

TIME SERIES IN M DIMENSIONS: SPATIAL MODELS

Leo A. Aroian and Omer Gebizlioglu Union College and University

ABSTRACT

The general theory of stationary spatial models is developed: namely MA, moving average; AR, autoregressive; and ARMA, autoregressive moving average processes. As compared to the time series in m dimensions, spatial models may be one-sided, two-sided, or mixed. Free use is made of the previous results of Aroian and his associates in time series in m dimensions. The main theoretical properties of the models in the univariate case are established. The multivariate case is even more important than the univariate. Estimation by minimum variance and simulation of the models are included.

1. INTRODUCTION

The results of time series in m dimensions by Aroian and his coauthors are used to establish the results of spatial models in m dimensions. If m=1 the results apply to events on a line such as a river at a particular time; for m=2, the events are those in the plane such as ecological distribution of a plant, the average rainfall for the plane after a storm is completed; for m=3, pollution is space or distribution of amineral in a mine.

Important assumptions are outlined: the characteristic of an event in space is given by

$$z_{x}, x = (x_{1}, x_{2}, \dots, x_{m}), \quad -\infty < x < \infty, \\ x - \ell = (x_{1} - \ell_{1}, x_{2} - \ell_{2}, \dots, x_{m} - \ell_{m}).$$

Weak stationarity is assumed in space as a minimum assumption:

$$\begin{split} & \mu_{z} = \mathbb{E}\left(z_{x}\right) = 0, \quad \sigma_{z}^{2} = \mathbb{E}\left(z_{x} - \mu_{z}\right)^{2} \\ & \mathbb{E}\left(a_{x}\right) = 0, \quad \sigma_{a}^{2} > 0, \quad \rho_{\ell} = \mathbb{E}\left(z_{x} z_{x-\ell} - \mu_{z}\right)^{2} / \sigma_{z}^{2}, \\ & \ell_{1} = \left(\ell_{1}, \ell_{2}, \dots, \ell_{m}\right). \end{split}$$

All second order moments exist. Note x may be in any coordinate system, and 1 may be plus or minus; the results are in m dimensions, only the time coordinate has been dropped from consideration. Although time is a variable, it is not spatial, so new theory must be developed.

Two results, in general, follow from time series. If m=1, one-sided spatial models are covered by Box and Jenkins (1976) if the variable t in their models is replaced by χ . Isotropic models in space m=2, where χ is the radius of a circle, are models of m=1, time series in m variables, and are discussed briefly in a later section.

2. MA, AR, AND ARMA MODELS

The two-sided theoretical spatial MA model is defined:

$$z_{x} = \sum_{n=-\infty}^{\infty} \psi_{n} a_{x-n}, \quad -\infty < z < \infty, \quad \psi_{0} = 1, \quad (2.1)$$

$$n = (n_{1}, n_{2}, \dots, n_{m}), \quad \sum_{n=-\infty}^{\infty} = \sum_{n_{m}=-\infty}^{\infty} \cdots n_{1} = -\infty, \quad (2.1)$$

a is an i.i.d. variable with $\mu = 0$, $\sigma_a^2 > 0$, independent of z_x unless z_x or z_{x-k} involves a_x , or a_{x-k} ,

and $\operatorname{Ea}_{x} z_{x-\ell} = 0$, unless $\ell = 0$.

More usually n is finite:

 $z = \sum_{x n=\infty}^{q} \psi_n a_{x+n}, \psi_0 = 1$ an MA model of spatial order $p_i + q_i$ in each spatial variable x_i , $1 \le i \le m$. If $-p_i \le n \le q_i$ the spatial model is two-sided in m; if $-p_i \le -q_i$ or $0 \le n \le q_i$

Nov

(2.2)

1980

for all i it is one-sided in m. A model may be two-sided for certain x, and one-sided for other x; such a case is called a mixed model. As examples: for m=l,

(2.3) $z_{x} = \psi_{1} a_{x-1} + \psi_{-1} a_{x+1} + \psi_{2} a_{x-2} + \psi_{-2} a_{x+2} + a_{x}$ m=1, two-sided of order two in each variable. If $\psi_{-1} = \psi_{-2} = 0$, the model is one-sided. If $\psi_{-1} = 0$, $\Psi_2 \neq 0, \Psi_2 \neq 0$, it is mixed.

For m=2:

$${}^{z}_{x_{1},x_{2}} = {}^{\psi}_{01} = {}^{a}_{x_{1},x_{2}} = 1 + {}^{\psi}_{10} = {}^{a}_{x_{1}-1,x_{2}} + {}^{\psi}_{0-1} = {}^{a}_{x_{1},x_{2}} + 1$$

$$+ {}^{\psi}_{-10} = {}^{a}_{x_{1}+1,x_{2}} + {}^{a}_{x_{1},x_{2}} \qquad (2.4)$$

of spatial order two in each variable, a two-sided model; one-sided model if $\psi_{0-1} = \psi_{-10} = 0$; and mixed $if \psi_{0-1} = 0, \psi_{-1,0} \neq 0.$

The two-sided theoretical spatial AR model is defined:

$$z = \sum_{v=1}^{\infty} \phi_{z + v} + a_{v}, \phi_{z} = 0, \quad (2.5)$$

Usually n is finite $-p \le n \le q$, of spatial order $p_i + p \le n \le q$ q_i in each variable x_i , $1 \leq i \leq m$. It may be twosided, one-sided or mixed as in the MA model.

