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ABSTRACT and Eaxz 0, unless -0. C
The qeneral theory of stationary spatial models More usually n is finite:

is developed: namely MA, moving average; AR, auto- zx'n-L-w in a+n' *0=l (2.2)
regressive; and ARMA, autoregressive moving aver- an A mpna
age processes. As compared to the time series in en MA model of spatial order p14q 4 in each spat-
m dimensions, spatial models may be one-sided, i i
two-sided, or mixed. Free use is made of the model is two-sided in m; if -p ini-qi or OnSqi
previous results of Aroian and his associates in
time series in m dimensions. The main theoreti- for all i it is one-sided in a. A model may be

two-sided for certain x. and one-sided for othercal properties of the models in the univariate
cal~~ nai.; sch a case is callid a mixed model.

case are established. The multivariate case is Ash eaple s m-lo
even more important than the univariate. Estima-

tion by minimum variance and simulation of the zx.l ax-l+4 1 a x+l+2 x-_2 2a x+2+ax ,  (2.3)
mlm-l, two-sided of order two in each variable. If

1. 2_I RODU TON W1 ='2 O , the model is one-sided. If 0_1-O,

I-No *_20, it is mixed.
The results of time series in m dimensions by or m2:

Aroian and his coauthors are used to establish For m-2:

the results of spatial models in m dimensions. z 2-1 a q l l2+q)0 a
If m=l the results apply to events on a line such 2  2 1 2 2
as a river at a particular time; for m=2, the +Il 0 a + a (2.4)
events are those in the plane such as ecological +l,x+xl,x2
distribution of a plant, the average rainfall for 1 1, 2 Xe a , o

-i te paneaftr astom iscomletd, or =3,of spatial order two in each variable, a two-sidedthe plane after a storm is completed; for m=3,mo e ; n -s d d o el i * 0 a d m x d

pollution is space or distribution of &mineral in model; one-sided model if 1P0_io-Vi00o and mixed
a mine. 0-1 -l, 0

Important assumptions are outlined: the charac- The two-sided theoretical spatial AR model is
teristic of an event in space is given by defined:

Zx,x=(xl,X . , -, <x.<n, z - 0.0+,$o0 , <(2.)

x-= (-,X2- 2 .....- ). Usually n is finite -pSn<_q, of spatial order p.+
,q. in each variable xi , l~i~m. It may beto-

w e a k s t a t i o n a r i t y i s a s s u m e d i n s p a c e a s a m i n i -
i on e -s i d e o r m i e d a s i n t e A m o

mum assumption: sided, one-sided or mixed as in the MR model.

liz=E(Z )=0, 0 =E(z -)l ) 2 Z x -1iaX+l+ izx+1+02z.2+-2'x+2+ax  (2.6)

x 2 2 - 2

i=(i I ).All second order moments exist. Note x may be in -10xlI +1xa2 +xlx 2(

any coordinate system, and , may be plus or minus;
the results are in m dimensions, only the t The theoretical ARMA model for time series inthereuls reinm dimensions s, only the ti1m8)e
coordinate has been dropped from consideration. m dimnsions is, Voss et al (1980):

Although time is a variable, it is not spatial, z -t. z E e e
so new theory must be developed. x,t n -p k-l n,k zx+n,t-k _n--u k1 n,k

Two results, in general, follow from time ser- af _00 0 0 (2.8)
ies. If m=l, one-sided spatial models are cover- x+nt-k 

5xt ' (.

ed by Box and Jenkins (1976) if the variable t in (r,s) in the temporal domain, q+p and u+v in each
their models is replaced by X. Isotropic models spatial variable. The general case would be
in space m-2, where X is the radius of a circle, -<n<-, -O<t<4. The corresponding two-sided ARMA
are models of m-l, time series in m variables, spatial model is
and are discussed briefly in a later section. v

zx-n = .p 0n zx+n-n Eu enax+n+ap 00-0. (2.9)

2. MA, AR, AND APMA MODELS
Examples for m-1 and 2 respectively are:

The two-sided theoretical spatial MA model is Z x 41xl x~l
defined: x -2*x-24 1 ++-2 x+2 1

S1 
-2 

a4 z- a l% _ -e 2 ex 2 e_1 x+l-8 2 a x+2+ax (2.10)

C> x n-0 n x-n (2.1) ARMA model two-sided p-q-2, m-l.

