORP AKRON OH F/6 9/2
CONTOUR DIGITIZING AND TAGGING SOFTWARE (CONTAGRID).(U)
APR 80 N J ADAMS» M ANDERSONs G BIECKER DAAKT0~77=C=0223

NL

GER=16752 ETL-0228

END
DATE
FUMED
8l
oTic

6.5 EDITING

This item discusses many of the 'edit' functions performed at
different stages of CONTAGRID processing.

The editing processes can be broken down into the following
categories:
Editing to clean up the raster source data,
Editing to reassign misclassified numeric, depression
and special symbol 1ists, and
Editing to correct or assign contour vector elevatjon
tags.
It is the first two of these categories that will be discussed
here.

6.5.1 Editing Source Data

The raster data that is scanned and used as the source input to
CONTAGRID may be error ridden for several reasons:
The original film may contain dirt specks that get
rasterized,
The line data may have been poorly drawn, i.e., out-
side the tolerances of parts of the software,
Although the original film may be within these toler-
ances, the scanning process itself could generate
errors such as:
The operator using an incorrect 'threshold' setting,
or
‘Line blooming' across or down the sheet due to
expansion of the scanner drum itself during
operation, etc.

Figures 6-4 and 6-5 show plots made of two different machines
raster scanned version of the same source material at 1 micron
resolution. Each asterisk (*) indicates a single resolution

6-10

R o

[OOSR

I

*
‘ras S LAAEFPREAT I S ¥ -
..l-l“...l P Y IR A A R
sessktas Seuxare . ,
arandd “aes :

ARURUTSG RS K& FES
FUREAEEASEEKET LS T E «
Qﬂ!lt"'ﬁa-vthno-t P2

«

CPUAERERGEX

PP R RN .
REEEEEE S .ﬁlﬂﬁiﬁﬁ

& wEEd

6-11

.
sesese «
T ausE XuE
sEsNa s
sas aaSEd &
SRR

H
3
1
Elevations D.M.A. T.C. RAPS

Figure 6-4.

Al —r S s

LI

D et i

Mw

. catEifE
®gazx ‘Qt-ki

vRLead T - &
Ay QA XE D

RETAv St R
REEV L1 aa L ERE

L
- Saad
dascsvea susrgead
s . CRENEXEA- S8 sssasgsd
qeERERAE .. A RAEE SRsaases
- -9
+ .
SREREEY .t. angasug
HAACERLE R RS AeKIIETER -
CRAREN TATAIEE UM
VAT UL R ALY RETE RS SeaLs s cxn
BETP DU B KNS £ K anErenual

BEAE S SRKEALRESE

seesddsqaae
oeass

ttnniaatltl-.a'touinﬁa SR sI sy
aerbcRenE
Scacaqere

aGrxcEEruan
RE~s Ve

Arsnagus
EALad LU «aas
I I ERARAT L AD RS

SnEaE ALY
RETBacn e cw

sEcssag s GRa) dC A senasa
EncuRLEVRE SAEER> UXY
LI TR IS AeEE-aEnE
EEEEKBELLEN «reucEEREE
SRR I CRLEK asagssany
SEEAasa KA
senank reuaxend
CRRE NN R
P

L ik
ZEETXHEER
RERE R Ak KB ML LR
R R ERL AR AL KRR A EE X (- KA

(7]
o,
<
o

A.C.

Elevations D.M.A.

Figure 6-5.

6-12

unit. The heavy lines approximate center lines produced after
line thinning and the automatic clean-up routines used within
the STARAN processing at the beginning of CONTAGRID.

The ability of the automatic editing software to identify these
numerics is greatly reduced due to the more complex form of this
data (see Appendix B for more information on numeric detection,
etc.).

Figure 6-6 shows another situation, this time the source film

had 'dirty' spots which caused many of these problems. A large
number of the small regions are ‘cleaned.up' using the CLIP/
Cluster Elimination routines developed for prior raster processing
software.

Figure 6-7 indicates the case of 'line coalescing'. Notice how

the merging of the two lines has occurred in the scan direction.

Again, the solid line conforms closely to the resulting data

after line thinning. Each of the short vectors joining the two

Tines has to be deleted from the resulting vector files by

manual editing (see Appendix B). Also, because each vector

contains a large amount of header information, it means that

these redundant vectors are increasing the intermediate vector '
file size which consequently increases any 1/0 or search times E
on this file. i

Two other situations that produce a disproportionate amount of
editing are:

. The use of input data whose 1ine weights do not stay
within the specified tolerances due to poor compilation,
and
The use of input data whose Tine weights do not stay
within the specified tolerances due to 'blooming' of
the scanned data. ,

6-13)

LIRCA PR B N e ‘ R] .
-~ :‘“—J_Vv.‘ i : il e - e e JE _— ' J

-
CRrRRAND

e
e
«

Aehh

ARG ARRAD

*

fdtaan
b

44 @ ¢
232237271
CEEQILes -0y
.'..: P

£ 444
.

-8

H
Pe-

paPE
AARARRS

*
e
it

B AAREA S AR

+H

(33334
s EEL QA SN KIS BEBr R EEEE
] 333233 ‘e agsun
.

SFSEC L naaEE

o axauzLae
® &¥Jvsqex
caan

[111
LI Y

3350103

L2113

*
« 13233

g « seae
UL sungesasaaRES

cARA RS

AEEEEEAR LG S L KELS RERO TR

EOT QRS AR

333
ot ad srsagoE
=

s (3333333

PITIII3Y
ssucsaag

ABAR A

AR AN bR
AR Cnh

6-14

33

b *s
Er Qe NS yyang.
2] 2.
Feakagi:

3

1333 (&2

LV EEES 0. ricae

LTI TR 720N

CESCSEcERELe
sveea

ras

L2

Elevations and Clutter

Figure 6-6.

v

PENTURPERN

-~

N R K

ek KK

R R KXKEK

g <

R
..,._.
R

KK

KRBRKL
.7**.?* ﬁ* **.ﬂ

e i B A R AL

et

%J.*.ﬂ.ﬂ KK
kS 7***#... AR ELRLRK KKK
AR LRARRBRRBRRKL L KRG *®
BRBEHRARULILRKLKLRRREK KK
.T‘"..ri*****************
RKERKKRR DR KRR R R RR K

XK KK A kAR K ***.TJ,*
J‘,W.T*..!.x*..-.«..—.*

HERKRE KK
PARKEREKK X
i WA AT K R K KL E K

R A L KRR AR R AR KRR
*k**.t****..«*.r.x**:
CRERRRKRRR
.R*.xu..** “3X r.i*.r

1o

*.7.?...

KA KKK KKK x..\.x*i ﬂ.r.r.*.r
**** ..ﬂ*.?

:******ki*.’*‘
KL K on L KKK
*ﬁ.x**********
KAk K KREK KK
P 96N R KK AR KA
KKK KR KK KA
ARY L KREZRRRRK
ESEEEOLE L TS 3

rrrrrr aard

SCAN DIRECTION
ine Coalescing

L
6-15

-7.

jgure 6

F

«d
i)
ik

% FHE

P)
vyl

B S

o

e

Figures 6-8 and 6-9 show what happens to these data sets after
line separation and thinning. The misclassification causes
immense problems for editing.

6.5.2 Editing to repair Line Breaks, etc.

Figures 6-10 and 6-11 show the top-left corner of the SHIRAZ data
sheet (shown in Figure 5-1), after line separation, vectoriza-

t tion, automatic editing, and plotting. Each vector has been

E‘ assigned an identification aumber which allows it to be edited.
|

:

Figure 6-12 shows the automatically generated join vectors for
the index vectors.

Figures 6-14 and 6-15 show the same two vector sets after manual
editing of the problems indicated on the first two plots.