$$z_{x}^{=\phi_{1}z_{x-1}^{+\phi_{-1}z_{x+1}^{+\phi_{2}z_{x-2}^{+\phi_{-2}z_{x+2}^{+a}x}}} (2.6)$$

$$z_{x_{1},x_{2}^{=\phi_{0}z_{x_{1}}^{+},x_{2}^{-1+\phi_{10}a_{x_{1}-1}^{-1},x_{2}^{+\phi_{0-1}z_{x_{1}}^{+},x_{2}^{+1}}} (4.7)$$

$$(2.7)$$

The theoretical ARMA model for time series in m dimensions is, Voss et al (1980):

$${}^{z}_{x,t} {}^{z}_{n \xrightarrow{k} - p} {}^{q}_{k=1} {}^{z}_{n,k} {}^{z}_{x+n,t-k} {}^{-\sum_{n=-u}^{v}}_{k=1} {}^{k}_{n,k} {}^{a}_{x+n,t-k} {}^{+a}_{x,t}, {}^{\phi}_{00} {}^{=0}, {}^{\theta}_{00} {}^{=0}$$
(2.8)

(r,s) in the temporal domain, q+p and u+v in each spatial variable. The general case would be $-\infty < n<\infty$, $-\infty < t<\infty$. The corresponding two-sided ARMA spatial model is

$$z = \sum_{x n=-p}^{Q} \phi_{x} - \sum_{n=-u}^{L} \theta_{n} + a_{x} + \phi_{0} = 0.$$
 (2.9)
Examples for m=1 and 2 respectively are:

ARMA model two-sided p=q=2, m=1.

$$\begin{array}{c} x_{1}, x_{2}^{-\phi_{01}x_{1}, x_{2}-1}^{+\phi_{10}x_{1}-1, x_{2}^{+\phi_{0-1}x_{1}, x_{2}+1}} \\ +\phi_{-10}x_{1}^{+1, x_{2}^{-\theta_{01}x_{1}, x_{2}-1}^{-\theta_{10}a_{x_{1}-1, x_{2}}} \end{array} (2.11) \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 2 \\ 1 \\ 1 \\ 2 \\ 7 \end{array}$$

FILE COPY

$${}^{-0}_{0-1} {}^{a}_{x_{1},x_{2}+1} {}^{-0}_{-10} {}^{a}_{x_{1}+1,x_{2}} {}^{+a}_{x_{1},x_{2}}$$
(2.11)

ARMA model, two-sided peg-1, m-2. The corresponding two-sided MA (AR) model is found by setting $\phi_{\pm1} = \phi_{\pm2} = \phi_{\pm3} = 0$ ($\theta_{\pm1} = \theta_{\pm2} = \theta_{\pm3} = 0$) and the one-sided ARMA model by setting

$$\phi_i \approx 0$$
, or $\phi_i = 0$ and $\theta_i = 0$ or $\theta_i = 0$.

There may be a mixture such as an ARMA model with one-sided AR or MA while the other part is two-sided.

3. MA MODELS

The simplest MA model

$$z_{x}^{=-\theta} a_{x-1}^{a} - \theta_{-1} a_{x+1}^{a} + a_{x}$$
 (3.1)

is obtained from (2.3) by replacing ψ 's by $-\theta$'s and setting $\psi_2^{=-\theta}_2$, $\psi_2^{=-\theta}_2$, and $\theta_2^{=\theta}_{-2}^{=0}_{-2}$, m=1. For this model

$$\sigma_{2}^{2} = \sigma_{a}^{2} (1 + \theta_{1}^{2} + \theta_{-1}^{2})$$

$$\rho_{1}^{=-} (\theta_{1} + \theta_{-1}) / (1 + \theta_{1}^{2} + \theta_{-1}^{2}) ,$$

$$\rho_{2}^{=} (\theta_{1} \theta_{-1}) / (1 + \theta_{1}^{2} + \theta_{-1}^{2}) , \rho_{1}^{=} \rho_{-1} , \rho_{2}^{=} \rho_{-2} ,$$
(3.2)

and all other $\rho_{p}=0$, $\ell>2$.

If $\theta_{-1}=0$, $\theta_{1}\neq0$, (3.1) reduces to the one-sided model in t; and also if $\theta_{1}=0$, $\theta_{-1}\neq0$. Given $\{\theta_{1}, \theta_{2}\}, \{\rho_{1}, \rho_{2}\}$ are given by (3.2). Conversely given $(\hat{\rho}_{1}, \hat{\rho}_{2})$ a sample estimate of (ρ_{1}, ρ_{2}) , $(\hat{\theta}_{1}, \hat{\theta}_{2})$ may be found from the set replacing population values by estimates: $1+\theta_{+}^{2}+\theta_{-}^{2}=-(\theta_{+}+\theta_{-})/\rho_{-}=\theta_{+}\theta_{-}/\rho_{-};$ and

$${}^{1+0}{}_{1}^{+0}{}_{-1}^{=} -(0, +0, -1)/\rho_1 = 0, 0, -1/\rho_2; \text{ and}$$

$$\rho_1 = -(1/\theta_1 + 1/\theta_{-1})\rho_2, \quad (3.3)$$
Set $\theta_1 = u + v, \ \theta_2 = u - v, \text{ then}$

$$1+2(u^{2}+v^{2}) = -2u/\rho_{1} = (u^{2}-v^{2})/\rho_{2}, \qquad (3.4)$$

whose solution involves the intersection of a circle and hyperbola. This may lead to four possible sets, but the condition

$$|\theta_1| + |\theta_1| < 1$$
 (3.5)
limits the results to one set.

If $\theta_1 = \theta_{-1}$, $\rho_1 = 0$, and if θ_1 or $\theta_{-1} = 0$, $\rho_2 = 0$. Table 1 lists the values of $\{\rho_1, \rho_2\}$ given $\{\theta_1, \theta_2\}$, and conversely. The manipulations of (3.4) show

$$\begin{split} & \left| \rho_2 \right| \leq 1/3, \text{ and } \left(1 + 2\rho_2 \right)^2 \geq 4\rho_1^2. \\ & \text{Only the values of } \left\{ \rho_1, \rho_2 \right\} \text{ for } -1 \leq \theta_1 \leq 1, \text{ and } \\ & \theta_{-1} < 0 \text{ are tabled, since the remaining values of } \\ & \left\{ \theta_1, \theta_2 \right\} \text{ may be found from the skew symmetry } \\ & \text{implied by } (3, 3). \end{split}$$

