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TIME SERIES IN M DIMENSIONS: SPATIAL MODELS

Leo A, Aroian and Omer Gebizlioglu
Union College and University

ABSTRACT

The general theory of stationary spatial models
is developed: namely MA, moving average; AR, auto~
regressive; and ARMA, autoregressive moving aver-
age processes. As compared to the time series in
m dimensions, spatial models may be one-sgided,
two-sided, or mixed. Free use is made of the
previous results of Aroian and his associates in
time series in m dimensions. The main theoreti-~
cal properties of the models in the univariate
case are established. The multivariate case is
even more important than the univariate. Estima-
tion by minimum variance and simulation of the
models are included.

1. INTRODUCTION

The results of time series in m dimensions by
Aroian and his coauthors are used to establish
the results of spatial models in m dimensions.

If m=1 the results apply to events on a line such
as a river at a particular time; for m=2, the
events are those in the plane such as ecological
distribution of a plant, the average rainfall for
the plane after a storm is completed; for m=3,
pollution is space or distribution of amineral in
a mine,

Important assumptions are outlined: the charac-
teristic of an event in space is given by

zx,x=(x1,x2,...,xm), = x <00,

x-l=(x1—ll,x2-12,...,xm-zm).
Weak stationarity is assumed in épace as a mini-
mum assumption:

u_=E(z_)=0, —E(z <Mz )
z x

E(ax)=0, Oa>°' pzsh(z z =t
l=(£1,12,...,1m).

All second order moments exist. Note x may be in
any coordinate system, and £ may be plus or minus;
the results are in m dimensions, only the time
coordinate has been dropped from consideration.
Although time is a variable, it is not spatial,
so new theory must be developed.

Two results, in general, follow from time ser-
ies, If m=1, one-sided spatial models are cover-
ed by Box and Jenkins (1976) if the variable t in
their models is replaced by X. Isotropic models
in space m=2, where X is the radius of a circle,
are models of m=l, time series in m variables,
and are discussed briefly in a later section.

-H)/O'

2. MA, AR, AND ARMA MODELS

The two-sided theoretical spatial MA model is
defined:

Zx n:-ﬂ’ Wn Cx y =<z<w, WO'I.
¥ (2.1)
n= (nl, nz,...,nm), n!—ﬂ -nm__, ...nlg__'

a_is an i.i.d, variable with u =0, 02>0, indepen~
dent of z_ unless z_ or 2 involves a_, or a ’
x x x-2 x x-£

80 "¢ 21

and Ea_z_ =0, unless =0,
x x=£
More usually n is finite:

V_a ' w =]

Zx n--ﬂ° n “x+n (2.2
an MA model of lpatial ordexr Py +q, in each spat-
ial variable X . 1<is<m, 1f -piSngqitha spatial
model is two-sided in m; if —pisns-qi or OSnSqi

for all i it is one-sided in m. A model may be
two-sided for certain x. and one-sided for other
x.; such a case is calldd a mixed model.

As examples: for m=l,

2,V 400 AVttt 2D
m=1, two-sided of order two in each variable. If
w_1=w_2=0, the model is one-sided. 1If w_lso,
WZ#O, w_zfo, it is mixed.

For m=2:

2 =)
2

X, s X
1’

a +.  a + . .a
0l xl,xz—l 10 %, l,x2 0-1 xl,x2+1

*¥_10 ‘x1+1,x2* (2.4)
of spatial order two in each variable, a two-sided
model; one~sided model if wo l-w -0; and mixed
if ¥, _,=0, W o”0-

The tuo-sided theoretical spatial AR model is
defined-

2. %
172

z ¢z 4+a ,¢ =0, -o<z<o (2.5)

X n--w n“x+n x
Usually n is finite -pSnSq, of spatial order p;*
qi in each variable xi, 1gism., It may be two-

sided, one-sided or mixed as in the MA model.