n (nI , n2  ...n), - I . +
2 2 1 - 2 Ol x 2-1 10 zx -lx 2 0-1 xlx2+1

ax is an i.i.d. variable with %i -0, a >O, indepen- u1
dent of z unless zx or zx.1 inoolvos ax e or a ,  + .lOMXl+l,x 2-0Olaxlx2_-0lOaxl1l,x 2 (2.11)

2.a 2



.-1 'x 0 .x 4. (2.11) or a r 10Z +nIz )471IZ?. 4 ... (3.6)
ARMA mudel t3wo-;i ed I- In Ntt Iito I1l V I . ari, tt 01tt I t& t|I L.51i

The corresponditiq two-sided MA (AR) WAndel ia Nunverqee for the values nt 1% * 1t_1 I 1.
found by settinq 0+1 +2..+3-0 (0+10+2 6+30) Given a sample of n, {61,8611 is estimated

and the one-sided ARMA model by setting from (3.3) using sample estimates {01 2 1 and the

or 0 0 and e.0or e 10. methods of solution already indicated. The
There may be a mixture such as an AFMA model with a 2 2)/n,
one-sided AR or MA while the other part is two- approximate variance of 0 is - (1-8 and
sided, confidence intervals may be obtained if it is

assumed that the errors are distributed normally.
3. MA MODELS Another method of estimation is to vary 8, and

The simplest MA model choose the 0 which minimizes the variance of the
error of prediction, e=z -z

lx Another simple MA model m-2, of the first
is obtained from (2.3) by replacing IP's by -O's order is:

and setting 2 - 2 , e2 , and 02= 02= , mu=l- e a x
For this model x 01 xlx2-1 10 xI-I'X 2 0- lx2+1

2 2 2 2
02=0 (141+6-1' (3.2) -. a +a (7

2 2 - -10 X+I,x2  xlx 2  (3.7)

Pl= -  1 +6_I) /(i+02+621), The characteristic function is:
22 1- B -0 8 B -1 - . B , (3.8)P2 =(E1 6 1)/(l+e1 +6 - , I=p_ 0 2=P_2, 01 x 2  x 1 2 -1 x 2  - 10

and all other pX=0, 9>2. the values of Os, 02,020,01ilP1 are:

2 2 2 2 2 2If 6_i=0, e1 0 , (3.1) reduces to the one-sided 
z . 2 a 202

model in t; and also if 61=O, 0 i#0. Given -2

te'l 2 2 pp 2) are given by (3.2). Conversely PO0 = O-1 = -(01+ 0-1 z a2 1 21 -2given (PlP)a sample estimate of (Pl,02) ,  "2 )  
010 = +-e (0 0 )/ O  0 a

may be found from the set replacing population 6 CYo2
values by estimates: 002 P 0-2 80180_i/=

1+02+ 2 -(18 +0)/P = 0 /; and P P 0 0e), a 21 +-l 1 - 1 1- 2 20 -20 10-10 z a

Pl= -(1/6l+/6l) 2 (3.3) 011 = P--1 = (e0 o+e601e 10' °2 Ca-2

Set 81=u+v, e 1 l=u-v, then P-f (e e +e010):022 (3.9)

2 2 2 -11 1-1 01 -10 0-10 al+2(u +v )= -2u/0 .(U -vJ/2 (3.4) 2 2 2 2 -l
12' 1+e +0 +6 O+0_ = (01 .0 )P -- (8 +0-

101+80.1+10+8-10 -(01+ 0-1)01 = (10+-10)
whose solution involves the intersection of a
circle and hyperbola. This may lead to four - (8 +0 e -8 +
possible sets, but the condition P10 01 10 0-1-10 11 01 -10 0-110

I el -I  l 1 <  l  (35 ) - ( ( 0 6 )P (3.10)

limits the results to one set. -1 01 0-1}02 1 10020 "
if 06-1. 0 and if 6 or -10 -0.The corresponding AR model is given by the1 1 _0 02=0. inversion of the characteristic function in the

Table 1 lists the values of {pl, 2) given (01.02 1 usual way. Note 18011+18 01I 0 1.1810 1.
and conversely. The manipulations of (3.4) show Given a set (p the proper set

1P2) 1/3, and (1+2p2) a 40l. o" equations from (3.10) are used to estimate
Only the values of {0, P2 ) for -l 01 1 , and oi 0 ,10,00-1', l). The approximate variances

el < 0 are tabled, since the remaining values of of the set of the O's may be found using the
methods suggested in Aroian and Taneja (1980).