The characteristic equation of (3.1) is $1-\theta_1 \xrightarrow{B_1-\theta_1} \xrightarrow{B_2-\theta_1} \xrightarrow{B_1}^{-1}$, and the corresponding AR representation of the MA model is:

or $a_{x} = \pi_{0}^{z}_{x+1}^{z}_{x-1}^{z+1}_{x-1}^{z+1}^{+} \dots$ (3.6) Note that $\pi_{0} \neq 1$, and π_{0} exists and the period

converges for the values of $|0_1| + |0_{-1}| + 1$. Given a sample of n, $\{\hat{\theta}_1, \hat{\theta}_{-1}\}$ is estimated from (3.3) using sample estimates $\{\hat{\rho}_1, \hat{\rho}_2\}$ and the methods of solution already indicated. The approximate variance of $\hat{\theta}$ is $\hat{\sigma}_{\hat{\theta}}^2 = (1-\hat{\theta}^2)/n$, and confidence intervals may be obtained if it is assumed that the errors are distributed normally. Another method of estimation is to vary $\hat{\theta}$, and choose the $\hat{\theta}$ which minimizes the variance of the error of prediction, $e=z_x - \hat{z}_x$.

Another simple MA model m=2, of the first order is:

$$\mathbf{z}_{\mathbf{x}_{1},\mathbf{x}_{2}} = -\theta_{01}\mathbf{a}_{\mathbf{x}_{1},\mathbf{x}_{2}-1} - \theta_{10}\mathbf{a}_{\mathbf{x}_{1}-1,\mathbf{x}_{2}} - \theta_{0-1}\mathbf{a}_{\mathbf{x}_{1},\mathbf{x}_{2}+1}$$
$$-\theta_{-10}\mathbf{a}_{\mathbf{x}_{1}+1,\mathbf{x}_{2}} + \mathbf{a}_{\mathbf{x}_{1},\mathbf{x}_{2}} \qquad (3.7)$$

The characteristic function is:

$$c_{11}^{(2)} = c_{11}^{(2)} + c_{1$$

$$\rho_{-11}^{-1} = (\theta_{01}\theta_{0-1})\rho_{02}^{-1} \approx (\theta_{10}\theta_{-10})\rho_{20}^{-1} . \qquad (3.10)$$

The corresponding AR model is given by the inversion of the characteristic function in the usual way. Note $|\theta_{01}| + |\theta_{10}| + |\theta_{0-1}| + |\theta_{-10}| < 1$. Given a set $(\hat{\rho}_{01}, \hat{\rho}_{10}, \hat{\rho}_{11}, \hat{\rho}_{-1,1})$ the proper set of equations from (3.10) are used to estimate $(\theta_{01}, \theta_{10}, \theta_{-1,0})$. The approximate variances of the set of the θ 's may be found using the methods suggested in Aroian and Taneja (1980), Perry and Aroian (1979), and Aroian and Schmee (1980). The variance of the error of predictions may be minimized by changing the vector of estimates θ until a minimum is found for this variance, see Aroian and Taneja (1980).

Simulation of MA(1,1) Model

Let $\theta_1 = .2$, $\theta_{-1} = .2$ in (3.1), a_x 's being distributed as N(0,1). This model is simulated with 100 observations. First random shocks a_x 's are

A STATE AND THE STATE AND A STATE AND A

generated, and z,'s are found from (3.1). The estimated correlation coefficients r, r, are obtained. The $\{\hat{\theta}_1, \hat{\theta}_{-1}\}$ is found from (3.3)-(3.4) using r, r₂. Minimum error prediction of θ_1 and θ_{-1} are also found by using a,'s obtained from z,'s by minimizing e,=(z-z,), this estimate is $\{\hat{\theta}_1, \hat{\theta}_{-1}\}=\{.330, -.340\}$, note, that given z, a, = $z_x + \hat{\theta}_1 a_{x-1} + \hat{\theta}_{-1} a_{x+1}$. With twenty-five simulation runs it is found that $\overline{\theta}_1=.284$, $\overline{\theta}_{-1}=..239$, while minimum variance estimates are $\overline{\theta}_1=.285$, $\overline{\theta}_{-1}=..237$. From $\hat{\sigma}_{\theta}^{-2} (1-\hat{\theta}^2)/n$, $\hat{\sigma}_{\theta_1}^{-2} = \hat{\sigma}_{\theta-1}^{-2}=.0384$. The approximate formula for the covariance $\gamma(\hat{\theta}_1, \hat{\theta}_{-1})^{\gamma_0} - \hat{\theta}_1(1+\theta_{-1})^{n-1}$ or -.00784 for the simulated case versus the actual of -.0032.

4. AR MODELS

Some simple AR models m=1 and m=2 are analyzed to show how results may be obtained. Note that in all fully two-sided AR models $\phi_{-i} = \phi_i$.

The two-sided simplest AR model, m=l, from (2.6) is

$$z_{x} = \phi_{1} z_{x-1} + \phi_{-1} z_{x+1} + a_{x} = \phi_{1} (a_{x-1} + z_{x+1}) + a_{x}'$$