L LML LR J P AL P LI (2.6)
z -t .2 +$, .a +_ .z
xl,x2 al xl,xz-l 10 x1 1,82 0~-1 xl,x2+1
+ .2z +a ’ (2.7)
-10 x1+1,x2 X, 1%y

The theoretical ARMA model for time sgeries in
m dimensions is, Voss et al (1980):
v 8
°n,k zx+n,t-k -nE-u k§1 en,k
=0, 600-0 (2.8)

zx,t' n=-p k=1

3 i, t-k2x,t’ %00

(r,s) in the temporal domain, q+p and u+v in each
spatial variable, The general case would be
-“w<ndw, —o<t<w, The corresponding two-sided ARMA
spatial model is

v
Zx nZ~p ¢ nZx4n" n-gu ena +ntix’ ¢o-e°-o. (2.9)
Examples for m=1 and 2 respectively are:
R A L LR LY S )
-6,a_ .-0,a_ -6 .a _0-2'x+2+.x (2.10)

17x-1 "2"%=-2 =1 x+1
ARMA model two-sided pmgq=2, m=l.

2 uh .2 +¢. .2 - +¢ 12
x, %, 01 xl,xz-l 107x,-1,x, "0=-1"x .x2+1

1 1 2 1

-9 .a (2.11) {

*O-lolx +1,x 01 X, 1%y =1 e10 X -l,x F]
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- -0 2.
O—I"xl,xqol (-ln“xxol.x_‘dxl.x, ° (2.1

)

ARMA model, two-sided pegel, m 2.
The corresponding two-sided MA (AR) model is
found by setting ¢*1x¢’2=0*3=0 (0*1=0*2.903-0)

and the one-sided ARMA model by s;itigé -
¢i=0, or ¢_i-0 and ei-o or 0_i=0.
There may be a mixture such as an ARMA model with
one-sided AR or MA while the other part is two-
sided,
3. MA MODELS
The simplest MA model

zx=-61ax 1 e-lax+1 (3.1

is obtained from (2,3) by replacing Y's by -0's
and setting w-2=-e_2, w2=-82, and 62=6_2=0, n=1,
For this model

2‘02(146 +e ) (3.2)

2 .2
01—-(91+0_1)/(l+01+6_l),
2 .2

92-(616‘1)/(1+el+6_1), 01-0_1' 02—0_2.

and all other D£=0, 2.
If 8_1=0, elfo, (3.1) reduces to the one-sided
model in t; and also if 91=0, 9_1#0. Given
{61, 92}, {01,02} are given by (3.2). Conversely

~ A A A

given (plﬂﬁ)a sample estimate of (pl,pz), (01.92)

may be found from the set replacing population
values by estimates:

2 .2
1461+6%,= ~(8,+8_)/p = 6.0_,/0,; and

2

Py= =(1/8,+1/8_))p,, (3.3)
Set 91=u+v, e_1=u-v, then

142 (%) = -2u/0, =(n2-v3/pz, (3.4)

whose solution involves the intersection of a
circle and hyperbola. This may lead to four
possible sets, but the condition

fe l+te 1< (3.5)

limits the results to one set.
If 91=6_1, 01-0. and if 01 or G_1=0. 02-0.

Table 1 lists the values of {01'02) given {91,92},

and conversely. The manipulations of (3.4) show
o, < 173, ana (1+20)% 2 4.

only the values of {Dl,pz} for -1 $ 01 <1, and

6_1 < 0 are tabled, since the remaining vzlues of

{91,92} may be found from the skew symmetry

implied by (3.3).
The characteristic equation of (3.1) is

1-6, B -8_, B;l, and the corresponding AR repre~
sentation of the MA model is:

-1.4
a - dzb (9 B +6 B ! By AT ‘x‘elzx 1

* BiTeer * O ¢ 20,0 2 4 CRPE

or a_ wn z Htlzx ’ -lszI + ... (3.6)
Note that n ¥ 1, and ﬂ exintn and the aeyien
cunverges for the valueu of jn | + |u | « 1.
Given a sample of n, {6 6 } is cstinated
from (3.3) using sample estimates (01,02} and the
methods of solution already indicated. The
approximate variance of 3 is 632 = (1-82)/n, and

confidence intervals may be obtained if it is
assumed that the errors are distributed normally.
Another method of estimation is to vary 6, and
choose the 6 which minimizes the variance of the
error of prediction, ez -z .