{ile21 may be found from the skew symmetry Perry and Aroian (1979), and Aroian and Schmee
implied by (3.3). (1980). The variance of the error of predictions

The characteristic equation of (3.1) is may be minimized by changing the vector of-l estimates 8 until a minimum is found for this
1-81 Bx -_1 Bx , and the corresponding AR repre- variance, see Aroian and Taneja (1980).
sentation of the MA model is: Simulation of MA(II) Model

Sd Lt xx -2, e_,-.2 in (3.1), a.'s being die-
a x B d= x e x+0_ 1 d  Z xI aX x +0 1xl ' X-

2 2 tributed as N(0,1). This model is simulated with+ I + 8zx- 2 + 288_1z x + lex_2 + ... 100 observations. First random shocks % Is are-1xl l- 1I l-



generated, and z Is are found from (3.1). The and VI/ITO - .20871 - p1, which checks Table 2.
estimated correlation coefficients r , r are ob- The autoregressive model given in (4.1) is
taied. The (9 16 1 )is found fro simulated given that 08 . .2, and ax's are N(0.).

usin- ri, r 2 . Minimum error prediction of 0, and The number of observations in each simulation is
Sare also found by using ax's obtained from 100. First a s are generated and z ' are-_l ar lofudb sn x x x

z s by minimizing ex(z-z x), this estimate is obtained by using (4.1); to do this consecutive
O ={ ,330 forward and backward substitutions are performed

1 -={ 0-.3401,note, that given z1 ,a = until convergence is assured. Results of the

zx+elax_l+0lax+l. With twenty-five simulation twenty-five simulation runs are; r= .2282,runs1 iti on ht =.284, _=-.239, while ;2 Vi1 ,
runs it is found that 1r 0.0143, 1 " .2091, - .0099. For one

minimum variance estimates are e I=.285, --.237. p
^2 2 - 2 ^ 2 - particular run when 81 .2, theoretically -

From '2(1-O2)/n, 0 8=l.0384. The approximate .2087 and 1'I1 n-l(1-e )/(1-p2)-(1-.04)/(100 1-
-1 8 e

formula for the covariance 7(e1 ,e )-e 1 +0-)n1u 1r 1(  .0427)) = .01. Simulated case gives r, - .1556,
or -.00784 for the simulated case versus the 62)6(n_2 2
actual of -.0032. e1.16-_)/(l-r 1 ) - (l-.0233j/

4. R ODEL (100(1-.0242)) = .01. Since € using -p 1
^ 1 "2

Some simple AR models s=l and m=2 are analyzed (l+P ) is a least squares estimate so aY 2
to show how results may be obtained. Note that in (1-4 )/n(l-p2), then confidence intervals my be
all fully two-sided AR mdels -= "found assuming the a's are distributed normally.

The two-sided simplest AR model, m=l, from The mini um variance estimate of $1 may be
(2.6) is obtained as indicated in the case of 6's.
zx = 01 Zx_1+ zx+l +ax 0, (a x1+Zx+l )+a , Another simple two-sided AR model, m-l, is:

z = Z x+zx ) + 2(_z + ) + ax
a2= (-2 ) -1 2 x + 2 x-2 x+2x

a 2 2 -1Since az = a (-2p

P,=Ol(P,_l+O,+l) for all E, 100, then

2., 29 = l(P1-l+PL+l ) + *2 (Pt 2+P1+2,J#0, (4.4)
P9 01=P1/(l+p 2)P a parabo. (the Yule-Walker equations are:

Note 1011<h, and given Oil pl '.5 *1 1 = * 1 (l+P2 ) + 2 (P+P3)

{l±(l-40 21. The values of {OlP,1D 2PP 3) are P2 - 01(pl+P3) + 02(i+P4)  (4.5)
given in Table 2. 2

The AR model written as an MA model is: 01 =101 (l+P4 ) - 2(P +P3 ) +02 ) (+4l)-(P+P32

i (B +Bx) i}ax-ax+ 1 (a +a )x I x x 1 X+ x- 02 [P2 (l+ 2 )-pI(Ol+ 3 )VI/(I+02)(l+p4)-(p+p 3 ) 2

+ 2
(a +2a +a + ...; (4.6)