$$\sigma_{z}^{2} = (1 - 2\rho_{1}\phi_{1})^{-1} \sigma_{a}^{2} . \qquad (4.1)$$

Since

$$\begin{split} \rho_{\underline{k}} = \phi_{1} (\rho_{\underline{k}-1} + \rho_{\underline{k}+1}) & \text{for all } \underline{k}, \ \underline{k} \neq 0, \ \text{then} \\ \rho_{\underline{k}} = \rho_{1}^{\underline{k}}, \ \phi_{1} = \rho_{1} / (1 + \rho_{2}) = \rho_{1} / (1 + \rho_{1}^{2}), \ \text{a parabola. } (4.2) \\ & \text{Note } |\phi_{1}| < \frac{1}{2}, \ \text{and given } \phi_{1}, \ \rho_{1} = 0.5 \ \phi_{1}^{-1} \\ \{1 \pm (1 - 4\phi_{1}^{2})^{\frac{1}{2}}\}. & \text{The values of } \{\phi_{1}, \rho_{1}, \rho_{2}, \rho_{3}\} \text{ are} \\ & \text{given in Table 2.} \\ & \text{The AR model written as an MA model is:} \\ & z_{x} = \{\sum_{i=0}^{\infty} \phi_{1}^{i} (B_{x} + B_{x}^{-1})^{\frac{1}{2}}\}a_{x} = a_{x} + \phi_{1} (a_{x+1} + a_{x-1}) \\ & + \phi_{1}^{2} (a_{x+2} + 2a_{x} + a_{x-2}) + \dots; \\ & \text{if } z_{x} = \sum_{\infty}^{\infty} \pi_{-i} a_{x+i}, \ \pi_{0} = 1 + \phi_{1} (\pi_{1} + \pi_{-1}), \\ & \pi_{1} = \phi_{1} (\pi_{0} + \pi_{2}), \ \pi_{-1} = \phi_{1} (\pi_{-2} + \pi_{0}) \dots, \\ & \pi_{i} = \phi_{1} (\pi_{i-1} + \pi_{i+1}), \ \pi_{-1} = \phi_{1} (\pi_{-i-1} + \pi_{-i+1}); \\ & \text{and } \pi_{-i} = \pi_{i} . \\ & \text{Siven } \phi_{1}, \ \pi_{0} = \sum_{i=0}^{\infty} (2i)^{2i} \phi_{1}^{2i}, \\ & \pi_{1} = \sum_{i=1}^{\infty} (2i-1)^{2i-1}, \ \pi_{2} = \sum_{i=1}^{\infty} (2i-1)^{2i} \phi_{1}^{2i}, \\ & \pi_{3} = \sum_{i=1}^{\infty} (2i-1)^{2i-1}, \ \pi_{4} = \sum_{i=2}^{\infty} (2i-2)^{2i} \phi_{1}^{2i}, \text{ etc.} \\ & \text{For } \phi_{1} = .2 \end{split}$$

 $\pi_1 = .22772201$, consequently $\pi_0 = 1.09108881$,

and $\pi_1/\pi_0 = .20871 = \rho_1$, which checks Table 2. The autoregressive model given in (4.1) is simulated given that $\theta_1 = .2$, and a 's are N(0.1). The number of observations in each simulation is 100. First a_x 's are generated and z_x 's are obtained by using (4.1); to do this consecutive forward and backward substitutions are performed until convergence is assured. Results of the twenty-five simulation runs are; $T_1 = .2282$, $\hat{\sigma}_{r_1}^2 = 0.0143, \ \overline{v}_1 = .2091, \ \hat{\sigma}_{\theta_1}^2 = .0099.$ For one particular run when $\theta_1 = .2$, theoretically $\rho_1 =$.2087 and $\sigma_{\theta_1}^2 \sim n^{-1} (1-\theta_1^2) / (1-\rho_1^2) = (1-.04) / (100(1-0))$.0427) = .01. Simulated case gives $r_1 = .1556$, $\hat{\theta}_1$ =.1516, $\sigma_{\hat{\theta}_1}^2 \sim n^{-1} (1 - \hat{\theta}^2) / (1 - r_1^2) = (1 - .0231) /$ (100(1-.0242)) = .01. Since $\phi_1 using \phi_1 = \rho_1$ $(1+\hat{\rho}_2)^{-1}$ is a least squares estimate so $\hat{\sigma}_{\phi}^2 =$ $(1-\phi_1^2)/n(1-\rho_1^2)$, then confidence intervals may be found assuming the a's are distributed normally. The minimum variance estimate of $\hat{\phi}_1$ may be obtained as indicated in the case of θ 's.

Another simple two-sided AR model, m=1, is: $z_x = \phi_1 (z_{x-1} + z_{x+1}) + \phi_2 (z_{x-2} + z_{x+2}) + a_x$. $\sigma_z^2 = \sigma_a^2 (1 - 2\rho_1 \phi_1 - 2\rho_2 \phi_2)^{-1}$,

 $\rho_{\ell} = \phi_1(\rho_{\ell-1} + \rho_{\ell+1}) + \phi_2(\rho_{\ell-2} + \rho_{\ell+2}), \ell \neq 0, \quad (4.4)$ the Yule-Walker equations are:

$$\rho_{1} = \phi_{1}(1+\rho_{2}) + \phi_{2}(\rho_{1}+\rho_{3})$$

$$\rho_{2} = \phi_{1}(\rho_{1}+\rho_{3}) + \phi_{2}(1+\rho_{4})$$
(4.5)

(4.6)
$$|\phi_1| + |\phi_2| < \frac{1}{2}$$
, and the equivalent MA model is

i = 0Give

$$\{ \phi(\mathbf{B}_{\mathbf{x}}^{+}\mathbf{B}_{\mathbf{x}}^{-1}) + \phi_{2}(\mathbf{B}_{\mathbf{x}}^{2}+\mathbf{B}_{\mathbf{x}}^{-2}) \}^{i} \mathbf{a}_{\mathbf{x}} .$$
 (4.7)
n a permissible set $\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\}, \{\phi_{1}, \phi_{2}\}$

is determined. Given $\{\phi_1,\phi_2\}$, then $\{\rho_1,\rho_2,\rho_3,\rho_4\}$ is determined from the corresponding MA model, Aroian and Schmee (1980). The variances and the covariance of $\{\phi_1,\phi_2\}$ may be found as indicated in Aroian and Schmee (1980), and as usual the minimum variance estimates of $\{\phi_1,\phi_2\}$. The simulation and prediction of such a model is essentially the same as given in Box and Jenkins (1976) for pure time series, but four starting values

will be needed instead of only two. For m=2, a simple two-sided model is:

•

$$z_{x_{1},x_{2}} = \phi_{11}z_{x_{1}-1,x_{2}-1} + \phi_{-1-1}z_{x_{1}+1,x_{2}+1}$$

$$+ \phi_{1-1}z_{x_{1}-1,x_{2}+1} + \phi_{-11}z_{x_{1}+1,x_{2}-1} + a_{x_{1},x_{2}}$$
(4.8)

with
$$\phi_{11} = \phi_{-1-1} = \phi_1$$
 and $\phi_{1-1} = \phi_{-1,1} = \phi_2$;
hence $z_{x_1,x_2} = \phi_1 (z_{x_1} - 1, x_2 - 1^{+z} x_1 + 1, x_2 + 1)$
 $+ \phi_2 (z_{x_1} - 1, x_2 + 1^{+z} x_1 + 1, x_2 - 1)^{+a} x_1, x_2$
 $\sigma_z^2 = (1 - 2\rho_{11}\phi_1 - 2\rho_{-11}\phi_2)^{-1} \sigma_a^2$, (4.9)
 $\rho_{\ell_1,\ell_2} = \phi_1 (\rho_{\ell_1} - 1, \ell_2 - 1^{+\rho}\ell_1 - 1, \ell_2 + 1)^{+}$
 $\phi_{\ell_1,\ell_2} = \phi_1 (\rho_{\ell_1} - 1, \ell_2 - 1^{+\rho}\ell_1 - 1, \ell_2 + 1)^{+}$

$${}^{\phi_2(\rho_{\ell_1-1},\ell_2+1}+\rho_{\ell_1-1,\ell_2+1}), \ \ell_1 \neq 0, \ell_2 \neq 0.$$

The characteristic function is:

 $1-\phi_{1}(B_{x_{1}}B_{x_{2}}+B_{x_{1}}^{-1}B_{x_{2}}^{-1}) - \phi_{2}(B_{x_{1}}B_{x_{2}}^{-1}+B_{x_{1}}^{-1}B_{x_{2}})$ (4.10) which may be used to find the corresponding MA

model useful to obtain all needed ρ_{l_1, l_2} , see

Aroian and Schmee (1980). Note
$$|\phi_1| + |\phi_2| < \frac{1}{2}$$
.

The Yule-Walker equations are:

$$\rho_{11} = \phi_1 (1+\rho_{22}) + \phi_2 (\rho_{02}+\rho_{20})$$

$$\rho_{1-1} = \phi_1 (\rho_{02}+\rho_{20}) + \phi_2 (1+\rho_{-22}), \text{ and} \qquad (4.11)$$

$$\phi_1 = [\phi_{1-1} (1 + \phi_{-22}) - \phi_{1-1} (\phi_{02} + \phi_{20})] / [(1 + \phi_{22})^2 - (\phi_{02} + \phi_{20})^2]$$

$$\phi_2 = [\phi_{1-1} (1 + \phi_{-22}) - \phi_{11} (\phi_{02} + \phi_{20})] / [(0 + \phi_{-22})^2 - (\phi_{02} + \phi_{-20})^2]$$

 $\psi_{2}^{=} \psi_{1-1}^{(1+b} 22)^{-b} 11^{(b} 02^{+b} 20)^{j} (\psi_{1} \psi_{2}^{-j})^{-(b} 02^{+b} 20)^{j}$ (4.12) which involve $\rho_{2,1}, \rho_{2,2}, \rho_{2,3}, \rho_{3,4}, \rho_{3,4}, \rho_{3,4}$

which involve $\rho_{11}, \rho_{1-1}, \rho_{02}, \rho_{20}, \rho_{2,2}$, and $\rho_{-2,2}$. Given estimates of these six correlations $\{\hat{\phi}_1, \hat{\phi}_2\}$ are found from (4.12). Conversely, given $\{\phi_1, \phi_2\}$, then all ρ_{ℓ_1, ℓ_2}

must be found from the corresponding MA expansion. Estimation, variances and covariance of (ϕ_1, ϕ_2) may be found as already indicated in other AR models, particularly the minimum variance method.

Another obvious two-sided model is:

$$x_{1}, x_{2}^{=\phi_{1}(z_{x_{1}}, x_{2}^{-1^{+z}} x_{1}^{+}, x_{2}^{+1}) + \phi_{2}(z_{x_{1}^{-1}}, x_{2}^{+z} x_{1}^{+1}, x_{2}^{+1})$$

$$+ a_{x_{1}^{+}, x_{2}^{-1}}$$

$$(4.13)$$

$$\sigma_{2}^{2} = (1 - 2\rho_{01}\phi_{1} - 2\rho_{10}\phi_{2})^{-1} \sigma_{a}^{2} ,$$

$$\rho_{\ell_{1},\ell_{2}} = \phi_{1}(\rho_{\ell_{1},\ell_{2}-1} + \rho_{\ell_{1},\ell_{2}+1}) + \phi_{2}(\rho_{\ell_{1}-1},\ell_{2} + \rho_{\ell_{1}+1},\ell_{2})$$

$$\ell_{1} \neq 0, \ell_{2} \neq 0.$$

This is analyzed in exactly the same way as the previous models.

Clearly, $|\phi_1| + |\phi_2| < \frac{1}{2}$, the characteristic

function is

$$1 - \phi_1 \begin{pmatrix} B_{x_2} + B^{-1} \\ x_2 \end{pmatrix} - \phi_2 \begin{pmatrix} B_{x_1} + B^{-1} \\ x_1 \end{pmatrix} , \qquad (4.14)$$

from which the corresponding MA may be found and all ρ_{k_1}, k_2 's. The Yule-Walker equations are:

$$\begin{split} \rho_{01} &= \phi_1 (1 + \rho_{02}) + \phi_2 (\rho_{1-1} + \rho_{-1-1}) \\ \rho_{10} &= \phi_1 (\rho_{1-1} + \rho_{-1-1}) + \phi_2 (1 + \rho_{20}) , \end{split} \tag{4.15}$$

with solution:

$$\frac{1}{1} \left[\rho_{01} \left(1 + \rho_{20} \right) - \rho_{10} \left(\rho_{1-1} + \rho_{-1-1} \right) \right] / \left[\left(1 + \rho_{02} \right) \left(1 + \rho_{20} \right) - \left(\rho_{1-1} + \rho_{-1-1} \right)^2 \right] ,$$

$$\frac{\phi_{2}[\rho_{10}(1+\rho_{02})-\rho_{10}(\rho_{1-1}+\rho_{-1-1})]/[(1+\rho_{02})(1+\rho_{20})-(\rho_{1-1}+\rho_{-1-1})^{2}]}{(\rho_{1-1}+\rho_{-1-1})^{2}} .$$
 (4.16)

Estimation, the approximate variance-covariance matrix, and confidence limits as well as minimum variance estimates are found as before.