Another simple MA model m=2, of the first

order is:
"x %, T '601‘x1,xz—l'elo‘xl-1,x2'eo-1ax1,x2+1 é
_e-loax1+l,x2+ax1,x2 (3.7) j
The characteristic function is:
100, B, 014 B, o1 s;;-e_lo s;i , (3.8)

2
the values of 0 , p°1,p10,002,020,011.9_11 are:

2
o, = o (1+901*eo 1*810+e 10'”

2 -2
0-1 = "9y *0g_y1/0, 0, -
2

2 -
= -(910+6_10)/oz o,

. 2 -2
Po-2 = 800 11/U °,

= (8

001 =P

P10 * P10

Po2
p

/02 o

fol

20 -20 10 ~10
-2

a1-1 = Bg8y0%0 0 10)/° %

2 -2
= P1y = (8016 10 eo 1 10)c c (3.9)

1*901*60 1*910+e =651 +05 1’°01

P,y =P

11

= =(8,)5*0 10’

-1 -1
P10 = ©01810%0-18-10"P11 = €518.16%00-1810

~1 - -1
P1; = 851%. 1)902 = (8,405,070 - (3.10)

The corresponding AR model is given by the
inversion of the characteristic function in the
usual way. Note lO 1|+|9 |+|6 |+|6

Given a set (p01,p1°,p11,p 1, 1) the proper set

o€ equations from (3.10) are used to estimate

(301. 10'%0-1" _1'0) The approximate variances

of the set of the 6's may be found using the
methods suggested in Aroian and Taneja (1980),
Perry and Arocian (1979), and Aroian and Schmee
(1980) . The variance of the error of predictions
may be minimized by changing the vector of
estimates 8 until a minimum is found for this
variance, see Aroian and Taneja (1980).

Simulation of MA(1l,1) Model
Lot‘ﬁi-.z, ] 4="+2 in (3.1), nt'- being dis-

tributed as N(0,1). This model is simulated with
100 observations, First random shocks lx'l are

[ T T ————
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generated, and z_‘'s are found from (3.1). The
estimated corrslagion coefficients r ., r_  are ob-

tained. The {61,6_1} is found from }3.3?-(3.4)

RS Minimum error prediction of 61 and

0_1 are also found by using ax's obtained from
2 's by minimizing ex-(z-zx), this egtimate is

(61,6_1}={.330,—.340}, note, that given z_,a =

using r

z +5 a +6 a . With twenty-five simulation
X 1 x-1 "=1 x+l
runs it is found that B =.284, §_=-.239, while
minimum variance estimates are §i=.285, 5;1=--237.
~ - ~
From oezN(l—ez)/n, 062=8631=.0384. The approximate
1

1

formula for the covariance 1(31,8_1)N-61(1+0_1)n_

or ~.00784 for the simulated case versus the
actual of -.0032,

4. AR MODELS

Sore simple AR models m=1 and m=2 are analyzed
to show how results may be obtained. Note that in
all fully two-sided AR models ¢-i = ¢i.

The two-sided simplest AR model, m=1, from
{(2.6) is

2y = 1Tttt (At )Y,
2 -1 2
Uz—(1-201¢1) Ua . (4.1)
Since

02=¢1(02-1+°£+1) for all £, £#0, then
2 2
Py=Py- ¢l-01/(1*92)=01/(1+pl), a parabola. (4.2)

Note |¢1|<§, and given ¢1, pl=0.5 @Il

{1:(1-4¢i)5}.

given in Table 2,
The AR model written as an MA model is:

The values of {¢1,pl,pz,o3} are

T i -1.1
2y" {iEO ¢1(Bx+Bx ) }ax‘ax+°1(ax+l*ax-1)

2
+ ¢1(ax+2+2ax+ax_2) + eeed
’ wo=1+¢l(n1+n_

Y,

(-3
if z=%§ T
X = 1

-i Ax+i
= ¢1(no+n2), ﬂ_1-¢1(n_2+ﬂ0) caes

MmO My ¥ ) T (¥ )

and  T_em . ' @.3)
. 24, 21
Given ¢1, Ty = 120 (i ) ¢1 ’
Q241 ,2i-1 * L2 2§
momky Cia? 00 e Tk G 4

T 2i-1  2§i-1 < 2

21
T G 00 T Ty () 6 ete.
For 01 = ,2

"1 = ,22772201, consequently "O = 1.09108881,

and "1/"0 = ,20871 = pl, which checks Table 2.