1 x+2 x+ax 2) +1..11 +1021<%, and the equivalent MA model is

if z x -i a1Or(1 I) a (412
Ji 0 xi x + 2 (B )} 5x (47
Given a permissible set {p1,p2,P3,P41, {01102}' = * 1r 0 +42 ) ' 1- 1 €1 (1- 2 4 0)""

is determined. Given {1,02), then { pI,2,,.04
iT. 01(i- OTi+l), Tr_l (=0 -1 +T±i+l) is determined from the corresponding MA model,

Aroian and Schmse 11980). The variances and the

and ii=r • (4.3) covariance of (4142 may be found as indicated in

21 21 Aroian and Schmee (1980), *nd as usual the mini-
Given ii 0 .) 1 mum variance estimates of 2.The smula-

tion and prediction of such a model is essential-
T (21-1) 021-1,I 21 021 ly the same as given in ax and Jenkins (1976)

1 i ( - '1  2 i i-1 1I for pure time series, but four starting values
will be needed instead of only two.

2i-l 2i-1 2± 2i For Y-2, a simple two-sided model is:

3 2 1-2 1 ' 4 J2 1-2 )1 , etc-.x zXlX2 - 1 1 Xl-l,x2-l-+-lxt1 +l,x2+1
For 01 = .2 (4.8)

i 1 = .22772201, consequently T0 = 1.09108881, 1-1 xl-1,x 2+1 -11 x +1,x2-1 xlx 2



with 1= 1 1 and 1-1 = - 2 with solution:

= (Z +z ) r[P 01 P20 )-Po(P1-)P-1-lJ]/[(+P02)(l+P20hence zx I 1 ' 2- 1 x +1 ,x 2+ 2(pl~~p~ll) 2] ,

+22 (zx

)

- 

l, 
2+1+Zx +1-,x2-1)+a x 2

2 -1O2 10 02 10 l~l P___l}]/[(1+P02) (l+P20)
a.(1-2p11l0 1102 aa' (4.9) (p+_1+l ) 2 ] (4.16)

Pk1J 2
=
1 (P£1

- I
l -1 +PI -I £ +1) + Estimation, the approximate variance-covariance

2 1 '2 1 2 matrix, and confidence limits as well as minimum
0( , ++P , 0,£ #Q. variance estimates are found as before.
21 - 'X2 + 1 19'.2+1 1 2 It should be mentioned that the partial auto-

The characteristic function is: correlation function of the AR models have a cut-
- ( B 1 _1 -loff property, for the first model mul, all 0.,

1 (B B +B-1 - 2(B B -2B -B ) (4.10) i>l are zero, and i is a partial coefficient of
1 2  . x2  1 2  x. 2  correlation. Where there are two O's, 01* and 02

which may be used to find the corresponding MA
model useful to obtain all needed see both are partial coefficients of correlation, and

o1 uf Z 2 e i, i > 2 are zero. This property is helpful in

Aroian and Schmuee (1980). Note 101+1021< :, determining how far to proceed in the 0's; alter-
The Yule-Walker equations are: natives are the analysis of variance methods, and

that in which the variance of the error of pred-
Pll [+22) + 2(P0+P iction falls as the O's increase. Other possiblealternatives still unexplored are the X2 test and

011 01(P02+P20) + 02(l+P2 and (4.11) the Kolmogoroff-Smirnov test. An important point2-22 to remember is, as the number of O's increase, so
i0-1 (l+P- 22 ) 1-1- (P02 +PJ/[C+P22 2_ (Po02+P 20) does the variance of the forecast errors.

5. AIM MODELS
2 2

02- -1 1 (+'0 22 )-PlI(P0 2 +P2 d]A I +P2 2 ) 2(Po2+P 20)2 The two models considered are simplifications
(4.12) of (2.10) and (2.11):

which involve PllPl1lP02,P20,P22, and p-2,2* Zx = 0l(Z +Z ) - e (a +a ) + ax, (5.1)il 11 0'20 22 x, 1 x-l x+l 1 IX-1 x+l
Given estimates of these six correlations (0 .2
are found from (4.12). 1e 2 *0 (z .+z ..)-8_. (a .+

C o n v e r s e l y , g i v e n ( 0 , 2 t h e n a l l 022  2 2 + a 2 2 .2 )

must be found from the corresponding MA expansion. all + a2+1 (5.2)Estimation, variances and covariance of (1112+ eu on o 2
(1.02) For L5.1) the equations for 0Y z i and P02 are:

may be found as already indicated in other AR
models, perticularly the minimum variance method. 2 a 2 LI+22-4e )(-2p 0 )-1 (5.3)