It should be mentioned that the partial autocorrelation function of the AR models have a cutoff property, for the first model m=1, all ϕ_1 , i>1 are zero, and ϕ_1 is a partial coefficient of correlation. Where there are two ϕ 's, ϕ_1 and ϕ_2 both are partial coefficients of correlation, and ϕ_1 , i > 2 are zero. This property is helpful in

determining how far to proceed in the ϕ 's; alternatives are the analysis of variance methods, and that in which the variance of the error of prediction falls as the ϕ 's increase. Other possible alternatives still unexplored are the χ^2 test and the Kolmogoroff-Smirnov test. An important point to remember is, as the number of ϕ 's increase, so does the variance of the forecast errors.

5. ARMA MODELS

The two models considered are simplifications of (2.10) and (2.11):

$$z_{x} = \phi_{1}(z_{x-1}+z_{x+1}) - \theta_{1}(a_{x-1}+a_{x+1}) + a_{x}, \quad (5.1)$$

$$z_{x_{1},x_{2}} = \phi_{01}(z_{x_{1},x_{2}-1}+z_{x_{1},x_{2}+1}) - \theta_{01}(a_{x_{1},x_{2}-1}+a_{x_{1},x_{2}+1}) + a_{x_{1},x_{2}-1} +$$

For (5.1) the equations for
$$\sigma_{z}^{2}$$
, ρ_{1} , and ρ_{2} are:

$$\sigma_{z}^{2} = \sigma_{a}^{2} (1+2\theta_{1}^{2}-4\theta_{1}\phi_{1}) (1-2\rho_{1}\phi_{1}) -1$$
 (5.3)

$$\rho_{1} = \phi_{1}(1+\rho_{2}) + \sigma_{a}^{2}/\sigma_{z}^{2} \{\phi_{1}\theta_{1}^{2}-2\theta_{1}\}$$
(5.4)
$$\rho_{1} = \phi_{1}(1+\rho_{2}) + \sigma_{a}^{2}/\sigma_{z}^{2} \{\phi_{1}\theta_{1}^{2}-2\theta_{1}\}$$
(5.5)

$$\rho_2 = \phi_1(\rho_1 + \rho_3) + (\theta_1^2 - 2\phi_1 \theta_1) \sigma_a^2 / \sigma_z^2$$
(5.5)

From these: $\sigma_{z}^{2}/\sigma_{a}^{2} = [\rho_{2}-\phi_{1}(\rho_{1}+\rho_{3})]/[\theta_{1}^{2}-2\theta_{1}\phi_{1}] = [\rho_{1}-\phi_{1}(1+\rho_{2})]/$ $[\{\phi_{1}\theta_{1}^{2}-2\theta_{1}\}] = [1-2\rho_{1}\phi_{1}]/[1+2\theta_{1}^{2}-4\theta_{1}\phi_{1}]. (5.6)$ Thus, (5.6)

Thus (5.6) may be solved for $\{\phi_1, \theta_1\}$ using $\{\rho_1, \rho_1\}$. The restrictions on $\{\phi_1, \phi_1\}$ and $\{\phi_{01}, \theta_{01}\}$ for the AR and MA apply. Both (5.1) and (5.2) may be written in the equivalent AR or MA model since:

$$\{1 - \phi_1 (B_x + B_x^{-1})\} z_x = \{1 - \theta_1 (B_x + B_x^{-1})\} a_x,$$

$$a_x = \{\sum_{i=0}^{\infty} \theta_1^i (B_x + B_x^{-1})^i\} \{1 - \theta_1 (B_x + B_x^{-1})\} z_x,$$
and
$$z_x = \{\sum_{i=0}^{\infty} \phi_1^i (B_x + B_x^{-1})^i\} \{1 - \phi_1 (B_x + B_x^{-1})\} z_y,$$
(5.7)

x 1=0 1 x x 1 1 x x x x with similar results for (5.2). A more general model than (5.1) is:

2 **14.2**0

$$z_{x} = \phi_{1}(z_{x-1} + z_{x+1}) - \theta_{1}a_{x-1} - \theta_{-1}a_{x+1} + a_{x}, \quad (5.8)$$

which reduces to (5.1) if $\theta_{-1} = \theta_{1}$.

$$\begin{split} \sigma_{z}^{2} = \sigma_{a}^{2} \left(1 + \theta_{1}^{2} + \theta_{-1}^{2} - 2\phi_{1}\theta_{1} - 2\phi_{1}\theta_{-1}\right) \left(1 - 2\rho_{1}\phi_{1}\right)^{-1} , \\ \rho_{1} = \phi_{1} \left(1 + \rho_{2}\right) + \left(\sigma_{a}^{2}/\sigma_{z}^{2}\right] \left\{\phi_{1}\theta_{1}\theta_{-1} - \theta_{1} - \theta_{-1}\right\} , \\ \rho_{2} = \phi_{1} \left(\rho_{1} + \rho_{3}\right) + \left[\sigma_{a}^{2}/\sigma_{z}^{2}\right] \left\{-\phi_{1} \left(\theta_{1} + \theta_{-1}\right) + \theta_{1}\theta_{-1}\right\} , \\ \rho_{3} = \phi_{1} \left(\rho_{2} + \rho_{4}\right) + \left[\sigma_{a}^{2}/\sigma_{z}^{2}\right] \left(\phi_{1}\theta_{1}\theta_{-1}\right) . \end{split}$$
(5.9)