The autoregressive model given in (4.1) is
simulated given that 91 = .2, and ax's are N(0.1).

The number of observations in each simulation is
100. First ax's are generated and zx's are

obtained by using (4.1); to do this consecutive

forward and backward substitutions are performed

until convergence is assured. Results of the

twenty-five simulation runs are; ri = ,2282,

6% = 0.0143, B, = .2091, 0> = .0099. For one
¥, 1 91

particular run when 61 = .2, theoretically Py =

-2087 ana 03 v 071 (1-62) /(1-p2)=(1-.04) / (100 (1 -
1
.0427)) = .01, sSimulated case gives = .1556,
6.=.1516, o v n~1(1-6%)/(1-r2) = (1-.0231)/
1 6, 1
(100(1-.0242)) = .0l. Since ¢, using ¢1-81

AN -
(1+95) 1 is a least squares estimate so o:z =

(1-¢1)/n(1—pi), then confidence intervals may be

found assuming the a's are distributed normally.
The minimum variance estimate of $1 may be

obtained as indicated in the case of 0°'s.
Another simple two-sided AR model, m=l, is:

2) +a .

2y = ¢1(zx_1+zx+1) + °2" x

x x-2+zx+
2 2 -1
o, = oa(1—2p1¢1—292¢2) ,
Py = ¢, (Py 1P ) * $,(Pg_o*Pg,0) /2F0,  (4.4)
the Yule-Walker equations are:
Py = ¢1(1+02) + ¢2(pl+03)
02 = ¢1(Dl+93) + 02(1+o‘) (4.5)
2
¢, =lp,(+py) - oz(pl+p3)ynl+oz)(1+p4)-(01+03) ]

2
¢, -[02(1+02)-pl(ol+03n/{(1+92)(1+p4)-(p1+o3) )

(4.6)
l¢l| +[¢2|<H, and the equivalent MA model is
I {6 +82Y) + ¢ (824873} 4.7
i=0 x X 2% x % - )

Given a permissible set {91,02,03,04), {01.02}
is determined, Given (¢1,¢2}, then {91,02.93.04)

is determined from the corresponding MA model,
Aroian and Schmge (1980). The variances and the
covariance of {01.¢2} may be found as indicated in

Aroian and Schmee (1980), and as usual the mini-
mum variance estimates of {°1'°2}' The simula-

tion and prediction of such a model is essential-
ly the same as given in Box and Jenkins (1976)
for pure time series, but four starting values
will be needed instead of only two.

For m=2, a simple two-sided model is:

% ox, = 1%x o1,x,-1" 1215 +1,x, 41
17%2 174Xy y o2 4.8

‘°1-1‘x1-1,x2+1‘°-11'x1+1,x2-1*'x1,x2




with ¢, = ¢, =¢ ando , =90, ,=¢;
hence le,x1=°l(z

+02(z

+
xl-l,xz—l zx1+1,x2+l)

+z ) +a
xl—l,x2+1 xl+1,x2 1 xl.xz

1 2

2 -
czs(l-zp -29_11¢2) aa, (4.9

11¢1

p =0, (P, _ _1tPp _ ) +
21'12 1 21 1,&2 1 21 1,£2+1

., 0, _ P, _ ), %.# 0,8 _#0.
2 El 1,22+1 21 1,22+1 1l 2

The characteristic function is:
-¢ (B, B, +B B ) - ¢2(Bx 8 lan” lsx ) (4.10)
S TR T T 1 %2 % %2

which may be used to find the corresponding MA
model useful to obtain all needed pz 0" see
’
2

Aroian and Schmee (1980). Note |¢1I+l¢2i<k.
The Yule-Walker equations are:
Prp = $p (14py5) + &,(Pg5+050)

¢1 02+p20) + ¢2(1+p_22), angd (4.11)