Another obvious two-sided model is: z a ( 12-4 ) (10 -1(5
z (z - ,, +a 1(+ 1 2  e 1-2e (5.4)=s(z2+ x 1

1 2 1 + 112 a AT z

+a (4.13) P2" 0l +P3)+(O1-2lil)0°/0 (5.5)

22 l 2 From these:
( 2p0 0 1 2 p 0 0 2 ) a a2 , 2 41 0 1 ( o + 0 3 ) )/ [ e e - 2 e 1 1 -] -41  ( 1 + 0 2a a

ti#0,2 0. Thus (5.6) may be solved for ( ,81} using

This is analyzed in exactly the same way as the {Pl, . The restrictions on {0i, 1 and

previous models. {4 0,e01 for the AR and MA apply. Both (5.1)
0 1<1% I ,a th01rcersi i 01Clearly, 0+02 , the characteristic and (5.2) may be written in the equivalent AR or

function is MA model sincet

i - - (B +B -1 ) -0 (9 +B (4.14) -1 )
)
z (2.+9-1 ax ,

1x2 x 2 x1 xIl2B 3 1lx x
from which the corresponding MR may be found and ( 40 0  -1(a + i
all 0ki,2 's. The Yule-Walker equations aret a E I l x Ix

2 and

01 0(1+002) + ~0l+0ll (P +P ( 1 (%+B3 ) M{-0s (%+B_ I x (5.7)Pol " 1( i2- 1 11 JO I { 1 x ,5,

S0 (P +Pi
) 
+ #2(1+P20) with similar results for (5.2).

Pi ' 01 1-1 1.1 A more general model than (5.1) is:

I III I I n u -



zX  1 (zx- l+zx l) - 01axl-0_ lax++ax, (5.8) for stationary processes. For nonstationary

which reduces to (5.1) if 0 = processes differences in two variables may be
No used or transformations. Another alternative to

2 2 2 2 -1 transformations or to differencing direct treat-
(1 =0 (1+6 +0 -20 0l- )(1-2p ment of nonstationarity is feasible and will be
z a 1 2 ) investigated subsequently.

P1 =0o1 (l+p 2 ) (a/0z]( 6_1_6 1-6--1

SP +P )4 2 (6 +0 +q a- 8. CONCLUSIONS

2=1 1 3 a z 1 1+-1 11 ' The methods of time series in m dimensions are

p3= l(p +p )+[O2 /aNO 18.1 (5.9) applied to two-sided spatial models in one and3 1 4 a z 1 1 1 two dimensions: MA, AR, and ATA models illus-
Solve (5.9) using a2/2 from the first equation, trate the techniques including estimation. These

9 a z results presented in this paper are based on the

substitute this into the other three and solve second order moments, and MA, AR, and ARMA models
for {P1,8V8 1, } using the sample values as developed in time series in m dimensions.

' 1' -r frPapers in bibliography numbered as 1,2,3,4,11,12,{r r2rr4I for the Ps. Write (5.6) as 14, and 15 reflect the Aroian point of view.

(1-4. (B +Bf Z, = f1-6 B-e- B-1 } , (5.10) Some other points of view related to these results
1_ x x x = 1 x_1 x x may be found in Bartlett (1975), Bennett (1979),

then z as an MA process is: Besag (1972), Cliff and Ord (1973) and Ord (1975).
x Bartlett reflects a position from partial differ-
(1-0 Bx-8 B-I}{1-0 (Bx+B -  1 ) -l  ential equations, and power spectrums to AR

lx ax I mels, a broad point of view eowering

-l - i -1 i briefly most of the previous work before 1975.
z = [1l-61 Bx -8 Bx I (B +Bx)i] ax ,(5.11) Bennett covers the ideas quite thoroughly and

presents a comprehensive bibliography, but does

the same conditions are in not give enough details as Box and Jenkins (1976)
do in their work. Ord considers only first order

(3.5) and (4.1). autoregressive models, m=l, which are restricted
Represent zx as an AR model from (5.10) and not general.
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Table 2

Val.e of 40 1 Pi. P2. p 3

12 3

0 0 0 0

±.05 ±.0501 .0025 ±.0000

±.1010 .0102 ±.0010

±.2 ±.2087 .0436 ±.0091

±.25 ±.2679 .0718 ±.0192

±± .3333 .1111 ±.0370

±4±.75 .5625 ±.4291

±1 .±
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