Solve (5.9) using σ_a^2/σ_z^2 from the first equation, substitute this into the other three and solve for $\{\phi_1, \theta_2, \theta_3, \}$ using the sample values

$$\{r_1, r_2, r_3, r_4\}$$
 for the p's. Write (5.8) as
 $\{1-\phi_1(B_x+B_x^{-1})\} z_x = \{1-\theta_1, B_x-\theta_{-1}, B_x^{-1}\} a_x$, (5.1)

then z_x as an MA process is:

$$z_{x} = \{1 - \theta_{1}B_{x} - \theta_{-1}B_{x}^{-1}\}\{1 - \phi_{1}(B_{x} + B_{x}^{-1})\}^{-1} a_{x}$$

$$z_{x} = [\{1 - \theta_{1}B_{x} - \theta_{-1}B_{x}^{-1}\}\sum_{i=0}^{\infty} \phi_{1}^{i}(B_{x} + B_{x}^{-1})^{i}] a_{x}, (5.11)$$

$$\theta_{i} | + |\theta_{i}| < 1, |\phi_{i}| < 1, \text{ the same conditions are in}$$

 $|\theta_1| + |\theta_{-1}| < 1, |\varphi_1| < 3$, the same conditions are in (3.5) and (4.1).

Represent z_x as an AR model from (5.10)

$$a_{x} = \{1 - \phi_{1} (B_{x} + B_{x}^{-1})\}\{1 - \theta_{1} B_{x}^{-} - \theta_{-1} B_{x}^{-1}\}^{-1} z_{x}$$
$$a_{x} = [\{1 - \phi_{1} (B_{x}^{+} B_{x}^{-1})\}]_{i = 0}^{\infty} \{\theta_{1} B_{x}^{+} + \theta_{-1} B_{x}^{-1}\}^{i}]z_{x}$$
(5.12)

with the same restrictions on $\{\phi_1, \theta_1, \theta_{-1}\}$ as in (5.11).

Now suppose $\phi_1, \theta_1, \theta_{-1}$ are given satisfying the restrictions in (5.11), what are the values of ρ_{g} , the autocorrelation function?

Estimation proceeds as indicated in Aroian and Taneja (1980), by changing an ARMA model to an equivalent AR model and using the results from least squares.

6. EXAMPLES

Some examples will be completed, particularly Whittle's example of wheat data and possibly some others. Simulations will be done in a separate study as well as further extensions of these models. One sided and mixed models will be done in the future.

7. ISOTROPIC PROCESSES

Let the variable χ represent the distance from any point (χ_1,χ_2) in the plane, or the point

 (χ_1, χ_2, χ_3) in space. Then for any stationary

isotropic process the results from Box and Jenkins (1976) may be used in all cases for MA, AR, ARMA replacing t by χ . This applies not only to stationary processes but to nonstationary processes if one uses differences as indicated there. Since the method is strightforward, no further discussion is needed. For isotropic processes in time and space, in place of $z_{x,t}$ as given in Aroian et al, one would replace x by χ , and retain t and use the methods indicated there for stationary processes. For nonstationary processes differences in two variables may be used or transformations. Another alternative to transformations or to differencing direct treatment of nonstationarity is feasible and will be investigated subsequently.

8. CONCLUSIONS

The methods of time series in m dimensions are applied to two-sided spatial models in one and two dimensions: MA, AR, and ARMA models illustrate the techniques including estimation. These results presented in this paper are based on the second order moments, and MA, AR, and ARMA models as developed in time series in m dimensions. Papers in bibliography numbered as 1,2,3,4,11,12, 14, and 15 reflect the Aroian point of view. Some other points of view related to these results may be found in Bartlett (1975), Bennett (1979), Besag (1972), Cliff and Ord (1973) and Ord (1975). Bartlett reflects a position from partial differential equations, and power spectrums to AR models, a broad point of view covering briefly most of the previous work before 1975. Bennett covers the ideas quite thoroughly and presents a comprehensive bibliography, but does not give enough details as Box and Jenkins (1976) do in their work. Ord considers only first order autoregressive models, m=1, which are restricted and not general.

BIBLIOGRAPHY

- Aroian, L.A. (1979). Multivariate autoregressive time series in m dimensions. Proceedings of the Business and Economics Section, American Statistical Association Annual Meeting, pp. 585-590.
- Aroian, L.A. (1980). Time series in m dimensions, <u>Communications in Statistics</u>, <u>Simulation and Computation</u>, B9, 5, pp. 453-465.
- Aroian, L.A. and Schmee, Josef (1980). General results: time series in m dimensions, Proceedings of the Eleventh Annual Modeling and Simulation Conference, University of Pittsburgh, Pittsburgh, Penn.
- Aroian, L.A. and Taneja, V. (1980). Some Simple examples of time series in m dimensions: an introduction, <u>Proceedings</u> of the Eleventh Annual Modeling and Simula-<u>tion Conference</u>, 348 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
- Bartlett, M.S. (1975). <u>The Statistical</u> <u>Analysis of Spatial Pattern</u>, John Wiley & Sons, New York.
- Bennett, R.J. (1979). <u>Spatial Time Series</u>, Pion Ltd., 207 Brondesbury Park, London NW2 5JN.
- Besag, J.E. (1972). On the correlation structure of some two-dimensional stationary processes, <u>Biometrika</u>, 59, 1, pp. 43-48.