6-16

/ /
/
// — ”’,f”'
A. INPUT B. INDEX SEPARATED/ C. NON-INDEX SEPARATED/

Figure 6-8. Misclassification due to Inconsistencies in Line Weights

THINNED THINNED

il
F\ T~

A.

INPUT B. INDEX SEPARATED/ C. NON-INDEX SEPARATED/
THINNED THINNED

Figure 6-9. Misclassification due to 'Blooming'’

Figure 6-10. Index Contours at 2:1 after Automatic Editing

f-18

e

-\

Figure 6-11. Index Contour Join Vectors after Automatic Editing

6-19

/‘/-:q .

2N

P,

GO %

35’35_,_

Figure 6-13. Numerics at 2:1 after Automatic Editing

6-21

T

IR T

Figure 6-15. Index Contours at 2:1 after Manual Editing

6-23

SECTION VII - RESULTS

In general terms, the results of the contractual work are
described below.

There exists a CONTAGRID software package which shows the valid-
ity of an automated approach to the tagging and gridding of
raster scanned contour data.

The above software was structured to allow processing of all usual data
resolutions and densities, and accomodate sheets up to 19"x22"

data areas. The software was built using a 'structured' approach

which allows the user to investigate the performance of indi-

vidual sections of the process. Specifically, this allows the

user to improve individual performance in certain areas and change
specific functions from presently manually-oriented approaches

to more automatic or interactive methods as new hardware or soft-

ware techniques become available.

Hard copy outputs have been generated at all the major steps in
the process as shown in Figures 7-1, 7-2, and 7-3.

Magnetic tape data was also generated after both tagging and
gridding to allow the user to test the data against other 'tried’
software.

At various points in the processing self-checking procedures have
been incorporated to allow early detection of problems. This
allows the user immediate insight into the problem and the capa-
bility to overcome the error by repeating the prior process

7-1

Photocopy of Source Shiraz Contour Data 1:1

Figure 7-1.

b 2l

i Tenuita

€ 40 T 333YS

quawaJadul uoiierall Aq pajesedas s3of{d 4N03u0j

INIWIYINI 1004 00¢

V.

A

S~

2~ @4nb14

X3ANI

€ 340 2 339ys 2-L ?34nbiL4

INIW3YINI 1004 00%

INIWIYINI 1004 009
¢

800 FOOT INCREMENT

Figure 7-2 Sheet 3 of 3

7-5

Tapeout

7-

7-3. SHIRAZ Pseudo D.G.R. from

Figure

(with the required fix) without restarting the whole package.
Although this procedure is not always simple it does reduce the
need to restart the process at the beginning.

To aid the user, documentation has been generated to identify
all of the steps of the CONTAGRID procedure. Specifically, the
job-control cards, the input/output of each process, along with
valuable error identification messages have been provided (see
User's Guides Parts I and II).

The COMTAL image display software has been developed at Goodyear

to allow display and inspection of the results of gridding.

This software accepts data in the "DMA standard for Digital

Terrain Elevation Data" format. Figure 4-3 shows a color photograph
of the 4"x4" test region.

Several support/utility routines were also generated which allow
evaluation of a number of different raster-scanned data sets (see
Appendix E).

Besides the above results, a number of other important issues
have been investigated. Specifically, the need for on-line
raster editing, and the possibility of excluding the need for
line separation altogether.

7-7

APPENDIX A - CONTAGRID TOP-LEVEL STRUCTURE CHARTS &
DATA FLOW DIAGRAMS

This appendix contains the top-level structure charts/data flow
diagrams for the CONTAGRID software. These charts are comprised
of two sections:
Contour pre-tagging & tagging (Figures A-1 and A-2)and,
Contour gridding (Figures A-3, & A-4)

Appendices B, C, & D describe the pre-tagging, tagging and grid-
ding programs in more detail. Appendix E describes the utility
routines developed during this contract.

Appendix F contains file/record layouts of the different data sets
generated throughout the CONTAGRID software.

A-1

e i S T— s To——— < Y

34047 34N30N43S (dA37-do] buLbbe] unojuo)

SANVYWKO)D
1103

34v1
1074

NOIL1YAIT]

Y auanbiy

SYI43INVYYd
39Vl

151
oVl
A
_ \ 1
N,A313 A8
S¥01I3A

mzmopuou SYN0INOD SYNOLNOD SH01J3A 031103 v1va ANYN]
uwoﬂ g3s01) 9yl 4N0INOD oLny ¥40123A °V LY3IAN
g uae ovl LCREUTE I IERLLELES ILVAIYA avawd| Viva

gN199vVL
4n0LINOD

‘y

weabeLg Mop4 ezeq burbbey pue buibbel-aud °2-y 24nbi4g

A-3

SY3AVIH
%k

791 AGNS9

I TTEL LN
191 ¥aay ¥I1SYY
191 23N AY¥Y 37y

34BYJ 94N3ONA3S |3A371-do) Bulppilun unojuoy “g-y ¥4nbly
S1d NMONY
. vivd SINIT $3dAl SINIOd 1y
m%um NYISHIVE mpmawnw 3 mhwpum ¥/s LVaN ¥1iva ¥9d ¥NOLNDD 3 <»mw
% 393N SN, antil [vorirtyva 310dW07 JLVEYd3S sg1Ing 37dWYSIY
usSifyvd

Z
2
%
2
v

ONIQQ1¥9
YnoLNOD

A-4

-t

ey

Ny
34Vl 0300149

(a3%2vd) viva
0360149

INTY VI
~T1143A NAONY
AVING AN

A-5

weaberq mop4 e3eQ BuippLu9 4nojuol “p-y a4nbi4

SINIOd 3INITLYIN

snotiyallld
104S 031¥0S

3113
SNOILVAITI 1048

S1d OGN/ LYVLS
SYoLIIA

WAOLINOID N3dD

"S1d4 "A313
$14°A3M] INIY LYIN
17 1y .:o»w“umn”“
3903 14N 1406
?
SAI13 ¥/S

31v0d

/uviuLs

SNOTLYAII3 A SHOLITA 411NA vt
SItuy
SNOTLIISHIINT ounon SaVWY shat
) NOTLILUVY
oV /S
40 SNOIL
-23SMILNI
onlJ
SINIOd NMONX
QINNYISHIVE
/ (4x) SUOL23A NIOP
SiNTog % a9
P 190s ¢ (90)
and?ouy"\ %2019 v1V0
nn 1n05 374MYS 3N _
WILEIA ST
NRONX ® NOT1VAINY
A7104 070 ¥NOLNOD
DN ¥01972 Aveuy
3dv1 1ndN1

¥nOLN0D ¥90

1. TAPEIN

2. GETVECS

data.

process

it's binary equivalent one data block at a time.
segmented into iterations (called 'chunks' by the STARAN raster
processing software) und off-loaded to the second RKO5 disk.

APPENDIX B - PRE-TAGGING

This appendix describes the most important parts of the pre-
tagging software.

This program consists of two programs.

IMAGE TAPE-DISK: This routine copies the tape to
disk (in the case of RAPS format, even & odd records
are copied separately).

TAPEIN: This routine merges the odd-even RLC

files (if RAPS data) and generates a parameter file
of approximately 120 words from the card input para-
meters shown in Figure B-1. Many of these parameters
define RKO5 disk sector addresses and STARAN buffer

addresses which are used by the routines which convert

the RLC data to it's binary equivalent (see GETVECS).

This routine uses STARAN to convert the raster data to vector
Prior to this conversion, the RLC data is converted to
This data is

Each iteration is loaded into the arrays and the conversion

takes place. Figure B-2 identifies the relationship

between a tape record, data block, array load, and iteration.

The following processes are performed on each iteration:

The binary data is loaded into the arrays.