)4

2 2
o=loy ) (140, -0, ¢ (p°2+020)]/1(1+922) =(Pg*Po0) )
(4.12)

which involve pn.p1 1,002,020,02 2! and 0_2 2

2
00y (4P _ 50 =P g (PP i/ Ih+0,5) "= (P %0

Given estimates of these six correlations (¢ ,¢ )
are found from (4.12).
Conversely, given {¢1,¢2}, then all o,
’

must be found from the corresponding MA expansion.
Estimation, variances and covariance of (¢1,¢2)

may be found as already indicated in other AR

models, particularly the minimum variance method.
Another obvious two-sided model is:

z =¢l(zx

+2z + +z
%y e%, 1.x2—1 xl,x2+1) °2"x1-1,12 81+1.x£

+ ax1’x2 (4.13)

2 -1 2
0,=(1-205,9,~2010%,) T, -
p =4, (p 1P Y+, (P _ +P )
2,,8,7010 0 100 0,020 21,0 P00 a1,

2 #0 12#0.

This is analyzed in exactly the same way as the
previous models.
Clearly, |¢ |+|¢ [<% , the characteristic

function is

1- 9, +5 ) -9,(8, +8 1) , (4.14)
2 x)

*
from which the corresponding MA may be found and
all o 's. The Yule-Walker equations are:
21,12

Po1 = ¢1(1+002) + ¢2(01_1+p_1_1)

Pro = $1P11*0 1.y + (140,00, (4.15)

with solution:
0;[001(1#0 1~P,0(P) 4

2
(91_1*0_1_1) )

*0_y N/ 114040) (140,

#5100, 011400, =P o Py 1 4Py )1/ 1 (140 ) (140, ) =

(0, 1*P_1 01 . (4.16)

Estimation, the approximate variance-covariance
matrix, and confidence limits as well as minimum
variance estimates are found as before.

It should be mentioned that the partial auto-
correlation function of the AR models have a cut-
off property, for the first model m=l, all ¢,
i>] are zero, and ¢, is a partial coefficient of
correlation. Where there are two ¢'s, ¢1'-nd ¢2

both are partial coefficients of correlation, and
¢i, i > 2 are zero. This property is helpful in

determining how far to proceed in the ¢'s; alter-
natives are the analysis of variance methods, and
that in which the variance of the error of pred-
iction falls as the ¢'s increase. Other possible
alternatives still unexplored are the x2 test and
the Kolmogoroff-Smirnov test. An important point
to remember is, as the number of ¢'s increase, so
does the variance of the forecast errors.

5. ARMA MODELS

The two models considered are simplifications
of (2.10) and (2.11):

} - 8, (a

=0 4t2 0, 18! e (5.1

X

1-6_. (a

z =¢.,(z +
0l xl,xz 1

+z
xl,x2 0l xl,xz—l xl,x2+1

a ] + a (5.2)
xl,x2+1 xl,x2 )
For (5.1) the equations for az' °1' and 02 are:

2 2 2
oz -a, (1426 —481¢ )(1—2pl¢1)-1 (5.3)
- ¢1(1+oz)+o /u {¢ e ~26, } (5.4)
= 6, (0, +p)+(87-20,6,) 62/ 2 (5.5)

From these:
2,2 2
0./9, -102-¢1(ol+03)]/[el-2el¢1]-[ol-¢1(1+02)]/
2 2
[{¢191-261}]-[1-2plog/[1+zel-461o1).(5.6)
Thus (5.6) may be solved for {°1'°1} using
{pl,pl). The restrictions on {¢1,01) and
{¢°1,e°1} for the AR and MA apply. Both (5.1)

and (5.2) may be written in the equivalent AR or
MA model since:

-1 - -1
{1-¢1(n‘+ax )):x {1-91(s‘+nx )} a.
® 1 ~1 i -1
a ={ Zo 6, (BB “1'°1“x*'x } z, .
and -
i 1.4 -1
z, = {150 $, (B 4B ") }{1-01(5"0x } L 5.7
with similar results for (5.2).
A more general model than (5.1) is:




(5.8)

2 T 0 1) T e 0%t

4 which reduces to (5.1) if 0 . = 6, .