- H. Box, G.E.F. and Jenkins, G.M. (1976). <u>Time</u> <u>Series Analysis: Forecasting and Control</u>, rev. ed. San Francisco: Holden-Day, Inc.
- 9. Cliff, A.D. and Ord, J.K. (1973). Spatial Autocorrelation, Pion, London.
- 10. Haugh, L.D. (1980). An overview of approaches to modeling spatial time series. To appear in the <u>Proceedings of Third Inter-</u><u>national Time Series Meeting</u>. Center for the Advancement of Economic Analysis, Baylor University, Texas.
- 11. Perry, R. and Aroian, L.A. (1979). Of time and the river: time series in m dimensions, the one dimensional autoregressive model. Proceedings of the Statistical Computing Section, American Statistical Association Annual Meeting, pp. 383-388.
- 12. Oprian, C., Taneja, V., Voss, D. and Aroian, L.A. (1980). General considerations and interrelationships between MA and AR models, time series in m dimensions, the ARMA model, <u>Communications in Statistics, Simulation</u> <u>Computation</u>, B9, 5, pp. 515-532.
- Ord, Keith (1975). Estimation methods for models of spatial interaction, <u>IASA</u>, 70, 349, pp. 120-126.
- 14. Taneja, V. and Aroian, L.A. (1980). Time series in m dimensions, autoregressive models, Communications in Statistics, Simulation and Computation, B9, 5, pp. 491-513.
- 15. Voss, D., Oprian, C., and Aroian, L.A., (1980) Moving average models, time series in m dimensions, Communications in Statistics, Simulation and Computation, B9, 5, pp. 467-489.

1

1 anne

State of the second

-

(0 1, 0 _1)
ور .
x (9,

	T	T	T	·····		<u> </u>	<u> </u>
7.0	, și li	373 951.	i i i	ē ž	3 5	<u>.</u>	8 °
•	8.	5.5	ă ă	2 X	ș i	2. S	5.0
•	5	ā Ā	107	8 8	19 - I.I.		•
•	5.	ŝ i	8, - 9, - 9, -	ŝ	3 9. 3 1.	15 - 1 5	4 •
•	â ș	Ş <u>=</u>	Ş E	8, si	3 .	8. si	- 345
	.	55 56	5. S	165 -	8 B	oft fto.	- 192 0
•	99 97 9	÷.		1.0	S4C - 0	19	
	26C	eft: - 160	186 200	X X	- 167	0 100	•.192
	eft		622 1971	- 15g	0 121	.167 067	
	81 16	- 138 - 289	100 240	0 209	501 158	× ÷	1 4 .•
?		082 294	0 111	1.240	522. 871	735. 200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
?	80 86	60E	- 290 - 294		-,101	aft. A20	769 . 0
7	• 6	¥60. 926	20. 206	.169 254	105		8. D
%		•	•	۰.	•	n	9

Accession For NTIS CRAZI PTIC T. Z FO Unconcerced TO Justification/ By Distribution/ Availability Codes Lav II and/or Dist Epecial

 ρ_2 lower value in all.

upper value in all,

٠,

	Values of $\{\phi_1, \rho_2\}$	ρ ₁ , ρ ₂ , ρ ₃ }	
φ ₁	ρ	°2	ρ ₃
0	0	0	0
±.05	±.0501	.0025	±.0000
±.1	±.1010	.0102	±.0010
±.2	±,2087	.0436	±.0091
±.25	±.2679	.0718	±.0192
±.3	±.3333	.1111	±.0370
±.4	±.75	.5625	±.4291
±.5	±l	1	±1

Table 2

•

.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AD-A091734	
I. TITLE (and Sublitio)	S TYPE OF REPORT & PERIOD COVERED
Time Series in M Dimensions: Spatial Models.	7 Technical Report.
	A DESCRIPTION OF A DESCRIPTION OF A
(14)	AES-8007
· AUTHORICAL	S. CONTRACT OR GRANT NUMBER(+)
Leo A. Aroian and Omer Gebizlioglu	(NØ0014-77-C-0438) (15)
. PERFORMING ORGANIZATION NAME AND ADDRESS /	10. PROGRAM ELEMENT, PROJECT, TASK
Institute of Administration and Management,	
Union College & University	12)8/
Schenectady, NY 12308	12 REPORT DATE
Office of Naval Research, Statistics & (11) 26	September 80
Reliability Program	13. NUMBER OF PAGES
Office of Naval Research, Arlington, VA 22217	B 15. SECURITY CLASS, (al this report)
14. MONITORING AGENCY NAME & ADDRESS(II dilletent from Controlling United)	Unclassified
	158. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release, distribution unclas	ssified
Approved for public release, distribution unclas	ssified
Approved for public release, distribution unclass 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different in 9. SUPPLEMENTARY NOTES Presented at the Annual Meeting of the American Houston, Texas, August 1980; will appear in the Statistical & Computing Section of the American	Statistical Association at 1980 Proceedings of the Statistical Association.
Approved for public release, distribution unclass 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different in Presented at the Annual Meeting of the American Houston, Texas, August 1980; will appear in the Statistical & Computing Section of the American 9. KEY WORDS (Centinue on reverse elde if necessary and identify by block number, spatial series, m dimensions, cross correlation if function, ecology, spatial processes, moving aver- models, autoregressive moving average models.	Statistical Association at 1980 Proceedings of the Statistical Association.
Approved for public release, distribution unclass 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different in 9. SUPPLEMENTARY NOTES Presented at the Annual Meeting of the American Houston, Texas, August 1980; will appear in the Statistical & Computing Section of the American 9. KEY WORDS (Continue on reverse elde if necessary and identify by block number, spatial series, m dimensions, cross correlation f function, ecology, spatial processes, moving aver- models, autoregressive moving average models. 0. ASSTRACT (Continue on reverse elde if necessary and identify by block number) The general theory of stationary spatial models noving average; AR, autoregressive; and ARMA, autor processes. As compared to the time series in m dir processes. As compared to the time series in m director properties of the models in the univariate case are variate case is even more important than the univar- pariance and simulation of the models are included. 10. form. 1473 EDITION of ingressive is descripted	Statistical Association at 1980 Proceedings of the Statistical Association. function, autocorrelation rage models, autoregressive s is developed: namely MA, regressive moving average mensions, spatial models may de of the previous results of nsions. The main theoretical e established. The multi- riate. Estimation by minimum

نو د

کام وسنی

west is a

Ĩ

A STATISTICS

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ant strangers, sale s

1

1 10. DOT 100 - 1

12

Ŀ