Line separation is performed to extract either the
index, or non-index 1lines.
The data is 'thinned'.

B-1

RPN PRSI SR VORI UM CE N

INPUT DATA TYPE 1=ETL, 2=DMA

RESOLUTION 1, 2, or 4

TOTAL # RECORDS

SHEET LENGTH (INCHES)

SHEET WIDTH (INCHES)

NUMBER NF ARRAYS (STARAN)

INDEX LINE WEIGHT (MILS)

NON-INDEX LINE WEIGHT (MILS)

INDEX INTERVAL (FEET/METERS)

NON-INDEX INTERVAL (FEET/METERS)

MAX ELEVATION (FEET/METERS)

MIN ELEVATION (FEET/METERS)

MAX NO. OF CHARACTERS IN ELEVATION NUMBER
MIN NO. OF CHARACTERS IN ELEVATION NUMBER

NO. OF RECORDS TO SKIP (WINDOWING)

Figure B-1. Tapein - Image Parameters

o s e e et i

B-2

GETVECS - continued

The data is then cleaned up, i.e., small specks
are removed and line pips are deleted.

Junction coding is performed.

The data is vectorized and sent to the CDC.

A1l of the above steps (except for junction coding) are described
in detail in Section 3 of ETL-0132 'ASSOCIATIVE ARRAY PROCESS-
ING OF RASTER SCANNED DATA FOR AUTOMATED CARTOGRAPHY II. The
array vector format has been updated to include the junction
number (if one exists) and the type of the vector ends (see
APPENDIX F, Figure F-1). The array vector linkage table is
shown in Figure F-2. Junction coding locates junctions of
three or more array vectors and assigns a unique junction
number to each of the individual headers. If any junctions
are found to exist on array boundaries the junction identifi-
cation number is assigned to the first array vector found
which is associated with this junction. If the other array
vectors whose ends are common exist in a neighboring array

or data block, the junction number is saved and then retrieved
at the appropriate time.

GETMVECS !

This program builds the master vector headers and the list of
array vectors associated with each (see Appendix F Figures F-3,
and F-4).

The basic sequence of steps is.

1) Read in index link table segment from disk

2) Create sub-master vectors for all segment entries

3) Repeat steps 1. & 2. until all master vectors have
been created (from the sub-master vectors) and output
to disk - 'dummy' headers and master vector linkages
are stored separately.

B-3

M

C

uolLjeusasll
ue *jd0|g eleq °*‘peo] Aeauy *puaoday
vwam» 01 eauay abew] jo diysuojje(ay °z2-g sanbir4

B-4

SAVHYY
40 Z ‘1

NN

NOTLVY3LI

avoT \\\ ﬂ
AV HYY ‘
f
VELL] 51139 f
I9YHI 70(8ve YIUY IBVWI ENTAELTT
P~ ‘
1 NYIS ¥22
SN X018 _~
" . v1iva !
1
\ _,‘
" "
o S~ — \. ;
SINIT NYIS t22 INIT NYIS T |

avol Aviddv

73018 viva gy0J33y¥ 3dvl

3. GETMVECS - continued

4) The real master vector headers are created from
the dummy headers by filling in the information

from the array vector tables.
5) Steps 1-4 are repeated for the non-index lines.

At the time that the master vector headers are being developed
those vectors whose ends are computed to be within a pre-

defined framework around the edges of the sheet have their
sheet boundary flags set.

4. GETEDS

This program detects and lists the numeric and special symbol
vectors, as shown in Figures F-5 and F-6, attempts automatic
editing using STARAN. The basic procedur2 is as follows:

Detect symbologies i.e.; ‘
Locate numerics, 1ist the associated vectors for |
deletion.

H Locate depressions, remove the tic marks and tink
) the master vectors at the junction (node) points.

Identify cuts and generate the lists of ordered
vectors which define each of the contour sections.

Identify the fills and remove the tics.

If no ambiguity arises, join the end points of vectors
whose ends are deemed to be part of the same contour
vector.

Establish edit lists for both auto-edited symbologies and
non-edited symbologies.

Develop plots for editing symbologies.

Utilize symbology I.D.'s to manually complete editing
activity.

B-5

L . R———

4. GETEDS - continued

Figure B-3 shows the various symbols. Following is a more
specific description of the procedures for identifying
these symbols.

Procedure for Identifying Numerics:

Collect master vectors that have lengths like numeric
vectors and are not node/node vectors,

Use each collected vector as reference and find all
other collected vectors in the proximity of the reference.

Determine whether a reference group has a sufficient
number of master vectors to meet the characteristics of
an elevation number (group of numerics). If the group
qualifies as an elevation number, the master vectors of
the group are entered into a numeric vector list.

When the group has excessive master vectors, a node merge
routine is used to combine master vectors into numerics,
If the numeric count can be brought within a range for the
vector group to be categorized as an elevation number, the
master vectors of the group are entered into the numeric
vector list (as shown in Figure B-4).

A1l master vectors listed as numerics are subject to
deletion.

Procedure for Classifying 'Depressions', 'Cuts', and 'Fills'

; . Identify tics: collect master vectors that are sufficiently
short and that have both an open end and a
node end.

Collect groups of vectors that are adjacent via nodes.
(A node/node master vector is used as a group starter).

Groups with no tics are classified as "cuts".

Groups with tics and that have node/node vectors of about
equal length are classified as depressions.

. Remnant groups are classified as "fills." B-6

Y

SLoquiAs |e128dS B sojuaauny ‘g=-g 94nb14

NOISS3did

N4 %
o
N
Q
SOTHIWNN
1nJ \

0092
0092 00.2” Np0LZ

B-7

o AL <Pas BN A

VECTOR V1

/./

-\~://'_- 4

3-\‘

COMMON NODE/JUNCTION POINT

VECTORS Vl’ Vs, V3, & V4 REDUCE TO ONE VECTOR V1

Figure B-4, Vector set Reduction for Numeric Detection

B-8

Procedure for Treating "CUTS" (see Figure B-5)

For a cut group find a node pair Al’ A_1 connected by two
different arcs, a;, 33 bys 4 where the length of b;, ,

_ and the length of a,,_; concatenate a;, ; and by, ; to

i form 1st closed contour.

-
l
z

Find 2 nodes nearest the pair of starting nodes (AZ’A-Z)
and find the arc common to these 2 nodes (b-a’z)‘

Concatenate a,,13 ays_y3 a_y»_p: and by, 5 to form the 2nd
contour.

Find 2 nodes nearest the nodes A,,A_, and not A;,A_,4 (Namely,
AzsA_3); Find the arc common to these 2 nodes (b_j,3).

Concatenate 33,2', 32,-'; a]’_]; a_]’_z; a_2,_3; b3’_3 etC.
Continue until search for groups fails.
Generate edit list and identify elements.

Procedure for Line Join (Index or Non-Index)

Collect start/end point values of open-ended index and
non-index lines,

Group start/end points within window.
Pair ends within window.

Generate array vector, master vectors and linkage infor-
mation using STARAN.

Send 1lists to CDC.
Update existing lists with new information,

; GETEDS also generates a list of unidentifable vectors together
4 with a 1ist of unpaired end parts to be used by the manual edit
f procedure VALDVEC. (See Tagging User's Guide.)

B-10

94Npadoudd buidnoug 403335-7n9 ‘G-g aunbiLy

L - Ty €
2'te ._ v Y _, L €=~
F-N. —t N'-—.l-.
_.l.Pa

N !..,..lli..b

PLOTGEN

This program builds a plot tape (for CALCOMP) with the
following plots from the correlation lists generated by
GETEDS.