i -1 1
Now

2_.2,,,0.2 2 _ - -1
oz—ca(l+61+0_l-2¢161 2¢19_1)(1 201¢1) ,

1 = 2 2 - -
! py=6, (L+p,)+ [0 /0 1{¢, 0,6 ,-6,~6_,} .
2,2
oz=¢1(pl+p3)+[oa/az]{-¢1(01+9_1)+919_1} .
2,2
py=¢, (P +0 ) +[0 /0 1(4,8,6 ) . (5.9)
Solve (5.9) using 0:/0: from the first equation,

substitute this into the other three and solve
for {¢1,91,9_1} using the sample values

T

{rl,rz,ra,rq} for the p's. Write (5.8) as

-1 -1
(1-¢ (e 48 "} 2z = {1-6, B -6_ B "} a , (510
then z, as an MA process is:
_ -1 -1,,-1
z, = {1-0.8 8_,B, }{l—¢1(Bx+Bx y} .
‘ -1i

z_ = [{1-8.8.-6 B 1}.T ¢i(B +B
x 1'x =1 i 1 x

x ‘i%o )71 ax £ (5.11)

x
0. |+|8 <1, |$. /<%, the same conditions are in
1 -1 1

(3.5) and (4.1).
Represent z as an AR model from (5.10)

3 s i -1 B _ ~1,-1

‘ a, =11 ¢, (B +B_ yHa 8,8,-6_;B_ } z,

i a = [{1-¢. (8 +8° 1)) .T.(6.B.+6 B 11z (5.12)
X 1 x x i=0" 1'x -1'x x

with the same restrictions on {¢_,6. ,8 .} as in
(5.11). 171
Now suppose ¢1,61,9_1 are given satisfying the

restrictions in (5.11), what are the values of pz,
the autocorrelation function?

Estimation proceeds as indicated in Aroian and
Taneja (1980), by changing an ARMA model to an
equivalent AR model and using the results from
least squares.,

[}

6. EXAMPLES

Some examples will be completed, particularly
/ whittle's example of wheat data and possibly
some others. Simulations will be done in a
separate study as well as further extensions of
these models. One sided and mixed models will be
done in the future.

I 7. ISOTROPIC PROCESSES

Let the variable Y represent the distance from
any point (xl,xz) in the plane, or the point

(XI,X2,X3) in space. Then for any stationary

isotropic process the results from Box and
Jenkins (1976) may be used in all cases for MA,
AR, ARMA replacing t by X. This applies not
only to stationary processes but to nonstationary
processes if one uses differences as indicated
there. Since the method is strightforward, no
further discussion is needed. PFor isotropic
processes in time and space, in place of zx'e as

-!
]
1
%
i
§
i

given in Aroian et al, one would replace x by X,
and retain t and use the methods indicated there

for stationary processes., For nonstationary
processes differences in two variables may be
used or transformations. Another alternative to
transformations or to differencing direct treat-
ment of nonstationarity is feasible and will be
investigated subsequently.

8. CONCLUSIONS

The methods of time series in m dimensions are
applied to two-sided spatial models in one and
two dimensions: MA, AR, and ARMA models illus-
trate the techniques including estimation. These
results presented in this paper are based on the
second order moments, and MA, AR, and ARMA models
as developed in time series in m dimensions.
Papers in bibliography numbered as 1,2,3,4,11,12,
14, and 15 reflect the Aroian point of view.

Some other points of view related to these results
may be found in Bartlett (1975), Bennett (1979),
Besag (1972), Cliff and Ord (1973) and ord (1975).
Bartlett reflects a position from partial differ-
ential equations, and power spectrums to AR
models, a broad point of view covering
briefly most of the previous work before 1975.
Bennett covers the ideas quite thoroughly and
presents a comprehensive bibliography, but does
not give enough details as Box and Jenkins (1976)
do in their work. Ord considers only first order
autoregressive models, m=1, which are restricted
and not general.
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Table 2

Values of {¢1, 01, Py 03}

¢ 1 P2 P3
0 0 0 0
1,05 +,0501 .0025 +.0000
+.1 +.1010 .0102 *.0010
+.2 +,2087 .0436 +.0091
.25 +.2679 .0718 +.0192
+.3 +.3333 L1111 £.0370
+.4 .75 .5625 +.4201
.5 41 1 £
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