Vectors of index weight
Contour vector segments
Joins

Vectors of non-index weight
Contour vector segments
Joins

Numerics

Special Symbols
Depressions
Deep cuts
Fill/cuts

VALDVEC

This program uses the manual edit commands, shown in Figure
B-6, to 'clean-up' the various vector files. If joining is
required STARAN is used in a similar manner to GETEDS to
generate the new master vectors and associated array vectors.
Plots are generated of the resulting edited files for perusal
by the user. Several iterations through VALDVEC may be re-
quired before the various data-sets are completely edited.

SQUEEZE

This program builds the contour vector headers and associated
array vector lists (see Appendix F - Figure F-7, F-8) from
the master vectors (join and non-joins). Each contour vector
consists of one or more master vectors and exists between two
points on the sheet boundary or as a closed loop within these
same bounds. If one of these two conditions does not exist
then a message is generated for the specific contour vector
which identifies it as a'dangling' vector. Such a message

B-11

7. SQUEEZE - continued

is generated for the specific contour vector which identifies
it as a 'dangling' vector. Such a message requires that the
user re-edit the specific contour vector to fix (join) the
'dangling' end to another vector. The squeeze process may
then be repeated,

o C(CHANGE FROM TYPE TO TYPE FROM #

o DELeTe TYPE #, #, #, #, #,

o JOYN TYPE #, #

¢ REORDER TYPE #, #, #,

TYPE

INDEX, Non., Depression, Cut, FiLL, # NUMBER

Figure B-6. Manual Edit Commands

r’b
b
!

APPENDIX C - TAGGING

This appendix documents those programs that perform the actual
tagging of the contour vectors, namely:

Open tagging (TAGOPN),
Editing of the tagged vectors (EDITAGS), and
Closed tagging (CLOTAG).

1. TAGOPN

This program attempts the tagging of all contour vectors whose
ends are identified as existing at the sheet boundaries and
are not manually tagged as input to this process (open index
contours). j

This program performs the open tagging utilizing the manually

identified, ordered set of sheet boundary contour vectors and]
input (by cards) in one of the four sheet boundary data sets.
STARAN is used to perform the tagging. Following is the set of
steps required to perform the tagging. Figure C-1 shows an
example of a portion of a map sheet with border intersections.

First, the open index contours are tagged:

Requirements/Assumptions

A11 index contours exist in a file for such contours.
The data set for an index contour includes an ID and
start/end point coordinates.

Procedure
Proceed in a counterclockwise direction around sheet
border and enter an elevation number into their ele-
vation 1ist for each index contour/sheet border inter-
section encountered (manual).
Enter elevation list into the processing system (manual)

via cards.

c-1

SUOL]23SU3JU] 4A3pU0g 333YS/4N03uU0) °1-7 34anbr4

AJdVANNOY 133HS

\ GI

XIANI-NON—

0091
6291

ek b

. Using the file of index contours and the end/start
point coordinate data for the contours, determine
the index contours that intersect the sheet border
~ (STARAN).
Sort intersections into west, south, east, and north
boundary intersection sets (STARAN).
Order four contour intersection lists that contain
contour ID and intersection coordinate data, as follows
(STARAN):
West: Ascending Y
South: Ascending X
East: Descending Y
North: Descending X
Concatenate the west, south, east, and north contour
intersection 1ists and associate with the elevation 1ist
by order. Report association failure if it occurs (STARAN).

After the steps above have been accomplished satisfactorily, the
non-index contour tagging process 1is begun:

Requirements

Files for both open indexed and open non-indexed contours exist.
A11 open index contours have been elevation tagged.

Definitions
Between two adjacent index contour/sheet border inter-
sections, the elevation change is up or down one "big
step" or zero; between two adjacent non-index contour/
sheet border intersections, the elevation change is up
or down one "little step" or zero.
N "little steps" = 1 "big step".
Between two adjacent index intersections, the index interval,

a non-index contour may intersect zero, one, or two times

only. (An open non-index contour that intersects the neat
line within the index interval twice is defined to be a cup.)

SR

|
i
i

Procedure

Establish a merged list of index and non-index sheet
border intersections (STARAN); (list intersections in

the order that they appear in going counterclockwise
around the sheet boundary. Make the top west inter-
section the first list entry). Send list to CDC (required
for closed tagging).

"Remove" all cups from the intersection list (STARAN).
Identify all index intervals for which all the following
conditions are true (STARAN):

N-1 non-index intersections exist in the interval.

No intersections are depression flagged.

One "big step" change occurs across the interval.
Establish elevations for non-index intersections of all
qualifying index intervals (STARAN).

Put all "cups" back into the intersection 1ist (STARAN).
Elevation tag non-index intersections adjacent to index
intersections according to slope at index intersection
(STARAN).

List elevation file (tagged & untagged) (see Figure F-9).

2. EDITAGS

This program changes/inserts elevations for specific contour
vectors from cards. It then updates the corresponding files and
prints out the new elevation list. STARAN is not required for
this processing.

3. TAGCLO
This program uses STARAN to tag the closed contours.

Requirement

A11 boundary contours have been elevation tagged.
No contours are broken internal to the sheet.
A11 closed contours have a depression flag.

c-4

b s N A M i L e A S bl 3. V. It i S

Assumptions

A North-South line drawn across the sheet will inter-
sect (in general) both elevation tagged and non-tagged
contours. If the elevation at one intersection is known,
the elevations of all other intersections can be found.

Upon elevation tagging the intersections of a N/S line,
fewer contours of a sheet remain non-tagged; by utilizing
sufficient N/S 1ines and tagging ever more contours, all
contours will ultimately be elevation tagged.

A contour tagged along one N/S line is likely to be tagged
along other N/S lines. Redundant tagging is desirable for
it provides means for automatically checking the validity

of the tagging procedure.

Tagging basis

Two flags are required to define the Southward pointing eleva-
tion slope at the point of intersection of an untagged (closed)
contour and the North-to-South cutting 1ines. The first flag,
the depression flag (DF), is associated with the contour.

When DF=1 it indicates the contour is a depression contour;
when 0, it isn't. At entry to the tagging process, the condi-
tion of the flag is known for all closed contours.

The second flag is associated with each intersection of the
N/S cutting line and a given contour. It must be computed for
each new N/S line. Beginning at the northern end of a cutting
line, the intersections of a given contour are counted. The
crossing flag (CF) simply indicates whether or not an inter-
section is even or odd. CF=1 indicates an odd intersection.
When both DF and CF are known, it is dimplicitly known that

the southward pointing elevation slope at an untagged inter-
section is rising or falling. If the slope flag

(SF)=1, it indicates that the southward pointing slope is
rising; when SF=0 it is falling. Note that SF is the
"exclusive or" of DF, CF., By comparing the SF flags of 2 neigh-
ing intersections, A and B, where A is north of B, the

C-5

magnitude of the elevation step from A to B is given Ly the
complement of the "exclusive or" of SFA, SFB. Its 2's complement
sign is given by the "and" of SFA, SF.,. By adding up

all elevation steps, the relative elevation of all steps can

be found. By adding a bias to the relative elevations so as

to cause the correct elevation at a point of known elevation,

all intersections are assigned unbjased elevations. The

newly found elevations of contours are checked with those

found previously in order to pin-point inconsistencies.

Treatment of boundary contours

The previous discussion neglects to indicate how the boundary
contours are able to be treated liked closed contours. Since
the closed contour tagging process demands that all contours be
closed, it requires the closure of all boundary contours. Thus,
for boundary contours, the two contour/map boundary intersection
points are connected with a 1ine external to the map region.
The intersection point of a contour nearest the top west

corner of the sheet, as measured in a clockwise sense, is
connected to the second intersection point by drawing the
external line counter clockwise until it touches the second
intersection point. (See Figure C-2.) Because the eleva-
tions of boundary contours are known at the neat lines, the
"effective" depression flag of each artifically closed

boundary contour is able to be established.

The cutting line process presumes that the starting point of
the N/5 line begins outside of the region of closed contours.
In practice, the most noteworthy terminus of the N/S line
always lies on the North neat line. Thus, the terminus point
may well lie inside some of the artifically closed boundary
contours. As a result, the CF flag must account for the fact

that the crossing count is low by 1 for such boundary contours.

When treating real data, provision must be made to account for
a whole variety of anomalies (e.g., supplementary contours,

C-6

changed contour increments, vectors used redundantly (as in
the case of cuts and fills)). The tagging software structure
allows for the inclusion of the vector flags and parameters

into the vector headers so that such anomalies can be
accommodated.

The exact geometry of the N/S cutting line is arbitrary. At
present, the N/S lines follow the paths shown in Figure C-3.
By using the lines as shown, only very small contours that
fit within the grid can escape being tagged (= .160" by=.184).
By including spur paths to all small contours, all closed
contours can be tagged.

MAP NEATLINES

o”—---’-\\
- ek e
.-'1;"—‘1:-""::::“\\\
- - - m S, -
[4 e - - N\
'~ « o eTmms Bty \

Y\
BOUNDARY LINE Y \
CLOSERS '
A
'd P 1 \
9\
(!
(|
.2 Vory
/ '
B
:k 'y
e # /
! Ny
‘~ ..,l I
\~-‘-----~-----.o\\§:‘;/,
M ”—",
S g m e en OB e e @k o A

o~

b P -—--—-——_"

Figure C-2. Boundary Contour Closinag

c-7

DATA BLOCK
— e — SHEET BORDER (NORTH)

CLOSED CON';){R

SHEET BORDER (WEST)

N/S LINE 2

N/S LINE 1

Figure C-3. Top Left Corner of Sheet/Data for Tagging

c-8

APPENDIX D - GRIDDING

This appendix describes the gridding processes.
1. RESAMPLE

This program uses STARAN to generate/convert the contour vector
data set produced from the contour tagging process into the DGR
grid coordinates.

The CDC software sends parameter information to the STARAN pro-
grams along with the array vector data on a data block basis.
The array vector data is the merged data from the four files,
namely: 1) the index, 2) non-index, 3) Jjoin-index, and 4) join
non-index files.

The STARAN software converts the above data to the required
10-mil grid and sends the data (in buffer loads) to the CDC which
builds resampled blocks of this information and saves them on
the disk.

2. DGRCON

If the input vector dataset to the gridding process is not the
contour tagging output, then this program is used to build the
file of contour information from the DGR formatted input tape.

This process consists of two routines: 1) SEGCON and 2) BILDCON.
The SEGCON segregates the contour data from the other DGR data
and saves this file. The BILDCON sorts this file and separates
the information into gridscan line (GSL) format.

3. SEGDGR

This program reads the DGR formatted magnetic tape which contains
the supplementary image data and segregates the data into four
types:

Ridge/stream (R/S)lines (Figure F-10)

Spot elevations (Figure F-11)
R/Sjunction marks, and (Figure F-11)
Neatline points (Figure F-12)

The STARAN is not used for this processing.
4, NEAT

This program uses the open boundary contour vector information,

and the neatline points from the previous program to generate

the four neatlines bounding the image to be gridded (see Figure
F-13). STARAN is not used for this processing. The process

is performed using a linear interpolation between successive given

points for each of the four lines.

Corner point values are computed by a linear interpolation around
the corners.

5. GETSRKP

This program makes use of the ridge/stream (R/S) points, the
contour known elevation points, and the RS junction points to
find the R/S intersections. It then interpolates along R/S lines
to get allR/S points of known elevation. It is divided into
three routines: 1) PARTSR, 2) FINDINT, and 3) BILDSRP. The
PARTSR performs the partitioning of the R/S1lines and junction
marks along the scan block boundaries (see Figures F-14 & F-15).
The FINDINT uses the STARAN to find the R/S intersections points
(see Figure F-16). The BILDSRP interpolates between the R/S
intersections to produce R/S points of known elevations. The
points are then sorted (see Figures F-17 & F-18).

6. MERGBAK

| This program merges all the points of known elevation into one
? file and converts it to a 'backscanned file' (in reverse scan
|

block order) in preparation for gridding (see Figure F-19).

D-2

7. GRID

This program uses STARAN to grid and build an output file
from the neatline and backscanned data.

The gridding process utilizes a dual-axis algorithm imple-
mented in a parallel fashion on STARAN.

The DAPGAC develops elevation points at the mesh points of

a grid in a manner somewhat similar to the manner of the DMA
Planar Interpolation Gridding algorithm. Elevations for

columns of grid points are developed one column at a time
beginning at the left-most column and proceeding to the right-
most column, Unlike the Planar Interpolation Gridding algorithm,
which needs to develop the elevations of the grid points of a
column of such points one point at a time, the new algorithm
develops the elevations at all the grid points of a column
independently.

Ideally, to determine the elevation at a grid point, the known
independent points nearest to the points of interest should be used.

Hopefully, the points are well distributed. 1In practice, much
less information is used as will be seen in the discussion tnat

follows.

Assuming a cartesian coordinate system with the origin at the
grid mesh point to be interpolated, the Planar Interpolation
Gridding algorithm uses processed output data to get the
influence of input points of quadrants 1,2,3 and uses input
data only from quadrant 0 (exclusive of y axis points). The
computation involves one input point (the closest point) and
two processed points. OQver the line defined by the input point
and the desired mesh point, a linear interpolation is performed
to determine the elevation at the mesh point. (The 2 processed
output points are used to determine the elevation (via linear
interpolation) at the intersection of the aforementioned line
and the line between the two processed points. This elevation

D-3

e ol e . w2l

data and intersection data allows the linear interpolation
to proceed.) The Planar Interpolation Gridding algorithm
provides a one axis interpolation procedure.

The DAPGAC uses processed output data to get the influence
of points in quadrants 1, 2 (the left half plane minus the

y axis points) and uses input points from quadrants 0, 3
(the right half plane including y axis points). (See Figure
1.) Three input points, rather than one, are used to deter-
mine the elevation at a grid point, namely:

1) the input point nearest to the North,

2) the input point nearest to the South, and

3) the input closest point (or the point nearest
to the East if the closest point is to the North
or South).

The first two points lie on a N/S line (the y-axis) through
the grid point for which the elevation is required. A linear
interpolation develops the 1st N/S axis estimate for the grid
point elevation, the vertical estimate hv, according to the

rule:
hy = dnfs * ds Py
dN + dS
where
1) dN’ dS are, respectively, the distances to the
North, South points, and
2) hN’ hS are, respectively, the elevations of the

North, South points.

The 3rd point, the "closest" input point in the right half plane,
and the processed points of the left half plane are used to make

a second axis estimate of the elevation at the grid point. A line
running through the 3rd point and the grid point establishes the
2nd axis for interpolation and determines the prccessed points

D-4

i iz

|
?Kclosest input point
to North
' —T QUAD
QUAD | 0
1 ' .
grid
| point
\

closest input point

line of last set of to South

processed grid points _e

2nd axis 1l i
intersection t \ ‘///,—C osiiﬁxﬁ?pUt
point |
\
\
ds:
QUAD
2 |
|
~11£]
\
\

gl

l 1 unit
mw

processed input raw input
point region point region

Figure D-1. Processing for One Grid Path

D-5

1
|
|

needed by the 2nd axis interpolation routine. 1In particular,
the two processed output points required are those that lie
along the vertical line at x=-1 (and, thus, belong to the most
recently developed column of processes points) and are nearest
to the intersection of the 2nd axis and this vertical line.
The processed points are used to find the elevation at the
intersection point via linear interpolation. When this ele-
vation is established the 2nd axis elevation estimate for the
grid point, the closest point estimate, hC’ is computed using
the rule:

hC = I 'C C 1
dI + dC
where
1) dI’dC are the distances to the intersection point
and "closest" point, respectively, and
2) h;,h X . . .
I’'C are the elevations of the intersection point

and "closest" point, respectively.

To get the best elevation estimate for the grid point, hB’ the
two elevation estimates, hv and hN are combined according to
the nearness of points leading to the respective estimates
according to the rule:

D) ne ()
h. +{5} h
hg = (HV C "\dy/ "V where

(=) ()

dV is the smaller of dN or ds and

dN is the smaller of dI or dC'

Because the DAPGAC uses more input points to make grid point
elevation estimates, it should provide better elevation data
than can be provided by the Planar Interpolation Gridding
algorithm,

D-6

APPENDIX E - UTILITY ROUTINES

Figure E-1 shows an example of the input and output of the
utility routine which enables the viewing of a section of a
Run Length Coded data tape in DMA RAPS format. This routine
enables the user to specify:

1) The characters which define the contour line (in this
example,*),

2) The area (n x n pixels) which are defined by each
character,

3) The threshold; i.e., the minium number of 'ON' pixels
in the n x n area to switch-on the predefined character,
and

4) The starting x,y points of the plot relative to the
origin,

The routine was used to determine the orientation/origin of the
input and the quality of the scanned material.

Figure E-2 shows the corresponding FORTRAN 1isting for this
routine.

E-1

Xz [£ K K
e K Xu KX
4¢ xK K KKK
KK K X KK
(3 3 X EE I L
P KKK K HK KKK K * xx

************ H LR
x R

kk Ak kkkk
%
%

« ¥ K
u + FT x
: * & « & «
= KKK +% *E K *X xK *xx @
M KKK A ARKKNXRK K KKK KK, x & XK x % x& KR KK | =4
i~ KK KKK KA KKK R K * ¥ * X «¥ AR AT A e 4K K -
5] K x¥ oK L3 & KRR K e
(3 KKK *K K L 3 L2 3 =
. KKK * £ xK T3 o
KEKEK * % + * x
- ¥ raRYEK * 13 x4 e KREEARRKEK O
[KA AR KK LAY KKK *% KK X * AR KRR KR
— $H I A KKK K KKK K * K 4 X 4 & >
- KKK K KKK b 5 < x4 e]
o~ x%K HXKK KK KK KKK * X, ¥ K&&
- v. K KKKKHK KKK KK L3 x K KKK -~
o wd ¥ KKK KKK KKK K ®x KK KKK -
S N . KK AR KK KK A K KKK x4 x aK kK —
9 v K%K A KA KK X & * X -
B PR A XK K& K * x Xk >
2 — . s KK K L 23 « K
- PH KKK xx £ x4 « xqX
~ P — X KK A KKK E] «& x KK > 3
L: - (- LS 3 L .2 .2 *x * & « KX ©
* o KKK £ KKK L33 «& K&K —
—]) Y * 3Ty % x £-xx a '
.. v -1 C « * KKK KK KRR L33 ® “ha @ i
L - e KA KKK K x4 L2 £
o~ u x KK *x & +4 g !
L. —_ - K KKK *x * L 32 a ;
= bt = [X *E * x& L.2.2 -
fe [. c xx * % KK « 4 KKK ' H
< (7 (4 KK * xd xx L3.L :
: L T xRk xx * *4 =% @ !
< @ - C . < 4K XK & xx £ K +
= =< (W] < MI o oK % -« * KKK n i
[T Ca 3 o X% x4 ¥ x& <
— [V * xK x £ o .
v, e -— W R £ €xK L 3.1 '
e c = ¢ - - *x x¥ K x4 '
: P =~ — b x * K &« e x4
t <4 m (9 5 KR KKK *x i *& KEX .
[&] v ot = — KK KKK E 2 2 L 2 x4 4% *
-5 o ~ [A KKK KKK 2Ty « &« xKH '
[e . w1 D - *KE « *x LT
S £ i S g - * & K x4k *x L
8 ' - N = wn c: x * x4 “¥
R - . — ~r * X % K& (7]
") ¥ 7 u » - BT * KX K& '
t. -t ~ s — * *x 0K K S
8] o. Ll c D KK X & * X KK &
.t) X P C o Vo kKKK 4 x4 L3 +* o
e sl ‘ - -V X ¥ *x xK KK % o
v, . -4 U5 ¥9) R | LYK K& o 2KK * [T
: - . S Tl KK * 0K xx o
[e El - [AR KK R K L33
P) | - St [KKK KKK KKK
-~ L «C 1o d [0 KKK KK
L Mo (AN
N — (X . [Ta NN]
’ t [T, v
- ot RANTANE SR KK
PO K4 R A SRS = KKK KK
. [B N B T (75} X KKK
[53 aQ LA) €y * K
[SRS [N M £ 2
[S wl LIRS R T ol PR A4 - &KX
O N » gl J KKK .
S LA BRI SR A 7o T] ul K AR
L A Tl EC I SV L} ¥at B O
K © . =2 <

(g]

10
11

(e e Nyl

20

9C

91

92

25
93

QPLOT.

IIPLICIT INTEGER (A-2)
TUTEGD) BUF(190),LILL(141),CHARS(8),RL(400),COL(400)
INTEGER IN77(2),I1HNEW(2),KAE(2)

REAL RX,Y,[DCLX,RPAGES

DATA IN/2/,ACCT/0/,PASS/0/,1EYED/2/ ,DIRECT/2/,2C/1/,SAVE/2/
DAT:‘\ CHARS/’",'+’,'x','*"'0'.' o't."l-ol

DATA IN77/°111777,° °/,L'MEN/CINNES W °/

corzen /ERRORS/ERRCOD,SUBLCOD,DCBA

CALL EKRSET(LI'RCOD,10S,10S,DCBA,SUECOD)
GO TO 11

CALL EXITR

SURCOD=0

ERRCuD=0

GET INPUT PARAIMETERS

CONTINUE
PRINT 90

FOR'AT(’ SELECT INPLT FILE 1 OR 2 ALD SQUARE SIZE.”)
INPUT I,SCR

BAIE(D)=LI77(1) ; NAME(2)=1N77(2)
IF(I.EQ.2)NAHF(1)=TLEK(L) 3 NAIE(2)=DC.,11(2)

PRINT 91,CHARS

FORMAT(’ SELECT MARK AND SPACE CHAXACTERS FRC!! THESE:’,/
4+ 1X,R841,/,” 12345678 ENTER dipit,di~it”)

INPLT 1,0

MAKK = CHAKS(I1) ; SPACE = CLARS(J)

PRIKT 92

FORMAT(® ENTER TERLINAL WIDTH(CHARS) AND ILNAGE FILE °,
+ “SIZE(MNAX YEY)*)

INPUT VM, KAX

W10 = SGR*ij

PRINT 93

FORMAT(® ENTER START X,Y, AND SWATH WIDTH DELTA °

+ “X, ALL IN INCHES WITH DECIMALS’)

INPUT RX,KY,RDELX

REC = 1000.#* (R:+.0005)

IF(REC.GT.KIAX)REC = KCIAX

PIX = 1000.*(RY+.0005)

DELY = 1000.* (RDELX~-.0005)

DELY = (DELX/SCR)*SQR+SQR-1

LASTRC = REC + DELX

IF(LASTRC.GT.KMAX) LASTRC = KMAX

RPAGES = (LASTRC-REC)/(121.%#SQR)

PRINT 94,KPAGES

Figure E~-2. Raster Display Utility Routine Fortran Listing

(sheet 1 of 3)
E-3

R et

94 FORVAT(® THAT DELTA X WILL GIVE YOU °,F5.1,° PAGES.’,/
+ ‘EMTER THRESHOLD IF THIS SET UP IS OK.’/)
INPUT THRESH
IF(THRESK.LT.0)GO TO 3000
IF(THRESH.E0Q.0)GCO TO 20
PRINT 95,REC,LASTRC,PIX,W10
95 FURIAT(® RECORDS °,15,° ThRU *,15,7, PIXEL,15,° FOR “,
+ 15,°PIXELS.’,//,
+ 10X, <==TO0P==<<’,//)

r

C CFoi LUPUT FILE

C
CALL OPENF(l,NAME,IN,ACCT,PASS,KEYED,NIRZCT,EC,N,4,0)
IF(ERRCUD.NF.J)GO TO 8CLD

c

c RCPCAT FCR EACH LINE IN RANGE

C -~READ TUHE RECGRD & UNPACK IT

c

LCOUNT = O

DO 2000 KEY=RLC,LASTRC

CALL GETB(1,CUY¥,400,KEY,4)
IF(ERRCOD.N70)CO TO 8020

SIZE = IOR(IAND(4ZOLFE,ISL(BUF(1),-7)),
+ IAND(4ZFEVO,ISL(BLT(1),9)))
IF(SIZE.GT.390)GO TO 8030

LEN = 0

DO 110 I=1,SIZE

CALL GETGYTE(8UF,I1+3,DYTE)

RL(I) = IAND(2Z7F,BYTL)

COL(I) = IAND(2280,BYTE)

110 LEN = LEN 4+ RL(I)

c (MICHT CILECY. FOR LEN TOO SHORT!)
COL(SIZE+1)=0
RL(SIZE+1)=PIX+L=LEN+1
c
c -~IF PIX NOT O, SKIP OVER FIRST PIX PIXELS
C

130 IGO = 1 ; COUNT = O
IF(PIX.EQ.N)GO TO 150

131 COUNT = COUNT + RL(IGO)
IF(COUNT.LE.PIX)IGO = IGO + 1 ; GO TO 131
RL(IGO) = COUNT - PIX

C
c =~DECODE Y/10 PIXELS
c

150 IF(LCOUNT.NE.0)GO T0 152
DO 151 I=1,W

151 LINE(I) = 0

152 1I=1

Figure E-2, Raster Display Utility Routine Fortran Listing

(sheet 2 of 3)
E-4

R YT AT A S — Y . 3
A e ,JJ

160

165

169

aan

170

171
96

T00

(8]

RN

3000
C
C
(o
8010
8020
1 8630
8039

8040
£900
8999
9000

1D HE(

COUNT = RL(ICO) ; DOT = COL(ICO)
160 = 1GO + 1

IF(DOT.E0.0)1 = I + COUNT ; COUNT=0 ; GO TO 169
IF(COUNT.LL.0)GO TO 160

110 = (I-1)/SQR + 1

LINE(I10) = LINE(T10) + 1

I=I+1 ; COUNT = COUNT-1

IF(I.LE.W10)GO TO 165

==QUTPUT LINE TO TERIINAL

LCOUNT = LCOUNT+1
IF(LCOUNT.LT.SQR)GO TO 2000
LCOUNT = 0

DO 171 I=1,W
IF(LINE(1).LT.THRESH)LINE(I)=0
1F(LINE(1) .NE.D)LIGE(T)=MARK
IF(LINE(Y).EQ.O0)LINE(L)=SPACE
CUSNTLIUE

PRINT 96, (LINE(I),I=1,W)
FORIMAT(1X, 14CAl)

LD-DO
COLTIne
CLOSE FILE AMND EXIT

CALL CLUSEI(1l,SAVE)
IF(ERRC(IN.NE.N)GO TO 8040
GO TO 25

CALL EXIT

EKROR !MESSAGES

S=8010 ; GO TU 8900
S=8020 ; GO 70 8900

PRINT 2039,SIZE,SUF(1),KEY

FORNAT(® SIZE = °,16,29,° Ol RECORD KEY °,16)

CO TO 9000

S = 8040 ; GO TO 8900

PRINT 8999,ERRCOD,SUSCOD,S

FOK!AT(® ERROR CODES °,229,° FROU STATEMERWT °,16)
CALL EXIT

E!D

+« 1 FILES DELETED, 4 GRANULES

!

Figure E-2. Raster Display Utility Routine Fortran Listing
(sheet 3 of 3)

APPENDIX F - FILE/RECORD LAYOUTS

This appendix documents the file/record layouts generated by
the CONTAGRID software package.

F-1

WORD 1|ST. ADDR. I1ST A.V.[END ADDR 1ST A.v])
2 [ST. ADDR. 2ND A.V.JEND ADDR 2ND A.V.
ST._ADDR._3RD A VJEND ADDR 3RD AV | oo\
ST._ADOR. 4TH A.V.IEND ADOR 4TH A.V.] » enrio
" " / (A.V.)
m s
512 NO. A.V.'S IN RECORD
: DATA BLOCK I.D. ARRAY LOAD I.D. | ARRAY
. NO. A.V.'S IN ARRAY LOAD | } HEADER
. DATA BLOCK I.D. ARRAY LOAD I.D. \
CONTOUR VECTOR I.D.
) START JUNCTION I.D. END JUNCTION L.D.
A.V. LENGTH A. VEC. LD. > ARRAY
ARRAY LOAD ARRAY LOAD VECTOR
; * ST. PT. (COL, ROW) E. PT. (COL, ROW)
IL[T[BIRA|J|S[E JurlBiRjalS[4]E
| DATA —»———>—] |/ DATA
J;—::_-./L_,_,-jL—»' — /
: START POINT TYPE ENO POINT TYPE
. £ <E PT
; . END MARKER J = JUNC. PT
S = S BORY
A = ARTIF

Figure F-1. Array Vector Record Format

F-2

FROM T0
ARRAY VECTOR I.D. LENGTH OF
Y VE LD ARRAY VECTOR 1.D. | ooul \eerops
ARRAY |
VECTOR
1.D. 2
3
4
— ; e
{FLAG BITS FOR SYSTEM USAGE)
Figure F-2. Array Vector Link Table
NUMBER OF ARRAY VECTORS. 1 MASTER VECTOR 1.D. 0
LENGTH OF MASTER VECTOR 1
7 WORDS START X END X 2
1 HOR START Y END Y 3
[A[S]J]E _JA[S]J[E] 4
START JUNCTION 1.D. END _JUNCTION I.D. 5
fala]é6
—— 1 = INDEX |
REPEAT s START TYPE 0 = NONINDEX § | END TYPE
[} 1 = CLOSED
‘ 0 = OPEN
>END POINT « 1 (OPEN END)
0 (NOT OPEN ENDED)
L JUNCTION POINT = 1 (NODE AT ENDI
0 (NO NODE)
L » SHEET BOUNDARY = 1 (ON SHEET BORDER
0 (NOT ON BORDER)
L_.ARTIFICAL = 1 (GENERATED VECTOR)
0 (ORIGINAL VECTOR)
Figqure F-3. Master Vector Description
F-3

ARRAY VECTOR I.D.

g
- l— INDEX = 1

f JOIN -1
| NOT JOIN = 0
{ REVERSE -1

| NOT REVERSE = 0

Figure F-4. Master Vector Link List

CLASSIFICATION

1.D. SIZE OF LIST

2 | MASTER VECTOR L.D.
MASTER VECTOR I.D.

Figure F-5. 1Index, NON-INDEX, Join and Numeric
Classification List Format

F-4

g

SIZE OF LIST

NUMBER OF MASTER
SYMBOL 1.D. VECTOR'S FOR SYMBOL

MASTER VECTOR I.D. MASTER VECTOR I.D.

L' S =

NUMBER OF MASTER

MASTER VECTOR I.D. | MASTER VECTOR I.D.

Figure F-6. Depression, CUT, FILL Identification List

NO. OF ARRAY VECTORS CONTOUR VECTOR L.D.
[' START X END X
START Y END Y

11

INDEX =1
NONINDEX = 0
CLOSED = 0

OPEN =1
DEPRESSION = 1
NON-DEPR = 0

FILL OR CuUT *1
NOT FILL OR CUT = 0

—

Figure F-7. Contour Vector Header

F-5

ARRAY VECTOR 1.D.

L INDEX = 1

g JOIN =1

NOT JOIN = 0

: REVERSE =1

NOT REVERSE = 0

Figure F-8. Associated Array Vector List

1 = TAGGED
0 = NOT TAGGED

CONTOUR
1.D. 2

Figure F-9.

HEIGHT

Elevation List for Contour Vectors

—

L= TS) BN - S VU S]

e— 16 —ple—16)

-

> > >t >l >

[S2 0 P (PSIN N

g4 <] 4 <« <

A W N
el

128 WDS/RECORD BUFFERED

1024 WDS/RECORD BUFFERED

R/S X-Y DATA IS ORDERED AS IT CAME OFF THE DGR TAPE. THE LINE
POINTERS (ONE POINTER PER R/S LINE) POINT TO THE FIRST POINT IN
THAT LINE. THE LAST (N*P) POINTER IS FOLLOWED BY THE N+t
POINTER TO DETERMINE THE LAST LINE'S LENGTH. A ZERO ENTRY
FOLLOWS TO END THE LIST.

Figure F-10. R/S Data Points and R/S Line Pointers

B

1024

Figure F-11.

— 16 —d+—15 —
X) yl
id1 zq
X2 Y2
1d2 z,
~
Ju -~
T T
-1
-1
buffered

1024 words per record

Points are ordered as it comes off the DGR tape.
Last record is filled with -1 values.

Spot Elevation & R/S Junction Mark Points (Hash Marks)

1 X Y1
2 z,
3) Y2
4 Z,
-1
1024 -1
buffered
1024 words per record
X,y data is ordered as it comes off the DGR tape.
Last record is filled with -1 values.
First 4 words of first record only:
1 Xy Y1 corner 1
2 X, Yo corner 2
. 3 Xg Y3 corner 3 1
4 Xy, Yy corner 4

Figure F-12. Neat Line Points

e

NI N
LAJNT-'

buffered

Four (4) records, one each for LEFT, TOP, BOTTOM, and
RIGHT neat lines, in that sequence.

Record sizes: each record has one word for each point

along the neat line. The top and bottom lines have a
word (with a z-value) for each x-value; the left and right
lines have a word for each y-value. The four corners each
appear in two different records.

The z-values are in sequence along the neat lines. The top
and bottom lines are ordered left to right, and the left
and right lines, from top to bottom.

Figure F-13. Neat Lines (Splines)

F-10

x
E.
|
E
|
i
|
|
i

3lindex of start point
41 # of points Ny

5 X Y1

6 X, Y2
R~ '

T " N1

index of start point

of points N2

X Yy
X2 Y
N2 YN2
A: s
:(max) 4055
Random access: key

P line #

point #

J

J

line # refers to index
into R/S1ine pointers

point # is point number
within R/Sline (first
point in each line is
point #1)

key 4100

size of record key 1

2

size of record key 2

3

A

4096

!
Ay

®
size of record key 40961/

size=0 if record
doesn't exist

(scan block #-1)*16+(1:16)

(first record if first scan block is 1)

record size record:
updated with word count size (index=key)

key=4100, size 4096, initialized to O and

line segments are all within a scan block (16 GSL, first starts
with first GSL right of left neat line.)

only complete segments in record; unused words will be at end
of record.

Figure F-14.

Partitioned R/S Segments

le—16 —dle— 16—
1 1
2 [x loc 1=31
3 X2 loc 2
17 X16 loc 16
18 0 loc 17
<) =
NOT USED
rd P -
31 y Z 1
Y 2 (y,z)pairs: for X1 *
y z
loc 2 y z
: (}’,Z)pairs: for xz
y z
. P 7]
loc 16 A r z
: (v,z)pairs: for x ¢
bA z
loc 17 ° ~ 1
NOT USED
n
4095 I
buffered

4095 words per record
Xy through x,, are x-values of GSL's in this scan block

(y,2z) pairs and corresponding id's are sorted by ascending
y-value within each x-value group

id's are scan line numbers (from DGR tape) of the points.
y is 0.12.4

Figure F-15. Partitioned R/S Junction (Hash) Mark Points

F-12

§ g e R oY P——— Y L

R i G LR i e L Al o e 05 L 013, A . g WA W s ket b

k———16 16 —

1 1 Y1
21//1111117 2
3 X9 Yo
[1111177] Z9
A [J A ® -~
Py : Te : "r
3 Xn yn
* 1024 |/4/7/111] “n

buffered

Records 1024 words. Last record may be shorter. !
sorted x-major ascending, y-minor descending.

Figure F-16. Sorted Spot Elevation Points

F-13

R/S INTERSECTIONS - also used for sorting junction (hash)
marks and R/S known points

size list (key=101) —
le——16 —sle—— 16 —|

1 [Tine #1 | point #1L }

repeated for record 1 word count

- 2] each point 2
3| line #2 | point #2 3
- 22
line #3 point #3 .
Z3 100| record 100 word count JL
4 101} last line # in record 80
. 4 . -

120§ last line # in record 100

Random access

keys 1-80: Up to 1024 words (512 pts) each.
Points are sorted within four-record groups :
(1-4,5-8, etc.) i

keys 81-100: Up to 4096 words (2048 points) each.
_All points in records 1-80 are sort-merged together
in records 81-100. (No special fill values are
expected.)

size list (wds 1-100 in key 10l1) in common INTSIZE j
First 100 words contain word counts of corresponding
records. Unused records must have word count = 0!

Words 101-120 each contain line # (in 1l.s.16 bits)
of last valid point in each of records 81-100.
Other bits should be 0. Word 101 corresponds to
record 81; 102 to 82; etc.

Fiqure F-17. R/S Intersections

F-14

Eaitadiite obe A

-

index of start point * line # |point #
of points N1

zq see PARTITIONED R/S
Zp SEGMENTS

AR S I S

N4
index of start point
of points N2

“1
22
ZNZ
A -—-‘ =7
(max) 4095
buffered

Record size is 4095,

Data parallels PARTITIONED R/S SEGMENTS file, i.e., corres-
ponding words of corresponding records (with PARTITIONED R/S
SEGMENTS records taken in key-value sequence) supply z-values
for the (x,y) pairs.

z-values of -65536 are to be taken as invalid and the whole
point is to be discarded.

There are no '‘spacer' records to parallel zero-length records in.

Figure F-18. Partitioned R/S Elevations

F-15

ST

e =t ¢ i o et D il L

|‘_ 16 16 —l
1 X1 Y1
2 /17777 21
3 X2 Yo
/7777277 22
*n In
4096 |[/////77] %n

buffered

Record 4096 words. Last record may be shorter.
Sorted x-major, ascending; y-minor, descending.
No duplicates in (x,y). Duplicates removed by MERGSRK

Figure F-19. Sorted R/S Known Points

F-16

T T

fe— 16—sfe——16 —| key = 4100
1
X z 1] size of record (key=1)
2 X z 2| size of record (key=2)
;: T A; 3| size of record (key=3)
X z 4
/T ~4
Y
4095} size of record (key=4095)

random access

key = GSL-x-value - min-x (left-neat-line-x)
(i.e., GSL-x-value = min-x + key

keys range from 1 (for first backscanned GSL on
left-not left neat line) through max-x (right neat line)

record (key=4100) contain sizes of other records.

Figure F-20. Backscanned Known Points

F-17

